camellia-aesni-avx-asm_64.S 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. /*
  2. * x86_64/AVX/AES-NI assembler implementation of Camellia
  3. *
  4. * Copyright © 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. */
  12. /*
  13. * Version licensed under 2-clause BSD License is available at:
  14. * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
  15. */
  16. #define CAMELLIA_TABLE_BYTE_LEN 272
  17. /* struct camellia_ctx: */
  18. #define key_table 0
  19. #define key_length CAMELLIA_TABLE_BYTE_LEN
  20. /* register macros */
  21. #define CTX %rdi
  22. /**********************************************************************
  23. 16-way camellia
  24. **********************************************************************/
  25. #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  26. vpand x, mask4bit, tmp0; \
  27. vpandn x, mask4bit, x; \
  28. vpsrld $4, x, x; \
  29. \
  30. vpshufb tmp0, lo_t, tmp0; \
  31. vpshufb x, hi_t, x; \
  32. vpxor tmp0, x, x;
  33. /*
  34. * IN:
  35. * x0..x7: byte-sliced AB state
  36. * mem_cd: register pointer storing CD state
  37. * key: index for key material
  38. * OUT:
  39. * x0..x7: new byte-sliced CD state
  40. */
  41. #define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  42. t7, mem_cd, key) \
  43. /* \
  44. * S-function with AES subbytes \
  45. */ \
  46. vmovdqa .Linv_shift_row, t4; \
  47. vbroadcastss .L0f0f0f0f, t7; \
  48. vmovdqa .Lpre_tf_lo_s1, t0; \
  49. vmovdqa .Lpre_tf_hi_s1, t1; \
  50. \
  51. /* AES inverse shift rows */ \
  52. vpshufb t4, x0, x0; \
  53. vpshufb t4, x7, x7; \
  54. vpshufb t4, x1, x1; \
  55. vpshufb t4, x4, x4; \
  56. vpshufb t4, x2, x2; \
  57. vpshufb t4, x5, x5; \
  58. vpshufb t4, x3, x3; \
  59. vpshufb t4, x6, x6; \
  60. \
  61. /* prefilter sboxes 1, 2 and 3 */ \
  62. vmovdqa .Lpre_tf_lo_s4, t2; \
  63. vmovdqa .Lpre_tf_hi_s4, t3; \
  64. filter_8bit(x0, t0, t1, t7, t6); \
  65. filter_8bit(x7, t0, t1, t7, t6); \
  66. filter_8bit(x1, t0, t1, t7, t6); \
  67. filter_8bit(x4, t0, t1, t7, t6); \
  68. filter_8bit(x2, t0, t1, t7, t6); \
  69. filter_8bit(x5, t0, t1, t7, t6); \
  70. \
  71. /* prefilter sbox 4 */ \
  72. vpxor t4, t4, t4; \
  73. filter_8bit(x3, t2, t3, t7, t6); \
  74. filter_8bit(x6, t2, t3, t7, t6); \
  75. \
  76. /* AES subbytes + AES shift rows */ \
  77. vmovdqa .Lpost_tf_lo_s1, t0; \
  78. vmovdqa .Lpost_tf_hi_s1, t1; \
  79. vaesenclast t4, x0, x0; \
  80. vaesenclast t4, x7, x7; \
  81. vaesenclast t4, x1, x1; \
  82. vaesenclast t4, x4, x4; \
  83. vaesenclast t4, x2, x2; \
  84. vaesenclast t4, x5, x5; \
  85. vaesenclast t4, x3, x3; \
  86. vaesenclast t4, x6, x6; \
  87. \
  88. /* postfilter sboxes 1 and 4 */ \
  89. vmovdqa .Lpost_tf_lo_s3, t2; \
  90. vmovdqa .Lpost_tf_hi_s3, t3; \
  91. filter_8bit(x0, t0, t1, t7, t6); \
  92. filter_8bit(x7, t0, t1, t7, t6); \
  93. filter_8bit(x3, t0, t1, t7, t6); \
  94. filter_8bit(x6, t0, t1, t7, t6); \
  95. \
  96. /* postfilter sbox 3 */ \
  97. vmovdqa .Lpost_tf_lo_s2, t4; \
  98. vmovdqa .Lpost_tf_hi_s2, t5; \
  99. filter_8bit(x2, t2, t3, t7, t6); \
  100. filter_8bit(x5, t2, t3, t7, t6); \
  101. \
  102. vpxor t6, t6, t6; \
  103. vmovq key, t0; \
  104. \
  105. /* postfilter sbox 2 */ \
  106. filter_8bit(x1, t4, t5, t7, t2); \
  107. filter_8bit(x4, t4, t5, t7, t2); \
  108. \
  109. vpsrldq $5, t0, t5; \
  110. vpsrldq $1, t0, t1; \
  111. vpsrldq $2, t0, t2; \
  112. vpsrldq $3, t0, t3; \
  113. vpsrldq $4, t0, t4; \
  114. vpshufb t6, t0, t0; \
  115. vpshufb t6, t1, t1; \
  116. vpshufb t6, t2, t2; \
  117. vpshufb t6, t3, t3; \
  118. vpshufb t6, t4, t4; \
  119. vpsrldq $2, t5, t7; \
  120. vpshufb t6, t7, t7; \
  121. \
  122. /* \
  123. * P-function \
  124. */ \
  125. vpxor x5, x0, x0; \
  126. vpxor x6, x1, x1; \
  127. vpxor x7, x2, x2; \
  128. vpxor x4, x3, x3; \
  129. \
  130. vpxor x2, x4, x4; \
  131. vpxor x3, x5, x5; \
  132. vpxor x0, x6, x6; \
  133. vpxor x1, x7, x7; \
  134. \
  135. vpxor x7, x0, x0; \
  136. vpxor x4, x1, x1; \
  137. vpxor x5, x2, x2; \
  138. vpxor x6, x3, x3; \
