i915_gem.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. if (ret) {
  208. drm_gem_object_release(obj);
  209. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  210. kfree(obj);
  211. return ret;
  212. }
  213. /* drop reference from allocate - handle holds it now */
  214. drm_gem_object_unreference(obj);
  215. trace_i915_gem_object_create(obj);
  216. args->handle = handle;
  217. return 0;
  218. }
  219. static inline int
  220. fast_shmem_read(struct page **pages,
  221. loff_t page_base, int page_offset,
  222. char __user *data,
  223. int length)
  224. {
  225. char *vaddr;
  226. int ret;
  227. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  228. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  229. kunmap_atomic(vaddr);
  230. return ret;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. user_data = (char __user *) (uintptr_t) args->data_ptr;
  312. remain = args->size;
  313. obj_priv = to_intel_bo(obj);
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * page_base = page offset within aperture
  319. * page_offset = offset within page
  320. * page_length = bytes to copy for this page
  321. */
  322. page_base = (offset & ~(PAGE_SIZE-1));
  323. page_offset = offset & (PAGE_SIZE-1);
  324. page_length = remain;
  325. if ((page_offset + remain) > PAGE_SIZE)
  326. page_length = PAGE_SIZE - page_offset;
  327. if (fast_shmem_read(obj_priv->pages,
  328. page_base, page_offset,
  329. user_data, page_length))
  330. return -EFAULT;
  331. remain -= page_length;
  332. user_data += page_length;
  333. offset += page_length;
  334. }
  335. return 0;
  336. }
  337. static int
  338. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  339. {
  340. int ret;
  341. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  342. /* If we've insufficient memory to map in the pages, attempt
  343. * to make some space by throwing out some old buffers.
  344. */
  345. if (ret == -ENOMEM) {
  346. struct drm_device *dev = obj->dev;
  347. ret = i915_gem_evict_something(dev, obj->size,
  348. i915_gem_get_gtt_alignment(obj));
  349. if (ret)
  350. return ret;
  351. ret = i915_gem_object_get_pages(obj, 0);
  352. }
  353. return ret;
  354. }
  355. /**
  356. * This is the fallback shmem pread path, which allocates temporary storage
  357. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  358. * can copy out of the object's backing pages while holding the struct mutex
  359. * and not take page faults.
  360. */
  361. static int
  362. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  363. struct drm_i915_gem_pread *args,
  364. struct drm_file *file_priv)
  365. {
  366. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  367. struct mm_struct *mm = current->mm;
  368. struct page **user_pages;
  369. ssize_t remain;
  370. loff_t offset, pinned_pages, i;
  371. loff_t first_data_page, last_data_page, num_pages;
  372. int shmem_page_index, shmem_page_offset;
  373. int data_page_index, data_page_offset;
  374. int page_length;
  375. int ret;
  376. uint64_t data_ptr = args->data_ptr;
  377. int do_bit17_swizzling;
  378. remain = args->size;
  379. /* Pin the user pages containing the data. We can't fault while
  380. * holding the struct mutex, yet we want to hold it while
  381. * dereferencing the user data.
  382. */
  383. first_data_page = data_ptr / PAGE_SIZE;
  384. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  385. num_pages = last_data_page - first_data_page + 1;
  386. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  387. if (user_pages == NULL)
  388. return -ENOMEM;
  389. mutex_unlock(&dev->struct_mutex);
  390. down_read(&mm->mmap_sem);
  391. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  392. num_pages, 1, 0, user_pages, NULL);
  393. up_read(&mm->mmap_sem);
  394. mutex_lock(&dev->struct_mutex);
  395. if (pinned_pages < num_pages) {
  396. ret = -EFAULT;
  397. goto out;
  398. }
  399. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  400. args->offset,
  401. args->size);
  402. if (ret)
  403. goto out;
  404. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  405. obj_priv = to_intel_bo(obj);
  406. offset = args->offset;
  407. while (remain > 0) {
  408. /* Operation in this page
  409. *
  410. * shmem_page_index = page number within shmem file
  411. * shmem_page_offset = offset within page in shmem file
  412. * data_page_index = page number in get_user_pages return
  413. * data_page_offset = offset with data_page_index page.
  414. * page_length = bytes to copy for this page
  415. */
  416. shmem_page_index = offset / PAGE_SIZE;
  417. shmem_page_offset = offset & ~PAGE_MASK;
  418. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  419. data_page_offset = data_ptr & ~PAGE_MASK;
  420. page_length = remain;
  421. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  422. page_length = PAGE_SIZE - shmem_page_offset;
  423. if ((data_page_offset + page_length) > PAGE_SIZE)
  424. page_length = PAGE_SIZE - data_page_offset;
  425. if (do_bit17_swizzling) {
  426. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  427. shmem_page_offset,
  428. user_pages[data_page_index],
  429. data_page_offset,
  430. page_length,
  431. 1);
  432. } else {
  433. slow_shmem_copy(user_pages[data_page_index],
  434. data_page_offset,
  435. obj_priv->pages[shmem_page_index],
  436. shmem_page_offset,
  437. page_length);
  438. }
  439. remain -= page_length;
  440. data_ptr += page_length;
  441. offset += page_length;
  442. }
  443. out:
  444. for (i = 0; i < pinned_pages; i++) {
  445. SetPageDirty(user_pages[i]);
  446. page_cache_release(user_pages[i]);
  447. }
  448. drm_free_large(user_pages);
  449. return ret;
  450. }
  451. /**
  452. * Reads data from the object referenced by handle.
  453. *
  454. * On error, the contents of *data are undefined.
  455. */
  456. int
  457. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_pread *args = data;
  461. struct drm_gem_object *obj;
  462. struct drm_i915_gem_object *obj_priv;
  463. int ret = 0;
  464. ret = i915_mutex_lock_interruptible(dev);
  465. if (ret)
  466. return ret;
  467. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  468. if (obj == NULL) {
  469. ret = -ENOENT;
  470. goto unlock;
  471. }
  472. obj_priv = to_intel_bo(obj);
  473. /* Bounds check source. */
  474. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  475. ret = -EINVAL;
  476. goto out;
  477. }
  478. if (args->size == 0)
  479. goto out;
  480. if (!access_ok(VERIFY_WRITE,
  481. (char __user *)(uintptr_t)args->data_ptr,
  482. args->size)) {
  483. ret = -EFAULT;
  484. goto out;
  485. }
  486. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  487. args->size);
  488. if (ret) {
  489. ret = -EFAULT;
  490. goto out;
  491. }
  492. ret = i915_gem_object_get_pages_or_evict(obj);
  493. if (ret)
  494. goto out;
  495. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  496. args->offset,
  497. args->size);
  498. if (ret)
  499. goto out_put;
  500. ret = -EFAULT;
  501. if (!i915_gem_object_needs_bit17_swizzle(obj))
  502. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  503. if (ret == -EFAULT)
  504. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  505. out_put:
  506. i915_gem_object_put_pages(obj);
  507. out:
  508. drm_gem_object_unreference(obj);
  509. unlock:
  510. mutex_unlock(&dev->struct_mutex);
  511. return ret;
  512. }
  513. /* This is the fast write path which cannot handle
  514. * page faults in the source data
  515. */
  516. static inline int
  517. fast_user_write(struct io_mapping *mapping,
  518. loff_t page_base, int page_offset,
  519. char __user *user_data,
  520. int length)
  521. {
  522. char *vaddr_atomic;
  523. unsigned long unwritten;
  524. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  525. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  526. user_data, length);
  527. io_mapping_unmap_atomic(vaddr_atomic);
  528. return unwritten;
  529. }
  530. /* Here's the write path which can sleep for
  531. * page faults
  532. */
  533. static inline void
  534. slow_kernel_write(struct io_mapping *mapping,
  535. loff_t gtt_base, int gtt_offset,
  536. struct page *user_page, int user_offset,
  537. int length)
  538. {
  539. char __iomem *dst_vaddr;
  540. char *src_vaddr;
  541. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  542. src_vaddr = kmap(user_page);
  543. memcpy_toio(dst_vaddr + gtt_offset,
  544. src_vaddr + user_offset,
  545. length);
  546. kunmap(user_page);
  547. io_mapping_unmap(dst_vaddr);
  548. }
  549. static inline int
  550. fast_shmem_write(struct page **pages,
  551. loff_t page_base, int page_offset,
  552. char __user *data,
  553. int length)
  554. {
  555. char *vaddr;
  556. int ret;
  557. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  558. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  559. kunmap_atomic(vaddr);
  560. return ret;
  561. }
  562. /**
  563. * This is the fast pwrite path, where we copy the data directly from the
  564. * user into the GTT, uncached.
  565. */
  566. static int
  567. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  568. struct drm_i915_gem_pwrite *args,
  569. struct drm_file *file_priv)
  570. {
  571. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  572. drm_i915_private_t *dev_priv = dev->dev_private;
  573. ssize_t remain;
  574. loff_t offset, page_base;
  575. char __user *user_data;
  576. int page_offset, page_length;
  577. user_data = (char __user *) (uintptr_t) args->data_ptr;
  578. remain = args->size;
  579. obj_priv = to_intel_bo(obj);
  580. offset = obj_priv->gtt_offset + args->offset;
  581. while (remain > 0) {
  582. /* Operation in this page
  583. *
  584. * page_base = page offset within aperture
  585. * page_offset = offset within page
  586. * page_length = bytes to copy for this page
  587. */
  588. page_base = (offset & ~(PAGE_SIZE-1));
  589. page_offset = offset & (PAGE_SIZE-1);
  590. page_length = remain;
  591. if ((page_offset + remain) > PAGE_SIZE)
  592. page_length = PAGE_SIZE - page_offset;
  593. /* If we get a fault while copying data, then (presumably) our
  594. * source page isn't available. Return the error and we'll
  595. * retry in the slow path.
  596. */
  597. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  598. page_offset, user_data, page_length))
  599. return -EFAULT;
  600. remain -= page_length;
  601. user_data += page_length;
  602. offset += page_length;
  603. }
  604. return 0;
  605. }
  606. /**
  607. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  608. * the memory and maps it using kmap_atomic for copying.
  609. *
  610. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  611. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  612. */
  613. static int
  614. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  615. struct drm_i915_gem_pwrite *args,
  616. struct drm_file *file_priv)
  617. {
  618. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  619. drm_i915_private_t *dev_priv = dev->dev_private;
  620. ssize_t remain;
  621. loff_t gtt_page_base, offset;
  622. loff_t first_data_page, last_data_page, num_pages;
  623. loff_t pinned_pages, i;
  624. struct page **user_pages;
  625. struct mm_struct *mm = current->mm;
  626. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  627. int ret;
  628. uint64_t data_ptr = args->data_ptr;
  629. remain = args->size;
  630. /* Pin the user pages containing the data. We can't fault while
  631. * holding the struct mutex, and all of the pwrite implementations
  632. * want to hold it while dereferencing the user data.
  633. */
  634. first_data_page = data_ptr / PAGE_SIZE;
  635. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  636. num_pages = last_data_page - first_data_page + 1;
  637. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  638. if (user_pages == NULL)
  639. return -ENOMEM;
  640. mutex_unlock(&dev->struct_mutex);
  641. down_read(&mm->mmap_sem);
  642. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  643. num_pages, 0, 0, user_pages, NULL);
  644. up_read(&mm->mmap_sem);
  645. mutex_lock(&dev->struct_mutex);
  646. if (pinned_pages < num_pages) {
  647. ret = -EFAULT;
  648. goto out_unpin_pages;
  649. }
  650. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  651. if (ret)
  652. goto out_unpin_pages;
  653. obj_priv = to_intel_bo(obj);
  654. offset = obj_priv->gtt_offset + args->offset;
  655. while (remain > 0) {
  656. /* Operation in this page
  657. *
  658. * gtt_page_base = page offset within aperture
  659. * gtt_page_offset = offset within page in aperture
  660. * data_page_index = page number in get_user_pages return
  661. * data_page_offset = offset with data_page_index page.
  662. * page_length = bytes to copy for this page
  663. */
  664. gtt_page_base = offset & PAGE_MASK;
  665. gtt_page_offset = offset & ~PAGE_MASK;
  666. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  667. data_page_offset = data_ptr & ~PAGE_MASK;
  668. page_length = remain;
  669. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  670. page_length = PAGE_SIZE - gtt_page_offset;
  671. if ((data_page_offset + page_length) > PAGE_SIZE)
  672. page_length = PAGE_SIZE - data_page_offset;
  673. slow_kernel_write(dev_priv->mm.gtt_mapping,
  674. gtt_page_base, gtt_page_offset,
  675. user_pages[data_page_index],
  676. data_page_offset,
  677. page_length);
  678. remain -= page_length;
  679. offset += page_length;
  680. data_ptr += page_length;
  681. }
  682. out_unpin_pages:
  683. for (i = 0; i < pinned_pages; i++)
  684. page_cache_release(user_pages[i]);
  685. drm_free_large(user_pages);
  686. return ret;
  687. }
  688. /**
  689. * This is the fast shmem pwrite path, which attempts to directly
  690. * copy_from_user into the kmapped pages backing the object.
  691. */
  692. static int
  693. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  694. struct drm_i915_gem_pwrite *args,
  695. struct drm_file *file_priv)
  696. {
  697. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  698. ssize_t remain;
  699. loff_t offset, page_base;
  700. char __user *user_data;
  701. int page_offset, page_length;
  702. user_data = (char __user *) (uintptr_t) args->data_ptr;
  703. remain = args->size;
  704. obj_priv = to_intel_bo(obj);
  705. offset = args->offset;
  706. obj_priv->dirty = 1;
  707. while (remain > 0) {
  708. /* Operation in this page
  709. *
  710. * page_base = page offset within aperture
  711. * page_offset = offset within page
  712. * page_length = bytes to copy for this page
  713. */
  714. page_base = (offset & ~(PAGE_SIZE-1));
  715. page_offset = offset & (PAGE_SIZE-1);
  716. page_length = remain;
  717. if ((page_offset + remain) > PAGE_SIZE)
  718. page_length = PAGE_SIZE - page_offset;
  719. if (fast_shmem_write(obj_priv->pages,
  720. page_base, page_offset,
  721. user_data, page_length))
  722. return -EFAULT;
  723. remain -= page_length;
  724. user_data += page_length;
  725. offset += page_length;
  726. }
  727. return 0;
  728. }
  729. /**
  730. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  731. * the memory and maps it using kmap_atomic for copying.
  732. *
  733. * This avoids taking mmap_sem for faulting on the user's address while the
  734. * struct_mutex is held.
  735. */
  736. static int
  737. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  738. struct drm_i915_gem_pwrite *args,
  739. struct drm_file *file_priv)
  740. {
  741. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  742. struct mm_struct *mm = current->mm;
  743. struct page **user_pages;
  744. ssize_t remain;
  745. loff_t offset, pinned_pages, i;
  746. loff_t first_data_page, last_data_page, num_pages;
  747. int shmem_page_index, shmem_page_offset;
  748. int data_page_index, data_page_offset;
  749. int page_length;
  750. int ret;
  751. uint64_t data_ptr = args->data_ptr;
  752. int do_bit17_swizzling;
  753. remain = args->size;
  754. /* Pin the user pages containing the data. We can't fault while
  755. * holding the struct mutex, and all of the pwrite implementations
  756. * want to hold it while dereferencing the user data.
  757. */
  758. first_data_page = data_ptr / PAGE_SIZE;
  759. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  760. num_pages = last_data_page - first_data_page + 1;
  761. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  762. if (user_pages == NULL)
  763. return -ENOMEM;
  764. mutex_unlock(&dev->struct_mutex);
  765. down_read(&mm->mmap_sem);
  766. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  767. num_pages, 0, 0, user_pages, NULL);
  768. up_read(&mm->mmap_sem);
  769. mutex_lock(&dev->struct_mutex);
  770. if (pinned_pages < num_pages) {
  771. ret = -EFAULT;
  772. goto out;
  773. }
  774. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  775. if (ret)
  776. goto out;
  777. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  778. obj_priv = to_intel_bo(obj);
  779. offset = args->offset;
  780. obj_priv->dirty = 1;
  781. while (remain > 0) {
  782. /* Operation in this page
  783. *
  784. * shmem_page_index = page number within shmem file
  785. * shmem_page_offset = offset within page in shmem file
  786. * data_page_index = page number in get_user_pages return
  787. * data_page_offset = offset with data_page_index page.
  788. * page_length = bytes to copy for this page
  789. */
  790. shmem_page_index = offset / PAGE_SIZE;
  791. shmem_page_offset = offset & ~PAGE_MASK;
  792. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  793. data_page_offset = data_ptr & ~PAGE_MASK;
  794. page_length = remain;
  795. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  796. page_length = PAGE_SIZE - shmem_page_offset;
  797. if ((data_page_offset + page_length) > PAGE_SIZE)
  798. page_length = PAGE_SIZE - data_page_offset;
  799. if (do_bit17_swizzling) {
  800. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  801. shmem_page_offset,
  802. user_pages[data_page_index],
  803. data_page_offset,
  804. page_length,
  805. 0);
  806. } else {
  807. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  808. shmem_page_offset,
  809. user_pages[data_page_index],
  810. data_page_offset,
  811. page_length);
  812. }
  813. remain -= page_length;
  814. data_ptr += page_length;
  815. offset += page_length;
  816. }
  817. out:
  818. for (i = 0; i < pinned_pages; i++)
  819. page_cache_release(user_pages[i]);
  820. drm_free_large(user_pages);
  821. return ret;
  822. }
  823. /**
  824. * Writes data to the object referenced by handle.
