kvm_main.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. bool kvm_rebooting;
  79. EXPORT_SYMBOL_GPL(kvm_rebooting);
  80. static bool largepages_enabled = true;
  81. static struct page *hwpoison_page;
  82. static pfn_t hwpoison_pfn;
  83. static struct page *fault_page;
  84. static pfn_t fault_pfn;
  85. inline int kvm_is_mmio_pfn(pfn_t pfn)
  86. {
  87. if (pfn_valid(pfn)) {
  88. int reserved;
  89. struct page *tail = pfn_to_page(pfn);
  90. struct page *head = compound_trans_head(tail);
  91. reserved = PageReserved(head);
  92. if (head != tail) {
  93. /*
  94. * "head" is not a dangling pointer
  95. * (compound_trans_head takes care of that)
  96. * but the hugepage may have been splitted
  97. * from under us (and we may not hold a
  98. * reference count on the head page so it can
  99. * be reused before we run PageReferenced), so
  100. * we've to check PageTail before returning
  101. * what we just read.
  102. */
  103. smp_rmb();
  104. if (PageTail(tail))
  105. return reserved;
  106. }
  107. return PageReserved(tail);
  108. }
  109. return true;
  110. }
  111. /*
  112. * Switches to specified vcpu, until a matching vcpu_put()
  113. */
  114. void vcpu_load(struct kvm_vcpu *vcpu)
  115. {
  116. int cpu;
  117. mutex_lock(&vcpu->mutex);
  118. cpu = get_cpu();
  119. preempt_notifier_register(&vcpu->preempt_notifier);
  120. kvm_arch_vcpu_load(vcpu, cpu);
  121. put_cpu();
  122. }
  123. void vcpu_put(struct kvm_vcpu *vcpu)
  124. {
  125. preempt_disable();
  126. kvm_arch_vcpu_put(vcpu);
  127. preempt_notifier_unregister(&vcpu->preempt_notifier);
  128. preempt_enable();
  129. mutex_unlock(&vcpu->mutex);
  130. }
  131. static void ack_flush(void *_completed)
  132. {
  133. }
  134. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  135. {
  136. int i, cpu, me;
  137. cpumask_var_t cpus;
  138. bool called = true;
  139. struct kvm_vcpu *vcpu;
  140. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  141. me = get_cpu();
  142. kvm_for_each_vcpu(i, vcpu, kvm) {
  143. kvm_make_request(req, vcpu);
  144. cpu = vcpu->cpu;
  145. /* Set ->requests bit before we read ->mode */
  146. smp_mb();
  147. if (cpus != NULL && cpu != -1 && cpu != me &&
  148. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  149. cpumask_set_cpu(cpu, cpus);
  150. }
  151. if (unlikely(cpus == NULL))
  152. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  153. else if (!cpumask_empty(cpus))
  154. smp_call_function_many(cpus, ack_flush, NULL, 1);
  155. else
  156. called = false;
  157. put_cpu();
  158. free_cpumask_var(cpus);
  159. return called;
  160. }
  161. void kvm_flush_remote_tlbs(struct kvm *kvm)
  162. {
  163. int dirty_count = kvm->tlbs_dirty;
  164. smp_mb();
  165. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  166. ++kvm->stat.remote_tlb_flush;
  167. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  168. }
  169. void kvm_reload_remote_mmus(struct kvm *kvm)
  170. {
  171. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  172. }
  173. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  174. {
  175. struct page *page;
  176. int r;
  177. mutex_init(&vcpu->mutex);
  178. vcpu->cpu = -1;
  179. vcpu->kvm = kvm;
  180. vcpu->vcpu_id = id;
  181. init_waitqueue_head(&vcpu->wq);
  182. kvm_async_pf_vcpu_init(vcpu);
  183. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  184. if (!page) {
  185. r = -ENOMEM;
  186. goto fail;
  187. }
  188. vcpu->run = page_address(page);
  189. r = kvm_arch_vcpu_init(vcpu);
  190. if (r < 0)
  191. goto fail_free_run;
  192. return 0;
  193. fail_free_run:
  194. free_page((unsigned long)vcpu->run);
  195. fail:
  196. return r;
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  199. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  200. {
  201. kvm_arch_vcpu_uninit(vcpu);
  202. free_page((unsigned long)vcpu->run);
  203. }
  204. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  205. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  206. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  207. {
  208. return container_of(mn, struct kvm, mmu_notifier);
  209. }
  210. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  211. struct mm_struct *mm,
  212. unsigned long address)
  213. {
  214. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  215. int need_tlb_flush, idx;
  216. /*
  217. * When ->invalidate_page runs, the linux pte has been zapped
  218. * already but the page is still allocated until
  219. * ->invalidate_page returns. So if we increase the sequence
  220. * here the kvm page fault will notice if the spte can't be
  221. * established because the page is going to be freed. If
  222. * instead the kvm page fault establishes the spte before
  223. * ->invalidate_page runs, kvm_unmap_hva will release it
  224. * before returning.
  225. *
  226. * The sequence increase only need to be seen at spin_unlock
  227. * time, and not at spin_lock time.
  228. *
  229. * Increasing the sequence after the spin_unlock would be
  230. * unsafe because the kvm page fault could then establish the
  231. * pte after kvm_unmap_hva returned, without noticing the page
  232. * is going to be freed.
  233. */
  234. idx = srcu_read_lock(&kvm->srcu);
  235. spin_lock(&kvm->mmu_lock);
  236. kvm->mmu_notifier_seq++;
  237. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  238. spin_unlock(&kvm->mmu_lock);
  239. srcu_read_unlock(&kvm->srcu, idx);
  240. /* we've to flush the tlb before the pages can be freed */
  241. if (need_tlb_flush)
  242. kvm_flush_remote_tlbs(kvm);
  243. }
  244. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  245. struct mm_struct *mm,
  246. unsigned long address,
  247. pte_t pte)
  248. {
  249. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  250. int idx;
  251. idx = srcu_read_lock(&kvm->srcu);
  252. spin_lock(&kvm->mmu_lock);
  253. kvm->mmu_notifier_seq++;
  254. kvm_set_spte_hva(kvm, address, pte);
  255. spin_unlock(&kvm->mmu_lock);
  256. srcu_read_unlock(&kvm->srcu, idx);
  257. }
  258. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  259. struct mm_struct *mm,
  260. unsigned long start,
  261. unsigned long end)
  262. {
  263. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  264. int need_tlb_flush = 0, idx;
  265. idx = srcu_read_lock(&kvm->srcu);
  266. spin_lock(&kvm->mmu_lock);
  267. /*
  268. * The count increase must become visible at unlock time as no
  269. * spte can be established without taking the mmu_lock and
  270. * count is also read inside the mmu_lock critical section.
  271. */
  272. kvm->mmu_notifier_count++;
  273. for (; start < end; start += PAGE_SIZE)
  274. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  275. need_tlb_flush |= kvm->tlbs_dirty;
  276. spin_unlock(&kvm->mmu_lock);
  277. srcu_read_unlock(&kvm->srcu, idx);
  278. /* we've to flush the tlb before the pages can be freed */
  279. if (need_tlb_flush)
  280. kvm_flush_remote_tlbs(kvm);
  281. }
  282. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  283. struct mm_struct *mm,
  284. unsigned long start,
  285. unsigned long end)
  286. {
  287. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  288. spin_lock(&kvm->mmu_lock);
  289. /*
  290. * This sequence increase will notify the kvm page fault that
  291. * the page that is going to be mapped in the spte could have
  292. * been freed.
  293. */
  294. kvm->mmu_notifier_seq++;
  295. /*
  296. * The above sequence increase must be visible before the
  297. * below count decrease but both values are read by the kvm
  298. * page fault under mmu_lock spinlock so we don't need to add
  299. * a smb_wmb() here in between the two.
