rmap.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/module.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <asm/tlbflush.h>
  57. #include "internal.h"
  58. static struct kmem_cache *anon_vma_cachep;
  59. static inline struct anon_vma *anon_vma_alloc(void)
  60. {
  61. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  62. }
  63. static inline void anon_vma_free(struct anon_vma *anon_vma)
  64. {
  65. kmem_cache_free(anon_vma_cachep, anon_vma);
  66. }
  67. /**
  68. * anon_vma_prepare - attach an anon_vma to a memory region
  69. * @vma: the memory region in question
  70. *
  71. * This makes sure the memory mapping described by 'vma' has
  72. * an 'anon_vma' attached to it, so that we can associate the
  73. * anonymous pages mapped into it with that anon_vma.
  74. *
  75. * The common case will be that we already have one, but if
  76. * if not we either need to find an adjacent mapping that we
  77. * can re-use the anon_vma from (very common when the only
  78. * reason for splitting a vma has been mprotect()), or we
  79. * allocate a new one.
  80. *
  81. * Anon-vma allocations are very subtle, because we may have
  82. * optimistically looked up an anon_vma in page_lock_anon_vma()
  83. * and that may actually touch the spinlock even in the newly
  84. * allocated vma (it depends on RCU to make sure that the
  85. * anon_vma isn't actually destroyed).
  86. *
  87. * As a result, we need to do proper anon_vma locking even
  88. * for the new allocation. At the same time, we do not want
  89. * to do any locking for the common case of already having
  90. * an anon_vma.
  91. *
  92. * This must be called with the mmap_sem held for reading.
  93. */
  94. int anon_vma_prepare(struct vm_area_struct *vma)
  95. {
  96. struct anon_vma *anon_vma = vma->anon_vma;
  97. might_sleep();
  98. if (unlikely(!anon_vma)) {
  99. struct mm_struct *mm = vma->vm_mm;
  100. struct anon_vma *allocated;
  101. anon_vma = find_mergeable_anon_vma(vma);
  102. allocated = NULL;
  103. if (!anon_vma) {
  104. anon_vma = anon_vma_alloc();
  105. if (unlikely(!anon_vma))
  106. return -ENOMEM;
  107. allocated = anon_vma;
  108. }
  109. spin_lock(&anon_vma->lock);
  110. /* page_table_lock to protect against threads */
  111. spin_lock(&mm->page_table_lock);
  112. if (likely(!vma->anon_vma)) {
  113. vma->anon_vma = anon_vma;
  114. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  115. allocated = NULL;
  116. }
  117. spin_unlock(&mm->page_table_lock);
  118. spin_unlock(&anon_vma->lock);
  119. if (unlikely(allocated))
  120. anon_vma_free(allocated);
  121. }
  122. return 0;
  123. }
  124. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  125. {
  126. BUG_ON(vma->anon_vma != next->anon_vma);
  127. list_del(&next->anon_vma_node);
  128. }
  129. void __anon_vma_link(struct vm_area_struct *vma)
  130. {
  131. struct anon_vma *anon_vma = vma->anon_vma;
  132. if (anon_vma)
  133. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  134. }
  135. void anon_vma_link(struct vm_area_struct *vma)
  136. {
  137. struct anon_vma *anon_vma = vma->anon_vma;
  138. if (anon_vma) {
  139. spin_lock(&anon_vma->lock);
  140. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  141. spin_unlock(&anon_vma->lock);
  142. }
  143. }
  144. void anon_vma_unlink(struct vm_area_struct *vma)
  145. {
  146. struct anon_vma *anon_vma = vma->anon_vma;
  147. int empty;
  148. if (!anon_vma)
  149. return;
  150. spin_lock(&anon_vma->lock);
  151. list_del(&vma->anon_vma_node);
  152. /* We must garbage collect the anon_vma if it's empty */
  153. empty = list_empty(&anon_vma->head);
  154. spin_unlock(&anon_vma->lock);
  155. if (empty)
  156. anon_vma_free(anon_vma);
  157. }
  158. static void anon_vma_ctor(void *data)
  159. {
  160. struct anon_vma *anon_vma = data;
  161. spin_lock_init(&anon_vma->lock);
  162. INIT_LIST_HEAD(&anon_vma->head);
  163. }
  164. void __init anon_vma_init(void)
  165. {
  166. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  167. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  168. }
  169. /*
  170. * Getting a lock on a stable anon_vma from a page off the LRU is
  171. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  172. */
  173. struct anon_vma *page_lock_anon_vma(struct page *page)
  174. {
  175. struct anon_vma *anon_vma;
  176. unsigned long anon_mapping;
  177. rcu_read_lock();
  178. anon_mapping = (unsigned long) page->mapping;
  179. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  180. goto out;
  181. if (!page_mapped(page))
  182. goto out;
  183. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  184. spin_lock(&anon_vma->lock);
  185. return anon_vma;
  186. out:
  187. rcu_read_unlock();
  188. return NULL;
  189. }
  190. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  191. {
  192. spin_unlock(&anon_vma->lock);
  193. rcu_read_unlock();
  194. }
  195. /*
  196. * At what user virtual address is page expected in @vma?