  825. *
  826. * On error, the contents of the buffer that were to be modified are undefined.
  827. */
  828. int
  829. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  830. struct drm_file *file)
  831. {
  832. struct drm_i915_gem_pwrite *args = data;
  833. struct drm_gem_object *obj;
  834. struct drm_i915_gem_object *obj_priv;
  835. int ret = 0;
  836. ret = i915_mutex_lock_interruptible(dev);
  837. if (ret)
  838. return ret;
  839. obj = drm_gem_object_lookup(dev, file, args->handle);
  840. if (obj == NULL) {
  841. ret = -ENOENT;
  842. goto unlock;
  843. }
  844. obj_priv = to_intel_bo(obj);
  845. /* Bounds check destination. */
  846. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  847. ret = -EINVAL;
  848. goto out;
  849. }
  850. if (args->size == 0)
  851. goto out;
  852. if (!access_ok(VERIFY_READ,
  853. (char __user *)(uintptr_t)args->data_ptr,
  854. args->size)) {
  855. ret = -EFAULT;
  856. goto out;
  857. }
  858. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  859. args->size);
  860. if (ret) {
  861. ret = -EFAULT;
  862. goto out;
  863. }
  864. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  865. * it would end up going through the fenced access, and we'll get
  866. * different detiling behavior between reading and writing.
  867. * pread/pwrite currently are reading and writing from the CPU
  868. * perspective, requiring manual detiling by the client.
  869. */
  870. if (obj_priv->phys_obj)
  871. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  872. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  873. obj_priv->gtt_space &&
  874. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  875. ret = i915_gem_object_pin(obj, 0);
  876. if (ret)
  877. goto out;
  878. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  879. if (ret)
  880. goto out_unpin;
  881. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  882. if (ret == -EFAULT)
  883. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  884. out_unpin:
  885. i915_gem_object_unpin(obj);
  886. } else {
  887. ret = i915_gem_object_get_pages_or_evict(obj);
  888. if (ret)
  889. goto out;
  890. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  891. if (ret)
  892. goto out_put;
  893. ret = -EFAULT;
  894. if (!i915_gem_object_needs_bit17_swizzle(obj))
  895. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  896. if (ret == -EFAULT)
  897. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  898. out_put:
  899. i915_gem_object_put_pages(obj);
  900. }
  901. out:
  902. drm_gem_object_unreference(obj);
  903. unlock:
  904. mutex_unlock(&dev->struct_mutex);
  905. return ret;
  906. }
  907. /**
  908. * Called when user space prepares to use an object with the CPU, either
  909. * through the mmap ioctl's mapping or a GTT mapping.
  910. */
  911. int
  912. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  913. struct drm_file *file_priv)
  914. {
  915. struct drm_i915_private *dev_priv = dev->dev_private;
  916. struct drm_i915_gem_set_domain *args = data;
  917. struct drm_gem_object *obj;
  918. struct drm_i915_gem_object *obj_priv;
  919. uint32_t read_domains = args->read_domains;
  920. uint32_t write_domain = args->write_domain;
  921. int ret;
  922. if (!(dev->driver->driver_features & DRIVER_GEM))
  923. return -ENODEV;
  924. /* Only handle setting domains to types used by the CPU. */
  925. if (write_domain & I915_GEM_GPU_DOMAINS)
  926. return -EINVAL;
  927. if (read_domains & I915_GEM_GPU_DOMAINS)
  928. return -EINVAL;
  929. /* Having something in the write domain implies it's in the read
  930. * domain, and only that read domain. Enforce that in the request.
  931. */
  932. if (write_domain != 0 && read_domains != write_domain)
  933. return -EINVAL;
  934. ret = i915_mutex_lock_interruptible(dev);
  935. if (ret)
  936. return ret;
  937. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  938. if (obj == NULL) {
  939. ret = -ENOENT;
  940. goto unlock;
  941. }
  942. obj_priv = to_intel_bo(obj);
  943. intel_mark_busy(dev, obj);
  944. if (read_domains & I915_GEM_DOMAIN_GTT) {
  945. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  946. /* Update the LRU on the fence for the CPU access that's
  947. * about to occur.
  948. */
  949. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  950. struct drm_i915_fence_reg *reg =
  951. &dev_priv->fence_regs[obj_priv->fence_reg];
  952. list_move_tail(&reg->lru_list,
  953. &dev_priv->mm.fence_list);
  954. }
  955. /* Silently promote "you're not bound, there was nothing to do"
  956. * to success, since the client was just asking us to
  957. * make sure everything was done.
  958. */
  959. if (ret == -EINVAL)
  960. ret = 0;
  961. } else {
  962. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  963. }
  964. /* Maintain LRU order of "inactive" objects */
  965. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  966. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  967. drm_gem_object_unreference(obj);
  968. unlock:
  969. mutex_unlock(&dev->struct_mutex);
  970. return ret;
  971. }
  972. /**
  973. * Called when user space has done writes to this buffer
  974. */
  975. int
  976. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  977. struct drm_file *file_priv)
  978. {
  979. struct drm_i915_gem_sw_finish *args = data;
  980. struct drm_gem_object *obj;
  981. int ret = 0;
  982. if (!(dev->driver->driver_features & DRIVER_GEM))
  983. return -ENODEV;
  984. ret = i915_mutex_lock_interruptible(dev);
  985. if (ret)
  986. return ret;
  987. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  988. if (obj == NULL) {
  989. ret = -ENOENT;
  990. goto unlock;
  991. }
  992. /* Pinned buffers may be scanout, so flush the cache */
  993. if (to_intel_bo(obj)->pin_count)
  994. i915_gem_object_flush_cpu_write_domain(obj);
  995. drm_gem_object_unreference(obj);
  996. unlock:
  997. mutex_unlock(&dev->struct_mutex);
  998. return ret;
  999. }
  1000. /**
  1001. * Maps the contents of an object, returning the address it is mapped
  1002. * into.
  1003. *
  1004. * While the mapping holds a reference on the contents of the object, it doesn't
  1005. * imply a ref on the object itself.
  1006. */
  1007. int
  1008. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1009. struct drm_file *file_priv)
  1010. {
  1011. struct drm_i915_gem_mmap *args = data;
  1012. struct drm_gem_object *obj;
  1013. loff_t offset;
  1014. unsigned long addr;
  1015. if (!(dev->driver->driver_features & DRIVER_GEM))
  1016. return -ENODEV;
  1017. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1018. if (obj == NULL)
  1019. return -ENOENT;
  1020. offset = args->offset;
  1021. down_write(&current->mm->mmap_sem);
  1022. addr = do_mmap(obj->filp, 0, args->size,
  1023. PROT_READ | PROT_WRITE, MAP_SHARED,
  1024. args->offset);
  1025. up_write(&current->mm->mmap_sem);
  1026. drm_gem_object_unreference_unlocked(obj);
  1027. if (IS_ERR((void *)addr))
  1028. return addr;
  1029. args->addr_ptr = (uint64_t) addr;
  1030. return 0;
  1031. }
  1032. /**
  1033. * i915_gem_fault - fault a page into the GTT
  1034. * vma: VMA in question
  1035. * vmf: fault info
  1036. *
  1037. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1038. * from userspace. The fault handler takes care of binding the object to
  1039. * the GTT (if needed), allocating and programming a fence register (again,
  1040. * only if needed based on whether the old reg is still valid or the object
  1041. * is tiled) and inserting a new PTE into the faulting process.
  1042. *
  1043. * Note that the faulting process may involve evicting existing objects
  1044. * from the GTT and/or fence registers to make room. So performance may
  1045. * suffer if the GTT working set is large or there are few fence registers
  1046. * left.
  1047. */
  1048. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1049. {
  1050. struct drm_gem_object *obj = vma->vm_private_data;
  1051. struct drm_device *dev = obj->dev;
  1052. drm_i915_private_t *dev_priv = dev->dev_private;
  1053. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1054. pgoff_t page_offset;
  1055. unsigned long pfn;
  1056. int ret = 0;
  1057. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1058. /* We don't use vmf->pgoff since that has the fake offset */
  1059. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1060. PAGE_SHIFT;
  1061. /* Now bind it into the GTT if needed */
  1062. mutex_lock(&dev->struct_mutex);
  1063. if (!obj_priv->gtt_space) {
  1064. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1065. if (ret)
  1066. goto unlock;
  1067. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1068. if (ret)
  1069. goto unlock;
  1070. }
  1071. /* Need a new fence register? */
  1072. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1073. ret = i915_gem_object_get_fence_reg(obj, true);
  1074. if (ret)
  1075. goto unlock;
  1076. }
  1077. if (i915_gem_object_is_inactive(obj_priv))
  1078. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1079. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1080. page_offset;
  1081. /* Finally, remap it using the new GTT offset */
  1082. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1083. unlock:
  1084. mutex_unlock(&dev->struct_mutex);
  1085. switch (ret) {
  1086. case 0:
  1087. case -ERESTARTSYS:
  1088. return VM_FAULT_NOPAGE;
  1089. case -ENOMEM:
  1090. case -EAGAIN:
  1091. return VM_FAULT_OOM;
  1092. default:
  1093. return VM_FAULT_SIGBUS;
  1094. }
  1095. }
  1096. /**
  1097. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1098. * @obj: obj in question
  1099. *
  1100. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1101. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1102. * up the object based on the offset and sets up the various memory mapping
  1103. * structures.
  1104. *
  1105. * This routine allocates and attaches a fake offset for @obj.
  1106. */
  1107. static int
  1108. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1109. {
  1110. struct drm_device *dev = obj->dev;
  1111. struct drm_gem_mm *mm = dev->mm_private;
  1112. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1113. struct drm_map_list *list;
  1114. struct drm_local_map *map;
  1115. int ret = 0;
  1116. /* Set the object up for mmap'ing */
  1117. list = &obj->map_list;
  1118. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1119. if (!list->map)
  1120. return -ENOMEM;
  1121. map = list->map;
  1122. map->type = _DRM_GEM;
  1123. map->size = obj->size;
  1124. map->handle = obj;
  1125. /* Get a DRM GEM mmap offset allocated... */
  1126. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1127. obj->size / PAGE_SIZE, 0, 0);
  1128. if (!list->file_offset_node) {
  1129. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1130. ret = -ENOSPC;
  1131. goto out_free_list;
  1132. }
  1133. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1134. obj->size / PAGE_SIZE, 0);
  1135. if (!list->file_offset_node) {
  1136. ret = -ENOMEM;
  1137. goto out_free_list;
  1138. }
  1139. list->hash.key = list->file_offset_node->start;
  1140. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1141. if (ret) {
  1142. DRM_ERROR("failed to add to map hash\n");
  1143. goto out_free_mm;
  1144. }
  1145. /* By now we should be all set, any drm_mmap request on the offset
  1146. * below will get to our mmap & fault handler */
  1147. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1148. return 0;
  1149. out_free_mm:
  1150. drm_mm_put_block(list->file_offset_node);
  1151. out_free_list:
  1152. kfree(list->map);
  1153. return ret;
  1154. }
  1155. /**
  1156. * i915_gem_release_mmap - remove physical page mappings
  1157. * @obj: obj in question
  1158. *
  1159. * Preserve the reservation of the mmapping with the DRM core code, but
  1160. * relinquish ownership of the pages back to the system.
  1161. *
  1162. * It is vital that we remove the page mapping if we have mapped a tiled
  1163. * object through the GTT and then lose the fence register due to
  1164. * resource pressure. Similarly if the object has been moved out of the
  1165. * aperture, than pages mapped into userspace must be revoked. Removing the
  1166. * mapping will then trigger a page fault on the next user access, allowing
  1167. * fixup by i915_gem_fault().
  1168. */
  1169. void
  1170. i915_gem_release_mmap(struct drm_gem_object *obj)
  1171. {
  1172. struct drm_device *dev = obj->dev;
  1173. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1174. if (dev->dev_mapping)
  1175. unmap_mapping_range(dev->dev_mapping,
  1176. obj_priv->mmap_offset, obj->size, 1);
  1177. }
  1178. static void
  1179. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1180. {
  1181. struct drm_device *dev = obj->dev;
  1182. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1183. struct drm_gem_mm *mm = dev->mm_private;
  1184. struct drm_map_list *list;
  1185. list = &obj->map_list;
  1186. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1187. if (list->file_offset_node) {
  1188. drm_mm_put_block(list->file_offset_node);
  1189. list->file_offset_node = NULL;
  1190. }
  1191. if (list->map) {
  1192. kfree(list->map);
  1193. list->map = NULL;
  1194. }
  1195. obj_priv->mmap_offset = 0;
  1196. }
  1197. /**
  1198. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1199. * @obj: object to check
  1200. *
  1201. * Return the required GTT alignment for an object, taking into account
  1202. * potential fence register mapping if needed.
  1203. */
  1204. static uint32_t
  1205. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1206. {
  1207. struct drm_device *dev = obj->dev;
  1208. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1209. int start, i;
  1210. /*
  1211. * Minimum alignment is 4k (GTT page size), but might be greater
  1212. * if a fence register is needed for the object.
  1213. */
  1214. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1215. return 4096;
  1216. /*
  1217. * Previous chips need to be aligned to the size of the smallest
  1218. * fence register that can contain the object.
  1219. */
  1220. if (INTEL_INFO(dev)->gen == 3)
  1221. start = 1024*1024;
  1222. else
  1223. start = 512*1024;
  1224. for (i = start; i < obj->size; i <<= 1)
  1225. ;
  1226. return i;
  1227. }
  1228. /**
  1229. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1230. * @dev: DRM device
  1231. * @data: GTT mapping ioctl data
  1232. * @file_priv: GEM object info
  1233. *
  1234. * Simply returns the fake offset to userspace so it can mmap it.
  1235. * The mmap call will end up in drm_gem_mmap(), which will set things
  1236. * up so we can get faults in the handler above.
  1237. *
  1238. * The fault handler will take care of binding the object into the GTT
  1239. * (since it may have been evicted to make room for something), allocating
  1240. * a fence register, and mapping the appropriate aperture address into
  1241. * userspace.
  1242. */
  1243. int
  1244. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1245. struct drm_file *file_priv)
  1246. {
  1247. struct drm_i915_gem_mmap_gtt *args = data;
  1248. struct drm_gem_object *obj;
  1249. struct drm_i915_gem_object *obj_priv;
  1250. int ret;
  1251. if (!(dev->driver->driver_features & DRIVER_GEM))
  1252. return -ENODEV;
  1253. ret = i915_mutex_lock_interruptible(dev);
  1254. if (ret)
  1255. return ret;
  1256. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1257. if (obj == NULL) {
  1258. ret = -ENOENT;
  1259. goto unlock;
  1260. }
  1261. obj_priv = to_intel_bo(obj);
  1262. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1263. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1264. ret = -EINVAL;
  1265. goto out;
  1266. }
  1267. if (!obj_priv->mmap_offset) {
  1268. ret = i915_gem_create_mmap_offset(obj);
  1269. if (ret)
  1270. goto out;
  1271. }
  1272. args->offset = obj_priv->mmap_offset;
  1273. /*
  1274. * Pull it into the GTT so that we have a page list (makes the
  1275. * initial fault faster and any subsequent flushing possible).
  1276. */
  1277. if (!obj_priv->agp_mem) {
  1278. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1279. if (ret)
  1280. goto out;
  1281. }
  1282. out:
  1283. drm_gem_object_unreference(obj);
  1284. unlock:
  1285. mutex_unlock(&dev->struct_mutex);
  1286. return ret;
  1287. }
  1288. static void
  1289. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1290. {
  1291. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1292. int page_count = obj->size / PAGE_SIZE;
  1293. int i;
  1294. BUG_ON(obj_priv->pages_refcount == 0);
  1295. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1296. if (--obj_priv->pages_refcount != 0)
  1297. return;
  1298. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1299. i915_gem_object_save_bit_17_swizzle(obj);
  1300. if (obj_priv->madv == I915_MADV_DONTNEED)
  1301. obj_priv->dirty = 0;
  1302. for (i = 0; i < page_count; i++) {
  1303. if (obj_priv->dirty)
  1304. set_page_dirty(obj_priv->pages[i]);
  1305. if (obj_priv->madv == I915_MADV_WILLNEED)
  1306. mark_page_accessed(obj_priv->pages[i]);
  1307. page_cache_release(obj_priv->pages[i]);
  1308. }
  1309. obj_priv->dirty = 0;
  1310. drm_free_large(obj_priv->pages);
  1311. obj_priv->pages = NULL;
  1312. }
  1313. static uint32_t
  1314. i915_gem_next_request_seqno(struct drm_device *dev,
  1315. struct intel_ring_buffer *ring)
  1316. {
  1317. drm_i915_private_t *dev_priv = dev->dev_private;
  1318. ring->outstanding_lazy_request = true;
  1319. return dev_priv->next_seqno;
  1320. }
  1321. static void
  1322. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1323. struct intel_ring_buffer *ring)
  1324. {
  1325. struct drm_device *dev = obj->dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1328. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1329. BUG_ON(ring == NULL);
  1330. obj_priv->ring = ring;
  1331. /* Add a reference if we're newly entering the active list. */
  1332. if (!obj_priv->active) {
  1333. drm_gem_object_reference(obj);
  1334. obj_priv->active = 1;
  1335. }
  1336. /* Move from whatever list we were on to the tail of execution. */
  1337. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1338. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1339. obj_priv->last_rendering_seqno = seqno;
  1340. }
  1341. static void
  1342. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1343. {
  1344. struct drm_device *dev = obj->dev;
  1345. drm_i915_private_t *dev_priv = dev->dev_private;
  1346. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1347. BUG_ON(!obj_priv->active);
  1348. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1349. list_del_init(&obj_priv->ring_list);
  1350. obj_priv->last_rendering_seqno = 0;
  1351. }
  1352. /* Immediately discard the backing storage */
  1353. static void
  1354. i915_gem_object_truncate(struct drm_gem_object *obj)
  1355. {
  1356. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1357. struct inode *inode;
  1358. /* Our goal here is to return as much of the memory as
  1359. * is possible back to the system as we are called from OOM.