  139. \
  140. vpxor x3, x4, x4; \
  141. vpxor x0, x5, x5; \
  142. vpxor x1, x6, x6; \
  143. vpxor x2, x7, x7; /* note: high and low parts swapped */ \
  144. \
  145. /* \
  146. * Add key material and result to CD (x becomes new CD) \
  147. */ \
  148. \
  149. vpxor t3, x4, x4; \
  150. vpxor 0 * 16(mem_cd), x4, x4; \
  151. \
  152. vpxor t2, x5, x5; \
  153. vpxor 1 * 16(mem_cd), x5, x5; \
  154. \
  155. vpsrldq $1, t5, t3; \
  156. vpshufb t6, t5, t5; \
  157. vpshufb t6, t3, t6; \
  158. \
  159. vpxor t1, x6, x6; \
  160. vpxor 2 * 16(mem_cd), x6, x6; \
  161. \
  162. vpxor t0, x7, x7; \
  163. vpxor 3 * 16(mem_cd), x7, x7; \
  164. \
  165. vpxor t7, x0, x0; \
  166. vpxor 4 * 16(mem_cd), x0, x0; \
  167. \
  168. vpxor t6, x1, x1; \
  169. vpxor 5 * 16(mem_cd), x1, x1; \
  170. \
  171. vpxor t5, x2, x2; \
  172. vpxor 6 * 16(mem_cd), x2, x2; \
  173. \
  174. vpxor t4, x3, x3; \
  175. vpxor 7 * 16(mem_cd), x3, x3;
  176. /*
  177. * Size optimization... with inlined roundsm16, binary would be over 5 times
  178. * larger and would only be 0.5% faster (on sandy-bridge).
  179. */
  180. .align 8
  181. roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
  182. roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  183. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
  184. %rcx, (%r9));
  185. ret;
  186. .align 8
  187. roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
  188. roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
  189. %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
  190. %rax, (%r9));
  191. ret;
  192. /*
  193. * IN/OUT:
  194. * x0..x7: byte-sliced AB state preloaded
  195. * mem_ab: byte-sliced AB state in memory
  196. * mem_cb: byte-sliced CD state in memory
  197. */
  198. #define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  199. y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
  200. leaq (key_table + (i) * 8)(CTX), %r9; \
  201. call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
  202. \
  203. vmovdqu x4, 0 * 16(mem_cd); \
  204. vmovdqu x5, 1 * 16(mem_cd); \
  205. vmovdqu x6, 2 * 16(mem_cd); \
  206. vmovdqu x7, 3 * 16(mem_cd); \
  207. vmovdqu x0, 4 * 16(mem_cd); \
  208. vmovdqu x1, 5 * 16(mem_cd); \
  209. vmovdqu x2, 6 * 16(mem_cd); \
  210. vmovdqu x3, 7 * 16(mem_cd); \
  211. \
  212. leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
  213. call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
  214. \
  215. store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
  216. #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
  217. #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
  218. /* Store new AB state */ \
  219. vmovdqu x0, 0 * 16(mem_ab); \
  220. vmovdqu x1, 1 * 16(mem_ab); \
  221. vmovdqu x2, 2 * 16(mem_ab); \
  222. vmovdqu x3, 3 * 16(mem_ab); \
  223. vmovdqu x4, 4 * 16(mem_ab); \
  224. vmovdqu x5, 5 * 16(mem_ab); \
  225. vmovdqu x6, 6 * 16(mem_ab); \
  226. vmovdqu x7, 7 * 16(mem_ab);
  227. #define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  228. y6, y7, mem_ab, mem_cd, i) \
  229. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  230. y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
  231. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  232. y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
  233. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  234. y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
  235. #define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  236. y6, y7, mem_ab, mem_cd, i) \
  237. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  238. y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
  239. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  240. y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
  241. two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  242. y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
  243. /*
  244. * IN:
  245. * v0..3: byte-sliced 32-bit integers
  246. * OUT:
  247. * v0..3: (IN <<< 1)
  248. */
  249. #define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