  300. */
  301. kvm->mmu_notifier_count--;
  302. spin_unlock(&kvm->mmu_lock);
  303. BUG_ON(kvm->mmu_notifier_count < 0);
  304. }
  305. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  306. struct mm_struct *mm,
  307. unsigned long address)
  308. {
  309. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  310. int young, idx;
  311. idx = srcu_read_lock(&kvm->srcu);
  312. spin_lock(&kvm->mmu_lock);
  313. young = kvm_age_hva(kvm, address);
  314. spin_unlock(&kvm->mmu_lock);
  315. srcu_read_unlock(&kvm->srcu, idx);
  316. if (young)
  317. kvm_flush_remote_tlbs(kvm);
  318. return young;
  319. }
  320. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long address)
  323. {
  324. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  325. int young, idx;
  326. idx = srcu_read_lock(&kvm->srcu);
  327. spin_lock(&kvm->mmu_lock);
  328. young = kvm_test_age_hva(kvm, address);
  329. spin_unlock(&kvm->mmu_lock);
  330. srcu_read_unlock(&kvm->srcu, idx);
  331. return young;
  332. }
  333. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  334. struct mm_struct *mm)
  335. {
  336. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  337. int idx;
  338. idx = srcu_read_lock(&kvm->srcu);
  339. kvm_arch_flush_shadow(kvm);
  340. srcu_read_unlock(&kvm->srcu, idx);
  341. }
  342. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  343. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  344. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  345. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  346. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  347. .test_young = kvm_mmu_notifier_test_young,
  348. .change_pte = kvm_mmu_notifier_change_pte,
  349. .release = kvm_mmu_notifier_release,
  350. };
  351. static int kvm_init_mmu_notifier(struct kvm *kvm)
  352. {
  353. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  354. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  355. }
  356. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  357. static int kvm_init_mmu_notifier(struct kvm *kvm)
  358. {
  359. return 0;
  360. }
  361. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  362. static struct kvm *kvm_create_vm(void)
  363. {
  364. int r, i;
  365. struct kvm *kvm = kvm_arch_alloc_vm();
  366. if (!kvm)
  367. return ERR_PTR(-ENOMEM);
  368. r = kvm_arch_init_vm(kvm);
  369. if (r)
  370. goto out_err_nodisable;
  371. r = hardware_enable_all();
  372. if (r)
  373. goto out_err_nodisable;
  374. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  375. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  376. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  377. #endif
  378. r = -ENOMEM;
  379. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  380. if (!kvm->memslots)
  381. goto out_err_nosrcu;
  382. if (init_srcu_struct(&kvm->srcu))
  383. goto out_err_nosrcu;
  384. for (i = 0; i < KVM_NR_BUSES; i++) {
  385. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  386. GFP_KERNEL);
  387. if (!kvm->buses[i])
  388. goto out_err;
  389. }
  390. r = kvm_init_mmu_notifier(kvm);
  391. if (r)
  392. goto out_err;
  393. kvm->mm = current->mm;
  394. atomic_inc(&kvm->mm->mm_count);
  395. spin_lock_init(&kvm->mmu_lock);
  396. kvm_eventfd_init(kvm);
  397. mutex_init(&kvm->lock);
  398. mutex_init(&kvm->irq_lock);
  399. mutex_init(&kvm->slots_lock);
  400. atomic_set(&kvm->users_count, 1);
  401. spin_lock(&kvm_lock);
  402. list_add(&kvm->vm_list, &vm_list);
  403. spin_unlock(&kvm_lock);
  404. return kvm;
  405. out_err:
  406. cleanup_srcu_struct(&kvm->srcu);
  407. out_err_nosrcu:
  408. hardware_disable_all();
  409. out_err_nodisable:
  410. for (i = 0; i < KVM_NR_BUSES; i++)
  411. kfree(kvm->buses[i]);
  412. kfree(kvm->memslots);
  413. kvm_arch_free_vm(kvm);
  414. return ERR_PTR(r);
  415. }
  416. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  417. {
  418. if (!memslot->dirty_bitmap)
  419. return;
  420. if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
  421. vfree(memslot->dirty_bitmap_head);
  422. else
  423. kfree(memslot->dirty_bitmap_head);
  424. memslot->dirty_bitmap = NULL;
  425. memslot->dirty_bitmap_head = NULL;
  426. }
  427. /*
  428. * Free any memory in @free but not in @dont.
  429. */
  430. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  431. struct kvm_memory_slot *dont)
  432. {
  433. int i;
  434. if (!dont || free->rmap != dont->rmap)
  435. vfree(free->rmap);
  436. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  437. kvm_destroy_dirty_bitmap(free);
  438. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  439. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  440. vfree(free->lpage_info[i]);
  441. free->lpage_info[i] = NULL;
  442. }
  443. }
  444. free->npages = 0;
  445. free->rmap = NULL;
  446. }
  447. void kvm_free_physmem(struct kvm *kvm)
  448. {
  449. int i;
  450. struct kvm_memslots *slots = kvm->memslots;
  451. for (i = 0; i < slots->nmemslots; ++i)
  452. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  453. kfree(kvm->memslots);
  454. }
  455. static void kvm_destroy_vm(struct kvm *kvm)
  456. {
  457. int i;
  458. struct mm_struct *mm = kvm->mm;
  459. kvm_arch_sync_events(kvm);
  460. spin_lock(&kvm_lock);
  461. list_del(&kvm->vm_list);
  462. spin_unlock(&kvm_lock);
  463. kvm_free_irq_routing(kvm);
  464. for (i = 0; i < KVM_NR_BUSES; i++)
  465. kvm_io_bus_destroy(kvm->buses[i]);
  466. kvm_coalesced_mmio_free(kvm);
  467. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  468. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  469. #else
  470. kvm_arch_flush_shadow(kvm);
  471. #endif
  472. kvm_arch_destroy_vm(kvm);
  473. kvm_free_physmem(kvm);
  474. cleanup_srcu_struct(&kvm->srcu);
  475. kvm_arch_free_vm(kvm);
  476. hardware_disable_all();
  477. mmdrop(mm);
  478. }
  479. void kvm_get_kvm(struct kvm *kvm)
  480. {
  481. atomic_inc(&kvm->users_count);
  482. }
  483. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  484. void kvm_put_kvm(struct kvm *kvm)
  485. {
  486. if (atomic_dec_and_test(&kvm->users_count))
  487. kvm_destroy_vm(kvm);
  488. }
  489. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  490. static int kvm_vm_release(struct inode *inode, struct file *filp)
  491. {
  492. struct kvm *kvm = filp->private_data;
  493. kvm_irqfd_release(kvm);
  494. kvm_put_kvm(kvm);
  495. return 0;
  496. }
  497. #ifndef CONFIG_S390
  498. /*
  499. * Allocation size is twice as large as the actual dirty bitmap size.
  500. * This makes it possible to do double buffering: see x86's
  501. * kvm_vm_ioctl_get_dirty_log().
  502. */
  503. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  504. {
  505. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  506. if (dirty_bytes > PAGE_SIZE)
  507. memslot->dirty_bitmap = vzalloc(dirty_bytes);
  508. else
  509. memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
  510. if (!memslot->dirty_bitmap)
  511. return -ENOMEM;
  512. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  513. return 0;
  514. }
  515. #endif /* !CONFIG_S390 */
  516. /*
  517. * Allocate some memory and give it an address in the guest physical address
  518. * space.
  519. *
  520. * Discontiguous memory is allowed, mostly for framebuffers.
  521. *
  522. * Must be called holding mmap_sem for write.