  1360. * To do this we must instruct the shmfs to drop all of its
  1361. * backing pages, *now*. Here we mirror the actions taken
  1362. * when by shmem_delete_inode() to release the backing store.
  1363. */
  1364. inode = obj->filp->f_path.dentry->d_inode;
  1365. truncate_inode_pages(inode->i_mapping, 0);
  1366. if (inode->i_op->truncate_range)
  1367. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1368. obj_priv->madv = __I915_MADV_PURGED;
  1369. }
  1370. static inline int
  1371. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1372. {
  1373. return obj_priv->madv == I915_MADV_DONTNEED;
  1374. }
  1375. static void
  1376. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1377. {
  1378. struct drm_device *dev = obj->dev;
  1379. drm_i915_private_t *dev_priv = dev->dev_private;
  1380. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1381. if (obj_priv->pin_count != 0)
  1382. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1383. else
  1384. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1385. list_del_init(&obj_priv->ring_list);
  1386. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1387. obj_priv->last_rendering_seqno = 0;
  1388. obj_priv->ring = NULL;
  1389. if (obj_priv->active) {
  1390. obj_priv->active = 0;
  1391. drm_gem_object_unreference(obj);
  1392. }
  1393. WARN_ON(i915_verify_lists(dev));
  1394. }
  1395. static void
  1396. i915_gem_process_flushing_list(struct drm_device *dev,
  1397. uint32_t flush_domains,
  1398. struct intel_ring_buffer *ring)
  1399. {
  1400. drm_i915_private_t *dev_priv = dev->dev_private;
  1401. struct drm_i915_gem_object *obj_priv, *next;
  1402. list_for_each_entry_safe(obj_priv, next,
  1403. &ring->gpu_write_list,
  1404. gpu_write_list) {
  1405. struct drm_gem_object *obj = &obj_priv->base;
  1406. if (obj->write_domain & flush_domains) {
  1407. uint32_t old_write_domain = obj->write_domain;
  1408. obj->write_domain = 0;
  1409. list_del_init(&obj_priv->gpu_write_list);
  1410. i915_gem_object_move_to_active(obj, ring);
  1411. /* update the fence lru list */
  1412. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1413. struct drm_i915_fence_reg *reg =
  1414. &dev_priv->fence_regs[obj_priv->fence_reg];
  1415. list_move_tail(&reg->lru_list,
  1416. &dev_priv->mm.fence_list);
  1417. }
  1418. trace_i915_gem_object_change_domain(obj,
  1419. obj->read_domains,
  1420. old_write_domain);
  1421. }
  1422. }
  1423. }
  1424. int
  1425. i915_add_request(struct drm_device *dev,
  1426. struct drm_file *file,
  1427. struct drm_i915_gem_request *request,
  1428. struct intel_ring_buffer *ring)
  1429. {
  1430. drm_i915_private_t *dev_priv = dev->dev_private;
  1431. struct drm_i915_file_private *file_priv = NULL;
  1432. uint32_t seqno;
  1433. int was_empty;
  1434. int ret;
  1435. BUG_ON(request == NULL);
  1436. if (file != NULL)
  1437. file_priv = file->driver_priv;
  1438. ret = ring->add_request(ring, &seqno);
  1439. if (ret)
  1440. return ret;
  1441. ring->outstanding_lazy_request = false;
  1442. request->seqno = seqno;
  1443. request->ring = ring;
  1444. request->emitted_jiffies = jiffies;
  1445. was_empty = list_empty(&ring->request_list);
  1446. list_add_tail(&request->list, &ring->request_list);
  1447. if (file_priv) {
  1448. spin_lock(&file_priv->mm.lock);
  1449. request->file_priv = file_priv;
  1450. list_add_tail(&request->client_list,
  1451. &file_priv->mm.request_list);
  1452. spin_unlock(&file_priv->mm.lock);
  1453. }
  1454. if (!dev_priv->mm.suspended) {
  1455. mod_timer(&dev_priv->hangcheck_timer,
  1456. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1457. if (was_empty)
  1458. queue_delayed_work(dev_priv->wq,
  1459. &dev_priv->mm.retire_work, HZ);
  1460. }
  1461. return 0;
  1462. }
  1463. /**
  1464. * Command execution barrier
  1465. *
  1466. * Ensures that all commands in the ring are finished
  1467. * before signalling the CPU
  1468. */
  1469. static void
  1470. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1471. {
  1472. uint32_t flush_domains = 0;
  1473. /* The sampler always gets flushed on i965 (sigh) */
  1474. if (INTEL_INFO(dev)->gen >= 4)
  1475. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1476. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1477. }
  1478. static inline void
  1479. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1480. {
  1481. struct drm_i915_file_private *file_priv = request->file_priv;
  1482. if (!file_priv)
  1483. return;
  1484. spin_lock(&file_priv->mm.lock);
  1485. list_del(&request->client_list);
  1486. request->file_priv = NULL;
  1487. spin_unlock(&file_priv->mm.lock);
  1488. }
  1489. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1490. struct intel_ring_buffer *ring)
  1491. {
  1492. while (!list_empty(&ring->request_list)) {
  1493. struct drm_i915_gem_request *request;
  1494. request = list_first_entry(&ring->request_list,
  1495. struct drm_i915_gem_request,
  1496. list);
  1497. list_del(&request->list);
  1498. i915_gem_request_remove_from_client(request);
  1499. kfree(request);
  1500. }
  1501. while (!list_empty(&ring->active_list)) {
  1502. struct drm_i915_gem_object *obj_priv;
  1503. obj_priv = list_first_entry(&ring->active_list,
  1504. struct drm_i915_gem_object,
  1505. ring_list);
  1506. obj_priv->base.write_domain = 0;
  1507. list_del_init(&obj_priv->gpu_write_list);
  1508. i915_gem_object_move_to_inactive(&obj_priv->base);
  1509. }
  1510. }
  1511. void i915_gem_reset(struct drm_device *dev)
  1512. {
  1513. struct drm_i915_private *dev_priv = dev->dev_private;
  1514. struct drm_i915_gem_object *obj_priv;
  1515. int i;
  1516. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1517. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1518. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1519. /* Remove anything from the flushing lists. The GPU cache is likely
  1520. * to be lost on reset along with the data, so simply move the
  1521. * lost bo to the inactive list.
  1522. */
  1523. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1524. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1525. struct drm_i915_gem_object,
  1526. mm_list);
  1527. obj_priv->base.write_domain = 0;
  1528. list_del_init(&obj_priv->gpu_write_list);
  1529. i915_gem_object_move_to_inactive(&obj_priv->base);
  1530. }
  1531. /* Move everything out of the GPU domains to ensure we do any
  1532. * necessary invalidation upon reuse.
  1533. */
  1534. list_for_each_entry(obj_priv,
  1535. &dev_priv->mm.inactive_list,
  1536. mm_list)
  1537. {
  1538. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1539. }
  1540. /* The fence registers are invalidated so clear them out */
  1541. for (i = 0; i < 16; i++) {
  1542. struct drm_i915_fence_reg *reg;
  1543. reg = &dev_priv->fence_regs[i];
  1544. if (!reg->obj)
  1545. continue;
  1546. i915_gem_clear_fence_reg(reg->obj);
  1547. }
  1548. }
  1549. /**
  1550. * This function clears the request list as sequence numbers are passed.
  1551. */
  1552. static void
  1553. i915_gem_retire_requests_ring(struct drm_device *dev,
  1554. struct intel_ring_buffer *ring)
  1555. {
  1556. drm_i915_private_t *dev_priv = dev->dev_private;
  1557. uint32_t seqno;
  1558. if (!ring->status_page.page_addr ||
  1559. list_empty(&ring->request_list))
  1560. return;
  1561. WARN_ON(i915_verify_lists(dev));
  1562. seqno = ring->get_seqno(ring);
  1563. while (!list_empty(&ring->request_list)) {
  1564. struct drm_i915_gem_request *request;
  1565. request = list_first_entry(&ring->request_list,
  1566. struct drm_i915_gem_request,
  1567. list);
  1568. if (!i915_seqno_passed(seqno, request->seqno))
  1569. break;
  1570. trace_i915_gem_request_retire(dev, request->seqno);
  1571. list_del(&request->list);
  1572. i915_gem_request_remove_from_client(request);
  1573. kfree(request);
  1574. }
  1575. /* Move any buffers on the active list that are no longer referenced
  1576. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1577. */
  1578. while (!list_empty(&ring->active_list)) {
  1579. struct drm_gem_object *obj;
  1580. struct drm_i915_gem_object *obj_priv;
  1581. obj_priv = list_first_entry(&ring->active_list,
  1582. struct drm_i915_gem_object,
  1583. ring_list);
  1584. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1585. break;
  1586. obj = &obj_priv->base;
  1587. if (obj->write_domain != 0)
  1588. i915_gem_object_move_to_flushing(obj);
  1589. else
  1590. i915_gem_object_move_to_inactive(obj);
  1591. }
  1592. if (unlikely (dev_priv->trace_irq_seqno &&
  1593. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1594. ring->user_irq_put(ring);
  1595. dev_priv->trace_irq_seqno = 0;
  1596. }
  1597. WARN_ON(i915_verify_lists(dev));
  1598. }
  1599. void
  1600. i915_gem_retire_requests(struct drm_device *dev)
  1601. {
  1602. drm_i915_private_t *dev_priv = dev->dev_private;
  1603. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1604. struct drm_i915_gem_object *obj_priv, *tmp;
  1605. /* We must be careful that during unbind() we do not
  1606. * accidentally infinitely recurse into retire requests.
  1607. * Currently:
  1608. * retire -> free -> unbind -> wait -> retire_ring
  1609. */
  1610. list_for_each_entry_safe(obj_priv, tmp,
  1611. &dev_priv->mm.deferred_free_list,
  1612. mm_list)
  1613. i915_gem_free_object_tail(&obj_priv->base);
  1614. }
  1615. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1616. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1617. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1618. }
  1619. static void
  1620. i915_gem_retire_work_handler(struct work_struct *work)
  1621. {
  1622. drm_i915_private_t *dev_priv;
  1623. struct drm_device *dev;
  1624. dev_priv = container_of(work, drm_i915_private_t,
  1625. mm.retire_work.work);
  1626. dev = dev_priv->dev;
  1627. /* Come back later if the device is busy... */
  1628. if (!mutex_trylock(&dev->struct_mutex)) {
  1629. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1630. return;
  1631. }
  1632. i915_gem_retire_requests(dev);
  1633. if (!dev_priv->mm.suspended &&
  1634. (!list_empty(&dev_priv->render_ring.request_list) ||
  1635. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1636. !list_empty(&dev_priv->blt_ring.request_list)))
  1637. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1638. mutex_unlock(&dev->struct_mutex);
  1639. }
  1640. int
  1641. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1642. bool interruptible, struct intel_ring_buffer *ring)
  1643. {
  1644. drm_i915_private_t *dev_priv = dev->dev_private;
  1645. u32 ier;
  1646. int ret = 0;
  1647. BUG_ON(seqno == 0);
  1648. if (atomic_read(&dev_priv->mm.wedged))
  1649. return -EAGAIN;
  1650. if (ring->outstanding_lazy_request) {
  1651. struct drm_i915_gem_request *request;
  1652. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1653. if (request == NULL)
  1654. return -ENOMEM;
  1655. ret = i915_add_request(dev, NULL, request, ring);
  1656. if (ret) {
  1657. kfree(request);
  1658. return ret;
  1659. }
  1660. seqno = request->seqno;
  1661. }
  1662. BUG_ON(seqno == dev_priv->next_seqno);
  1663. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1664. if (HAS_PCH_SPLIT(dev))
  1665. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1666. else
  1667. ier = I915_READ(IER);
  1668. if (!ier) {
  1669. DRM_ERROR("something (likely vbetool) disabled "
  1670. "interrupts, re-enabling\n");
  1671. i915_driver_irq_preinstall(dev);
  1672. i915_driver_irq_postinstall(dev);
  1673. }
  1674. trace_i915_gem_request_wait_begin(dev, seqno);
  1675. ring->waiting_seqno = seqno;
  1676. ring->user_irq_get(ring);
  1677. if (interruptible)
  1678. ret = wait_event_interruptible(ring->irq_queue,
  1679. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1680. || atomic_read(&dev_priv->mm.wedged));
  1681. else
  1682. wait_event(ring->irq_queue,
  1683. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1684. || atomic_read(&dev_priv->mm.wedged));
  1685. ring->user_irq_put(ring);
  1686. ring->waiting_seqno = 0;
  1687. trace_i915_gem_request_wait_end(dev, seqno);
  1688. }
  1689. if (atomic_read(&dev_priv->mm.wedged))
  1690. ret = -EAGAIN;
  1691. if (ret && ret != -ERESTARTSYS)
  1692. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1693. __func__, ret, seqno, ring->get_seqno(ring),
  1694. dev_priv->next_seqno);
  1695. /* Directly dispatch request retiring. While we have the work queue
  1696. * to handle this, the waiter on a request often wants an associated
  1697. * buffer to have made it to the inactive list, and we would need
  1698. * a separate wait queue to handle that.
  1699. */
  1700. if (ret == 0)
  1701. i915_gem_retire_requests_ring(dev, ring);
  1702. return ret;
  1703. }
  1704. /**
  1705. * Waits for a sequence number to be signaled, and cleans up the
  1706. * request and object lists appropriately for that event.
  1707. */
  1708. static int
  1709. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1710. struct intel_ring_buffer *ring)
  1711. {
  1712. return i915_do_wait_request(dev, seqno, 1, ring);
  1713. }
  1714. static void
  1715. i915_gem_flush_ring(struct drm_device *dev,
  1716. struct drm_file *file_priv,
  1717. struct intel_ring_buffer *ring,
  1718. uint32_t invalidate_domains,
  1719. uint32_t flush_domains)
  1720. {
  1721. ring->flush(ring, invalidate_domains, flush_domains);
  1722. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1723. }
  1724. static void
  1725. i915_gem_flush(struct drm_device *dev,
  1726. struct drm_file *file_priv,
  1727. uint32_t invalidate_domains,
  1728. uint32_t flush_domains,
  1729. uint32_t flush_rings)
  1730. {
  1731. drm_i915_private_t *dev_priv = dev->dev_private;
  1732. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1733. drm_agp_chipset_flush(dev);
  1734. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1735. if (flush_rings & RING_RENDER)
  1736. i915_gem_flush_ring(dev, file_priv,
  1737. &dev_priv->render_ring,
  1738. invalidate_domains, flush_domains);
  1739. if (flush_rings & RING_BSD)
  1740. i915_gem_flush_ring(dev, file_priv,
  1741. &dev_priv->bsd_ring,
  1742. invalidate_domains, flush_domains);
  1743. if (flush_rings & RING_BLT)
  1744. i915_gem_flush_ring(dev, file_priv,
  1745. &dev_priv->blt_ring,
  1746. invalidate_domains, flush_domains);
  1747. }
  1748. }
  1749. /**
  1750. * Ensures that all rendering to the object has completed and the object is
  1751. * safe to unbind from the GTT or access from the CPU.
  1752. */
  1753. static int
  1754. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1755. bool interruptible)
  1756. {
  1757. struct drm_device *dev = obj->dev;
  1758. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1759. int ret;
  1760. /* This function only exists to support waiting for existing rendering,
  1761. * not for emitting required flushes.
  1762. */
  1763. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1764. /* If there is rendering queued on the buffer being evicted, wait for
  1765. * it.
  1766. */
  1767. if (obj_priv->active) {
  1768. ret = i915_do_wait_request(dev,
  1769. obj_priv->last_rendering_seqno,
  1770. interruptible,
  1771. obj_priv->ring);
  1772. if (ret)
  1773. return ret;
  1774. }
  1775. return 0;
  1776. }
  1777. /**
  1778. * Unbinds an object from the GTT aperture.
  1779. */
  1780. int
  1781. i915_gem_object_unbind(struct drm_gem_object *obj)
  1782. {
  1783. struct drm_device *dev = obj->dev;
  1784. struct drm_i915_private *dev_priv = dev->dev_private;
  1785. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1786. int ret = 0;
  1787. if (obj_priv->gtt_space == NULL)
  1788. return 0;
  1789. if (obj_priv->pin_count != 0) {
  1790. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1791. return -EINVAL;
  1792. }
  1793. /* blow away mappings if mapped through GTT */
  1794. i915_gem_release_mmap(obj);
  1795. /* Move the object to the CPU domain to ensure that
  1796. * any possible CPU writes while it's not in the GTT
  1797. * are flushed when we go to remap it. This will
  1798. * also ensure that all pending GPU writes are finished
  1799. * before we unbind.