  250. vpcmpgtb v0, zero, t0; \
  251. vpaddb v0, v0, v0; \
  252. vpabsb t0, t0; \
  253. \
  254. vpcmpgtb v1, zero, t1; \
  255. vpaddb v1, v1, v1; \
  256. vpabsb t1, t1; \
  257. \
  258. vpcmpgtb v2, zero, t2; \
  259. vpaddb v2, v2, v2; \
  260. vpabsb t2, t2; \
  261. \
  262. vpor t0, v1, v1; \
  263. \
  264. vpcmpgtb v3, zero, t0; \
  265. vpaddb v3, v3, v3; \
  266. vpabsb t0, t0; \
  267. \
  268. vpor t1, v2, v2; \
  269. vpor t2, v3, v3; \
  270. vpor t0, v0, v0;
  271. /*
  272. * IN:
  273. * r: byte-sliced AB state in memory
  274. * l: byte-sliced CD state in memory
  275. * OUT:
  276. * x0..x7: new byte-sliced CD state
  277. */
  278. #define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
  279. tt1, tt2, tt3, kll, klr, krl, krr) \
  280. /* \
  281. * t0 = kll; \
  282. * t0 &= ll; \
  283. * lr ^= rol32(t0, 1); \
  284. */ \
  285. vpxor tt0, tt0, tt0; \
  286. vmovd kll, t0; \
  287. vpshufb tt0, t0, t3; \
  288. vpsrldq $1, t0, t0; \
  289. vpshufb tt0, t0, t2; \
  290. vpsrldq $1, t0, t0; \
  291. vpshufb tt0, t0, t1; \
  292. vpsrldq $1, t0, t0; \
  293. vpshufb tt0, t0, t0; \
  294. \
  295. vpand l0, t0, t0; \
  296. vpand l1, t1, t1; \
  297. vpand l2, t2, t2; \
  298. vpand l3, t3, t3; \
  299. \
  300. rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  301. \
  302. vpxor l4, t0, l4; \
  303. vmovdqu l4, 4 * 16(l); \
  304. vpxor l5, t1, l5; \
  305. vmovdqu l5, 5 * 16(l); \
  306. vpxor l6, t2, l6; \
  307. vmovdqu l6, 6 * 16(l); \
  308. vpxor l7, t3, l7; \
  309. vmovdqu l7, 7 * 16(l); \
  310. \
  311. /* \
  312. * t2 = krr; \
  313. * t2 |= rr; \
  314. * rl ^= t2; \
  315. */ \
  316. \
  317. vmovd krr, t0; \
  318. vpshufb tt0, t0, t3; \
  319. vpsrldq $1, t0, t0; \
  320. vpshufb tt0, t0, t2; \
  321. vpsrldq $1, t0, t0; \
  322. vpshufb tt0, t0, t1; \
  323. vpsrldq $1, t0, t0; \
  324. vpshufb tt0, t0, t0; \
  325. \
  326. vpor 4 * 16(r), t0, t0; \
  327. vpor 5 * 16(r), t1, t1; \
  328. vpor 6 * 16(r), t2, t2; \
  329. vpor 7 * 16(r), t3, t3; \
  330. \
  331. vpxor 0 * 16(r), t0, t0; \
  332. vpxor 1 * 16(r), t1, t1; \
  333. vpxor 2 * 16(r), t2, t2; \
  334. vpxor 3 * 16(r), t3, t3; \
  335. vmovdqu t0, 0 * 16(r); \
  336. vmovdqu t1, 1 * 16(r); \
  337. vmovdqu t2, 2 * 16(r); \
  338. vmovdqu t3, 3 * 16(r); \
  339. \
  340. /* \
  341. * t2 = krl; \
  342. * t2 &= rl; \
  343. * rr ^= rol32(t2, 1); \
  344. */ \
  345. vmovd krl, t0; \
  346. vpshufb tt0, t0, t3; \
  347. vpsrldq $1, t0, t0; \
  348. vpshufb tt0, t0, t2; \
  349. vpsrldq $1, t0, t0; \
  350. vpshufb tt0, t0, t1; \
  351. vpsrldq $1, t0, t0; \
  352. vpshufb tt0, t0, t0; \
  353. \
  354. vpand 0 * 16(r), t0, t0; \
  355. vpand 1 * 16(r), t1, t1; \
  356. vpand 2 * 16(r), t2, t2; \
  357. vpand 3 * 16(r), t3, t3; \
  358. \
  359. rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  360. \
  361. vpxor 4 * 16(r), t0, t0; \
  362. vpxor 5 * 16(r), t1, t1; \
  363. vpxor 6 * 16(r), t2, t2; \
  364. vpxor 7 * 16(r), t3, t3; \
  365. vmovdqu t0, 4 * 16(r); \
  366. vmovdqu t1, 5 * 16(r); \
  367. vmovdqu t2, 6 * 16(r); \
  368. vmovdqu t3, 7 * 16(r); \
  369. \
  370. /* \
  371. * t0 = klr; \
  372. * t0 |= lr; \
  373. * ll ^= t0; \
  374. */ \
  375. \
  376. vmovd klr, t0; \
  377. vpshufb tt0, t0, t3; \
  378. vpsrldq $1, t0, t0; \
  379. vpshufb tt0, t0, t2; \
  380. vpsrldq $1, t0, t0; \
  381. vpshufb tt0, t0, t1; \
  382. vpsrldq $1, t0, t0; \
  383. vpshufb tt0, t0, t0; \
  384. \
  385. vpor l4, t0, t0; \
  386. vpor l5, t1, t1; \
  387. vpor l6, t2, t2; \
  388. vpor l7, t3, t3; \
  389. \
  390. vpxor l0, t0, l0; \
  391. vmovdqu l0, 0 * 16(l); \
  392. vpxor l1, t1, l1; \
  393. vmovdqu l1, 1 * 16(l); \
  394. vpxor l2, t2, l2; \
  395. vmovdqu l2, 2 * 16(l); \
  396. vpxor l3, t3, l3; \
  397. vmovdqu l3, 3 * 16(l);
  398. #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
  399. vpunpckhdq x1, x0, t2; \
  400. vpunpckldq x1, x0, x0; \
  401. \
  402. vpunpckldq x3, x2, t1; \
  403. vpunpckhdq x3, x2, x2; \
  404. \
  405. vpunpckhqdq t1, x0, x1; \