  197. * Returns virtual address or -EFAULT if page's index/offset is not
  198. * within the range mapped the @vma.
  199. */
  200. static inline unsigned long
  201. vma_address(struct page *page, struct vm_area_struct *vma)
  202. {
  203. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  204. unsigned long address;
  205. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  206. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  207. /* page should be within @vma mapping range */
  208. return -EFAULT;
  209. }
  210. return address;
  211. }
  212. /*
  213. * At what user virtual address is page expected in vma?
  214. * checking that the page matches the vma.
  215. */
  216. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  217. {
  218. if (PageAnon(page)) {
  219. if (vma->anon_vma != page_anon_vma(page))
  220. return -EFAULT;
  221. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  222. if (!vma->vm_file ||
  223. vma->vm_file->f_mapping != page->mapping)
  224. return -EFAULT;
  225. } else
  226. return -EFAULT;
  227. return vma_address(page, vma);
  228. }
  229. /*
  230. * Check that @page is mapped at @address into @mm.
  231. *
  232. * If @sync is false, page_check_address may perform a racy check to avoid
  233. * the page table lock when the pte is not present (helpful when reclaiming
  234. * highly shared pages).
  235. *
  236. * On success returns with pte mapped and locked.
  237. */
  238. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  239. unsigned long address, spinlock_t **ptlp, int sync)
  240. {
  241. pgd_t *pgd;
  242. pud_t *pud;
  243. pmd_t *pmd;
  244. pte_t *pte;
  245. spinlock_t *ptl;
  246. pgd = pgd_offset(mm, address);
  247. if (!pgd_present(*pgd))
  248. return NULL;
  249. pud = pud_offset(pgd, address);
  250. if (!pud_present(*pud))
  251. return NULL;
  252. pmd = pmd_offset(pud, address);
  253. if (!pmd_present(*pmd))
  254. return NULL;
  255. pte = pte_offset_map(pmd, address);
  256. /* Make a quick check before getting the lock */
  257. if (!sync && !pte_present(*pte)) {
  258. pte_unmap(pte);
  259. return NULL;
  260. }
  261. ptl = pte_lockptr(mm, pmd);
  262. spin_lock(ptl);
  263. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  264. *ptlp = ptl;
  265. return pte;
  266. }
  267. pte_unmap_unlock(pte, ptl);
  268. return NULL;
  269. }
  270. /**
  271. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  272. * @page: the page to test
  273. * @vma: the VMA to test
  274. *
  275. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  276. * if the page is not mapped into the page tables of this VMA. Only
  277. * valid for normal file or anonymous VMAs.
  278. */
  279. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  280. {
  281. unsigned long address;
  282. pte_t *pte;
  283. spinlock_t *ptl;
  284. address = vma_address(page, vma);
  285. if (address == -EFAULT) /* out of vma range */
  286. return 0;
  287. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  288. if (!pte) /* the page is not in this mm */
  289. return 0;
  290. pte_unmap_unlock(pte, ptl);
  291. return 1;
  292. }
  293. /*
  294. * Subfunctions of page_referenced: page_referenced_one called
  295. * repeatedly from either page_referenced_anon or page_referenced_file.
  296. */
  297. static int page_referenced_one(struct page *page,
  298. struct vm_area_struct *vma,
  299. unsigned int *mapcount,
  300. unsigned long *vm_flags)
  301. {
  302. struct mm_struct *mm = vma->vm_mm;
  303. unsigned long address;
  304. pte_t *pte;
  305. spinlock_t *ptl;
  306. int referenced = 0;
  307. address = vma_address(page, vma);
  308. if (address == -EFAULT)
  309. goto out;
  310. pte = page_check_address(page, mm, address, &ptl, 0);
  311. if (!pte)
  312. goto out;
  313. /*
  314. * Don't want to elevate referenced for mlocked page that gets this far,
  315. * in order that it progresses to try_to_unmap and is moved to the
  316. * unevictable list.
  317. */
  318. if (vma->vm_flags & VM_LOCKED) {
  319. *mapcount = 1; /* break early from loop */
  320. *vm_flags |= VM_LOCKED;
  321. goto out_unmap;
  322. }
  323. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  324. /*
  325. * Don't treat a reference through a sequentially read
  326. * mapping as such. If the page has been used in
  327. * another mapping, we will catch it; if this other
  328. * mapping is already gone, the unmap path will have
  329. * set PG_referenced or activated the page.