  1800. */
  1801. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1802. if (ret == -ERESTARTSYS)
  1803. return ret;
  1804. /* Continue on if we fail due to EIO, the GPU is hung so we
  1805. * should be safe and we need to cleanup or else we might
  1806. * cause memory corruption through use-after-free.
  1807. */
  1808. if (ret) {
  1809. i915_gem_clflush_object(obj);
  1810. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1811. }
  1812. /* release the fence reg _after_ flushing */
  1813. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1814. i915_gem_clear_fence_reg(obj);
  1815. drm_unbind_agp(obj_priv->agp_mem);
  1816. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1817. i915_gem_object_put_pages(obj);
  1818. BUG_ON(obj_priv->pages_refcount);
  1819. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1820. list_del_init(&obj_priv->mm_list);
  1821. drm_mm_put_block(obj_priv->gtt_space);
  1822. obj_priv->gtt_space = NULL;
  1823. obj_priv->gtt_offset = 0;
  1824. if (i915_gem_object_is_purgeable(obj_priv))
  1825. i915_gem_object_truncate(obj);
  1826. trace_i915_gem_object_unbind(obj);
  1827. return ret;
  1828. }
  1829. static int i915_ring_idle(struct drm_device *dev,
  1830. struct intel_ring_buffer *ring)
  1831. {
  1832. if (list_empty(&ring->gpu_write_list))
  1833. return 0;
  1834. i915_gem_flush_ring(dev, NULL, ring,
  1835. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1836. return i915_wait_request(dev,
  1837. i915_gem_next_request_seqno(dev, ring),
  1838. ring);
  1839. }
  1840. int
  1841. i915_gpu_idle(struct drm_device *dev)
  1842. {
  1843. drm_i915_private_t *dev_priv = dev->dev_private;
  1844. bool lists_empty;
  1845. int ret;
  1846. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1847. list_empty(&dev_priv->render_ring.active_list) &&
  1848. list_empty(&dev_priv->bsd_ring.active_list) &&
  1849. list_empty(&dev_priv->blt_ring.active_list));
  1850. if (lists_empty)
  1851. return 0;
  1852. /* Flush everything onto the inactive list. */
  1853. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1854. if (ret)
  1855. return ret;
  1856. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1857. if (ret)
  1858. return ret;
  1859. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1860. if (ret)
  1861. return ret;
  1862. return 0;
  1863. }
  1864. static int
  1865. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1866. gfp_t gfpmask)
  1867. {
  1868. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1869. int page_count, i;
  1870. struct address_space *mapping;
  1871. struct inode *inode;
  1872. struct page *page;
  1873. BUG_ON(obj_priv->pages_refcount
  1874. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1875. if (obj_priv->pages_refcount++ != 0)
  1876. return 0;
  1877. /* Get the list of pages out of our struct file. They'll be pinned
  1878. * at this point until we release them.
  1879. */
  1880. page_count = obj->size / PAGE_SIZE;
  1881. BUG_ON(obj_priv->pages != NULL);
  1882. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1883. if (obj_priv->pages == NULL) {
  1884. obj_priv->pages_refcount--;
  1885. return -ENOMEM;
  1886. }
  1887. inode = obj->filp->f_path.dentry->d_inode;
  1888. mapping = inode->i_mapping;
  1889. for (i = 0; i < page_count; i++) {
  1890. page = read_cache_page_gfp(mapping, i,
  1891. GFP_HIGHUSER |
  1892. __GFP_COLD |
  1893. __GFP_RECLAIMABLE |
  1894. gfpmask);
  1895. if (IS_ERR(page))
  1896. goto err_pages;
  1897. obj_priv->pages[i] = page;
  1898. }
  1899. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1900. i915_gem_object_do_bit_17_swizzle(obj);
  1901. return 0;
  1902. err_pages:
  1903. while (i--)
  1904. page_cache_release(obj_priv->pages[i]);
  1905. drm_free_large(obj_priv->pages);
  1906. obj_priv->pages = NULL;
  1907. obj_priv->pages_refcount--;
  1908. return PTR_ERR(page);
  1909. }
  1910. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1911. {
  1912. struct drm_gem_object *obj = reg->obj;
  1913. struct drm_device *dev = obj->dev;
  1914. drm_i915_private_t *dev_priv = dev->dev_private;
  1915. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1916. int regnum = obj_priv->fence_reg;
  1917. uint64_t val;
  1918. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1919. 0xfffff000) << 32;
  1920. val |= obj_priv->gtt_offset & 0xfffff000;
  1921. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1922. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1923. if (obj_priv->tiling_mode == I915_TILING_Y)
  1924. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1925. val |= I965_FENCE_REG_VALID;
  1926. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1927. }
  1928. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1929. {
  1930. struct drm_gem_object *obj = reg->obj;
  1931. struct drm_device *dev = obj->dev;
  1932. drm_i915_private_t *dev_priv = dev->dev_private;
  1933. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1934. int regnum = obj_priv->fence_reg;
  1935. uint64_t val;
  1936. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1937. 0xfffff000) << 32;
  1938. val |= obj_priv->gtt_offset & 0xfffff000;
  1939. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1940. if (obj_priv->tiling_mode == I915_TILING_Y)
  1941. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1942. val |= I965_FENCE_REG_VALID;
  1943. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1944. }
  1945. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1946. {
  1947. struct drm_gem_object *obj = reg->obj;
  1948. struct drm_device *dev = obj->dev;
  1949. drm_i915_private_t *dev_priv = dev->dev_private;
  1950. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1951. int regnum = obj_priv->fence_reg;
  1952. int tile_width;
  1953. uint32_t fence_reg, val;
  1954. uint32_t pitch_val;
  1955. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1956. (obj_priv->gtt_offset & (obj->size - 1))) {
  1957. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1958. __func__, obj_priv->gtt_offset, obj->size);
  1959. return;
  1960. }
  1961. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1962. HAS_128_BYTE_Y_TILING(dev))
  1963. tile_width = 128;
  1964. else
  1965. tile_width = 512;
  1966. /* Note: pitch better be a power of two tile widths */
  1967. pitch_val = obj_priv->stride / tile_width;
  1968. pitch_val = ffs(pitch_val) - 1;
  1969. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1970. HAS_128_BYTE_Y_TILING(dev))
  1971. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1972. else
  1973. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1974. val = obj_priv->gtt_offset;
  1975. if (obj_priv->tiling_mode == I915_TILING_Y)
  1976. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1977. val |= I915_FENCE_SIZE_BITS(obj->size);
  1978. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1979. val |= I830_FENCE_REG_VALID;
  1980. if (regnum < 8)
  1981. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1982. else
  1983. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1984. I915_WRITE(fence_reg, val);
  1985. }
  1986. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1987. {
  1988. struct drm_gem_object *obj = reg->obj;
  1989. struct drm_device *dev = obj->dev;
  1990. drm_i915_private_t *dev_priv = dev->dev_private;
  1991. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1992. int regnum = obj_priv->fence_reg;
  1993. uint32_t val;
  1994. uint32_t pitch_val;
  1995. uint32_t fence_size_bits;
  1996. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1997. (obj_priv->gtt_offset & (obj->size - 1))) {
  1998. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1999. __func__, obj_priv->gtt_offset);
  2000. return;
  2001. }
  2002. pitch_val = obj_priv->stride / 128;
  2003. pitch_val = ffs(pitch_val) - 1;
  2004. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2005. val = obj_priv->gtt_offset;
  2006. if (obj_priv->tiling_mode == I915_TILING_Y)
  2007. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2008. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2009. WARN_ON(fence_size_bits & ~0x00000f00);
  2010. val |= fence_size_bits;
  2011. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2012. val |= I830_FENCE_REG_VALID;
  2013. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2014. }
  2015. static int i915_find_fence_reg(struct drm_device *dev,
  2016. bool interruptible)
  2017. {
  2018. struct drm_i915_fence_reg *reg = NULL;
  2019. struct drm_i915_gem_object *obj_priv = NULL;
  2020. struct drm_i915_private *dev_priv = dev->dev_private;
  2021. struct drm_gem_object *obj = NULL;
  2022. int i, avail, ret;
  2023. /* First try to find a free reg */
  2024. avail = 0;
  2025. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2026. reg = &dev_priv->fence_regs[i];
  2027. if (!reg->obj)
  2028. return i;
  2029. obj_priv = to_intel_bo(reg->obj);
  2030. if (!obj_priv->pin_count)
  2031. avail++;
  2032. }
  2033. if (avail == 0)
  2034. return -ENOSPC;
  2035. /* None available, try to steal one or wait for a user to finish */
  2036. i = I915_FENCE_REG_NONE;
  2037. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2038. lru_list) {
  2039. obj = reg->obj;
  2040. obj_priv = to_intel_bo(obj);
  2041. if (obj_priv->pin_count)
  2042. continue;
  2043. /* found one! */
  2044. i = obj_priv->fence_reg;
  2045. break;
  2046. }
  2047. BUG_ON(i == I915_FENCE_REG_NONE);
  2048. /* We only have a reference on obj from the active list. put_fence_reg
  2049. * might drop that one, causing a use-after-free in it. So hold a
  2050. * private reference to obj like the other callers of put_fence_reg
  2051. * (set_tiling ioctl) do. */
  2052. drm_gem_object_reference(obj);
  2053. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2054. drm_gem_object_unreference(obj);
  2055. if (ret != 0)
  2056. return ret;
  2057. return i;
  2058. }
  2059. /**
  2060. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2061. * @obj: object to map through a fence reg
  2062. *
  2063. * When mapping objects through the GTT, userspace wants to be able to write
  2064. * to them without having to worry about swizzling if the object is tiled.
  2065. *
  2066. * This function walks the fence regs looking for a free one for @obj,
  2067. * stealing one if it can't find any.
  2068. *
  2069. * It then sets up the reg based on the object's properties: address, pitch
  2070. * and tiling format.
  2071. */
  2072. int
  2073. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2074. bool interruptible)
  2075. {
  2076. struct drm_device *dev = obj->dev;
  2077. struct drm_i915_private *dev_priv = dev->dev_private;
  2078. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2079. struct drm_i915_fence_reg *reg = NULL;
  2080. int ret;
  2081. /* Just update our place in the LRU if our fence is getting used. */
  2082. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2083. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2084. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2085. return 0;
  2086. }
  2087. switch (obj_priv->tiling_mode) {
  2088. case I915_TILING_NONE:
  2089. WARN(1, "allocating a fence for non-tiled object?\n");
  2090. break;
  2091. case I915_TILING_X:
  2092. if (!obj_priv->stride)
  2093. return -EINVAL;
  2094. WARN((obj_priv->stride & (512 - 1)),
  2095. "object 0x%08x is X tiled but has non-512B pitch\n",
  2096. obj_priv->gtt_offset);
  2097. break;
  2098. case I915_TILING_Y:
  2099. if (!obj_priv->stride)
  2100. return -EINVAL;
  2101. WARN((obj_priv->stride & (128 - 1)),
  2102. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2103. obj_priv->gtt_offset);
  2104. break;
  2105. }
  2106. ret = i915_find_fence_reg(dev, interruptible);
  2107. if (ret < 0)
  2108. return ret;
  2109. obj_priv->fence_reg = ret;
  2110. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2111. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2112. reg->obj = obj;
  2113. switch (INTEL_INFO(dev)->gen) {
  2114. case 6:
  2115. sandybridge_write_fence_reg(reg);
  2116. break;
  2117. case 5:
  2118. case 4:
  2119. i965_write_fence_reg(reg);
  2120. break;
  2121. case 3:
  2122. i915_write_fence_reg(reg);
  2123. break;
  2124. case 2:
  2125. i830_write_fence_reg(reg);
  2126. break;
  2127. }
  2128. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2129. obj_priv->tiling_mode);
  2130. return 0;
  2131. }
  2132. /**
  2133. * i915_gem_clear_fence_reg - clear out fence register info
  2134. * @obj: object to clear
  2135. *
  2136. * Zeroes out the fence register itself and clears out the associated
  2137. * data structures in dev_priv and obj_priv.
  2138. */
  2139. static void
  2140. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2141. {
  2142. struct drm_device *dev = obj->dev;
  2143. drm_i915_private_t *dev_priv = dev->dev_private;
  2144. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2145. struct drm_i915_fence_reg *reg =
  2146. &dev_priv->fence_regs[obj_priv->fence_reg];
  2147. uint32_t fence_reg;
  2148. switch (INTEL_INFO(dev)->gen) {
  2149. case 6:
  2150. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2151. (obj_priv->fence_reg * 8), 0);
  2152. break;
  2153. case 5:
  2154. case 4:
  2155. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2156. break;
  2157. case 3:
  2158. if (obj_priv->fence_reg >= 8)
  2159. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2160. else
  2161. case 2:
  2162. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2163. I915_WRITE(fence_reg, 0);
  2164. break;
  2165. }
  2166. reg->obj = NULL;
  2167. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2168. list_del_init(&reg->lru_list);
  2169. }
  2170. /**
  2171. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2172. * to the buffer to finish, and then resets the fence register.
  2173. * @obj: tiled object holding a fence register.
  2174. * @bool: whether the wait upon the fence is interruptible
  2175. *
  2176. * Zeroes out the fence register itself and clears out the associated
  2177. * data structures in dev_priv and obj_priv.
  2178. */
  2179. int
  2180. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2181. bool interruptible)
  2182. {
  2183. struct drm_device *dev = obj->dev;
  2184. struct drm_i915_private *dev_priv = dev->dev_private;
  2185. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2186. struct drm_i915_fence_reg *reg;
  2187. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2188. return 0;
  2189. /* If we've changed tiling, GTT-mappings of the object
  2190. * need to re-fault to ensure that the correct fence register
  2191. * setup is in place.
  2192. */
  2193. i915_gem_release_mmap(obj);
  2194. /* On the i915, GPU access to tiled buffers is via a fence,
  2195. * therefore we must wait for any outstanding access to complete
  2196. * before clearing the fence.
  2197. */
  2198. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2199. if (reg->gpu) {
  2200. int ret;
  2201. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2202. if (ret)
  2203. return ret;
  2204. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2205. if (ret)
  2206. return ret;
  2207. reg->gpu = false;
  2208. }
  2209. i915_gem_object_flush_gtt_write_domain(obj);
  2210. i915_gem_clear_fence_reg(obj);
  2211. return 0;
  2212. }
  2213. /**
  2214. * Finds free space in the GTT aperture and binds the object there.
  2215. */
  2216. static int
  2217. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2218. {
  2219. struct drm_device *dev = obj->dev;
  2220. drm_i915_private_t *dev_priv = dev->dev_private;
  2221. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2222. struct drm_mm_node *free_space;
  2223. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2224. int ret;
  2225. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2226. DRM_ERROR("Attempting to bind a purgeable object\n");
  2227. return -EINVAL;
  2228. }
  2229. if (alignment == 0)
  2230. alignment = i915_gem_get_gtt_alignment(obj);
  2231. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2232. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2233. return -EINVAL;
  2234. }
  2235. /* If the object is bigger than the entire aperture, reject it early
  2236. * before evicting everything in a vain attempt to find space.
  2237. */
  2238. if (obj->size > dev_priv->mm.gtt_total) {
  2239. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2240. return -E2BIG;
  2241. }
  2242. search_free:
  2243. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2244. obj->size, alignment, 0);
  2245. if (free_space != NULL)
  2246. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2247. alignment);
  2248. if (obj_priv->gtt_space == NULL) {
  2249. /* If the gtt is empty and we're still having trouble
  2250. * fitting our object in, we're out of memory.
  2251. */
  2252. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2253. if (ret)
  2254. return ret;
  2255. goto search_free;
  2256. }
  2257. ret = i915_gem_object_get_pages(obj, gfpmask);
  2258. if (ret) {
  2259. drm_mm_put_block(obj_priv->gtt_space);
  2260. obj_priv->gtt_space = NULL;
  2261. if (ret == -ENOMEM) {
  2262. /* first try to clear up some space from the GTT */
  2263. ret = i915_gem_evict_something(dev, obj->size,
  2264. alignment);
  2265. if (ret) {
  2266. /* now try to shrink everyone else */
  2267. if (gfpmask) {
  2268. gfpmask = 0;
  2269. goto search_free;
  2270. }
  2271. return ret;
  2272. }
  2273. goto search_free;
  2274. }
  2275. return ret;
  2276. }
  2277. /* Create an AGP memory structure pointing at our pages, and bind it
  2278. * into the GTT.
  2279. */
  2280. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2281. obj_priv->pages,
  2282. obj->size >> PAGE_SHIFT,
  2283. obj_priv->gtt_space->start,
  2284. obj_priv->agp_type);
  2285. if (obj_priv->agp_mem == NULL) {
  2286. i915_gem_object_put_pages(obj);
  2287. drm_mm_put_block(obj_priv->gtt_space);
  2288. obj_priv->gtt_space = NULL;
  2289. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2290. if (ret)
  2291. return ret;
  2292. goto search_free;
  2293. }
  2294. /* keep track of bounds object by adding it to the inactive list */
  2295. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2296. i915_gem_info_add_gtt(dev_priv, obj->size);
  2297. /* Assert that the object is not currently in any GPU domain. As it
  2298. * wasn't in the GTT, there shouldn't be any way it could have been in
  2299. * a GPU cache
  2300. */
  2301. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2302. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2303. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2304. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2305. return 0;
  2306. }
  2307. void
  2308. i915_gem_clflush_object(struct drm_gem_object *obj)
  2309. {
  2310. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2311. /* If we don't have a page list set up, then we're not pinned
  2312. * to GPU, and we can ignore the cache flush because it'll happen
  2313. * again at bind time.
