coproc.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/mm.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/kvm_arm.h>
  23. #include <asm/kvm_host.h>
  24. #include <asm/kvm_emulate.h>
  25. #include <asm/kvm_coproc.h>
  26. #include <asm/cacheflush.h>
  27. #include <asm/cputype.h>
  28. #include <trace/events/kvm.h>
  29. #include <asm/vfp.h>
  30. #include "../vfp/vfpinstr.h"
  31. #include "trace.h"
  32. #include "coproc.h"
  33. /******************************************************************************
  34. * Co-processor emulation
  35. *****************************************************************************/
  36. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  37. static u32 cache_levels;
  38. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  39. #define CSSELR_MAX 12
  40. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  41. {
  42. kvm_inject_undefined(vcpu);
  43. return 1;
  44. }
  45. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  46. {
  47. /*
  48. * We can get here, if the host has been built without VFPv3 support,
  49. * but the guest attempted a floating point operation.
  50. */
  51. kvm_inject_undefined(vcpu);
  52. return 1;
  53. }
  54. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  55. {
  56. kvm_inject_undefined(vcpu);
  57. return 1;
  58. }
  59. int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  60. {
  61. kvm_inject_undefined(vcpu);
  62. return 1;
  63. }
  64. /* See note at ARM ARM B1.14.4 */
  65. static bool access_dcsw(struct kvm_vcpu *vcpu,
  66. const struct coproc_params *p,
  67. const struct coproc_reg *r)
  68. {
  69. u32 val;
  70. int cpu;
  71. cpu = get_cpu();
  72. if (!p->is_write)
  73. return read_from_write_only(vcpu, p);
  74. cpumask_setall(&vcpu->arch.require_dcache_flush);
  75. cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
  76. /* If we were already preempted, take the long way around */
  77. if (cpu != vcpu->arch.last_pcpu) {
  78. flush_cache_all();
  79. goto done;
  80. }
  81. val = *vcpu_reg(vcpu, p->Rt1);
  82. switch (p->CRm) {
  83. case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
  84. case 14: /* DCCISW */
  85. asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
  86. break;
  87. case 10: /* DCCSW */
  88. asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
  89. break;
  90. }
  91. done:
  92. put_cpu();
  93. return true;
  94. }
  95. /*
  96. * We could trap ID_DFR0 and tell the guest we don't support performance
  97. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  98. * NAKed, so it will read the PMCR anyway.
  99. *
  100. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  101. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  102. * all PM registers, which doesn't crash the guest kernel at least.
  103. */
  104. static bool pm_fake(struct kvm_vcpu *vcpu,
  105. const struct coproc_params *p,
  106. const struct coproc_reg *r)
  107. {
  108. if (p->is_write)
  109. return ignore_write(vcpu, p);
  110. else
  111. return read_zero(vcpu, p);
  112. }
  113. #define access_pmcr pm_fake
  114. #define access_pmcntenset pm_fake
  115. #define access_pmcntenclr pm_fake
  116. #define access_pmovsr pm_fake
  117. #define access_pmselr pm_fake
  118. #define access_pmceid0 pm_fake
  119. #define access_pmceid1 pm_fake
  120. #define access_pmccntr pm_fake
  121. #define access_pmxevtyper pm_fake
  122. #define access_pmxevcntr pm_fake
  123. #define access_pmuserenr pm_fake
  124. #define access_pmintenset pm_fake
  125. #define access_pmintenclr pm_fake
  126. /* Architected CP15 registers.