  523. */
  524. int __kvm_set_memory_region(struct kvm *kvm,
  525. struct kvm_userspace_memory_region *mem,
  526. int user_alloc)
  527. {
  528. int r;
  529. gfn_t base_gfn;
  530. unsigned long npages;
  531. unsigned long i;
  532. struct kvm_memory_slot *memslot;
  533. struct kvm_memory_slot old, new;
  534. struct kvm_memslots *slots, *old_memslots;
  535. r = -EINVAL;
  536. /* General sanity checks */
  537. if (mem->memory_size & (PAGE_SIZE - 1))
  538. goto out;
  539. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  540. goto out;
  541. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  542. goto out;
  543. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  544. goto out;
  545. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  546. goto out;
  547. memslot = &kvm->memslots->memslots[mem->slot];
  548. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  549. npages = mem->memory_size >> PAGE_SHIFT;
  550. r = -EINVAL;
  551. if (npages > KVM_MEM_MAX_NR_PAGES)
  552. goto out;
  553. if (!npages)
  554. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  555. new = old = *memslot;
  556. new.id = mem->slot;
  557. new.base_gfn = base_gfn;
  558. new.npages = npages;
  559. new.flags = mem->flags;
  560. /* Disallow changing a memory slot's size. */
  561. r = -EINVAL;
  562. if (npages && old.npages && npages != old.npages)
  563. goto out_free;
  564. /* Check for overlaps */
  565. r = -EEXIST;
  566. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  567. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  568. if (s == memslot || !s->npages)
  569. continue;
  570. if (!((base_gfn + npages <= s->base_gfn) ||
  571. (base_gfn >= s->base_gfn + s->npages)))
  572. goto out_free;
  573. }
  574. /* Free page dirty bitmap if unneeded */
  575. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  576. new.dirty_bitmap = NULL;
  577. r = -ENOMEM;
  578. /* Allocate if a slot is being created */
  579. #ifndef CONFIG_S390
  580. if (npages && !new.rmap) {
  581. new.rmap = vzalloc(npages * sizeof(*new.rmap));
  582. if (!new.rmap)
  583. goto out_free;
  584. new.user_alloc = user_alloc;
  585. new.userspace_addr = mem->userspace_addr;
  586. }
  587. if (!npages)
  588. goto skip_lpage;
  589. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  590. unsigned long ugfn;
  591. unsigned long j;
  592. int lpages;
  593. int level = i + 2;
  594. /* Avoid unused variable warning if no large pages */
  595. (void)level;
  596. if (new.lpage_info[i])
  597. continue;
  598. lpages = 1 + ((base_gfn + npages - 1)
  599. >> KVM_HPAGE_GFN_SHIFT(level));
  600. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  601. new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
  602. if (!new.lpage_info[i])
  603. goto out_free;
  604. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  605. new.lpage_info[i][0].write_count = 1;
  606. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  607. new.lpage_info[i][lpages - 1].write_count = 1;
  608. ugfn = new.userspace_addr >> PAGE_SHIFT;
  609. /*
  610. * If the gfn and userspace address are not aligned wrt each
  611. * other, or if explicitly asked to, disable large page
  612. * support for this slot
  613. */
  614. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  615. !largepages_enabled)
  616. for (j = 0; j < lpages; ++j)
  617. new.lpage_info[i][j].write_count = 1;
  618. }
  619. skip_lpage:
  620. /* Allocate page dirty bitmap if needed */
  621. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  622. if (kvm_create_dirty_bitmap(&new) < 0)
  623. goto out_free;
  624. /* destroy any largepage mappings for dirty tracking */
  625. }
  626. #else /* not defined CONFIG_S390 */
  627. new.user_alloc = user_alloc;
  628. if (user_alloc)
  629. new.userspace_addr = mem->userspace_addr;
  630. #endif /* not defined CONFIG_S390 */
  631. if (!npages) {
  632. r = -ENOMEM;
  633. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  634. if (!slots)
  635. goto out_free;
  636. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  637. if (mem->slot >= slots->nmemslots)
  638. slots->nmemslots = mem->slot + 1;
  639. slots->generation++;
  640. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  641. old_memslots = kvm->memslots;
  642. rcu_assign_pointer(kvm->memslots, slots);
  643. synchronize_srcu_expedited(&kvm->srcu);
  644. /* From this point no new shadow pages pointing to a deleted
  645. * memslot will be created.
  646. *
  647. * validation of sp->gfn happens in:
  648. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  649. * - kvm_is_visible_gfn (mmu_check_roots)
  650. */
  651. kvm_arch_flush_shadow(kvm);
  652. kfree(old_memslots);
  653. }
  654. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  655. if (r)
  656. goto out_free;
  657. /* map the pages in iommu page table */
  658. if (npages) {
  659. r = kvm_iommu_map_pages(kvm, &new);
  660. if (r)
  661. goto out_free;
  662. }
  663. r = -ENOMEM;
  664. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  665. if (!slots)
  666. goto out_free;
  667. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  668. if (mem->slot >= slots->nmemslots)
  669. slots->nmemslots = mem->slot + 1;
  670. slots->generation++;
  671. /* actual memory is freed via old in kvm_free_physmem_slot below */
  672. if (!npages) {
  673. new.rmap = NULL;
  674. new.dirty_bitmap = NULL;
  675. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  676. new.lpage_info[i] = NULL;
  677. }
  678. slots->memslots[mem->slot] = new;
  679. old_memslots = kvm->memslots;
  680. rcu_assign_pointer(kvm->memslots, slots);
  681. synchronize_srcu_expedited(&kvm->srcu);
  682. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  683. kvm_free_physmem_slot(&old, &new);
  684. kfree(old_memslots);
  685. return 0;
  686. out_free:
  687. kvm_free_physmem_slot(&new, &old);
  688. out:
  689. return r;
  690. }
  691. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  692. int kvm_set_memory_region(struct kvm *kvm,
  693. struct kvm_userspace_memory_region *mem,
  694. int user_alloc)
  695. {
  696. int r;
  697. mutex_lock(&kvm->slots_lock);
  698. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  699. mutex_unlock(&kvm->slots_lock);
  700. return r;
  701. }
  702. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  703. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  704. struct
  705. kvm_userspace_memory_region *mem,
  706. int user_alloc)
  707. {
  708. if (mem->slot >= KVM_MEMORY_SLOTS)
  709. return -EINVAL;
  710. return kvm_set_memory_region(kvm, mem, user_alloc);
  711. }
  712. int kvm_get_dirty_log(struct kvm *kvm,
  713. struct kvm_dirty_log *log, int *is_dirty)
  714. {
  715. struct kvm_memory_slot *memslot;
  716. int r, i;
  717. unsigned long n;
  718. unsigned long any = 0;
  719. r = -EINVAL;
  720. if (log->slot >= KVM_MEMORY_SLOTS)
  721. goto out;
  722. memslot = &kvm->memslots->memslots[log->slot];
  723. r = -ENOENT;
  724. if (!memslot->dirty_bitmap)
  725. goto out;
  726. n = kvm_dirty_bitmap_bytes(memslot);
  727. for (i = 0; !any && i < n/sizeof(long); ++i)
  728. any = memslot->dirty_bitmap[i];
  729. r = -EFAULT;
  730. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  731. goto out;
  732. if (any)
  733. *is_dirty = 1;
  734. r = 0;
  735. out:
  736. return r;
  737. }
  738. void kvm_disable_largepages(void)
  739. {
  740. largepages_enabled = false;
  741. }
  742. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  743. int is_error_page(struct page *page)
  744. {
  745. return page == bad_page || page == hwpoison_page || page == fault_page;
  746. }
  747. EXPORT_SYMBOL_GPL(is_error_page);
  748. int is_error_pfn(pfn_t pfn)
  749. {
  750. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  751. }
  752. EXPORT_SYMBOL_GPL(is_error_pfn);
  753. int is_hwpoison_pfn(pfn_t pfn)
  754. {
  755. return pfn == hwpoison_pfn;
  756. }
  757. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  758. int is_fault_pfn(pfn_t pfn)
  759. {
  760. return pfn == fault_pfn;
  761. }
  762. EXPORT_SYMBOL_GPL(is_fault_pfn);
  763. static inline unsigned long bad_hva(void)
  764. {
  765. return PAGE_OFFSET;
  766. }
  767. int kvm_is_error_hva(unsigned long addr)
  768. {
  769. return addr == bad_hva();
  770. }
  771. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  772. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  773. gfn_t gfn)
  774. {
  775. int i;
  776. for (i = 0; i < slots->nmemslots; ++i) {
  777. struct kvm_memory_slot *memslot = &slots->memslots[i];
  778. if (gfn >= memslot->base_gfn
  779. && gfn < memslot->base_gfn + memslot->npages)
  780. return memslot;
  781. }
  782. return NULL;
  783. }
  784. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  785. {
  786. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  787. }