  2314. */
  2315. if (obj_priv->pages == NULL)
  2316. return;
  2317. trace_i915_gem_object_clflush(obj);
  2318. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2319. }
  2320. /** Flushes any GPU write domain for the object if it's dirty. */
  2321. static int
  2322. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2323. bool pipelined)
  2324. {
  2325. struct drm_device *dev = obj->dev;
  2326. uint32_t old_write_domain;
  2327. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2328. return 0;
  2329. /* Queue the GPU write cache flushing we need. */
  2330. old_write_domain = obj->write_domain;
  2331. i915_gem_flush_ring(dev, NULL,
  2332. to_intel_bo(obj)->ring,
  2333. 0, obj->write_domain);
  2334. BUG_ON(obj->write_domain);
  2335. trace_i915_gem_object_change_domain(obj,
  2336. obj->read_domains,
  2337. old_write_domain);
  2338. if (pipelined)
  2339. return 0;
  2340. return i915_gem_object_wait_rendering(obj, true);
  2341. }
  2342. /** Flushes the GTT write domain for the object if it's dirty. */
  2343. static void
  2344. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2345. {
  2346. uint32_t old_write_domain;
  2347. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2348. return;
  2349. /* No actual flushing is required for the GTT write domain. Writes
  2350. * to it immediately go to main memory as far as we know, so there's
  2351. * no chipset flush. It also doesn't land in render cache.
  2352. */
  2353. old_write_domain = obj->write_domain;
  2354. obj->write_domain = 0;
  2355. trace_i915_gem_object_change_domain(obj,
  2356. obj->read_domains,
  2357. old_write_domain);
  2358. }
  2359. /** Flushes the CPU write domain for the object if it's dirty. */
  2360. static void
  2361. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2362. {
  2363. struct drm_device *dev = obj->dev;
  2364. uint32_t old_write_domain;
  2365. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2366. return;
  2367. i915_gem_clflush_object(obj);
  2368. drm_agp_chipset_flush(dev);
  2369. old_write_domain = obj->write_domain;
  2370. obj->write_domain = 0;
  2371. trace_i915_gem_object_change_domain(obj,
  2372. obj->read_domains,
  2373. old_write_domain);
  2374. }
  2375. /**
  2376. * Moves a single object to the GTT read, and possibly write domain.
  2377. *
  2378. * This function returns when the move is complete, including waiting on
  2379. * flushes to occur.
  2380. */
  2381. int
  2382. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2383. {
  2384. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2385. uint32_t old_write_domain, old_read_domains;
  2386. int ret;
  2387. /* Not valid to be called on unbound objects. */
  2388. if (obj_priv->gtt_space == NULL)
  2389. return -EINVAL;
  2390. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2391. if (ret != 0)
  2392. return ret;
  2393. i915_gem_object_flush_cpu_write_domain(obj);
  2394. if (write) {
  2395. ret = i915_gem_object_wait_rendering(obj, true);
  2396. if (ret)
  2397. return ret;
  2398. }
  2399. old_write_domain = obj->write_domain;
  2400. old_read_domains = obj->read_domains;
  2401. /* It should now be out of any other write domains, and we can update
  2402. * the domain values for our changes.
  2403. */
  2404. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2405. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2406. if (write) {
  2407. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2408. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2409. obj_priv->dirty = 1;
  2410. }
  2411. trace_i915_gem_object_change_domain(obj,
  2412. old_read_domains,
  2413. old_write_domain);
  2414. return 0;
  2415. }
  2416. /*
  2417. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2418. * wait, as in modesetting process we're not supposed to be interrupted.
  2419. */
  2420. int
  2421. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2422. bool pipelined)
  2423. {
  2424. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2425. uint32_t old_read_domains;
  2426. int ret;
  2427. /* Not valid to be called on unbound objects. */
  2428. if (obj_priv->gtt_space == NULL)
  2429. return -EINVAL;
  2430. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2431. if (ret)
  2432. return ret;
  2433. /* Currently, we are always called from an non-interruptible context. */
  2434. if (!pipelined) {
  2435. ret = i915_gem_object_wait_rendering(obj, false);
  2436. if (ret)
  2437. return ret;
  2438. }
  2439. i915_gem_object_flush_cpu_write_domain(obj);
  2440. old_read_domains = obj->read_domains;
  2441. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2442. trace_i915_gem_object_change_domain(obj,
  2443. old_read_domains,
  2444. obj->write_domain);
  2445. return 0;
  2446. }
  2447. /**
  2448. * Moves a single object to the CPU read, and possibly write domain.
  2449. *
  2450. * This function returns when the move is complete, including waiting on
  2451. * flushes to occur.
  2452. */
  2453. static int
  2454. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2455. {
  2456. uint32_t old_write_domain, old_read_domains;
  2457. int ret;
  2458. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2459. if (ret != 0)
  2460. return ret;
  2461. i915_gem_object_flush_gtt_write_domain(obj);
  2462. /* If we have a partially-valid cache of the object in the CPU,
  2463. * finish invalidating it and free the per-page flags.
  2464. */
  2465. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2466. if (write) {
  2467. ret = i915_gem_object_wait_rendering(obj, true);
  2468. if (ret)
  2469. return ret;
  2470. }
  2471. old_write_domain = obj->write_domain;
  2472. old_read_domains = obj->read_domains;
  2473. /* Flush the CPU cache if it's still invalid. */
  2474. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2475. i915_gem_clflush_object(obj);
  2476. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2477. }
  2478. /* It should now be out of any other write domains, and we can update
  2479. * the domain values for our changes.
  2480. */
  2481. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2482. /* If we're writing through the CPU, then the GPU read domains will
  2483. * need to be invalidated at next use.
  2484. */
  2485. if (write) {
  2486. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2487. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2488. }
  2489. trace_i915_gem_object_change_domain(obj,
  2490. old_read_domains,
  2491. old_write_domain);
  2492. return 0;
  2493. }
  2494. /*
  2495. * Set the next domain for the specified object. This
  2496. * may not actually perform the necessary flushing/invaliding though,
  2497. * as that may want to be batched with other set_domain operations
  2498. *
  2499. * This is (we hope) the only really tricky part of gem. The goal
  2500. * is fairly simple -- track which caches hold bits of the object
  2501. * and make sure they remain coherent. A few concrete examples may
  2502. * help to explain how it works. For shorthand, we use the notation
  2503. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2504. * a pair of read and write domain masks.
  2505. *
  2506. * Case 1: the batch buffer
  2507. *
  2508. * 1. Allocated
  2509. * 2. Written by CPU
  2510. * 3. Mapped to GTT
  2511. * 4. Read by GPU
  2512. * 5. Unmapped from GTT
  2513. * 6. Freed
  2514. *
  2515. * Let's take these a step at a time
  2516. *
  2517. * 1. Allocated
  2518. * Pages allocated from the kernel may still have
  2519. * cache contents, so we set them to (CPU, CPU) always.
  2520. * 2. Written by CPU (using pwrite)
  2521. * The pwrite function calls set_domain (CPU, CPU) and
  2522. * this function does nothing (as nothing changes)
  2523. * 3. Mapped by GTT
  2524. * This function asserts that the object is not
  2525. * currently in any GPU-based read or write domains
  2526. * 4. Read by GPU
  2527. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2528. * As write_domain is zero, this function adds in the
  2529. * current read domains (CPU+COMMAND, 0).
  2530. * flush_domains is set to CPU.
  2531. * invalidate_domains is set to COMMAND
  2532. * clflush is run to get data out of the CPU caches
  2533. * then i915_dev_set_domain calls i915_gem_flush to
  2534. * emit an MI_FLUSH and drm_agp_chipset_flush
  2535. * 5. Unmapped from GTT
  2536. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2537. * flush_domains and invalidate_domains end up both zero
  2538. * so no flushing/invalidating happens
  2539. * 6. Freed
  2540. * yay, done
  2541. *
  2542. * Case 2: The shared render buffer
  2543. *
  2544. * 1. Allocated
  2545. * 2. Mapped to GTT
  2546. * 3. Read/written by GPU
  2547. * 4. set_domain to (CPU,CPU)
  2548. * 5. Read/written by CPU
  2549. * 6. Read/written by GPU
  2550. *
  2551. * 1. Allocated
  2552. * Same as last example, (CPU, CPU)
  2553. * 2. Mapped to GTT
  2554. * Nothing changes (assertions find that it is not in the GPU)
  2555. * 3. Read/written by GPU
  2556. * execbuffer calls set_domain (RENDER, RENDER)
  2557. * flush_domains gets CPU
  2558. * invalidate_domains gets GPU
  2559. * clflush (obj)
  2560. * MI_FLUSH and drm_agp_chipset_flush
  2561. * 4. set_domain (CPU, CPU)
  2562. * flush_domains gets GPU
  2563. * invalidate_domains gets CPU
  2564. * wait_rendering (obj) to make sure all drawing is complete.
  2565. * This will include an MI_FLUSH to get the data from GPU
  2566. * to memory
  2567. * clflush (obj) to invalidate the CPU cache
  2568. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2569. * 5. Read/written by CPU
  2570. * cache lines are loaded and dirtied
  2571. * 6. Read written by GPU
  2572. * Same as last GPU access
  2573. *
  2574. * Case 3: The constant buffer
  2575. *
  2576. * 1. Allocated
  2577. * 2. Written by CPU
  2578. * 3. Read by GPU
  2579. * 4. Updated (written) by CPU again
  2580. * 5. Read by GPU
  2581. *
  2582. * 1. Allocated
  2583. * (CPU, CPU)
  2584. * 2. Written by CPU
  2585. * (CPU, CPU)
  2586. * 3. Read by GPU
  2587. * (CPU+RENDER, 0)
  2588. * flush_domains = CPU
  2589. * invalidate_domains = RENDER
  2590. * clflush (obj)
  2591. * MI_FLUSH
  2592. * drm_agp_chipset_flush
  2593. * 4. Updated (written) by CPU again
  2594. * (CPU, CPU)
  2595. * flush_domains = 0 (no previous write domain)
  2596. * invalidate_domains = 0 (no new read domains)
  2597. * 5. Read by GPU
  2598. * (CPU+RENDER, 0)
  2599. * flush_domains = CPU
  2600. * invalidate_domains = RENDER
  2601. * clflush (obj)
  2602. * MI_FLUSH
  2603. * drm_agp_chipset_flush
  2604. */
  2605. static void
  2606. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2607. struct intel_ring_buffer *ring)
  2608. {
  2609. struct drm_device *dev = obj->dev;
  2610. struct drm_i915_private *dev_priv = dev->dev_private;
  2611. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2612. uint32_t invalidate_domains = 0;
  2613. uint32_t flush_domains = 0;
  2614. /*
  2615. * If the object isn't moving to a new write domain,
  2616. * let the object stay in multiple read domains
  2617. */
  2618. if (obj->pending_write_domain == 0)
  2619. obj->pending_read_domains |= obj->read_domains;
  2620. /*
  2621. * Flush the current write domain if
  2622. * the new read domains don't match. Invalidate
  2623. * any read domains which differ from the old
  2624. * write domain
  2625. */
  2626. if (obj->write_domain &&
  2627. obj->write_domain != obj->pending_read_domains) {
  2628. flush_domains |= obj->write_domain;
  2629. invalidate_domains |=
  2630. obj->pending_read_domains & ~obj->write_domain;
  2631. }
  2632. /*
  2633. * Invalidate any read caches which may have
  2634. * stale data. That is, any new read domains.
  2635. */
  2636. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2637. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2638. i915_gem_clflush_object(obj);
  2639. /* The actual obj->write_domain will be updated with
  2640. * pending_write_domain after we emit the accumulated flush for all
  2641. * of our domain changes in execbuffers (which clears objects'
  2642. * write_domains). So if we have a current write domain that we
  2643. * aren't changing, set pending_write_domain to that.
  2644. */
  2645. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2646. obj->pending_write_domain = obj->write_domain;
  2647. dev->invalidate_domains |= invalidate_domains;
  2648. dev->flush_domains |= flush_domains;
  2649. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2650. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2651. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2652. dev_priv->mm.flush_rings |= ring->id;
  2653. }
  2654. /**
  2655. * Moves the object from a partially CPU read to a full one.
  2656. *
  2657. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2658. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2659. */
  2660. static void
  2661. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2662. {
  2663. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2664. if (!obj_priv->page_cpu_valid)
  2665. return;
  2666. /* If we're partially in the CPU read domain, finish moving it in.
  2667. */
  2668. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2669. int i;
  2670. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2671. if (obj_priv->page_cpu_valid[i])
  2672. continue;
  2673. drm_clflush_pages(obj_priv->pages + i, 1);
  2674. }
  2675. }
  2676. /* Free the page_cpu_valid mappings which are now stale, whether
  2677. * or not we've got I915_GEM_DOMAIN_CPU.
  2678. */
  2679. kfree(obj_priv->page_cpu_valid);
  2680. obj_priv->page_cpu_valid = NULL;
  2681. }
  2682. /**
  2683. * Set the CPU read domain on a range of the object.
  2684. *
  2685. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2686. * not entirely valid. The page_cpu_valid member of the object flags which
  2687. * pages have been flushed, and will be respected by
  2688. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2689. * of the whole object.
  2690. *
  2691. * This function returns when the move is complete, including waiting on
  2692. * flushes to occur.
  2693. */
  2694. static int
  2695. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2696. uint64_t offset, uint64_t size)
  2697. {
  2698. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2699. uint32_t old_read_domains;
  2700. int i, ret;
  2701. if (offset == 0 && size == obj->size)
  2702. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2703. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2704. if (ret != 0)
  2705. return ret;
  2706. i915_gem_object_flush_gtt_write_domain(obj);
  2707. /* If we're already fully in the CPU read domain, we're done. */
  2708. if (obj_priv->page_cpu_valid == NULL &&
  2709. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2710. return 0;
  2711. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2712. * newly adding I915_GEM_DOMAIN_CPU
  2713. */
  2714. if (obj_priv->page_cpu_valid == NULL) {
  2715. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2716. GFP_KERNEL);
  2717. if (obj_priv->page_cpu_valid == NULL)
  2718. return -ENOMEM;
  2719. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2720. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2721. /* Flush the cache on any pages that are still invalid from the CPU's
  2722. * perspective.
  2723. */
  2724. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2725. i++) {
  2726. if (obj_priv->page_cpu_valid[i])
  2727. continue;
  2728. drm_clflush_pages(obj_priv->pages + i, 1);
  2729. obj_priv->page_cpu_valid[i] = 1;
  2730. }
  2731. /* It should now be out of any other write domains, and we can update
  2732. * the domain values for our changes.
  2733. */
  2734. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2735. old_read_domains = obj->read_domains;
  2736. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2737. trace_i915_gem_object_change_domain(obj,
  2738. old_read_domains,
  2739. obj->write_domain);
  2740. return 0;
  2741. }
  2742. /**
  2743. * Pin an object to the GTT and evaluate the relocations landing in it.
  2744. */
  2745. static int
  2746. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2747. struct drm_file *file_priv,
  2748. struct drm_i915_gem_exec_object2 *entry)
  2749. {
  2750. struct drm_device *dev = obj->base.dev;
  2751. drm_i915_private_t *dev_priv = dev->dev_private;
  2752. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2753. struct drm_gem_object *target_obj = NULL;
  2754. uint32_t target_handle = 0;
  2755. int i, ret = 0;
  2756. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2757. for (i = 0; i < entry->relocation_count; i++) {
  2758. struct drm_i915_gem_relocation_entry reloc;
  2759. uint32_t target_offset;
  2760. if (__copy_from_user_inatomic(&reloc,
  2761. user_relocs+i,
  2762. sizeof(reloc))) {
  2763. ret = -EFAULT;
  2764. break;
  2765. }
  2766. if (reloc.target_handle != target_handle) {
  2767. drm_gem_object_unreference(target_obj);
  2768. target_obj = drm_gem_object_lookup(dev, file_priv,
  2769. reloc.target_handle);
  2770. if (target_obj == NULL) {
  2771. ret = -ENOENT;
  2772. break;
  2773. }
  2774. target_handle = reloc.target_handle;
  2775. }
  2776. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2777. #if WATCH_RELOC
  2778. DRM_INFO("%s: obj %p offset %08x target %d "
  2779. "read %08x write %08x gtt %08x "
  2780. "presumed %08x delta %08x\n",
  2781. __func__,
  2782. obj,
  2783. (int) reloc.offset,
  2784. (int) reloc.target_handle,
  2785. (int) reloc.read_domains,
  2786. (int) reloc.write_domain,
  2787. (int) target_offset,
  2788. (int) reloc.presumed_offset,
  2789. reloc.delta);
  2790. #endif
  2791. /* The target buffer should have appeared before us in the
  2792. * exec_object list, so it should have a GTT space bound by now.
