sched.c 196 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <asm/tlb.h>
  69. #include <asm/irq_regs.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  78. }
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. #ifdef CONFIG_FAIR_GROUP_SCHED
  145. #include <linux/cgroup.h>
  146. struct cfs_rq;
  147. static LIST_HEAD(task_groups);
  148. /* task group related information */
  149. struct task_group {
  150. #ifdef CONFIG_FAIR_CGROUP_SCHED
  151. struct cgroup_subsys_state css;
  152. #endif
  153. /* schedulable entities of this group on each cpu */
  154. struct sched_entity **se;
  155. /* runqueue "owned" by this group on each cpu */
  156. struct cfs_rq **cfs_rq;
  157. struct sched_rt_entity **rt_se;
  158. struct rt_rq **rt_rq;
  159. unsigned int rt_ratio;
  160. /*
  161. * shares assigned to a task group governs how much of cpu bandwidth
  162. * is allocated to the group. The more shares a group has, the more is
  163. * the cpu bandwidth allocated to it.
  164. *
  165. * For ex, lets say that there are three task groups, A, B and C which
  166. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  167. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  168. * should be:
  169. *
  170. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  171. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  172. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  173. *
  174. * The weight assigned to a task group's schedulable entities on every
  175. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  176. * group's shares. For ex: lets say that task group A has been
  177. * assigned shares of 1000 and there are two CPUs in a system. Then,
  178. *
  179. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  180. *
  181. * Note: It's not necessary that each of a task's group schedulable
  182. * entity have the same weight on all CPUs. If the group
  183. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  184. * better distribution of weight could be:
  185. *
  186. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  187. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  188. *
  189. * rebalance_shares() is responsible for distributing the shares of a
  190. * task groups like this among the group's schedulable entities across
  191. * cpus.
  192. *
  193. */
  194. unsigned long shares;
  195. struct rcu_head rcu;
  196. struct list_head list;
  197. };
  198. /* Default task group's sched entity on each cpu */
  199. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  200. /* Default task group's cfs_rq on each cpu */
  201. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  202. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  203. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  204. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  205. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  206. static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
  207. static struct rt_rq *init_rt_rq_p[NR_CPUS];
  208. /* task_group_mutex serializes add/remove of task groups and also changes to
  209. * a task group's cpu shares.
  210. */
  211. static DEFINE_MUTEX(task_group_mutex);
  212. /* doms_cur_mutex serializes access to doms_cur[] array */
  213. static DEFINE_MUTEX(doms_cur_mutex);
  214. #ifdef CONFIG_SMP
  215. /* kernel thread that runs rebalance_shares() periodically */
  216. static struct task_struct *lb_monitor_task;
  217. static int load_balance_monitor(void *unused);
  218. #endif
  219. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  220. /* Default task group.
  221. * Every task in system belong to this group at bootup.
  222. */
  223. struct task_group init_task_group = {
  224. .se = init_sched_entity_p,
  225. .cfs_rq = init_cfs_rq_p,
  226. .rt_se = init_sched_rt_entity_p,
  227. .rt_rq = init_rt_rq_p,
  228. };
  229. #ifdef CONFIG_FAIR_USER_SCHED
  230. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  231. #else
  232. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  233. #endif
  234. #define MIN_GROUP_SHARES 2
  235. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  236. /* return group to which a task belongs */
  237. static inline struct task_group *task_group(struct task_struct *p)
  238. {
  239. struct task_group *tg;
  240. #ifdef CONFIG_FAIR_USER_SCHED
  241. tg = p->user->tg;
  242. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  243. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  244. struct task_group, css);
  245. #else
  246. tg = &init_task_group;
  247. #endif
  248. return tg;
  249. }
  250. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  251. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  252. {
  253. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  254. p->se.parent = task_group(p)->se[cpu];
  255. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  256. p->rt.parent = task_group(p)->rt_se[cpu];
  257. }
  258. static inline void lock_task_group_list(void)
  259. {
  260. mutex_lock(&task_group_mutex);
  261. }
  262. static inline void unlock_task_group_list(void)
  263. {
  264. mutex_unlock(&task_group_mutex);
  265. }
  266. static inline void lock_doms_cur(void)
  267. {
  268. mutex_lock(&doms_cur_mutex);
  269. }
  270. static inline void unlock_doms_cur(void)
  271. {
  272. mutex_unlock(&doms_cur_mutex);
  273. }
  274. #else
  275. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  276. static inline void lock_task_group_list(void) { }
  277. static inline void unlock_task_group_list(void) { }
  278. static inline void lock_doms_cur(void) { }
  279. static inline void unlock_doms_cur(void) { }
  280. #endif /* CONFIG_FAIR_GROUP_SCHED */
  281. /* CFS-related fields in a runqueue */
  282. struct cfs_rq {
  283. struct load_weight load;
  284. unsigned long nr_running;
  285. u64 exec_clock;
  286. u64 min_vruntime;
  287. struct rb_root tasks_timeline;
  288. struct rb_node *rb_leftmost;
  289. struct rb_node *rb_load_balance_curr;
  290. /* 'curr' points to currently running entity on this cfs_rq.
  291. * It is set to NULL otherwise (i.e when none are currently running).
  292. */
  293. struct sched_entity *curr;
  294. unsigned long nr_spread_over;
  295. #ifdef CONFIG_FAIR_GROUP_SCHED
  296. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  297. /*
  298. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  299. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  300. * (like users, containers etc.)
  301. *
  302. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  303. * list is used during load balance.
  304. */
  305. struct list_head leaf_cfs_rq_list;
  306. struct task_group *tg; /* group that "owns" this runqueue */
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
  314. int highest_prio; /* highest queued rt task prio */
  315. #endif
  316. #ifdef CONFIG_SMP
  317. unsigned long rt_nr_migratory;
  318. int overloaded;
  319. #endif
  320. int rt_throttled;
  321. u64 rt_time;
  322. #ifdef CONFIG_FAIR_GROUP_SCHED
  323. struct rq *rq;
  324. struct list_head leaf_rt_rq_list;
  325. struct task_group *tg;
  326. struct sched_rt_entity *rt_se;
  327. #endif
  328. };
  329. #ifdef CONFIG_SMP
  330. /*
  331. * We add the notion of a root-domain which will be used to define per-domain
  332. * variables. Each exclusive cpuset essentially defines an island domain by
  333. * fully partitioning the member cpus from any other cpuset. Whenever a new
  334. * exclusive cpuset is created, we also create and attach a new root-domain
  335. * object.
  336. *
  337. */
  338. struct root_domain {
  339. atomic_t refcount;
  340. cpumask_t span;
  341. cpumask_t online;
  342. /*
  343. * The "RT overload" flag: it gets set if a CPU has more than
  344. * one runnable RT task.
  345. */
  346. cpumask_t rto_mask;
  347. atomic_t rto_count;
  348. };
  349. /*
  350. * By default the system creates a single root-domain with all cpus as
  351. * members (mimicking the global state we have today).
  352. */
  353. static struct root_domain def_root_domain;
  354. #endif
  355. /*
  356. * This is the main, per-CPU runqueue data structure.
  357. *
  358. * Locking rule: those places that want to lock multiple runqueues
  359. * (such as the load balancing or the thread migration code), lock
  360. * acquire operations must be ordered by ascending &runqueue.
  361. */
  362. struct rq {
  363. /* runqueue lock: */
  364. spinlock_t lock;
  365. /*
  366. * nr_running and cpu_load should be in the same cacheline because
  367. * remote CPUs use both these fields when doing load calculation.
  368. */
  369. unsigned long nr_running;
  370. #define CPU_LOAD_IDX_MAX 5
  371. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  372. unsigned char idle_at_tick;
  373. #ifdef CONFIG_NO_HZ
  374. unsigned char in_nohz_recently;
  375. #endif
  376. /* capture load from *all* tasks on this cpu: */
  377. struct load_weight load;
  378. unsigned long nr_load_updates;
  379. u64 nr_switches;
  380. struct cfs_rq cfs;
  381. struct rt_rq rt;
  382. u64 rt_period_expire;
  383. int rt_throttled;
  384. #ifdef CONFIG_FAIR_GROUP_SCHED
  385. /* list of leaf cfs_rq on this cpu: */
  386. struct list_head leaf_cfs_rq_list;
  387. struct list_head leaf_rt_rq_list;
  388. #endif
  389. /*
  390. * This is part of a global counter where only the total sum
  391. * over all CPUs matters. A task can increase this counter on
  392. * one CPU and if it got migrated afterwards it may decrease
  393. * it on another CPU. Always updated under the runqueue lock:
  394. */
  395. unsigned long nr_uninterruptible;
  396. struct task_struct *curr, *idle;
  397. unsigned long next_balance;
  398. struct mm_struct *prev_mm;
  399. u64 clock, prev_clock_raw;
  400. s64 clock_max_delta;
  401. unsigned int clock_warps, clock_overflows, clock_underflows;
  402. u64 idle_clock;
  403. unsigned int clock_deep_idle_events;
  404. u64 tick_timestamp;
  405. atomic_t nr_iowait;
  406. #ifdef CONFIG_SMP
  407. struct root_domain *rd;
  408. struct sched_domain *sd;
  409. /* For active balancing */
  410. int active_balance;
  411. int push_cpu;
  412. /* cpu of this runqueue: */
  413. int cpu;
  414. struct task_struct *migration_thread;
  415. struct list_head migration_queue;
  416. #endif
  417. #ifdef CONFIG_SCHED_HRTICK
  418. unsigned long hrtick_flags;
  419. ktime_t hrtick_expire;
  420. struct hrtimer hrtick_timer;
  421. #endif
  422. #ifdef CONFIG_SCHEDSTATS
  423. /* latency stats */
  424. struct sched_info rq_sched_info;
  425. /* sys_sched_yield() stats */
  426. unsigned int yld_exp_empty;
  427. unsigned int yld_act_empty;
  428. unsigned int yld_both_empty;
  429. unsigned int yld_count;
  430. /* schedule() stats */
  431. unsigned int sched_switch;
  432. unsigned int sched_count;
  433. unsigned int sched_goidle;
  434. /* try_to_wake_up() stats */
  435. unsigned int ttwu_count;
  436. unsigned int ttwu_local;
  437. /* BKL stats */
  438. unsigned int bkl_count;
  439. #endif
  440. struct lock_class_key rq_lock_key;
  441. };
  442. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  443. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  444. {
  445. rq->curr->sched_class->check_preempt_curr(rq, p);
  446. }
  447. static inline int cpu_of(struct rq *rq)
  448. {
  449. #ifdef CONFIG_SMP
  450. return rq->cpu;
  451. #else
  452. return 0;
  453. #endif
  454. }
  455. /*
  456. * Update the per-runqueue clock, as finegrained as the platform can give
  457. * us, but without assuming monotonicity, etc.:
  458. */
  459. static void __update_rq_clock(struct rq *rq)
  460. {
  461. u64 prev_raw = rq->prev_clock_raw;
  462. u64 now = sched_clock();
  463. s64 delta = now - prev_raw;
  464. u64 clock = rq->clock;
  465. #ifdef CONFIG_SCHED_DEBUG
  466. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  467. #endif
  468. /*
  469. * Protect against sched_clock() occasionally going backwards:
  470. */
  471. if (unlikely(delta < 0)) {
  472. clock++;
  473. rq->clock_warps++;
  474. } else {
  475. /*
  476. * Catch too large forward jumps too:
  477. */
  478. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  479. if (clock < rq->tick_timestamp + TICK_NSEC)
  480. clock = rq->tick_timestamp + TICK_NSEC;
  481. else
  482. clock++;
  483. rq->clock_overflows++;
  484. } else {
  485. if (unlikely(delta > rq->clock_max_delta))
  486. rq->clock_max_delta = delta;
  487. clock += delta;
  488. }
  489. }
  490. rq->prev_clock_raw = now;
  491. rq->clock = clock;
  492. }
  493. static void update_rq_clock(struct rq *rq)
  494. {
  495. if (likely(smp_processor_id() == cpu_of(rq)))
  496. __update_rq_clock(rq);
  497. }
  498. /*
  499. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  500. * See detach_destroy_domains: synchronize_sched for details.
  501. *
  502. * The domain tree of any CPU may only be accessed from within
  503. * preempt-disabled sections.
  504. */
  505. #define for_each_domain(cpu, __sd) \
  506. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  507. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  508. #define this_rq() (&__get_cpu_var(runqueues))
  509. #define task_rq(p) cpu_rq(task_cpu(p))
  510. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  511. unsigned long rt_needs_cpu(int cpu)
  512. {
  513. struct rq *rq = cpu_rq(cpu);
  514. u64 delta;
  515. if (!rq->rt_throttled)
  516. return 0;
  517. if (rq->clock > rq->rt_period_expire)
  518. return 1;
  519. delta = rq->rt_period_expire - rq->clock;
  520. do_div(delta, NSEC_PER_SEC / HZ);
  521. return (unsigned long)delta;
  522. }
  523. /*
  524. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  525. */
  526. #ifdef CONFIG_SCHED_DEBUG
  527. # define const_debug __read_mostly
  528. #else
  529. # define const_debug static const
  530. #endif
  531. /*
  532. * Debugging: various feature bits
  533. */
  534. enum {
  535. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  536. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  537. SCHED_FEAT_START_DEBIT = 4,
  538. SCHED_FEAT_TREE_AVG = 8,
  539. SCHED_FEAT_APPROX_AVG = 16,
  540. SCHED_FEAT_HRTICK = 32,
  541. SCHED_FEAT_DOUBLE_TICK = 64,
  542. };
  543. const_debug unsigned int sysctl_sched_features =
  544. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  545. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  546. SCHED_FEAT_START_DEBIT * 1 |
  547. SCHED_FEAT_TREE_AVG * 0 |
  548. SCHED_FEAT_APPROX_AVG * 0 |
  549. SCHED_FEAT_HRTICK * 1 |
  550. SCHED_FEAT_DOUBLE_TICK * 0;
  551. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  552. /*
  553. * Number of tasks to iterate in a single balance run.
  554. * Limited because this is done with IRQs disabled.
  555. */
  556. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  557. /*
  558. * period over which we measure -rt task cpu usage in ms.
  559. * default: 1s
  560. */
  561. const_debug unsigned int sysctl_sched_rt_period = 1000;
  562. #define SCHED_RT_FRAC_SHIFT 16
  563. #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
  564. /*
  565. * ratio of time -rt tasks may consume.
  566. * default: 95%
  567. */
  568. const_debug unsigned int sysctl_sched_rt_ratio = 62259;
  569. /*
  570. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  571. * clock constructed from sched_clock():
  572. */
  573. unsigned long long cpu_clock(int cpu)
  574. {
  575. unsigned long long now;
  576. unsigned long flags;
  577. struct rq *rq;
  578. local_irq_save(flags);
  579. rq = cpu_rq(cpu);
  580. /*
  581. * Only call sched_clock() if the scheduler has already been
  582. * initialized (some code might call cpu_clock() very early):
  583. */
  584. if (rq->idle)
  585. update_rq_clock(rq);
  586. now = rq->clock;
  587. local_irq_restore(flags);
  588. return now;
  589. }
  590. EXPORT_SYMBOL_GPL(cpu_clock);
  591. #ifndef prepare_arch_switch
  592. # define prepare_arch_switch(next) do { } while (0)
  593. #endif
  594. #ifndef finish_arch_switch
  595. # define finish_arch_switch(prev) do { } while (0)
  596. #endif
  597. static inline int task_current(struct rq *rq, struct task_struct *p)
  598. {
  599. return rq->curr == p;
  600. }
  601. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  602. static inline int task_running(struct rq *rq, struct task_struct *p)
  603. {
  604. return task_current(rq, p);
  605. }
  606. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  607. {
  608. }
  609. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  610. {
  611. #ifdef CONFIG_DEBUG_SPINLOCK
  612. /* this is a valid case when another task releases the spinlock */
  613. rq->lock.owner = current;
  614. #endif
  615. /*
  616. * If we are tracking spinlock dependencies then we have to
  617. * fix up the runqueue lock - which gets 'carried over' from
  618. * prev into current:
  619. */
  620. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  621. spin_unlock_irq(&rq->lock);
  622. }
  623. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  624. static inline int task_running(struct rq *rq, struct task_struct *p)
  625. {
  626. #ifdef CONFIG_SMP
  627. return p->oncpu;
  628. #else
  629. return task_current(rq, p);
  630. #endif
  631. }
  632. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  633. {
  634. #ifdef CONFIG_SMP
  635. /*
  636. * We can optimise this out completely for !SMP, because the
  637. * SMP rebalancing from interrupt is the only thing that cares
  638. * here.
  639. */
  640. next->oncpu = 1;
  641. #endif
  642. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  643. spin_unlock_irq(&rq->lock);
  644. #else
  645. spin_unlock(&rq->lock);
  646. #endif
  647. }
  648. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  649. {
  650. #ifdef CONFIG_SMP
  651. /*
  652. * After ->oncpu is cleared, the task can be moved to a different CPU.
  653. * We must ensure this doesn't happen until the switch is completely
  654. * finished.
  655. */
  656. smp_wmb();
  657. prev->oncpu = 0;
  658. #endif
  659. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  660. local_irq_enable();
  661. #endif
  662. }
  663. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  664. /*
  665. * __task_rq_lock - lock the runqueue a given task resides on.
  666. * Must be called interrupts disabled.
  667. */
  668. static inline struct rq *__task_rq_lock(struct task_struct *p)
  669. __acquires(rq->lock)
  670. {
  671. for (;;) {
  672. struct rq *rq = task_rq(p);
  673. spin_lock(&rq->lock);
  674. if (likely(rq == task_rq(p)))
  675. return rq;
  676. spin_unlock(&rq->lock);
  677. }
  678. }
  679. /*
  680. * task_rq_lock - lock the runqueue a given task resides on and disable
  681. * interrupts. Note the ordering: we can safely lookup the task_rq without
  682. * explicitly disabling preemption.
  683. */
  684. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  685. __acquires(rq->lock)
  686. {
  687. struct rq *rq;
  688. for (;;) {
  689. local_irq_save(*flags);
  690. rq = task_rq(p);
  691. spin_lock(&rq->lock);
  692. if (likely(rq == task_rq(p)))
  693. return rq;
  694. spin_unlock_irqrestore(&rq->lock, *flags);
  695. }
  696. }
  697. static void __task_rq_unlock(struct rq *rq)
  698. __releases(rq->lock)
  699. {
  700. spin_unlock(&rq->lock);
  701. }
  702. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  703. __releases(rq->lock)
  704. {
  705. spin_unlock_irqrestore(&rq->lock, *flags);
  706. }
  707. /*
  708. * this_rq_lock - lock this runqueue and disable interrupts.
  709. */
  710. static struct rq *this_rq_lock(void)
  711. __acquires(rq->lock)
  712. {
  713. struct rq *rq;
  714. local_irq_disable();
  715. rq = this_rq();
  716. spin_lock(&rq->lock);
  717. return rq;
  718. }
  719. /*
  720. * We are going deep-idle (irqs are disabled):
  721. */
  722. void sched_clock_idle_sleep_event(void)
  723. {
  724. struct rq *rq = cpu_rq(smp_processor_id());
  725. spin_lock(&rq->lock);
  726. __update_rq_clock(rq);
  727. spin_unlock(&rq->lock);
  728. rq->clock_deep_idle_events++;
  729. }
  730. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  731. /*
  732. * We just idled delta nanoseconds (called with irqs disabled):
  733. */
  734. void sched_clock_idle_wakeup_event(u64 delta_ns)
  735. {
  736. struct rq *rq = cpu_rq(smp_processor_id());
  737. u64 now = sched_clock();
  738. rq->idle_clock += delta_ns;
  739. /*
  740. * Override the previous timestamp and ignore all
  741. * sched_clock() deltas that occured while we idled,
  742. * and use the PM-provided delta_ns to advance the
  743. * rq clock:
  744. */
  745. spin_lock(&rq->lock);
  746. rq->prev_clock_raw = now;
  747. rq->clock += delta_ns;
  748. spin_unlock(&rq->lock);
  749. touch_softlockup_watchdog();
  750. }
  751. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  752. static void __resched_task(struct task_struct *p, int tif_bit);
  753. static inline void resched_task(struct task_struct *p)
  754. {
  755. __resched_task(p, TIF_NEED_RESCHED);
  756. }
  757. #ifdef CONFIG_SCHED_HRTICK
  758. /*
  759. * Use HR-timers to deliver accurate preemption points.
  760. *
  761. * Its all a bit involved since we cannot program an hrt while holding the
  762. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  763. * reschedule event.
  764. *
  765. * When we get rescheduled we reprogram the hrtick_timer outside of the
  766. * rq->lock.
  767. */
  768. static inline void resched_hrt(struct task_struct *p)
  769. {
  770. __resched_task(p, TIF_HRTICK_RESCHED);
  771. }
  772. static inline void resched_rq(struct rq *rq)
  773. {
  774. unsigned long flags;
  775. spin_lock_irqsave(&rq->lock, flags);
  776. resched_task(rq->curr);
  777. spin_unlock_irqrestore(&rq->lock, flags);
  778. }
  779. enum {
  780. HRTICK_SET, /* re-programm hrtick_timer */
  781. HRTICK_RESET, /* not a new slice */
  782. };
  783. /*
  784. * Use hrtick when:
  785. * - enabled by features
  786. * - hrtimer is actually high res
  787. */
  788. static inline int hrtick_enabled(struct rq *rq)
  789. {
  790. if (!sched_feat(HRTICK))
  791. return 0;
  792. return hrtimer_is_hres_active(&rq->hrtick_timer);
  793. }
  794. /*
  795. * Called to set the hrtick timer state.
  796. *
  797. * called with rq->lock held and irqs disabled
  798. */
  799. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  800. {
  801. assert_spin_locked(&rq->lock);
  802. /*
  803. * preempt at: now + delay
  804. */
  805. rq->hrtick_expire =
  806. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  807. /*
  808. * indicate we need to program the timer
  809. */
  810. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  811. if (reset)
  812. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  813. /*
  814. * New slices are called from the schedule path and don't need a
  815. * forced reschedule.
  816. */
  817. if (reset)
  818. resched_hrt(rq->curr);
  819. }
  820. static void hrtick_clear(struct rq *rq)
  821. {
  822. if (hrtimer_active(&rq->hrtick_timer))
  823. hrtimer_cancel(&rq->hrtick_timer);
  824. }
  825. /*
  826. * Update the timer from the possible pending state.
  827. */
  828. static void hrtick_set(struct rq *rq)
  829. {
  830. ktime_t time;
  831. int set, reset;
  832. unsigned long flags;
  833. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  834. spin_lock_irqsave(&rq->lock, flags);
  835. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  836. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  837. time = rq->hrtick_expire;
  838. clear_thread_flag(TIF_HRTICK_RESCHED);
  839. spin_unlock_irqrestore(&rq->lock, flags);
  840. if (set) {
  841. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  842. if (reset && !hrtimer_active(&rq->hrtick_timer))
  843. resched_rq(rq);
  844. } else
  845. hrtick_clear(rq);
  846. }
  847. /*
  848. * High-resolution timer tick.
  849. * Runs from hardirq context with interrupts disabled.
  850. */
  851. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  852. {
  853. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  854. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  855. spin_lock(&rq->lock);
  856. __update_rq_clock(rq);
  857. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  858. spin_unlock(&rq->lock);
  859. return HRTIMER_NORESTART;
  860. }
  861. static inline void init_rq_hrtick(struct rq *rq)
  862. {
  863. rq->hrtick_flags = 0;
  864. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  865. rq->hrtick_timer.function = hrtick;
  866. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  867. }
  868. void hrtick_resched(void)
  869. {
  870. struct rq *rq;
  871. unsigned long flags;
  872. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  873. return;
  874. local_irq_save(flags);
  875. rq = cpu_rq(smp_processor_id());
  876. hrtick_set(rq);
  877. local_irq_restore(flags);
  878. }
  879. #else
  880. static inline void hrtick_clear(struct rq *rq)
  881. {
  882. }
  883. static inline void hrtick_set(struct rq *rq)
  884. {
  885. }
  886. static inline void init_rq_hrtick(struct rq *rq)
  887. {
  888. }
  889. void hrtick_resched(void)
  890. {
  891. }
  892. #endif
  893. /*
  894. * resched_task - mark a task 'to be rescheduled now'.
  895. *
  896. * On UP this means the setting of the need_resched flag, on SMP it
  897. * might also involve a cross-CPU call to trigger the scheduler on
  898. * the target CPU.
  899. */
  900. #ifdef CONFIG_SMP
  901. #ifndef tsk_is_polling
  902. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  903. #endif
  904. static void __resched_task(struct task_struct *p, int tif_bit)
  905. {
  906. int cpu;
  907. assert_spin_locked(&task_rq(p)->lock);
  908. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  909. return;
  910. set_tsk_thread_flag(p, tif_bit);
  911. cpu = task_cpu(p);
  912. if (cpu == smp_processor_id())
  913. return;
  914. /* NEED_RESCHED must be visible before we test polling */
  915. smp_mb();
  916. if (!tsk_is_polling(p))
  917. smp_send_reschedule(cpu);
  918. }
  919. static void resched_cpu(int cpu)
  920. {
  921. struct rq *rq = cpu_rq(cpu);
  922. unsigned long flags;
  923. if (!spin_trylock_irqsave(&rq->lock, flags))
  924. return;
  925. resched_task(cpu_curr(cpu));
  926. spin_unlock_irqrestore(&rq->lock, flags);
  927. }
  928. #else
  929. static void __resched_task(struct task_struct *p, int tif_bit)
  930. {
  931. assert_spin_locked(&task_rq(p)->lock);
  932. set_tsk_thread_flag(p, tif_bit);
  933. }
  934. #endif
  935. #if BITS_PER_LONG == 32
  936. # define WMULT_CONST (~0UL)
  937. #else
  938. # define WMULT_CONST (1UL << 32)
  939. #endif
  940. #define WMULT_SHIFT 32
  941. /*
  942. * Shift right and round:
  943. */
  944. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  945. static unsigned long
  946. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  947. struct load_weight *lw)
  948. {
  949. u64 tmp;
  950. if (unlikely(!lw->inv_weight))
  951. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  952. tmp = (u64)delta_exec * weight;
  953. /*
  954. * Check whether we'd overflow the 64-bit multiplication:
  955. */
  956. if (unlikely(tmp > WMULT_CONST))
  957. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  958. WMULT_SHIFT/2);
  959. else
  960. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  961. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  962. }
  963. static inline unsigned long
  964. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  965. {
  966. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  967. }
  968. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  969. {
  970. lw->weight += inc;
  971. }
  972. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  973. {
  974. lw->weight -= dec;
  975. }
  976. /*
  977. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  978. * of tasks with abnormal "nice" values across CPUs the contribution that
  979. * each task makes to its run queue's load is weighted according to its
  980. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  981. * scaled version of the new time slice allocation that they receive on time
  982. * slice expiry etc.
  983. */
  984. #define WEIGHT_IDLEPRIO 2
  985. #define WMULT_IDLEPRIO (1 << 31)
  986. /*
  987. * Nice levels are multiplicative, with a gentle 10% change for every
  988. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  989. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  990. * that remained on nice 0.
  991. *
  992. * The "10% effect" is relative and cumulative: from _any_ nice level,
  993. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  994. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  995. * If a task goes up by ~10% and another task goes down by ~10% then
  996. * the relative distance between them is ~25%.)
  997. */
  998. static const int prio_to_weight[40] = {
  999. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1000. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1001. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1002. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1003. /* 0 */ 1024, 820, 655, 526, 423,
  1004. /* 5 */ 335, 272, 215, 172, 137,
  1005. /* 10 */ 110, 87, 70, 56, 45,
  1006. /* 15 */ 36, 29, 23, 18, 15,
  1007. };
  1008. /*
  1009. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1010. *
  1011. * In cases where the weight does not change often, we can use the
  1012. * precalculated inverse to speed up arithmetics by turning divisions
  1013. * into multiplications:
  1014. */
  1015. static const u32 prio_to_wmult[40] = {
  1016. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1017. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1018. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1019. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1020. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1021. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1022. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1023. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1024. };
  1025. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1026. /*
  1027. * runqueue iterator, to support SMP load-balancing between different
  1028. * scheduling classes, without having to expose their internal data
  1029. * structures to the load-balancing proper:
  1030. */
  1031. struct rq_iterator {
  1032. void *arg;
  1033. struct task_struct *(*start)(void *);
  1034. struct task_struct *(*next)(void *);
  1035. };
  1036. #ifdef CONFIG_SMP
  1037. static unsigned long
  1038. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1039. unsigned long max_load_move, struct sched_domain *sd,
  1040. enum cpu_idle_type idle, int *all_pinned,
  1041. int *this_best_prio, struct rq_iterator *iterator);
  1042. static int
  1043. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1044. struct sched_domain *sd, enum cpu_idle_type idle,
  1045. struct rq_iterator *iterator);
  1046. #endif
  1047. #ifdef CONFIG_CGROUP_CPUACCT
  1048. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1049. #else
  1050. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1051. #endif
  1052. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1053. {
  1054. update_load_add(&rq->load, load);
  1055. }
  1056. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1057. {
  1058. update_load_sub(&rq->load, load);
  1059. }
  1060. #ifdef CONFIG_SMP
  1061. static unsigned long source_load(int cpu, int type);
  1062. static unsigned long target_load(int cpu, int type);
  1063. static unsigned long cpu_avg_load_per_task(int cpu);
  1064. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1065. #endif /* CONFIG_SMP */
  1066. #include "sched_stats.h"
  1067. #include "sched_idletask.c"
  1068. #include "sched_fair.c"
  1069. #include "sched_rt.c"
  1070. #ifdef CONFIG_SCHED_DEBUG
  1071. # include "sched_debug.c"
  1072. #endif
  1073. #define sched_class_highest (&rt_sched_class)
  1074. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1075. {
  1076. rq->nr_running++;
  1077. }
  1078. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1079. {
  1080. rq->nr_running--;
  1081. }
  1082. static void set_load_weight(struct task_struct *p)
  1083. {
  1084. if (task_has_rt_policy(p)) {
  1085. p->se.load.weight = prio_to_weight[0] * 2;
  1086. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1087. return;
  1088. }
  1089. /*
  1090. * SCHED_IDLE tasks get minimal weight:
  1091. */
  1092. if (p->policy == SCHED_IDLE) {
  1093. p->se.load.weight = WEIGHT_IDLEPRIO;
  1094. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1095. return;
  1096. }
  1097. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1098. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1099. }
  1100. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1101. {
  1102. sched_info_queued(p);
  1103. p->sched_class->enqueue_task(rq, p, wakeup);
  1104. p->se.on_rq = 1;
  1105. }
  1106. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1107. {
  1108. p->sched_class->dequeue_task(rq, p, sleep);
  1109. p->se.on_rq = 0;
  1110. }
  1111. /*
  1112. * __normal_prio - return the priority that is based on the static prio
  1113. */
  1114. static inline int __normal_prio(struct task_struct *p)
  1115. {
  1116. return p->static_prio;
  1117. }
  1118. /*
  1119. * Calculate the expected normal priority: i.e. priority
  1120. * without taking RT-inheritance into account. Might be
  1121. * boosted by interactivity modifiers. Changes upon fork,
  1122. * setprio syscalls, and whenever the interactivity
  1123. * estimator recalculates.