  788. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  789. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  790. {
  791. int i;
  792. struct kvm_memslots *slots = kvm_memslots(kvm);
  793. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  794. struct kvm_memory_slot *memslot = &slots->memslots[i];
  795. if (memslot->flags & KVM_MEMSLOT_INVALID)
  796. continue;
  797. if (gfn >= memslot->base_gfn
  798. && gfn < memslot->base_gfn + memslot->npages)
  799. return 1;
  800. }
  801. return 0;
  802. }
  803. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  804. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  805. {
  806. struct vm_area_struct *vma;
  807. unsigned long addr, size;
  808. size = PAGE_SIZE;
  809. addr = gfn_to_hva(kvm, gfn);
  810. if (kvm_is_error_hva(addr))
  811. return PAGE_SIZE;
  812. down_read(&current->mm->mmap_sem);
  813. vma = find_vma(current->mm, addr);
  814. if (!vma)
  815. goto out;
  816. size = vma_kernel_pagesize(vma);
  817. out:
  818. up_read(&current->mm->mmap_sem);
  819. return size;
  820. }
  821. int memslot_id(struct kvm *kvm, gfn_t gfn)
  822. {
  823. int i;
  824. struct kvm_memslots *slots = kvm_memslots(kvm);
  825. struct kvm_memory_slot *memslot = NULL;
  826. for (i = 0; i < slots->nmemslots; ++i) {
  827. memslot = &slots->memslots[i];
  828. if (gfn >= memslot->base_gfn
  829. && gfn < memslot->base_gfn + memslot->npages)
  830. break;
  831. }
  832. return memslot - slots->memslots;
  833. }
  834. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  835. gfn_t *nr_pages)
  836. {
  837. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  838. return bad_hva();
  839. if (nr_pages)
  840. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  841. return gfn_to_hva_memslot(slot, gfn);
  842. }
  843. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  844. {
  845. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  846. }
  847. EXPORT_SYMBOL_GPL(gfn_to_hva);
  848. static pfn_t get_fault_pfn(void)
  849. {
  850. get_page(fault_page);
  851. return fault_pfn;
  852. }
  853. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  854. bool *async, bool write_fault, bool *writable)
  855. {
  856. struct page *page[1];
  857. int npages = 0;
  858. pfn_t pfn;
  859. /* we can do it either atomically or asynchronously, not both */
  860. BUG_ON(atomic && async);
  861. BUG_ON(!write_fault && !writable);
  862. if (writable)
  863. *writable = true;
  864. if (atomic || async)
  865. npages = __get_user_pages_fast(addr, 1, 1, page);
  866. if (unlikely(npages != 1) && !atomic) {
  867. might_sleep();
  868. if (writable)
  869. *writable = write_fault;
  870. npages = get_user_pages_fast(addr, 1, write_fault, page);
  871. /* map read fault as writable if possible */
  872. if (unlikely(!write_fault) && npages == 1) {
  873. struct page *wpage[1];
  874. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  875. if (npages == 1) {
  876. *writable = true;
  877. put_page(page[0]);
  878. page[0] = wpage[0];
  879. }
  880. npages = 1;
  881. }
  882. }
  883. if (unlikely(npages != 1)) {
  884. struct vm_area_struct *vma;
  885. if (atomic)
  886. return get_fault_pfn();
  887. down_read(&current->mm->mmap_sem);
  888. if (is_hwpoison_address(addr)) {
  889. up_read(&current->mm->mmap_sem);
  890. get_page(hwpoison_page);
  891. return page_to_pfn(hwpoison_page);
  892. }
  893. vma = find_vma_intersection(current->mm, addr, addr+1);
  894. if (vma == NULL)
  895. pfn = get_fault_pfn();
  896. else if ((vma->vm_flags & VM_PFNMAP)) {
  897. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  898. vma->vm_pgoff;
  899. BUG_ON(!kvm_is_mmio_pfn(pfn));
  900. } else {
  901. if (async && (vma->vm_flags & VM_WRITE))
  902. *async = true;
  903. pfn = get_fault_pfn();
  904. }
  905. up_read(&current->mm->mmap_sem);
  906. } else
  907. pfn = page_to_pfn(page[0]);
  908. return pfn;
  909. }
  910. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  911. {
  912. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  913. }
  914. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  915. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  916. bool write_fault, bool *writable)
  917. {
  918. unsigned long addr;
  919. if (async)
  920. *async = false;
  921. addr = gfn_to_hva(kvm, gfn);
  922. if (kvm_is_error_hva(addr)) {
  923. get_page(bad_page);
  924. return page_to_pfn(bad_page);
  925. }
  926. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  927. }
  928. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  929. {
  930. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  931. }
  932. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  933. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  934. bool write_fault, bool *writable)
  935. {
  936. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  937. }
  938. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  939. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  940. {
  941. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  942. }
  943. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  944. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  945. bool *writable)
  946. {
  947. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  948. }
  949. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  950. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  951. struct kvm_memory_slot *slot, gfn_t gfn)
  952. {
  953. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  954. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  955. }
  956. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  957. int nr_pages)
  958. {
  959. unsigned long addr;
  960. gfn_t entry;
  961. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  962. if (kvm_is_error_hva(addr))
  963. return -1;
  964. if (entry < nr_pages)
  965. return 0;
  966. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  967. }
  968. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  969. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  970. {
  971. pfn_t pfn;
  972. pfn = gfn_to_pfn(kvm, gfn);
  973. if (!kvm_is_mmio_pfn(pfn))
  974. return pfn_to_page(pfn);
  975. WARN_ON(kvm_is_mmio_pfn(pfn));
  976. get_page(bad_page);
  977. return bad_page;
  978. }
  979. EXPORT_SYMBOL_GPL(gfn_to_page);
  980. void kvm_release_page_clean(struct page *page)
  981. {
  982. kvm_release_pfn_clean(page_to_pfn(page));
  983. }
  984. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  985. void kvm_release_pfn_clean(pfn_t pfn)
  986. {
  987. if (!kvm_is_mmio_pfn(pfn))
  988. put_page(pfn_to_page(pfn));
  989. }
  990. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  991. void kvm_release_page_dirty(struct page *page)
  992. {
  993. kvm_release_pfn_dirty(page_to_pfn(page));
  994. }
  995. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  996. void kvm_release_pfn_dirty(pfn_t pfn)
  997. {
  998. kvm_set_pfn_dirty(pfn);
  999. kvm_release_pfn_clean(pfn);
  1000. }
  1001. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1002. void kvm_set_page_dirty(struct page *page)
  1003. {
  1004. kvm_set_pfn_dirty(page_to_pfn(page));
  1005. }
  1006. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1007. void kvm_set_pfn_dirty(pfn_t pfn)
  1008. {
  1009. if (!kvm_is_mmio_pfn(pfn)) {
  1010. struct page *page = pfn_to_page(pfn);
  1011. if (!PageReserved(page))
  1012. SetPageDirty(page);
  1013. }
  1014. }
  1015. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1016. void kvm_set_pfn_accessed(pfn_t pfn)
  1017. {
  1018. if (!kvm_is_mmio_pfn(pfn))
  1019. mark_page_accessed(pfn_to_page(pfn));
  1020. }
  1021. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1022. void kvm_get_pfn(pfn_t pfn)
  1023. {
  1024. if (!kvm_is_mmio_pfn(pfn))
  1025. get_page(pfn_to_page(pfn));
  1026. }
  1027. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1028. static int next_segment(unsigned long len, int offset)
  1029. {
  1030. if (len > PAGE_SIZE - offset)
  1031. return PAGE_SIZE - offset;
  1032. else
  1033. return len;
  1034. }
  1035. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1036. int len)
  1037. {
  1038. int r;
  1039. unsigned long addr;
  1040. addr = gfn_to_hva(kvm, gfn);
  1041. if (kvm_is_error_hva(addr))
  1042. return -EFAULT;
  1043. r = copy_from_user(data, (void __user *)addr + offset, len);
  1044. if (r)
  1045. return -EFAULT;
  1046. return 0;
  1047. }
  1048. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1049. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1050. {
  1051. gfn_t gfn = gpa >> PAGE_SHIFT;
  1052. int seg;
  1053. int offset = offset_in_page(gpa);
  1054. int ret;
  1055. while ((seg = next_segment(len, offset)) != 0) {
  1056. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1057. if (ret < 0)
  1058. return ret;
  1059. offset = 0;
  1060. len -= seg;
  1061. data += seg;
  1062. ++gfn;
  1063. }
  1064. return 0;
  1065. }