  2793. */
  2794. if (target_offset == 0) {
  2795. DRM_ERROR("No GTT space found for object %d\n",
  2796. reloc.target_handle);
  2797. ret = -EINVAL;
  2798. break;
  2799. }
  2800. /* Validate that the target is in a valid r/w GPU domain */
  2801. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2802. DRM_ERROR("reloc with multiple write domains: "
  2803. "obj %p target %d offset %d "
  2804. "read %08x write %08x",
  2805. obj, reloc.target_handle,
  2806. (int) reloc.offset,
  2807. reloc.read_domains,
  2808. reloc.write_domain);
  2809. ret = -EINVAL;
  2810. break;
  2811. }
  2812. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2813. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2814. DRM_ERROR("reloc with read/write CPU domains: "
  2815. "obj %p target %d offset %d "
  2816. "read %08x write %08x",
  2817. obj, reloc.target_handle,
  2818. (int) reloc.offset,
  2819. reloc.read_domains,
  2820. reloc.write_domain);
  2821. ret = -EINVAL;
  2822. break;
  2823. }
  2824. if (reloc.write_domain && target_obj->pending_write_domain &&
  2825. reloc.write_domain != target_obj->pending_write_domain) {
  2826. DRM_ERROR("Write domain conflict: "
  2827. "obj %p target %d offset %d "
  2828. "new %08x old %08x\n",
  2829. obj, reloc.target_handle,
  2830. (int) reloc.offset,
  2831. reloc.write_domain,
  2832. target_obj->pending_write_domain);
  2833. ret = -EINVAL;
  2834. break;
  2835. }
  2836. target_obj->pending_read_domains |= reloc.read_domains;
  2837. target_obj->pending_write_domain |= reloc.write_domain;
  2838. /* If the relocation already has the right value in it, no
  2839. * more work needs to be done.
  2840. */
  2841. if (target_offset == reloc.presumed_offset)
  2842. continue;
  2843. /* Check that the relocation address is valid... */
  2844. if (reloc.offset > obj->base.size - 4) {
  2845. DRM_ERROR("Relocation beyond object bounds: "
  2846. "obj %p target %d offset %d size %d.\n",
  2847. obj, reloc.target_handle,
  2848. (int) reloc.offset, (int) obj->base.size);
  2849. ret = -EINVAL;
  2850. break;
  2851. }
  2852. if (reloc.offset & 3) {
  2853. DRM_ERROR("Relocation not 4-byte aligned: "
  2854. "obj %p target %d offset %d.\n",
  2855. obj, reloc.target_handle,
  2856. (int) reloc.offset);
  2857. ret = -EINVAL;
  2858. break;
  2859. }
  2860. /* and points to somewhere within the target object. */
  2861. if (reloc.delta >= target_obj->size) {
  2862. DRM_ERROR("Relocation beyond target object bounds: "
  2863. "obj %p target %d delta %d size %d.\n",
  2864. obj, reloc.target_handle,
  2865. (int) reloc.delta, (int) target_obj->size);
  2866. ret = -EINVAL;
  2867. break;
  2868. }
  2869. reloc.delta += target_offset;
  2870. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2871. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2872. char *vaddr;
  2873. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2874. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2875. kunmap_atomic(vaddr);
  2876. } else {
  2877. uint32_t __iomem *reloc_entry;
  2878. void __iomem *reloc_page;
  2879. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2880. if (ret)
  2881. break;
  2882. /* Map the page containing the relocation we're going to perform. */
  2883. reloc.offset += obj->gtt_offset;
  2884. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2885. reloc.offset & PAGE_MASK);
  2886. reloc_entry = (uint32_t __iomem *)
  2887. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2888. iowrite32(reloc.delta, reloc_entry);
  2889. io_mapping_unmap_atomic(reloc_page);
  2890. }
  2891. /* and update the user's relocation entry */
  2892. reloc.presumed_offset = target_offset;
  2893. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2894. &reloc.presumed_offset,
  2895. sizeof(reloc.presumed_offset))) {
  2896. ret = -EFAULT;
  2897. break;
  2898. }
  2899. }
  2900. drm_gem_object_unreference(target_obj);
  2901. return ret;
  2902. }
  2903. static int
  2904. i915_gem_execbuffer_pin(struct drm_device *dev,
  2905. struct drm_file *file,
  2906. struct drm_gem_object **object_list,
  2907. struct drm_i915_gem_exec_object2 *exec_list,
  2908. int count)
  2909. {
  2910. struct drm_i915_private *dev_priv = dev->dev_private;
  2911. int ret, i, retry;
  2912. /* attempt to pin all of the buffers into the GTT */
  2913. for (retry = 0; retry < 2; retry++) {
  2914. ret = 0;
  2915. for (i = 0; i < count; i++) {
  2916. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2917. struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
  2918. bool need_fence =
  2919. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2920. obj->tiling_mode != I915_TILING_NONE;
  2921. /* Check fence reg constraints and rebind if necessary */
  2922. if (need_fence &&
  2923. !i915_gem_object_fence_offset_ok(&obj->base,
  2924. obj->tiling_mode)) {
  2925. ret = i915_gem_object_unbind(&obj->base);
  2926. if (ret)
  2927. break;
  2928. }
  2929. ret = i915_gem_object_pin(&obj->base, entry->alignment);
  2930. if (ret)
  2931. break;
  2932. /*
  2933. * Pre-965 chips need a fence register set up in order
  2934. * to properly handle blits to/from tiled surfaces.
  2935. */
  2936. if (need_fence) {
  2937. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  2938. if (ret) {
  2939. i915_gem_object_unpin(&obj->base);
  2940. break;
  2941. }
  2942. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  2943. }
  2944. entry->offset = obj->gtt_offset;
  2945. }
  2946. while (i--)
  2947. i915_gem_object_unpin(object_list[i]);
  2948. if (ret == 0)
  2949. break;
  2950. if (ret != -ENOSPC || retry)
  2951. return ret;
  2952. ret = i915_gem_evict_everything(dev);
  2953. if (ret)
  2954. return ret;
  2955. }
  2956. return 0;
  2957. }
  2958. /* Throttle our rendering by waiting until the ring has completed our requests
  2959. * emitted over 20 msec ago.
  2960. *
  2961. * Note that if we were to use the current jiffies each time around the loop,
  2962. * we wouldn't escape the function with any frames outstanding if the time to
  2963. * render a frame was over 20ms.
  2964. *
  2965. * This should get us reasonable parallelism between CPU and GPU but also
  2966. * relatively low latency when blocking on a particular request to finish.
  2967. */
  2968. static int
  2969. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2970. {
  2971. struct drm_i915_private *dev_priv = dev->dev_private;
  2972. struct drm_i915_file_private *file_priv = file->driver_priv;
  2973. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2974. struct drm_i915_gem_request *request;
  2975. struct intel_ring_buffer *ring = NULL;
  2976. u32 seqno = 0;
  2977. int ret;
  2978. spin_lock(&file_priv->mm.lock);
  2979. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2980. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2981. break;
  2982. ring = request->ring;
  2983. seqno = request->seqno;
  2984. }
  2985. spin_unlock(&file_priv->mm.lock);
  2986. if (seqno == 0)
  2987. return 0;
  2988. ret = 0;
  2989. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2990. /* And wait for the seqno passing without holding any locks and
  2991. * causing extra latency for others. This is safe as the irq
  2992. * generation is designed to be run atomically and so is
  2993. * lockless.
  2994. */
  2995. ring->user_irq_get(ring);
  2996. ret = wait_event_interruptible(ring->irq_queue,
  2997. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2998. || atomic_read(&dev_priv->mm.wedged));
  2999. ring->user_irq_put(ring);
  3000. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3001. ret = -EIO;
  3002. }
  3003. if (ret == 0)
  3004. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3005. return ret;
  3006. }
  3007. static int
  3008. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3009. uint64_t exec_offset)
  3010. {
  3011. uint32_t exec_start, exec_len;
  3012. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3013. exec_len = (uint32_t) exec->batch_len;
  3014. if ((exec_start | exec_len) & 0x7)
  3015. return -EINVAL;
  3016. if (!exec_start)
  3017. return -EINVAL;
  3018. return 0;
  3019. }
  3020. static int
  3021. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3022. int count)
  3023. {
  3024. int i;
  3025. for (i = 0; i < count; i++) {
  3026. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3027. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3028. if (!access_ok(VERIFY_READ, ptr, length))
  3029. return -EFAULT;
  3030. /* we may also need to update the presumed offsets */
  3031. if (!access_ok(VERIFY_WRITE, ptr, length))
  3032. return -EFAULT;
  3033. if (fault_in_pages_readable(ptr, length))
  3034. return -EFAULT;
  3035. }
  3036. return 0;
  3037. }
  3038. static int
  3039. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3040. struct drm_file *file,
  3041. struct drm_i915_gem_execbuffer2 *args,
  3042. struct drm_i915_gem_exec_object2 *exec_list)
  3043. {
  3044. drm_i915_private_t *dev_priv = dev->dev_private;
  3045. struct drm_gem_object **object_list = NULL;
  3046. struct drm_gem_object *batch_obj;
  3047. struct drm_clip_rect *cliprects = NULL;
  3048. struct drm_i915_gem_request *request = NULL;
  3049. int ret, i, flips;
  3050. uint64_t exec_offset;
  3051. struct intel_ring_buffer *ring = NULL;
  3052. ret = i915_gem_check_is_wedged(dev);
  3053. if (ret)
  3054. return ret;
  3055. ret = validate_exec_list(exec_list, args->buffer_count);
  3056. if (ret)
  3057. return ret;
  3058. #if WATCH_EXEC
  3059. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3060. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3061. #endif
  3062. switch (args->flags & I915_EXEC_RING_MASK) {
  3063. case I915_EXEC_DEFAULT:
  3064. case I915_EXEC_RENDER:
  3065. ring = &dev_priv->render_ring;
  3066. break;
  3067. case I915_EXEC_BSD:
  3068. if (!HAS_BSD(dev)) {
  3069. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3070. return -EINVAL;
  3071. }
  3072. ring = &dev_priv->bsd_ring;
  3073. break;
  3074. case I915_EXEC_BLT:
  3075. if (!HAS_BLT(dev)) {
  3076. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3077. return -EINVAL;
  3078. }
  3079. ring = &dev_priv->blt_ring;
  3080. break;
  3081. default:
  3082. DRM_ERROR("execbuf with unknown ring: %d\n",
  3083. (int)(args->flags & I915_EXEC_RING_MASK));
  3084. return -EINVAL;
  3085. }
  3086. if (args->buffer_count < 1) {
  3087. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3088. return -EINVAL;
  3089. }
  3090. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3091. if (object_list == NULL) {
  3092. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3093. args->buffer_count);
  3094. ret = -ENOMEM;
  3095. goto pre_mutex_err;
  3096. }
  3097. if (args->num_cliprects != 0) {
  3098. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3099. GFP_KERNEL);
  3100. if (cliprects == NULL) {
  3101. ret = -ENOMEM;
  3102. goto pre_mutex_err;
  3103. }
  3104. ret = copy_from_user(cliprects,
  3105. (struct drm_clip_rect __user *)
  3106. (uintptr_t) args->cliprects_ptr,
  3107. sizeof(*cliprects) * args->num_cliprects);
  3108. if (ret != 0) {
  3109. DRM_ERROR("copy %d cliprects failed: %d\n",
  3110. args->num_cliprects, ret);
  3111. ret = -EFAULT;
  3112. goto pre_mutex_err;
  3113. }
  3114. }
  3115. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3116. if (request == NULL) {
  3117. ret = -ENOMEM;
  3118. goto pre_mutex_err;
  3119. }
  3120. ret = i915_mutex_lock_interruptible(dev);
  3121. if (ret)
  3122. goto pre_mutex_err;
  3123. if (dev_priv->mm.suspended) {
  3124. mutex_unlock(&dev->struct_mutex);
  3125. ret = -EBUSY;
  3126. goto pre_mutex_err;
  3127. }
  3128. /* Look up object handles */
  3129. for (i = 0; i < args->buffer_count; i++) {
  3130. struct drm_i915_gem_object *obj_priv;
  3131. object_list[i] = drm_gem_object_lookup(dev, file,
  3132. exec_list[i].handle);
  3133. if (object_list[i] == NULL) {
  3134. DRM_ERROR("Invalid object handle %d at index %d\n",
  3135. exec_list[i].handle, i);
  3136. /* prevent error path from reading uninitialized data */
  3137. args->buffer_count = i + 1;
  3138. ret = -ENOENT;
  3139. goto err;
  3140. }
  3141. obj_priv = to_intel_bo(object_list[i]);
  3142. if (obj_priv->in_execbuffer) {
  3143. DRM_ERROR("Object %p appears more than once in object list\n",
  3144. object_list[i]);
  3145. /* prevent error path from reading uninitialized data */
  3146. args->buffer_count = i + 1;
  3147. ret = -EINVAL;
  3148. goto err;
  3149. }
  3150. obj_priv->in_execbuffer = true;
  3151. }
  3152. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3153. ret = i915_gem_execbuffer_pin(dev, file,
  3154. object_list, exec_list,
  3155. args->buffer_count);
  3156. if (ret)
  3157. goto err;
  3158. /* The objects are in their final locations, apply the relocations. */
  3159. for (i = 0; i < args->buffer_count; i++) {
  3160. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3161. obj->base.pending_read_domains = 0;
  3162. obj->base.pending_write_domain = 0;
  3163. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3164. if (ret)
  3165. goto err;
  3166. }
  3167. /* Set the pending read domains for the batch buffer to COMMAND */
  3168. batch_obj = object_list[args->buffer_count-1];
  3169. if (batch_obj->pending_write_domain) {
  3170. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3171. ret = -EINVAL;
  3172. goto err;
  3173. }
  3174. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3175. /* Sanity check the batch buffer */
  3176. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3177. ret = i915_gem_check_execbuffer(args, exec_offset);
  3178. if (ret != 0) {
  3179. DRM_ERROR("execbuf with invalid offset/length\n");
  3180. goto err;
  3181. }
  3182. /* Zero the global flush/invalidate flags. These
  3183. * will be modified as new domains are computed
  3184. * for each object
  3185. */
  3186. dev->invalidate_domains = 0;
  3187. dev->flush_domains = 0;
  3188. dev_priv->mm.flush_rings = 0;
  3189. for (i = 0; i < args->buffer_count; i++)
  3190. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3191. if (dev->invalidate_domains | dev->flush_domains) {
  3192. #if WATCH_EXEC
  3193. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3194. __func__,
  3195. dev->invalidate_domains,
  3196. dev->flush_domains);
  3197. #endif
  3198. i915_gem_flush(dev, file,
  3199. dev->invalidate_domains,
  3200. dev->flush_domains,
  3201. dev_priv->mm.flush_rings);
  3202. }
  3203. #if WATCH_COHERENCY
  3204. for (i = 0; i < args->buffer_count; i++) {
  3205. i915_gem_object_check_coherency(object_list[i],
  3206. exec_list[i].handle);
  3207. }
  3208. #endif
  3209. #if WATCH_EXEC
  3210. i915_gem_dump_object(batch_obj,
  3211. args->batch_len,
  3212. __func__,
  3213. ~0);
  3214. #endif
  3215. /* Check for any pending flips. As we only maintain a flip queue depth
  3216. * of 1, we can simply insert a WAIT for the next display flip prior
  3217. * to executing the batch and avoid stalling the CPU.
  3218. */
  3219. flips = 0;
  3220. for (i = 0; i < args->buffer_count; i++) {
  3221. if (object_list[i]->write_domain)
  3222. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3223. }
  3224. if (flips) {
  3225. int plane, flip_mask;
  3226. for (plane = 0; flips >> plane; plane++) {
  3227. if (((flips >> plane) & 1) == 0)
  3228. continue;
  3229. if (plane)
  3230. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3231. else
  3232. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3233. ret = intel_ring_begin(ring, 2);
  3234. if (ret)
  3235. goto err;
  3236. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3237. intel_ring_emit(ring, MI_NOOP);
  3238. intel_ring_advance(ring);
  3239. }
  3240. }
  3241. /* Exec the batchbuffer */
  3242. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3243. if (ret) {
  3244. DRM_ERROR("dispatch failed %d\n", ret);
  3245. goto err;
  3246. }
  3247. for (i = 0; i < args->buffer_count; i++) {
  3248. struct drm_gem_object *obj = object_list[i];
  3249. obj->read_domains = obj->pending_read_domains;
  3250. obj->write_domain = obj->pending_write_domain;
  3251. i915_gem_object_move_to_active(obj, ring);
  3252. if (obj->write_domain) {
  3253. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3254. obj_priv->dirty = 1;
  3255. list_move_tail(&obj_priv->gpu_write_list,
  3256. &ring->gpu_write_list);
  3257. intel_mark_busy(dev, obj);
  3258. }
  3259. trace_i915_gem_object_change_domain(obj,
  3260. obj->read_domains,
  3261. obj->write_domain);
  3262. }
  3263. /*
  3264. * Ensure that the commands in the batch buffer are
  3265. * finished before the interrupt fires
  3266. */
  3267. i915_retire_commands(dev, ring);
  3268. if (i915_add_request(dev, file, request, ring))
  3269. ring->outstanding_lazy_request = true;
  3270. else
  3271. request = NULL;
  3272. err:
  3273. for (i = 0; i < args->buffer_count; i++) {
  3274. if (object_list[i] == NULL)
  3275. break;
  3276. to_intel_bo(object_list[i])->in_execbuffer = false;
  3277. drm_gem_object_unreference(object_list[i]);
  3278. }
  3279. mutex_unlock(&dev->struct_mutex);
  3280. pre_mutex_err:
  3281. drm_free_large(object_list);
  3282. kfree(cliprects);
  3283. kfree(request);
  3284. return ret;
  3285. }
  3286. /*
  3287. * Legacy execbuffer just creates an exec2 list from the original exec object
  3288. * list array and passes it to the real function.
