pgtable_32.h 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. #ifndef _I386_PGTABLE_H
  2. #define _I386_PGTABLE_H
  3. /*
  4. * The Linux memory management assumes a three-level page table setup. On
  5. * the i386, we use that, but "fold" the mid level into the top-level page
  6. * table, so that we physically have the same two-level page table as the
  7. * i386 mmu expects.
  8. *
  9. * This file contains the functions and defines necessary to modify and use
  10. * the i386 page table tree.
  11. */
  12. #ifndef __ASSEMBLY__
  13. #include <asm/processor.h>
  14. #include <asm/fixmap.h>
  15. #include <linux/threads.h>
  16. #include <asm/paravirt.h>
  17. #include <linux/bitops.h>
  18. #include <linux/slab.h>
  19. #include <linux/list.h>
  20. #include <linux/spinlock.h>
  21. struct mm_struct;
  22. struct vm_area_struct;
  23. extern pgd_t swapper_pg_dir[1024];
  24. extern struct kmem_cache *pmd_cache;
  25. extern spinlock_t pgd_lock;
  26. extern struct page *pgd_list;
  27. void check_pgt_cache(void);
  28. void pmd_ctor(struct kmem_cache *, void *);
  29. void pgtable_cache_init(void);
  30. void paging_init(void);
  31. /*
  32. * The Linux x86 paging architecture is 'compile-time dual-mode', it
  33. * implements both the traditional 2-level x86 page tables and the
  34. * newer 3-level PAE-mode page tables.
  35. */
  36. #ifdef CONFIG_X86_PAE
  37. # include <asm/pgtable-3level-defs.h>
  38. # define PMD_SIZE (1UL << PMD_SHIFT)
  39. # define PMD_MASK (~(PMD_SIZE-1))
  40. #else
  41. # include <asm/pgtable-2level-defs.h>
  42. #endif
  43. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  44. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  45. #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
  46. #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
  47. #define TWOLEVEL_PGDIR_SHIFT 22
  48. #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
  49. #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
  50. /* Just any arbitrary offset to the start of the vmalloc VM area: the
  51. * current 8MB value just means that there will be a 8MB "hole" after the
  52. * physical memory until the kernel virtual memory starts. That means that
  53. * any out-of-bounds memory accesses will hopefully be caught.
  54. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  55. * area for the same reason. ;)
  56. */
  57. #define VMALLOC_OFFSET (8*1024*1024)
  58. #define VMALLOC_START (((unsigned long) high_memory + \
  59. 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
  60. #ifdef CONFIG_HIGHMEM
  61. # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
  62. #else
  63. # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
  64. #endif
  65. /*
  66. * Define this if things work differently on an i386 and an i486:
  67. * it will (on an i486) warn about kernel memory accesses that are
  68. * done without a 'access_ok(VERIFY_WRITE,..)'
  69. */
  70. #undef TEST_ACCESS_OK
  71. /* The boot page tables (all created as a single array) */
  72. extern unsigned long pg0[];
  73. #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
  74. /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
  75. #define pmd_none(x) (!(unsigned long)pmd_val(x))
  76. #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
  77. #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
  78. #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
  79. #ifdef CONFIG_X86_PAE
  80. # include <asm/pgtable-3level.h>
  81. #else
  82. # include <asm/pgtable-2level.h>
  83. #endif
  84. /*
  85. * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
  86. *
  87. * dst - pointer to pgd range anwhere on a pgd page
  88. * src - ""
  89. * count - the number of pgds to copy.
  90. *
  91. * dst and src can be on the same page, but the range must not overlap,
  92. * and must not cross a page boundary.
  93. */
  94. static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
  95. {
  96. memcpy(dst, src, count * sizeof(pgd_t));
  97. }
  98. /*
  99. * Macro to mark a page protection value as "uncacheable". On processors which do not support
  100. * it, this is a no-op.