  406. vpunpcklqdq t1, x0, x0; \
  407. \
  408. vpunpckhqdq x2, t2, x3; \
  409. vpunpcklqdq x2, t2, x2;
  410. #define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
  411. b3, c3, d3, st0, st1) \
  412. vmovdqu d2, st0; \
  413. vmovdqu d3, st1; \
  414. transpose_4x4(a0, a1, a2, a3, d2, d3); \
  415. transpose_4x4(b0, b1, b2, b3, d2, d3); \
  416. vmovdqu st0, d2; \
  417. vmovdqu st1, d3; \
  418. \
  419. vmovdqu a0, st0; \
  420. vmovdqu a1, st1; \
  421. transpose_4x4(c0, c1, c2, c3, a0, a1); \
  422. transpose_4x4(d0, d1, d2, d3, a0, a1); \
  423. \
  424. vmovdqu .Lshufb_16x16b, a0; \
  425. vmovdqu st1, a1; \
  426. vpshufb a0, a2, a2; \
  427. vpshufb a0, a3, a3; \
  428. vpshufb a0, b0, b0; \
  429. vpshufb a0, b1, b1; \
  430. vpshufb a0, b2, b2; \
  431. vpshufb a0, b3, b3; \
  432. vpshufb a0, a1, a1; \
  433. vpshufb a0, c0, c0; \
  434. vpshufb a0, c1, c1; \
  435. vpshufb a0, c2, c2; \
  436. vpshufb a0, c3, c3; \
  437. vpshufb a0, d0, d0; \
  438. vpshufb a0, d1, d1; \
  439. vpshufb a0, d2, d2; \
  440. vpshufb a0, d3, d3; \
  441. vmovdqu d3, st1; \
  442. vmovdqu st0, d3; \
  443. vpshufb a0, d3, a0; \
  444. vmovdqu d2, st0; \
  445. \
  446. transpose_4x4(a0, b0, c0, d0, d2, d3); \
  447. transpose_4x4(a1, b1, c1, d1, d2, d3); \
  448. vmovdqu st0, d2; \
  449. vmovdqu st1, d3; \
  450. \
  451. vmovdqu b0, st0; \
  452. vmovdqu b1, st1; \
  453. transpose_4x4(a2, b2, c2, d2, b0, b1); \
  454. transpose_4x4(a3, b3, c3, d3, b0, b1); \
  455. vmovdqu st0, b0; \
  456. vmovdqu st1, b1; \
  457. /* does not adjust output bytes inside vectors */
  458. /* load blocks to registers and apply pre-whitening */
  459. #define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  460. y6, y7, rio, key) \
  461. vmovq key, x0; \
  462. vpshufb .Lpack_bswap, x0, x0; \
  463. \
  464. vpxor 0 * 16(rio), x0, y7; \
  465. vpxor 1 * 16(rio), x0, y6; \
  466. vpxor 2 * 16(rio), x0, y5; \
  467. vpxor 3 * 16(rio), x0, y4; \
  468. vpxor 4 * 16(rio), x0, y3; \
  469. vpxor 5 * 16(rio), x0, y2; \
  470. vpxor 6 * 16(rio), x0, y1; \
  471. vpxor 7 * 16(rio), x0, y0; \
  472. vpxor 8 * 16(rio), x0, x7; \
  473. vpxor 9 * 16(rio), x0, x6; \
  474. vpxor 10 * 16(rio), x0, x5; \
  475. vpxor 11 * 16(rio), x0, x4; \
  476. vpxor 12 * 16(rio), x0, x3; \
  477. vpxor 13 * 16(rio), x0, x2; \
  478. vpxor 14 * 16(rio), x0, x1; \
  479. vpxor 15 * 16(rio), x0, x0;
  480. /* byteslice pre-whitened blocks and store to temporary memory */
  481. #define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  482. y6, y7, mem_ab, mem_cd) \
  483. byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
  484. y5, y6, y7, (mem_ab), (mem_cd)); \
  485. \
  486. vmovdqu x0, 0 * 16(mem_ab); \
  487. vmovdqu x1, 1 * 16(mem_ab); \
  488. vmovdqu x2, 2 * 16(mem_ab); \
  489. vmovdqu x3, 3 * 16(mem_ab); \
  490. vmovdqu x4, 4 * 16(mem_ab); \
  491. vmovdqu x5, 5 * 16(mem_ab); \
  492. vmovdqu x6, 6 * 16(mem_ab); \
  493. vmovdqu x7, 7 * 16(mem_ab); \
  494. vmovdqu y0, 0 * 16(mem_cd); \
  495. vmovdqu y1, 1 * 16(mem_cd); \
  496. vmovdqu y2, 2 * 16(mem_cd); \
  497. vmovdqu y3, 3 * 16(mem_cd); \
  498. vmovdqu y4, 4 * 16(mem_cd); \
  499. vmovdqu y5, 5 * 16(mem_cd); \
  500. vmovdqu y6, 6 * 16(mem_cd); \
  501. vmovdqu y7, 7 * 16(mem_cd);
  502. /* de-byteslice, apply post-whitening and store blocks */
  503. #define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
  504. y5, y6, y7, key, stack_tmp0, stack_tmp1) \
  505. byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
  506. y7, x3, x7, stack_tmp0, stack_tmp1); \
  507. \
  508. vmovdqu x0, stack_tmp0; \
  509. \
  510. vmovq key, x0; \
  511. vpshufb .Lpack_bswap, x0, x0; \
  512. \
  513. vpxor x0, y7, y7; \
  514. vpxor x0, y6, y6; \
  515. vpxor x0, y5, y5; \
  516. vpxor x0, y4, y4; \
  517. vpxor x0, y3, y3; \
  518. vpxor x0, y2, y2; \
  519. vpxor x0, y1, y1; \
  520. vpxor x0, y0, y0; \
  521. vpxor x0, x7, x7; \
  522. vpxor x0, x6, x6; \
  523. vpxor x0, x5, x5; \
  524. vpxor x0, x4, x4; \
  525. vpxor x0, x3, x3; \
  526. vpxor x0, x2, x2; \