  330. */
  331. if (likely(!VM_SequentialReadHint(vma)))
  332. referenced++;
  333. }
  334. /* Pretend the page is referenced if the task has the
  335. swap token and is in the middle of a page fault. */
  336. if (mm != current->mm && has_swap_token(mm) &&
  337. rwsem_is_locked(&mm->mmap_sem))
  338. referenced++;
  339. out_unmap:
  340. (*mapcount)--;
  341. pte_unmap_unlock(pte, ptl);
  342. if (referenced)
  343. *vm_flags |= vma->vm_flags;
  344. out:
  345. return referenced;
  346. }
  347. static int page_referenced_anon(struct page *page,
  348. struct mem_cgroup *mem_cont,
  349. unsigned long *vm_flags)
  350. {
  351. unsigned int mapcount;
  352. struct anon_vma *anon_vma;
  353. struct vm_area_struct *vma;
  354. int referenced = 0;
  355. anon_vma = page_lock_anon_vma(page);
  356. if (!anon_vma)
  357. return referenced;
  358. mapcount = page_mapcount(page);
  359. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  360. /*
  361. * If we are reclaiming on behalf of a cgroup, skip
  362. * counting on behalf of references from different
  363. * cgroups
  364. */
  365. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  366. continue;
  367. referenced += page_referenced_one(page, vma,
  368. &mapcount, vm_flags);
  369. if (!mapcount)
  370. break;
  371. }
  372. page_unlock_anon_vma(anon_vma);
  373. return referenced;
  374. }
  375. /**
  376. * page_referenced_file - referenced check for object-based rmap
  377. * @page: the page we're checking references on.
  378. * @mem_cont: target memory controller
  379. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  380. *
  381. * For an object-based mapped page, find all the places it is mapped and
  382. * check/clear the referenced flag. This is done by following the page->mapping
  383. * pointer, then walking the chain of vmas it holds. It returns the number
  384. * of references it found.
  385. *
  386. * This function is only called from page_referenced for object-based pages.
  387. */
  388. static int page_referenced_file(struct page *page,
  389. struct mem_cgroup *mem_cont,
  390. unsigned long *vm_flags)
  391. {
  392. unsigned int mapcount;
  393. struct address_space *mapping = page->mapping;
  394. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  395. struct vm_area_struct *vma;
  396. struct prio_tree_iter iter;
  397. int referenced = 0;
  398. /*
  399. * The caller's checks on page->mapping and !PageAnon have made
  400. * sure that this is a file page: the check for page->mapping
  401. * excludes the case just before it gets set on an anon page.
  402. */
  403. BUG_ON(PageAnon(page));
  404. /*
  405. * The page lock not only makes sure that page->mapping cannot
  406. * suddenly be NULLified by truncation, it makes sure that the
  407. * structure at mapping cannot be freed and reused yet,
  408. * so we can safely take mapping->i_mmap_lock.
  409. */
  410. BUG_ON(!PageLocked(page));
  411. spin_lock(&mapping->i_mmap_lock);
  412. /*
  413. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  414. * is more likely to be accurate if we note it after spinning.
  415. */
  416. mapcount = page_mapcount(page);
  417. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  418. /*
  419. * If we are reclaiming on behalf of a cgroup, skip
  420. * counting on behalf of references from different
  421. * cgroups
  422. */
  423. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  424. continue;
  425. referenced += page_referenced_one(page, vma,
  426. &mapcount, vm_flags);
  427. if (!mapcount)
  428. break;
  429. }
  430. spin_unlock(&mapping->i_mmap_lock);
  431. return referenced;
  432. }
  433. /**
  434. * page_referenced - test if the page was referenced
  435. * @page: the page to test
  436. * @is_locked: caller holds lock on the page
  437. * @mem_cont: target memory controller
  438. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  439. *
  440. * Quick test_and_clear_referenced for all mappings to a page,
  441. * returns the number of ptes which referenced the page.