  1066. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1067. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1068. unsigned long len)
  1069. {
  1070. int r;
  1071. unsigned long addr;
  1072. gfn_t gfn = gpa >> PAGE_SHIFT;
  1073. int offset = offset_in_page(gpa);
  1074. addr = gfn_to_hva(kvm, gfn);
  1075. if (kvm_is_error_hva(addr))
  1076. return -EFAULT;
  1077. pagefault_disable();
  1078. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1079. pagefault_enable();
  1080. if (r)
  1081. return -EFAULT;
  1082. return 0;
  1083. }
  1084. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1085. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1086. int offset, int len)
  1087. {
  1088. int r;
  1089. unsigned long addr;
  1090. addr = gfn_to_hva(kvm, gfn);
  1091. if (kvm_is_error_hva(addr))
  1092. return -EFAULT;
  1093. r = copy_to_user((void __user *)addr + offset, data, len);
  1094. if (r)
  1095. return -EFAULT;
  1096. mark_page_dirty(kvm, gfn);
  1097. return 0;
  1098. }
  1099. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1100. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1101. unsigned long len)
  1102. {
  1103. gfn_t gfn = gpa >> PAGE_SHIFT;
  1104. int seg;
  1105. int offset = offset_in_page(gpa);
  1106. int ret;
  1107. while ((seg = next_segment(len, offset)) != 0) {
  1108. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1109. if (ret < 0)
  1110. return ret;
  1111. offset = 0;
  1112. len -= seg;
  1113. data += seg;
  1114. ++gfn;
  1115. }
  1116. return 0;
  1117. }
  1118. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1119. gpa_t gpa)
  1120. {
  1121. struct kvm_memslots *slots = kvm_memslots(kvm);
  1122. int offset = offset_in_page(gpa);
  1123. gfn_t gfn = gpa >> PAGE_SHIFT;
  1124. ghc->gpa = gpa;
  1125. ghc->generation = slots->generation;
  1126. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1127. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1128. if (!kvm_is_error_hva(ghc->hva))
  1129. ghc->hva += offset;
  1130. else
  1131. return -EFAULT;
  1132. return 0;
  1133. }
  1134. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1135. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1136. void *data, unsigned long len)
  1137. {
  1138. struct kvm_memslots *slots = kvm_memslots(kvm);
  1139. int r;
  1140. if (slots->generation != ghc->generation)
  1141. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1142. if (kvm_is_error_hva(ghc->hva))
  1143. return -EFAULT;
  1144. r = copy_to_user((void __user *)ghc->hva, data, len);
  1145. if (r)
  1146. return -EFAULT;
  1147. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1148. return 0;
  1149. }
  1150. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1151. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1152. {
  1153. return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
  1154. offset, len);
  1155. }
  1156. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1157. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1158. {
  1159. gfn_t gfn = gpa >> PAGE_SHIFT;
  1160. int seg;
  1161. int offset = offset_in_page(gpa);
  1162. int ret;
  1163. while ((seg = next_segment(len, offset)) != 0) {
  1164. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1165. if (ret < 0)
  1166. return ret;
  1167. offset = 0;
  1168. len -= seg;
  1169. ++gfn;
  1170. }
  1171. return 0;
  1172. }
  1173. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1174. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1175. gfn_t gfn)
  1176. {
  1177. if (memslot && memslot->dirty_bitmap) {
  1178. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1179. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1180. }
  1181. }
  1182. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1183. {
  1184. struct kvm_memory_slot *memslot;
  1185. memslot = gfn_to_memslot(kvm, gfn);
  1186. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1187. }
  1188. /*
  1189. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1190. */
  1191. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1192. {
  1193. DEFINE_WAIT(wait);
  1194. for (;;) {
  1195. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1196. if (kvm_arch_vcpu_runnable(vcpu)) {
  1197. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1198. break;
  1199. }
  1200. if (kvm_cpu_has_pending_timer(vcpu))
  1201. break;
  1202. if (signal_pending(current))
  1203. break;
  1204. schedule();
  1205. }
  1206. finish_wait(&vcpu->wq, &wait);
  1207. }
  1208. void kvm_resched(struct kvm_vcpu *vcpu)
  1209. {
  1210. if (!need_resched())
  1211. return;
  1212. cond_resched();
  1213. }
  1214. EXPORT_SYMBOL_GPL(kvm_resched);
  1215. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1216. {
  1217. ktime_t expires;
  1218. DEFINE_WAIT(wait);
  1219. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1220. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1221. expires = ktime_add_ns(ktime_get(), 100000UL);
  1222. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1223. finish_wait(&vcpu->wq, &wait);
  1224. }
  1225. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1226. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1227. {
  1228. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1229. struct page *page;
  1230. if (vmf->pgoff == 0)
  1231. page = virt_to_page(vcpu->run);
  1232. #ifdef CONFIG_X86
  1233. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1234. page = virt_to_page(vcpu->arch.pio_data);
  1235. #endif
  1236. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1237. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1238. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1239. #endif
  1240. else
  1241. return VM_FAULT_SIGBUS;
  1242. get_page(page);
  1243. vmf->page = page;
  1244. return 0;
  1245. }
  1246. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1247. .fault = kvm_vcpu_fault,
  1248. };
  1249. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1250. {
  1251. vma->vm_ops = &kvm_vcpu_vm_ops;
  1252. return 0;
  1253. }
  1254. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1255. {
  1256. struct kvm_vcpu *vcpu = filp->private_data;
  1257. kvm_put_kvm(vcpu->kvm);
  1258. return 0;
  1259. }
  1260. static struct file_operations kvm_vcpu_fops = {
  1261. .release = kvm_vcpu_release,
  1262. .unlocked_ioctl = kvm_vcpu_ioctl,
  1263. .compat_ioctl = kvm_vcpu_ioctl,
  1264. .mmap = kvm_vcpu_mmap,
  1265. .llseek = noop_llseek,
  1266. };
  1267. /*
  1268. * Allocates an inode for the vcpu.
  1269. */
  1270. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1271. {
  1272. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1273. }
  1274. /*
  1275. * Creates some virtual cpus. Good luck creating more than one.
  1276. */
  1277. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1278. {
  1279. int r;
  1280. struct kvm_vcpu *vcpu, *v;
  1281. vcpu = kvm_arch_vcpu_create(kvm, id);
  1282. if (IS_ERR(vcpu))
  1283. return PTR_ERR(vcpu);
  1284. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1285. r = kvm_arch_vcpu_setup(vcpu);
  1286. if (r)
  1287. return r;
  1288. mutex_lock(&kvm->lock);
  1289. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1290. r = -EINVAL;
  1291. goto vcpu_destroy;
  1292. }
  1293. kvm_for_each_vcpu(r, v, kvm)
  1294. if (v->vcpu_id == id) {
  1295. r = -EEXIST;
  1296. goto vcpu_destroy;
  1297. }
  1298. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1299. /* Now it's all set up, let userspace reach it */
  1300. kvm_get_kvm(kvm);
  1301. r = create_vcpu_fd(vcpu);
  1302. if (r < 0) {
  1303. kvm_put_kvm(kvm);
  1304. goto vcpu_destroy;
  1305. }
  1306. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1307. smp_wmb();
  1308. atomic_inc(&kvm->online_vcpus);
  1309. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1310. if (kvm->bsp_vcpu_id == id)
  1311. kvm->bsp_vcpu = vcpu;
  1312. #endif
  1313. mutex_unlock(&kvm->lock);
  1314. return r;
  1315. vcpu_destroy:
  1316. mutex_unlock(&kvm->lock);
  1317. kvm_arch_vcpu_destroy(vcpu);
  1318. return r;
  1319. }
  1320. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1321. {
  1322. if (sigset) {
  1323. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1324. vcpu->sigset_active = 1;
  1325. vcpu->sigset = *sigset;
  1326. } else
  1327. vcpu->sigset_active = 0;
  1328. return 0;
  1329. }
  1330. static long kvm_vcpu_ioctl(struct file *filp,
  1331. unsigned int ioctl, unsigned long arg)
  1332. {
  1333. struct kvm_vcpu *vcpu = filp->private_data;
  1334. void __user *argp = (void __user *)arg;
  1335. int r;
  1336. struct kvm_fpu *fpu = NULL;
  1337. struct kvm_sregs *kvm_sregs = NULL;
  1338. if (vcpu->kvm->mm != current->mm)
  1339. return -EIO;
  1340. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1341. /*
  1342. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1343. * so vcpu_load() would break it.