  127. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2
  128. */
  129. static const struct coproc_reg cp15_regs[] = {
  130. /* CSSELR: swapped by interrupt.S. */
  131. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  132. NULL, reset_unknown, c0_CSSELR },
  133. /* TTBR0/TTBR1: swapped by interrupt.S. */
  134. { CRm( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
  135. { CRm( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
  136. /* TTBCR: swapped by interrupt.S. */
  137. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  138. NULL, reset_val, c2_TTBCR, 0x00000000 },
  139. /* DACR: swapped by interrupt.S. */
  140. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  141. NULL, reset_unknown, c3_DACR },
  142. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  143. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  144. NULL, reset_unknown, c5_DFSR },
  145. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  146. NULL, reset_unknown, c5_IFSR },
  147. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  148. NULL, reset_unknown, c5_ADFSR },
  149. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  150. NULL, reset_unknown, c5_AIFSR },
  151. /* DFAR/IFAR: swapped by interrupt.S. */
  152. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  153. NULL, reset_unknown, c6_DFAR },
  154. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  155. NULL, reset_unknown, c6_IFAR },
  156. /*
  157. * DC{C,I,CI}SW operations:
  158. */
  159. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  160. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  161. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  162. /*
  163. * Dummy performance monitor implementation.
  164. */
  165. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  166. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  167. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  168. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  169. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  170. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  171. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  172. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  173. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  174. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  175. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  176. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  177. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  178. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  179. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  180. NULL, reset_unknown, c10_PRRR},
  181. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  182. NULL, reset_unknown, c10_NMRR},
  183. /* VBAR: swapped by interrupt.S. */
  184. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  185. NULL, reset_val, c12_VBAR, 0x00000000 },
  186. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  187. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  188. NULL, reset_val, c13_CID, 0x00000000 },
  189. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  190. NULL, reset_unknown, c13_TID_URW },
  191. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  192. NULL, reset_unknown, c13_TID_URO },
  193. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  194. NULL, reset_unknown, c13_TID_PRIV },
  195. };
  196. /* Target specific emulation tables */
  197. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  198. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  199. {
  200. target_tables[table->target] = table;
  201. }
  202. /* Get specific register table for this target. */
  203. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  204. {
  205. struct kvm_coproc_target_table *table;
  206. table = target_tables[target];
  207. *num = table->num;
  208. return table->table;
  209. }
  210. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  211. const struct coproc_reg table[],
  212. unsigned int num)
  213. {
  214. unsigned int i;
  215. for (i = 0; i < num; i++) {
  216. const struct coproc_reg *r = &table[i];
  217. if (params->is_64bit != r->is_64)
  218. continue;
  219. if (params->CRn != r->CRn)
  220. continue;
  221. if (params->CRm != r->CRm)
  222. continue;
  223. if (params->Op1 != r->Op1)
  224. continue;
  225. if (params->Op2 != r->Op2)
  226. continue;
  227. return r;
  228. }
  229. return NULL;
  230. }
  231. static int emulate_cp15(struct kvm_vcpu *vcpu,
  232. const struct coproc_params *params)
  233. {
  234. size_t num;
  235. const struct coproc_reg *table, *r;
  236. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  237. params->CRm, params->Op2, params->is_write);
  238. table = get_target_table(vcpu->arch.target, &num);
  239. /* Search target-specific then generic table. */
  240. r = find_reg(params, table, num);
  241. if (!r)
