sched.c 229 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. struct rb_root tasks_timeline;
  261. struct rb_node *rb_leftmost;
  262. struct list_head tasks;
  263. struct list_head *balance_iterator;
  264. /*
  265. * 'curr' points to currently running entity on this cfs_rq.
  266. * It is set to NULL otherwise (i.e when none are currently running).
  267. */
  268. struct sched_entity *curr, *next, *last, *skip;
  269. unsigned int nr_spread_over;
  270. #ifdef CONFIG_FAIR_GROUP_SCHED
  271. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  272. /*
  273. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  274. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  275. * (like users, containers etc.)
  276. *
  277. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  278. * list is used during load balance.
  279. */
  280. int on_list;
  281. struct list_head leaf_cfs_rq_list;
  282. struct task_group *tg; /* group that "owns" this runqueue */
  283. #ifdef CONFIG_SMP
  284. /*
  285. * the part of load.weight contributed by tasks
  286. */
  287. unsigned long task_weight;
  288. /*
  289. * h_load = weight * f(tg)
  290. *
  291. * Where f(tg) is the recursive weight fraction assigned to
  292. * this group.
  293. */
  294. unsigned long h_load;
  295. /*
  296. * Maintaining per-cpu shares distribution for group scheduling
  297. *
  298. * load_stamp is the last time we updated the load average
  299. * load_last is the last time we updated the load average and saw load
  300. * load_unacc_exec_time is currently unaccounted execution time
  301. */
  302. u64 load_avg;
  303. u64 load_period;
  304. u64 load_stamp, load_last, load_unacc_exec_time;
  305. unsigned long load_contribution;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. struct cpupri cpupri;
  359. };
  360. /*
  361. * By default the system creates a single root-domain with all cpus as
  362. * members (mimicking the global state we have today).
  363. */
  364. static struct root_domain def_root_domain;
  365. #endif /* CONFIG_SMP */
  366. /*
  367. * This is the main, per-CPU runqueue data structure.
  368. *
  369. * Locking rule: those places that want to lock multiple runqueues
  370. * (such as the load balancing or the thread migration code), lock
  371. * acquire operations must be ordered by ascending &runqueue.
  372. */
  373. struct rq {
  374. /* runqueue lock: */
  375. raw_spinlock_t lock;
  376. /*
  377. * nr_running and cpu_load should be in the same cacheline because
  378. * remote CPUs use both these fields when doing load calculation.
  379. */
  380. unsigned long nr_running;
  381. #define CPU_LOAD_IDX_MAX 5
  382. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  383. unsigned long last_load_update_tick;
  384. #ifdef CONFIG_NO_HZ
  385. u64 nohz_stamp;
  386. unsigned char nohz_balance_kick;
  387. #endif
  388. unsigned int skip_clock_update;
  389. /* capture load from *all* tasks on this cpu: */
  390. struct load_weight load;
  391. unsigned long nr_load_updates;
  392. u64 nr_switches;
  393. struct cfs_rq cfs;
  394. struct rt_rq rt;
  395. #ifdef CONFIG_FAIR_GROUP_SCHED
  396. /* list of leaf cfs_rq on this cpu: */
  397. struct list_head leaf_cfs_rq_list;
  398. #endif
  399. #ifdef CONFIG_RT_GROUP_SCHED
  400. struct list_head leaf_rt_rq_list;
  401. #endif
  402. /*
  403. * This is part of a global counter where only the total sum
  404. * over all CPUs matters. A task can increase this counter on
  405. * one CPU and if it got migrated afterwards it may decrease
  406. * it on another CPU. Always updated under the runqueue lock:
  407. */
  408. unsigned long nr_uninterruptible;
  409. struct task_struct *curr, *idle, *stop;
  410. unsigned long next_balance;
  411. struct mm_struct *prev_mm;
  412. u64 clock;
  413. u64 clock_task;
  414. atomic_t nr_iowait;
  415. #ifdef CONFIG_SMP
  416. struct root_domain *rd;
  417. struct sched_domain *sd;
  418. unsigned long cpu_power;
  419. unsigned char idle_at_tick;
  420. /* For active balancing */
  421. int post_schedule;
  422. int active_balance;
  423. int push_cpu;
  424. struct cpu_stop_work active_balance_work;
  425. /* cpu of this runqueue: */
  426. int cpu;
  427. int online;
  428. unsigned long avg_load_per_task;
  429. u64 rt_avg;
  430. u64 age_stamp;
  431. u64 idle_stamp;
  432. u64 avg_idle;
  433. #endif
  434. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  435. u64 prev_irq_time;
  436. #endif
  437. /* calc_load related fields */
  438. unsigned long calc_load_update;
  439. long calc_load_active;
  440. #ifdef CONFIG_SCHED_HRTICK
  441. #ifdef CONFIG_SMP
  442. int hrtick_csd_pending;
  443. struct call_single_data hrtick_csd;
  444. #endif
  445. struct hrtimer hrtick_timer;
  446. #endif
  447. #ifdef CONFIG_SCHEDSTATS
  448. /* latency stats */
  449. struct sched_info rq_sched_info;
  450. unsigned long long rq_cpu_time;
  451. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  452. /* sys_sched_yield() stats */
  453. unsigned int yld_count;
  454. /* schedule() stats */
  455. unsigned int sched_switch;
  456. unsigned int sched_count;
  457. unsigned int sched_goidle;
  458. /* try_to_wake_up() stats */
  459. unsigned int ttwu_count;
  460. unsigned int ttwu_local;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  465. static inline int cpu_of(struct rq *rq)
  466. {
  467. #ifdef CONFIG_SMP
  468. return rq->cpu;
  469. #else
  470. return 0;
  471. #endif
  472. }
  473. #define rcu_dereference_check_sched_domain(p) \
  474. rcu_dereference_check((p), \
  475. rcu_read_lock_sched_held() || \
  476. lockdep_is_held(&sched_domains_mutex))
  477. /*
  478. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  479. * See detach_destroy_domains: synchronize_sched for details.