  1124. */
  1125. static inline int normal_prio(struct task_struct *p)
  1126. {
  1127. int prio;
  1128. if (task_has_rt_policy(p))
  1129. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1130. else
  1131. prio = __normal_prio(p);
  1132. return prio;
  1133. }
  1134. /*
  1135. * Calculate the current priority, i.e. the priority
  1136. * taken into account by the scheduler. This value might
  1137. * be boosted by RT tasks, or might be boosted by
  1138. * interactivity modifiers. Will be RT if the task got
  1139. * RT-boosted. If not then it returns p->normal_prio.
  1140. */
  1141. static int effective_prio(struct task_struct *p)
  1142. {
  1143. p->normal_prio = normal_prio(p);
  1144. /*
  1145. * If we are RT tasks or we were boosted to RT priority,
  1146. * keep the priority unchanged. Otherwise, update priority
  1147. * to the normal priority:
  1148. */
  1149. if (!rt_prio(p->prio))
  1150. return p->normal_prio;
  1151. return p->prio;
  1152. }
  1153. /*
  1154. * activate_task - move a task to the runqueue.
  1155. */
  1156. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1157. {
  1158. if (p->state == TASK_UNINTERRUPTIBLE)
  1159. rq->nr_uninterruptible--;
  1160. enqueue_task(rq, p, wakeup);
  1161. inc_nr_running(p, rq);
  1162. }
  1163. /*
  1164. * deactivate_task - remove a task from the runqueue.
  1165. */
  1166. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1167. {
  1168. if (p->state == TASK_UNINTERRUPTIBLE)
  1169. rq->nr_uninterruptible++;
  1170. dequeue_task(rq, p, sleep);
  1171. dec_nr_running(p, rq);
  1172. }
  1173. /**
  1174. * task_curr - is this task currently executing on a CPU?
  1175. * @p: the task in question.
  1176. */
  1177. inline int task_curr(const struct task_struct *p)
  1178. {
  1179. return cpu_curr(task_cpu(p)) == p;
  1180. }
  1181. /* Used instead of source_load when we know the type == 0 */
  1182. unsigned long weighted_cpuload(const int cpu)
  1183. {
  1184. return cpu_rq(cpu)->load.weight;
  1185. }
  1186. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1187. {
  1188. set_task_rq(p, cpu);
  1189. #ifdef CONFIG_SMP
  1190. /*
  1191. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1192. * successfuly executed on another CPU. We must ensure that updates of
  1193. * per-task data have been completed by this moment.
  1194. */
  1195. smp_wmb();
  1196. task_thread_info(p)->cpu = cpu;
  1197. #endif
  1198. }
  1199. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1200. const struct sched_class *prev_class,
  1201. int oldprio, int running)
  1202. {
  1203. if (prev_class != p->sched_class) {
  1204. if (prev_class->switched_from)
  1205. prev_class->switched_from(rq, p, running);
  1206. p->sched_class->switched_to(rq, p, running);
  1207. } else
  1208. p->sched_class->prio_changed(rq, p, oldprio, running);
  1209. }
  1210. #ifdef CONFIG_SMP
  1211. /*
  1212. * Is this task likely cache-hot:
  1213. */
  1214. static int
  1215. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1216. {
  1217. s64 delta;
  1218. if (p->sched_class != &fair_sched_class)
  1219. return 0;
  1220. if (sysctl_sched_migration_cost == -1)
  1221. return 1;
  1222. if (sysctl_sched_migration_cost == 0)
  1223. return 0;
  1224. delta = now - p->se.exec_start;
  1225. return delta < (s64)sysctl_sched_migration_cost;
  1226. }
  1227. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1228. {
  1229. int old_cpu = task_cpu(p);
  1230. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1231. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1232. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1233. u64 clock_offset;
  1234. clock_offset = old_rq->clock - new_rq->clock;
  1235. #ifdef CONFIG_SCHEDSTATS
  1236. if (p->se.wait_start)
  1237. p->se.wait_start -= clock_offset;
  1238. if (p->se.sleep_start)
  1239. p->se.sleep_start -= clock_offset;
  1240. if (p->se.block_start)
  1241. p->se.block_start -= clock_offset;
  1242. if (old_cpu != new_cpu) {
  1243. schedstat_inc(p, se.nr_migrations);
  1244. if (task_hot(p, old_rq->clock, NULL))
  1245. schedstat_inc(p, se.nr_forced2_migrations);
  1246. }
  1247. #endif
  1248. p->se.vruntime -= old_cfsrq->min_vruntime -
  1249. new_cfsrq->min_vruntime;
  1250. __set_task_cpu(p, new_cpu);
  1251. }
  1252. struct migration_req {
  1253. struct list_head list;
  1254. struct task_struct *task;
  1255. int dest_cpu;
  1256. struct completion done;
  1257. };
  1258. /*
  1259. * The task's runqueue lock must be held.
  1260. * Returns true if you have to wait for migration thread.
  1261. */
  1262. static int
  1263. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1264. {
  1265. struct rq *rq = task_rq(p);
  1266. /*
  1267. * If the task is not on a runqueue (and not running), then
  1268. * it is sufficient to simply update the task's cpu field.
  1269. */
  1270. if (!p->se.on_rq && !task_running(rq, p)) {
  1271. set_task_cpu(p, dest_cpu);
  1272. return 0;
  1273. }
  1274. init_completion(&req->done);
  1275. req->task = p;
  1276. req->dest_cpu = dest_cpu;
  1277. list_add(&req->list, &rq->migration_queue);
  1278. return 1;
  1279. }
  1280. /*
  1281. * wait_task_inactive - wait for a thread to unschedule.
  1282. *
  1283. * The caller must ensure that the task *will* unschedule sometime soon,
  1284. * else this function might spin for a *long* time. This function can't
  1285. * be called with interrupts off, or it may introduce deadlock with
  1286. * smp_call_function() if an IPI is sent by the same process we are
  1287. * waiting to become inactive.
  1288. */
  1289. void wait_task_inactive(struct task_struct *p)
  1290. {
  1291. unsigned long flags;
  1292. int running, on_rq;
  1293. struct rq *rq;
  1294. for (;;) {
  1295. /*
  1296. * We do the initial early heuristics without holding
  1297. * any task-queue locks at all. We'll only try to get
  1298. * the runqueue lock when things look like they will
  1299. * work out!
  1300. */
  1301. rq = task_rq(p);
  1302. /*
  1303. * If the task is actively running on another CPU
  1304. * still, just relax and busy-wait without holding
  1305. * any locks.
  1306. *
  1307. * NOTE! Since we don't hold any locks, it's not
  1308. * even sure that "rq" stays as the right runqueue!
  1309. * But we don't care, since "task_running()" will
  1310. * return false if the runqueue has changed and p
  1311. * is actually now running somewhere else!
  1312. */
  1313. while (task_running(rq, p))
  1314. cpu_relax();
  1315. /*
  1316. * Ok, time to look more closely! We need the rq
  1317. * lock now, to be *sure*. If we're wrong, we'll
  1318. * just go back and repeat.
  1319. */
  1320. rq = task_rq_lock(p, &flags);
  1321. running = task_running(rq, p);
  1322. on_rq = p->se.on_rq;
  1323. task_rq_unlock(rq, &flags);
  1324. /*
  1325. * Was it really running after all now that we
  1326. * checked with the proper locks actually held?
  1327. *
  1328. * Oops. Go back and try again..
  1329. */
  1330. if (unlikely(running)) {
  1331. cpu_relax();
  1332. continue;
  1333. }
  1334. /*
  1335. * It's not enough that it's not actively running,
  1336. * it must be off the runqueue _entirely_, and not
  1337. * preempted!
  1338. *
  1339. * So if it wa still runnable (but just not actively
  1340. * running right now), it's preempted, and we should
  1341. * yield - it could be a while.
  1342. */
  1343. if (unlikely(on_rq)) {
  1344. schedule_timeout_uninterruptible(1);
  1345. continue;
  1346. }
  1347. /*
  1348. * Ahh, all good. It wasn't running, and it wasn't
  1349. * runnable, which means that it will never become
  1350. * running in the future either. We're all done!
  1351. */
  1352. break;
  1353. }
  1354. }
  1355. /***
  1356. * kick_process - kick a running thread to enter/exit the kernel
  1357. * @p: the to-be-kicked thread
  1358. *
  1359. * Cause a process which is running on another CPU to enter
  1360. * kernel-mode, without any delay. (to get signals handled.)
  1361. *
  1362. * NOTE: this function doesnt have to take the runqueue lock,
  1363. * because all it wants to ensure is that the remote task enters
  1364. * the kernel. If the IPI races and the task has been migrated
  1365. * to another CPU then no harm is done and the purpose has been
  1366. * achieved as well.
  1367. */
  1368. void kick_process(struct task_struct *p)
  1369. {
  1370. int cpu;
  1371. preempt_disable();
  1372. cpu = task_cpu(p);
  1373. if ((cpu != smp_processor_id()) && task_curr(p))
  1374. smp_send_reschedule(cpu);
  1375. preempt_enable();
  1376. }
  1377. /*
  1378. * Return a low guess at the load of a migration-source cpu weighted
  1379. * according to the scheduling class and "nice" value.
  1380. *
  1381. * We want to under-estimate the load of migration sources, to
  1382. * balance conservatively.
  1383. */
  1384. static unsigned long source_load(int cpu, int type)
  1385. {
  1386. struct rq *rq = cpu_rq(cpu);
  1387. unsigned long total = weighted_cpuload(cpu);
  1388. if (type == 0)
  1389. return total;
  1390. return min(rq->cpu_load[type-1], total);
  1391. }
  1392. /*
  1393. * Return a high guess at the load of a migration-target cpu weighted
  1394. * according to the scheduling class and "nice" value.
  1395. */
  1396. static unsigned long target_load(int cpu, int type)
  1397. {
  1398. struct rq *rq = cpu_rq(cpu);
  1399. unsigned long total = weighted_cpuload(cpu);
  1400. if (type == 0)
  1401. return total;
  1402. return max(rq->cpu_load[type-1], total);
  1403. }
  1404. /*
  1405. * Return the average load per task on the cpu's run queue
  1406. */
  1407. static unsigned long cpu_avg_load_per_task(int cpu)
  1408. {
  1409. struct rq *rq = cpu_rq(cpu);
  1410. unsigned long total = weighted_cpuload(cpu);
  1411. unsigned long n = rq->nr_running;
  1412. return n ? total / n : SCHED_LOAD_SCALE;
  1413. }
  1414. /*
  1415. * find_idlest_group finds and returns the least busy CPU group within the
  1416. * domain.
  1417. */
  1418. static struct sched_group *
  1419. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1420. {
  1421. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1422. unsigned long min_load = ULONG_MAX, this_load = 0;
  1423. int load_idx = sd->forkexec_idx;
  1424. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1425. do {
  1426. unsigned long load, avg_load;
  1427. int local_group;
  1428. int i;
  1429. /* Skip over this group if it has no CPUs allowed */
  1430. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1431. continue;
  1432. local_group = cpu_isset(this_cpu, group->cpumask);
  1433. /* Tally up the load of all CPUs in the group */
  1434. avg_load = 0;
  1435. for_each_cpu_mask(i, group->cpumask) {
  1436. /* Bias balancing toward cpus of our domain */
  1437. if (local_group)
  1438. load = source_load(i, load_idx);
  1439. else
  1440. load = target_load(i, load_idx);
  1441. avg_load += load;
  1442. }
  1443. /* Adjust by relative CPU power of the group */
  1444. avg_load = sg_div_cpu_power(group,
  1445. avg_load * SCHED_LOAD_SCALE);
  1446. if (local_group) {
  1447. this_load = avg_load;
  1448. this = group;
  1449. } else if (avg_load < min_load) {
  1450. min_load = avg_load;
  1451. idlest = group;
  1452. }
  1453. } while (group = group->next, group != sd->groups);
  1454. if (!idlest || 100*this_load < imbalance*min_load)
  1455. return NULL;
  1456. return idlest;
  1457. }
  1458. /*
  1459. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1460. */
  1461. static int
  1462. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1463. {
  1464. cpumask_t tmp;
  1465. unsigned long load, min_load = ULONG_MAX;
  1466. int idlest = -1;
  1467. int i;
  1468. /* Traverse only the allowed CPUs */
  1469. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1470. for_each_cpu_mask(i, tmp) {
  1471. load = weighted_cpuload(i);
  1472. if (load < min_load || (load == min_load && i == this_cpu)) {
  1473. min_load = load;
  1474. idlest = i;
  1475. }
  1476. }
  1477. return idlest;
  1478. }
  1479. /*
  1480. * sched_balance_self: balance the current task (running on cpu) in domains
  1481. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1482. * SD_BALANCE_EXEC.
  1483. *
  1484. * Balance, ie. select the least loaded group.
  1485. *
  1486. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1487. *
  1488. * preempt must be disabled.
  1489. */
  1490. static int sched_balance_self(int cpu, int flag)
  1491. {
  1492. struct task_struct *t = current;
  1493. struct sched_domain *tmp, *sd = NULL;
  1494. for_each_domain(cpu, tmp) {
  1495. /*
  1496. * If power savings logic is enabled for a domain, stop there.
  1497. */
  1498. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1499. break;
  1500. if (tmp->flags & flag)
  1501. sd = tmp;
  1502. }
  1503. while (sd) {
  1504. cpumask_t span;
  1505. struct sched_group *group;
  1506. int new_cpu, weight;
  1507. if (!(sd->flags & flag)) {
  1508. sd = sd->child;
  1509. continue;
  1510. }
  1511. span = sd->span;
  1512. group = find_idlest_group(sd, t, cpu);
  1513. if (!group) {
  1514. sd = sd->child;
  1515. continue;
  1516. }
  1517. new_cpu = find_idlest_cpu(group, t, cpu);
  1518. if (new_cpu == -1 || new_cpu == cpu) {
  1519. /* Now try balancing at a lower domain level of cpu */
  1520. sd = sd->child;
  1521. continue;
  1522. }
  1523. /* Now try balancing at a lower domain level of new_cpu */
  1524. cpu = new_cpu;
  1525. sd = NULL;
  1526. weight = cpus_weight(span);
  1527. for_each_domain(cpu, tmp) {
  1528. if (weight <= cpus_weight(tmp->span))
  1529. break;
  1530. if (tmp->flags & flag)
  1531. sd = tmp;
  1532. }
  1533. /* while loop will break here if sd == NULL */
  1534. }
  1535. return cpu;
  1536. }
  1537. #endif /* CONFIG_SMP */
  1538. /***
  1539. * try_to_wake_up - wake up a thread
  1540. * @p: the to-be-woken-up thread
  1541. * @state: the mask of task states that can be woken
  1542. * @sync: do a synchronous wakeup?
  1543. *
  1544. * Put it on the run-queue if it's not already there. The "current"
  1545. * thread is always on the run-queue (except when the actual
  1546. * re-schedule is in progress), and as such you're allowed to do
  1547. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1548. * runnable without the overhead of this.
  1549. *
  1550. * returns failure only if the task is already active.
  1551. */
  1552. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1553. {
  1554. int cpu, orig_cpu, this_cpu, success = 0;
  1555. unsigned long flags;
  1556. long old_state;
  1557. struct rq *rq;
  1558. rq = task_rq_lock(p, &flags);
  1559. old_state = p->state;
  1560. if (!(old_state & state))
  1561. goto out;
  1562. if (p->se.on_rq)
  1563. goto out_running;
  1564. cpu = task_cpu(p);
  1565. orig_cpu = cpu;
  1566. this_cpu = smp_processor_id();
  1567. #ifdef CONFIG_SMP
  1568. if (unlikely(task_running(rq, p)))
  1569. goto out_activate;
  1570. cpu = p->sched_class->select_task_rq(p, sync);
  1571. if (cpu != orig_cpu) {
  1572. set_task_cpu(p, cpu);
  1573. task_rq_unlock(rq, &flags);
  1574. /* might preempt at this point */
  1575. rq = task_rq_lock(p, &flags);
  1576. old_state = p->state;
  1577. if (!(old_state & state))
  1578. goto out;
  1579. if (p->se.on_rq)
  1580. goto out_running;
  1581. this_cpu = smp_processor_id();
  1582. cpu = task_cpu(p);
  1583. }
  1584. #ifdef CONFIG_SCHEDSTATS
  1585. schedstat_inc(rq, ttwu_count);
  1586. if (cpu == this_cpu)
  1587. schedstat_inc(rq, ttwu_local);
  1588. else {
  1589. struct sched_domain *sd;
  1590. for_each_domain(this_cpu, sd) {
  1591. if (cpu_isset(cpu, sd->span)) {
  1592. schedstat_inc(sd, ttwu_wake_remote);
  1593. break;
  1594. }
  1595. }
  1596. }
  1597. #endif
  1598. out_activate:
  1599. #endif /* CONFIG_SMP */
  1600. schedstat_inc(p, se.nr_wakeups);
  1601. if (sync)
  1602. schedstat_inc(p, se.nr_wakeups_sync);
  1603. if (orig_cpu != cpu)
  1604. schedstat_inc(p, se.nr_wakeups_migrate);
  1605. if (cpu == this_cpu)
  1606. schedstat_inc(p, se.nr_wakeups_local);
  1607. else
  1608. schedstat_inc(p, se.nr_wakeups_remote);
  1609. update_rq_clock(rq);
  1610. activate_task(rq, p, 1);
  1611. check_preempt_curr(rq, p);
  1612. success = 1;
  1613. out_running:
  1614. p->state = TASK_RUNNING;
  1615. #ifdef CONFIG_SMP
  1616. if (p->sched_class->task_wake_up)
  1617. p->sched_class->task_wake_up(rq, p);
  1618. #endif
  1619. out:
  1620. task_rq_unlock(rq, &flags);
  1621. return success;
  1622. }
  1623. int fastcall wake_up_process(struct task_struct *p)
  1624. {
  1625. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1626. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1627. }
  1628. EXPORT_SYMBOL(wake_up_process);
  1629. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1630. {
  1631. return try_to_wake_up(p, state, 0);
  1632. }
  1633. /*
  1634. * Perform scheduler related setup for a newly forked process p.
  1635. * p is forked by current.
  1636. *
  1637. * __sched_fork() is basic setup used by init_idle() too:
  1638. */
  1639. static void __sched_fork(struct task_struct *p)
  1640. {
  1641. p->se.exec_start = 0;
  1642. p->se.sum_exec_runtime = 0;
  1643. p->se.prev_sum_exec_runtime = 0;
  1644. #ifdef CONFIG_SCHEDSTATS
  1645. p->se.wait_start = 0;
  1646. p->se.sum_sleep_runtime = 0;
  1647. p->se.sleep_start = 0;
  1648. p->se.block_start = 0;
  1649. p->se.sleep_max = 0;
  1650. p->se.block_max = 0;
  1651. p->se.exec_max = 0;
  1652. p->se.slice_max = 0;
  1653. p->se.wait_max = 0;
  1654. #endif
  1655. INIT_LIST_HEAD(&p->rt.run_list);
  1656. p->se.on_rq = 0;
  1657. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1658. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1659. #endif
  1660. /*
  1661. * We mark the process as running here, but have not actually
  1662. * inserted it onto the runqueue yet. This guarantees that
  1663. * nobody will actually run it, and a signal or other external
  1664. * event cannot wake it up and insert it on the runqueue either.
  1665. */
  1666. p->state = TASK_RUNNING;
  1667. }
  1668. /*
  1669. * fork()/clone()-time setup:
  1670. */
  1671. void sched_fork(struct task_struct *p, int clone_flags)
  1672. {
  1673. int cpu = get_cpu();
  1674. __sched_fork(p);
  1675. #ifdef CONFIG_SMP
  1676. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1677. #endif
  1678. set_task_cpu(p, cpu);
  1679. /*
  1680. * Make sure we do not leak PI boosting priority to the child:
  1681. */
  1682. p->prio = current->normal_prio;
  1683. if (!rt_prio(p->prio))
  1684. p->sched_class = &fair_sched_class;
  1685. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1686. if (likely(sched_info_on()))
  1687. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1688. #endif
  1689. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1690. p->oncpu = 0;
  1691. #endif
  1692. #ifdef CONFIG_PREEMPT
  1693. /* Want to start with kernel preemption disabled. */
  1694. task_thread_info(p)->preempt_count = 1;
  1695. #endif
  1696. put_cpu();
  1697. }
  1698. /*
  1699. * wake_up_new_task - wake up a newly created task for the first time.
  1700. *
  1701. * This function will do some initial scheduler statistics housekeeping
  1702. * that must be done for every newly created context, then puts the task
  1703. * on the runqueue and wakes it.
  1704. */
  1705. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1706. {
  1707. unsigned long flags;
  1708. struct rq *rq;
  1709. rq = task_rq_lock(p, &flags);
  1710. BUG_ON(p->state != TASK_RUNNING);
  1711. update_rq_clock(rq);
  1712. p->prio = effective_prio(p);
  1713. if (!p->sched_class->task_new || !current->se.on_rq) {
  1714. activate_task(rq, p, 0);
  1715. } else {
  1716. /*
  1717. * Let the scheduling class do new task startup
  1718. * management (if any):
  1719. */
  1720. p->sched_class->task_new(rq, p);
  1721. inc_nr_running(p, rq);
  1722. }
  1723. check_preempt_curr(rq, p);
  1724. #ifdef CONFIG_SMP
  1725. if (p->sched_class->task_wake_up)
  1726. p->sched_class->task_wake_up(rq, p);
  1727. #endif
  1728. task_rq_unlock(rq, &flags);
  1729. }
  1730. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1731. /**
  1732. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1733. * @notifier: notifier struct to register
  1734. */
  1735. void preempt_notifier_register(struct preempt_notifier *notifier)
  1736. {
  1737. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1738. }
  1739. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1740. /**
  1741. * preempt_notifier_unregister - no longer interested in preemption notifications
  1742. * @notifier: notifier struct to unregister
  1743. *
  1744. * This is safe to call from within a preemption notifier.
  1745. */
  1746. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1747. {
  1748. hlist_del(&notifier->link);
  1749. }
  1750. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1751. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1752. {
  1753. struct preempt_notifier *notifier;
  1754. struct hlist_node *node;
  1755. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1756. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1757. }
  1758. static void
  1759. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1760. struct task_struct *next)
  1761. {
  1762. struct preempt_notifier *notifier;
  1763. struct hlist_node *node;
  1764. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1765. notifier->ops->sched_out(notifier, next);
  1766. }
  1767. #else
  1768. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1769. {
  1770. }
  1771. static void
  1772. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1773. struct task_struct *next)
  1774. {
  1775. }
  1776. #endif
  1777. /**
  1778. * prepare_task_switch - prepare to switch tasks
  1779. * @rq: the runqueue preparing to switch
  1780. * @prev: the current task that is being switched out
  1781. * @next: the task we are going to switch to.
  1782. *
  1783. * This is called with the rq lock held and interrupts off. It must
  1784. * be paired with a subsequent finish_task_switch after the context
  1785. * switch.
  1786. *
  1787. * prepare_task_switch sets up locking and calls architecture specific
  1788. * hooks.
  1789. */
  1790. static inline void
  1791. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1792. struct task_struct *next)
  1793. {
  1794. fire_sched_out_preempt_notifiers(prev, next);
  1795. prepare_lock_switch(rq, next);
  1796. prepare_arch_switch(next);
  1797. }
  1798. /**
  1799. * finish_task_switch - clean up after a task-switch
  1800. * @rq: runqueue associated with task-switch
  1801. * @prev: the thread we just switched away from.
  1802. *
  1803. * finish_task_switch must be called after the context switch, paired
  1804. * with a prepare_task_switch call before the context switch.
  1805. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1806. * and do any other architecture-specific cleanup actions.
  1807. *
  1808. * Note that we may have delayed dropping an mm in context_switch(). If
  1809. * so, we finish that here outside of the runqueue lock. (Doing it
  1810. * with the lock held can cause deadlocks; see schedule() for
  1811. * details.)
  1812. */
  1813. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1814. __releases(rq->lock)
  1815. {
  1816. struct mm_struct *mm = rq->prev_mm;
  1817. long prev_state;
  1818. rq->prev_mm = NULL;
  1819. /*
  1820. * A task struct has one reference for the use as "current".
  1821. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1822. * schedule one last time. The schedule call will never return, and
  1823. * the scheduled task must drop that reference.
  1824. * The test for TASK_DEAD must occur while the runqueue locks are
  1825. * still held, otherwise prev could be scheduled on another cpu, die
  1826. * there before we look at prev->state, and then the reference would
  1827. * be dropped twice.
  1828. * Manfred Spraul <manfred@colorfullife.com>
  1829. */
  1830. prev_state = prev->state;
  1831. finish_arch_switch(prev);
  1832. finish_lock_switch(rq, prev);
  1833. #ifdef CONFIG_SMP
  1834. if (current->sched_class->post_schedule)
  1835. current->sched_class->post_schedule(rq);
  1836. #endif
  1837. fire_sched_in_preempt_notifiers(current);
  1838. if (mm)
  1839. mmdrop(mm);
  1840. if (unlikely(prev_state == TASK_DEAD)) {
  1841. /*
  1842. * Remove function-return probe instances associated with this
  1843. * task and put them back on the free list.
  1844. */
  1845. kprobe_flush_task(prev);
  1846. put_task_struct(prev);
  1847. }
  1848. }
  1849. /**
  1850. * schedule_tail - first thing a freshly forked thread must call.
  1851. * @prev: the thread we just switched away from.
  1852. */
  1853. asmlinkage void schedule_tail(struct task_struct *prev)
  1854. __releases(rq->lock)
  1855. {
  1856. struct rq *rq = this_rq();
  1857. finish_task_switch(rq, prev);
  1858. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1859. /* In this case, finish_task_switch does not reenable preemption */
  1860. preempt_enable();
  1861. #endif
  1862. if (current->set_child_tid)
  1863. put_user(task_pid_vnr(current), current->set_child_tid);
  1864. }
  1865. /*
  1866. * context_switch - switch to the new MM and the new
  1867. * thread's register state.
  1868. */
  1869. static inline void
  1870. context_switch(struct rq *rq, struct task_struct *prev,
  1871. struct task_struct *next)
  1872. {
  1873. struct mm_struct *mm, *oldmm;
  1874. prepare_task_switch(rq, prev, next);
  1875. mm = next->mm;
  1876. oldmm = prev->active_mm;
  1877. /*
  1878. * For paravirt, this is coupled with an exit in switch_to to
  1879. * combine the page table reload and the switch backend into
  1880. * one hypercall.
  1881. */
  1882. arch_enter_lazy_cpu_mode();
  1883. if (unlikely(!mm)) {
  1884. next->active_mm = oldmm;
  1885. atomic_inc(&oldmm->mm_count);
  1886. enter_lazy_tlb(oldmm, next);
  1887. } else
  1888. switch_mm(oldmm, mm, next);
  1889. if (unlikely(!prev->mm)) {
  1890. prev->active_mm = NULL;
  1891. rq->prev_mm = oldmm;
  1892. }
  1893. /*
  1894. * Since the runqueue lock will be released by the next
  1895. * task (which is an invalid locking op but in the case
  1896. * of the scheduler it's an obvious special-case), so we
  1897. * do an early lockdep release here:
  1898. */
  1899. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1900. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1901. #endif
  1902. /* Here we just switch the register state and the stack. */
  1903. switch_to(prev, next, prev);
  1904. barrier();
  1905. /*
  1906. * this_rq must be evaluated again because prev may have moved
  1907. * CPUs since it called schedule(), thus the 'rq' on its stack
  1908. * frame will be invalid.