  527. vpxor x0, x1, x1; \
  528. vpxor stack_tmp0, x0, x0;
  529. #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  530. y6, y7, rio) \
  531. vmovdqu x0, 0 * 16(rio); \
  532. vmovdqu x1, 1 * 16(rio); \
  533. vmovdqu x2, 2 * 16(rio); \
  534. vmovdqu x3, 3 * 16(rio); \
  535. vmovdqu x4, 4 * 16(rio); \
  536. vmovdqu x5, 5 * 16(rio); \
  537. vmovdqu x6, 6 * 16(rio); \
  538. vmovdqu x7, 7 * 16(rio); \
  539. vmovdqu y0, 8 * 16(rio); \
  540. vmovdqu y1, 9 * 16(rio); \
  541. vmovdqu y2, 10 * 16(rio); \
  542. vmovdqu y3, 11 * 16(rio); \
  543. vmovdqu y4, 12 * 16(rio); \
  544. vmovdqu y5, 13 * 16(rio); \
  545. vmovdqu y6, 14 * 16(rio); \
  546. vmovdqu y7, 15 * 16(rio);
  547. .data
  548. .align 16
  549. #define SHUFB_BYTES(idx) \
  550. 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
  551. .Lshufb_16x16b:
  552. .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
  553. .Lpack_bswap:
  554. .long 0x00010203
  555. .long 0x04050607
  556. .long 0x80808080
  557. .long 0x80808080
  558. /* For CTR-mode IV byteswap */
  559. .Lbswap128_mask:
  560. .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
  561. /*
  562. * pre-SubByte transform
  563. *
  564. * pre-lookup for sbox1, sbox2, sbox3:
  565. * swap_bitendianness(
  566. * isom_map_camellia_to_aes(
  567. * camellia_f(
  568. * swap_bitendianess(in)
  569. * )
  570. * )
  571. * )
  572. *
  573. * (note: '⊕ 0xc5' inside camellia_f())
  574. */
  575. .Lpre_tf_lo_s1:
  576. .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
  577. .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
  578. .Lpre_tf_hi_s1:
  579. .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
  580. .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
  581. /*
  582. * pre-SubByte transform
  583. *
  584. * pre-lookup for sbox4:
  585. * swap_bitendianness(
  586. * isom_map_camellia_to_aes(
  587. * camellia_f(
  588. * swap_bitendianess(in <<< 1)
  589. * )
  590. * )
  591. * )
  592. *
  593. * (note: '⊕ 0xc5' inside camellia_f())
  594. */
  595. .Lpre_tf_lo_s4:
  596. .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
  597. .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
  598. .Lpre_tf_hi_s4:
  599. .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
  600. .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
  601. /*
  602. * post-SubByte transform
  603. *
  604. * post-lookup for sbox1, sbox4:
  605. * swap_bitendianness(
  606. * camellia_h(
  607. * isom_map_aes_to_camellia(
  608. * swap_bitendianness(
  609. * aes_inverse_affine_transform(in)
  610. * )
  611. * )
  612. * )
  613. * )
  614. *
  615. * (note: '⊕ 0x6e' inside camellia_h())
  616. */
  617. .Lpost_tf_lo_s1:
  618. .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
  619. .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
  620. .Lpost_tf_hi_s1:
  621. .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
  622. .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
  623. /*
  624. * post-SubByte transform
  625. *
  626. * post-lookup for sbox2:
  627. * swap_bitendianness(
  628. * camellia_h(
  629. * isom_map_aes_to_camellia(
  630. * swap_bitendianness(
  631. * aes_inverse_affine_transform(in)
  632. * )
  633. * )
  634. * )
  635. * ) <<< 1
  636. *
  637. * (note: '⊕ 0x6e' inside camellia_h())
  638. */
  639. .Lpost_tf_lo_s2:
  640. .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
  641. .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
  642. .Lpost_tf_hi_s2:
  643. .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
  644. .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
  645. /*
  646. * post-SubByte transform
  647. *
  648. * post-lookup for sbox3:
  649. * swap_bitendianness(
  650. * camellia_h(
  651. * isom_map_aes_to_camellia(
  652. * swap_bitendianness(
  653. * aes_inverse_affine_transform(in)
  654. * )
  655. * )
  656. * )
  657. * ) >>> 1
  658. *
  659. * (note: '⊕ 0x6e' inside camellia_h())
  660. */
  661. .Lpost_tf_lo_s3:
  662. .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