  480. *
  481. * The domain tree of any CPU may only be accessed from within
  482. * preempt-disabled sections.
  483. */
  484. #define for_each_domain(cpu, __sd) \
  485. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  486. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  487. #define this_rq() (&__get_cpu_var(runqueues))
  488. #define task_rq(p) cpu_rq(task_cpu(p))
  489. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  490. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  491. #ifdef CONFIG_CGROUP_SCHED
  492. /*
  493. * Return the group to which this tasks belongs.
  494. *
  495. * We use task_subsys_state_check() and extend the RCU verification
  496. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  497. * holds that lock for each task it moves into the cgroup. Therefore
  498. * by holding that lock, we pin the task to the current cgroup.
  499. */
  500. static inline struct task_group *task_group(struct task_struct *p)
  501. {
  502. struct task_group *tg;
  503. struct cgroup_subsys_state *css;
  504. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  505. lockdep_is_held(&task_rq(p)->lock));
  506. tg = container_of(css, struct task_group, css);
  507. return autogroup_task_group(p, tg);
  508. }
  509. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  510. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  511. {
  512. #ifdef CONFIG_FAIR_GROUP_SCHED
  513. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  514. p->se.parent = task_group(p)->se[cpu];
  515. #endif
  516. #ifdef CONFIG_RT_GROUP_SCHED
  517. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  518. p->rt.parent = task_group(p)->rt_se[cpu];
  519. #endif
  520. }
  521. #else /* CONFIG_CGROUP_SCHED */
  522. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  523. static inline struct task_group *task_group(struct task_struct *p)
  524. {
  525. return NULL;
  526. }
  527. #endif /* CONFIG_CGROUP_SCHED */
  528. static void update_rq_clock_task(struct rq *rq, s64 delta);
  529. static void update_rq_clock(struct rq *rq)
  530. {
  531. s64 delta;
  532. if (rq->skip_clock_update)
  533. return;
  534. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  535. rq->clock += delta;
  536. update_rq_clock_task(rq, delta);
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  548. * @cpu: the processor in question.
  549. *
  550. * This interface allows printk to be called with the runqueue lock
  551. * held and know whether or not it is OK to wake up the klogd.
  552. */
  553. int runqueue_is_locked(int cpu)
  554. {
  555. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  556. }
  557. /*
  558. * Debugging: various feature bits
  559. */
  560. #define SCHED_FEAT(name, enabled) \
  561. __SCHED_FEAT_##name ,
  562. enum {
  563. #include "sched_features.h"
  564. };
  565. #undef SCHED_FEAT
  566. #define SCHED_FEAT(name, enabled) \
  567. (1UL << __SCHED_FEAT_##name) * enabled |
  568. const_debug unsigned int sysctl_sched_features =
  569. #include "sched_features.h"
  570. 0;
  571. #undef SCHED_FEAT
  572. #ifdef CONFIG_SCHED_DEBUG
  573. #define SCHED_FEAT(name, enabled) \
  574. #name ,
  575. static __read_mostly char *sched_feat_names[] = {
  576. #include "sched_features.h"
  577. NULL
  578. };
  579. #undef SCHED_FEAT
  580. static int sched_feat_show(struct seq_file *m, void *v)
  581. {
  582. int i;
  583. for (i = 0; sched_feat_names[i]; i++) {
  584. if (!(sysctl_sched_features & (1UL << i)))
  585. seq_puts(m, "NO_");
  586. seq_printf(m, "%s ", sched_feat_names[i]);
  587. }
  588. seq_puts(m, "\n");
  589. return 0;
  590. }
  591. static ssize_t
  592. sched_feat_write(struct file *filp, const char __user *ubuf,
  593. size_t cnt, loff_t *ppos)
  594. {
  595. char buf[64];
  596. char *cmp;
  597. int neg = 0;
  598. int i;
  599. if (cnt > 63)
  600. cnt = 63;
  601. if (copy_from_user(&buf, ubuf, cnt))
  602. return -EFAULT;
  603. buf[cnt] = 0;
  604. cmp = strstrip(buf);
  605. if (strncmp(cmp, "NO_", 3) == 0) {
  606. neg = 1;
  607. cmp += 3;
  608. }
  609. for (i = 0; sched_feat_names[i]; i++) {
  610. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  611. if (neg)
  612. sysctl_sched_features &= ~(1UL << i);
  613. else
  614. sysctl_sched_features |= (1UL << i);
  615. break;
  616. }
  617. }
  618. if (!sched_feat_names[i])
  619. return -EINVAL;
  620. *ppos += cnt;
  621. return cnt;
  622. }
  623. static int sched_feat_open(struct inode *inode, struct file *filp)
  624. {
  625. return single_open(filp, sched_feat_show, NULL);
  626. }
  627. static const struct file_operations sched_feat_fops = {
  628. .open = sched_feat_open,
  629. .write = sched_feat_write,
  630. .read = seq_read,
  631. .llseek = seq_lseek,
  632. .release = single_release,
  633. };
  634. static __init int sched_init_debug(void)
  635. {
  636. debugfs_create_file("sched_features", 0644, NULL, NULL,
  637. &sched_feat_fops);
  638. return 0;
  639. }
  640. late_initcall(sched_init_debug);
  641. #endif
  642. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  643. /*
  644. * Number of tasks to iterate in a single balance run.
  645. * Limited because this is done with IRQs disabled.
  646. */
  647. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  648. /*
  649. * period over which we average the RT time consumption, measured
  650. * in ms.
  651. *
  652. * default: 1s
  653. */
  654. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  655. /*
  656. * period over which we measure -rt task cpu usage in us.
  657. * default: 1s
  658. */
  659. unsigned int sysctl_sched_rt_period = 1000000;
  660. static __read_mostly int scheduler_running;
  661. /*
  662. * part of the period that we allow rt tasks to run in us.