  1909. */
  1910. finish_task_switch(this_rq(), prev);
  1911. }
  1912. /*
  1913. * nr_running, nr_uninterruptible and nr_context_switches:
  1914. *
  1915. * externally visible scheduler statistics: current number of runnable
  1916. * threads, current number of uninterruptible-sleeping threads, total
  1917. * number of context switches performed since bootup.
  1918. */
  1919. unsigned long nr_running(void)
  1920. {
  1921. unsigned long i, sum = 0;
  1922. for_each_online_cpu(i)
  1923. sum += cpu_rq(i)->nr_running;
  1924. return sum;
  1925. }
  1926. unsigned long nr_uninterruptible(void)
  1927. {
  1928. unsigned long i, sum = 0;
  1929. for_each_possible_cpu(i)
  1930. sum += cpu_rq(i)->nr_uninterruptible;
  1931. /*
  1932. * Since we read the counters lockless, it might be slightly
  1933. * inaccurate. Do not allow it to go below zero though:
  1934. */
  1935. if (unlikely((long)sum < 0))
  1936. sum = 0;
  1937. return sum;
  1938. }
  1939. unsigned long long nr_context_switches(void)
  1940. {
  1941. int i;
  1942. unsigned long long sum = 0;
  1943. for_each_possible_cpu(i)
  1944. sum += cpu_rq(i)->nr_switches;
  1945. return sum;
  1946. }
  1947. unsigned long nr_iowait(void)
  1948. {
  1949. unsigned long i, sum = 0;
  1950. for_each_possible_cpu(i)
  1951. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1952. return sum;
  1953. }
  1954. unsigned long nr_active(void)
  1955. {
  1956. unsigned long i, running = 0, uninterruptible = 0;
  1957. for_each_online_cpu(i) {
  1958. running += cpu_rq(i)->nr_running;
  1959. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1960. }
  1961. if (unlikely((long)uninterruptible < 0))
  1962. uninterruptible = 0;
  1963. return running + uninterruptible;
  1964. }
  1965. /*
  1966. * Update rq->cpu_load[] statistics. This function is usually called every
  1967. * scheduler tick (TICK_NSEC).
  1968. */
  1969. static void update_cpu_load(struct rq *this_rq)
  1970. {
  1971. unsigned long this_load = this_rq->load.weight;
  1972. int i, scale;
  1973. this_rq->nr_load_updates++;
  1974. /* Update our load: */
  1975. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1976. unsigned long old_load, new_load;
  1977. /* scale is effectively 1 << i now, and >> i divides by scale */
  1978. old_load = this_rq->cpu_load[i];
  1979. new_load = this_load;
  1980. /*
  1981. * Round up the averaging division if load is increasing. This
  1982. * prevents us from getting stuck on 9 if the load is 10, for
  1983. * example.
  1984. */
  1985. if (new_load > old_load)
  1986. new_load += scale-1;
  1987. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1988. }
  1989. }
  1990. #ifdef CONFIG_SMP
  1991. /*
  1992. * double_rq_lock - safely lock two runqueues
  1993. *
  1994. * Note this does not disable interrupts like task_rq_lock,
  1995. * you need to do so manually before calling.
  1996. */
  1997. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1998. __acquires(rq1->lock)
  1999. __acquires(rq2->lock)
  2000. {
  2001. BUG_ON(!irqs_disabled());
  2002. if (rq1 == rq2) {
  2003. spin_lock(&rq1->lock);
  2004. __acquire(rq2->lock); /* Fake it out ;) */
  2005. } else {
  2006. if (rq1 < rq2) {
  2007. spin_lock(&rq1->lock);
  2008. spin_lock(&rq2->lock);
  2009. } else {
  2010. spin_lock(&rq2->lock);
  2011. spin_lock(&rq1->lock);
  2012. }
  2013. }
  2014. update_rq_clock(rq1);
  2015. update_rq_clock(rq2);
  2016. }
  2017. /*
  2018. * double_rq_unlock - safely unlock two runqueues
  2019. *
  2020. * Note this does not restore interrupts like task_rq_unlock,
  2021. * you need to do so manually after calling.
  2022. */
  2023. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2024. __releases(rq1->lock)
  2025. __releases(rq2->lock)
  2026. {
  2027. spin_unlock(&rq1->lock);
  2028. if (rq1 != rq2)
  2029. spin_unlock(&rq2->lock);
  2030. else
  2031. __release(rq2->lock);
  2032. }
  2033. /*
  2034. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2035. */
  2036. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2037. __releases(this_rq->lock)
  2038. __acquires(busiest->lock)
  2039. __acquires(this_rq->lock)
  2040. {
  2041. int ret = 0;
  2042. if (unlikely(!irqs_disabled())) {
  2043. /* printk() doesn't work good under rq->lock */
  2044. spin_unlock(&this_rq->lock);
  2045. BUG_ON(1);
  2046. }
  2047. if (unlikely(!spin_trylock(&busiest->lock))) {
  2048. if (busiest < this_rq) {
  2049. spin_unlock(&this_rq->lock);
  2050. spin_lock(&busiest->lock);
  2051. spin_lock(&this_rq->lock);
  2052. ret = 1;
  2053. } else
  2054. spin_lock(&busiest->lock);
  2055. }
  2056. return ret;
  2057. }
  2058. /*
  2059. * If dest_cpu is allowed for this process, migrate the task to it.
  2060. * This is accomplished by forcing the cpu_allowed mask to only
  2061. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2062. * the cpu_allowed mask is restored.
  2063. */
  2064. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2065. {
  2066. struct migration_req req;
  2067. unsigned long flags;
  2068. struct rq *rq;
  2069. rq = task_rq_lock(p, &flags);
  2070. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2071. || unlikely(cpu_is_offline(dest_cpu)))
  2072. goto out;
  2073. /* force the process onto the specified CPU */
  2074. if (migrate_task(p, dest_cpu, &req)) {
  2075. /* Need to wait for migration thread (might exit: take ref). */
  2076. struct task_struct *mt = rq->migration_thread;
  2077. get_task_struct(mt);
  2078. task_rq_unlock(rq, &flags);
  2079. wake_up_process(mt);
  2080. put_task_struct(mt);
  2081. wait_for_completion(&req.done);
  2082. return;
  2083. }
  2084. out:
  2085. task_rq_unlock(rq, &flags);
  2086. }
  2087. /*
  2088. * sched_exec - execve() is a valuable balancing opportunity, because at
  2089. * this point the task has the smallest effective memory and cache footprint.
  2090. */
  2091. void sched_exec(void)
  2092. {
  2093. int new_cpu, this_cpu = get_cpu();
  2094. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2095. put_cpu();
  2096. if (new_cpu != this_cpu)
  2097. sched_migrate_task(current, new_cpu);
  2098. }
  2099. /*
  2100. * pull_task - move a task from a remote runqueue to the local runqueue.
  2101. * Both runqueues must be locked.
  2102. */
  2103. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2104. struct rq *this_rq, int this_cpu)
  2105. {
  2106. deactivate_task(src_rq, p, 0);
  2107. set_task_cpu(p, this_cpu);
  2108. activate_task(this_rq, p, 0);
  2109. /*
  2110. * Note that idle threads have a prio of MAX_PRIO, for this test
  2111. * to be always true for them.
  2112. */
  2113. check_preempt_curr(this_rq, p);
  2114. }
  2115. /*
  2116. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2117. */
  2118. static
  2119. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2120. struct sched_domain *sd, enum cpu_idle_type idle,
  2121. int *all_pinned)
  2122. {
  2123. /*
  2124. * We do not migrate tasks that are:
  2125. * 1) running (obviously), or
  2126. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2127. * 3) are cache-hot on their current CPU.
  2128. */
  2129. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2130. schedstat_inc(p, se.nr_failed_migrations_affine);
  2131. return 0;
  2132. }
  2133. *all_pinned = 0;
  2134. if (task_running(rq, p)) {
  2135. schedstat_inc(p, se.nr_failed_migrations_running);
  2136. return 0;
  2137. }
  2138. /*
  2139. * Aggressive migration if:
  2140. * 1) task is cache cold, or
  2141. * 2) too many balance attempts have failed.
  2142. */
  2143. if (!task_hot(p, rq->clock, sd) ||
  2144. sd->nr_balance_failed > sd->cache_nice_tries) {
  2145. #ifdef CONFIG_SCHEDSTATS
  2146. if (task_hot(p, rq->clock, sd)) {
  2147. schedstat_inc(sd, lb_hot_gained[idle]);
  2148. schedstat_inc(p, se.nr_forced_migrations);
  2149. }
  2150. #endif
  2151. return 1;
  2152. }
  2153. if (task_hot(p, rq->clock, sd)) {
  2154. schedstat_inc(p, se.nr_failed_migrations_hot);
  2155. return 0;
  2156. }
  2157. return 1;
  2158. }
  2159. static unsigned long
  2160. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2161. unsigned long max_load_move, struct sched_domain *sd,
  2162. enum cpu_idle_type idle, int *all_pinned,
  2163. int *this_best_prio, struct rq_iterator *iterator)
  2164. {
  2165. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2166. struct task_struct *p;
  2167. long rem_load_move = max_load_move;
  2168. if (max_load_move == 0)
  2169. goto out;
  2170. pinned = 1;
  2171. /*
  2172. * Start the load-balancing iterator:
  2173. */
  2174. p = iterator->start(iterator->arg);
  2175. next:
  2176. if (!p || loops++ > sysctl_sched_nr_migrate)
  2177. goto out;
  2178. /*
  2179. * To help distribute high priority tasks across CPUs we don't
  2180. * skip a task if it will be the highest priority task (i.e. smallest
  2181. * prio value) on its new queue regardless of its load weight
  2182. */
  2183. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2184. SCHED_LOAD_SCALE_FUZZ;
  2185. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2186. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2187. p = iterator->next(iterator->arg);
  2188. goto next;
  2189. }
  2190. pull_task(busiest, p, this_rq, this_cpu);
  2191. pulled++;
  2192. rem_load_move -= p->se.load.weight;
  2193. /*
  2194. * We only want to steal up to the prescribed amount of weighted load.
  2195. */
  2196. if (rem_load_move > 0) {
  2197. if (p->prio < *this_best_prio)
  2198. *this_best_prio = p->prio;
  2199. p = iterator->next(iterator->arg);
  2200. goto next;
  2201. }
  2202. out:
  2203. /*
  2204. * Right now, this is one of only two places pull_task() is called,
  2205. * so we can safely collect pull_task() stats here rather than
  2206. * inside pull_task().
  2207. */
  2208. schedstat_add(sd, lb_gained[idle], pulled);
  2209. if (all_pinned)
  2210. *all_pinned = pinned;
  2211. return max_load_move - rem_load_move;
  2212. }
  2213. /*
  2214. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2215. * this_rq, as part of a balancing operation within domain "sd".
  2216. * Returns 1 if successful and 0 otherwise.
  2217. *
  2218. * Called with both runqueues locked.
  2219. */
  2220. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2221. unsigned long max_load_move,
  2222. struct sched_domain *sd, enum cpu_idle_type idle,
  2223. int *all_pinned)
  2224. {
  2225. const struct sched_class *class = sched_class_highest;
  2226. unsigned long total_load_moved = 0;
  2227. int this_best_prio = this_rq->curr->prio;
  2228. do {
  2229. total_load_moved +=
  2230. class->load_balance(this_rq, this_cpu, busiest,
  2231. max_load_move - total_load_moved,
  2232. sd, idle, all_pinned, &this_best_prio);
  2233. class = class->next;
  2234. } while (class && max_load_move > total_load_moved);
  2235. return total_load_moved > 0;
  2236. }
  2237. static int
  2238. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2239. struct sched_domain *sd, enum cpu_idle_type idle,
  2240. struct rq_iterator *iterator)
  2241. {
  2242. struct task_struct *p = iterator->start(iterator->arg);
  2243. int pinned = 0;
  2244. while (p) {
  2245. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2246. pull_task(busiest, p, this_rq, this_cpu);
  2247. /*
  2248. * Right now, this is only the second place pull_task()
  2249. * is called, so we can safely collect pull_task()
  2250. * stats here rather than inside pull_task().
  2251. */
  2252. schedstat_inc(sd, lb_gained[idle]);
  2253. return 1;
  2254. }
  2255. p = iterator->next(iterator->arg);
  2256. }
  2257. return 0;
  2258. }
  2259. /*
  2260. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2261. * part of active balancing operations within "domain".
  2262. * Returns 1 if successful and 0 otherwise.
  2263. *
  2264. * Called with both runqueues locked.
  2265. */
  2266. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2267. struct sched_domain *sd, enum cpu_idle_type idle)
  2268. {
  2269. const struct sched_class *class;
  2270. for (class = sched_class_highest; class; class = class->next)
  2271. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2272. return 1;
  2273. return 0;
  2274. }
  2275. /*
  2276. * find_busiest_group finds and returns the busiest CPU group within the
  2277. * domain. It calculates and returns the amount of weighted load which
  2278. * should be moved to restore balance via the imbalance parameter.
  2279. */
  2280. static struct sched_group *
  2281. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2282. unsigned long *imbalance, enum cpu_idle_type idle,
  2283. int *sd_idle, cpumask_t *cpus, int *balance)
  2284. {
  2285. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2286. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2287. unsigned long max_pull;
  2288. unsigned long busiest_load_per_task, busiest_nr_running;
  2289. unsigned long this_load_per_task, this_nr_running;
  2290. int load_idx, group_imb = 0;
  2291. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2292. int power_savings_balance = 1;
  2293. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2294. unsigned long min_nr_running = ULONG_MAX;
  2295. struct sched_group *group_min = NULL, *group_leader = NULL;
  2296. #endif
  2297. max_load = this_load = total_load = total_pwr = 0;
  2298. busiest_load_per_task = busiest_nr_running = 0;
  2299. this_load_per_task = this_nr_running = 0;
  2300. if (idle == CPU_NOT_IDLE)
  2301. load_idx = sd->busy_idx;
  2302. else if (idle == CPU_NEWLY_IDLE)
  2303. load_idx = sd->newidle_idx;
  2304. else
  2305. load_idx = sd->idle_idx;
  2306. do {
  2307. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2308. int local_group;
  2309. int i;
  2310. int __group_imb = 0;
  2311. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2312. unsigned long sum_nr_running, sum_weighted_load;
  2313. local_group = cpu_isset(this_cpu, group->cpumask);
  2314. if (local_group)
  2315. balance_cpu = first_cpu(group->cpumask);
  2316. /* Tally up the load of all CPUs in the group */
  2317. sum_weighted_load = sum_nr_running = avg_load = 0;
  2318. max_cpu_load = 0;
  2319. min_cpu_load = ~0UL;
  2320. for_each_cpu_mask(i, group->cpumask) {
  2321. struct rq *rq;
  2322. if (!cpu_isset(i, *cpus))
  2323. continue;
  2324. rq = cpu_rq(i);
  2325. if (*sd_idle && rq->nr_running)
  2326. *sd_idle = 0;
  2327. /* Bias balancing toward cpus of our domain */
  2328. if (local_group) {
  2329. if (idle_cpu(i) && !first_idle_cpu) {
  2330. first_idle_cpu = 1;
  2331. balance_cpu = i;
  2332. }
  2333. load = target_load(i, load_idx);
  2334. } else {
  2335. load = source_load(i, load_idx);
  2336. if (load > max_cpu_load)
  2337. max_cpu_load = load;
  2338. if (min_cpu_load > load)
  2339. min_cpu_load = load;
  2340. }
  2341. avg_load += load;
  2342. sum_nr_running += rq->nr_running;
  2343. sum_weighted_load += weighted_cpuload(i);
  2344. }
  2345. /*
  2346. * First idle cpu or the first cpu(busiest) in this sched group
  2347. * is eligible for doing load balancing at this and above
  2348. * domains. In the newly idle case, we will allow all the cpu's
  2349. * to do the newly idle load balance.
  2350. */
  2351. if (idle != CPU_NEWLY_IDLE && local_group &&
  2352. balance_cpu != this_cpu && balance) {
  2353. *balance = 0;
  2354. goto ret;
  2355. }
  2356. total_load += avg_load;
  2357. total_pwr += group->__cpu_power;
  2358. /* Adjust by relative CPU power of the group */
  2359. avg_load = sg_div_cpu_power(group,
  2360. avg_load * SCHED_LOAD_SCALE);
  2361. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2362. __group_imb = 1;
  2363. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2364. if (local_group) {
  2365. this_load = avg_load;
  2366. this = group;
  2367. this_nr_running = sum_nr_running;
  2368. this_load_per_task = sum_weighted_load;
  2369. } else if (avg_load > max_load &&
  2370. (sum_nr_running > group_capacity || __group_imb)) {
  2371. max_load = avg_load;
  2372. busiest = group;
  2373. busiest_nr_running = sum_nr_running;
  2374. busiest_load_per_task = sum_weighted_load;
  2375. group_imb = __group_imb;
  2376. }
  2377. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2378. /*
  2379. * Busy processors will not participate in power savings
  2380. * balance.
  2381. */
  2382. if (idle == CPU_NOT_IDLE ||
  2383. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2384. goto group_next;
  2385. /*
  2386. * If the local group is idle or completely loaded
  2387. * no need to do power savings balance at this domain
  2388. */
  2389. if (local_group && (this_nr_running >= group_capacity ||
  2390. !this_nr_running))
  2391. power_savings_balance = 0;
  2392. /*
  2393. * If a group is already running at full capacity or idle,
  2394. * don't include that group in power savings calculations
  2395. */
  2396. if (!power_savings_balance || sum_nr_running >= group_capacity
  2397. || !sum_nr_running)
  2398. goto group_next;
  2399. /*
  2400. * Calculate the group which has the least non-idle load.
  2401. * This is the group from where we need to pick up the load
  2402. * for saving power
  2403. */
  2404. if ((sum_nr_running < min_nr_running) ||
  2405. (sum_nr_running == min_nr_running &&
  2406. first_cpu(group->cpumask) <
  2407. first_cpu(group_min->cpumask))) {
  2408. group_min = group;
  2409. min_nr_running = sum_nr_running;
  2410. min_load_per_task = sum_weighted_load /
  2411. sum_nr_running;
  2412. }
  2413. /*
  2414. * Calculate the group which is almost near its
  2415. * capacity but still has some space to pick up some load
  2416. * from other group and save more power
  2417. */
  2418. if (sum_nr_running <= group_capacity - 1) {
  2419. if (sum_nr_running > leader_nr_running ||
  2420. (sum_nr_running == leader_nr_running &&
  2421. first_cpu(group->cpumask) >
  2422. first_cpu(group_leader->cpumask))) {
  2423. group_leader = group;
  2424. leader_nr_running = sum_nr_running;
  2425. }
  2426. }
  2427. group_next:
  2428. #endif
  2429. group = group->next;
  2430. } while (group != sd->groups);
  2431. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2432. goto out_balanced;
  2433. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2434. if (this_load >= avg_load ||
  2435. 100*max_load <= sd->imbalance_pct*this_load)
  2436. goto out_balanced;
  2437. busiest_load_per_task /= busiest_nr_running;
  2438. if (group_imb)
  2439. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2440. /*
  2441. * We're trying to get all the cpus to the average_load, so we don't
  2442. * want to push ourselves above the average load, nor do we wish to
  2443. * reduce the max loaded cpu below the average load, as either of these
  2444. * actions would just result in more rebalancing later, and ping-pong
  2445. * tasks around. Thus we look for the minimum possible imbalance.
  2446. * Negative imbalances (*we* are more loaded than anyone else) will
  2447. * be counted as no imbalance for these purposes -- we can't fix that
  2448. * by pulling tasks to us. Be careful of negative numbers as they'll
  2449. * appear as very large values with unsigned longs.
  2450. */
  2451. if (max_load <= busiest_load_per_task)
  2452. goto out_balanced;
  2453. /*
  2454. * In the presence of smp nice balancing, certain scenarios can have
  2455. * max load less than avg load(as we skip the groups at or below
  2456. * its cpu_power, while calculating max_load..)
  2457. */
  2458. if (max_load < avg_load) {
  2459. *imbalance = 0;
  2460. goto small_imbalance;
  2461. }
  2462. /* Don't want to pull so many tasks that a group would go idle */
  2463. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2464. /* How much load to actually move to equalise the imbalance */
  2465. *imbalance = min(max_pull * busiest->__cpu_power,
  2466. (avg_load - this_load) * this->__cpu_power)
  2467. / SCHED_LOAD_SCALE;
  2468. /*
  2469. * if *imbalance is less than the average load per runnable task
  2470. * there is no gaurantee that any tasks will be moved so we'll have
  2471. * a think about bumping its value to force at least one task to be
  2472. * moved
  2473. */
  2474. if (*imbalance < busiest_load_per_task) {
  2475. unsigned long tmp, pwr_now, pwr_move;
  2476. unsigned int imbn;
  2477. small_imbalance:
  2478. pwr_move = pwr_now = 0;
  2479. imbn = 2;
  2480. if (this_nr_running) {
  2481. this_load_per_task /= this_nr_running;
  2482. if (busiest_load_per_task > this_load_per_task)
  2483. imbn = 1;
  2484. } else
  2485. this_load_per_task = SCHED_LOAD_SCALE;
  2486. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2487. busiest_load_per_task * imbn) {
  2488. *imbalance = busiest_load_per_task;
  2489. return busiest;
  2490. }
  2491. /*
  2492. * OK, we don't have enough imbalance to justify moving tasks,
  2493. * however we may be able to increase total CPU power used by
  2494. * moving them.
  2495. */
  2496. pwr_now += busiest->__cpu_power *
  2497. min(busiest_load_per_task, max_load);
  2498. pwr_now += this->__cpu_power *
  2499. min(this_load_per_task, this_load);
  2500. pwr_now /= SCHED_LOAD_SCALE;
  2501. /* Amount of load we'd subtract */
  2502. tmp = sg_div_cpu_power(busiest,
  2503. busiest_load_per_task * SCHED_LOAD_SCALE);
  2504. if (max_load > tmp)
  2505. pwr_move += busiest->__cpu_power *
  2506. min(busiest_load_per_task, max_load - tmp);
  2507. /* Amount of load we'd add */
  2508. if (max_load * busiest->__cpu_power <
  2509. busiest_load_per_task * SCHED_LOAD_SCALE)
  2510. tmp = sg_div_cpu_power(this,
  2511. max_load * busiest->__cpu_power);
  2512. else
  2513. tmp = sg_div_cpu_power(this,
  2514. busiest_load_per_task * SCHED_LOAD_SCALE);
  2515. pwr_move += this->__cpu_power *
  2516. min(this_load_per_task, this_load + tmp);
  2517. pwr_move /= SCHED_LOAD_SCALE;
  2518. /* Move if we gain throughput */
  2519. if (pwr_move > pwr_now)
  2520. *imbalance = busiest_load_per_task;
  2521. }
  2522. return busiest;
  2523. out_balanced:
  2524. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2525. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2526. goto ret;
  2527. if (this == group_leader && group_leader != group_min) {
  2528. *imbalance = min_load_per_task;
  2529. return group_min;
  2530. }
  2531. #endif
  2532. ret:
  2533. *imbalance = 0;
  2534. return NULL;
  2535. }
  2536. /*
  2537. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2538. */
  2539. static struct rq *
  2540. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2541. unsigned long imbalance, cpumask_t *cpus)
  2542. {
  2543. struct rq *busiest = NULL, *rq;
  2544. unsigned long max_load = 0;
  2545. int i;
  2546. for_each_cpu_mask(i, group->cpumask) {
  2547. unsigned long wl;
  2548. if (!cpu_isset(i, *cpus))
  2549. continue;
  2550. rq = cpu_rq(i);
  2551. wl = weighted_cpuload(i);
  2552. if (rq->nr_running == 1 && wl > imbalance)
  2553. continue;
  2554. if (wl > max_load) {
  2555. max_load = wl;
  2556. busiest = rq;
  2557. }
  2558. }
  2559. return busiest;
  2560. }
  2561. /*
  2562. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2563. * so long as it is large enough.
  2564. */
  2565. #define MAX_PINNED_INTERVAL 512
  2566. /*
  2567. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2568. * tasks if there is an imbalance.
  2569. */
  2570. static int load_balance(int this_cpu, struct rq *this_rq,
  2571. struct sched_domain *sd, enum cpu_idle_type idle,
  2572. int *balance)
  2573. {
  2574. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2575. struct sched_group *group;
  2576. unsigned long imbalance;
  2577. struct rq *busiest;
  2578. cpumask_t cpus = CPU_MASK_ALL;
  2579. unsigned long flags;
  2580. /*
  2581. * When power savings policy is enabled for the parent domain, idle
  2582. * sibling can pick up load irrespective of busy siblings. In this case,
  2583. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2584. * portraying it as CPU_NOT_IDLE.
  2585. */
  2586. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2587. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2588. sd_idle = 1;
  2589. schedstat_inc(sd, lb_count[idle]);
  2590. redo:
  2591. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2592. &cpus, balance);
  2593. if (*balance == 0)
  2594. goto out_balanced;
  2595. if (!group) {
  2596. schedstat_inc(sd, lb_nobusyg[idle]);
  2597. goto out_balanced;
  2598. }
  2599. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2600. if (!busiest) {
  2601. schedstat_inc(sd, lb_nobusyq[idle]);
  2602. goto out_balanced;
  2603. }
  2604. BUG_ON(busiest == this_rq);
  2605. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2606. ld_moved = 0;
  2607. if (busiest->nr_running > 1) {
  2608. /*
  2609. * Attempt to move tasks. If find_busiest_group has found
  2610. * an imbalance but busiest->nr_running <= 1, the group is
  2611. * still unbalanced. ld_moved simply stays zero, so it is
  2612. * correctly treated as an imbalance.
  2613. */
  2614. local_irq_save(flags);
  2615. double_rq_lock(this_rq, busiest);
  2616. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2617. imbalance, sd, idle, &all_pinned);
  2618. double_rq_unlock(this_rq, busiest);
  2619. local_irq_restore(flags);
  2620. /*
  2621. * some other cpu did the load balance for us.
  2622. */
  2623. if (ld_moved && this_cpu != smp_processor_id())
  2624. resched_cpu(this_cpu);
  2625. /* All tasks on this runqueue were pinned by CPU affinity */
  2626. if (unlikely(all_pinned)) {
  2627. cpu_clear(cpu_of(busiest), cpus);
  2628. if (!cpus_empty(cpus))
  2629. goto redo;
  2630. goto out_balanced;
  2631. }
  2632. }
  2633. if (!ld_moved) {
  2634. schedstat_inc(sd, lb_failed[idle]);
  2635. sd->nr_balance_failed++;
  2636. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2637. spin_lock_irqsave(&busiest->lock, flags);
  2638. /* don't kick the migration_thread, if the curr
  2639. * task on busiest cpu can't be moved to this_cpu
  2640. */
  2641. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2642. spin_unlock_irqrestore(&busiest->lock, flags);
  2643. all_pinned = 1;
  2644. goto out_one_pinned;
  2645. }
  2646. if (!busiest->active_balance) {
  2647. busiest->active_balance = 1;
  2648. busiest->push_cpu = this_cpu;
  2649. active_balance = 1;
  2650. }
  2651. spin_unlock_irqrestore(&busiest->lock, flags);
  2652. if (active_balance)
  2653. wake_up_process(busiest->migration_thread);
  2654. /*
  2655. * We've kicked active balancing, reset the failure
  2656. * counter.
  2657. */
  2658. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2659. }
  2660. } else
  2661. sd->nr_balance_failed = 0;
  2662. if (likely(!active_balance)) {
  2663. /* We were unbalanced, so reset the balancing interval */
  2664. sd->balance_interval = sd->min_interval;
  2665. } else {
  2666. /*
  2667. * If we've begun active balancing, start to back off. This
  2668. * case may not be covered by the all_pinned logic if there
  2669. * is only 1 task on the busy runqueue (because we don't call
  2670. * move_tasks).
  2671. */
  2672. if (sd->balance_interval < sd->max_interval)
  2673. sd->balance_interval *= 2;
  2674. }
  2675. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2676. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2677. return -1;
  2678. return ld_moved;
  2679. out_balanced:
  2680. schedstat_inc(sd, lb_balanced[idle]);
  2681. sd->nr_balance_failed = 0;
  2682. out_one_pinned:
  2683. /* tune up the balancing interval */
  2684. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2685. (sd->balance_interval < sd->max_interval))
  2686. sd->balance_interval *= 2;
  2687. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2688. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2689. return -1;
  2690. return 0;
  2691. }
  2692. /*
  2693. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2694. * tasks if there is an imbalance.
  2695. *
  2696. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2697. * this_rq is locked.
  2698. */
  2699. static int
  2700. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2701. {
  2702. struct sched_group *group;
  2703. struct rq *busiest = NULL;
  2704. unsigned long imbalance;
  2705. int ld_moved = 0;
  2706. int sd_idle = 0;
  2707. int all_pinned = 0;
  2708. cpumask_t cpus = CPU_MASK_ALL;
  2709. /*
  2710. * When power savings policy is enabled for the parent domain, idle
  2711. * sibling can pick up load irrespective of busy siblings. In this case,
  2712. * let the state of idle sibling percolate up as IDLE, instead of
  2713. * portraying it as CPU_NOT_IDLE.