  242. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  243. if (likely(r)) {
  244. /* If we don't have an accessor, we should never get here! */
  245. BUG_ON(!r->access);
  246. if (likely(r->access(vcpu, params, r))) {
  247. /* Skip instruction, since it was emulated */
  248. kvm_skip_instr(vcpu, (vcpu->arch.hsr >> 25) & 1);
  249. return 1;
  250. }
  251. /* If access function fails, it should complain. */
  252. } else {
  253. kvm_err("Unsupported guest CP15 access at: %08x\n",
  254. *vcpu_pc(vcpu));
  255. print_cp_instr(params);
  256. }
  257. kvm_inject_undefined(vcpu);
  258. return 1;
  259. }
  260. /**
  261. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  262. * @vcpu: The VCPU pointer
  263. * @run: The kvm_run struct
  264. */
  265. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  266. {
  267. struct coproc_params params;
  268. params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
  269. params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
  270. params.is_write = ((vcpu->arch.hsr & 1) == 0);
  271. params.is_64bit = true;
  272. params.Op1 = (vcpu->arch.hsr >> 16) & 0xf;
  273. params.Op2 = 0;
  274. params.Rt2 = (vcpu->arch.hsr >> 10) & 0xf;
  275. params.CRn = 0;
  276. return emulate_cp15(vcpu, &params);
  277. }
  278. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  279. const struct coproc_reg *table, size_t num)
  280. {
  281. unsigned long i;
  282. for (i = 0; i < num; i++)
  283. if (table[i].reset)
  284. table[i].reset(vcpu, &table[i]);
  285. }
  286. /**
  287. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  288. * @vcpu: The VCPU pointer
  289. * @run: The kvm_run struct
  290. */
  291. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  292. {
  293. struct coproc_params params;
  294. params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
  295. params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
  296. params.is_write = ((vcpu->arch.hsr & 1) == 0);
  297. params.is_64bit = false;
  298. params.CRn = (vcpu->arch.hsr >> 10) & 0xf;
  299. params.Op1 = (vcpu->arch.hsr >> 14) & 0x7;
  300. params.Op2 = (vcpu->arch.hsr >> 17) & 0x7;
  301. params.Rt2 = 0;
  302. return emulate_cp15(vcpu, &params);
  303. }
  304. /******************************************************************************
  305. * Userspace API
  306. *****************************************************************************/
  307. static bool index_to_params(u64 id, struct coproc_params *params)
  308. {
  309. switch (id & KVM_REG_SIZE_MASK) {
  310. case KVM_REG_SIZE_U32:
  311. /* Any unused index bits means it's not valid. */
  312. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  313. | KVM_REG_ARM_COPROC_MASK
  314. | KVM_REG_ARM_32_CRN_MASK
  315. | KVM_REG_ARM_CRM_MASK
  316. | KVM_REG_ARM_OPC1_MASK
  317. | KVM_REG_ARM_32_OPC2_MASK))
  318. return false;
  319. params->is_64bit = false;
  320. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  321. >> KVM_REG_ARM_32_CRN_SHIFT);
  322. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  323. >> KVM_REG_ARM_CRM_SHIFT);
  324. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  325. >> KVM_REG_ARM_OPC1_SHIFT);
  326. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  327. >> KVM_REG_ARM_32_OPC2_SHIFT);
  328. return true;
  329. case KVM_REG_SIZE_U64:
  330. /* Any unused index bits means it's not valid. */
  331. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  332. | KVM_REG_ARM_COPROC_MASK
  333. | KVM_REG_ARM_CRM_MASK
  334. | KVM_REG_ARM_OPC1_MASK))
  335. return false;
  336. params->is_64bit = true;
  337. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  338. >> KVM_REG_ARM_CRM_SHIFT);
  339. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  340. >> KVM_REG_ARM_OPC1_SHIFT);
  341. params->Op2 = 0;
  342. params->CRn = 0;
  343. return true;
  344. default:
  345. return false;
  346. }
  347. }
  348. /* Decode an index value, and find the cp15 coproc_reg entry. */
  349. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  350. u64 id)
  351. {
  352. size_t num;
  353. const struct coproc_reg *table, *r;
  354. struct coproc_params params;
  355. /* We only do cp15 for now. */
  356. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  357. return NULL;
  358. if (!index_to_params(id, &params))
  359. return NULL;
  360. table = get_target_table(vcpu->arch.target, &num);
  361. r = find_reg(&params, table, num);
  362. if (!r)
  363. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  364. /* Not saved in the cp15 array? */
  365. if (r && !r->reg)
  366. r = NULL;
  367. return r;
  368. }
  369. /*
  370. * These are the invariant cp15 registers: we let the guest see the host
  371. * versions of these, so they're part of the guest state.
  372. *
  373. * A future CPU may provide a mechanism to present different values to
  374. * the guest, or a future kvm may trap them.