  442. */
  443. int page_referenced(struct page *page,
  444. int is_locked,
  445. struct mem_cgroup *mem_cont,
  446. unsigned long *vm_flags)
  447. {
  448. int referenced = 0;
  449. if (TestClearPageReferenced(page))
  450. referenced++;
  451. *vm_flags = 0;
  452. if (page_mapped(page) && page_rmapping(page)) {
  453. if (PageAnon(page))
  454. referenced += page_referenced_anon(page, mem_cont,
  455. vm_flags);
  456. else if (is_locked)
  457. referenced += page_referenced_file(page, mem_cont,
  458. vm_flags);
  459. else if (!trylock_page(page))
  460. referenced++;
  461. else {
  462. if (page->mapping)
  463. referenced += page_referenced_file(page,
  464. mem_cont, vm_flags);
  465. unlock_page(page);
  466. }
  467. }
  468. if (page_test_and_clear_young(page))
  469. referenced++;
  470. return referenced;
  471. }
  472. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
  473. {
  474. struct mm_struct *mm = vma->vm_mm;
  475. unsigned long address;
  476. pte_t *pte;
  477. spinlock_t *ptl;
  478. int ret = 0;
  479. address = vma_address(page, vma);
  480. if (address == -EFAULT)
  481. goto out;
  482. pte = page_check_address(page, mm, address, &ptl, 1);
  483. if (!pte)
  484. goto out;
  485. if (pte_dirty(*pte) || pte_write(*pte)) {
  486. pte_t entry;
  487. flush_cache_page(vma, address, pte_pfn(*pte));
  488. entry = ptep_clear_flush_notify(vma, address, pte);
  489. entry = pte_wrprotect(entry);
  490. entry = pte_mkclean(entry);
  491. set_pte_at(mm, address, pte, entry);
  492. ret = 1;
  493. }
  494. pte_unmap_unlock(pte, ptl);
  495. out:
  496. return ret;
  497. }
  498. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  499. {
  500. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  501. struct vm_area_struct *vma;
  502. struct prio_tree_iter iter;
  503. int ret = 0;
  504. BUG_ON(PageAnon(page));
  505. spin_lock(&mapping->i_mmap_lock);
  506. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  507. if (vma->vm_flags & VM_SHARED)
  508. ret += page_mkclean_one(page, vma);
  509. }
  510. spin_unlock(&mapping->i_mmap_lock);
  511. return ret;
  512. }
  513. int page_mkclean(struct page *page)
  514. {
  515. int ret = 0;
  516. BUG_ON(!PageLocked(page));
  517. if (page_mapped(page)) {
  518. struct address_space *mapping = page_mapping(page);
  519. if (mapping) {
  520. ret = page_mkclean_file(mapping, page);
  521. if (page_test_dirty(page)) {
  522. page_clear_dirty(page);
  523. ret = 1;
  524. }
  525. }
  526. }
  527. return ret;
  528. }
  529. EXPORT_SYMBOL_GPL(page_mkclean);
  530. /**
  531. * __page_set_anon_rmap - setup new anonymous rmap
  532. * @page: the page to add the mapping to
  533. * @vma: the vm area in which the mapping is added
  534. * @address: the user virtual address mapped
  535. */
  536. static void __page_set_anon_rmap(struct page *page,
  537. struct vm_area_struct *vma, unsigned long address)
  538. {
  539. struct anon_vma *anon_vma = vma->anon_vma;
  540. BUG_ON(!anon_vma);
  541. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  542. page->mapping = (struct address_space *) anon_vma;
  543. page->index = linear_page_index(vma, address);
  544. /*
  545. * nr_mapped state can be updated without turning off
  546. * interrupts because it is not modified via interrupt.
  547. */
  548. __inc_zone_page_state(page, NR_ANON_PAGES);
  549. }
  550. /**
  551. * __page_check_anon_rmap - sanity check anonymous rmap addition
  552. * @page: the page to add the mapping to
  553. * @vma: the vm area in which the mapping is added
  554. * @address: the user virtual address mapped
  555. */
  556. static void __page_check_anon_rmap(struct page *page,
  557. struct vm_area_struct *vma, unsigned long address)
  558. {
  559. #ifdef CONFIG_DEBUG_VM
  560. /*
  561. * The page's anon-rmap details (mapping and index) are guaranteed to
  562. * be set up correctly at this point.
  563. *
  564. * We have exclusion against page_add_anon_rmap because the caller
  565. * always holds the page locked, except if called from page_dup_rmap,
  566. * in which case the page is already known to be setup.
  567. *
  568. * We have exclusion against page_add_new_anon_rmap because those pages
  569. * are initially only visible via the pagetables, and the pte is locked
  570. * over the call to page_add_new_anon_rmap.
  571. */
  572. struct anon_vma *anon_vma = vma->anon_vma;
  573. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  574. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  575. BUG_ON(page->index != linear_page_index(vma, address));
  576. #endif
  577. }
  578. /**
  579. * page_add_anon_rmap - add pte mapping to an anonymous page
  580. * @page: the page to add the mapping to
  581. * @vma: the vm area in which the mapping is added
  582. * @address: the user virtual address mapped
  583. *
  584. * The caller needs to hold the pte lock and the page must be locked.
  585. */
  586. void page_add_anon_rmap(struct page *page,
  587. struct vm_area_struct *vma, unsigned long address)
  588. {
  589. VM_BUG_ON(!PageLocked(page));
  590. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  591. if (atomic_inc_and_test(&page->_mapcount))
  592. __page_set_anon_rmap(page, vma, address);
  593. else
  594. __page_check_anon_rmap(page, vma, address);
  595. }
  596. /**
  597. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  598. * @page: the page to add the mapping to
  599. * @vma: the vm area in which the mapping is added
  600. * @address: the user virtual address mapped
  601. *
  602. * Same as page_add_anon_rmap but must only be called on *new* pages.