  663. .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
  664. .Lpost_tf_hi_s3:
  665. .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
  666. .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
  667. /* For isolating SubBytes from AESENCLAST, inverse shift row */
  668. .Linv_shift_row:
  669. .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
  670. .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
  671. /* 4-bit mask */
  672. .align 4
  673. .L0f0f0f0f:
  674. .long 0x0f0f0f0f
  675. .text
  676. .align 8
  677. .type __camellia_enc_blk16,@function;
  678. __camellia_enc_blk16:
  679. /* input:
  680. * %rdi: ctx, CTX
  681. * %rax: temporary storage, 256 bytes
  682. * %xmm0..%xmm15: 16 plaintext blocks
  683. * output:
  684. * %xmm0..%xmm15: 16 encrypted blocks, order swapped:
  685. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  686. */
  687. leaq 8 * 16(%rax), %rcx;
  688. inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  689. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  690. %xmm15, %rax, %rcx);
  691. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  692. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  693. %xmm15, %rax, %rcx, 0);
  694. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  695. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  696. %xmm15,
  697. ((key_table + (8) * 8) + 0)(CTX),
  698. ((key_table + (8) * 8) + 4)(CTX),
  699. ((key_table + (8) * 8) + 8)(CTX),
  700. ((key_table + (8) * 8) + 12)(CTX));
  701. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  702. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  703. %xmm15, %rax, %rcx, 8);
  704. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  705. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  706. %xmm15,
  707. ((key_table + (16) * 8) + 0)(CTX),
  708. ((key_table + (16) * 8) + 4)(CTX),
  709. ((key_table + (16) * 8) + 8)(CTX),
  710. ((key_table + (16) * 8) + 12)(CTX));
  711. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  712. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  713. %xmm15, %rax, %rcx, 16);
  714. movl $24, %r8d;
  715. cmpl $16, key_length(CTX);
  716. jne .Lenc_max32;
  717. .Lenc_done:
  718. /* load CD for output */
  719. vmovdqu 0 * 16(%rcx), %xmm8;
  720. vmovdqu 1 * 16(%rcx), %xmm9;
  721. vmovdqu 2 * 16(%rcx), %xmm10;
  722. vmovdqu 3 * 16(%rcx), %xmm11;
  723. vmovdqu 4 * 16(%rcx), %xmm12;
  724. vmovdqu 5 * 16(%rcx), %xmm13;
  725. vmovdqu 6 * 16(%rcx), %xmm14;
  726. vmovdqu 7 * 16(%rcx), %xmm15;
  727. outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  728. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  729. %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
  730. ret;
  731. .align 8
  732. .Lenc_max32:
  733. movl $32, %r8d;
  734. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  735. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  736. %xmm15,
  737. ((key_table + (24) * 8) + 0)(CTX),
  738. ((key_table + (24) * 8) + 4)(CTX),
  739. ((key_table + (24) * 8) + 8)(CTX),
  740. ((key_table + (24) * 8) + 12)(CTX));
  741. enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  742. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  743. %xmm15, %rax, %rcx, 24);
  744. jmp .Lenc_done;
  745. .align 8
  746. .type __camellia_dec_blk16,@function;
  747. __camellia_dec_blk16:
  748. /* input:
  749. * %rdi: ctx, CTX
  750. * %rax: temporary storage, 256 bytes
  751. * %r8d: 24 for 16 byte key, 32 for larger
  752. * %xmm0..%xmm15: 16 encrypted blocks
  753. * output:
  754. * %xmm0..%xmm15: 16 plaintext blocks, order swapped:
  755. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  756. */
  757. leaq 8 * 16(%rax), %rcx;
  758. inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  759. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  760. %xmm15, %rax, %rcx);
  761. cmpl $32, %r8d;
  762. je .Ldec_max32;
  763. .Ldec_max24:
  764. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  765. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  766. %xmm15, %rax, %rcx, 16);