  2714. */
  2715. if (sd->flags & SD_SHARE_CPUPOWER &&
  2716. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2717. sd_idle = 1;
  2718. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2719. redo:
  2720. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2721. &sd_idle, &cpus, NULL);
  2722. if (!group) {
  2723. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2724. goto out_balanced;
  2725. }
  2726. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2727. &cpus);
  2728. if (!busiest) {
  2729. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2730. goto out_balanced;
  2731. }
  2732. BUG_ON(busiest == this_rq);
  2733. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2734. ld_moved = 0;
  2735. if (busiest->nr_running > 1) {
  2736. /* Attempt to move tasks */
  2737. double_lock_balance(this_rq, busiest);
  2738. /* this_rq->clock is already updated */
  2739. update_rq_clock(busiest);
  2740. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2741. imbalance, sd, CPU_NEWLY_IDLE,
  2742. &all_pinned);
  2743. spin_unlock(&busiest->lock);
  2744. if (unlikely(all_pinned)) {
  2745. cpu_clear(cpu_of(busiest), cpus);
  2746. if (!cpus_empty(cpus))
  2747. goto redo;
  2748. }
  2749. }
  2750. if (!ld_moved) {
  2751. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2752. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2753. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2754. return -1;
  2755. } else
  2756. sd->nr_balance_failed = 0;
  2757. return ld_moved;
  2758. out_balanced:
  2759. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2760. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2761. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2762. return -1;
  2763. sd->nr_balance_failed = 0;
  2764. return 0;
  2765. }
  2766. /*
  2767. * idle_balance is called by schedule() if this_cpu is about to become
  2768. * idle. Attempts to pull tasks from other CPUs.
  2769. */
  2770. static void idle_balance(int this_cpu, struct rq *this_rq)
  2771. {
  2772. struct sched_domain *sd;
  2773. int pulled_task = -1;
  2774. unsigned long next_balance = jiffies + HZ;
  2775. for_each_domain(this_cpu, sd) {
  2776. unsigned long interval;
  2777. if (!(sd->flags & SD_LOAD_BALANCE))
  2778. continue;
  2779. if (sd->flags & SD_BALANCE_NEWIDLE)
  2780. /* If we've pulled tasks over stop searching: */
  2781. pulled_task = load_balance_newidle(this_cpu,
  2782. this_rq, sd);
  2783. interval = msecs_to_jiffies(sd->balance_interval);
  2784. if (time_after(next_balance, sd->last_balance + interval))
  2785. next_balance = sd->last_balance + interval;
  2786. if (pulled_task)
  2787. break;
  2788. }
  2789. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2790. /*
  2791. * We are going idle. next_balance may be set based on
  2792. * a busy processor. So reset next_balance.
  2793. */
  2794. this_rq->next_balance = next_balance;
  2795. }
  2796. }
  2797. /*
  2798. * active_load_balance is run by migration threads. It pushes running tasks
  2799. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2800. * running on each physical CPU where possible, and avoids physical /
  2801. * logical imbalances.
  2802. *
  2803. * Called with busiest_rq locked.
  2804. */
  2805. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2806. {
  2807. int target_cpu = busiest_rq->push_cpu;
  2808. struct sched_domain *sd;
  2809. struct rq *target_rq;
  2810. /* Is there any task to move? */
  2811. if (busiest_rq->nr_running <= 1)
  2812. return;
  2813. target_rq = cpu_rq(target_cpu);
  2814. /*
  2815. * This condition is "impossible", if it occurs
  2816. * we need to fix it. Originally reported by
  2817. * Bjorn Helgaas on a 128-cpu setup.
  2818. */
  2819. BUG_ON(busiest_rq == target_rq);
  2820. /* move a task from busiest_rq to target_rq */
  2821. double_lock_balance(busiest_rq, target_rq);
  2822. update_rq_clock(busiest_rq);
  2823. update_rq_clock(target_rq);
  2824. /* Search for an sd spanning us and the target CPU. */
  2825. for_each_domain(target_cpu, sd) {
  2826. if ((sd->flags & SD_LOAD_BALANCE) &&
  2827. cpu_isset(busiest_cpu, sd->span))
  2828. break;
  2829. }
  2830. if (likely(sd)) {
  2831. schedstat_inc(sd, alb_count);
  2832. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2833. sd, CPU_IDLE))
  2834. schedstat_inc(sd, alb_pushed);
  2835. else
  2836. schedstat_inc(sd, alb_failed);
  2837. }
  2838. spin_unlock(&target_rq->lock);
  2839. }
  2840. #ifdef CONFIG_NO_HZ
  2841. static struct {
  2842. atomic_t load_balancer;
  2843. cpumask_t cpu_mask;
  2844. } nohz ____cacheline_aligned = {
  2845. .load_balancer = ATOMIC_INIT(-1),
  2846. .cpu_mask = CPU_MASK_NONE,
  2847. };
  2848. /*
  2849. * This routine will try to nominate the ilb (idle load balancing)
  2850. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2851. * load balancing on behalf of all those cpus. If all the cpus in the system
  2852. * go into this tickless mode, then there will be no ilb owner (as there is
  2853. * no need for one) and all the cpus will sleep till the next wakeup event
  2854. * arrives...
  2855. *
  2856. * For the ilb owner, tick is not stopped. And this tick will be used
  2857. * for idle load balancing. ilb owner will still be part of
  2858. * nohz.cpu_mask..
  2859. *
  2860. * While stopping the tick, this cpu will become the ilb owner if there
  2861. * is no other owner. And will be the owner till that cpu becomes busy
  2862. * or if all cpus in the system stop their ticks at which point
  2863. * there is no need for ilb owner.
  2864. *
  2865. * When the ilb owner becomes busy, it nominates another owner, during the
  2866. * next busy scheduler_tick()
  2867. */
  2868. int select_nohz_load_balancer(int stop_tick)
  2869. {
  2870. int cpu = smp_processor_id();
  2871. if (stop_tick) {
  2872. cpu_set(cpu, nohz.cpu_mask);
  2873. cpu_rq(cpu)->in_nohz_recently = 1;
  2874. /*
  2875. * If we are going offline and still the leader, give up!
  2876. */
  2877. if (cpu_is_offline(cpu) &&
  2878. atomic_read(&nohz.load_balancer) == cpu) {
  2879. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2880. BUG();
  2881. return 0;
  2882. }
  2883. /* time for ilb owner also to sleep */
  2884. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2885. if (atomic_read(&nohz.load_balancer) == cpu)
  2886. atomic_set(&nohz.load_balancer, -1);
  2887. return 0;
  2888. }
  2889. if (atomic_read(&nohz.load_balancer) == -1) {
  2890. /* make me the ilb owner */
  2891. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2892. return 1;
  2893. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2894. return 1;
  2895. } else {
  2896. if (!cpu_isset(cpu, nohz.cpu_mask))
  2897. return 0;
  2898. cpu_clear(cpu, nohz.cpu_mask);
  2899. if (atomic_read(&nohz.load_balancer) == cpu)
  2900. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2901. BUG();
  2902. }
  2903. return 0;
  2904. }
  2905. #endif
  2906. static DEFINE_SPINLOCK(balancing);
  2907. /*
  2908. * It checks each scheduling domain to see if it is due to be balanced,
  2909. * and initiates a balancing operation if so.
  2910. *
  2911. * Balancing parameters are set up in arch_init_sched_domains.
  2912. */
  2913. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2914. {
  2915. int balance = 1;
  2916. struct rq *rq = cpu_rq(cpu);
  2917. unsigned long interval;
  2918. struct sched_domain *sd;
  2919. /* Earliest time when we have to do rebalance again */
  2920. unsigned long next_balance = jiffies + 60*HZ;
  2921. int update_next_balance = 0;
  2922. for_each_domain(cpu, sd) {
  2923. if (!(sd->flags & SD_LOAD_BALANCE))
  2924. continue;
  2925. interval = sd->balance_interval;
  2926. if (idle != CPU_IDLE)
  2927. interval *= sd->busy_factor;
  2928. /* scale ms to jiffies */
  2929. interval = msecs_to_jiffies(interval);
  2930. if (unlikely(!interval))
  2931. interval = 1;
  2932. if (interval > HZ*NR_CPUS/10)
  2933. interval = HZ*NR_CPUS/10;
  2934. if (sd->flags & SD_SERIALIZE) {
  2935. if (!spin_trylock(&balancing))
  2936. goto out;
  2937. }
  2938. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2939. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2940. /*
  2941. * We've pulled tasks over so either we're no
  2942. * longer idle, or one of our SMT siblings is
  2943. * not idle.
  2944. */
  2945. idle = CPU_NOT_IDLE;
  2946. }
  2947. sd->last_balance = jiffies;
  2948. }
  2949. if (sd->flags & SD_SERIALIZE)
  2950. spin_unlock(&balancing);
  2951. out:
  2952. if (time_after(next_balance, sd->last_balance + interval)) {
  2953. next_balance = sd->last_balance + interval;
  2954. update_next_balance = 1;
  2955. }
  2956. /*
  2957. * Stop the load balance at this level. There is another
  2958. * CPU in our sched group which is doing load balancing more
  2959. * actively.
  2960. */
  2961. if (!balance)
  2962. break;
  2963. }
  2964. /*
  2965. * next_balance will be updated only when there is a need.
  2966. * When the cpu is attached to null domain for ex, it will not be
  2967. * updated.
  2968. */
  2969. if (likely(update_next_balance))
  2970. rq->next_balance = next_balance;
  2971. }
  2972. /*
  2973. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2974. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2975. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2976. */
  2977. static void run_rebalance_domains(struct softirq_action *h)
  2978. {
  2979. int this_cpu = smp_processor_id();
  2980. struct rq *this_rq = cpu_rq(this_cpu);
  2981. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2982. CPU_IDLE : CPU_NOT_IDLE;
  2983. rebalance_domains(this_cpu, idle);
  2984. #ifdef CONFIG_NO_HZ
  2985. /*
  2986. * If this cpu is the owner for idle load balancing, then do the
  2987. * balancing on behalf of the other idle cpus whose ticks are
  2988. * stopped.
  2989. */
  2990. if (this_rq->idle_at_tick &&
  2991. atomic_read(&nohz.load_balancer) == this_cpu) {
  2992. cpumask_t cpus = nohz.cpu_mask;
  2993. struct rq *rq;
  2994. int balance_cpu;
  2995. cpu_clear(this_cpu, cpus);
  2996. for_each_cpu_mask(balance_cpu, cpus) {
  2997. /*
  2998. * If this cpu gets work to do, stop the load balancing
  2999. * work being done for other cpus. Next load
  3000. * balancing owner will pick it up.
  3001. */
  3002. if (need_resched())
  3003. break;
  3004. rebalance_domains(balance_cpu, CPU_IDLE);
  3005. rq = cpu_rq(balance_cpu);
  3006. if (time_after(this_rq->next_balance, rq->next_balance))
  3007. this_rq->next_balance = rq->next_balance;
  3008. }
  3009. }
  3010. #endif
  3011. }
  3012. /*
  3013. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3014. *
  3015. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3016. * idle load balancing owner or decide to stop the periodic load balancing,
  3017. * if the whole system is idle.
  3018. */
  3019. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3020. {
  3021. #ifdef CONFIG_NO_HZ
  3022. /*
  3023. * If we were in the nohz mode recently and busy at the current
  3024. * scheduler tick, then check if we need to nominate new idle
  3025. * load balancer.
  3026. */
  3027. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3028. rq->in_nohz_recently = 0;
  3029. if (atomic_read(&nohz.load_balancer) == cpu) {
  3030. cpu_clear(cpu, nohz.cpu_mask);
  3031. atomic_set(&nohz.load_balancer, -1);
  3032. }
  3033. if (atomic_read(&nohz.load_balancer) == -1) {
  3034. /*
  3035. * simple selection for now: Nominate the
  3036. * first cpu in the nohz list to be the next
  3037. * ilb owner.
  3038. *
  3039. * TBD: Traverse the sched domains and nominate
  3040. * the nearest cpu in the nohz.cpu_mask.
  3041. */
  3042. int ilb = first_cpu(nohz.cpu_mask);
  3043. if (ilb != NR_CPUS)
  3044. resched_cpu(ilb);
  3045. }
  3046. }
  3047. /*
  3048. * If this cpu is idle and doing idle load balancing for all the
  3049. * cpus with ticks stopped, is it time for that to stop?
  3050. */
  3051. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3052. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3053. resched_cpu(cpu);
  3054. return;
  3055. }
  3056. /*
  3057. * If this cpu is idle and the idle load balancing is done by
  3058. * someone else, then no need raise the SCHED_SOFTIRQ
  3059. */
  3060. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3061. cpu_isset(cpu, nohz.cpu_mask))
  3062. return;
  3063. #endif
  3064. if (time_after_eq(jiffies, rq->next_balance))
  3065. raise_softirq(SCHED_SOFTIRQ);
  3066. }
  3067. #else /* CONFIG_SMP */
  3068. /*
  3069. * on UP we do not need to balance between CPUs:
  3070. */
  3071. static inline void idle_balance(int cpu, struct rq *rq)
  3072. {
  3073. }
  3074. #endif
  3075. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3076. EXPORT_PER_CPU_SYMBOL(kstat);
  3077. /*
  3078. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3079. * that have not yet been banked in case the task is currently running.
  3080. */
  3081. unsigned long long task_sched_runtime(struct task_struct *p)
  3082. {
  3083. unsigned long flags;
  3084. u64 ns, delta_exec;
  3085. struct rq *rq;
  3086. rq = task_rq_lock(p, &flags);
  3087. ns = p->se.sum_exec_runtime;
  3088. if (task_current(rq, p)) {
  3089. update_rq_clock(rq);
  3090. delta_exec = rq->clock - p->se.exec_start;
  3091. if ((s64)delta_exec > 0)
  3092. ns += delta_exec;
  3093. }
  3094. task_rq_unlock(rq, &flags);
  3095. return ns;
  3096. }
  3097. /*
  3098. * Account user cpu time to a process.
  3099. * @p: the process that the cpu time gets accounted to
  3100. * @cputime: the cpu time spent in user space since the last update
  3101. */
  3102. void account_user_time(struct task_struct *p, cputime_t cputime)
  3103. {
  3104. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3105. cputime64_t tmp;
  3106. p->utime = cputime_add(p->utime, cputime);
  3107. /* Add user time to cpustat. */
  3108. tmp = cputime_to_cputime64(cputime);
  3109. if (TASK_NICE(p) > 0)
  3110. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3111. else
  3112. cpustat->user = cputime64_add(cpustat->user, tmp);
  3113. }
  3114. /*
  3115. * Account guest cpu time to a process.
  3116. * @p: the process that the cpu time gets accounted to
  3117. * @cputime: the cpu time spent in virtual machine since the last update
  3118. */
  3119. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3120. {
  3121. cputime64_t tmp;
  3122. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3123. tmp = cputime_to_cputime64(cputime);
  3124. p->utime = cputime_add(p->utime, cputime);
  3125. p->gtime = cputime_add(p->gtime, cputime);
  3126. cpustat->user = cputime64_add(cpustat->user, tmp);
  3127. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3128. }
  3129. /*
  3130. * Account scaled user cpu time to a process.
  3131. * @p: the process that the cpu time gets accounted to
  3132. * @cputime: the cpu time spent in user space since the last update
  3133. */
  3134. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3135. {
  3136. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3137. }
  3138. /*
  3139. * Account system cpu time to a process.
  3140. * @p: the process that the cpu time gets accounted to
  3141. * @hardirq_offset: the offset to subtract from hardirq_count()
  3142. * @cputime: the cpu time spent in kernel space since the last update
  3143. */
  3144. void account_system_time(struct task_struct *p, int hardirq_offset,
  3145. cputime_t cputime)
  3146. {
  3147. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3148. struct rq *rq = this_rq();
  3149. cputime64_t tmp;
  3150. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3151. return account_guest_time(p, cputime);
  3152. p->stime = cputime_add(p->stime, cputime);
  3153. /* Add system time to cpustat. */
  3154. tmp = cputime_to_cputime64(cputime);
  3155. if (hardirq_count() - hardirq_offset)
  3156. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3157. else if (softirq_count())
  3158. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3159. else if (p != rq->idle)
  3160. cpustat->system = cputime64_add(cpustat->system, tmp);
  3161. else if (atomic_read(&rq->nr_iowait) > 0)
  3162. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3163. else
  3164. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3165. /* Account for system time used */
  3166. acct_update_integrals(p);
  3167. }
  3168. /*
  3169. * Account scaled system cpu time to a process.
  3170. * @p: the process that the cpu time gets accounted to
  3171. * @hardirq_offset: the offset to subtract from hardirq_count()
  3172. * @cputime: the cpu time spent in kernel space since the last update
  3173. */
  3174. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3175. {
  3176. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3177. }
  3178. /*
  3179. * Account for involuntary wait time.
  3180. * @p: the process from which the cpu time has been stolen
  3181. * @steal: the cpu time spent in involuntary wait
  3182. */
  3183. void account_steal_time(struct task_struct *p, cputime_t steal)
  3184. {
  3185. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3186. cputime64_t tmp = cputime_to_cputime64(steal);
  3187. struct rq *rq = this_rq();
  3188. if (p == rq->idle) {
  3189. p->stime = cputime_add(p->stime, steal);
  3190. if (atomic_read(&rq->nr_iowait) > 0)
  3191. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3192. else
  3193. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3194. } else
  3195. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3196. }
  3197. /*
  3198. * This function gets called by the timer code, with HZ frequency.
  3199. * We call it with interrupts disabled.
  3200. *
  3201. * It also gets called by the fork code, when changing the parent's
  3202. * timeslices.
  3203. */
  3204. void scheduler_tick(void)
  3205. {
  3206. int cpu = smp_processor_id();
  3207. struct rq *rq = cpu_rq(cpu);
  3208. struct task_struct *curr = rq->curr;
  3209. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3210. spin_lock(&rq->lock);
  3211. __update_rq_clock(rq);
  3212. /*
  3213. * Let rq->clock advance by at least TICK_NSEC:
  3214. */
  3215. if (unlikely(rq->clock < next_tick)) {
  3216. rq->clock = next_tick;
  3217. rq->clock_underflows++;
  3218. }
  3219. rq->tick_timestamp = rq->clock;
  3220. update_cpu_load(rq);
  3221. curr->sched_class->task_tick(rq, curr, 0);
  3222. update_sched_rt_period(rq);
  3223. spin_unlock(&rq->lock);
  3224. #ifdef CONFIG_SMP
  3225. rq->idle_at_tick = idle_cpu(cpu);
  3226. trigger_load_balance(rq, cpu);
  3227. #endif
  3228. }
  3229. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3230. void fastcall add_preempt_count(int val)
  3231. {
  3232. /*
  3233. * Underflow?
  3234. */
  3235. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3236. return;
  3237. preempt_count() += val;
  3238. /*
  3239. * Spinlock count overflowing soon?
  3240. */
  3241. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3242. PREEMPT_MASK - 10);
  3243. }
  3244. EXPORT_SYMBOL(add_preempt_count);
  3245. void fastcall sub_preempt_count(int val)
  3246. {
  3247. /*
  3248. * Underflow?
  3249. */
  3250. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3251. return;
  3252. /*
  3253. * Is the spinlock portion underflowing?
  3254. */
  3255. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3256. !(preempt_count() & PREEMPT_MASK)))
  3257. return;
  3258. preempt_count() -= val;
  3259. }
  3260. EXPORT_SYMBOL(sub_preempt_count);
  3261. #endif
  3262. /*
  3263. * Print scheduling while atomic bug:
  3264. */
  3265. static noinline void __schedule_bug(struct task_struct *prev)
  3266. {
  3267. struct pt_regs *regs = get_irq_regs();
  3268. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3269. prev->comm, prev->pid, preempt_count());
  3270. debug_show_held_locks(prev);
  3271. if (irqs_disabled())
  3272. print_irqtrace_events(prev);
  3273. if (regs)
  3274. show_regs(regs);
  3275. else
  3276. dump_stack();
  3277. }
  3278. /*
  3279. * Various schedule()-time debugging checks and statistics:
  3280. */
  3281. static inline void schedule_debug(struct task_struct *prev)
  3282. {
  3283. /*
  3284. * Test if we are atomic. Since do_exit() needs to call into
  3285. * schedule() atomically, we ignore that path for now.
  3286. * Otherwise, whine if we are scheduling when we should not be.
  3287. */
  3288. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3289. __schedule_bug(prev);
  3290. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3291. schedstat_inc(this_rq(), sched_count);
  3292. #ifdef CONFIG_SCHEDSTATS
  3293. if (unlikely(prev->lock_depth >= 0)) {
  3294. schedstat_inc(this_rq(), bkl_count);
  3295. schedstat_inc(prev, sched_info.bkl_count);
  3296. }
  3297. #endif
  3298. }
  3299. /*
  3300. * Pick up the highest-prio task:
  3301. */
  3302. static inline struct task_struct *
  3303. pick_next_task(struct rq *rq, struct task_struct *prev)
  3304. {
  3305. const struct sched_class *class;
  3306. struct task_struct *p;
  3307. /*
  3308. * Optimization: we know that if all tasks are in
  3309. * the fair class we can call that function directly:
  3310. */
  3311. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3312. p = fair_sched_class.pick_next_task(rq);
  3313. if (likely(p))
  3314. return p;
  3315. }
  3316. class = sched_class_highest;
  3317. for ( ; ; ) {
  3318. p = class->pick_next_task(rq);
  3319. if (p)
  3320. return p;
  3321. /*
  3322. * Will never be NULL as the idle class always
  3323. * returns a non-NULL p:
  3324. */
  3325. class = class->next;
  3326. }
  3327. }
  3328. /*
  3329. * schedule() is the main scheduler function.
  3330. */
  3331. asmlinkage void __sched schedule(void)
  3332. {
  3333. struct task_struct *prev, *next;
  3334. long *switch_count;
  3335. struct rq *rq;
  3336. int cpu;
  3337. need_resched:
  3338. preempt_disable();
  3339. cpu = smp_processor_id();
  3340. rq = cpu_rq(cpu);
  3341. rcu_qsctr_inc(cpu);
  3342. prev = rq->curr;
  3343. switch_count = &prev->nivcsw;
  3344. release_kernel_lock(prev);
  3345. need_resched_nonpreemptible:
  3346. schedule_debug(prev);
  3347. hrtick_clear(rq);
  3348. /*
  3349. * Do the rq-clock update outside the rq lock:
  3350. */
  3351. local_irq_disable();
  3352. __update_rq_clock(rq);
  3353. spin_lock(&rq->lock);
  3354. clear_tsk_need_resched(prev);
  3355. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3356. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3357. unlikely(signal_pending(prev)))) {
  3358. prev->state = TASK_RUNNING;
  3359. } else {
  3360. deactivate_task(rq, prev, 1);
  3361. }
  3362. switch_count = &prev->nvcsw;
  3363. }
  3364. #ifdef CONFIG_SMP
  3365. if (prev->sched_class->pre_schedule)
  3366. prev->sched_class->pre_schedule(rq, prev);
  3367. #endif
  3368. if (unlikely(!rq->nr_running))
  3369. idle_balance(cpu, rq);
  3370. prev->sched_class->put_prev_task(rq, prev);
  3371. next = pick_next_task(rq, prev);
  3372. sched_info_switch(prev, next);
  3373. if (likely(prev != next)) {
  3374. rq->nr_switches++;
  3375. rq->curr = next;
  3376. ++*switch_count;
  3377. context_switch(rq, prev, next); /* unlocks the rq */
  3378. /*
  3379. * the context switch might have flipped the stack from under
  3380. * us, hence refresh the local variables.
  3381. */
  3382. cpu = smp_processor_id();
  3383. rq = cpu_rq(cpu);
  3384. } else
  3385. spin_unlock_irq(&rq->lock);
  3386. hrtick_set(rq);
  3387. if (unlikely(reacquire_kernel_lock(current) < 0))
  3388. goto need_resched_nonpreemptible;
  3389. preempt_enable_no_resched();
  3390. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3391. goto need_resched;
  3392. }
  3393. EXPORT_SYMBOL(schedule);
  3394. #ifdef CONFIG_PREEMPT
  3395. /*
  3396. * this is the entry point to schedule() from in-kernel preemption
  3397. * off of preempt_enable. Kernel preemptions off return from interrupt
  3398. * occur there and call schedule directly.
  3399. */
  3400. asmlinkage void __sched preempt_schedule(void)
  3401. {
  3402. struct thread_info *ti = current_thread_info();
  3403. struct task_struct *task = current;
  3404. int saved_lock_depth;
  3405. /*
  3406. * If there is a non-zero preempt_count or interrupts are disabled,
  3407. * we do not want to preempt the current task. Just return..
  3408. */
  3409. if (likely(ti->preempt_count || irqs_disabled()))
  3410. return;
  3411. do {
  3412. add_preempt_count(PREEMPT_ACTIVE);
  3413. /*
  3414. * We keep the big kernel semaphore locked, but we
  3415. * clear ->lock_depth so that schedule() doesnt
  3416. * auto-release the semaphore:
  3417. */
  3418. saved_lock_depth = task->lock_depth;
  3419. task->lock_depth = -1;
  3420. schedule();
  3421. task->lock_depth = saved_lock_depth;
  3422. sub_preempt_count(PREEMPT_ACTIVE);
  3423. /*
  3424. * Check again in case we missed a preemption opportunity
  3425. * between schedule and now.
  3426. */
  3427. barrier();
  3428. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3429. }
  3430. EXPORT_SYMBOL(preempt_schedule);
  3431. /*
  3432. * this is the entry point to schedule() from kernel preemption
  3433. * off of irq context.
  3434. * Note, that this is called and return with irqs disabled. This will
  3435. * protect us against recursive calling from irq.
  3436. */
  3437. asmlinkage void __sched preempt_schedule_irq(void)
  3438. {
  3439. struct thread_info *ti = current_thread_info();
  3440. struct task_struct *task = current;
  3441. int saved_lock_depth;
  3442. /* Catch callers which need to be fixed */
  3443. BUG_ON(ti->preempt_count || !irqs_disabled());
  3444. do {
  3445. add_preempt_count(PREEMPT_ACTIVE);
  3446. /*
  3447. * We keep the big kernel semaphore locked, but we
  3448. * clear ->lock_depth so that schedule() doesnt
  3449. * auto-release the semaphore:
  3450. */
  3451. saved_lock_depth = task->lock_depth;
  3452. task->lock_depth = -1;
  3453. local_irq_enable();
  3454. schedule();
  3455. local_irq_disable();
  3456. task->lock_depth = saved_lock_depth;
  3457. sub_preempt_count(PREEMPT_ACTIVE);
  3458. /*
  3459. * Check again in case we missed a preemption opportunity
  3460. * between schedule and now.
  3461. */
  3462. barrier();
  3463. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3464. }
  3465. #endif /* CONFIG_PREEMPT */
  3466. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3467. void *key)
  3468. {
  3469. return try_to_wake_up(curr->private, mode, sync);
  3470. }
  3471. EXPORT_SYMBOL(default_wake_function);
  3472. /*
  3473. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3474. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3475. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3476. *
  3477. * There are circumstances in which we can try to wake a task which has already
  3478. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3479. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3480. */
  3481. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3482. int nr_exclusive, int sync, void *key)
  3483. {
  3484. wait_queue_t *curr, *next;
  3485. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3486. unsigned flags = curr->flags;
  3487. if (curr->func(curr, mode, sync, key) &&
  3488. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3489. break;
  3490. }
  3491. }
  3492. /**
  3493. * __wake_up - wake up threads blocked on a waitqueue.
  3494. * @q: the waitqueue
  3495. * @mode: which threads
  3496. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3497. * @key: is directly passed to the wakeup function
  3498. */
  3499. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3500. int nr_exclusive, void *key)
  3501. {
  3502. unsigned long flags;
  3503. spin_lock_irqsave(&q->lock, flags);
  3504. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3505. spin_unlock_irqrestore(&q->lock, flags);
  3506. }
  3507. EXPORT_SYMBOL(__wake_up);
  3508. /*
  3509. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3510. */
  3511. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3512. {
  3513. __wake_up_common(q, mode, 1, 0, NULL);
  3514. }
  3515. /**
  3516. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3517. * @q: the waitqueue
  3518. * @mode: which threads
  3519. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3520. *
  3521. * The sync wakeup differs that the waker knows that it will schedule
  3522. * away soon, so while the target thread will be woken up, it will not
  3523. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3524. * with each other. This can prevent needless bouncing between CPUs.
  3525. *
  3526. * On UP it can prevent extra preemption.