  3289. */
  3290. int
  3291. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3292. struct drm_file *file_priv)
  3293. {
  3294. struct drm_i915_gem_execbuffer *args = data;
  3295. struct drm_i915_gem_execbuffer2 exec2;
  3296. struct drm_i915_gem_exec_object *exec_list = NULL;
  3297. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3298. int ret, i;
  3299. #if WATCH_EXEC
  3300. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3301. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3302. #endif
  3303. if (args->buffer_count < 1) {
  3304. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3305. return -EINVAL;
  3306. }
  3307. /* Copy in the exec list from userland */
  3308. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3309. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3310. if (exec_list == NULL || exec2_list == NULL) {
  3311. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3312. args->buffer_count);
  3313. drm_free_large(exec_list);
  3314. drm_free_large(exec2_list);
  3315. return -ENOMEM;
  3316. }
  3317. ret = copy_from_user(exec_list,
  3318. (struct drm_i915_relocation_entry __user *)
  3319. (uintptr_t) args->buffers_ptr,
  3320. sizeof(*exec_list) * args->buffer_count);
  3321. if (ret != 0) {
  3322. DRM_ERROR("copy %d exec entries failed %d\n",
  3323. args->buffer_count, ret);
  3324. drm_free_large(exec_list);
  3325. drm_free_large(exec2_list);
  3326. return -EFAULT;
  3327. }
  3328. for (i = 0; i < args->buffer_count; i++) {
  3329. exec2_list[i].handle = exec_list[i].handle;
  3330. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3331. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3332. exec2_list[i].alignment = exec_list[i].alignment;
  3333. exec2_list[i].offset = exec_list[i].offset;
  3334. if (INTEL_INFO(dev)->gen < 4)
  3335. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3336. else
  3337. exec2_list[i].flags = 0;
  3338. }
  3339. exec2.buffers_ptr = args->buffers_ptr;
  3340. exec2.buffer_count = args->buffer_count;
  3341. exec2.batch_start_offset = args->batch_start_offset;
  3342. exec2.batch_len = args->batch_len;
  3343. exec2.DR1 = args->DR1;
  3344. exec2.DR4 = args->DR4;
  3345. exec2.num_cliprects = args->num_cliprects;
  3346. exec2.cliprects_ptr = args->cliprects_ptr;
  3347. exec2.flags = I915_EXEC_RENDER;
  3348. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3349. if (!ret) {
  3350. /* Copy the new buffer offsets back to the user's exec list. */
  3351. for (i = 0; i < args->buffer_count; i++)
  3352. exec_list[i].offset = exec2_list[i].offset;
  3353. /* ... and back out to userspace */
  3354. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3355. (uintptr_t) args->buffers_ptr,
  3356. exec_list,
  3357. sizeof(*exec_list) * args->buffer_count);
  3358. if (ret) {
  3359. ret = -EFAULT;
  3360. DRM_ERROR("failed to copy %d exec entries "
  3361. "back to user (%d)\n",
  3362. args->buffer_count, ret);
  3363. }
  3364. }
  3365. drm_free_large(exec_list);
  3366. drm_free_large(exec2_list);
  3367. return ret;
  3368. }
  3369. int
  3370. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3371. struct drm_file *file_priv)
  3372. {
  3373. struct drm_i915_gem_execbuffer2 *args = data;
  3374. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3375. int ret;
  3376. #if WATCH_EXEC
  3377. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3378. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3379. #endif
  3380. if (args->buffer_count < 1) {
  3381. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3382. return -EINVAL;
  3383. }
  3384. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3385. if (exec2_list == NULL) {
  3386. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3387. args->buffer_count);
  3388. return -ENOMEM;
  3389. }
  3390. ret = copy_from_user(exec2_list,
  3391. (struct drm_i915_relocation_entry __user *)
  3392. (uintptr_t) args->buffers_ptr,
  3393. sizeof(*exec2_list) * args->buffer_count);
  3394. if (ret != 0) {
  3395. DRM_ERROR("copy %d exec entries failed %d\n",
  3396. args->buffer_count, ret);
  3397. drm_free_large(exec2_list);
  3398. return -EFAULT;
  3399. }
  3400. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3401. if (!ret) {
  3402. /* Copy the new buffer offsets back to the user's exec list. */
  3403. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3404. (uintptr_t) args->buffers_ptr,
  3405. exec2_list,
  3406. sizeof(*exec2_list) * args->buffer_count);
  3407. if (ret) {
  3408. ret = -EFAULT;
  3409. DRM_ERROR("failed to copy %d exec entries "
  3410. "back to user (%d)\n",
  3411. args->buffer_count, ret);
  3412. }
  3413. }
  3414. drm_free_large(exec2_list);
  3415. return ret;
  3416. }
  3417. int
  3418. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3419. {
  3420. struct drm_device *dev = obj->dev;
  3421. struct drm_i915_private *dev_priv = dev->dev_private;
  3422. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3423. int ret;
  3424. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3425. WARN_ON(i915_verify_lists(dev));
  3426. if (obj_priv->gtt_space != NULL) {
  3427. if (alignment == 0)
  3428. alignment = i915_gem_get_gtt_alignment(obj);
  3429. if (obj_priv->gtt_offset & (alignment - 1)) {
  3430. WARN(obj_priv->pin_count,
  3431. "bo is already pinned with incorrect alignment:"
  3432. " offset=%x, req.alignment=%x\n",
  3433. obj_priv->gtt_offset, alignment);
  3434. ret = i915_gem_object_unbind(obj);
  3435. if (ret)
  3436. return ret;
  3437. }
  3438. }
  3439. if (obj_priv->gtt_space == NULL) {
  3440. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3441. if (ret)
  3442. return ret;
  3443. }
  3444. obj_priv->pin_count++;
  3445. /* If the object is not active and not pending a flush,
  3446. * remove it from the inactive list
  3447. */
  3448. if (obj_priv->pin_count == 1) {
  3449. i915_gem_info_add_pin(dev_priv, obj->size);
  3450. if (!obj_priv->active)
  3451. list_move_tail(&obj_priv->mm_list,
  3452. &dev_priv->mm.pinned_list);
  3453. }
  3454. WARN_ON(i915_verify_lists(dev));
  3455. return 0;
  3456. }
  3457. void
  3458. i915_gem_object_unpin(struct drm_gem_object *obj)
  3459. {
  3460. struct drm_device *dev = obj->dev;
  3461. drm_i915_private_t *dev_priv = dev->dev_private;
  3462. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3463. WARN_ON(i915_verify_lists(dev));
  3464. obj_priv->pin_count--;
  3465. BUG_ON(obj_priv->pin_count < 0);
  3466. BUG_ON(obj_priv->gtt_space == NULL);
  3467. /* If the object is no longer pinned, and is
  3468. * neither active nor being flushed, then stick it on
  3469. * the inactive list
  3470. */
  3471. if (obj_priv->pin_count == 0) {
  3472. if (!obj_priv->active)
  3473. list_move_tail(&obj_priv->mm_list,
  3474. &dev_priv->mm.inactive_list);
  3475. i915_gem_info_remove_pin(dev_priv, obj->size);
  3476. }
  3477. WARN_ON(i915_verify_lists(dev));
  3478. }
  3479. int
  3480. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3481. struct drm_file *file_priv)
  3482. {
  3483. struct drm_i915_gem_pin *args = data;
  3484. struct drm_gem_object *obj;
  3485. struct drm_i915_gem_object *obj_priv;
  3486. int ret;
  3487. ret = i915_mutex_lock_interruptible(dev);
  3488. if (ret)
  3489. return ret;
  3490. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3491. if (obj == NULL) {
  3492. ret = -ENOENT;
  3493. goto unlock;
  3494. }
  3495. obj_priv = to_intel_bo(obj);
  3496. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3497. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3498. ret = -EINVAL;
  3499. goto out;
  3500. }
  3501. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3502. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3503. args->handle);
  3504. ret = -EINVAL;
  3505. goto out;
  3506. }
  3507. obj_priv->user_pin_count++;
  3508. obj_priv->pin_filp = file_priv;
  3509. if (obj_priv->user_pin_count == 1) {
  3510. ret = i915_gem_object_pin(obj, args->alignment);
  3511. if (ret)
  3512. goto out;
  3513. }
  3514. /* XXX - flush the CPU caches for pinned objects
  3515. * as the X server doesn't manage domains yet
  3516. */
  3517. i915_gem_object_flush_cpu_write_domain(obj);
  3518. args->offset = obj_priv->gtt_offset;
  3519. out:
  3520. drm_gem_object_unreference(obj);
  3521. unlock:
  3522. mutex_unlock(&dev->struct_mutex);
  3523. return ret;
  3524. }
  3525. int
  3526. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3527. struct drm_file *file_priv)
  3528. {
  3529. struct drm_i915_gem_pin *args = data;
  3530. struct drm_gem_object *obj;
  3531. struct drm_i915_gem_object *obj_priv;
  3532. int ret;
  3533. ret = i915_mutex_lock_interruptible(dev);
  3534. if (ret)
  3535. return ret;
  3536. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3537. if (obj == NULL) {
  3538. ret = -ENOENT;
  3539. goto unlock;
  3540. }
  3541. obj_priv = to_intel_bo(obj);
  3542. if (obj_priv->pin_filp != file_priv) {
  3543. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3544. args->handle);
  3545. ret = -EINVAL;
  3546. goto out;
  3547. }
  3548. obj_priv->user_pin_count--;
  3549. if (obj_priv->user_pin_count == 0) {
  3550. obj_priv->pin_filp = NULL;
  3551. i915_gem_object_unpin(obj);
  3552. }
  3553. out:
  3554. drm_gem_object_unreference(obj);
  3555. unlock:
  3556. mutex_unlock(&dev->struct_mutex);
  3557. return ret;
  3558. }
  3559. int
  3560. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3561. struct drm_file *file_priv)
  3562. {
  3563. struct drm_i915_gem_busy *args = data;
  3564. struct drm_gem_object *obj;
  3565. struct drm_i915_gem_object *obj_priv;
  3566. int ret;
  3567. ret = i915_mutex_lock_interruptible(dev);
  3568. if (ret)
  3569. return ret;
  3570. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3571. if (obj == NULL) {
  3572. ret = -ENOENT;
  3573. goto unlock;
  3574. }
  3575. obj_priv = to_intel_bo(obj);
  3576. /* Count all active objects as busy, even if they are currently not used
  3577. * by the gpu. Users of this interface expect objects to eventually
  3578. * become non-busy without any further actions, therefore emit any
  3579. * necessary flushes here.
  3580. */
  3581. args->busy = obj_priv->active;
  3582. if (args->busy) {
  3583. /* Unconditionally flush objects, even when the gpu still uses this
  3584. * object. Userspace calling this function indicates that it wants to
  3585. * use this buffer rather sooner than later, so issuing the required
  3586. * flush earlier is beneficial.
  3587. */
  3588. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3589. i915_gem_flush_ring(dev, file_priv,
  3590. obj_priv->ring,
  3591. 0, obj->write_domain);
  3592. /* Update the active list for the hardware's current position.
  3593. * Otherwise this only updates on a delayed timer or when irqs
  3594. * are actually unmasked, and our working set ends up being
  3595. * larger than required.
  3596. */
  3597. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3598. args->busy = obj_priv->active;
  3599. }
  3600. drm_gem_object_unreference(obj);
  3601. unlock:
  3602. mutex_unlock(&dev->struct_mutex);
  3603. return ret;
  3604. }
  3605. int
  3606. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3607. struct drm_file *file_priv)
  3608. {
  3609. return i915_gem_ring_throttle(dev, file_priv);
  3610. }
  3611. int
  3612. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3613. struct drm_file *file_priv)
  3614. {
  3615. struct drm_i915_gem_madvise *args = data;
  3616. struct drm_gem_object *obj;
  3617. struct drm_i915_gem_object *obj_priv;
  3618. int ret;
  3619. switch (args->madv) {
  3620. case I915_MADV_DONTNEED:
  3621. case I915_MADV_WILLNEED:
  3622. break;
  3623. default:
  3624. return -EINVAL;
  3625. }
  3626. ret = i915_mutex_lock_interruptible(dev);
  3627. if (ret)
  3628. return ret;
  3629. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3630. if (obj == NULL) {
  3631. ret = -ENOENT;
  3632. goto unlock;
  3633. }
  3634. obj_priv = to_intel_bo(obj);
  3635. if (obj_priv->pin_count) {
  3636. ret = -EINVAL;
  3637. goto out;
  3638. }
  3639. if (obj_priv->madv != __I915_MADV_PURGED)
  3640. obj_priv->madv = args->madv;
  3641. /* if the object is no longer bound, discard its backing storage */
  3642. if (i915_gem_object_is_purgeable(obj_priv) &&
  3643. obj_priv->gtt_space == NULL)
  3644. i915_gem_object_truncate(obj);
  3645. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3646. out:
  3647. drm_gem_object_unreference(obj);
  3648. unlock:
  3649. mutex_unlock(&dev->struct_mutex);
  3650. return ret;
  3651. }
  3652. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3653. size_t size)
  3654. {
  3655. struct drm_i915_private *dev_priv = dev->dev_private;
  3656. struct drm_i915_gem_object *obj;
  3657. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3658. if (obj == NULL)
  3659. return NULL;
  3660. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3661. kfree(obj);
  3662. return NULL;
  3663. }
  3664. i915_gem_info_add_obj(dev_priv, size);
  3665. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3666. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3667. obj->agp_type = AGP_USER_MEMORY;
  3668. obj->base.driver_private = NULL;
  3669. obj->fence_reg = I915_FENCE_REG_NONE;
  3670. INIT_LIST_HEAD(&obj->mm_list);
  3671. INIT_LIST_HEAD(&obj->ring_list);
  3672. INIT_LIST_HEAD(&obj->gpu_write_list);
  3673. obj->madv = I915_MADV_WILLNEED;
  3674. return &obj->base;
  3675. }
  3676. int i915_gem_init_object(struct drm_gem_object *obj)
  3677. {
  3678. BUG();
  3679. return 0;
  3680. }
  3681. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3682. {
  3683. struct drm_device *dev = obj->dev;
  3684. drm_i915_private_t *dev_priv = dev->dev_private;
  3685. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3686. int ret;
  3687. ret = i915_gem_object_unbind(obj);
  3688. if (ret == -ERESTARTSYS) {
  3689. list_move(&obj_priv->mm_list,
  3690. &dev_priv->mm.deferred_free_list);
  3691. return;
  3692. }
  3693. if (obj_priv->mmap_offset)
  3694. i915_gem_free_mmap_offset(obj);
  3695. drm_gem_object_release(obj);
  3696. i915_gem_info_remove_obj(dev_priv, obj->size);
  3697. kfree(obj_priv->page_cpu_valid);
  3698. kfree(obj_priv->bit_17);
  3699. kfree(obj_priv);
  3700. }
  3701. void i915_gem_free_object(struct drm_gem_object *obj)
  3702. {
  3703. struct drm_device *dev = obj->dev;
  3704. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3705. trace_i915_gem_object_destroy(obj);
  3706. while (obj_priv->pin_count > 0)
  3707. i915_gem_object_unpin(obj);
  3708. if (obj_priv->phys_obj)
  3709. i915_gem_detach_phys_object(dev, obj);
  3710. i915_gem_free_object_tail(obj);
  3711. }
  3712. int
  3713. i915_gem_idle(struct drm_device *dev)
  3714. {
  3715. drm_i915_private_t *dev_priv = dev->dev_private;
  3716. int ret;
  3717. mutex_lock(&dev->struct_mutex);
  3718. if (dev_priv->mm.suspended) {
  3719. mutex_unlock(&dev->struct_mutex);
  3720. return 0;
  3721. }
  3722. ret = i915_gpu_idle(dev);
  3723. if (ret) {
  3724. mutex_unlock(&dev->struct_mutex);
  3725. return ret;
  3726. }
  3727. /* Under UMS, be paranoid and evict. */
  3728. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3729. ret = i915_gem_evict_inactive(dev);
  3730. if (ret) {
  3731. mutex_unlock(&dev->struct_mutex);
  3732. return ret;
  3733. }
  3734. }
  3735. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3736. * We need to replace this with a semaphore, or something.
  3737. * And not confound mm.suspended!
  3738. */
  3739. dev_priv->mm.suspended = 1;
  3740. del_timer_sync(&dev_priv->hangcheck_timer);
  3741. i915_kernel_lost_context(dev);
  3742. i915_gem_cleanup_ringbuffer(dev);
  3743. mutex_unlock(&dev->struct_mutex);
  3744. /* Cancel the retire work handler, which should be idle now. */
  3745. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3746. return 0;
  3747. }
  3748. /*
  3749. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3750. * over cache flushing.