  767. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  768. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  769. %xmm15,
  770. ((key_table + (16) * 8) + 8)(CTX),
  771. ((key_table + (16) * 8) + 12)(CTX),
  772. ((key_table + (16) * 8) + 0)(CTX),
  773. ((key_table + (16) * 8) + 4)(CTX));
  774. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  775. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  776. %xmm15, %rax, %rcx, 8);
  777. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  778. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  779. %xmm15,
  780. ((key_table + (8) * 8) + 8)(CTX),
  781. ((key_table + (8) * 8) + 12)(CTX),
  782. ((key_table + (8) * 8) + 0)(CTX),
  783. ((key_table + (8) * 8) + 4)(CTX));
  784. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  785. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  786. %xmm15, %rax, %rcx, 0);
  787. /* load CD for output */
  788. vmovdqu 0 * 16(%rcx), %xmm8;
  789. vmovdqu 1 * 16(%rcx), %xmm9;
  790. vmovdqu 2 * 16(%rcx), %xmm10;
  791. vmovdqu 3 * 16(%rcx), %xmm11;
  792. vmovdqu 4 * 16(%rcx), %xmm12;
  793. vmovdqu 5 * 16(%rcx), %xmm13;
  794. vmovdqu 6 * 16(%rcx), %xmm14;
  795. vmovdqu 7 * 16(%rcx), %xmm15;
  796. outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  797. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  798. %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
  799. ret;
  800. .align 8
  801. .Ldec_max32:
  802. dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  803. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  804. %xmm15, %rax, %rcx, 24);
  805. fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  806. %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  807. %xmm15,
  808. ((key_table + (24) * 8) + 8)(CTX),
  809. ((key_table + (24) * 8) + 12)(CTX),
  810. ((key_table + (24) * 8) + 0)(CTX),
  811. ((key_table + (24) * 8) + 4)(CTX));
  812. jmp .Ldec_max24;
  813. .align 8
  814. .global camellia_ecb_enc_16way
  815. .type camellia_ecb_enc_16way,@function;
  816. camellia_ecb_enc_16way:
  817. /* input:
  818. * %rdi: ctx, CTX
  819. * %rsi: dst (16 blocks)
  820. * %rdx: src (16 blocks)
  821. */
  822. inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  823. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  824. %xmm15, %rdx, (key_table)(CTX));
  825. /* now dst can be used as temporary buffer (even in src == dst case) */
  826. movq %rsi, %rax;
  827. call __camellia_enc_blk16;
  828. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  829. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  830. %xmm8, %rsi);
  831. ret;
  832. .align 8
  833. .global camellia_ecb_dec_16way
  834. .type camellia_ecb_dec_16way,@function;
  835. camellia_ecb_dec_16way:
  836. /* input:
  837. * %rdi: ctx, CTX
  838. * %rsi: dst (16 blocks)
  839. * %rdx: src (16 blocks)
  840. */
  841. cmpl $16, key_length(CTX);
  842. movl $32, %r8d;
  843. movl $24, %eax;
  844. cmovel %eax, %r8d; /* max */
  845. inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  846. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  847. %xmm15, %rdx, (key_table)(CTX, %r8, 8));
  848. /* now dst can be used as temporary buffer (even in src == dst case) */
  849. movq %rsi, %rax;
  850. call __camellia_dec_blk16;
  851. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  852. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  853. %xmm8, %rsi);
  854. ret;
  855. .align 8
  856. .global camellia_cbc_dec_16way
  857. .type camellia_cbc_dec_16way,@function;
  858. camellia_cbc_dec_16way:
  859. /* input:
  860. * %rdi: ctx, CTX
  861. * %rsi: dst (16 blocks)
  862. * %rdx: src (16 blocks)
  863. */
  864. cmpl $16, key_length(CTX);
  865. movl $32, %r8d;
  866. movl $24, %eax;
  867. cmovel %eax, %r8d; /* max */
  868. inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
  869. %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
  870. %xmm15, %rdx, (key_table)(CTX, %r8, 8));
  871. /*
  872. * dst might still be in-use (in case dst == src), so use stack for
  873. * temporary storage.