  3527. */
  3528. void fastcall
  3529. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3530. {
  3531. unsigned long flags;
  3532. int sync = 1;
  3533. if (unlikely(!q))
  3534. return;
  3535. if (unlikely(!nr_exclusive))
  3536. sync = 0;
  3537. spin_lock_irqsave(&q->lock, flags);
  3538. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3539. spin_unlock_irqrestore(&q->lock, flags);
  3540. }
  3541. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3542. void complete(struct completion *x)
  3543. {
  3544. unsigned long flags;
  3545. spin_lock_irqsave(&x->wait.lock, flags);
  3546. x->done++;
  3547. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3548. 1, 0, NULL);
  3549. spin_unlock_irqrestore(&x->wait.lock, flags);
  3550. }
  3551. EXPORT_SYMBOL(complete);
  3552. void complete_all(struct completion *x)
  3553. {
  3554. unsigned long flags;
  3555. spin_lock_irqsave(&x->wait.lock, flags);
  3556. x->done += UINT_MAX/2;
  3557. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3558. 0, 0, NULL);
  3559. spin_unlock_irqrestore(&x->wait.lock, flags);
  3560. }
  3561. EXPORT_SYMBOL(complete_all);
  3562. static inline long __sched
  3563. do_wait_for_common(struct completion *x, long timeout, int state)
  3564. {
  3565. if (!x->done) {
  3566. DECLARE_WAITQUEUE(wait, current);
  3567. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3568. __add_wait_queue_tail(&x->wait, &wait);
  3569. do {
  3570. if (state == TASK_INTERRUPTIBLE &&
  3571. signal_pending(current)) {
  3572. __remove_wait_queue(&x->wait, &wait);
  3573. return -ERESTARTSYS;
  3574. }
  3575. __set_current_state(state);
  3576. spin_unlock_irq(&x->wait.lock);
  3577. timeout = schedule_timeout(timeout);
  3578. spin_lock_irq(&x->wait.lock);
  3579. if (!timeout) {
  3580. __remove_wait_queue(&x->wait, &wait);
  3581. return timeout;
  3582. }
  3583. } while (!x->done);
  3584. __remove_wait_queue(&x->wait, &wait);
  3585. }
  3586. x->done--;
  3587. return timeout;
  3588. }
  3589. static long __sched
  3590. wait_for_common(struct completion *x, long timeout, int state)
  3591. {
  3592. might_sleep();
  3593. spin_lock_irq(&x->wait.lock);
  3594. timeout = do_wait_for_common(x, timeout, state);
  3595. spin_unlock_irq(&x->wait.lock);
  3596. return timeout;
  3597. }
  3598. void __sched wait_for_completion(struct completion *x)
  3599. {
  3600. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3601. }
  3602. EXPORT_SYMBOL(wait_for_completion);
  3603. unsigned long __sched
  3604. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3605. {
  3606. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3607. }
  3608. EXPORT_SYMBOL(wait_for_completion_timeout);
  3609. int __sched wait_for_completion_interruptible(struct completion *x)
  3610. {
  3611. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3612. if (t == -ERESTARTSYS)
  3613. return t;
  3614. return 0;
  3615. }
  3616. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3617. unsigned long __sched
  3618. wait_for_completion_interruptible_timeout(struct completion *x,
  3619. unsigned long timeout)
  3620. {
  3621. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3622. }
  3623. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3624. static long __sched
  3625. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3626. {
  3627. unsigned long flags;
  3628. wait_queue_t wait;
  3629. init_waitqueue_entry(&wait, current);
  3630. __set_current_state(state);
  3631. spin_lock_irqsave(&q->lock, flags);
  3632. __add_wait_queue(q, &wait);
  3633. spin_unlock(&q->lock);
  3634. timeout = schedule_timeout(timeout);
  3635. spin_lock_irq(&q->lock);
  3636. __remove_wait_queue(q, &wait);
  3637. spin_unlock_irqrestore(&q->lock, flags);
  3638. return timeout;
  3639. }
  3640. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3641. {
  3642. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3643. }
  3644. EXPORT_SYMBOL(interruptible_sleep_on);
  3645. long __sched
  3646. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3647. {
  3648. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3649. }
  3650. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3651. void __sched sleep_on(wait_queue_head_t *q)
  3652. {
  3653. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3654. }
  3655. EXPORT_SYMBOL(sleep_on);
  3656. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3657. {
  3658. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3659. }
  3660. EXPORT_SYMBOL(sleep_on_timeout);
  3661. #ifdef CONFIG_RT_MUTEXES
  3662. /*
  3663. * rt_mutex_setprio - set the current priority of a task
  3664. * @p: task
  3665. * @prio: prio value (kernel-internal form)
  3666. *
  3667. * This function changes the 'effective' priority of a task. It does
  3668. * not touch ->normal_prio like __setscheduler().
  3669. *
  3670. * Used by the rt_mutex code to implement priority inheritance logic.
  3671. */
  3672. void rt_mutex_setprio(struct task_struct *p, int prio)
  3673. {
  3674. unsigned long flags;
  3675. int oldprio, on_rq, running;
  3676. struct rq *rq;
  3677. const struct sched_class *prev_class = p->sched_class;
  3678. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3679. rq = task_rq_lock(p, &flags);
  3680. update_rq_clock(rq);
  3681. oldprio = p->prio;
  3682. on_rq = p->se.on_rq;
  3683. running = task_current(rq, p);
  3684. if (on_rq) {
  3685. dequeue_task(rq, p, 0);
  3686. if (running)
  3687. p->sched_class->put_prev_task(rq, p);
  3688. }
  3689. if (rt_prio(prio))
  3690. p->sched_class = &rt_sched_class;
  3691. else
  3692. p->sched_class = &fair_sched_class;
  3693. p->prio = prio;
  3694. if (on_rq) {
  3695. if (running)
  3696. p->sched_class->set_curr_task(rq);
  3697. enqueue_task(rq, p, 0);
  3698. check_class_changed(rq, p, prev_class, oldprio, running);
  3699. }
  3700. task_rq_unlock(rq, &flags);
  3701. }
  3702. #endif
  3703. void set_user_nice(struct task_struct *p, long nice)
  3704. {
  3705. int old_prio, delta, on_rq;
  3706. unsigned long flags;
  3707. struct rq *rq;
  3708. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3709. return;
  3710. /*
  3711. * We have to be careful, if called from sys_setpriority(),
  3712. * the task might be in the middle of scheduling on another CPU.
  3713. */
  3714. rq = task_rq_lock(p, &flags);
  3715. update_rq_clock(rq);
  3716. /*
  3717. * The RT priorities are set via sched_setscheduler(), but we still
  3718. * allow the 'normal' nice value to be set - but as expected
  3719. * it wont have any effect on scheduling until the task is
  3720. * SCHED_FIFO/SCHED_RR:
  3721. */
  3722. if (task_has_rt_policy(p)) {
  3723. p->static_prio = NICE_TO_PRIO(nice);
  3724. goto out_unlock;
  3725. }
  3726. on_rq = p->se.on_rq;
  3727. if (on_rq)
  3728. dequeue_task(rq, p, 0);
  3729. p->static_prio = NICE_TO_PRIO(nice);
  3730. set_load_weight(p);
  3731. old_prio = p->prio;
  3732. p->prio = effective_prio(p);
  3733. delta = p->prio - old_prio;
  3734. if (on_rq) {
  3735. enqueue_task(rq, p, 0);
  3736. /*
  3737. * If the task increased its priority or is running and
  3738. * lowered its priority, then reschedule its CPU:
  3739. */
  3740. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3741. resched_task(rq->curr);
  3742. }
  3743. out_unlock:
  3744. task_rq_unlock(rq, &flags);
  3745. }
  3746. EXPORT_SYMBOL(set_user_nice);
  3747. /*
  3748. * can_nice - check if a task can reduce its nice value
  3749. * @p: task
  3750. * @nice: nice value
  3751. */
  3752. int can_nice(const struct task_struct *p, const int nice)
  3753. {
  3754. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3755. int nice_rlim = 20 - nice;
  3756. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3757. capable(CAP_SYS_NICE));
  3758. }
  3759. #ifdef __ARCH_WANT_SYS_NICE
  3760. /*
  3761. * sys_nice - change the priority of the current process.
  3762. * @increment: priority increment
  3763. *
  3764. * sys_setpriority is a more generic, but much slower function that
  3765. * does similar things.
  3766. */
  3767. asmlinkage long sys_nice(int increment)
  3768. {
  3769. long nice, retval;
  3770. /*
  3771. * Setpriority might change our priority at the same moment.
  3772. * We don't have to worry. Conceptually one call occurs first
  3773. * and we have a single winner.
  3774. */
  3775. if (increment < -40)
  3776. increment = -40;
  3777. if (increment > 40)
  3778. increment = 40;
  3779. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3780. if (nice < -20)
  3781. nice = -20;
  3782. if (nice > 19)
  3783. nice = 19;
  3784. if (increment < 0 && !can_nice(current, nice))
  3785. return -EPERM;
  3786. retval = security_task_setnice(current, nice);
  3787. if (retval)
  3788. return retval;
  3789. set_user_nice(current, nice);
  3790. return 0;
  3791. }
  3792. #endif
  3793. /**
  3794. * task_prio - return the priority value of a given task.
  3795. * @p: the task in question.
  3796. *
  3797. * This is the priority value as seen by users in /proc.
  3798. * RT tasks are offset by -200. Normal tasks are centered
  3799. * around 0, value goes from -16 to +15.
  3800. */
  3801. int task_prio(const struct task_struct *p)
  3802. {
  3803. return p->prio - MAX_RT_PRIO;
  3804. }
  3805. /**
  3806. * task_nice - return the nice value of a given task.
  3807. * @p: the task in question.
  3808. */
  3809. int task_nice(const struct task_struct *p)
  3810. {
  3811. return TASK_NICE(p);
  3812. }
  3813. EXPORT_SYMBOL_GPL(task_nice);
  3814. /**
  3815. * idle_cpu - is a given cpu idle currently?
  3816. * @cpu: the processor in question.
  3817. */
  3818. int idle_cpu(int cpu)
  3819. {
  3820. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3821. }
  3822. /**
  3823. * idle_task - return the idle task for a given cpu.
  3824. * @cpu: the processor in question.
  3825. */
  3826. struct task_struct *idle_task(int cpu)
  3827. {
  3828. return cpu_rq(cpu)->idle;
  3829. }
  3830. /**
  3831. * find_process_by_pid - find a process with a matching PID value.
  3832. * @pid: the pid in question.
  3833. */
  3834. static struct task_struct *find_process_by_pid(pid_t pid)
  3835. {
  3836. return pid ? find_task_by_vpid(pid) : current;
  3837. }
  3838. /* Actually do priority change: must hold rq lock. */
  3839. static void
  3840. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3841. {
  3842. BUG_ON(p->se.on_rq);
  3843. p->policy = policy;
  3844. switch (p->policy) {
  3845. case SCHED_NORMAL:
  3846. case SCHED_BATCH:
  3847. case SCHED_IDLE:
  3848. p->sched_class = &fair_sched_class;
  3849. break;
  3850. case SCHED_FIFO:
  3851. case SCHED_RR:
  3852. p->sched_class = &rt_sched_class;
  3853. break;
  3854. }
  3855. p->rt_priority = prio;
  3856. p->normal_prio = normal_prio(p);
  3857. /* we are holding p->pi_lock already */
  3858. p->prio = rt_mutex_getprio(p);
  3859. set_load_weight(p);
  3860. }
  3861. /**
  3862. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3863. * @p: the task in question.
  3864. * @policy: new policy.
  3865. * @param: structure containing the new RT priority.
  3866. *
  3867. * NOTE that the task may be already dead.
  3868. */
  3869. int sched_setscheduler(struct task_struct *p, int policy,
  3870. struct sched_param *param)
  3871. {
  3872. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3873. unsigned long flags;
  3874. const struct sched_class *prev_class = p->sched_class;
  3875. struct rq *rq;
  3876. /* may grab non-irq protected spin_locks */
  3877. BUG_ON(in_interrupt());
  3878. recheck:
  3879. /* double check policy once rq lock held */
  3880. if (policy < 0)
  3881. policy = oldpolicy = p->policy;
  3882. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3883. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3884. policy != SCHED_IDLE)
  3885. return -EINVAL;
  3886. /*
  3887. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3888. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3889. * SCHED_BATCH and SCHED_IDLE is 0.
  3890. */
  3891. if (param->sched_priority < 0 ||
  3892. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3893. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3894. return -EINVAL;
  3895. if (rt_policy(policy) != (param->sched_priority != 0))
  3896. return -EINVAL;
  3897. /*
  3898. * Allow unprivileged RT tasks to decrease priority:
  3899. */
  3900. if (!capable(CAP_SYS_NICE)) {
  3901. if (rt_policy(policy)) {
  3902. unsigned long rlim_rtprio;
  3903. if (!lock_task_sighand(p, &flags))
  3904. return -ESRCH;
  3905. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3906. unlock_task_sighand(p, &flags);
  3907. /* can't set/change the rt policy */
  3908. if (policy != p->policy && !rlim_rtprio)
  3909. return -EPERM;
  3910. /* can't increase priority */
  3911. if (param->sched_priority > p->rt_priority &&
  3912. param->sched_priority > rlim_rtprio)
  3913. return -EPERM;
  3914. }
  3915. /*
  3916. * Like positive nice levels, dont allow tasks to
  3917. * move out of SCHED_IDLE either:
  3918. */
  3919. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3920. return -EPERM;
  3921. /* can't change other user's priorities */
  3922. if ((current->euid != p->euid) &&
  3923. (current->euid != p->uid))
  3924. return -EPERM;
  3925. }
  3926. retval = security_task_setscheduler(p, policy, param);
  3927. if (retval)
  3928. return retval;
  3929. /*
  3930. * make sure no PI-waiters arrive (or leave) while we are
  3931. * changing the priority of the task:
  3932. */
  3933. spin_lock_irqsave(&p->pi_lock, flags);
  3934. /*
  3935. * To be able to change p->policy safely, the apropriate
  3936. * runqueue lock must be held.
  3937. */
  3938. rq = __task_rq_lock(p);
  3939. /* recheck policy now with rq lock held */
  3940. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3941. policy = oldpolicy = -1;
  3942. __task_rq_unlock(rq);
  3943. spin_unlock_irqrestore(&p->pi_lock, flags);
  3944. goto recheck;
  3945. }
  3946. update_rq_clock(rq);
  3947. on_rq = p->se.on_rq;
  3948. running = task_current(rq, p);
  3949. if (on_rq) {
  3950. deactivate_task(rq, p, 0);
  3951. if (running)
  3952. p->sched_class->put_prev_task(rq, p);
  3953. }
  3954. oldprio = p->prio;
  3955. __setscheduler(rq, p, policy, param->sched_priority);
  3956. if (on_rq) {
  3957. if (running)
  3958. p->sched_class->set_curr_task(rq);
  3959. activate_task(rq, p, 0);
  3960. check_class_changed(rq, p, prev_class, oldprio, running);
  3961. }
  3962. __task_rq_unlock(rq);
  3963. spin_unlock_irqrestore(&p->pi_lock, flags);
  3964. rt_mutex_adjust_pi(p);
  3965. return 0;
  3966. }
  3967. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3968. static int
  3969. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3970. {
  3971. struct sched_param lparam;
  3972. struct task_struct *p;
  3973. int retval;
  3974. if (!param || pid < 0)
  3975. return -EINVAL;
  3976. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3977. return -EFAULT;
  3978. rcu_read_lock();
  3979. retval = -ESRCH;
  3980. p = find_process_by_pid(pid);
  3981. if (p != NULL)
  3982. retval = sched_setscheduler(p, policy, &lparam);
  3983. rcu_read_unlock();
  3984. return retval;
  3985. }
  3986. /**
  3987. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3988. * @pid: the pid in question.
  3989. * @policy: new policy.
  3990. * @param: structure containing the new RT priority.
  3991. */
  3992. asmlinkage long
  3993. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3994. {
  3995. /* negative values for policy are not valid */
  3996. if (policy < 0)
  3997. return -EINVAL;
  3998. return do_sched_setscheduler(pid, policy, param);
  3999. }
  4000. /**
  4001. * sys_sched_setparam - set/change the RT priority of a thread
  4002. * @pid: the pid in question.
  4003. * @param: structure containing the new RT priority.
  4004. */
  4005. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4006. {
  4007. return do_sched_setscheduler(pid, -1, param);
  4008. }
  4009. /**
  4010. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4011. * @pid: the pid in question.
  4012. */
  4013. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4014. {
  4015. struct task_struct *p;
  4016. int retval;
  4017. if (pid < 0)
  4018. return -EINVAL;
  4019. retval = -ESRCH;
  4020. read_lock(&tasklist_lock);
  4021. p = find_process_by_pid(pid);
  4022. if (p) {
  4023. retval = security_task_getscheduler(p);
  4024. if (!retval)
  4025. retval = p->policy;
  4026. }
  4027. read_unlock(&tasklist_lock);
  4028. return retval;
  4029. }
  4030. /**
  4031. * sys_sched_getscheduler - get the RT priority of a thread
  4032. * @pid: the pid in question.
  4033. * @param: structure containing the RT priority.
  4034. */
  4035. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4036. {
  4037. struct sched_param lp;
  4038. struct task_struct *p;
  4039. int retval;
  4040. if (!param || pid < 0)
  4041. return -EINVAL;
  4042. read_lock(&tasklist_lock);
  4043. p = find_process_by_pid(pid);
  4044. retval = -ESRCH;
  4045. if (!p)
  4046. goto out_unlock;
  4047. retval = security_task_getscheduler(p);
  4048. if (retval)
  4049. goto out_unlock;
  4050. lp.sched_priority = p->rt_priority;
  4051. read_unlock(&tasklist_lock);
  4052. /*
  4053. * This one might sleep, we cannot do it with a spinlock held ...
  4054. */
  4055. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4056. return retval;
  4057. out_unlock:
  4058. read_unlock(&tasklist_lock);
  4059. return retval;
  4060. }
  4061. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4062. {
  4063. cpumask_t cpus_allowed;
  4064. struct task_struct *p;
  4065. int retval;
  4066. get_online_cpus();
  4067. read_lock(&tasklist_lock);
  4068. p = find_process_by_pid(pid);
  4069. if (!p) {
  4070. read_unlock(&tasklist_lock);
  4071. put_online_cpus();
  4072. return -ESRCH;
  4073. }
  4074. /*
  4075. * It is not safe to call set_cpus_allowed with the
  4076. * tasklist_lock held. We will bump the task_struct's
  4077. * usage count and then drop tasklist_lock.
  4078. */
  4079. get_task_struct(p);
  4080. read_unlock(&tasklist_lock);
  4081. retval = -EPERM;
  4082. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4083. !capable(CAP_SYS_NICE))
  4084. goto out_unlock;
  4085. retval = security_task_setscheduler(p, 0, NULL);
  4086. if (retval)
  4087. goto out_unlock;
  4088. cpus_allowed = cpuset_cpus_allowed(p);
  4089. cpus_and(new_mask, new_mask, cpus_allowed);
  4090. again:
  4091. retval = set_cpus_allowed(p, new_mask);
  4092. if (!retval) {
  4093. cpus_allowed = cpuset_cpus_allowed(p);
  4094. if (!cpus_subset(new_mask, cpus_allowed)) {
  4095. /*
  4096. * We must have raced with a concurrent cpuset
  4097. * update. Just reset the cpus_allowed to the
  4098. * cpuset's cpus_allowed
  4099. */
  4100. new_mask = cpus_allowed;
  4101. goto again;
  4102. }
  4103. }
  4104. out_unlock:
  4105. put_task_struct(p);
  4106. put_online_cpus();
  4107. return retval;
  4108. }
  4109. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4110. cpumask_t *new_mask)
  4111. {
  4112. if (len < sizeof(cpumask_t)) {
  4113. memset(new_mask, 0, sizeof(cpumask_t));
  4114. } else if (len > sizeof(cpumask_t)) {
  4115. len = sizeof(cpumask_t);
  4116. }
  4117. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4118. }
  4119. /**
  4120. * sys_sched_setaffinity - set the cpu affinity of a process
  4121. * @pid: pid of the process
  4122. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4123. * @user_mask_ptr: user-space pointer to the new cpu mask
  4124. */
  4125. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4126. unsigned long __user *user_mask_ptr)
  4127. {
  4128. cpumask_t new_mask;
  4129. int retval;
  4130. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4131. if (retval)
  4132. return retval;
  4133. return sched_setaffinity(pid, new_mask);
  4134. }
  4135. /*
  4136. * Represents all cpu's present in the system
  4137. * In systems capable of hotplug, this map could dynamically grow
  4138. * as new cpu's are detected in the system via any platform specific
  4139. * method, such as ACPI for e.g.
  4140. */
  4141. cpumask_t cpu_present_map __read_mostly;
  4142. EXPORT_SYMBOL(cpu_present_map);
  4143. #ifndef CONFIG_SMP
  4144. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4145. EXPORT_SYMBOL(cpu_online_map);
  4146. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4147. EXPORT_SYMBOL(cpu_possible_map);
  4148. #endif
  4149. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4150. {
  4151. struct task_struct *p;
  4152. int retval;
  4153. get_online_cpus();
  4154. read_lock(&tasklist_lock);
  4155. retval = -ESRCH;
  4156. p = find_process_by_pid(pid);
  4157. if (!p)
  4158. goto out_unlock;
  4159. retval = security_task_getscheduler(p);
  4160. if (retval)
  4161. goto out_unlock;
  4162. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4163. out_unlock:
  4164. read_unlock(&tasklist_lock);
  4165. put_online_cpus();
  4166. return retval;
  4167. }
  4168. /**
  4169. * sys_sched_getaffinity - get the cpu affinity of a process
  4170. * @pid: pid of the process
  4171. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4172. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4173. */
  4174. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4175. unsigned long __user *user_mask_ptr)
  4176. {
  4177. int ret;
  4178. cpumask_t mask;
  4179. if (len < sizeof(cpumask_t))
  4180. return -EINVAL;
  4181. ret = sched_getaffinity(pid, &mask);
  4182. if (ret < 0)
  4183. return ret;
  4184. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4185. return -EFAULT;
  4186. return sizeof(cpumask_t);
  4187. }
  4188. /**
  4189. * sys_sched_yield - yield the current processor to other threads.
  4190. *
  4191. * This function yields the current CPU to other tasks. If there are no
  4192. * other threads running on this CPU then this function will return.
  4193. */
  4194. asmlinkage long sys_sched_yield(void)
  4195. {
  4196. struct rq *rq = this_rq_lock();
  4197. schedstat_inc(rq, yld_count);
  4198. current->sched_class->yield_task(rq);
  4199. /*
  4200. * Since we are going to call schedule() anyway, there's
  4201. * no need to preempt or enable interrupts:
  4202. */
  4203. __release(rq->lock);
  4204. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4205. _raw_spin_unlock(&rq->lock);
  4206. preempt_enable_no_resched();
  4207. schedule();
  4208. return 0;
  4209. }
  4210. static void __cond_resched(void)
  4211. {
  4212. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4213. __might_sleep(__FILE__, __LINE__);
  4214. #endif
  4215. /*
  4216. * The BKS might be reacquired before we have dropped
  4217. * PREEMPT_ACTIVE, which could trigger a second
  4218. * cond_resched() call.
  4219. */
  4220. do {
  4221. add_preempt_count(PREEMPT_ACTIVE);
  4222. schedule();
  4223. sub_preempt_count(PREEMPT_ACTIVE);
  4224. } while (need_resched());
  4225. }
  4226. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4227. int __sched _cond_resched(void)
  4228. {
  4229. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4230. system_state == SYSTEM_RUNNING) {
  4231. __cond_resched();
  4232. return 1;
  4233. }
  4234. return 0;
  4235. }
  4236. EXPORT_SYMBOL(_cond_resched);
  4237. #endif
  4238. /*
  4239. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4240. * call schedule, and on return reacquire the lock.
  4241. *
  4242. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4243. * operations here to prevent schedule() from being called twice (once via
  4244. * spin_unlock(), once by hand).
  4245. */
  4246. int cond_resched_lock(spinlock_t *lock)
  4247. {
  4248. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4249. int ret = 0;
  4250. if (spin_needbreak(lock) || resched) {
  4251. spin_unlock(lock);
  4252. if (resched && need_resched())
  4253. __cond_resched();
  4254. else
  4255. cpu_relax();
  4256. ret = 1;
  4257. spin_lock(lock);
  4258. }
  4259. return ret;
  4260. }
  4261. EXPORT_SYMBOL(cond_resched_lock);
  4262. int __sched cond_resched_softirq(void)
  4263. {
  4264. BUG_ON(!in_softirq());
  4265. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4266. local_bh_enable();
  4267. __cond_resched();
  4268. local_bh_disable();
  4269. return 1;
  4270. }
  4271. return 0;
  4272. }
  4273. EXPORT_SYMBOL(cond_resched_softirq);
  4274. /**
  4275. * yield - yield the current processor to other threads.
  4276. *
  4277. * This is a shortcut for kernel-space yielding - it marks the
  4278. * thread runnable and calls sys_sched_yield().
  4279. */
  4280. void __sched yield(void)
  4281. {
  4282. set_current_state(TASK_RUNNING);
  4283. sys_sched_yield();
  4284. }
  4285. EXPORT_SYMBOL(yield);
  4286. /*
  4287. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4288. * that process accounting knows that this is a task in IO wait state.
  4289. *
  4290. * But don't do that if it is a deliberate, throttling IO wait (this task
  4291. * has set its backing_dev_info: the queue against which it should throttle)
  4292. */
  4293. void __sched io_schedule(void)
  4294. {
  4295. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4296. delayacct_blkio_start();
  4297. atomic_inc(&rq->nr_iowait);
  4298. schedule();
  4299. atomic_dec(&rq->nr_iowait);
  4300. delayacct_blkio_end();
  4301. }
  4302. EXPORT_SYMBOL(io_schedule);
  4303. long __sched io_schedule_timeout(long timeout)
  4304. {
  4305. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4306. long ret;
  4307. delayacct_blkio_start();
  4308. atomic_inc(&rq->nr_iowait);
  4309. ret = schedule_timeout(timeout);
  4310. atomic_dec(&rq->nr_iowait);
  4311. delayacct_blkio_end();
  4312. return ret;
  4313. }
  4314. /**
  4315. * sys_sched_get_priority_max - return maximum RT priority.
  4316. * @policy: scheduling class.
  4317. *
  4318. * this syscall returns the maximum rt_priority that can be used
  4319. * by a given scheduling class.
  4320. */
  4321. asmlinkage long sys_sched_get_priority_max(int policy)
  4322. {
  4323. int ret = -EINVAL;
  4324. switch (policy) {
  4325. case SCHED_FIFO:
  4326. case SCHED_RR:
  4327. ret = MAX_USER_RT_PRIO-1;
  4328. break;
  4329. case SCHED_NORMAL:
  4330. case SCHED_BATCH:
  4331. case SCHED_IDLE:
  4332. ret = 0;
  4333. break;
  4334. }
  4335. return ret;
  4336. }
  4337. /**
  4338. * sys_sched_get_priority_min - return minimum RT priority.
  4339. * @policy: scheduling class.
  4340. *
  4341. * this syscall returns the minimum rt_priority that can be used
  4342. * by a given scheduling class.
  4343. */
  4344. asmlinkage long sys_sched_get_priority_min(int policy)
  4345. {
  4346. int ret = -EINVAL;
  4347. switch (policy) {
  4348. case SCHED_FIFO:
  4349. case SCHED_RR:
  4350. ret = 1;
  4351. break;
  4352. case SCHED_NORMAL:
  4353. case SCHED_BATCH:
  4354. case SCHED_IDLE:
  4355. ret = 0;
  4356. }
  4357. return ret;
  4358. }
  4359. /**
  4360. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4361. * @pid: pid of the process.
  4362. * @interval: userspace pointer to the timeslice value.
  4363. *
  4364. * this syscall writes the default timeslice value of a given process
  4365. * into the user-space timespec buffer. A value of '0' means infinity.
  4366. */
  4367. asmlinkage
  4368. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4369. {
  4370. struct task_struct *p;
  4371. unsigned int time_slice;
  4372. int retval;
  4373. struct timespec t;
  4374. if (pid < 0)
  4375. return -EINVAL;
  4376. retval = -ESRCH;
  4377. read_lock(&tasklist_lock);
  4378. p = find_process_by_pid(pid);
  4379. if (!p)
  4380. goto out_unlock;
  4381. retval = security_task_getscheduler(p);
  4382. if (retval)
  4383. goto out_unlock;
  4384. /*
  4385. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4386. * tasks that are on an otherwise idle runqueue:
  4387. */
  4388. time_slice = 0;
  4389. if (p->policy == SCHED_RR) {
  4390. time_slice = DEF_TIMESLICE;
  4391. } else {
  4392. struct sched_entity *se = &p->se;
  4393. unsigned long flags;
  4394. struct rq *rq;
  4395. rq = task_rq_lock(p, &flags);
  4396. if (rq->cfs.load.weight)
  4397. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4398. task_rq_unlock(rq, &flags);
  4399. }
  4400. read_unlock(&tasklist_lock);
  4401. jiffies_to_timespec(time_slice, &t);
  4402. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4403. return retval;
  4404. out_unlock:
  4405. read_unlock(&tasklist_lock);
  4406. return retval;
  4407. }
  4408. static const char stat_nam[] = "RSDTtZX";
  4409. void sched_show_task(struct task_struct *p)
  4410. {
  4411. unsigned long free = 0;
  4412. unsigned state;
  4413. state = p->state ? __ffs(p->state) + 1 : 0;
  4414. printk(KERN_INFO "%-13.13s %c", p->comm,
  4415. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4416. #if BITS_PER_LONG == 32
  4417. if (state == TASK_RUNNING)
  4418. printk(KERN_CONT " running ");
  4419. else
  4420. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4421. #else
  4422. if (state == TASK_RUNNING)
  4423. printk(KERN_CONT " running task ");
  4424. else
  4425. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4426. #endif
  4427. #ifdef CONFIG_DEBUG_STACK_USAGE
  4428. {
  4429. unsigned long *n = end_of_stack(p);
  4430. while (!*n)
  4431. n++;
  4432. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4433. }
  4434. #endif
  4435. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4436. task_pid_nr(p), task_pid_nr(p->real_parent));
  4437. show_stack(p, NULL);
  4438. }
  4439. void show_state_filter(unsigned long state_filter)
  4440. {
  4441. struct task_struct *g, *p;
  4442. #if BITS_PER_LONG == 32
  4443. printk(KERN_INFO
  4444. " task PC stack pid father\n");
  4445. #else
  4446. printk(KERN_INFO
  4447. " task PC stack pid father\n");
  4448. #endif
  4449. read_lock(&tasklist_lock);
  4450. do_each_thread(g, p) {
  4451. /*
  4452. * reset the NMI-timeout, listing all files on a slow
  4453. * console might take alot of time:
  4454. */
  4455. touch_nmi_watchdog();
  4456. if (!state_filter || (p->state & state_filter))
  4457. sched_show_task(p);
  4458. } while_each_thread(g, p);
  4459. touch_all_softlockup_watchdogs();
  4460. #ifdef CONFIG_SCHED_DEBUG
  4461. sysrq_sched_debug_show();
  4462. #endif
  4463. read_unlock(&tasklist_lock);
  4464. /*
  4465. * Only show locks if all tasks are dumped:
  4466. */
  4467. if (state_filter == -1)
  4468. debug_show_all_locks();
  4469. }
  4470. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4471. {
  4472. idle->sched_class = &idle_sched_class;
  4473. }
  4474. /**
  4475. * init_idle - set up an idle thread for a given CPU
  4476. * @idle: task in question
  4477. * @cpu: cpu the idle task belongs to
  4478. *
  4479. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4480. * flag, to make booting more robust.