  1344. */
  1345. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1346. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1347. #endif
  1348. vcpu_load(vcpu);
  1349. switch (ioctl) {
  1350. case KVM_RUN:
  1351. r = -EINVAL;
  1352. if (arg)
  1353. goto out;
  1354. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1355. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1356. break;
  1357. case KVM_GET_REGS: {
  1358. struct kvm_regs *kvm_regs;
  1359. r = -ENOMEM;
  1360. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1361. if (!kvm_regs)
  1362. goto out;
  1363. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1364. if (r)
  1365. goto out_free1;
  1366. r = -EFAULT;
  1367. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1368. goto out_free1;
  1369. r = 0;
  1370. out_free1:
  1371. kfree(kvm_regs);
  1372. break;
  1373. }
  1374. case KVM_SET_REGS: {
  1375. struct kvm_regs *kvm_regs;
  1376. r = -ENOMEM;
  1377. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1378. if (!kvm_regs)
  1379. goto out;
  1380. r = -EFAULT;
  1381. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1382. goto out_free2;
  1383. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1384. if (r)
  1385. goto out_free2;
  1386. r = 0;
  1387. out_free2:
  1388. kfree(kvm_regs);
  1389. break;
  1390. }
  1391. case KVM_GET_SREGS: {
  1392. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1393. r = -ENOMEM;
  1394. if (!kvm_sregs)
  1395. goto out;
  1396. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1397. if (r)
  1398. goto out;
  1399. r = -EFAULT;
  1400. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1401. goto out;
  1402. r = 0;
  1403. break;
  1404. }
  1405. case KVM_SET_SREGS: {
  1406. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1407. r = -ENOMEM;
  1408. if (!kvm_sregs)
  1409. goto out;
  1410. r = -EFAULT;
  1411. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1412. goto out;
  1413. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1414. if (r)
  1415. goto out;
  1416. r = 0;
  1417. break;
  1418. }
  1419. case KVM_GET_MP_STATE: {
  1420. struct kvm_mp_state mp_state;
  1421. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1422. if (r)
  1423. goto out;
  1424. r = -EFAULT;
  1425. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1426. goto out;
  1427. r = 0;
  1428. break;
  1429. }
  1430. case KVM_SET_MP_STATE: {
  1431. struct kvm_mp_state mp_state;
  1432. r = -EFAULT;
  1433. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1434. goto out;
  1435. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1436. if (r)
  1437. goto out;
  1438. r = 0;
  1439. break;
  1440. }
  1441. case KVM_TRANSLATE: {
  1442. struct kvm_translation tr;
  1443. r = -EFAULT;
  1444. if (copy_from_user(&tr, argp, sizeof tr))
  1445. goto out;
  1446. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1447. if (r)
  1448. goto out;
  1449. r = -EFAULT;
  1450. if (copy_to_user(argp, &tr, sizeof tr))
  1451. goto out;
  1452. r = 0;
  1453. break;
  1454. }
  1455. case KVM_SET_GUEST_DEBUG: {
  1456. struct kvm_guest_debug dbg;
  1457. r = -EFAULT;
  1458. if (copy_from_user(&dbg, argp, sizeof dbg))
  1459. goto out;
  1460. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1461. if (r)
  1462. goto out;
  1463. r = 0;
  1464. break;
  1465. }
  1466. case KVM_SET_SIGNAL_MASK: {
  1467. struct kvm_signal_mask __user *sigmask_arg = argp;
  1468. struct kvm_signal_mask kvm_sigmask;
  1469. sigset_t sigset, *p;
  1470. p = NULL;
  1471. if (argp) {
  1472. r = -EFAULT;
  1473. if (copy_from_user(&kvm_sigmask, argp,
  1474. sizeof kvm_sigmask))
  1475. goto out;
  1476. r = -EINVAL;
  1477. if (kvm_sigmask.len != sizeof sigset)
  1478. goto out;
  1479. r = -EFAULT;
  1480. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1481. sizeof sigset))
  1482. goto out;
  1483. p = &sigset;
  1484. }
  1485. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1486. break;
  1487. }
  1488. case KVM_GET_FPU: {
  1489. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1490. r = -ENOMEM;
  1491. if (!fpu)
  1492. goto out;
  1493. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1494. if (r)
  1495. goto out;
  1496. r = -EFAULT;
  1497. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1498. goto out;
  1499. r = 0;
  1500. break;
  1501. }
  1502. case KVM_SET_FPU: {
  1503. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1504. r = -ENOMEM;
  1505. if (!fpu)
  1506. goto out;
  1507. r = -EFAULT;
  1508. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1509. goto out;
  1510. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1511. if (r)
  1512. goto out;
  1513. r = 0;
  1514. break;
  1515. }
  1516. default:
  1517. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1518. }
  1519. out:
  1520. vcpu_put(vcpu);
  1521. kfree(fpu);
  1522. kfree(kvm_sregs);
  1523. return r;
  1524. }
  1525. static long kvm_vm_ioctl(struct file *filp,
  1526. unsigned int ioctl, unsigned long arg)
  1527. {
  1528. struct kvm *kvm = filp->private_data;
  1529. void __user *argp = (void __user *)arg;
  1530. int r;
  1531. if (kvm->mm != current->mm)
  1532. return -EIO;
  1533. switch (ioctl) {
  1534. case KVM_CREATE_VCPU:
  1535. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1536. if (r < 0)
  1537. goto out;
  1538. break;
  1539. case KVM_SET_USER_MEMORY_REGION: {
  1540. struct kvm_userspace_memory_region kvm_userspace_mem;
  1541. r = -EFAULT;
  1542. if (copy_from_user(&kvm_userspace_mem, argp,
  1543. sizeof kvm_userspace_mem))
  1544. goto out;
  1545. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1546. if (r)
  1547. goto out;
  1548. break;
  1549. }
  1550. case KVM_GET_DIRTY_LOG: {
  1551. struct kvm_dirty_log log;
  1552. r = -EFAULT;
  1553. if (copy_from_user(&log, argp, sizeof log))
  1554. goto out;
  1555. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1556. if (r)
  1557. goto out;
  1558. break;
  1559. }
  1560. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1561. case KVM_REGISTER_COALESCED_MMIO: {
  1562. struct kvm_coalesced_mmio_zone zone;
  1563. r = -EFAULT;
  1564. if (copy_from_user(&zone, argp, sizeof zone))
  1565. goto out;
  1566. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1567. if (r)
  1568. goto out;
  1569. r = 0;
  1570. break;
  1571. }
  1572. case KVM_UNREGISTER_COALESCED_MMIO: {
  1573. struct kvm_coalesced_mmio_zone zone;
  1574. r = -EFAULT;
  1575. if (copy_from_user(&zone, argp, sizeof zone))
  1576. goto out;
  1577. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1578. if (r)
  1579. goto out;
  1580. r = 0;
  1581. break;
  1582. }
  1583. #endif
  1584. case KVM_IRQFD: {
  1585. struct kvm_irqfd data;
  1586. r = -EFAULT;
  1587. if (copy_from_user(&data, argp, sizeof data))
  1588. goto out;
  1589. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1590. break;
  1591. }
  1592. case KVM_IOEVENTFD: {
  1593. struct kvm_ioeventfd data;
  1594. r = -EFAULT;
  1595. if (copy_from_user(&data, argp, sizeof data))
  1596. goto out;
  1597. r = kvm_ioeventfd(kvm, &data);
  1598. break;
  1599. }
  1600. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1601. case KVM_SET_BOOT_CPU_ID:
  1602. r = 0;
  1603. mutex_lock(&kvm->lock);
  1604. if (atomic_read(&kvm->online_vcpus) != 0)
  1605. r = -EBUSY;
  1606. else
  1607. kvm->bsp_vcpu_id = arg;
  1608. mutex_unlock(&kvm->lock);
  1609. break;
  1610. #endif
  1611. default:
  1612. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1613. if (r == -ENOTTY)
  1614. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1615. }
  1616. out:
  1617. return r;
  1618. }
  1619. #ifdef CONFIG_COMPAT
  1620. struct compat_kvm_dirty_log {
  1621. __u32 slot;