  663. * default: 0.95s
  664. */
  665. int sysctl_sched_rt_runtime = 950000;
  666. static inline u64 global_rt_period(void)
  667. {
  668. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  669. }
  670. static inline u64 global_rt_runtime(void)
  671. {
  672. if (sysctl_sched_rt_runtime < 0)
  673. return RUNTIME_INF;
  674. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  675. }
  676. #ifndef prepare_arch_switch
  677. # define prepare_arch_switch(next) do { } while (0)
  678. #endif
  679. #ifndef finish_arch_switch
  680. # define finish_arch_switch(prev) do { } while (0)
  681. #endif
  682. static inline int task_current(struct rq *rq, struct task_struct *p)
  683. {
  684. return rq->curr == p;
  685. }
  686. static inline int task_running(struct rq *rq, struct task_struct *p)
  687. {
  688. #ifdef CONFIG_SMP
  689. return p->on_cpu;
  690. #else
  691. return task_current(rq, p);
  692. #endif
  693. }
  694. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  695. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  696. {
  697. #ifdef CONFIG_SMP
  698. /*
  699. * We can optimise this out completely for !SMP, because the
  700. * SMP rebalancing from interrupt is the only thing that cares
  701. * here.
  702. */
  703. next->on_cpu = 1;
  704. #endif
  705. }
  706. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  707. {
  708. #ifdef CONFIG_SMP
  709. /*
  710. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  711. * We must ensure this doesn't happen until the switch is completely
  712. * finished.
  713. */
  714. smp_wmb();
  715. prev->on_cpu = 0;
  716. #endif
  717. #ifdef CONFIG_DEBUG_SPINLOCK
  718. /* this is a valid case when another task releases the spinlock */
  719. rq->lock.owner = current;
  720. #endif
  721. /*
  722. * If we are tracking spinlock dependencies then we have to
  723. * fix up the runqueue lock - which gets 'carried over' from
  724. * prev into current:
  725. */
  726. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  727. raw_spin_unlock_irq(&rq->lock);
  728. }
  729. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  730. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  731. {
  732. #ifdef CONFIG_SMP
  733. /*
  734. * We can optimise this out completely for !SMP, because the
  735. * SMP rebalancing from interrupt is the only thing that cares
  736. * here.
  737. */
  738. next->on_cpu = 1;
  739. #endif
  740. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  741. raw_spin_unlock_irq(&rq->lock);
  742. #else
  743. raw_spin_unlock(&rq->lock);
  744. #endif
  745. }
  746. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  751. * We must ensure this doesn't happen until the switch is completely
  752. * finished.
  753. */
  754. smp_wmb();
  755. prev->on_cpu = 0;
  756. #endif
  757. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  758. local_irq_enable();
  759. #endif
  760. }
  761. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  762. /*
  763. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  764. * against ttwu().
  765. */
  766. static inline int task_is_waking(struct task_struct *p)
  767. {
  768. return unlikely(p->state == TASK_WAKING);
  769. }
  770. /*
  771. * __task_rq_lock - lock the runqueue a given task resides on.
  772. * Must be called interrupts disabled.
  773. */
  774. static inline struct rq *__task_rq_lock(struct task_struct *p)
  775. __acquires(rq->lock)
  776. {
  777. struct rq *rq;
  778. for (;;) {
  779. rq = task_rq(p);
  780. raw_spin_lock(&rq->lock);
  781. if (likely(rq == task_rq(p)))
  782. return rq;
  783. raw_spin_unlock(&rq->lock);
  784. }
  785. }
  786. /*
  787. * task_rq_lock - lock the runqueue a given task resides on and disable
  788. * interrupts. Note the ordering: we can safely lookup the task_rq without
  789. * explicitly disabling preemption.
  790. */
  791. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  792. __acquires(rq->lock)
  793. {
  794. struct rq *rq;
  795. for (;;) {
  796. local_irq_save(*flags);
  797. rq = task_rq(p);
  798. raw_spin_lock(&rq->lock);
  799. if (likely(rq == task_rq(p)))
  800. return rq;
  801. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  802. }
  803. }
  804. static void __task_rq_unlock(struct rq *rq)
  805. __releases(rq->lock)
  806. {
  807. raw_spin_unlock(&rq->lock);
  808. }
  809. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  810. __releases(rq->lock)
  811. {
  812. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  813. }
  814. /*
  815. * this_rq_lock - lock this runqueue and disable interrupts.
  816. */
  817. static struct rq *this_rq_lock(void)
  818. __acquires(rq->lock)
  819. {
  820. struct rq *rq;
  821. local_irq_disable();
  822. rq = this_rq();
  823. raw_spin_lock(&rq->lock);
  824. return rq;
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. /*
  838. * Use hrtick when:
  839. * - enabled by features
  840. * - hrtimer is actually high res
  841. */
  842. static inline int hrtick_enabled(struct rq *rq)
  843. {
  844. if (!sched_feat(HRTICK))
  845. return 0;
  846. if (!cpu_active(cpu_of(rq)))
  847. return 0;
  848. return hrtimer_is_hres_active(&rq->hrtick_timer);
  849. }
  850. static void hrtick_clear(struct rq *rq)
  851. {
  852. if (hrtimer_active(&rq->hrtick_timer))
  853. hrtimer_cancel(&rq->hrtick_timer);
  854. }
  855. /*
  856. * High-resolution timer tick.
  857. * Runs from hardirq context with interrupts disabled.
  858. */
  859. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  860. {
  861. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  862. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  863. raw_spin_lock(&rq->lock);
  864. update_rq_clock(rq);
  865. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  866. raw_spin_unlock(&rq->lock);
  867. return HRTIMER_NORESTART;
  868. }
  869. #ifdef CONFIG_SMP
  870. /*
  871. * called from hardirq (IPI) context
  872. */
  873. static void __hrtick_start(void *arg)
  874. {
  875. struct rq *rq = arg;
  876. raw_spin_lock(&rq->lock);
  877. hrtimer_restart(&rq->hrtick_timer);
  878. rq->hrtick_csd_pending = 0;
  879. raw_spin_unlock(&rq->lock);
  880. }
  881. /*
  882. * Called to set the hrtick timer state.