  4481. */
  4482. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4483. {
  4484. struct rq *rq = cpu_rq(cpu);
  4485. unsigned long flags;
  4486. __sched_fork(idle);
  4487. idle->se.exec_start = sched_clock();
  4488. idle->prio = idle->normal_prio = MAX_PRIO;
  4489. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4490. __set_task_cpu(idle, cpu);
  4491. spin_lock_irqsave(&rq->lock, flags);
  4492. rq->curr = rq->idle = idle;
  4493. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4494. idle->oncpu = 1;
  4495. #endif
  4496. spin_unlock_irqrestore(&rq->lock, flags);
  4497. /* Set the preempt count _outside_ the spinlocks! */
  4498. task_thread_info(idle)->preempt_count = 0;
  4499. /*
  4500. * The idle tasks have their own, simple scheduling class:
  4501. */
  4502. idle->sched_class = &idle_sched_class;
  4503. }
  4504. /*
  4505. * In a system that switches off the HZ timer nohz_cpu_mask
  4506. * indicates which cpus entered this state. This is used
  4507. * in the rcu update to wait only for active cpus. For system
  4508. * which do not switch off the HZ timer nohz_cpu_mask should
  4509. * always be CPU_MASK_NONE.
  4510. */
  4511. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4512. /*
  4513. * Increase the granularity value when there are more CPUs,
  4514. * because with more CPUs the 'effective latency' as visible
  4515. * to users decreases. But the relationship is not linear,
  4516. * so pick a second-best guess by going with the log2 of the
  4517. * number of CPUs.
  4518. *
  4519. * This idea comes from the SD scheduler of Con Kolivas:
  4520. */
  4521. static inline void sched_init_granularity(void)
  4522. {
  4523. unsigned int factor = 1 + ilog2(num_online_cpus());
  4524. const unsigned long limit = 200000000;
  4525. sysctl_sched_min_granularity *= factor;
  4526. if (sysctl_sched_min_granularity > limit)
  4527. sysctl_sched_min_granularity = limit;
  4528. sysctl_sched_latency *= factor;
  4529. if (sysctl_sched_latency > limit)
  4530. sysctl_sched_latency = limit;
  4531. sysctl_sched_wakeup_granularity *= factor;
  4532. sysctl_sched_batch_wakeup_granularity *= factor;
  4533. }
  4534. #ifdef CONFIG_SMP
  4535. /*
  4536. * This is how migration works:
  4537. *
  4538. * 1) we queue a struct migration_req structure in the source CPU's
  4539. * runqueue and wake up that CPU's migration thread.
  4540. * 2) we down() the locked semaphore => thread blocks.
  4541. * 3) migration thread wakes up (implicitly it forces the migrated
  4542. * thread off the CPU)
  4543. * 4) it gets the migration request and checks whether the migrated
  4544. * task is still in the wrong runqueue.
  4545. * 5) if it's in the wrong runqueue then the migration thread removes
  4546. * it and puts it into the right queue.
  4547. * 6) migration thread up()s the semaphore.
  4548. * 7) we wake up and the migration is done.
  4549. */
  4550. /*
  4551. * Change a given task's CPU affinity. Migrate the thread to a
  4552. * proper CPU and schedule it away if the CPU it's executing on
  4553. * is removed from the allowed bitmask.
  4554. *
  4555. * NOTE: the caller must have a valid reference to the task, the
  4556. * task must not exit() & deallocate itself prematurely. The
  4557. * call is not atomic; no spinlocks may be held.
  4558. */
  4559. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4560. {
  4561. struct migration_req req;
  4562. unsigned long flags;
  4563. struct rq *rq;
  4564. int ret = 0;
  4565. rq = task_rq_lock(p, &flags);
  4566. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4567. ret = -EINVAL;
  4568. goto out;
  4569. }
  4570. if (p->sched_class->set_cpus_allowed)
  4571. p->sched_class->set_cpus_allowed(p, &new_mask);
  4572. else {
  4573. p->cpus_allowed = new_mask;
  4574. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4575. }
  4576. /* Can the task run on the task's current CPU? If so, we're done */
  4577. if (cpu_isset(task_cpu(p), new_mask))
  4578. goto out;
  4579. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4580. /* Need help from migration thread: drop lock and wait. */
  4581. task_rq_unlock(rq, &flags);
  4582. wake_up_process(rq->migration_thread);
  4583. wait_for_completion(&req.done);
  4584. tlb_migrate_finish(p->mm);
  4585. return 0;
  4586. }
  4587. out:
  4588. task_rq_unlock(rq, &flags);
  4589. return ret;
  4590. }
  4591. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4592. /*
  4593. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4594. * this because either it can't run here any more (set_cpus_allowed()
  4595. * away from this CPU, or CPU going down), or because we're
  4596. * attempting to rebalance this task on exec (sched_exec).
  4597. *
  4598. * So we race with normal scheduler movements, but that's OK, as long
  4599. * as the task is no longer on this CPU.
  4600. *
  4601. * Returns non-zero if task was successfully migrated.
  4602. */
  4603. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4604. {
  4605. struct rq *rq_dest, *rq_src;
  4606. int ret = 0, on_rq;
  4607. if (unlikely(cpu_is_offline(dest_cpu)))
  4608. return ret;
  4609. rq_src = cpu_rq(src_cpu);
  4610. rq_dest = cpu_rq(dest_cpu);
  4611. double_rq_lock(rq_src, rq_dest);
  4612. /* Already moved. */
  4613. if (task_cpu(p) != src_cpu)
  4614. goto out;
  4615. /* Affinity changed (again). */
  4616. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4617. goto out;
  4618. on_rq = p->se.on_rq;
  4619. if (on_rq)
  4620. deactivate_task(rq_src, p, 0);
  4621. set_task_cpu(p, dest_cpu);
  4622. if (on_rq) {
  4623. activate_task(rq_dest, p, 0);
  4624. check_preempt_curr(rq_dest, p);
  4625. }
  4626. ret = 1;
  4627. out:
  4628. double_rq_unlock(rq_src, rq_dest);
  4629. return ret;
  4630. }
  4631. /*
  4632. * migration_thread - this is a highprio system thread that performs
  4633. * thread migration by bumping thread off CPU then 'pushing' onto
  4634. * another runqueue.
  4635. */
  4636. static int migration_thread(void *data)
  4637. {
  4638. int cpu = (long)data;
  4639. struct rq *rq;
  4640. rq = cpu_rq(cpu);
  4641. BUG_ON(rq->migration_thread != current);
  4642. set_current_state(TASK_INTERRUPTIBLE);
  4643. while (!kthread_should_stop()) {
  4644. struct migration_req *req;
  4645. struct list_head *head;
  4646. spin_lock_irq(&rq->lock);
  4647. if (cpu_is_offline(cpu)) {
  4648. spin_unlock_irq(&rq->lock);
  4649. goto wait_to_die;
  4650. }
  4651. if (rq->active_balance) {
  4652. active_load_balance(rq, cpu);
  4653. rq->active_balance = 0;
  4654. }
  4655. head = &rq->migration_queue;
  4656. if (list_empty(head)) {
  4657. spin_unlock_irq(&rq->lock);
  4658. schedule();
  4659. set_current_state(TASK_INTERRUPTIBLE);
  4660. continue;
  4661. }
  4662. req = list_entry(head->next, struct migration_req, list);
  4663. list_del_init(head->next);
  4664. spin_unlock(&rq->lock);
  4665. __migrate_task(req->task, cpu, req->dest_cpu);
  4666. local_irq_enable();
  4667. complete(&req->done);
  4668. }
  4669. __set_current_state(TASK_RUNNING);
  4670. return 0;
  4671. wait_to_die:
  4672. /* Wait for kthread_stop */
  4673. set_current_state(TASK_INTERRUPTIBLE);
  4674. while (!kthread_should_stop()) {
  4675. schedule();
  4676. set_current_state(TASK_INTERRUPTIBLE);
  4677. }
  4678. __set_current_state(TASK_RUNNING);
  4679. return 0;
  4680. }
  4681. #ifdef CONFIG_HOTPLUG_CPU
  4682. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4683. {
  4684. int ret;
  4685. local_irq_disable();
  4686. ret = __migrate_task(p, src_cpu, dest_cpu);
  4687. local_irq_enable();
  4688. return ret;
  4689. }
  4690. /*
  4691. * Figure out where task on dead CPU should go, use force if necessary.
  4692. * NOTE: interrupts should be disabled by the caller
  4693. */
  4694. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4695. {
  4696. unsigned long flags;
  4697. cpumask_t mask;
  4698. struct rq *rq;
  4699. int dest_cpu;
  4700. do {
  4701. /* On same node? */
  4702. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4703. cpus_and(mask, mask, p->cpus_allowed);
  4704. dest_cpu = any_online_cpu(mask);
  4705. /* On any allowed CPU? */
  4706. if (dest_cpu == NR_CPUS)
  4707. dest_cpu = any_online_cpu(p->cpus_allowed);
  4708. /* No more Mr. Nice Guy. */
  4709. if (dest_cpu == NR_CPUS) {
  4710. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4711. /*
  4712. * Try to stay on the same cpuset, where the
  4713. * current cpuset may be a subset of all cpus.
  4714. * The cpuset_cpus_allowed_locked() variant of
  4715. * cpuset_cpus_allowed() will not block. It must be
  4716. * called within calls to cpuset_lock/cpuset_unlock.
  4717. */
  4718. rq = task_rq_lock(p, &flags);
  4719. p->cpus_allowed = cpus_allowed;
  4720. dest_cpu = any_online_cpu(p->cpus_allowed);
  4721. task_rq_unlock(rq, &flags);
  4722. /*
  4723. * Don't tell them about moving exiting tasks or
  4724. * kernel threads (both mm NULL), since they never
  4725. * leave kernel.
  4726. */
  4727. if (p->mm && printk_ratelimit()) {
  4728. printk(KERN_INFO "process %d (%s) no "
  4729. "longer affine to cpu%d\n",
  4730. task_pid_nr(p), p->comm, dead_cpu);
  4731. }
  4732. }
  4733. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4734. }
  4735. /*
  4736. * While a dead CPU has no uninterruptible tasks queued at this point,
  4737. * it might still have a nonzero ->nr_uninterruptible counter, because
  4738. * for performance reasons the counter is not stricly tracking tasks to
  4739. * their home CPUs. So we just add the counter to another CPU's counter,
  4740. * to keep the global sum constant after CPU-down:
  4741. */
  4742. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4743. {
  4744. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4745. unsigned long flags;
  4746. local_irq_save(flags);
  4747. double_rq_lock(rq_src, rq_dest);
  4748. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4749. rq_src->nr_uninterruptible = 0;
  4750. double_rq_unlock(rq_src, rq_dest);
  4751. local_irq_restore(flags);
  4752. }
  4753. /* Run through task list and migrate tasks from the dead cpu. */
  4754. static void migrate_live_tasks(int src_cpu)
  4755. {
  4756. struct task_struct *p, *t;
  4757. read_lock(&tasklist_lock);
  4758. do_each_thread(t, p) {
  4759. if (p == current)
  4760. continue;
  4761. if (task_cpu(p) == src_cpu)
  4762. move_task_off_dead_cpu(src_cpu, p);
  4763. } while_each_thread(t, p);
  4764. read_unlock(&tasklist_lock);
  4765. }
  4766. /*
  4767. * Schedules idle task to be the next runnable task on current CPU.
  4768. * It does so by boosting its priority to highest possible.
  4769. * Used by CPU offline code.
  4770. */
  4771. void sched_idle_next(void)
  4772. {
  4773. int this_cpu = smp_processor_id();
  4774. struct rq *rq = cpu_rq(this_cpu);
  4775. struct task_struct *p = rq->idle;
  4776. unsigned long flags;
  4777. /* cpu has to be offline */
  4778. BUG_ON(cpu_online(this_cpu));
  4779. /*
  4780. * Strictly not necessary since rest of the CPUs are stopped by now
  4781. * and interrupts disabled on the current cpu.
  4782. */
  4783. spin_lock_irqsave(&rq->lock, flags);
  4784. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4785. update_rq_clock(rq);
  4786. activate_task(rq, p, 0);
  4787. spin_unlock_irqrestore(&rq->lock, flags);
  4788. }
  4789. /*
  4790. * Ensures that the idle task is using init_mm right before its cpu goes
  4791. * offline.
  4792. */
  4793. void idle_task_exit(void)
  4794. {
  4795. struct mm_struct *mm = current->active_mm;
  4796. BUG_ON(cpu_online(smp_processor_id()));
  4797. if (mm != &init_mm)
  4798. switch_mm(mm, &init_mm, current);
  4799. mmdrop(mm);
  4800. }
  4801. /* called under rq->lock with disabled interrupts */
  4802. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4803. {
  4804. struct rq *rq = cpu_rq(dead_cpu);
  4805. /* Must be exiting, otherwise would be on tasklist. */
  4806. BUG_ON(!p->exit_state);
  4807. /* Cannot have done final schedule yet: would have vanished. */
  4808. BUG_ON(p->state == TASK_DEAD);
  4809. get_task_struct(p);
  4810. /*
  4811. * Drop lock around migration; if someone else moves it,
  4812. * that's OK. No task can be added to this CPU, so iteration is
  4813. * fine.
  4814. */
  4815. spin_unlock_irq(&rq->lock);
  4816. move_task_off_dead_cpu(dead_cpu, p);
  4817. spin_lock_irq(&rq->lock);
  4818. put_task_struct(p);
  4819. }
  4820. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4821. static void migrate_dead_tasks(unsigned int dead_cpu)
  4822. {
  4823. struct rq *rq = cpu_rq(dead_cpu);
  4824. struct task_struct *next;
  4825. for ( ; ; ) {
  4826. if (!rq->nr_running)
  4827. break;
  4828. update_rq_clock(rq);
  4829. next = pick_next_task(rq, rq->curr);
  4830. if (!next)
  4831. break;
  4832. migrate_dead(dead_cpu, next);
  4833. }
  4834. }
  4835. #endif /* CONFIG_HOTPLUG_CPU */
  4836. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4837. static struct ctl_table sd_ctl_dir[] = {
  4838. {
  4839. .procname = "sched_domain",
  4840. .mode = 0555,
  4841. },
  4842. {0, },
  4843. };
  4844. static struct ctl_table sd_ctl_root[] = {
  4845. {
  4846. .ctl_name = CTL_KERN,
  4847. .procname = "kernel",
  4848. .mode = 0555,
  4849. .child = sd_ctl_dir,
  4850. },
  4851. {0, },
  4852. };
  4853. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4854. {
  4855. struct ctl_table *entry =
  4856. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4857. return entry;
  4858. }
  4859. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4860. {
  4861. struct ctl_table *entry;
  4862. /*
  4863. * In the intermediate directories, both the child directory and
  4864. * procname are dynamically allocated and could fail but the mode
  4865. * will always be set. In the lowest directory the names are
  4866. * static strings and all have proc handlers.
  4867. */
  4868. for (entry = *tablep; entry->mode; entry++) {
  4869. if (entry->child)
  4870. sd_free_ctl_entry(&entry->child);
  4871. if (entry->proc_handler == NULL)
  4872. kfree(entry->procname);
  4873. }
  4874. kfree(*tablep);
  4875. *tablep = NULL;
  4876. }
  4877. static void
  4878. set_table_entry(struct ctl_table *entry,
  4879. const char *procname, void *data, int maxlen,
  4880. mode_t mode, proc_handler *proc_handler)
  4881. {
  4882. entry->procname = procname;
  4883. entry->data = data;
  4884. entry->maxlen = maxlen;
  4885. entry->mode = mode;
  4886. entry->proc_handler = proc_handler;
  4887. }
  4888. static struct ctl_table *
  4889. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4890. {
  4891. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4892. if (table == NULL)
  4893. return NULL;
  4894. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4895. sizeof(long), 0644, proc_doulongvec_minmax);
  4896. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4897. sizeof(long), 0644, proc_doulongvec_minmax);
  4898. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4899. sizeof(int), 0644, proc_dointvec_minmax);
  4900. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4901. sizeof(int), 0644, proc_dointvec_minmax);
  4902. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4903. sizeof(int), 0644, proc_dointvec_minmax);
  4904. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4905. sizeof(int), 0644, proc_dointvec_minmax);
  4906. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4907. sizeof(int), 0644, proc_dointvec_minmax);
  4908. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4909. sizeof(int), 0644, proc_dointvec_minmax);
  4910. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4911. sizeof(int), 0644, proc_dointvec_minmax);
  4912. set_table_entry(&table[9], "cache_nice_tries",
  4913. &sd->cache_nice_tries,
  4914. sizeof(int), 0644, proc_dointvec_minmax);
  4915. set_table_entry(&table[10], "flags", &sd->flags,
  4916. sizeof(int), 0644, proc_dointvec_minmax);
  4917. /* &table[11] is terminator */
  4918. return table;
  4919. }
  4920. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4921. {
  4922. struct ctl_table *entry, *table;
  4923. struct sched_domain *sd;
  4924. int domain_num = 0, i;
  4925. char buf[32];
  4926. for_each_domain(cpu, sd)
  4927. domain_num++;
  4928. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4929. if (table == NULL)
  4930. return NULL;
  4931. i = 0;
  4932. for_each_domain(cpu, sd) {
  4933. snprintf(buf, 32, "domain%d", i);
  4934. entry->procname = kstrdup(buf, GFP_KERNEL);
  4935. entry->mode = 0555;
  4936. entry->child = sd_alloc_ctl_domain_table(sd);
  4937. entry++;
  4938. i++;
  4939. }
  4940. return table;
  4941. }
  4942. static struct ctl_table_header *sd_sysctl_header;
  4943. static void register_sched_domain_sysctl(void)
  4944. {
  4945. int i, cpu_num = num_online_cpus();
  4946. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4947. char buf[32];
  4948. WARN_ON(sd_ctl_dir[0].child);
  4949. sd_ctl_dir[0].child = entry;
  4950. if (entry == NULL)
  4951. return;
  4952. for_each_online_cpu(i) {
  4953. snprintf(buf, 32, "cpu%d", i);
  4954. entry->procname = kstrdup(buf, GFP_KERNEL);
  4955. entry->mode = 0555;
  4956. entry->child = sd_alloc_ctl_cpu_table(i);
  4957. entry++;
  4958. }
  4959. WARN_ON(sd_sysctl_header);
  4960. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4961. }
  4962. /* may be called multiple times per register */
  4963. static void unregister_sched_domain_sysctl(void)
  4964. {
  4965. if (sd_sysctl_header)
  4966. unregister_sysctl_table(sd_sysctl_header);
  4967. sd_sysctl_header = NULL;
  4968. if (sd_ctl_dir[0].child)
  4969. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4970. }
  4971. #else
  4972. static void register_sched_domain_sysctl(void)
  4973. {
  4974. }
  4975. static void unregister_sched_domain_sysctl(void)
  4976. {
  4977. }
  4978. #endif
  4979. /*
  4980. * migration_call - callback that gets triggered when a CPU is added.
  4981. * Here we can start up the necessary migration thread for the new CPU.
  4982. */
  4983. static int __cpuinit
  4984. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4985. {
  4986. struct task_struct *p;
  4987. int cpu = (long)hcpu;
  4988. unsigned long flags;
  4989. struct rq *rq;
  4990. switch (action) {
  4991. case CPU_UP_PREPARE:
  4992. case CPU_UP_PREPARE_FROZEN:
  4993. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4994. if (IS_ERR(p))
  4995. return NOTIFY_BAD;
  4996. kthread_bind(p, cpu);
  4997. /* Must be high prio: stop_machine expects to yield to it. */
  4998. rq = task_rq_lock(p, &flags);
  4999. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5000. task_rq_unlock(rq, &flags);
  5001. cpu_rq(cpu)->migration_thread = p;
  5002. break;
  5003. case CPU_ONLINE:
  5004. case CPU_ONLINE_FROZEN:
  5005. /* Strictly unnecessary, as first user will wake it. */
  5006. wake_up_process(cpu_rq(cpu)->migration_thread);
  5007. /* Update our root-domain */
  5008. rq = cpu_rq(cpu);
  5009. spin_lock_irqsave(&rq->lock, flags);
  5010. if (rq->rd) {
  5011. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5012. cpu_set(cpu, rq->rd->online);
  5013. }
  5014. spin_unlock_irqrestore(&rq->lock, flags);
  5015. break;
  5016. #ifdef CONFIG_HOTPLUG_CPU
  5017. case CPU_UP_CANCELED:
  5018. case CPU_UP_CANCELED_FROZEN:
  5019. if (!cpu_rq(cpu)->migration_thread)
  5020. break;
  5021. /* Unbind it from offline cpu so it can run. Fall thru. */
  5022. kthread_bind(cpu_rq(cpu)->migration_thread,
  5023. any_online_cpu(cpu_online_map));
  5024. kthread_stop(cpu_rq(cpu)->migration_thread);
  5025. cpu_rq(cpu)->migration_thread = NULL;
  5026. break;
  5027. case CPU_DEAD:
  5028. case CPU_DEAD_FROZEN:
  5029. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5030. migrate_live_tasks(cpu);
  5031. rq = cpu_rq(cpu);
  5032. kthread_stop(rq->migration_thread);
  5033. rq->migration_thread = NULL;
  5034. /* Idle task back to normal (off runqueue, low prio) */
  5035. spin_lock_irq(&rq->lock);
  5036. update_rq_clock(rq);
  5037. deactivate_task(rq, rq->idle, 0);
  5038. rq->idle->static_prio = MAX_PRIO;
  5039. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5040. rq->idle->sched_class = &idle_sched_class;
  5041. migrate_dead_tasks(cpu);
  5042. spin_unlock_irq(&rq->lock);
  5043. cpuset_unlock();
  5044. migrate_nr_uninterruptible(rq);
  5045. BUG_ON(rq->nr_running != 0);
  5046. /*
  5047. * No need to migrate the tasks: it was best-effort if
  5048. * they didn't take sched_hotcpu_mutex. Just wake up
  5049. * the requestors.
  5050. */
  5051. spin_lock_irq(&rq->lock);
  5052. while (!list_empty(&rq->migration_queue)) {
  5053. struct migration_req *req;
  5054. req = list_entry(rq->migration_queue.next,
  5055. struct migration_req, list);
  5056. list_del_init(&req->list);
  5057. complete(&req->done);
  5058. }
  5059. spin_unlock_irq(&rq->lock);
  5060. break;
  5061. case CPU_DOWN_PREPARE:
  5062. /* Update our root-domain */
  5063. rq = cpu_rq(cpu);
  5064. spin_lock_irqsave(&rq->lock, flags);
  5065. if (rq->rd) {
  5066. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5067. cpu_clear(cpu, rq->rd->online);
  5068. }
  5069. spin_unlock_irqrestore(&rq->lock, flags);
  5070. break;
  5071. #endif
  5072. }
  5073. return NOTIFY_OK;
  5074. }
  5075. /* Register at highest priority so that task migration (migrate_all_tasks)
  5076. * happens before everything else.
  5077. */
  5078. static struct notifier_block __cpuinitdata migration_notifier = {
  5079. .notifier_call = migration_call,
  5080. .priority = 10
  5081. };
  5082. void __init migration_init(void)
  5083. {
  5084. void *cpu = (void *)(long)smp_processor_id();
  5085. int err;
  5086. /* Start one for the boot CPU: */
  5087. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5088. BUG_ON(err == NOTIFY_BAD);
  5089. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5090. register_cpu_notifier(&migration_notifier);
  5091. }
  5092. #endif
  5093. #ifdef CONFIG_SMP
  5094. /* Number of possible processor ids */
  5095. int nr_cpu_ids __read_mostly = NR_CPUS;
  5096. EXPORT_SYMBOL(nr_cpu_ids);
  5097. #ifdef CONFIG_SCHED_DEBUG
  5098. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5099. {
  5100. struct sched_group *group = sd->groups;
  5101. cpumask_t groupmask;
  5102. char str[NR_CPUS];
  5103. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5104. cpus_clear(groupmask);
  5105. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5106. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5107. printk("does not load-balance\n");
  5108. if (sd->parent)
  5109. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5110. " has parent");
  5111. return -1;
  5112. }
  5113. printk(KERN_CONT "span %s\n", str);
  5114. if (!cpu_isset(cpu, sd->span)) {
  5115. printk(KERN_ERR "ERROR: domain->span does not contain "
  5116. "CPU%d\n", cpu);
  5117. }
  5118. if (!cpu_isset(cpu, group->cpumask)) {
  5119. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5120. " CPU%d\n", cpu);
  5121. }
  5122. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5123. do {
  5124. if (!group) {
  5125. printk("\n");
  5126. printk(KERN_ERR "ERROR: group is NULL\n");
  5127. break;
  5128. }
  5129. if (!group->__cpu_power) {
  5130. printk(KERN_CONT "\n");
  5131. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5132. "set\n");
  5133. break;
  5134. }
  5135. if (!cpus_weight(group->cpumask)) {
  5136. printk(KERN_CONT "\n");
  5137. printk(KERN_ERR "ERROR: empty group\n");
  5138. break;
  5139. }
  5140. if (cpus_intersects(groupmask, group->cpumask)) {
  5141. printk(KERN_CONT "\n");
  5142. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5143. break;
  5144. }
  5145. cpus_or(groupmask, groupmask, group->cpumask);
  5146. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5147. printk(KERN_CONT " %s", str);
  5148. group = group->next;
  5149. } while (group != sd->groups);
  5150. printk(KERN_CONT "\n");
  5151. if (!cpus_equal(sd->span, groupmask))
  5152. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5153. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5154. printk(KERN_ERR "ERROR: parent span is not a superset "
  5155. "of domain->span\n");
  5156. return 0;
  5157. }
  5158. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5159. {
  5160. int level = 0;
  5161. if (!sd) {
  5162. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5163. return;
  5164. }
  5165. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5166. for (;;) {
  5167. if (sched_domain_debug_one(sd, cpu, level))
  5168. break;
  5169. level++;
  5170. sd = sd->parent;
  5171. if (!sd)
  5172. break;
  5173. }
  5174. }
  5175. #else
  5176. # define sched_domain_debug(sd, cpu) do { } while (0)
  5177. #endif
  5178. static int sd_degenerate(struct sched_domain *sd)
  5179. {
  5180. if (cpus_weight(sd->span) == 1)
  5181. return 1;
  5182. /* Following flags need at least 2 groups */
  5183. if (sd->flags & (SD_LOAD_BALANCE |
  5184. SD_BALANCE_NEWIDLE |
  5185. SD_BALANCE_FORK |
  5186. SD_BALANCE_EXEC |
  5187. SD_SHARE_CPUPOWER |
  5188. SD_SHARE_PKG_RESOURCES)) {
  5189. if (sd->groups != sd->groups->next)
  5190. return 0;
  5191. }
  5192. /* Following flags don't use groups */
  5193. if (sd->flags & (SD_WAKE_IDLE |
  5194. SD_WAKE_AFFINE |
  5195. SD_WAKE_BALANCE))
  5196. return 0;
  5197. return 1;
  5198. }
  5199. static int
  5200. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5201. {
  5202. unsigned long cflags = sd->flags, pflags = parent->flags;
  5203. if (sd_degenerate(parent))
  5204. return 1;
  5205. if (!cpus_equal(sd->span, parent->span))
  5206. return 0;
  5207. /* Does parent contain flags not in child? */
  5208. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5209. if (cflags & SD_WAKE_AFFINE)
  5210. pflags &= ~SD_WAKE_BALANCE;
  5211. /* Flags needing groups don't count if only 1 group in parent */
  5212. if (parent->groups == parent->groups->next) {
  5213. pflags &= ~(SD_LOAD_BALANCE |
  5214. SD_BALANCE_NEWIDLE |
  5215. SD_BALANCE_FORK |
  5216. SD_BALANCE_EXEC |
  5217. SD_SHARE_CPUPOWER |
  5218. SD_SHARE_PKG_RESOURCES);
  5219. }
  5220. if (~cflags & pflags)
  5221. return 0;
  5222. return 1;
  5223. }
  5224. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5225. {
  5226. unsigned long flags;
  5227. const struct sched_class *class;
  5228. spin_lock_irqsave(&rq->lock, flags);
  5229. if (rq->rd) {
  5230. struct root_domain *old_rd = rq->rd;
  5231. for (class = sched_class_highest; class; class = class->next) {
  5232. if (class->leave_domain)
  5233. class->leave_domain(rq);
  5234. }
  5235. cpu_clear(rq->cpu, old_rd->span);
  5236. cpu_clear(rq->cpu, old_rd->online);
  5237. if (atomic_dec_and_test(&old_rd->refcount))
  5238. kfree(old_rd);
  5239. }
  5240. atomic_inc(&rd->refcount);
  5241. rq->rd = rd;
  5242. cpu_set(rq->cpu, rd->span);
  5243. if (cpu_isset(rq->cpu, cpu_online_map))
  5244. cpu_set(rq->cpu, rd->online);
  5245. for (class = sched_class_highest; class; class = class->next) {
  5246. if (class->join_domain)
  5247. class->join_domain(rq);
  5248. }
  5249. spin_unlock_irqrestore(&rq->lock, flags);
  5250. }
  5251. static void init_rootdomain(struct root_domain *rd)
  5252. {
  5253. memset(rd, 0, sizeof(*rd));
  5254. cpus_clear(rd->span);
  5255. cpus_clear(rd->online);
  5256. }
  5257. static void init_defrootdomain(void)
  5258. {
  5259. init_rootdomain(&def_root_domain);
  5260. atomic_set(&def_root_domain.refcount, 1);
  5261. }
  5262. static struct root_domain *alloc_rootdomain(void)
  5263. {
  5264. struct root_domain *rd;
  5265. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5266. if (!rd)
  5267. return NULL;
  5268. init_rootdomain(rd);
  5269. return rd;
  5270. }
  5271. /*
  5272. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5273. * hold the hotplug lock.