  1622. __u32 padding1;
  1623. union {
  1624. compat_uptr_t dirty_bitmap; /* one bit per page */
  1625. __u64 padding2;
  1626. };
  1627. };
  1628. static long kvm_vm_compat_ioctl(struct file *filp,
  1629. unsigned int ioctl, unsigned long arg)
  1630. {
  1631. struct kvm *kvm = filp->private_data;
  1632. int r;
  1633. if (kvm->mm != current->mm)
  1634. return -EIO;
  1635. switch (ioctl) {
  1636. case KVM_GET_DIRTY_LOG: {
  1637. struct compat_kvm_dirty_log compat_log;
  1638. struct kvm_dirty_log log;
  1639. r = -EFAULT;
  1640. if (copy_from_user(&compat_log, (void __user *)arg,
  1641. sizeof(compat_log)))
  1642. goto out;
  1643. log.slot = compat_log.slot;
  1644. log.padding1 = compat_log.padding1;
  1645. log.padding2 = compat_log.padding2;
  1646. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1647. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1648. if (r)
  1649. goto out;
  1650. break;
  1651. }
  1652. default:
  1653. r = kvm_vm_ioctl(filp, ioctl, arg);
  1654. }
  1655. out:
  1656. return r;
  1657. }
  1658. #endif
  1659. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1660. {
  1661. struct page *page[1];
  1662. unsigned long addr;
  1663. int npages;
  1664. gfn_t gfn = vmf->pgoff;
  1665. struct kvm *kvm = vma->vm_file->private_data;
  1666. addr = gfn_to_hva(kvm, gfn);
  1667. if (kvm_is_error_hva(addr))
  1668. return VM_FAULT_SIGBUS;
  1669. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1670. NULL);
  1671. if (unlikely(npages != 1))
  1672. return VM_FAULT_SIGBUS;
  1673. vmf->page = page[0];
  1674. return 0;
  1675. }
  1676. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1677. .fault = kvm_vm_fault,
  1678. };
  1679. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1680. {
  1681. vma->vm_ops = &kvm_vm_vm_ops;
  1682. return 0;
  1683. }
  1684. static struct file_operations kvm_vm_fops = {
  1685. .release = kvm_vm_release,
  1686. .unlocked_ioctl = kvm_vm_ioctl,
  1687. #ifdef CONFIG_COMPAT
  1688. .compat_ioctl = kvm_vm_compat_ioctl,
  1689. #endif
  1690. .mmap = kvm_vm_mmap,
  1691. .llseek = noop_llseek,
  1692. };
  1693. static int kvm_dev_ioctl_create_vm(void)
  1694. {
  1695. int r;
  1696. struct kvm *kvm;
  1697. kvm = kvm_create_vm();
  1698. if (IS_ERR(kvm))
  1699. return PTR_ERR(kvm);
  1700. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1701. r = kvm_coalesced_mmio_init(kvm);
  1702. if (r < 0) {
  1703. kvm_put_kvm(kvm);
  1704. return r;
  1705. }
  1706. #endif
  1707. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1708. if (r < 0)
  1709. kvm_put_kvm(kvm);
  1710. return r;
  1711. }
  1712. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1713. {
  1714. switch (arg) {
  1715. case KVM_CAP_USER_MEMORY:
  1716. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1717. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1718. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1719. case KVM_CAP_SET_BOOT_CPU_ID:
  1720. #endif
  1721. case KVM_CAP_INTERNAL_ERROR_DATA:
  1722. return 1;
  1723. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1724. case KVM_CAP_IRQ_ROUTING:
  1725. return KVM_MAX_IRQ_ROUTES;
  1726. #endif
  1727. default:
  1728. break;
  1729. }
  1730. return kvm_dev_ioctl_check_extension(arg);
  1731. }
  1732. static long kvm_dev_ioctl(struct file *filp,
  1733. unsigned int ioctl, unsigned long arg)
  1734. {
  1735. long r = -EINVAL;
  1736. switch (ioctl) {
  1737. case KVM_GET_API_VERSION:
  1738. r = -EINVAL;
  1739. if (arg)
  1740. goto out;
  1741. r = KVM_API_VERSION;
  1742. break;
  1743. case KVM_CREATE_VM:
  1744. r = -EINVAL;
  1745. if (arg)
  1746. goto out;
  1747. r = kvm_dev_ioctl_create_vm();
  1748. break;
  1749. case KVM_CHECK_EXTENSION:
  1750. r = kvm_dev_ioctl_check_extension_generic(arg);
  1751. break;
  1752. case KVM_GET_VCPU_MMAP_SIZE:
  1753. r = -EINVAL;
  1754. if (arg)
  1755. goto out;
  1756. r = PAGE_SIZE; /* struct kvm_run */
  1757. #ifdef CONFIG_X86
  1758. r += PAGE_SIZE; /* pio data page */
  1759. #endif
  1760. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1761. r += PAGE_SIZE; /* coalesced mmio ring page */
  1762. #endif
  1763. break;
  1764. case KVM_TRACE_ENABLE:
  1765. case KVM_TRACE_PAUSE:
  1766. case KVM_TRACE_DISABLE:
  1767. r = -EOPNOTSUPP;
  1768. break;
  1769. default:
  1770. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1771. }
  1772. out:
  1773. return r;
  1774. }
  1775. static struct file_operations kvm_chardev_ops = {
  1776. .unlocked_ioctl = kvm_dev_ioctl,
  1777. .compat_ioctl = kvm_dev_ioctl,
  1778. .llseek = noop_llseek,
  1779. };
  1780. static struct miscdevice kvm_dev = {
  1781. KVM_MINOR,
  1782. "kvm",
  1783. &kvm_chardev_ops,
  1784. };
  1785. static void hardware_enable_nolock(void *junk)
  1786. {
  1787. int cpu = raw_smp_processor_id();
  1788. int r;
  1789. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1790. return;
  1791. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1792. r = kvm_arch_hardware_enable(NULL);
  1793. if (r) {
  1794. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1795. atomic_inc(&hardware_enable_failed);
  1796. printk(KERN_INFO "kvm: enabling virtualization on "
  1797. "CPU%d failed\n", cpu);
  1798. }
  1799. }
  1800. static void hardware_enable(void *junk)
  1801. {
  1802. spin_lock(&kvm_lock);
  1803. hardware_enable_nolock(junk);
  1804. spin_unlock(&kvm_lock);
  1805. }
  1806. static void hardware_disable_nolock(void *junk)
  1807. {
  1808. int cpu = raw_smp_processor_id();
  1809. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1810. return;
  1811. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1812. kvm_arch_hardware_disable(NULL);
  1813. }
  1814. static void hardware_disable(void *junk)
  1815. {
  1816. spin_lock(&kvm_lock);
  1817. hardware_disable_nolock(junk);
  1818. spin_unlock(&kvm_lock);
  1819. }
  1820. static void hardware_disable_all_nolock(void)
  1821. {
  1822. BUG_ON(!kvm_usage_count);
  1823. kvm_usage_count--;
  1824. if (!kvm_usage_count)
  1825. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1826. }
  1827. static void hardware_disable_all(void)
  1828. {
  1829. spin_lock(&kvm_lock);
  1830. hardware_disable_all_nolock();
  1831. spin_unlock(&kvm_lock);
  1832. }
  1833. static int hardware_enable_all(void)
  1834. {
  1835. int r = 0;
  1836. spin_lock(&kvm_lock);
  1837. kvm_usage_count++;
  1838. if (kvm_usage_count == 1) {
  1839. atomic_set(&hardware_enable_failed, 0);
  1840. on_each_cpu(hardware_enable_nolock, NULL, 1);
  1841. if (atomic_read(&hardware_enable_failed)) {
  1842. hardware_disable_all_nolock();
  1843. r = -EBUSY;
  1844. }
  1845. }
  1846. spin_unlock(&kvm_lock);
  1847. return r;
  1848. }
  1849. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1850. void *v)
  1851. {
  1852. int cpu = (long)v;
  1853. if (!kvm_usage_count)
  1854. return NOTIFY_OK;
  1855. val &= ~CPU_TASKS_FROZEN;
  1856. switch (val) {
  1857. case CPU_DYING:
  1858. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1859. cpu);
  1860. hardware_disable(NULL);
  1861. break;
  1862. case CPU_STARTING:
  1863. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1864. cpu);
  1865. hardware_enable(NULL);
  1866. break;
  1867. }
  1868. return NOTIFY_OK;
  1869. }
  1870. asmlinkage void kvm_spurious_fault(void)
  1871. {
  1872. /* Fault while not rebooting. We want the trace. */
  1873. BUG();
  1874. }
  1875. EXPORT_SYMBOL_GPL(kvm_spurious_fault);
  1876. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1877. void *v)
  1878. {
  1879. /*
  1880. * Some (well, at least mine) BIOSes hang on reboot if
  1881. * in vmx root mode.
  1882. *
  1883. * And Intel TXT required VMX off for all cpu when system shutdown.