  883. *
  884. * called with rq->lock held and irqs disabled
  885. */
  886. static void hrtick_start(struct rq *rq, u64 delay)
  887. {
  888. struct hrtimer *timer = &rq->hrtick_timer;
  889. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  890. hrtimer_set_expires(timer, time);
  891. if (rq == this_rq()) {
  892. hrtimer_restart(timer);
  893. } else if (!rq->hrtick_csd_pending) {
  894. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  895. rq->hrtick_csd_pending = 1;
  896. }
  897. }
  898. static int
  899. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  900. {
  901. int cpu = (int)(long)hcpu;
  902. switch (action) {
  903. case CPU_UP_CANCELED:
  904. case CPU_UP_CANCELED_FROZEN:
  905. case CPU_DOWN_PREPARE:
  906. case CPU_DOWN_PREPARE_FROZEN:
  907. case CPU_DEAD:
  908. case CPU_DEAD_FROZEN:
  909. hrtick_clear(cpu_rq(cpu));
  910. return NOTIFY_OK;
  911. }
  912. return NOTIFY_DONE;
  913. }
  914. static __init void init_hrtick(void)
  915. {
  916. hotcpu_notifier(hotplug_hrtick, 0);
  917. }
  918. #else
  919. /*
  920. * Called to set the hrtick timer state.
  921. *
  922. * called with rq->lock held and irqs disabled
  923. */
  924. static void hrtick_start(struct rq *rq, u64 delay)
  925. {
  926. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  927. HRTIMER_MODE_REL_PINNED, 0);
  928. }
  929. static inline void init_hrtick(void)
  930. {
  931. }
  932. #endif /* CONFIG_SMP */
  933. static void init_rq_hrtick(struct rq *rq)
  934. {
  935. #ifdef CONFIG_SMP
  936. rq->hrtick_csd_pending = 0;
  937. rq->hrtick_csd.flags = 0;
  938. rq->hrtick_csd.func = __hrtick_start;
  939. rq->hrtick_csd.info = rq;
  940. #endif
  941. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  942. rq->hrtick_timer.function = hrtick;
  943. }
  944. #else /* CONFIG_SCHED_HRTICK */
  945. static inline void hrtick_clear(struct rq *rq)
  946. {
  947. }
  948. static inline void init_rq_hrtick(struct rq *rq)
  949. {
  950. }
  951. static inline void init_hrtick(void)
  952. {
  953. }
  954. #endif /* CONFIG_SCHED_HRTICK */
  955. /*
  956. * resched_task - mark a task 'to be rescheduled now'.
  957. *
  958. * On UP this means the setting of the need_resched flag, on SMP it
  959. * might also involve a cross-CPU call to trigger the scheduler on
  960. * the target CPU.
  961. */
  962. #ifdef CONFIG_SMP
  963. #ifndef tsk_is_polling
  964. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  965. #endif
  966. static void resched_task(struct task_struct *p)
  967. {
  968. int cpu;
  969. assert_raw_spin_locked(&task_rq(p)->lock);
  970. if (test_tsk_need_resched(p))
  971. return;
  972. set_tsk_need_resched(p);
  973. cpu = task_cpu(p);
  974. if (cpu == smp_processor_id())
  975. return;
  976. /* NEED_RESCHED must be visible before we test polling */
  977. smp_mb();
  978. if (!tsk_is_polling(p))
  979. smp_send_reschedule(cpu);
  980. }
  981. static void resched_cpu(int cpu)
  982. {
  983. struct rq *rq = cpu_rq(cpu);
  984. unsigned long flags;
  985. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  986. return;
  987. resched_task(cpu_curr(cpu));
  988. raw_spin_unlock_irqrestore(&rq->lock, flags);
  989. }
  990. #ifdef CONFIG_NO_HZ
  991. /*
  992. * In the semi idle case, use the nearest busy cpu for migrating timers
  993. * from an idle cpu. This is good for power-savings.
  994. *
  995. * We don't do similar optimization for completely idle system, as
  996. * selecting an idle cpu will add more delays to the timers than intended
  997. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  998. */
  999. int get_nohz_timer_target(void)
  1000. {
  1001. int cpu = smp_processor_id();
  1002. int i;
  1003. struct sched_domain *sd;
  1004. for_each_domain(cpu, sd) {
  1005. for_each_cpu(i, sched_domain_span(sd))
  1006. if (!idle_cpu(i))
  1007. return i;
  1008. }
  1009. return cpu;
  1010. }
  1011. /*
  1012. * When add_timer_on() enqueues a timer into the timer wheel of an
  1013. * idle CPU then this timer might expire before the next timer event
  1014. * which is scheduled to wake up that CPU. In case of a completely
  1015. * idle system the next event might even be infinite time into the
  1016. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1017. * leaves the inner idle loop so the newly added timer is taken into
  1018. * account when the CPU goes back to idle and evaluates the timer
  1019. * wheel for the next timer event.
  1020. */
  1021. void wake_up_idle_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. if (cpu == smp_processor_id())
  1025. return;
  1026. /*
  1027. * This is safe, as this function is called with the timer
  1028. * wheel base lock of (cpu) held. When the CPU is on the way
  1029. * to idle and has not yet set rq->curr to idle then it will
  1030. * be serialized on the timer wheel base lock and take the new
  1031. * timer into account automatically.