  603. * This means the inc-and-test can be bypassed.
  604. * Page does not have to be locked.
  605. */
  606. void page_add_new_anon_rmap(struct page *page,
  607. struct vm_area_struct *vma, unsigned long address)
  608. {
  609. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  610. SetPageSwapBacked(page);
  611. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  612. __page_set_anon_rmap(page, vma, address);
  613. if (page_evictable(page, vma))
  614. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  615. else
  616. add_page_to_unevictable_list(page);
  617. }
  618. /**
  619. * page_add_file_rmap - add pte mapping to a file page
  620. * @page: the page to add the mapping to
  621. *
  622. * The caller needs to hold the pte lock.
  623. */
  624. void page_add_file_rmap(struct page *page)
  625. {
  626. if (atomic_inc_and_test(&page->_mapcount)) {
  627. __inc_zone_page_state(page, NR_FILE_MAPPED);
  628. mem_cgroup_update_mapped_file_stat(page, 1);
  629. }
  630. }
  631. /**
  632. * page_remove_rmap - take down pte mapping from a page
  633. * @page: page to remove mapping from
  634. *
  635. * The caller needs to hold the pte lock.
  636. */
  637. void page_remove_rmap(struct page *page)
  638. {
  639. /* page still mapped by someone else? */
  640. if (!atomic_add_negative(-1, &page->_mapcount))
  641. return;
  642. /*
  643. * Now that the last pte has gone, s390 must transfer dirty
  644. * flag from storage key to struct page. We can usually skip
  645. * this if the page is anon, so about to be freed; but perhaps
  646. * not if it's in swapcache - there might be another pte slot
  647. * containing the swap entry, but page not yet written to swap.
  648. */
  649. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  650. page_clear_dirty(page);
  651. set_page_dirty(page);
  652. }
  653. if (PageAnon(page)) {
  654. mem_cgroup_uncharge_page(page);
  655. __dec_zone_page_state(page, NR_ANON_PAGES);
  656. } else {
  657. __dec_zone_page_state(page, NR_FILE_MAPPED);
  658. }
  659. mem_cgroup_update_mapped_file_stat(page, -1);
  660. /*
  661. * It would be tidy to reset the PageAnon mapping here,
  662. * but that might overwrite a racing page_add_anon_rmap
  663. * which increments mapcount after us but sets mapping
  664. * before us: so leave the reset to free_hot_cold_page,
  665. * and remember that it's only reliable while mapped.
  666. * Leaving it set also helps swapoff to reinstate ptes
  667. * faster for those pages still in swapcache.
  668. */
  669. }
  670. /*
  671. * Subfunctions of try_to_unmap: try_to_unmap_one called
  672. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  673. */
  674. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  675. enum ttu_flags flags)
  676. {
  677. struct mm_struct *mm = vma->vm_mm;
  678. unsigned long address;
  679. pte_t *pte;
  680. pte_t pteval;
  681. spinlock_t *ptl;
  682. int ret = SWAP_AGAIN;
  683. address = vma_address(page, vma);
  684. if (address == -EFAULT)
  685. goto out;
  686. pte = page_check_address(page, mm, address, &ptl, 0);
  687. if (!pte)
  688. goto out;
  689. /*
  690. * If the page is mlock()d, we cannot swap it out.
  691. * If it's recently referenced (perhaps page_referenced
  692. * skipped over this mm) then we should reactivate it.
  693. */
  694. if (!(flags & TTU_IGNORE_MLOCK)) {
  695. if (vma->vm_flags & VM_LOCKED) {
  696. ret = SWAP_MLOCK;
  697. goto out_unmap;
  698. }
  699. }
  700. if (!(flags & TTU_IGNORE_ACCESS)) {
  701. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  702. ret = SWAP_FAIL;
  703. goto out_unmap;
  704. }
  705. }
  706. /* Nuke the page table entry. */
  707. flush_cache_page(vma, address, page_to_pfn(page));
  708. pteval = ptep_clear_flush_notify(vma, address, pte);
  709. /* Move the dirty bit to the physical page now the pte is gone. */
  710. if (pte_dirty(pteval))
  711. set_page_dirty(page);
  712. /* Update high watermark before we lower rss */
  713. update_hiwater_rss(mm);
  714. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  715. if (PageAnon(page))
  716. dec_mm_counter(mm, anon_rss);
  717. else
  718. dec_mm_counter(mm, file_rss);
  719. set_pte_at(mm, address, pte,
  720. swp_entry_to_pte(make_hwpoison_entry(page)));
  721. } else if (PageAnon(page)) {
  722. swp_entry_t entry = { .val = page_private(page) };
  723. if (PageSwapCache(page)) {
  724. /*
  725. * Store the swap location in the pte.