  375. */
  376. /* Unfortunately, there's no register-argument for mrc, so generate. */
  377. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  378. static void get_##name(struct kvm_vcpu *v, \
  379. const struct coproc_reg *r) \
  380. { \
  381. u32 val; \
  382. \
  383. asm volatile("mrc p15, " __stringify(op1) \
  384. ", %0, c" __stringify(crn) \
  385. ", c" __stringify(crm) \
  386. ", " __stringify(op2) "\n" : "=r" (val)); \
  387. ((struct coproc_reg *)r)->val = val; \
  388. }
  389. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  390. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  391. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  392. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  393. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  394. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  395. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  396. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  397. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  398. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  399. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  400. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  401. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  402. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  403. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  404. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  405. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  406. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  407. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  408. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  409. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  410. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  411. static struct coproc_reg invariant_cp15[] = {
  412. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  413. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  414. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  415. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  416. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  417. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  418. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  419. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  420. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  421. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  422. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  423. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  424. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  425. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  426. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  427. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  428. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  429. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  430. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  431. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  432. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  433. };
  434. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  435. {
  436. /* This Just Works because we are little endian. */
  437. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  438. return -EFAULT;
  439. return 0;
  440. }
  441. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  442. {
  443. /* This Just Works because we are little endian. */
  444. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  445. return -EFAULT;
  446. return 0;
  447. }
  448. static int get_invariant_cp15(u64 id, void __user *uaddr)
  449. {
  450. struct coproc_params params;
  451. const struct coproc_reg *r;
  452. if (!index_to_params(id, &params))
  453. return -ENOENT;
  454. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  455. if (!r)
  456. return -ENOENT;
  457. return reg_to_user(uaddr, &r->val, id);
  458. }
  459. static int set_invariant_cp15(u64 id, void __user *uaddr)
  460. {
  461. struct coproc_params params;
  462. const struct coproc_reg *r;
  463. int err;
  464. u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
  465. if (!index_to_params(id, &params))
  466. return -ENOENT;
  467. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  468. if (!r)
  469. return -ENOENT;
  470. err = reg_from_user(&val, uaddr, id);
  471. if (err)
  472. return err;
  473. /* This is what we mean by invariant: you can't change it. */
  474. if (r->val != val)
  475. return -EINVAL;
  476. return 0;
  477. }
  478. static bool is_valid_cache(u32 val)
  479. {
  480. u32 level, ctype;
  481. if (val >= CSSELR_MAX)
  482. return -ENOENT;
  483. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  484. level = (val >> 1);