  1884. */
  1885. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1886. kvm_rebooting = true;
  1887. on_each_cpu(hardware_disable_nolock, NULL, 1);
  1888. return NOTIFY_OK;
  1889. }
  1890. static struct notifier_block kvm_reboot_notifier = {
  1891. .notifier_call = kvm_reboot,
  1892. .priority = 0,
  1893. };
  1894. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1895. {
  1896. int i;
  1897. for (i = 0; i < bus->dev_count; i++) {
  1898. struct kvm_io_device *pos = bus->devs[i];
  1899. kvm_iodevice_destructor(pos);
  1900. }
  1901. kfree(bus);
  1902. }
  1903. /* kvm_io_bus_write - called under kvm->slots_lock */
  1904. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1905. int len, const void *val)
  1906. {
  1907. int i;
  1908. struct kvm_io_bus *bus;
  1909. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1910. for (i = 0; i < bus->dev_count; i++)
  1911. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1912. return 0;
  1913. return -EOPNOTSUPP;
  1914. }
  1915. /* kvm_io_bus_read - called under kvm->slots_lock */
  1916. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1917. int len, void *val)
  1918. {
  1919. int i;
  1920. struct kvm_io_bus *bus;
  1921. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1922. for (i = 0; i < bus->dev_count; i++)
  1923. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1924. return 0;
  1925. return -EOPNOTSUPP;
  1926. }
  1927. /* Caller must hold slots_lock. */
  1928. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1929. struct kvm_io_device *dev)
  1930. {
  1931. struct kvm_io_bus *new_bus, *bus;
  1932. bus = kvm->buses[bus_idx];
  1933. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1934. return -ENOSPC;
  1935. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1936. if (!new_bus)
  1937. return -ENOMEM;
  1938. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1939. new_bus->devs[new_bus->dev_count++] = dev;
  1940. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1941. synchronize_srcu_expedited(&kvm->srcu);
  1942. kfree(bus);
  1943. return 0;
  1944. }
  1945. /* Caller must hold slots_lock. */
  1946. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1947. struct kvm_io_device *dev)
  1948. {
  1949. int i, r;
  1950. struct kvm_io_bus *new_bus, *bus;
  1951. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1952. if (!new_bus)
  1953. return -ENOMEM;
  1954. bus = kvm->buses[bus_idx];
  1955. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1956. r = -ENOENT;
  1957. for (i = 0; i < new_bus->dev_count; i++)
  1958. if (new_bus->devs[i] == dev) {
  1959. r = 0;
  1960. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1961. break;
  1962. }
  1963. if (r) {
  1964. kfree(new_bus);
  1965. return r;
  1966. }
  1967. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1968. synchronize_srcu_expedited(&kvm->srcu);
  1969. kfree(bus);
  1970. return r;
  1971. }
  1972. static struct notifier_block kvm_cpu_notifier = {
  1973. .notifier_call = kvm_cpu_hotplug,
  1974. };
  1975. static int vm_stat_get(void *_offset, u64 *val)
  1976. {
  1977. unsigned offset = (long)_offset;
  1978. struct kvm *kvm;
  1979. *val = 0;
  1980. spin_lock(&kvm_lock);
  1981. list_for_each_entry(kvm, &vm_list, vm_list)
  1982. *val += *(u32 *)((void *)kvm + offset);
  1983. spin_unlock(&kvm_lock);
  1984. return 0;
  1985. }
  1986. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1987. static int vcpu_stat_get(void *_offset, u64 *val)
  1988. {
  1989. unsigned offset = (long)_offset;
  1990. struct kvm *kvm;
  1991. struct kvm_vcpu *vcpu;
  1992. int i;
  1993. *val = 0;
  1994. spin_lock(&kvm_lock);
  1995. list_for_each_entry(kvm, &vm_list, vm_list)
  1996. kvm_for_each_vcpu(i, vcpu, kvm)
  1997. *val += *(u32 *)((void *)vcpu + offset);
  1998. spin_unlock(&kvm_lock);
  1999. return 0;
  2000. }
  2001. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2002. static const struct file_operations *stat_fops[] = {
  2003. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2004. [KVM_STAT_VM] = &vm_stat_fops,
  2005. };
  2006. static void kvm_init_debug(void)
  2007. {
  2008. struct kvm_stats_debugfs_item *p;
  2009. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2010. for (p = debugfs_entries; p->name; ++p)
  2011. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2012. (void *)(long)p->offset,
  2013. stat_fops[p->kind]);
  2014. }
  2015. static void kvm_exit_debug(void)
  2016. {
  2017. struct kvm_stats_debugfs_item *p;
  2018. for (p = debugfs_entries; p->name; ++p)
  2019. debugfs_remove(p->dentry);
  2020. debugfs_remove(kvm_debugfs_dir);
  2021. }
  2022. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2023. {
  2024. if (kvm_usage_count)
  2025. hardware_disable_nolock(NULL);
  2026. return 0;
  2027. }
  2028. static int kvm_resume(struct sys_device *dev)
  2029. {
  2030. if (kvm_usage_count) {
  2031. WARN_ON(spin_is_locked(&kvm_lock));
  2032. hardware_enable_nolock(NULL);
  2033. }
  2034. return 0;
  2035. }
  2036. static struct sysdev_class kvm_sysdev_class = {
  2037. .name = "kvm",
  2038. .suspend = kvm_suspend,
  2039. .resume = kvm_resume,
  2040. };
  2041. static struct sys_device kvm_sysdev = {
  2042. .id = 0,
  2043. .cls = &kvm_sysdev_class,
  2044. };
  2045. struct page *bad_page;
  2046. pfn_t bad_pfn;
  2047. static inline
  2048. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2049. {
  2050. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2051. }
  2052. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2053. {
  2054. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2055. kvm_arch_vcpu_load(vcpu, cpu);
  2056. }
  2057. static void kvm_sched_out(struct preempt_notifier *pn,
  2058. struct task_struct *next)
  2059. {
  2060. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2061. kvm_arch_vcpu_put(vcpu);
  2062. }
  2063. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2064. struct module *module)
  2065. {
  2066. int r;
  2067. int cpu;
  2068. r = kvm_arch_init(opaque);
  2069. if (r)
  2070. goto out_fail;
  2071. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2072. if (bad_page == NULL) {
  2073. r = -ENOMEM;
  2074. goto out;
  2075. }
  2076. bad_pfn = page_to_pfn(bad_page);
  2077. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2078. if (hwpoison_page == NULL) {
  2079. r = -ENOMEM;
  2080. goto out_free_0;
  2081. }
  2082. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2083. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2084. if (fault_page == NULL) {
  2085. r = -ENOMEM;
  2086. goto out_free_0;
  2087. }
  2088. fault_pfn = page_to_pfn(fault_page);
  2089. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2090. r = -ENOMEM;
  2091. goto out_free_0;
  2092. }
  2093. r = kvm_arch_hardware_setup();
  2094. if (r < 0)
  2095. goto out_free_0a;
  2096. for_each_online_cpu(cpu) {
  2097. smp_call_function_single(cpu,
  2098. kvm_arch_check_processor_compat,
  2099. &r, 1);
  2100. if (r < 0)
  2101. goto out_free_1;
  2102. }
  2103. r = register_cpu_notifier(&kvm_cpu_notifier);
  2104. if (r)
  2105. goto out_free_2;
  2106. register_reboot_notifier(&kvm_reboot_notifier);
  2107. r = sysdev_class_register(&kvm_sysdev_class);
  2108. if (r)
  2109. goto out_free_3;
  2110. r = sysdev_register(&kvm_sysdev);
  2111. if (r)
  2112. goto out_free_4;
  2113. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2114. if (!vcpu_align)
  2115. vcpu_align = __alignof__(struct kvm_vcpu);
  2116. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2117. 0, NULL);
  2118. if (!kvm_vcpu_cache) {
  2119. r = -ENOMEM;
  2120. goto out_free_5;
  2121. }
  2122. r = kvm_async_pf_init();
  2123. if (r)
  2124. goto out_free;
  2125. kvm_chardev_ops.owner = module;
  2126. kvm_vm_fops.owner = module;
  2127. kvm_vcpu_fops.owner = module;
  2128. r = misc_register(&kvm_dev);
  2129. if (r) {
  2130. printk(KERN_ERR "kvm: misc device register failed\n");
  2131. goto out_unreg;
  2132. }
  2133. kvm_preempt_ops.sched_in = kvm_sched_in;
  2134. kvm_preempt_ops.sched_out = kvm_sched_out;
  2135. kvm_init_debug();
  2136. return 0;
  2137. out_unreg:
  2138. kvm_async_pf_deinit();
  2139. out_free:
  2140. kmem_cache_destroy(kvm_vcpu_cache);
  2141. out_free_5:
  2142. sysdev_unregister(&kvm_sysdev);
  2143. out_free_4:
  2144. sysdev_class_unregister(&kvm_sysdev_class);
  2145. out_free_3:
  2146. unregister_reboot_notifier(&kvm_reboot_notifier);
  2147. unregister_cpu_notifier(&kvm_cpu_notifier);
  2148. out_free_2:
  2149. out_free_1:
  2150. kvm_arch_hardware_unsetup();
  2151. out_free_0a:
  2152. free_cpumask_var(cpus_hardware_enabled);
  2153. out_free_0:
  2154. if (fault_page)
  2155. __free_page(fault_page);
  2156. if (hwpoison_page)
  2157. __free_page(hwpoison_page);
  2158. __free_page(bad_page);
  2159. out:
  2160. kvm_arch_exit();
  2161. out_fail:
  2162. return r;
  2163. }
  2164. EXPORT_SYMBOL_GPL(kvm_init);
  2165. void kvm_exit(void)
  2166. {
  2167. kvm_exit_debug();
  2168. misc_deregister(&kvm_dev);
  2169. kmem_cache_destroy(kvm_vcpu_cache);
  2170. kvm_async_pf_deinit();
  2171. sysdev_unregister(&kvm_sysdev);
  2172. sysdev_class_unregister(&kvm_sysdev_class);
  2173. unregister_reboot_notifier(&kvm_reboot_notifier);
  2174. unregister_cpu_notifier(&kvm_cpu_notifier);
  2175. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2176. kvm_arch_hardware_unsetup();
  2177. kvm_arch_exit();
  2178. free_cpumask_var(cpus_hardware_enabled);
  2179. __free_page(hwpoison_page);
  2180. __free_page(bad_page);
  2181. }
  2182. EXPORT_SYMBOL_GPL(kvm_exit);