  726. * See handle_pte_fault() ...
  727. */
  728. if (swap_duplicate(entry) < 0) {
  729. set_pte_at(mm, address, pte, pteval);
  730. ret = SWAP_FAIL;
  731. goto out_unmap;
  732. }
  733. if (list_empty(&mm->mmlist)) {
  734. spin_lock(&mmlist_lock);
  735. if (list_empty(&mm->mmlist))
  736. list_add(&mm->mmlist, &init_mm.mmlist);
  737. spin_unlock(&mmlist_lock);
  738. }
  739. dec_mm_counter(mm, anon_rss);
  740. } else if (PAGE_MIGRATION) {
  741. /*
  742. * Store the pfn of the page in a special migration
  743. * pte. do_swap_page() will wait until the migration
  744. * pte is removed and then restart fault handling.
  745. */
  746. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  747. entry = make_migration_entry(page, pte_write(pteval));
  748. }
  749. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  750. BUG_ON(pte_file(*pte));
  751. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  752. /* Establish migration entry for a file page */
  753. swp_entry_t entry;
  754. entry = make_migration_entry(page, pte_write(pteval));
  755. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  756. } else
  757. dec_mm_counter(mm, file_rss);
  758. page_remove_rmap(page);
  759. page_cache_release(page);
  760. out_unmap:
  761. pte_unmap_unlock(pte, ptl);
  762. out:
  763. return ret;
  764. }
  765. /*
  766. * objrmap doesn't work for nonlinear VMAs because the assumption that
  767. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  768. * Consequently, given a particular page and its ->index, we cannot locate the
  769. * ptes which are mapping that page without an exhaustive linear search.
  770. *
  771. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  772. * maps the file to which the target page belongs. The ->vm_private_data field
  773. * holds the current cursor into that scan. Successive searches will circulate
  774. * around the vma's virtual address space.
  775. *
  776. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  777. * more scanning pressure is placed against them as well. Eventually pages
  778. * will become fully unmapped and are eligible for eviction.
  779. *
  780. * For very sparsely populated VMAs this is a little inefficient - chances are
  781. * there there won't be many ptes located within the scan cluster. In this case
  782. * maybe we could scan further - to the end of the pte page, perhaps.
  783. *
  784. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  785. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  786. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  787. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  788. */
  789. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  790. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  791. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  792. struct vm_area_struct *vma, struct page *check_page)
  793. {
  794. struct mm_struct *mm = vma->vm_mm;
  795. pgd_t *pgd;
  796. pud_t *pud;
  797. pmd_t *pmd;
  798. pte_t *pte;
  799. pte_t pteval;
  800. spinlock_t *ptl;
  801. struct page *page;
  802. unsigned long address;
  803. unsigned long end;
  804. int ret = SWAP_AGAIN;
  805. int locked_vma = 0;
  806. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  807. end = address + CLUSTER_SIZE;
  808. if (address < vma->vm_start)
  809. address = vma->vm_start;
  810. if (end > vma->vm_end)
  811. end = vma->vm_end;
  812. pgd = pgd_offset(mm, address);
  813. if (!pgd_present(*pgd))
  814. return ret;
  815. pud = pud_offset(pgd, address);
  816. if (!pud_present(*pud))
  817. return ret;
  818. pmd = pmd_offset(pud, address);
  819. if (!pmd_present(*pmd))
  820. return ret;
  821. /*
  822. * MLOCK_PAGES => feature is configured.
  823. * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  824. * keep the sem while scanning the cluster for mlocking pages.
  825. */
  826. if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
  827. locked_vma = (vma->vm_flags & VM_LOCKED);
  828. if (!locked_vma)
  829. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  830. }
  831. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  832. /* Update high watermark before we lower rss */
  833. update_hiwater_rss(mm);
  834. for (; address < end; pte++, address += PAGE_SIZE) {
  835. if (!pte_present(*pte))
  836. continue;
  837. page = vm_normal_page(vma, address, *pte);
  838. BUG_ON(!page || PageAnon(page));
  839. if (locked_vma) {
  840. mlock_vma_page(page); /* no-op if already mlocked */
  841. if (page == check_page)
  842. ret = SWAP_MLOCK;
  843. continue; /* don't unmap */
  844. }
  845. if (ptep_clear_flush_young_notify(vma, address, pte))
  846. continue;
  847. /* Nuke the page table entry. */
  848. flush_cache_page(vma, address, pte_pfn(*pte));
  849. pteval = ptep_clear_flush_notify(vma, address, pte);
  850. /* If nonlinear, store the file page offset in the pte. */
  851. if (page->index != linear_page_index(vma, address))
  852. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  853. /* Move the dirty bit to the physical page now the pte is gone. */
  854. if (pte_dirty(pteval))
  855. set_page_dirty(page);
  856. page_remove_rmap(page);
  857. page_cache_release(page);
  858. dec_mm_counter(mm, file_rss);
  859. (*mapcount)--;
  860. }
  861. pte_unmap_unlock(pte - 1, ptl);
  862. if (locked_vma)
  863. up_read(&vma->vm_mm->mmap_sem);
  864. return ret;
  865. }
  866. /*
  867. * common handling for pages mapped in VM_LOCKED vmas
  868. */
  869. static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
  870. {
  871. int mlocked = 0;
  872. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  873. if (vma->vm_flags & VM_LOCKED) {
  874. mlock_vma_page(page);
  875. mlocked++; /* really mlocked the page */
  876. }
  877. up_read(&vma->vm_mm->mmap_sem);
  878. }
  879. return mlocked;
  880. }
  881. /**
  882. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  883. * rmap method
  884. * @page: the page to unmap/unlock
  885. * @flags: action and flags
  886. *
  887. * Find all the mappings of a page using the mapping pointer and the vma chains
  888. * contained in the anon_vma struct it points to.