  1032. */
  1033. if (rq->curr != rq->idle)
  1034. return;
  1035. /*
  1036. * We can set TIF_RESCHED on the idle task of the other CPU
  1037. * lockless. The worst case is that the other CPU runs the
  1038. * idle task through an additional NOOP schedule()
  1039. */
  1040. set_tsk_need_resched(rq->idle);
  1041. /* NEED_RESCHED must be visible before we test polling */
  1042. smp_mb();
  1043. if (!tsk_is_polling(rq->idle))
  1044. smp_send_reschedule(cpu);
  1045. }
  1046. #endif /* CONFIG_NO_HZ */
  1047. static u64 sched_avg_period(void)
  1048. {
  1049. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1050. }
  1051. static void sched_avg_update(struct rq *rq)
  1052. {
  1053. s64 period = sched_avg_period();
  1054. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1055. /*
  1056. * Inline assembly required to prevent the compiler
  1057. * optimising this loop into a divmod call.
  1058. * See __iter_div_u64_rem() for another example of this.
  1059. */
  1060. asm("" : "+rm" (rq->age_stamp));
  1061. rq->age_stamp += period;
  1062. rq->rt_avg /= 2;
  1063. }
  1064. }
  1065. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1066. {
  1067. rq->rt_avg += rt_delta;
  1068. sched_avg_update(rq);
  1069. }
  1070. #else /* !CONFIG_SMP */
  1071. static void resched_task(struct task_struct *p)
  1072. {
  1073. assert_raw_spin_locked(&task_rq(p)->lock);
  1074. set_tsk_need_resched(p);
  1075. }
  1076. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1077. {
  1078. }
  1079. static void sched_avg_update(struct rq *rq)
  1080. {
  1081. }
  1082. #endif /* CONFIG_SMP */
  1083. #if BITS_PER_LONG == 32
  1084. # define WMULT_CONST (~0UL)
  1085. #else
  1086. # define WMULT_CONST (1UL << 32)
  1087. #endif
  1088. #define WMULT_SHIFT 32
  1089. /*
  1090. * Shift right and round:
  1091. */
  1092. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1093. /*
  1094. * delta *= weight / lw
  1095. */
  1096. static unsigned long
  1097. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1098. struct load_weight *lw)
  1099. {
  1100. u64 tmp;
  1101. if (!lw->inv_weight) {
  1102. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1103. lw->inv_weight = 1;
  1104. else
  1105. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1106. / (lw->weight+1);
  1107. }
  1108. tmp = (u64)delta_exec * weight;
  1109. /*
  1110. * Check whether we'd overflow the 64-bit multiplication:
  1111. */
  1112. if (unlikely(tmp > WMULT_CONST))
  1113. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1114. WMULT_SHIFT/2);
  1115. else
  1116. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1117. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1118. }
  1119. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1120. {
  1121. lw->weight += inc;
  1122. lw->inv_weight = 0;
  1123. }
  1124. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1125. {
  1126. lw->weight -= dec;
  1127. lw->inv_weight = 0;
  1128. }
  1129. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1130. {
  1131. lw->weight = w;
  1132. lw->inv_weight = 0;
  1133. }
  1134. /*
  1135. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1136. * of tasks with abnormal "nice" values across CPUs the contribution that
  1137. * each task makes to its run queue's load is weighted according to its
  1138. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1139. * scaled version of the new time slice allocation that they receive on time
  1140. * slice expiry etc.
  1141. */
  1142. #define WEIGHT_IDLEPRIO 3
  1143. #define WMULT_IDLEPRIO 1431655765
  1144. /*
  1145. * Nice levels are multiplicative, with a gentle 10% change for every
  1146. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1147. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1148. * that remained on nice 0.
  1149. *
  1150. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1151. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1152. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1153. * If a task goes up by ~10% and another task goes down by ~10% then
  1154. * the relative distance between them is ~25%.)
  1155. */
  1156. static const int prio_to_weight[40] = {
  1157. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1158. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1159. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1160. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1161. /* 0 */ 1024, 820, 655, 526, 423,
  1162. /* 5 */ 335, 272, 215, 172, 137,
  1163. /* 10 */ 110, 87, 70, 56, 45,
  1164. /* 15 */ 36, 29, 23, 18, 15,
  1165. };
  1166. /*
  1167. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1168. *
  1169. * In cases where the weight does not change often, we can use the
  1170. * precalculated inverse to speed up arithmetics by turning divisions
  1171. * into multiplications:
  1172. */
  1173. static const u32 prio_to_wmult[40] = {
  1174. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1175. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1176. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1177. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1178. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1179. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1180. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1181. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1182. };
  1183. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1184. enum cpuacct_stat_index {
  1185. CPUACCT_STAT_USER, /* ... user mode */
  1186. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1187. CPUACCT_STAT_NSTATS,
  1188. };
  1189. #ifdef CONFIG_CGROUP_CPUACCT
  1190. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1191. static void cpuacct_update_stats(struct task_struct *tsk,
  1192. enum cpuacct_stat_index idx, cputime_t val);
  1193. #else
  1194. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1195. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1196. enum cpuacct_stat_index idx, cputime_t val) {}
  1197. #endif
  1198. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1199. {
  1200. update_load_add(&rq->load, load);
  1201. }
  1202. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_sub(&rq->load, load);
  1205. }
  1206. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1207. typedef int (*tg_visitor)(struct task_group *, void *);
  1208. /*
  1209. * Iterate the full tree, calling @down when first entering a node and @up when
  1210. * leaving it for the final time.
  1211. */
  1212. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1213. {
  1214. struct task_group *parent, *child;
  1215. int ret;
  1216. rcu_read_lock();
  1217. parent = &root_task_group;
  1218. down:
  1219. ret = (*down)(parent, data);
  1220. if (ret)
  1221. goto out_unlock;
  1222. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1223. parent = child;
  1224. goto down;
  1225. up:
  1226. continue;
  1227. }
  1228. ret = (*up)(parent, data);
  1229. if (ret)
  1230. goto out_unlock;
  1231. child = parent;
  1232. parent = parent->parent;
  1233. if (parent)
  1234. goto up;
  1235. out_unlock:
  1236. rcu_read_unlock();
  1237. return ret;
  1238. }
  1239. static int tg_nop(struct task_group *tg, void *data)
  1240. {
  1241. return 0;
  1242. }
  1243. #endif
  1244. #ifdef CONFIG_SMP
  1245. /* Used instead of source_load when we know the type == 0 */
  1246. static unsigned long weighted_cpuload(const int cpu)
  1247. {
  1248. return cpu_rq(cpu)->load.weight;
  1249. }
  1250. /*
  1251. * Return a low guess at the load of a migration-source cpu weighted
  1252. * according to the scheduling class and "nice" value.