  874. */
  875. subq $(16 * 16), %rsp;
  876. movq %rsp, %rax;
  877. call __camellia_dec_blk16;
  878. addq $(16 * 16), %rsp;
  879. vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
  880. vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
  881. vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
  882. vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
  883. vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
  884. vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
  885. vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
  886. vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
  887. vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
  888. vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
  889. vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
  890. vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
  891. vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
  892. vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
  893. vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
  894. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  895. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  896. %xmm8, %rsi);
  897. ret;
  898. #define inc_le128(x, minus_one, tmp) \
  899. vpcmpeqq minus_one, x, tmp; \
  900. vpsubq minus_one, x, x; \
  901. vpslldq $8, tmp, tmp; \
  902. vpsubq tmp, x, x;
  903. .align 8
  904. .global camellia_ctr_16way
  905. .type camellia_ctr_16way,@function;
  906. camellia_ctr_16way:
  907. /* input:
  908. * %rdi: ctx, CTX
  909. * %rsi: dst (16 blocks)
  910. * %rdx: src (16 blocks)
  911. * %rcx: iv (little endian, 128bit)
  912. */
  913. subq $(16 * 16), %rsp;
  914. movq %rsp, %rax;
  915. vmovdqa .Lbswap128_mask, %xmm14;
  916. /* load IV and byteswap */
  917. vmovdqu (%rcx), %xmm0;
  918. vpshufb %xmm14, %xmm0, %xmm15;
  919. vmovdqu %xmm15, 15 * 16(%rax);
  920. vpcmpeqd %xmm15, %xmm15, %xmm15;
  921. vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
  922. /* construct IVs */
  923. inc_le128(%xmm0, %xmm15, %xmm13);
  924. vpshufb %xmm14, %xmm0, %xmm13;
  925. vmovdqu %xmm13, 14 * 16(%rax);
  926. inc_le128(%xmm0, %xmm15, %xmm13);
  927. vpshufb %xmm14, %xmm0, %xmm13;
  928. vmovdqu %xmm13, 13 * 16(%rax);
  929. inc_le128(%xmm0, %xmm15, %xmm13);
  930. vpshufb %xmm14, %xmm0, %xmm12;
  931. inc_le128(%xmm0, %xmm15, %xmm13);
  932. vpshufb %xmm14, %xmm0, %xmm11;
  933. inc_le128(%xmm0, %xmm15, %xmm13);
  934. vpshufb %xmm14, %xmm0, %xmm10;
  935. inc_le128(%xmm0, %xmm15, %xmm13);
  936. vpshufb %xmm14, %xmm0, %xmm9;
  937. inc_le128(%xmm0, %xmm15, %xmm13);
  938. vpshufb %xmm14, %xmm0, %xmm8;
  939. inc_le128(%xmm0, %xmm15, %xmm13);
  940. vpshufb %xmm14, %xmm0, %xmm7;
  941. inc_le128(%xmm0, %xmm15, %xmm13);
  942. vpshufb %xmm14, %xmm0, %xmm6;
  943. inc_le128(%xmm0, %xmm15, %xmm13);
  944. vpshufb %xmm14, %xmm0, %xmm5;
  945. inc_le128(%xmm0, %xmm15, %xmm13);
  946. vpshufb %xmm14, %xmm0, %xmm4;
  947. inc_le128(%xmm0, %xmm15, %xmm13);
  948. vpshufb %xmm14, %xmm0, %xmm3;
  949. inc_le128(%xmm0, %xmm15, %xmm13);
  950. vpshufb %xmm14, %xmm0, %xmm2;
  951. inc_le128(%xmm0, %xmm15, %xmm13);
  952. vpshufb %xmm14, %xmm0, %xmm1;
  953. inc_le128(%xmm0, %xmm15, %xmm13);
  954. vmovdqa %xmm0, %xmm13;
  955. vpshufb %xmm14, %xmm0, %xmm0;
  956. inc_le128(%xmm13, %xmm15, %xmm14);
  957. vmovdqu %xmm13, (%rcx);
  958. /* inpack16_pre: */
  959. vmovq (key_table)(CTX), %xmm15;
  960. vpshufb .Lpack_bswap, %xmm15, %xmm15;
  961. vpxor %xmm0, %xmm15, %xmm0;
  962. vpxor %xmm1, %xmm15, %xmm1;
  963. vpxor %xmm2, %xmm15, %xmm2;
  964. vpxor %xmm3, %xmm15, %xmm3;
  965. vpxor %xmm4, %xmm15, %xmm4;
  966. vpxor %xmm5, %xmm15, %xmm5;
  967. vpxor %xmm6, %xmm15, %xmm6;
  968. vpxor %xmm7, %xmm15, %xmm7;
  969. vpxor %xmm8, %xmm15, %xmm8;
  970. vpxor %xmm9, %xmm15, %xmm9;
  971. vpxor %xmm10, %xmm15, %xmm10;
  972. vpxor %xmm11, %xmm15, %xmm11;
  973. vpxor %xmm12, %xmm15, %xmm12;
  974. vpxor 13 * 16(%rax), %xmm15, %xmm13;
  975. vpxor 14 * 16(%rax), %xmm15, %xmm14;
  976. vpxor 15 * 16(%rax), %xmm15, %xmm15;
  977. call __camellia_enc_blk16;
  978. addq $(16 * 16), %rsp;
  979. vpxor 0 * 16(%rdx), %xmm7, %xmm7;
  980. vpxor 1 * 16(%rdx), %xmm6, %xmm6;
  981. vpxor 2 * 16(%rdx), %xmm5, %xmm5;
  982. vpxor 3 * 16(%rdx), %xmm4, %xmm4;
  983. vpxor 4 * 16(%rdx), %xmm3, %xmm3;
  984. vpxor 5 * 16(%rdx), %xmm2, %xmm2;
  985. vpxor 6 * 16(%rdx), %xmm1, %xmm1;
  986. vpxor 7 * 16(%rdx), %xmm0, %xmm0;
  987. vpxor 8 * 16(%rdx), %xmm15, %xmm15;
  988. vpxor 9 * 16(%rdx), %xmm14, %xmm14;
  989. vpxor 10 * 16(%rdx), %xmm13, %xmm13;
  990. vpxor 11 * 16(%rdx), %xmm12, %xmm12;
  991. vpxor 12 * 16(%rdx), %xmm11, %xmm11;
  992. vpxor 13 * 16(%rdx), %xmm10, %xmm10;
  993. vpxor 14 * 16(%rdx), %xmm9, %xmm9;
  994. vpxor 15 * 16(%rdx), %xmm8, %xmm8;
  995. write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
  996. %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
  997. %xmm8, %rsi);
  998. ret;