  889. *
  890. * This function is only called from try_to_unmap/try_to_munlock for
  891. * anonymous pages.
  892. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  893. * where the page was found will be held for write. So, we won't recheck
  894. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  895. * 'LOCKED.
  896. */
  897. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  898. {
  899. struct anon_vma *anon_vma;
  900. struct vm_area_struct *vma;
  901. unsigned int mlocked = 0;
  902. int ret = SWAP_AGAIN;
  903. int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
  904. if (MLOCK_PAGES && unlikely(unlock))
  905. ret = SWAP_SUCCESS; /* default for try_to_munlock() */
  906. anon_vma = page_lock_anon_vma(page);
  907. if (!anon_vma)
  908. return ret;
  909. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  910. if (MLOCK_PAGES && unlikely(unlock)) {
  911. if (!((vma->vm_flags & VM_LOCKED) &&
  912. page_mapped_in_vma(page, vma)))
  913. continue; /* must visit all unlocked vmas */
  914. ret = SWAP_MLOCK; /* saw at least one mlocked vma */
  915. } else {
  916. ret = try_to_unmap_one(page, vma, flags);
  917. if (ret == SWAP_FAIL || !page_mapped(page))
  918. break;
  919. }
  920. if (ret == SWAP_MLOCK) {
  921. mlocked = try_to_mlock_page(page, vma);
  922. if (mlocked)
  923. break; /* stop if actually mlocked page */
  924. }
  925. }
  926. page_unlock_anon_vma(anon_vma);
  927. if (mlocked)
  928. ret = SWAP_MLOCK; /* actually mlocked the page */
  929. else if (ret == SWAP_MLOCK)
  930. ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
  931. return ret;
  932. }
  933. /**
  934. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  935. * @page: the page to unmap/unlock
  936. * @flags: action and flags
  937. *
  938. * Find all the mappings of a page using the mapping pointer and the vma chains
  939. * contained in the address_space struct it points to.
  940. *
  941. * This function is only called from try_to_unmap/try_to_munlock for
  942. * object-based pages.
  943. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  944. * where the page was found will be held for write. So, we won't recheck
  945. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  946. * 'LOCKED.
  947. */
  948. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  949. {
  950. struct address_space *mapping = page->mapping;
  951. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  952. struct vm_area_struct *vma;
  953. struct prio_tree_iter iter;
  954. int ret = SWAP_AGAIN;
  955. unsigned long cursor;
  956. unsigned long max_nl_cursor = 0;
  957. unsigned long max_nl_size = 0;
  958. unsigned int mapcount;
  959. unsigned int mlocked = 0;
  960. int unlock = TTU_ACTION(flags) == TTU_MUNLOCK;
  961. if (MLOCK_PAGES && unlikely(unlock))
  962. ret = SWAP_SUCCESS; /* default for try_to_munlock() */
  963. spin_lock(&mapping->i_mmap_lock);
  964. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  965. if (MLOCK_PAGES && unlikely(unlock)) {
  966. if (!((vma->vm_flags & VM_LOCKED) &&
  967. page_mapped_in_vma(page, vma)))
  968. continue; /* must visit all vmas */
  969. ret = SWAP_MLOCK;
  970. } else {
  971. ret = try_to_unmap_one(page, vma, flags);
  972. if (ret == SWAP_FAIL || !page_mapped(page))
  973. goto out;
  974. }
  975. if (ret == SWAP_MLOCK) {
  976. mlocked = try_to_mlock_page(page, vma);
  977. if (mlocked)
  978. goto out; /* stop if actually mlocked page */
  979. }
  980. }
  981. if (list_empty(&mapping->i_mmap_nonlinear))
  982. goto out;
  983. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  984. shared.vm_set.list) {
  985. if (MLOCK_PAGES && unlikely(unlock)) {
  986. if (!(vma->vm_flags & VM_LOCKED))
  987. continue; /* must visit all vmas */
  988. ret = SWAP_MLOCK; /* leave mlocked == 0 */
  989. goto out; /* no need to look further */
  990. }
  991. if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
  992. (vma->vm_flags & VM_LOCKED))
  993. continue;
  994. cursor = (unsigned long) vma->vm_private_data;
  995. if (cursor > max_nl_cursor)
  996. max_nl_cursor = cursor;
  997. cursor = vma->vm_end - vma->vm_start;
  998. if (cursor > max_nl_size)
  999. max_nl_size = cursor;
  1000. }
  1001. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1002. ret = SWAP_FAIL;
  1003. goto out;
  1004. }
  1005. /*
  1006. * We don't try to search for this page in the nonlinear vmas,
  1007. * and page_referenced wouldn't have found it anyway. Instead
  1008. * just walk the nonlinear vmas trying to age and unmap some.