  485. ctype = (cache_levels >> (level * 3)) & 7;
  486. switch (ctype) {
  487. case 0: /* No cache */
  488. return false;
  489. case 1: /* Instruction cache only */
  490. return (val & 1);
  491. case 2: /* Data cache only */
  492. case 4: /* Unified cache */
  493. return !(val & 1);
  494. case 3: /* Separate instruction and data caches */
  495. return true;
  496. default: /* Reserved: we can't know instruction or data. */
  497. return false;
  498. }
  499. }
  500. /* Which cache CCSIDR represents depends on CSSELR value. */
  501. static u32 get_ccsidr(u32 csselr)
  502. {
  503. u32 ccsidr;
  504. /* Make sure noone else changes CSSELR during this! */
  505. local_irq_disable();
  506. /* Put value into CSSELR */
  507. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  508. isb();
  509. /* Read result out of CCSIDR */
  510. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  511. local_irq_enable();
  512. return ccsidr;
  513. }
  514. static int demux_c15_get(u64 id, void __user *uaddr)
  515. {
  516. u32 val;
  517. u32 __user *uval = uaddr;
  518. /* Fail if we have unknown bits set. */
  519. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  520. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  521. return -ENOENT;
  522. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  523. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  524. if (KVM_REG_SIZE(id) != 4)
  525. return -ENOENT;
  526. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  527. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  528. if (!is_valid_cache(val))
  529. return -ENOENT;
  530. return put_user(get_ccsidr(val), uval);
  531. default:
  532. return -ENOENT;
  533. }
  534. }
  535. static int demux_c15_set(u64 id, void __user *uaddr)
  536. {
  537. u32 val, newval;
  538. u32 __user *uval = uaddr;
  539. /* Fail if we have unknown bits set. */
  540. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  541. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  542. return -ENOENT;
  543. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  544. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  545. if (KVM_REG_SIZE(id) != 4)
  546. return -ENOENT;
  547. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  548. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  549. if (!is_valid_cache(val))
  550. return -ENOENT;
  551. if (get_user(newval, uval))
  552. return -EFAULT;
  553. /* This is also invariant: you can't change it. */
  554. if (newval != get_ccsidr(val))
  555. return -EINVAL;
  556. return 0;
  557. default:
  558. return -ENOENT;
  559. }
  560. }
  561. #ifdef CONFIG_VFPv3
  562. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  563. KVM_REG_ARM_VFP_FPSCR,
  564. KVM_REG_ARM_VFP_FPINST,
  565. KVM_REG_ARM_VFP_FPINST2,
  566. KVM_REG_ARM_VFP_MVFR0,
  567. KVM_REG_ARM_VFP_MVFR1,
  568. KVM_REG_ARM_VFP_FPSID };
  569. static unsigned int num_fp_regs(void)
  570. {
  571. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  572. return 32;
  573. else
  574. return 16;
  575. }
  576. static unsigned int num_vfp_regs(void)
  577. {
  578. /* Normal FP regs + control regs. */
  579. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  580. }
  581. static int copy_vfp_regids(u64 __user *uindices)
  582. {
  583. unsigned int i;
  584. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  585. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  586. for (i = 0; i < num_fp_regs(); i++) {
  587. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  588. uindices))
  589. return -EFAULT;
  590. uindices++;
  591. }
  592. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  593. if (put_user(u32reg | vfp_sysregs[i], uindices))
  594. return -EFAULT;
  595. uindices++;
  596. }
  597. return num_vfp_regs();
  598. }
  599. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  600. {
  601. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  602. u32 val;
  603. /* Fail if we have unknown bits set. */
  604. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  605. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  606. return -ENOENT;
  607. if (vfpid < num_fp_regs()) {
  608. if (KVM_REG_SIZE(id) != 8)
  609. return -ENOENT;
  610. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
  611. id);
  612. }
  613. /* FP control registers are all 32 bit. */
  614. if (KVM_REG_SIZE(id) != 4)
  615. return -ENOENT;
  616. switch (vfpid) {
  617. case KVM_REG_ARM_VFP_FPEXC:
  618. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
  619. case KVM_REG_ARM_VFP_FPSCR:
  620. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
  621. case KVM_REG_ARM_VFP_FPINST:
  622. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
  623. case KVM_REG_ARM_VFP_FPINST2:
  624. return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
  625. case KVM_REG_ARM_VFP_MVFR0:
  626. val = fmrx(MVFR0);
  627. return reg_to_user(uaddr, &val, id);
  628. case KVM_REG_ARM_VFP_MVFR1:
  629. val = fmrx(MVFR1);
  630. return reg_to_user(uaddr, &val, id);
  631. case KVM_REG_ARM_VFP_FPSID:
  632. val = fmrx(FPSID);
  633. return reg_to_user(uaddr, &val, id);
  634. default:
  635. return -ENOENT;
  636. }
  637. }
  638. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  639. {
  640. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  641. u32 val;
  642. /* Fail if we have unknown bits set. */
  643. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  644. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  645. return -ENOENT;
  646. if (vfpid < num_fp_regs()) {
  647. if (KVM_REG_SIZE(id) != 8)
  648. return -ENOENT;
  649. return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
  650. uaddr, id);
  651. }
  652. /* FP control registers are all 32 bit. */
  653. if (KVM_REG_SIZE(id) != 4)
  654. return -ENOENT;
  655. switch (vfpid) {
  656. case KVM_REG_ARM_VFP_FPEXC:
  657. return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
  658. case KVM_REG_ARM_VFP_FPSCR:
  659. return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
  660. case KVM_REG_ARM_VFP_FPINST:
  661. return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
  662. case KVM_REG_ARM_VFP_FPINST2:
  663. return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
  664. /* These are invariant. */
  665. case KVM_REG_ARM_VFP_MVFR0:
  666. if (reg_from_user(&val, uaddr, id))
  667. return -EFAULT;
  668. if (val != fmrx(MVFR0))
  669. return -EINVAL;
  670. return 0;
  671. case KVM_REG_ARM_VFP_MVFR1:
  672. if (reg_from_user(&val, uaddr, id))
  673. return -EFAULT;
  674. if (val != fmrx(MVFR1))
  675. return -EINVAL;
  676. return 0;
  677. case KVM_REG_ARM_VFP_FPSID:
  678. if (reg_from_user(&val, uaddr, id))
  679. return -EFAULT;
  680. if (val != fmrx(FPSID))
  681. return -EINVAL;
  682. return 0;
  683. default:
  684. return -ENOENT;
  685. }
  686. }
  687. #else /* !CONFIG_VFPv3 */
  688. static unsigned int num_vfp_regs(void)
  689. {
  690. return 0;
  691. }
  692. static int copy_vfp_regids(u64 __user *uindices)
  693. {
  694. return 0;
  695. }
  696. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  697. {
  698. return -ENOENT;
  699. }
  700. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  701. {
  702. return -ENOENT;
  703. }
  704. #endif /* !CONFIG_VFPv3 */
  705. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  706. {
  707. const struct coproc_reg *r;
  708. void __user *uaddr = (void __user *)(long)reg->addr;
  709. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  710. return demux_c15_get(reg->id, uaddr);
  711. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  712. return vfp_get_reg(vcpu, reg->id, uaddr);
  713. r = index_to_coproc_reg(vcpu, reg->id);
  714. if (!r)
  715. return get_invariant_cp15(reg->id, uaddr);
  716. /* Note: copies two regs if size is 64 bit. */
  717. return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
  718. }
  719. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  720. {
  721. const struct coproc_reg *r;
  722. void __user *uaddr = (void __user *)(long)reg->addr;
  723. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  724. return demux_c15_set(reg->id, uaddr);
  725. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  726. return vfp_set_reg(vcpu, reg->id, uaddr);
  727. r = index_to_coproc_reg(vcpu, reg->id);
  728. if (!r)
  729. return set_invariant_cp15(reg->id, uaddr);
  730. /* Note: copies two regs if size is 64 bit */
  731. return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
  732. }
  733. static unsigned int num_demux_regs(void)
  734. {
  735. unsigned int i, count = 0;
  736. for (i = 0; i < CSSELR_MAX; i++)
  737. if (is_valid_cache(i))
  738. count++;
  739. return count;
  740. }
  741. static int write_demux_regids(u64 __user *uindices)
  742. {
  743. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  744. unsigned int i;
  745. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  746. for (i = 0; i < CSSELR_MAX; i++) {
  747. if (!is_valid_cache(i))
  748. continue;
  749. if (put_user(val | i, uindices))
  750. return -EFAULT;
  751. uindices++;
  752. }
  753. return 0;
  754. }
  755. static u64 cp15_to_index(const struct coproc_reg *reg)
  756. {
  757. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  758. if (reg->is_64) {
  759. val |= KVM_REG_SIZE_U64;