  101. */
  102. #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
  103. ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
  104. /*
  105. * Conversion functions: convert a page and protection to a page entry,
  106. * and a page entry and page directory to the page they refer to.
  107. */
  108. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  109. /*
  110. * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
  111. *
  112. * this macro returns the index of the entry in the pgd page which would
  113. * control the given virtual address
  114. */
  115. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  116. #define pgd_index_k(addr) pgd_index(addr)
  117. /*
  118. * pgd_offset() returns a (pgd_t *)
  119. * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
  120. */
  121. #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
  122. /*
  123. * a shortcut which implies the use of the kernel's pgd, instead
  124. * of a process's
  125. */
  126. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  127. /*
  128. * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
  129. *
  130. * this macro returns the index of the entry in the pmd page which would
  131. * control the given virtual address
  132. */
  133. #define pmd_index(address) \
  134. (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  135. /*
  136. * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
  137. *
  138. * this macro returns the index of the entry in the pte page which would
  139. * control the given virtual address
  140. */
  141. #define pte_index(address) \
  142. (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  143. #define pte_offset_kernel(dir, address) \
  144. ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
  145. #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
  146. #define pmd_page_vaddr(pmd) \
  147. ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
  148. /*
  149. * Helper function that returns the kernel pagetable entry controlling
  150. * the virtual address 'address'. NULL means no pagetable entry present.
  151. * NOTE: the return type is pte_t but if the pmd is PSE then we return it
  152. * as a pte too.
  153. */
  154. extern pte_t *lookup_address(unsigned long address);
  155. /*
  156. * Make a given kernel text page executable/non-executable.
  157. * Returns the previous executability setting of that page (which
  158. * is used to restore the previous state). Used by the SMP bootup code.
  159. * NOTE: this is an __init function for security reasons.
  160. */
  161. #ifdef CONFIG_X86_PAE
  162. extern int set_kernel_exec(unsigned long vaddr, int enable);
  163. #else
  164. static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
  165. #endif
  166. #if defined(CONFIG_HIGHPTE)
  167. #define pte_offset_map(dir, address) \
  168. ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
  169. #define pte_offset_map_nested(dir, address) \
  170. ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
  171. #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
  172. #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
  173. #else
  174. #define pte_offset_map(dir, address) \
  175. ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
  176. #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
  177. #define pte_unmap(pte) do { } while (0)
  178. #define pte_unmap_nested(pte) do { } while (0)
  179. #endif
  180. /* Clear a kernel PTE and flush it from the TLB */
  181. #define kpte_clear_flush(ptep, vaddr) \
  182. do { \
  183. pte_clear(&init_mm, vaddr, ptep); \
  184. __flush_tlb_one(vaddr); \
  185. } while (0)
  186. /*
  187. * The i386 doesn't have any external MMU info: the kernel page
  188. * tables contain all the necessary information.
  189. */
  190. #define update_mmu_cache(vma,address,pte) do { } while (0)
  191. void native_pagetable_setup_start(pgd_t *base);
  192. void native_pagetable_setup_done(pgd_t *base);
  193. #ifndef CONFIG_PARAVIRT
  194. static inline void paravirt_pagetable_setup_start(pgd_t *base)
  195. {
  196. native_pagetable_setup_start(base);
  197. }
  198. static inline void paravirt_pagetable_setup_done(pgd_t *base)
  199. {
  200. native_pagetable_setup_done(base);
  201. }
  202. #endif /* !CONFIG_PARAVIRT */
  203. #endif /* !__ASSEMBLY__ */
  204. /*
  205. * kern_addr_valid() is (1) for FLATMEM and (0) for
  206. * SPARSEMEM and DISCONTIGMEM
  207. */
  208. #ifdef CONFIG_FLATMEM
  209. #define kern_addr_valid(addr) (1)
  210. #else
  211. #define kern_addr_valid(kaddr) (0)
  212. #endif
  213. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  214. remap_pfn_range(vma, vaddr, pfn, size, prot)
  215. #endif /* _I386_PGTABLE_H */