  1009. * The mapcount of the page we came in with is irrelevant,
  1010. * but even so use it as a guide to how hard we should try?
  1011. */
  1012. mapcount = page_mapcount(page);
  1013. if (!mapcount)
  1014. goto out;
  1015. cond_resched_lock(&mapping->i_mmap_lock);
  1016. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1017. if (max_nl_cursor == 0)
  1018. max_nl_cursor = CLUSTER_SIZE;
  1019. do {
  1020. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1021. shared.vm_set.list) {
  1022. if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
  1023. (vma->vm_flags & VM_LOCKED))
  1024. continue;
  1025. cursor = (unsigned long) vma->vm_private_data;
  1026. while ( cursor < max_nl_cursor &&
  1027. cursor < vma->vm_end - vma->vm_start) {
  1028. ret = try_to_unmap_cluster(cursor, &mapcount,
  1029. vma, page);
  1030. if (ret == SWAP_MLOCK)
  1031. mlocked = 2; /* to return below */
  1032. cursor += CLUSTER_SIZE;
  1033. vma->vm_private_data = (void *) cursor;
  1034. if ((int)mapcount <= 0)
  1035. goto out;
  1036. }
  1037. vma->vm_private_data = (void *) max_nl_cursor;
  1038. }
  1039. cond_resched_lock(&mapping->i_mmap_lock);
  1040. max_nl_cursor += CLUSTER_SIZE;
  1041. } while (max_nl_cursor <= max_nl_size);
  1042. /*
  1043. * Don't loop forever (perhaps all the remaining pages are
  1044. * in locked vmas). Reset cursor on all unreserved nonlinear
  1045. * vmas, now forgetting on which ones it had fallen behind.
  1046. */
  1047. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1048. vma->vm_private_data = NULL;
  1049. out:
  1050. spin_unlock(&mapping->i_mmap_lock);
  1051. if (mlocked)
  1052. ret = SWAP_MLOCK; /* actually mlocked the page */
  1053. else if (ret == SWAP_MLOCK)
  1054. ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
  1055. return ret;
  1056. }
  1057. /**
  1058. * try_to_unmap - try to remove all page table mappings to a page
  1059. * @page: the page to get unmapped
  1060. * @flags: action and flags
  1061. *
  1062. * Tries to remove all the page table entries which are mapping this
  1063. * page, used in the pageout path. Caller must hold the page lock.
  1064. * Return values are:
  1065. *
  1066. * SWAP_SUCCESS - we succeeded in removing all mappings
  1067. * SWAP_AGAIN - we missed a mapping, try again later
  1068. * SWAP_FAIL - the page is unswappable
  1069. * SWAP_MLOCK - page is mlocked.
  1070. */
  1071. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1072. {
  1073. int ret;
  1074. BUG_ON(!PageLocked(page));
  1075. if (PageAnon(page))
  1076. ret = try_to_unmap_anon(page, flags);
  1077. else
  1078. ret = try_to_unmap_file(page, flags);
  1079. if (ret != SWAP_MLOCK && !page_mapped(page))
  1080. ret = SWAP_SUCCESS;
  1081. return ret;
  1082. }
  1083. /**
  1084. * try_to_munlock - try to munlock a page
  1085. * @page: the page to be munlocked
  1086. *
  1087. * Called from munlock code. Checks all of the VMAs mapping the page
  1088. * to make sure nobody else has this page mlocked. The page will be
  1089. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1090. *
  1091. * Return values are:
  1092. *
  1093. * SWAP_SUCCESS - no vma's holding page mlocked.
  1094. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1095. * SWAP_MLOCK - page is now mlocked.
  1096. */
  1097. int try_to_munlock(struct page *page)
  1098. {
  1099. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1100. if (PageAnon(page))
  1101. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1102. else
  1103. return try_to_unmap_file(page, TTU_MUNLOCK);
  1104. }