  760. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  761. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  762. } else {
  763. val |= KVM_REG_SIZE_U32;
  764. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  765. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  766. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  767. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  768. }
  769. return val;
  770. }
  771. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  772. {
  773. if (!*uind)
  774. return true;
  775. if (put_user(cp15_to_index(reg), *uind))
  776. return false;
  777. (*uind)++;
  778. return true;
  779. }
  780. /* Assumed ordered tables, see kvm_coproc_table_init. */
  781. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  782. {
  783. const struct coproc_reg *i1, *i2, *end1, *end2;
  784. unsigned int total = 0;
  785. size_t num;
  786. /* We check for duplicates here, to allow arch-specific overrides. */
  787. i1 = get_target_table(vcpu->arch.target, &num);
  788. end1 = i1 + num;
  789. i2 = cp15_regs;
  790. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  791. BUG_ON(i1 == end1 || i2 == end2);
  792. /* Walk carefully, as both tables may refer to the same register. */
  793. while (i1 || i2) {
  794. int cmp = cmp_reg(i1, i2);
  795. /* target-specific overrides generic entry. */
  796. if (cmp <= 0) {
  797. /* Ignore registers we trap but don't save. */
  798. if (i1->reg) {
  799. if (!copy_reg_to_user(i1, &uind))
  800. return -EFAULT;
  801. total++;
  802. }
  803. } else {
  804. /* Ignore registers we trap but don't save. */
  805. if (i2->reg) {
  806. if (!copy_reg_to_user(i2, &uind))
  807. return -EFAULT;
  808. total++;
  809. }
  810. }
  811. if (cmp <= 0 && ++i1 == end1)
  812. i1 = NULL;
  813. if (cmp >= 0 && ++i2 == end2)
  814. i2 = NULL;
  815. }
  816. return total;
  817. }
  818. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  819. {
  820. return ARRAY_SIZE(invariant_cp15)
  821. + num_demux_regs()
  822. + num_vfp_regs()
  823. + walk_cp15(vcpu, (u64 __user *)NULL);
  824. }
  825. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  826. {
  827. unsigned int i;
  828. int err;
  829. /* Then give them all the invariant registers' indices. */
  830. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  831. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  832. return -EFAULT;
  833. uindices++;
  834. }
  835. err = walk_cp15(vcpu, uindices);
  836. if (err < 0)
  837. return err;
  838. uindices += err;
  839. err = copy_vfp_regids(uindices);
  840. if (err < 0)
  841. return err;
  842. uindices += err;
  843. return write_demux_regids(uindices);
  844. }
  845. void kvm_coproc_table_init(void)
  846. {
  847. unsigned int i;
  848. /* Make sure tables are unique and in order. */
  849. for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
  850. BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
  851. /* We abuse the reset function to overwrite the table itself. */
  852. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  853. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  854. /*
  855. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  856. *
  857. * If software reads the Cache Type fields from Ctype1
  858. * upwards, once it has seen a value of 0b000, no caches
  859. * exist at further-out levels of the hierarchy. So, for
  860. * example, if Ctype3 is the first Cache Type field with a
  861. * value of 0b000, the values of Ctype4 to Ctype7 must be
  862. * ignored.
  863. */
  864. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  865. for (i = 0; i < 7; i++)
  866. if (((cache_levels >> (i*3)) & 7) == 0)
  867. break;
  868. /* Clear all higher bits. */
  869. cache_levels &= (1 << (i*3))-1;
  870. }
  871. /**
  872. * kvm_reset_coprocs - sets cp15 registers to reset value
  873. * @vcpu: The VCPU pointer
  874. *
  875. * This function finds the right table above and sets the registers on the
  876. * virtual CPU struct to their architecturally defined reset values.
  877. */
  878. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  879. {
  880. size_t num;
  881. const struct coproc_reg *table;
  882. /* Catch someone adding a register without putting in reset entry. */
  883. memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
  884. /* Generic chip reset first (so target could override). */
  885. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  886. table = get_target_table(vcpu->arch.target, &num);
  887. reset_coproc_regs(vcpu, table, num);
  888. for (num = 1; num < NR_CP15_REGS; num++)
  889. if (vcpu->arch.cp15[num] == 0x42424242)
  890. panic("Didn't reset vcpu->arch.cp15[%zi]", num);
  891. }