  1253. *
  1254. * We want to under-estimate the load of migration sources, to
  1255. * balance conservatively.
  1256. */
  1257. static unsigned long source_load(int cpu, int type)
  1258. {
  1259. struct rq *rq = cpu_rq(cpu);
  1260. unsigned long total = weighted_cpuload(cpu);
  1261. if (type == 0 || !sched_feat(LB_BIAS))
  1262. return total;
  1263. return min(rq->cpu_load[type-1], total);
  1264. }
  1265. /*
  1266. * Return a high guess at the load of a migration-target cpu weighted
  1267. * according to the scheduling class and "nice" value.
  1268. */
  1269. static unsigned long target_load(int cpu, int type)
  1270. {
  1271. struct rq *rq = cpu_rq(cpu);
  1272. unsigned long total = weighted_cpuload(cpu);
  1273. if (type == 0 || !sched_feat(LB_BIAS))
  1274. return total;
  1275. return max(rq->cpu_load[type-1], total);
  1276. }
  1277. static unsigned long power_of(int cpu)
  1278. {
  1279. return cpu_rq(cpu)->cpu_power;
  1280. }
  1281. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1282. static unsigned long cpu_avg_load_per_task(int cpu)
  1283. {
  1284. struct rq *rq = cpu_rq(cpu);
  1285. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1286. if (nr_running)
  1287. rq->avg_load_per_task = rq->load.weight / nr_running;
  1288. else
  1289. rq->avg_load_per_task = 0;
  1290. return rq->avg_load_per_task;
  1291. }
  1292. #ifdef CONFIG_FAIR_GROUP_SCHED
  1293. /*
  1294. * Compute the cpu's hierarchical load factor for each task group.
  1295. * This needs to be done in a top-down fashion because the load of a child
  1296. * group is a fraction of its parents load.
  1297. */
  1298. static int tg_load_down(struct task_group *tg, void *data)
  1299. {
  1300. unsigned long load;
  1301. long cpu = (long)data;
  1302. if (!tg->parent) {
  1303. load = cpu_rq(cpu)->load.weight;
  1304. } else {
  1305. load = tg->parent->cfs_rq[cpu]->h_load;
  1306. load *= tg->se[cpu]->load.weight;
  1307. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1308. }
  1309. tg->cfs_rq[cpu]->h_load = load;
  1310. return 0;
  1311. }
  1312. static void update_h_load(long cpu)
  1313. {
  1314. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1315. }
  1316. #endif
  1317. #ifdef CONFIG_PREEMPT
  1318. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1319. /*
  1320. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1321. * way at the expense of forcing extra atomic operations in all
  1322. * invocations. This assures that the double_lock is acquired using the
  1323. * same underlying policy as the spinlock_t on this architecture, which
  1324. * reduces latency compared to the unfair variant below. However, it
  1325. * also adds more overhead and therefore may reduce throughput.
  1326. */
  1327. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1328. __releases(this_rq->lock)
  1329. __acquires(busiest->lock)
  1330. __acquires(this_rq->lock)
  1331. {
  1332. raw_spin_unlock(&this_rq->lock);
  1333. double_rq_lock(this_rq, busiest);
  1334. return 1;
  1335. }
  1336. #else
  1337. /*
  1338. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1339. * latency by eliminating extra atomic operations when the locks are
  1340. * already in proper order on entry. This favors lower cpu-ids and will
  1341. * grant the double lock to lower cpus over higher ids under contention,
  1342. * regardless of entry order into the function.
  1343. */
  1344. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1345. __releases(this_rq->lock)
  1346. __acquires(busiest->lock)
  1347. __acquires(this_rq->lock)
  1348. {
  1349. int ret = 0;
  1350. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1351. if (busiest < this_rq) {
  1352. raw_spin_unlock(&this_rq->lock);
  1353. raw_spin_lock(&busiest->lock);
  1354. raw_spin_lock_nested(&this_rq->lock,
  1355. SINGLE_DEPTH_NESTING);
  1356. ret = 1;
  1357. } else
  1358. raw_spin_lock_nested(&busiest->lock,
  1359. SINGLE_DEPTH_NESTING);
  1360. }
  1361. return ret;
  1362. }
  1363. #endif /* CONFIG_PREEMPT */
  1364. /*
  1365. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1366. */
  1367. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1368. {
  1369. if (unlikely(!irqs_disabled())) {
  1370. /* printk() doesn't work good under rq->lock */
  1371. raw_spin_unlock(&this_rq->lock);
  1372. BUG_ON(1);
  1373. }
  1374. return _double_lock_balance(this_rq, busiest);
  1375. }
  1376. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1377. __releases(busiest->lock)
  1378. {
  1379. raw_spin_unlock(&busiest->lock);
  1380. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1381. }
  1382. /*
  1383. * double_rq_lock - safely lock two runqueues
  1384. *
  1385. * Note this does not disable interrupts like task_rq_lock,
  1386. * you need to do so manually before calling.
  1387. */
  1388. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1389. __acquires(rq1->lock)
  1390. __acquires(rq2->lock)
  1391. {
  1392. BUG_ON(!irqs_disabled());
  1393. if (rq1 == rq2) {
  1394. raw_spin_lock(&rq1->lock);
  1395. __acquire(rq2->lock); /* Fake it out ;) */
  1396. } else {
  1397. if (rq1 < rq2) {
  1398. raw_spin_lock(&rq1->lock);
  1399. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1400. } else {
  1401. raw_spin_lock(&rq2->lock);
  1402. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1403. }
  1404. }
  1405. }
  1406. /*
  1407. * double_rq_unlock - safely unlock two runqueues
  1408. *
  1409. * Note this does not restore interrupts like task_rq_unlock,
  1410. * you need to do so manually after calling.