  5274. */
  5275. static void
  5276. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5277. {
  5278. struct rq *rq = cpu_rq(cpu);
  5279. struct sched_domain *tmp;
  5280. /* Remove the sched domains which do not contribute to scheduling. */
  5281. for (tmp = sd; tmp; tmp = tmp->parent) {
  5282. struct sched_domain *parent = tmp->parent;
  5283. if (!parent)
  5284. break;
  5285. if (sd_parent_degenerate(tmp, parent)) {
  5286. tmp->parent = parent->parent;
  5287. if (parent->parent)
  5288. parent->parent->child = tmp;
  5289. }
  5290. }
  5291. if (sd && sd_degenerate(sd)) {
  5292. sd = sd->parent;
  5293. if (sd)
  5294. sd->child = NULL;
  5295. }
  5296. sched_domain_debug(sd, cpu);
  5297. rq_attach_root(rq, rd);
  5298. rcu_assign_pointer(rq->sd, sd);
  5299. }
  5300. /* cpus with isolated domains */
  5301. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5302. /* Setup the mask of cpus configured for isolated domains */
  5303. static int __init isolated_cpu_setup(char *str)
  5304. {
  5305. int ints[NR_CPUS], i;
  5306. str = get_options(str, ARRAY_SIZE(ints), ints);
  5307. cpus_clear(cpu_isolated_map);
  5308. for (i = 1; i <= ints[0]; i++)
  5309. if (ints[i] < NR_CPUS)
  5310. cpu_set(ints[i], cpu_isolated_map);
  5311. return 1;
  5312. }
  5313. __setup("isolcpus=", isolated_cpu_setup);
  5314. /*
  5315. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5316. * to a function which identifies what group(along with sched group) a CPU
  5317. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5318. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5319. *
  5320. * init_sched_build_groups will build a circular linked list of the groups
  5321. * covered by the given span, and will set each group's ->cpumask correctly,
  5322. * and ->cpu_power to 0.
  5323. */
  5324. static void
  5325. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5326. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5327. struct sched_group **sg))
  5328. {
  5329. struct sched_group *first = NULL, *last = NULL;
  5330. cpumask_t covered = CPU_MASK_NONE;
  5331. int i;
  5332. for_each_cpu_mask(i, span) {
  5333. struct sched_group *sg;
  5334. int group = group_fn(i, cpu_map, &sg);
  5335. int j;
  5336. if (cpu_isset(i, covered))
  5337. continue;
  5338. sg->cpumask = CPU_MASK_NONE;
  5339. sg->__cpu_power = 0;
  5340. for_each_cpu_mask(j, span) {
  5341. if (group_fn(j, cpu_map, NULL) != group)
  5342. continue;
  5343. cpu_set(j, covered);
  5344. cpu_set(j, sg->cpumask);
  5345. }
  5346. if (!first)
  5347. first = sg;
  5348. if (last)
  5349. last->next = sg;
  5350. last = sg;
  5351. }
  5352. last->next = first;
  5353. }
  5354. #define SD_NODES_PER_DOMAIN 16
  5355. #ifdef CONFIG_NUMA
  5356. /**
  5357. * find_next_best_node - find the next node to include in a sched_domain
  5358. * @node: node whose sched_domain we're building
  5359. * @used_nodes: nodes already in the sched_domain
  5360. *
  5361. * Find the next node to include in a given scheduling domain. Simply
  5362. * finds the closest node not already in the @used_nodes map.
  5363. *
  5364. * Should use nodemask_t.
  5365. */
  5366. static int find_next_best_node(int node, unsigned long *used_nodes)
  5367. {
  5368. int i, n, val, min_val, best_node = 0;
  5369. min_val = INT_MAX;
  5370. for (i = 0; i < MAX_NUMNODES; i++) {
  5371. /* Start at @node */
  5372. n = (node + i) % MAX_NUMNODES;
  5373. if (!nr_cpus_node(n))
  5374. continue;
  5375. /* Skip already used nodes */
  5376. if (test_bit(n, used_nodes))
  5377. continue;
  5378. /* Simple min distance search */
  5379. val = node_distance(node, n);
  5380. if (val < min_val) {
  5381. min_val = val;
  5382. best_node = n;
  5383. }
  5384. }
  5385. set_bit(best_node, used_nodes);
  5386. return best_node;
  5387. }
  5388. /**
  5389. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5390. * @node: node whose cpumask we're constructing
  5391. * @size: number of nodes to include in this span
  5392. *
  5393. * Given a node, construct a good cpumask for its sched_domain to span. It
  5394. * should be one that prevents unnecessary balancing, but also spreads tasks
  5395. * out optimally.
  5396. */
  5397. static cpumask_t sched_domain_node_span(int node)
  5398. {
  5399. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5400. cpumask_t span, nodemask;
  5401. int i;
  5402. cpus_clear(span);
  5403. bitmap_zero(used_nodes, MAX_NUMNODES);
  5404. nodemask = node_to_cpumask(node);
  5405. cpus_or(span, span, nodemask);
  5406. set_bit(node, used_nodes);
  5407. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5408. int next_node = find_next_best_node(node, used_nodes);
  5409. nodemask = node_to_cpumask(next_node);
  5410. cpus_or(span, span, nodemask);
  5411. }
  5412. return span;
  5413. }
  5414. #endif
  5415. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5416. /*
  5417. * SMT sched-domains:
  5418. */
  5419. #ifdef CONFIG_SCHED_SMT
  5420. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5421. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5422. static int
  5423. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5424. {
  5425. if (sg)
  5426. *sg = &per_cpu(sched_group_cpus, cpu);
  5427. return cpu;
  5428. }
  5429. #endif
  5430. /*
  5431. * multi-core sched-domains:
  5432. */
  5433. #ifdef CONFIG_SCHED_MC
  5434. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5435. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5436. #endif
  5437. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5438. static int
  5439. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5440. {
  5441. int group;
  5442. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5443. cpus_and(mask, mask, *cpu_map);
  5444. group = first_cpu(mask);
  5445. if (sg)
  5446. *sg = &per_cpu(sched_group_core, group);
  5447. return group;
  5448. }
  5449. #elif defined(CONFIG_SCHED_MC)
  5450. static int
  5451. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5452. {
  5453. if (sg)
  5454. *sg = &per_cpu(sched_group_core, cpu);
  5455. return cpu;
  5456. }
  5457. #endif
  5458. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5459. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5460. static int
  5461. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5462. {
  5463. int group;
  5464. #ifdef CONFIG_SCHED_MC
  5465. cpumask_t mask = cpu_coregroup_map(cpu);
  5466. cpus_and(mask, mask, *cpu_map);
  5467. group = first_cpu(mask);
  5468. #elif defined(CONFIG_SCHED_SMT)
  5469. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5470. cpus_and(mask, mask, *cpu_map);
  5471. group = first_cpu(mask);
  5472. #else
  5473. group = cpu;
  5474. #endif
  5475. if (sg)
  5476. *sg = &per_cpu(sched_group_phys, group);
  5477. return group;
  5478. }
  5479. #ifdef CONFIG_NUMA
  5480. /*
  5481. * The init_sched_build_groups can't handle what we want to do with node
  5482. * groups, so roll our own. Now each node has its own list of groups which
  5483. * gets dynamically allocated.
  5484. */
  5485. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5486. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5487. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5488. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5489. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5490. struct sched_group **sg)
  5491. {
  5492. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5493. int group;
  5494. cpus_and(nodemask, nodemask, *cpu_map);
  5495. group = first_cpu(nodemask);
  5496. if (sg)
  5497. *sg = &per_cpu(sched_group_allnodes, group);
  5498. return group;
  5499. }
  5500. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5501. {
  5502. struct sched_group *sg = group_head;
  5503. int j;
  5504. if (!sg)
  5505. return;
  5506. do {
  5507. for_each_cpu_mask(j, sg->cpumask) {
  5508. struct sched_domain *sd;
  5509. sd = &per_cpu(phys_domains, j);
  5510. if (j != first_cpu(sd->groups->cpumask)) {
  5511. /*
  5512. * Only add "power" once for each
  5513. * physical package.
  5514. */
  5515. continue;
  5516. }
  5517. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5518. }
  5519. sg = sg->next;
  5520. } while (sg != group_head);
  5521. }
  5522. #endif
  5523. #ifdef CONFIG_NUMA
  5524. /* Free memory allocated for various sched_group structures */
  5525. static void free_sched_groups(const cpumask_t *cpu_map)
  5526. {
  5527. int cpu, i;
  5528. for_each_cpu_mask(cpu, *cpu_map) {
  5529. struct sched_group **sched_group_nodes
  5530. = sched_group_nodes_bycpu[cpu];
  5531. if (!sched_group_nodes)
  5532. continue;
  5533. for (i = 0; i < MAX_NUMNODES; i++) {
  5534. cpumask_t nodemask = node_to_cpumask(i);
  5535. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5536. cpus_and(nodemask, nodemask, *cpu_map);
  5537. if (cpus_empty(nodemask))
  5538. continue;
  5539. if (sg == NULL)
  5540. continue;
  5541. sg = sg->next;
  5542. next_sg:
  5543. oldsg = sg;
  5544. sg = sg->next;
  5545. kfree(oldsg);
  5546. if (oldsg != sched_group_nodes[i])
  5547. goto next_sg;
  5548. }
  5549. kfree(sched_group_nodes);
  5550. sched_group_nodes_bycpu[cpu] = NULL;
  5551. }
  5552. }
  5553. #else
  5554. static void free_sched_groups(const cpumask_t *cpu_map)
  5555. {
  5556. }
  5557. #endif
  5558. /*
  5559. * Initialize sched groups cpu_power.
  5560. *
  5561. * cpu_power indicates the capacity of sched group, which is used while
  5562. * distributing the load between different sched groups in a sched domain.
  5563. * Typically cpu_power for all the groups in a sched domain will be same unless
  5564. * there are asymmetries in the topology. If there are asymmetries, group
  5565. * having more cpu_power will pickup more load compared to the group having
  5566. * less cpu_power.
  5567. *
  5568. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5569. * the maximum number of tasks a group can handle in the presence of other idle
  5570. * or lightly loaded groups in the same sched domain.
  5571. */
  5572. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5573. {
  5574. struct sched_domain *child;
  5575. struct sched_group *group;
  5576. WARN_ON(!sd || !sd->groups);
  5577. if (cpu != first_cpu(sd->groups->cpumask))
  5578. return;
  5579. child = sd->child;
  5580. sd->groups->__cpu_power = 0;
  5581. /*
  5582. * For perf policy, if the groups in child domain share resources
  5583. * (for example cores sharing some portions of the cache hierarchy
  5584. * or SMT), then set this domain groups cpu_power such that each group
  5585. * can handle only one task, when there are other idle groups in the
  5586. * same sched domain.
  5587. */
  5588. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5589. (child->flags &
  5590. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5591. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5592. return;
  5593. }
  5594. /*
  5595. * add cpu_power of each child group to this groups cpu_power
  5596. */
  5597. group = child->groups;
  5598. do {
  5599. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5600. group = group->next;
  5601. } while (group != child->groups);
  5602. }
  5603. /*
  5604. * Build sched domains for a given set of cpus and attach the sched domains
  5605. * to the individual cpus
  5606. */
  5607. static int build_sched_domains(const cpumask_t *cpu_map)
  5608. {
  5609. int i;
  5610. struct root_domain *rd;
  5611. #ifdef CONFIG_NUMA
  5612. struct sched_group **sched_group_nodes = NULL;
  5613. int sd_allnodes = 0;
  5614. /*
  5615. * Allocate the per-node list of sched groups
  5616. */
  5617. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5618. GFP_KERNEL);
  5619. if (!sched_group_nodes) {
  5620. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5621. return -ENOMEM;
  5622. }
  5623. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5624. #endif
  5625. rd = alloc_rootdomain();
  5626. if (!rd) {
  5627. printk(KERN_WARNING "Cannot alloc root domain\n");
  5628. return -ENOMEM;
  5629. }
  5630. /*
  5631. * Set up domains for cpus specified by the cpu_map.
  5632. */
  5633. for_each_cpu_mask(i, *cpu_map) {
  5634. struct sched_domain *sd = NULL, *p;
  5635. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5636. cpus_and(nodemask, nodemask, *cpu_map);
  5637. #ifdef CONFIG_NUMA
  5638. if (cpus_weight(*cpu_map) >
  5639. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5640. sd = &per_cpu(allnodes_domains, i);
  5641. *sd = SD_ALLNODES_INIT;
  5642. sd->span = *cpu_map;
  5643. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5644. p = sd;
  5645. sd_allnodes = 1;
  5646. } else
  5647. p = NULL;
  5648. sd = &per_cpu(node_domains, i);
  5649. *sd = SD_NODE_INIT;
  5650. sd->span = sched_domain_node_span(cpu_to_node(i));
  5651. sd->parent = p;
  5652. if (p)
  5653. p->child = sd;
  5654. cpus_and(sd->span, sd->span, *cpu_map);
  5655. #endif
  5656. p = sd;
  5657. sd = &per_cpu(phys_domains, i);
  5658. *sd = SD_CPU_INIT;
  5659. sd->span = nodemask;
  5660. sd->parent = p;
  5661. if (p)
  5662. p->child = sd;
  5663. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5664. #ifdef CONFIG_SCHED_MC
  5665. p = sd;
  5666. sd = &per_cpu(core_domains, i);
  5667. *sd = SD_MC_INIT;
  5668. sd->span = cpu_coregroup_map(i);
  5669. cpus_and(sd->span, sd->span, *cpu_map);
  5670. sd->parent = p;
  5671. p->child = sd;
  5672. cpu_to_core_group(i, cpu_map, &sd->groups);
  5673. #endif
  5674. #ifdef CONFIG_SCHED_SMT
  5675. p = sd;
  5676. sd = &per_cpu(cpu_domains, i);
  5677. *sd = SD_SIBLING_INIT;
  5678. sd->span = per_cpu(cpu_sibling_map, i);
  5679. cpus_and(sd->span, sd->span, *cpu_map);
  5680. sd->parent = p;
  5681. p->child = sd;
  5682. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5683. #endif
  5684. }
  5685. #ifdef CONFIG_SCHED_SMT
  5686. /* Set up CPU (sibling) groups */
  5687. for_each_cpu_mask(i, *cpu_map) {
  5688. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5689. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5690. if (i != first_cpu(this_sibling_map))
  5691. continue;
  5692. init_sched_build_groups(this_sibling_map, cpu_map,
  5693. &cpu_to_cpu_group);
  5694. }
  5695. #endif
  5696. #ifdef CONFIG_SCHED_MC
  5697. /* Set up multi-core groups */
  5698. for_each_cpu_mask(i, *cpu_map) {
  5699. cpumask_t this_core_map = cpu_coregroup_map(i);
  5700. cpus_and(this_core_map, this_core_map, *cpu_map);
  5701. if (i != first_cpu(this_core_map))
  5702. continue;
  5703. init_sched_build_groups(this_core_map, cpu_map,
  5704. &cpu_to_core_group);
  5705. }
  5706. #endif
  5707. /* Set up physical groups */
  5708. for (i = 0; i < MAX_NUMNODES; i++) {
  5709. cpumask_t nodemask = node_to_cpumask(i);
  5710. cpus_and(nodemask, nodemask, *cpu_map);
  5711. if (cpus_empty(nodemask))
  5712. continue;
  5713. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5714. }
  5715. #ifdef CONFIG_NUMA
  5716. /* Set up node groups */
  5717. if (sd_allnodes)
  5718. init_sched_build_groups(*cpu_map, cpu_map,
  5719. &cpu_to_allnodes_group);
  5720. for (i = 0; i < MAX_NUMNODES; i++) {
  5721. /* Set up node groups */
  5722. struct sched_group *sg, *prev;
  5723. cpumask_t nodemask = node_to_cpumask(i);
  5724. cpumask_t domainspan;
  5725. cpumask_t covered = CPU_MASK_NONE;
  5726. int j;
  5727. cpus_and(nodemask, nodemask, *cpu_map);
  5728. if (cpus_empty(nodemask)) {
  5729. sched_group_nodes[i] = NULL;
  5730. continue;
  5731. }
  5732. domainspan = sched_domain_node_span(i);
  5733. cpus_and(domainspan, domainspan, *cpu_map);
  5734. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5735. if (!sg) {
  5736. printk(KERN_WARNING "Can not alloc domain group for "
  5737. "node %d\n", i);
  5738. goto error;
  5739. }
  5740. sched_group_nodes[i] = sg;
  5741. for_each_cpu_mask(j, nodemask) {
  5742. struct sched_domain *sd;
  5743. sd = &per_cpu(node_domains, j);
  5744. sd->groups = sg;
  5745. }
  5746. sg->__cpu_power = 0;
  5747. sg->cpumask = nodemask;
  5748. sg->next = sg;
  5749. cpus_or(covered, covered, nodemask);
  5750. prev = sg;
  5751. for (j = 0; j < MAX_NUMNODES; j++) {
  5752. cpumask_t tmp, notcovered;
  5753. int n = (i + j) % MAX_NUMNODES;
  5754. cpus_complement(notcovered, covered);
  5755. cpus_and(tmp, notcovered, *cpu_map);
  5756. cpus_and(tmp, tmp, domainspan);
  5757. if (cpus_empty(tmp))
  5758. break;
  5759. nodemask = node_to_cpumask(n);
  5760. cpus_and(tmp, tmp, nodemask);
  5761. if (cpus_empty(tmp))
  5762. continue;
  5763. sg = kmalloc_node(sizeof(struct sched_group),
  5764. GFP_KERNEL, i);
  5765. if (!sg) {
  5766. printk(KERN_WARNING
  5767. "Can not alloc domain group for node %d\n", j);
  5768. goto error;
  5769. }
  5770. sg->__cpu_power = 0;
  5771. sg->cpumask = tmp;
  5772. sg->next = prev->next;
  5773. cpus_or(covered, covered, tmp);
  5774. prev->next = sg;
  5775. prev = sg;
  5776. }
  5777. }
  5778. #endif
  5779. /* Calculate CPU power for physical packages and nodes */
  5780. #ifdef CONFIG_SCHED_SMT
  5781. for_each_cpu_mask(i, *cpu_map) {
  5782. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5783. init_sched_groups_power(i, sd);
  5784. }
  5785. #endif
  5786. #ifdef CONFIG_SCHED_MC
  5787. for_each_cpu_mask(i, *cpu_map) {
  5788. struct sched_domain *sd = &per_cpu(core_domains, i);
  5789. init_sched_groups_power(i, sd);
  5790. }
  5791. #endif
  5792. for_each_cpu_mask(i, *cpu_map) {
  5793. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5794. init_sched_groups_power(i, sd);
  5795. }
  5796. #ifdef CONFIG_NUMA
  5797. for (i = 0; i < MAX_NUMNODES; i++)
  5798. init_numa_sched_groups_power(sched_group_nodes[i]);
  5799. if (sd_allnodes) {
  5800. struct sched_group *sg;
  5801. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5802. init_numa_sched_groups_power(sg);
  5803. }
  5804. #endif
  5805. /* Attach the domains */
  5806. for_each_cpu_mask(i, *cpu_map) {
  5807. struct sched_domain *sd;
  5808. #ifdef CONFIG_SCHED_SMT
  5809. sd = &per_cpu(cpu_domains, i);
  5810. #elif defined(CONFIG_SCHED_MC)
  5811. sd = &per_cpu(core_domains, i);
  5812. #else
  5813. sd = &per_cpu(phys_domains, i);
  5814. #endif
  5815. cpu_attach_domain(sd, rd, i);
  5816. }
  5817. return 0;
  5818. #ifdef CONFIG_NUMA
  5819. error:
  5820. free_sched_groups(cpu_map);
  5821. return -ENOMEM;
  5822. #endif
  5823. }
  5824. static cpumask_t *doms_cur; /* current sched domains */
  5825. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5826. /*
  5827. * Special case: If a kmalloc of a doms_cur partition (array of
  5828. * cpumask_t) fails, then fallback to a single sched domain,
  5829. * as determined by the single cpumask_t fallback_doms.
  5830. */
  5831. static cpumask_t fallback_doms;
  5832. /*
  5833. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5834. * For now this just excludes isolated cpus, but could be used to
  5835. * exclude other special cases in the future.
  5836. */
  5837. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5838. {
  5839. int err;
  5840. ndoms_cur = 1;
  5841. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5842. if (!doms_cur)
  5843. doms_cur = &fallback_doms;
  5844. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5845. err = build_sched_domains(doms_cur);
  5846. register_sched_domain_sysctl();
  5847. return err;
  5848. }
  5849. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5850. {
  5851. free_sched_groups(cpu_map);
  5852. }
  5853. /*
  5854. * Detach sched domains from a group of cpus specified in cpu_map
  5855. * These cpus will now be attached to the NULL domain
  5856. */
  5857. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5858. {
  5859. int i;
  5860. unregister_sched_domain_sysctl();
  5861. for_each_cpu_mask(i, *cpu_map)
  5862. cpu_attach_domain(NULL, &def_root_domain, i);
  5863. synchronize_sched();
  5864. arch_destroy_sched_domains(cpu_map);
  5865. }
  5866. /*
  5867. * Partition sched domains as specified by the 'ndoms_new'
  5868. * cpumasks in the array doms_new[] of cpumasks. This compares
  5869. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5870. * It destroys each deleted domain and builds each new domain.
  5871. *
  5872. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5873. * The masks don't intersect (don't overlap.) We should setup one
  5874. * sched domain for each mask. CPUs not in any of the cpumasks will
  5875. * not be load balanced. If the same cpumask appears both in the
  5876. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5877. * it as it is.
  5878. *
  5879. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5880. * ownership of it and will kfree it when done with it. If the caller
  5881. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5882. * and partition_sched_domains() will fallback to the single partition
  5883. * 'fallback_doms'.
  5884. *
  5885. * Call with hotplug lock held
  5886. */
  5887. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5888. {
  5889. int i, j;
  5890. lock_doms_cur();
  5891. /* always unregister in case we don't destroy any domains */
  5892. unregister_sched_domain_sysctl();
  5893. if (doms_new == NULL) {
  5894. ndoms_new = 1;
  5895. doms_new = &fallback_doms;
  5896. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5897. }
  5898. /* Destroy deleted domains */
  5899. for (i = 0; i < ndoms_cur; i++) {
  5900. for (j = 0; j < ndoms_new; j++) {
  5901. if (cpus_equal(doms_cur[i], doms_new[j]))
  5902. goto match1;
  5903. }
  5904. /* no match - a current sched domain not in new doms_new[] */
  5905. detach_destroy_domains(doms_cur + i);
  5906. match1:
  5907. ;
  5908. }
  5909. /* Build new domains */
  5910. for (i = 0; i < ndoms_new; i++) {
  5911. for (j = 0; j < ndoms_cur; j++) {
  5912. if (cpus_equal(doms_new[i], doms_cur[j]))
  5913. goto match2;
  5914. }
  5915. /* no match - add a new doms_new */
  5916. build_sched_domains(doms_new + i);
  5917. match2:
  5918. ;
  5919. }
  5920. /* Remember the new sched domains */
  5921. if (doms_cur != &fallback_doms)
  5922. kfree(doms_cur);
  5923. doms_cur = doms_new;
  5924. ndoms_cur = ndoms_new;
  5925. register_sched_domain_sysctl();
  5926. unlock_doms_cur();
  5927. }
  5928. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5929. static int arch_reinit_sched_domains(void)
  5930. {
  5931. int err;
  5932. get_online_cpus();
  5933. detach_destroy_domains(&cpu_online_map);
  5934. err = arch_init_sched_domains(&cpu_online_map);
  5935. put_online_cpus();
  5936. return err;
  5937. }
  5938. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5939. {
  5940. int ret;
  5941. if (buf[0] != '0' && buf[0] != '1')
  5942. return -EINVAL;
  5943. if (smt)
  5944. sched_smt_power_savings = (buf[0] == '1');
  5945. else
  5946. sched_mc_power_savings = (buf[0] == '1');
  5947. ret = arch_reinit_sched_domains();
  5948. return ret ? ret : count;
  5949. }
  5950. #ifdef CONFIG_SCHED_MC
  5951. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5952. {
  5953. return sprintf(page, "%u\n", sched_mc_power_savings);
  5954. }
  5955. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5956. const char *buf, size_t count)
  5957. {
  5958. return sched_power_savings_store(buf, count, 0);
  5959. }
  5960. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5961. sched_mc_power_savings_store);
  5962. #endif
  5963. #ifdef CONFIG_SCHED_SMT
  5964. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5965. {
  5966. return sprintf(page, "%u\n", sched_smt_power_savings);
  5967. }
  5968. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5969. const char *buf, size_t count)
  5970. {
  5971. return sched_power_savings_store(buf, count, 1);
  5972. }
  5973. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5974. sched_smt_power_savings_store);
  5975. #endif
  5976. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5977. {
  5978. int err = 0;
  5979. #ifdef CONFIG_SCHED_SMT
  5980. if (smt_capable())
  5981. err = sysfs_create_file(&cls->kset.kobj,
  5982. &attr_sched_smt_power_savings.attr);
  5983. #endif
  5984. #ifdef CONFIG_SCHED_MC
  5985. if (!err && mc_capable())
  5986. err = sysfs_create_file(&cls->kset.kobj,
  5987. &attr_sched_mc_power_savings.attr);
  5988. #endif
  5989. return err;
  5990. }
  5991. #endif
  5992. /*
  5993. * Force a reinitialization of the sched domains hierarchy. The domains
  5994. * and groups cannot be updated in place without racing with the balancing
  5995. * code, so we temporarily attach all running cpus to the NULL domain
  5996. * which will prevent rebalancing while the sched domains are recalculated.
  5997. */
  5998. static int update_sched_domains(struct notifier_block *nfb,
  5999. unsigned long action, void *hcpu)
  6000. {
  6001. switch (action) {
  6002. case CPU_UP_PREPARE:
  6003. case CPU_UP_PREPARE_FROZEN:
  6004. case CPU_DOWN_PREPARE:
  6005. case CPU_DOWN_PREPARE_FROZEN:
  6006. detach_destroy_domains(&cpu_online_map);
  6007. return NOTIFY_OK;
  6008. case CPU_UP_CANCELED:
  6009. case CPU_UP_CANCELED_FROZEN:
  6010. case CPU_DOWN_FAILED:
  6011. case CPU_DOWN_FAILED_FROZEN:
  6012. case CPU_ONLINE:
  6013. case CPU_ONLINE_FROZEN:
  6014. case CPU_DEAD:
  6015. case CPU_DEAD_FROZEN:
  6016. /*
  6017. * Fall through and re-initialise the domains.