  3751. */
  3752. static int
  3753. i915_gem_init_pipe_control(struct drm_device *dev)
  3754. {
  3755. drm_i915_private_t *dev_priv = dev->dev_private;
  3756. struct drm_gem_object *obj;
  3757. struct drm_i915_gem_object *obj_priv;
  3758. int ret;
  3759. obj = i915_gem_alloc_object(dev, 4096);
  3760. if (obj == NULL) {
  3761. DRM_ERROR("Failed to allocate seqno page\n");
  3762. ret = -ENOMEM;
  3763. goto err;
  3764. }
  3765. obj_priv = to_intel_bo(obj);
  3766. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3767. ret = i915_gem_object_pin(obj, 4096);
  3768. if (ret)
  3769. goto err_unref;
  3770. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3771. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3772. if (dev_priv->seqno_page == NULL)
  3773. goto err_unpin;
  3774. dev_priv->seqno_obj = obj;
  3775. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3776. return 0;
  3777. err_unpin:
  3778. i915_gem_object_unpin(obj);
  3779. err_unref:
  3780. drm_gem_object_unreference(obj);
  3781. err:
  3782. return ret;
  3783. }
  3784. static void
  3785. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3786. {
  3787. drm_i915_private_t *dev_priv = dev->dev_private;
  3788. struct drm_gem_object *obj;
  3789. struct drm_i915_gem_object *obj_priv;
  3790. obj = dev_priv->seqno_obj;
  3791. obj_priv = to_intel_bo(obj);
  3792. kunmap(obj_priv->pages[0]);
  3793. i915_gem_object_unpin(obj);
  3794. drm_gem_object_unreference(obj);
  3795. dev_priv->seqno_obj = NULL;
  3796. dev_priv->seqno_page = NULL;
  3797. }
  3798. int
  3799. i915_gem_init_ringbuffer(struct drm_device *dev)
  3800. {
  3801. drm_i915_private_t *dev_priv = dev->dev_private;
  3802. int ret;
  3803. if (HAS_PIPE_CONTROL(dev)) {
  3804. ret = i915_gem_init_pipe_control(dev);
  3805. if (ret)
  3806. return ret;
  3807. }
  3808. ret = intel_init_render_ring_buffer(dev);
  3809. if (ret)
  3810. goto cleanup_pipe_control;
  3811. if (HAS_BSD(dev)) {
  3812. ret = intel_init_bsd_ring_buffer(dev);
  3813. if (ret)
  3814. goto cleanup_render_ring;
  3815. }
  3816. if (HAS_BLT(dev)) {
  3817. ret = intel_init_blt_ring_buffer(dev);
  3818. if (ret)
  3819. goto cleanup_bsd_ring;
  3820. }
  3821. dev_priv->next_seqno = 1;
  3822. return 0;
  3823. cleanup_bsd_ring:
  3824. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3825. cleanup_render_ring:
  3826. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3827. cleanup_pipe_control:
  3828. if (HAS_PIPE_CONTROL(dev))
  3829. i915_gem_cleanup_pipe_control(dev);
  3830. return ret;
  3831. }
  3832. void
  3833. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3834. {
  3835. drm_i915_private_t *dev_priv = dev->dev_private;
  3836. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3837. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3838. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3839. if (HAS_PIPE_CONTROL(dev))
  3840. i915_gem_cleanup_pipe_control(dev);
  3841. }
  3842. int
  3843. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3844. struct drm_file *file_priv)
  3845. {
  3846. drm_i915_private_t *dev_priv = dev->dev_private;
  3847. int ret;
  3848. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3849. return 0;
  3850. if (atomic_read(&dev_priv->mm.wedged)) {
  3851. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3852. atomic_set(&dev_priv->mm.wedged, 0);
  3853. }
  3854. mutex_lock(&dev->struct_mutex);
  3855. dev_priv->mm.suspended = 0;
  3856. ret = i915_gem_init_ringbuffer(dev);
  3857. if (ret != 0) {
  3858. mutex_unlock(&dev->struct_mutex);
  3859. return ret;
  3860. }
  3861. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3862. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3863. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3864. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3865. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3866. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3867. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3868. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3869. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3870. mutex_unlock(&dev->struct_mutex);
  3871. ret = drm_irq_install(dev);
  3872. if (ret)
  3873. goto cleanup_ringbuffer;
  3874. return 0;
  3875. cleanup_ringbuffer:
  3876. mutex_lock(&dev->struct_mutex);
  3877. i915_gem_cleanup_ringbuffer(dev);
  3878. dev_priv->mm.suspended = 1;
  3879. mutex_unlock(&dev->struct_mutex);
  3880. return ret;
  3881. }
  3882. int
  3883. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3884. struct drm_file *file_priv)
  3885. {
  3886. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3887. return 0;
  3888. drm_irq_uninstall(dev);
  3889. return i915_gem_idle(dev);
  3890. }
  3891. void
  3892. i915_gem_lastclose(struct drm_device *dev)
  3893. {
  3894. int ret;
  3895. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3896. return;
  3897. ret = i915_gem_idle(dev);
  3898. if (ret)
  3899. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3900. }
  3901. static void
  3902. init_ring_lists(struct intel_ring_buffer *ring)
  3903. {
  3904. INIT_LIST_HEAD(&ring->active_list);
  3905. INIT_LIST_HEAD(&ring->request_list);
  3906. INIT_LIST_HEAD(&ring->gpu_write_list);
  3907. }
  3908. void
  3909. i915_gem_load(struct drm_device *dev)
  3910. {
  3911. int i;
  3912. drm_i915_private_t *dev_priv = dev->dev_private;
  3913. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3914. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3915. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3916. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3917. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3918. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3919. init_ring_lists(&dev_priv->render_ring);
  3920. init_ring_lists(&dev_priv->bsd_ring);
  3921. init_ring_lists(&dev_priv->blt_ring);
  3922. for (i = 0; i < 16; i++)
  3923. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3924. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3925. i915_gem_retire_work_handler);
  3926. init_completion(&dev_priv->error_completion);
  3927. spin_lock(&shrink_list_lock);
  3928. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3929. spin_unlock(&shrink_list_lock);
  3930. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3931. if (IS_GEN3(dev)) {
  3932. u32 tmp = I915_READ(MI_ARB_STATE);
  3933. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3934. /* arb state is a masked write, so set bit + bit in mask */
  3935. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3936. I915_WRITE(MI_ARB_STATE, tmp);
  3937. }
  3938. }
  3939. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3940. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3941. dev_priv->fence_reg_start = 3;
  3942. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3943. dev_priv->num_fence_regs = 16;
  3944. else
  3945. dev_priv->num_fence_regs = 8;
  3946. /* Initialize fence registers to zero */
  3947. switch (INTEL_INFO(dev)->gen) {
  3948. case 6:
  3949. for (i = 0; i < 16; i++)
  3950. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3951. break;
  3952. case 5:
  3953. case 4:
  3954. for (i = 0; i < 16; i++)
  3955. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3956. break;
  3957. case 3:
  3958. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3959. for (i = 0; i < 8; i++)
  3960. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3961. case 2:
  3962. for (i = 0; i < 8; i++)
  3963. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3964. break;
  3965. }
  3966. i915_gem_detect_bit_6_swizzle(dev);
  3967. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3968. }
  3969. /*
  3970. * Create a physically contiguous memory object for this object
  3971. * e.g. for cursor + overlay regs
  3972. */
  3973. static int i915_gem_init_phys_object(struct drm_device *dev,
  3974. int id, int size, int align)
  3975. {
  3976. drm_i915_private_t *dev_priv = dev->dev_private;
  3977. struct drm_i915_gem_phys_object *phys_obj;
  3978. int ret;
  3979. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3980. return 0;
  3981. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3982. if (!phys_obj)
  3983. return -ENOMEM;
  3984. phys_obj->id = id;
  3985. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3986. if (!phys_obj->handle) {
  3987. ret = -ENOMEM;
  3988. goto kfree_obj;
  3989. }
  3990. #ifdef CONFIG_X86
  3991. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3992. #endif
  3993. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3994. return 0;
  3995. kfree_obj:
  3996. kfree(phys_obj);
  3997. return ret;
  3998. }
  3999. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4000. {
  4001. drm_i915_private_t *dev_priv = dev->dev_private;
  4002. struct drm_i915_gem_phys_object *phys_obj;
  4003. if (!dev_priv->mm.phys_objs[id - 1])
  4004. return;
  4005. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4006. if (phys_obj->cur_obj) {
  4007. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4008. }
  4009. #ifdef CONFIG_X86
  4010. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4011. #endif
  4012. drm_pci_free(dev, phys_obj->handle);
  4013. kfree(phys_obj);
  4014. dev_priv->mm.phys_objs[id - 1] = NULL;
  4015. }
  4016. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4017. {
  4018. int i;
  4019. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4020. i915_gem_free_phys_object(dev, i);
  4021. }
  4022. void i915_gem_detach_phys_object(struct drm_device *dev,
  4023. struct drm_gem_object *obj)
  4024. {
  4025. struct drm_i915_gem_object *obj_priv;
  4026. int i;
  4027. int ret;
  4028. int page_count;
  4029. obj_priv = to_intel_bo(obj);
  4030. if (!obj_priv->phys_obj)
  4031. return;
  4032. ret = i915_gem_object_get_pages(obj, 0);
  4033. if (ret)
  4034. goto out;
  4035. page_count = obj->size / PAGE_SIZE;
  4036. for (i = 0; i < page_count; i++) {
  4037. char *dst = kmap_atomic(obj_priv->pages[i]);
  4038. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4039. memcpy(dst, src, PAGE_SIZE);
  4040. kunmap_atomic(dst);
  4041. }
  4042. drm_clflush_pages(obj_priv->pages, page_count);
  4043. drm_agp_chipset_flush(dev);
  4044. i915_gem_object_put_pages(obj);
  4045. out:
  4046. obj_priv->phys_obj->cur_obj = NULL;
  4047. obj_priv->phys_obj = NULL;
  4048. }
  4049. int
  4050. i915_gem_attach_phys_object(struct drm_device *dev,
  4051. struct drm_gem_object *obj,
  4052. int id,
  4053. int align)
  4054. {
  4055. drm_i915_private_t *dev_priv = dev->dev_private;
  4056. struct drm_i915_gem_object *obj_priv;
  4057. int ret = 0;
  4058. int page_count;
  4059. int i;
  4060. if (id > I915_MAX_PHYS_OBJECT)
  4061. return -EINVAL;
  4062. obj_priv = to_intel_bo(obj);
  4063. if (obj_priv->phys_obj) {
  4064. if (obj_priv->phys_obj->id == id)
  4065. return 0;
  4066. i915_gem_detach_phys_object(dev, obj);
  4067. }
  4068. /* create a new object */
  4069. if (!dev_priv->mm.phys_objs[id - 1]) {
  4070. ret = i915_gem_init_phys_object(dev, id,
  4071. obj->size, align);
  4072. if (ret) {
  4073. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4074. goto out;
  4075. }
  4076. }
  4077. /* bind to the object */
  4078. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4079. obj_priv->phys_obj->cur_obj = obj;
  4080. ret = i915_gem_object_get_pages(obj, 0);
  4081. if (ret) {
  4082. DRM_ERROR("failed to get page list\n");
  4083. goto out;
  4084. }
  4085. page_count = obj->size / PAGE_SIZE;
  4086. for (i = 0; i < page_count; i++) {
  4087. char *src = kmap_atomic(obj_priv->pages[i]);
  4088. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4089. memcpy(dst, src, PAGE_SIZE);
  4090. kunmap_atomic(src);
  4091. }
  4092. i915_gem_object_put_pages(obj);
  4093. return 0;
  4094. out:
  4095. return ret;
  4096. }
  4097. static int
  4098. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4099. struct drm_i915_gem_pwrite *args,
  4100. struct drm_file *file_priv)
  4101. {
  4102. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4103. void *obj_addr;
  4104. int ret;
  4105. char __user *user_data;
  4106. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4107. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4108. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4109. ret = copy_from_user(obj_addr, user_data, args->size);
  4110. if (ret)
  4111. return -EFAULT;
  4112. drm_agp_chipset_flush(dev);
  4113. return 0;
  4114. }
  4115. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4116. {
  4117. struct drm_i915_file_private *file_priv = file->driver_priv;
  4118. /* Clean up our request list when the client is going away, so that
  4119. * later retire_requests won't dereference our soon-to-be-gone
  4120. * file_priv.
  4121. */
  4122. spin_lock(&file_priv->mm.lock);
  4123. while (!list_empty(&file_priv->mm.request_list)) {
  4124. struct drm_i915_gem_request *request;
  4125. request = list_first_entry(&file_priv->mm.request_list,
  4126. struct drm_i915_gem_request,
  4127. client_list);
  4128. list_del(&request->client_list);
  4129. request->file_priv = NULL;
  4130. }
  4131. spin_unlock(&file_priv->mm.lock);
  4132. }
  4133. static int
  4134. i915_gpu_is_active(struct drm_device *dev)
  4135. {
  4136. drm_i915_private_t *dev_priv = dev->dev_private;
  4137. int lists_empty;
  4138. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4139. list_empty(&dev_priv->render_ring.active_list) &&
  4140. list_empty(&dev_priv->bsd_ring.active_list) &&
  4141. list_empty(&dev_priv->blt_ring.active_list);
  4142. return !lists_empty;
  4143. }
  4144. static int
  4145. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4146. {
  4147. drm_i915_private_t *dev_priv, *next_dev;
  4148. struct drm_i915_gem_object *obj_priv, *next_obj;
  4149. int cnt = 0;
  4150. int would_deadlock = 1;
  4151. /* "fast-path" to count number of available objects */
  4152. if (nr_to_scan == 0) {
  4153. spin_lock(&shrink_list_lock);
  4154. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4155. struct drm_device *dev = dev_priv->dev;
  4156. if (mutex_trylock(&dev->struct_mutex)) {
  4157. list_for_each_entry(obj_priv,
  4158. &dev_priv->mm.inactive_list,
  4159. mm_list)
  4160. cnt++;
  4161. mutex_unlock(&dev->struct_mutex);
  4162. }
  4163. }
  4164. spin_unlock(&shrink_list_lock);
  4165. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4166. }
  4167. spin_lock(&shrink_list_lock);
  4168. rescan:
  4169. /* first scan for clean buffers */
  4170. list_for_each_entry_safe(dev_priv, next_dev,
  4171. &shrink_list, mm.shrink_list) {
  4172. struct drm_device *dev = dev_priv->dev;
  4173. if (! mutex_trylock(&dev->struct_mutex))
  4174. continue;
  4175. spin_unlock(&shrink_list_lock);
  4176. i915_gem_retire_requests(dev);
  4177. list_for_each_entry_safe(obj_priv, next_obj,
  4178. &dev_priv->mm.inactive_list,
  4179. mm_list) {
  4180. if (i915_gem_object_is_purgeable(obj_priv)) {
  4181. i915_gem_object_unbind(&obj_priv->base);
  4182. if (--nr_to_scan <= 0)
  4183. break;
  4184. }
  4185. }
  4186. spin_lock(&shrink_list_lock);
  4187. mutex_unlock(&dev->struct_mutex);
  4188. would_deadlock = 0;
  4189. if (nr_to_scan <= 0)
  4190. break;
  4191. }
  4192. /* second pass, evict/count anything still on the inactive list */
  4193. list_for_each_entry_safe(dev_priv, next_dev,
  4194. &shrink_list, mm.shrink_list) {
  4195. struct drm_device *dev = dev_priv->dev;
  4196. if (! mutex_trylock(&dev->struct_mutex))
  4197. continue;
  4198. spin_unlock(&shrink_list_lock);
  4199. list_for_each_entry_safe(obj_priv, next_obj,
  4200. &dev_priv->mm.inactive_list,
  4201. mm_list) {
  4202. if (nr_to_scan > 0) {
  4203. i915_gem_object_unbind(&obj_priv->base);
  4204. nr_to_scan--;
  4205. } else
  4206. cnt++;
  4207. }
  4208. spin_lock(&shrink_list_lock);
  4209. mutex_unlock(&dev->struct_mutex);
  4210. would_deadlock = 0;
  4211. }
  4212. if (nr_to_scan) {
  4213. int active = 0;
  4214. /*
  4215. * We are desperate for pages, so as a last resort, wait
  4216. * for the GPU to finish and discard whatever we can.
  4217. * This has a dramatic impact to reduce the number of
  4218. * OOM-killer events whilst running the GPU aggressively.
  4219. */
  4220. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4221. struct drm_device *dev = dev_priv->dev;
  4222. if (!mutex_trylock(&dev->struct_mutex))
  4223. continue;
  4224. spin_unlock(&shrink_list_lock);
  4225. if (i915_gpu_is_active(dev)) {
  4226. i915_gpu_idle(dev);
  4227. active++;
  4228. }
  4229. spin_lock(&shrink_list_lock);
  4230. mutex_unlock(&dev->struct_mutex);
  4231. }
  4232. if (active)
  4233. goto rescan;
  4234. }
  4235. spin_unlock(&shrink_list_lock);
  4236. if (would_deadlock)
  4237. return -1;
  4238. else if (cnt > 0)
  4239. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4240. else
  4241. return 0;
  4242. }
  4243. static struct shrinker shrinker = {
  4244. .shrink = i915_gem_shrink,
  4245. .seeks = DEFAULT_SEEKS,
  4246. };
  4247. __init void
  4248. i915_gem_shrinker_init(void)
  4249. {
  4250. register_shrinker(&shrinker);
  4251. }
  4252. __exit void
  4253. i915_gem_shrinker_exit(void)
  4254. {
  4255. unregister_shrinker(&shrinker);
  4256. }