  1411. */
  1412. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1413. __releases(rq1->lock)
  1414. __releases(rq2->lock)
  1415. {
  1416. raw_spin_unlock(&rq1->lock);
  1417. if (rq1 != rq2)
  1418. raw_spin_unlock(&rq2->lock);
  1419. else
  1420. __release(rq2->lock);
  1421. }
  1422. #else /* CONFIG_SMP */
  1423. /*
  1424. * double_rq_lock - safely lock two runqueues
  1425. *
  1426. * Note this does not disable interrupts like task_rq_lock,
  1427. * you need to do so manually before calling.
  1428. */
  1429. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1430. __acquires(rq1->lock)
  1431. __acquires(rq2->lock)
  1432. {
  1433. BUG_ON(!irqs_disabled());
  1434. BUG_ON(rq1 != rq2);
  1435. raw_spin_lock(&rq1->lock);
  1436. __acquire(rq2->lock); /* Fake it out ;) */
  1437. }
  1438. /*
  1439. * double_rq_unlock - safely unlock two runqueues
  1440. *
  1441. * Note this does not restore interrupts like task_rq_unlock,
  1442. * you need to do so manually after calling.
  1443. */
  1444. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1445. __releases(rq1->lock)
  1446. __releases(rq2->lock)
  1447. {
  1448. BUG_ON(rq1 != rq2);
  1449. raw_spin_unlock(&rq1->lock);
  1450. __release(rq2->lock);
  1451. }
  1452. #endif
  1453. static void calc_load_account_idle(struct rq *this_rq);
  1454. static void update_sysctl(void);
  1455. static int get_update_sysctl_factor(void);
  1456. static void update_cpu_load(struct rq *this_rq);
  1457. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1458. {
  1459. set_task_rq(p, cpu);
  1460. #ifdef CONFIG_SMP
  1461. /*
  1462. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1463. * successfuly executed on another CPU. We must ensure that updates of
  1464. * per-task data have been completed by this moment.
  1465. */
  1466. smp_wmb();
  1467. task_thread_info(p)->cpu = cpu;
  1468. #endif
  1469. }
  1470. static const struct sched_class rt_sched_class;
  1471. #define sched_class_highest (&stop_sched_class)
  1472. #define for_each_class(class) \
  1473. for (class = sched_class_highest; class; class = class->next)
  1474. #include "sched_stats.h"
  1475. static void inc_nr_running(struct rq *rq)
  1476. {
  1477. rq->nr_running++;
  1478. }
  1479. static void dec_nr_running(struct rq *rq)
  1480. {
  1481. rq->nr_running--;
  1482. }
  1483. static void set_load_weight(struct task_struct *p)
  1484. {
  1485. /*
  1486. * SCHED_IDLE tasks get minimal weight:
  1487. */
  1488. if (p->policy == SCHED_IDLE) {
  1489. p->se.load.weight = WEIGHT_IDLEPRIO;
  1490. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1491. return;
  1492. }
  1493. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1494. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1495. }
  1496. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1497. {
  1498. update_rq_clock(rq);
  1499. sched_info_queued(p);
  1500. p->sched_class->enqueue_task(rq, p, flags);
  1501. p->se.on_rq = 1;
  1502. }
  1503. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1504. {
  1505. update_rq_clock(rq);
  1506. sched_info_dequeued(p);
  1507. p->sched_class->dequeue_task(rq, p, flags);
  1508. p->se.on_rq = 0;
  1509. }
  1510. /*
  1511. * activate_task - move a task to the runqueue.
  1512. */
  1513. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1514. {
  1515. if (task_contributes_to_load(p))
  1516. rq->nr_uninterruptible--;
  1517. enqueue_task(rq, p, flags);
  1518. inc_nr_running(rq);
  1519. }
  1520. /*
  1521. * deactivate_task - remove a task from the runqueue.
  1522. */
  1523. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1524. {
  1525. if (task_contributes_to_load(p))
  1526. rq->nr_uninterruptible++;
  1527. dequeue_task(rq, p, flags);
  1528. dec_nr_running(rq);
  1529. }
  1530. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1531. /*
  1532. * There are no locks covering percpu hardirq/softirq time.
  1533. * They are only modified in account_system_vtime, on corresponding CPU
  1534. * with interrupts disabled. So, writes are safe.
  1535. * They are read and saved off onto struct rq in update_rq_clock().
  1536. * This may result in other CPU reading this CPU's irq time and can
  1537. * race with irq/account_system_vtime on this CPU. We would either get old
  1538. * or new value with a side effect of accounting a slice of irq time to wrong
  1539. * task when irq is in progress while we read rq->clock. That is a worthy
  1540. * compromise in place of having locks on each irq in account_system_time.
  1541. */
  1542. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1543. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1544. static DEFINE_PER_CPU(u64, irq_start_time);
  1545. static int sched_clock_irqtime;
  1546. void enable_sched_clock_irqtime(void)
  1547. {
  1548. sched_clock_irqtime = 1;
  1549. }
  1550. void disable_sched_clock_irqtime(void)
  1551. {
  1552. sched_clock_irqtime = 0;
  1553. }
  1554. #ifndef CONFIG_64BIT
  1555. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1556. static inline void irq_time_write_begin(void)
  1557. {
  1558. __this_cpu_inc(irq_time_seq.sequence);
  1559. smp_wmb();
  1560. }
  1561. static inline void irq_time_write_end(void)
  1562. {
  1563. smp_wmb();
  1564. __this_cpu_inc(irq_time_seq.sequence);
  1565. }
  1566. static inline u64 irq_time_read(int cpu)
  1567. {
  1568. u64 irq_time;
  1569. unsigned seq;
  1570. do {
  1571. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1572. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1573. per_cpu(cpu_hardirq_time, cpu);
  1574. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1575. return irq_time;
  1576. }
  1577. #else /* CONFIG_64BIT */
  1578. static inline void irq_time_write_begin(void)
  1579. {
  1580. }
  1581. static inline void irq_time_write_end(void)
  1582. {
  1583. }
  1584. static inline u64 irq_time_read(int cpu)
  1585. {
  1586. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1587. }
  1588. #endif /* CONFIG_64BIT */
  1589. /*
  1590. * Called before incrementing preempt_count on {soft,}irq_enter
  1591. * and before decrementing preempt_count on {soft,}irq_exit.