  6018. */
  6019. break;
  6020. default:
  6021. return NOTIFY_DONE;
  6022. }
  6023. /* The hotplug lock is already held by cpu_up/cpu_down */
  6024. arch_init_sched_domains(&cpu_online_map);
  6025. return NOTIFY_OK;
  6026. }
  6027. void __init sched_init_smp(void)
  6028. {
  6029. cpumask_t non_isolated_cpus;
  6030. get_online_cpus();
  6031. arch_init_sched_domains(&cpu_online_map);
  6032. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6033. if (cpus_empty(non_isolated_cpus))
  6034. cpu_set(smp_processor_id(), non_isolated_cpus);
  6035. put_online_cpus();
  6036. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6037. hotcpu_notifier(update_sched_domains, 0);
  6038. /* Move init over to a non-isolated CPU */
  6039. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6040. BUG();
  6041. sched_init_granularity();
  6042. #ifdef CONFIG_FAIR_GROUP_SCHED
  6043. if (nr_cpu_ids == 1)
  6044. return;
  6045. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  6046. "group_balance");
  6047. if (!IS_ERR(lb_monitor_task)) {
  6048. lb_monitor_task->flags |= PF_NOFREEZE;
  6049. wake_up_process(lb_monitor_task);
  6050. } else {
  6051. printk(KERN_ERR "Could not create load balance monitor thread"
  6052. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  6053. }
  6054. #endif
  6055. }
  6056. #else
  6057. void __init sched_init_smp(void)
  6058. {
  6059. sched_init_granularity();
  6060. }
  6061. #endif /* CONFIG_SMP */
  6062. int in_sched_functions(unsigned long addr)
  6063. {
  6064. return in_lock_functions(addr) ||
  6065. (addr >= (unsigned long)__sched_text_start
  6066. && addr < (unsigned long)__sched_text_end);
  6067. }
  6068. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6069. {
  6070. cfs_rq->tasks_timeline = RB_ROOT;
  6071. #ifdef CONFIG_FAIR_GROUP_SCHED
  6072. cfs_rq->rq = rq;
  6073. #endif
  6074. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6075. }
  6076. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6077. {
  6078. struct rt_prio_array *array;
  6079. int i;
  6080. array = &rt_rq->active;
  6081. for (i = 0; i < MAX_RT_PRIO; i++) {
  6082. INIT_LIST_HEAD(array->queue + i);
  6083. __clear_bit(i, array->bitmap);
  6084. }
  6085. /* delimiter for bitsearch: */
  6086. __set_bit(MAX_RT_PRIO, array->bitmap);
  6087. #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
  6088. rt_rq->highest_prio = MAX_RT_PRIO;
  6089. #endif
  6090. #ifdef CONFIG_SMP
  6091. rt_rq->rt_nr_migratory = 0;
  6092. rt_rq->overloaded = 0;
  6093. #endif
  6094. rt_rq->rt_time = 0;
  6095. rt_rq->rt_throttled = 0;
  6096. #ifdef CONFIG_FAIR_GROUP_SCHED
  6097. rt_rq->rq = rq;
  6098. #endif
  6099. }
  6100. #ifdef CONFIG_FAIR_GROUP_SCHED
  6101. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6102. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6103. int cpu, int add)
  6104. {
  6105. tg->cfs_rq[cpu] = cfs_rq;
  6106. init_cfs_rq(cfs_rq, rq);
  6107. cfs_rq->tg = tg;
  6108. if (add)
  6109. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6110. tg->se[cpu] = se;
  6111. se->cfs_rq = &rq->cfs;
  6112. se->my_q = cfs_rq;
  6113. se->load.weight = tg->shares;
  6114. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6115. se->parent = NULL;
  6116. }
  6117. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6118. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6119. int cpu, int add)
  6120. {
  6121. tg->rt_rq[cpu] = rt_rq;
  6122. init_rt_rq(rt_rq, rq);
  6123. rt_rq->tg = tg;
  6124. rt_rq->rt_se = rt_se;
  6125. if (add)
  6126. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6127. tg->rt_se[cpu] = rt_se;
  6128. rt_se->rt_rq = &rq->rt;
  6129. rt_se->my_q = rt_rq;
  6130. rt_se->parent = NULL;
  6131. INIT_LIST_HEAD(&rt_se->run_list);
  6132. }
  6133. #endif
  6134. void __init sched_init(void)
  6135. {
  6136. int highest_cpu = 0;
  6137. int i, j;
  6138. #ifdef CONFIG_SMP
  6139. init_defrootdomain();
  6140. #endif
  6141. #ifdef CONFIG_FAIR_GROUP_SCHED
  6142. list_add(&init_task_group.list, &task_groups);
  6143. #endif
  6144. for_each_possible_cpu(i) {
  6145. struct rq *rq;
  6146. rq = cpu_rq(i);
  6147. spin_lock_init(&rq->lock);
  6148. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6149. rq->nr_running = 0;
  6150. rq->clock = 1;
  6151. init_cfs_rq(&rq->cfs, rq);
  6152. init_rt_rq(&rq->rt, rq);
  6153. #ifdef CONFIG_FAIR_GROUP_SCHED
  6154. init_task_group.shares = init_task_group_load;
  6155. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6156. init_tg_cfs_entry(rq, &init_task_group,
  6157. &per_cpu(init_cfs_rq, i),
  6158. &per_cpu(init_sched_entity, i), i, 1);
  6159. init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
  6160. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6161. init_tg_rt_entry(rq, &init_task_group,
  6162. &per_cpu(init_rt_rq, i),
  6163. &per_cpu(init_sched_rt_entity, i), i, 1);
  6164. #endif
  6165. rq->rt_period_expire = 0;
  6166. rq->rt_throttled = 0;
  6167. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6168. rq->cpu_load[j] = 0;
  6169. #ifdef CONFIG_SMP
  6170. rq->sd = NULL;
  6171. rq->rd = NULL;
  6172. rq->active_balance = 0;
  6173. rq->next_balance = jiffies;
  6174. rq->push_cpu = 0;
  6175. rq->cpu = i;
  6176. rq->migration_thread = NULL;
  6177. INIT_LIST_HEAD(&rq->migration_queue);
  6178. rq_attach_root(rq, &def_root_domain);
  6179. #endif
  6180. init_rq_hrtick(rq);
  6181. atomic_set(&rq->nr_iowait, 0);
  6182. highest_cpu = i;
  6183. }
  6184. set_load_weight(&init_task);
  6185. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6186. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6187. #endif
  6188. #ifdef CONFIG_SMP
  6189. nr_cpu_ids = highest_cpu + 1;
  6190. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6191. #endif
  6192. #ifdef CONFIG_RT_MUTEXES
  6193. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6194. #endif
  6195. /*
  6196. * The boot idle thread does lazy MMU switching as well:
  6197. */
  6198. atomic_inc(&init_mm.mm_count);
  6199. enter_lazy_tlb(&init_mm, current);
  6200. /*
  6201. * Make us the idle thread. Technically, schedule() should not be
  6202. * called from this thread, however somewhere below it might be,
  6203. * but because we are the idle thread, we just pick up running again
  6204. * when this runqueue becomes "idle".
  6205. */
  6206. init_idle(current, smp_processor_id());
  6207. /*
  6208. * During early bootup we pretend to be a normal task:
  6209. */
  6210. current->sched_class = &fair_sched_class;
  6211. }
  6212. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6213. void __might_sleep(char *file, int line)
  6214. {
  6215. #ifdef in_atomic
  6216. static unsigned long prev_jiffy; /* ratelimiting */
  6217. if ((in_atomic() || irqs_disabled()) &&
  6218. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6219. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6220. return;
  6221. prev_jiffy = jiffies;
  6222. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6223. " context at %s:%d\n", file, line);
  6224. printk("in_atomic():%d, irqs_disabled():%d\n",
  6225. in_atomic(), irqs_disabled());
  6226. debug_show_held_locks(current);
  6227. if (irqs_disabled())
  6228. print_irqtrace_events(current);
  6229. dump_stack();
  6230. }
  6231. #endif
  6232. }
  6233. EXPORT_SYMBOL(__might_sleep);
  6234. #endif
  6235. #ifdef CONFIG_MAGIC_SYSRQ
  6236. static void normalize_task(struct rq *rq, struct task_struct *p)
  6237. {
  6238. int on_rq;
  6239. update_rq_clock(rq);
  6240. on_rq = p->se.on_rq;
  6241. if (on_rq)
  6242. deactivate_task(rq, p, 0);
  6243. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6244. if (on_rq) {
  6245. activate_task(rq, p, 0);
  6246. resched_task(rq->curr);
  6247. }
  6248. }
  6249. void normalize_rt_tasks(void)
  6250. {
  6251. struct task_struct *g, *p;
  6252. unsigned long flags;
  6253. struct rq *rq;
  6254. read_lock_irq(&tasklist_lock);
  6255. do_each_thread(g, p) {
  6256. /*
  6257. * Only normalize user tasks:
  6258. */
  6259. if (!p->mm)
  6260. continue;
  6261. p->se.exec_start = 0;
  6262. #ifdef CONFIG_SCHEDSTATS
  6263. p->se.wait_start = 0;
  6264. p->se.sleep_start = 0;
  6265. p->se.block_start = 0;
  6266. #endif
  6267. task_rq(p)->clock = 0;
  6268. if (!rt_task(p)) {
  6269. /*
  6270. * Renice negative nice level userspace
  6271. * tasks back to 0:
  6272. */
  6273. if (TASK_NICE(p) < 0 && p->mm)
  6274. set_user_nice(p, 0);
  6275. continue;
  6276. }
  6277. spin_lock_irqsave(&p->pi_lock, flags);
  6278. rq = __task_rq_lock(p);
  6279. normalize_task(rq, p);
  6280. __task_rq_unlock(rq);
  6281. spin_unlock_irqrestore(&p->pi_lock, flags);
  6282. } while_each_thread(g, p);
  6283. read_unlock_irq(&tasklist_lock);
  6284. }
  6285. #endif /* CONFIG_MAGIC_SYSRQ */
  6286. #ifdef CONFIG_IA64
  6287. /*
  6288. * These functions are only useful for the IA64 MCA handling.
  6289. *
  6290. * They can only be called when the whole system has been
  6291. * stopped - every CPU needs to be quiescent, and no scheduling
  6292. * activity can take place. Using them for anything else would
  6293. * be a serious bug, and as a result, they aren't even visible
  6294. * under any other configuration.
  6295. */
  6296. /**
  6297. * curr_task - return the current task for a given cpu.
  6298. * @cpu: the processor in question.
  6299. *
  6300. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6301. */
  6302. struct task_struct *curr_task(int cpu)
  6303. {
  6304. return cpu_curr(cpu);
  6305. }
  6306. /**
  6307. * set_curr_task - set the current task for a given cpu.
  6308. * @cpu: the processor in question.
  6309. * @p: the task pointer to set.
  6310. *
  6311. * Description: This function must only be used when non-maskable interrupts
  6312. * are serviced on a separate stack. It allows the architecture to switch the
  6313. * notion of the current task on a cpu in a non-blocking manner. This function
  6314. * must be called with all CPU's synchronized, and interrupts disabled, the
  6315. * and caller must save the original value of the current task (see
  6316. * curr_task() above) and restore that value before reenabling interrupts and
  6317. * re-starting the system.
  6318. *
  6319. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6320. */
  6321. void set_curr_task(int cpu, struct task_struct *p)
  6322. {
  6323. cpu_curr(cpu) = p;
  6324. }
  6325. #endif
  6326. #ifdef CONFIG_FAIR_GROUP_SCHED
  6327. #ifdef CONFIG_SMP
  6328. /*
  6329. * distribute shares of all task groups among their schedulable entities,
  6330. * to reflect load distribution across cpus.
  6331. */
  6332. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6333. {
  6334. struct cfs_rq *cfs_rq;
  6335. struct rq *rq = cpu_rq(this_cpu);
  6336. cpumask_t sdspan = sd->span;
  6337. int balanced = 1;
  6338. /* Walk thr' all the task groups that we have */
  6339. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6340. int i;
  6341. unsigned long total_load = 0, total_shares;
  6342. struct task_group *tg = cfs_rq->tg;
  6343. /* Gather total task load of this group across cpus */
  6344. for_each_cpu_mask(i, sdspan)
  6345. total_load += tg->cfs_rq[i]->load.weight;
  6346. /* Nothing to do if this group has no load */
  6347. if (!total_load)
  6348. continue;
  6349. /*
  6350. * tg->shares represents the number of cpu shares the task group
  6351. * is eligible to hold on a single cpu. On N cpus, it is
  6352. * eligible to hold (N * tg->shares) number of cpu shares.
  6353. */
  6354. total_shares = tg->shares * cpus_weight(sdspan);
  6355. /*
  6356. * redistribute total_shares across cpus as per the task load
  6357. * distribution.
  6358. */
  6359. for_each_cpu_mask(i, sdspan) {
  6360. unsigned long local_load, local_shares;
  6361. local_load = tg->cfs_rq[i]->load.weight;
  6362. local_shares = (local_load * total_shares) / total_load;
  6363. if (!local_shares)
  6364. local_shares = MIN_GROUP_SHARES;
  6365. if (local_shares == tg->se[i]->load.weight)
  6366. continue;
  6367. spin_lock_irq(&cpu_rq(i)->lock);
  6368. set_se_shares(tg->se[i], local_shares);
  6369. spin_unlock_irq(&cpu_rq(i)->lock);
  6370. balanced = 0;
  6371. }
  6372. }
  6373. return balanced;
  6374. }
  6375. /*
  6376. * How frequently should we rebalance_shares() across cpus?
  6377. *
  6378. * The more frequently we rebalance shares, the more accurate is the fairness
  6379. * of cpu bandwidth distribution between task groups. However higher frequency
  6380. * also implies increased scheduling overhead.
  6381. *
  6382. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6383. * consecutive calls to rebalance_shares() in the same sched domain.
  6384. *
  6385. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6386. * consecutive calls to rebalance_shares() in the same sched domain.
  6387. *
  6388. * These settings allows for the appropriate trade-off between accuracy of
  6389. * fairness and the associated overhead.
  6390. *
  6391. */
  6392. /* default: 8ms, units: milliseconds */
  6393. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6394. /* default: 128ms, units: milliseconds */
  6395. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6396. /* kernel thread that runs rebalance_shares() periodically */
  6397. static int load_balance_monitor(void *unused)
  6398. {
  6399. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6400. struct sched_param schedparm;
  6401. int ret;
  6402. /*
  6403. * We don't want this thread's execution to be limited by the shares
  6404. * assigned to default group (init_task_group). Hence make it run
  6405. * as a SCHED_RR RT task at the lowest priority.
  6406. */
  6407. schedparm.sched_priority = 1;
  6408. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6409. if (ret)
  6410. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6411. " monitor thread (error = %d) \n", ret);
  6412. while (!kthread_should_stop()) {
  6413. int i, cpu, balanced = 1;
  6414. /* Prevent cpus going down or coming up */
  6415. get_online_cpus();
  6416. /* lockout changes to doms_cur[] array */
  6417. lock_doms_cur();
  6418. /*
  6419. * Enter a rcu read-side critical section to safely walk rq->sd
  6420. * chain on various cpus and to walk task group list
  6421. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6422. */
  6423. rcu_read_lock();
  6424. for (i = 0; i < ndoms_cur; i++) {
  6425. cpumask_t cpumap = doms_cur[i];
  6426. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6427. cpu = first_cpu(cpumap);
  6428. /* Find the highest domain at which to balance shares */
  6429. for_each_domain(cpu, sd) {
  6430. if (!(sd->flags & SD_LOAD_BALANCE))
  6431. continue;
  6432. sd_prev = sd;
  6433. }
  6434. sd = sd_prev;
  6435. /* sd == NULL? No load balance reqd in this domain */
  6436. if (!sd)
  6437. continue;
  6438. balanced &= rebalance_shares(sd, cpu);
  6439. }
  6440. rcu_read_unlock();
  6441. unlock_doms_cur();
  6442. put_online_cpus();
  6443. if (!balanced)
  6444. timeout = sysctl_sched_min_bal_int_shares;
  6445. else if (timeout < sysctl_sched_max_bal_int_shares)
  6446. timeout *= 2;
  6447. msleep_interruptible(timeout);
  6448. }
  6449. return 0;
  6450. }
  6451. #endif /* CONFIG_SMP */
  6452. static void free_sched_group(struct task_group *tg)
  6453. {
  6454. int i;
  6455. for_each_possible_cpu(i) {
  6456. if (tg->cfs_rq)
  6457. kfree(tg->cfs_rq[i]);
  6458. if (tg->se)
  6459. kfree(tg->se[i]);
  6460. if (tg->rt_rq)
  6461. kfree(tg->rt_rq[i]);
  6462. if (tg->rt_se)
  6463. kfree(tg->rt_se[i]);
  6464. }
  6465. kfree(tg->cfs_rq);
  6466. kfree(tg->se);
  6467. kfree(tg->rt_rq);
  6468. kfree(tg->rt_se);
  6469. kfree(tg);
  6470. }
  6471. /* allocate runqueue etc for a new task group */
  6472. struct task_group *sched_create_group(void)
  6473. {
  6474. struct task_group *tg;
  6475. struct cfs_rq *cfs_rq;
  6476. struct sched_entity *se;
  6477. struct rt_rq *rt_rq;
  6478. struct sched_rt_entity *rt_se;
  6479. struct rq *rq;
  6480. int i;
  6481. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6482. if (!tg)
  6483. return ERR_PTR(-ENOMEM);
  6484. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6485. if (!tg->cfs_rq)
  6486. goto err;
  6487. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6488. if (!tg->se)
  6489. goto err;
  6490. tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
  6491. if (!tg->rt_rq)
  6492. goto err;
  6493. tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
  6494. if (!tg->rt_se)
  6495. goto err;
  6496. tg->shares = NICE_0_LOAD;
  6497. tg->rt_ratio = 0; /* XXX */
  6498. for_each_possible_cpu(i) {
  6499. rq = cpu_rq(i);
  6500. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6501. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6502. if (!cfs_rq)
  6503. goto err;
  6504. se = kmalloc_node(sizeof(struct sched_entity),
  6505. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6506. if (!se)
  6507. goto err;
  6508. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6509. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6510. if (!rt_rq)
  6511. goto err;
  6512. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6513. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6514. if (!rt_se)
  6515. goto err;
  6516. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6517. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6518. }
  6519. lock_task_group_list();
  6520. for_each_possible_cpu(i) {
  6521. rq = cpu_rq(i);
  6522. cfs_rq = tg->cfs_rq[i];
  6523. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6524. rt_rq = tg->rt_rq[i];
  6525. list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6526. }
  6527. list_add_rcu(&tg->list, &task_groups);
  6528. unlock_task_group_list();
  6529. return tg;
  6530. err:
  6531. free_sched_group(tg);
  6532. return ERR_PTR(-ENOMEM);
  6533. }
  6534. /* rcu callback to free various structures associated with a task group */
  6535. static void free_sched_group_rcu(struct rcu_head *rhp)
  6536. {
  6537. /* now it should be safe to free those cfs_rqs */
  6538. free_sched_group(container_of(rhp, struct task_group, rcu));
  6539. }
  6540. /* Destroy runqueue etc associated with a task group */
  6541. void sched_destroy_group(struct task_group *tg)
  6542. {
  6543. struct cfs_rq *cfs_rq = NULL;
  6544. struct rt_rq *rt_rq = NULL;
  6545. int i;
  6546. lock_task_group_list();
  6547. for_each_possible_cpu(i) {
  6548. cfs_rq = tg->cfs_rq[i];
  6549. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6550. rt_rq = tg->rt_rq[i];
  6551. list_del_rcu(&rt_rq->leaf_rt_rq_list);
  6552. }
  6553. list_del_rcu(&tg->list);
  6554. unlock_task_group_list();
  6555. BUG_ON(!cfs_rq);
  6556. /* wait for possible concurrent references to cfs_rqs complete */
  6557. call_rcu(&tg->rcu, free_sched_group_rcu);
  6558. }
  6559. /* change task's runqueue when it moves between groups.
  6560. * The caller of this function should have put the task in its new group
  6561. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6562. * reflect its new group.
  6563. */
  6564. void sched_move_task(struct task_struct *tsk)
  6565. {
  6566. int on_rq, running;
  6567. unsigned long flags;
  6568. struct rq *rq;
  6569. rq = task_rq_lock(tsk, &flags);
  6570. update_rq_clock(rq);
  6571. running = task_current(rq, tsk);
  6572. on_rq = tsk->se.on_rq;
  6573. if (on_rq) {
  6574. dequeue_task(rq, tsk, 0);
  6575. if (unlikely(running))
  6576. tsk->sched_class->put_prev_task(rq, tsk);
  6577. }
  6578. set_task_rq(tsk, task_cpu(tsk));
  6579. if (on_rq) {
  6580. if (unlikely(running))
  6581. tsk->sched_class->set_curr_task(rq);
  6582. enqueue_task(rq, tsk, 0);
  6583. }
  6584. task_rq_unlock(rq, &flags);
  6585. }
  6586. /* rq->lock to be locked by caller */
  6587. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6588. {
  6589. struct cfs_rq *cfs_rq = se->cfs_rq;
  6590. struct rq *rq = cfs_rq->rq;
  6591. int on_rq;
  6592. if (!shares)
  6593. shares = MIN_GROUP_SHARES;
  6594. on_rq = se->on_rq;
  6595. if (on_rq) {
  6596. dequeue_entity(cfs_rq, se, 0);
  6597. dec_cpu_load(rq, se->load.weight);
  6598. }
  6599. se->load.weight = shares;
  6600. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6601. if (on_rq) {
  6602. enqueue_entity(cfs_rq, se, 0);
  6603. inc_cpu_load(rq, se->load.weight);
  6604. }
  6605. }
  6606. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6607. {
  6608. int i;
  6609. struct cfs_rq *cfs_rq;
  6610. struct rq *rq;
  6611. lock_task_group_list();
  6612. if (tg->shares == shares)
  6613. goto done;
  6614. if (shares < MIN_GROUP_SHARES)
  6615. shares = MIN_GROUP_SHARES;
  6616. /*
  6617. * Prevent any load balance activity (rebalance_shares,
  6618. * load_balance_fair) from referring to this group first,
  6619. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6620. */
  6621. for_each_possible_cpu(i) {
  6622. cfs_rq = tg->cfs_rq[i];
  6623. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6624. }
  6625. /* wait for any ongoing reference to this group to finish */
  6626. synchronize_sched();
  6627. /*
  6628. * Now we are free to modify the group's share on each cpu
  6629. * w/o tripping rebalance_share or load_balance_fair.
  6630. */
  6631. tg->shares = shares;
  6632. for_each_possible_cpu(i) {
  6633. spin_lock_irq(&cpu_rq(i)->lock);
  6634. set_se_shares(tg->se[i], shares);
  6635. spin_unlock_irq(&cpu_rq(i)->lock);
  6636. }
  6637. /*
  6638. * Enable load balance activity on this group, by inserting it back on
  6639. * each cpu's rq->leaf_cfs_rq_list.
  6640. */
  6641. for_each_possible_cpu(i) {
  6642. rq = cpu_rq(i);
  6643. cfs_rq = tg->cfs_rq[i];
  6644. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6645. }
  6646. done:
  6647. unlock_task_group_list();
  6648. return 0;
  6649. }
  6650. unsigned long sched_group_shares(struct task_group *tg)
  6651. {
  6652. return tg->shares;
  6653. }
  6654. /*
  6655. * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
  6656. */
  6657. int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
  6658. {
  6659. struct task_group *tgi;
  6660. unsigned long total = 0;
  6661. rcu_read_lock();
  6662. list_for_each_entry_rcu(tgi, &task_groups, list)
  6663. total += tgi->rt_ratio;
  6664. rcu_read_unlock();
  6665. if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
  6666. return -EINVAL;
  6667. tg->rt_ratio = rt_ratio;
  6668. return 0;
  6669. }
  6670. unsigned long sched_group_rt_ratio(struct task_group *tg)
  6671. {
  6672. return tg->rt_ratio;
  6673. }
  6674. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6675. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6676. /* return corresponding task_group object of a cgroup */
  6677. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6678. {
  6679. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6680. struct task_group, css);
  6681. }
  6682. static struct cgroup_subsys_state *
  6683. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6684. {
  6685. struct task_group *tg;
  6686. if (!cgrp->parent) {
  6687. /* This is early initialization for the top cgroup */
  6688. init_task_group.css.cgroup = cgrp;
  6689. return &init_task_group.css;
  6690. }
  6691. /* we support only 1-level deep hierarchical scheduler atm */
  6692. if (cgrp->parent->parent)
  6693. return ERR_PTR(-EINVAL);
  6694. tg = sched_create_group();
  6695. if (IS_ERR(tg))
  6696. return ERR_PTR(-ENOMEM);
  6697. /* Bind the cgroup to task_group object we just created */
  6698. tg->css.cgroup = cgrp;
  6699. return &tg->css;
  6700. }
  6701. static void
  6702. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6703. {
  6704. struct task_group *tg = cgroup_tg(cgrp);
  6705. sched_destroy_group(tg);
  6706. }
  6707. static int
  6708. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6709. struct task_struct *tsk)
  6710. {
  6711. /* We don't support RT-tasks being in separate groups */
  6712. if (tsk->sched_class != &fair_sched_class)
  6713. return -EINVAL;
  6714. return 0;
  6715. }
  6716. static void
  6717. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6718. struct cgroup *old_cont, struct task_struct *tsk)
  6719. {
  6720. sched_move_task(tsk);
  6721. }
  6722. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6723. u64 shareval)
  6724. {
  6725. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6726. }
  6727. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6728. {
  6729. struct task_group *tg = cgroup_tg(cgrp);
  6730. return (u64) tg->shares;
  6731. }
  6732. static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6733. u64 rt_ratio_val)
  6734. {
  6735. return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
  6736. }
  6737. static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6738. {
  6739. struct task_group *tg = cgroup_tg(cgrp);
  6740. return (u64) tg->rt_ratio;
  6741. }
  6742. static struct cftype cpu_files[] = {
  6743. {
  6744. .name = "shares",
  6745. .read_uint = cpu_shares_read_uint,
  6746. .write_uint = cpu_shares_write_uint,
  6747. },
  6748. {
  6749. .name = "rt_ratio",
  6750. .read_uint = cpu_rt_ratio_read_uint,
  6751. .write_uint = cpu_rt_ratio_write_uint,
  6752. },
  6753. };
  6754. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6755. {
  6756. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6757. }
  6758. struct cgroup_subsys cpu_cgroup_subsys = {
  6759. .name = "cpu",
  6760. .create = cpu_cgroup_create,
  6761. .destroy = cpu_cgroup_destroy,
  6762. .can_attach = cpu_cgroup_can_attach,
  6763. .attach = cpu_cgroup_attach,
  6764. .populate = cpu_cgroup_populate,
  6765. .subsys_id = cpu_cgroup_subsys_id,
  6766. .early_init = 1,
  6767. };
  6768. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6769. #ifdef CONFIG_CGROUP_CPUACCT
  6770. /*
  6771. * CPU accounting code for task groups.
  6772. *
  6773. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6774. * (balbir@in.ibm.com).
  6775. */
  6776. /* track cpu usage of a group of tasks */
  6777. struct cpuacct {
  6778. struct cgroup_subsys_state css;
  6779. /* cpuusage holds pointer to a u64-type object on every cpu */
  6780. u64 *cpuusage;
  6781. };
  6782. struct cgroup_subsys cpuacct_subsys;
  6783. /* return cpu accounting group corresponding to this container */
  6784. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6785. {
  6786. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6787. struct cpuacct, css);
  6788. }
  6789. /* return cpu accounting group to which this task belongs */
  6790. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6791. {
  6792. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6793. struct cpuacct, css);
  6794. }
  6795. /* create a new cpu accounting group */
  6796. static struct cgroup_subsys_state *cpuacct_create(
  6797. struct cgroup_subsys *ss, struct cgroup *cont)
  6798. {
  6799. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6800. if (!ca)
  6801. return ERR_PTR(-ENOMEM);
  6802. ca->cpuusage = alloc_percpu(u64);
  6803. if (!ca->cpuusage) {
  6804. kfree(ca);
  6805. return ERR_PTR(-ENOMEM);
  6806. }
  6807. return &ca->css;
  6808. }
  6809. /* destroy an existing cpu accounting group */
  6810. static void
  6811. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6812. {
  6813. struct cpuacct *ca = cgroup_ca(cont);
  6814. free_percpu(ca->cpuusage);
  6815. kfree(ca);
  6816. }
  6817. /* return total cpu usage (in nanoseconds) of a group */
  6818. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6819. {
  6820. struct cpuacct *ca = cgroup_ca(cont);
  6821. u64 totalcpuusage = 0;
  6822. int i;
  6823. for_each_possible_cpu(i) {
  6824. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6825. /*
  6826. * Take rq->lock to make 64-bit addition safe on 32-bit
  6827. * platforms.
  6828. */
  6829. spin_lock_irq(&cpu_rq(i)->lock);
  6830. totalcpuusage += *cpuusage;
  6831. spin_unlock_irq(&cpu_rq(i)->lock);
  6832. }
  6833. return totalcpuusage;
  6834. }
  6835. static struct cftype files[] = {
  6836. {
  6837. .name = "usage",
  6838. .read_uint = cpuusage_read,
  6839. },
  6840. };
  6841. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6842. {
  6843. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6844. }
  6845. /*
  6846. * charge this task's execution time to its accounting group.
  6847. *
  6848. * called with rq->lock held.
  6849. */
  6850. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6851. {
  6852. struct cpuacct *ca;
  6853. if (!cpuacct_subsys.active)
  6854. return;
  6855. ca = task_ca(tsk);
  6856. if (ca) {
  6857. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6858. *cpuusage += cputime;
  6859. }
  6860. }
  6861. struct cgroup_subsys cpuacct_subsys = {
  6862. .name = "cpuacct",
  6863. .create = cpuacct_create,
  6864. .destroy = cpuacct_destroy,
  6865. .populate = cpuacct_populate,
  6866. .subsys_id = cpuacct_subsys_id,
  6867. };
  6868. #endif /* CONFIG_CGROUP_CPUACCT */