  1592. */
  1593. void account_system_vtime(struct task_struct *curr)
  1594. {
  1595. unsigned long flags;
  1596. s64 delta;
  1597. int cpu;
  1598. if (!sched_clock_irqtime)
  1599. return;
  1600. local_irq_save(flags);
  1601. cpu = smp_processor_id();
  1602. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1603. __this_cpu_add(irq_start_time, delta);
  1604. irq_time_write_begin();
  1605. /*
  1606. * We do not account for softirq time from ksoftirqd here.
  1607. * We want to continue accounting softirq time to ksoftirqd thread
  1608. * in that case, so as not to confuse scheduler with a special task
  1609. * that do not consume any time, but still wants to run.
  1610. */
  1611. if (hardirq_count())
  1612. __this_cpu_add(cpu_hardirq_time, delta);
  1613. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1614. __this_cpu_add(cpu_softirq_time, delta);
  1615. irq_time_write_end();
  1616. local_irq_restore(flags);
  1617. }
  1618. EXPORT_SYMBOL_GPL(account_system_vtime);
  1619. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1620. {
  1621. s64 irq_delta;
  1622. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1623. /*
  1624. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1625. * this case when a previous update_rq_clock() happened inside a
  1626. * {soft,}irq region.
  1627. *
  1628. * When this happens, we stop ->clock_task and only update the
  1629. * prev_irq_time stamp to account for the part that fit, so that a next
  1630. * update will consume the rest. This ensures ->clock_task is
  1631. * monotonic.
  1632. *
  1633. * It does however cause some slight miss-attribution of {soft,}irq
  1634. * time, a more accurate solution would be to update the irq_time using
  1635. * the current rq->clock timestamp, except that would require using
  1636. * atomic ops.
  1637. */
  1638. if (irq_delta > delta)
  1639. irq_delta = delta;
  1640. rq->prev_irq_time += irq_delta;
  1641. delta -= irq_delta;
  1642. rq->clock_task += delta;
  1643. if (irq_delta && sched_feat(NONIRQ_POWER))
  1644. sched_rt_avg_update(rq, irq_delta);
  1645. }
  1646. static int irqtime_account_hi_update(void)
  1647. {
  1648. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1649. unsigned long flags;
  1650. u64 latest_ns;
  1651. int ret = 0;
  1652. local_irq_save(flags);
  1653. latest_ns = this_cpu_read(cpu_hardirq_time);
  1654. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1655. ret = 1;
  1656. local_irq_restore(flags);
  1657. return ret;
  1658. }
  1659. static int irqtime_account_si_update(void)
  1660. {
  1661. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1662. unsigned long flags;
  1663. u64 latest_ns;
  1664. int ret = 0;
  1665. local_irq_save(flags);
  1666. latest_ns = this_cpu_read(cpu_softirq_time);
  1667. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1668. ret = 1;
  1669. local_irq_restore(flags);
  1670. return ret;
  1671. }
  1672. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1673. #define sched_clock_irqtime (0)
  1674. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1675. {
  1676. rq->clock_task += delta;
  1677. }
  1678. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1679. #include "sched_idletask.c"
  1680. #include "sched_fair.c"
  1681. #include "sched_rt.c"
  1682. #include "sched_autogroup.c"
  1683. #include "sched_stoptask.c"
  1684. #ifdef CONFIG_SCHED_DEBUG
  1685. # include "sched_debug.c"
  1686. #endif
  1687. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1688. {
  1689. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1690. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1691. if (stop) {
  1692. /*
  1693. * Make it appear like a SCHED_FIFO task, its something
  1694. * userspace knows about and won't get confused about.
  1695. *
  1696. * Also, it will make PI more or less work without too
  1697. * much confusion -- but then, stop work should not
  1698. * rely on PI working anyway.
  1699. */
  1700. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1701. stop->sched_class = &stop_sched_class;
  1702. }
  1703. cpu_rq(cpu)->stop = stop;
  1704. if (old_stop) {
  1705. /*
  1706. * Reset it back to a normal scheduling class so that
  1707. * it can die in pieces.
  1708. */
  1709. old_stop->sched_class = &rt_sched_class;
  1710. }
  1711. }
  1712. /*
  1713. * __normal_prio - return the priority that is based on the static prio
  1714. */
  1715. static inline int __normal_prio(struct task_struct *p)
  1716. {
  1717. return p->static_prio;
  1718. }
  1719. /*
  1720. * Calculate the expected normal priority: i.e. priority
  1721. * without taking RT-inheritance into account. Might be
  1722. * boosted by interactivity modifiers. Changes upon fork,
  1723. * setprio syscalls, and whenever the interactivity
  1724. * estimator recalculates.
  1725. */
  1726. static inline int normal_prio(struct task_struct *p)
  1727. {
  1728. int prio;
  1729. if (task_has_rt_policy(p))
  1730. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1731. else
  1732. prio = __normal_prio(p);
  1733. return prio;
  1734. }
  1735. /*
  1736. * Calculate the current priority, i.e. the priority
  1737. * taken into account by the scheduler. This value might
  1738. * be boosted by RT tasks, or might be boosted by
  1739. * interactivity modifiers. Will be RT if the task got
  1740. * RT-boosted. If not then it returns p->normal_prio.
  1741. */
  1742. static int effective_prio(struct task_struct *p)
  1743. {
  1744. p->normal_prio = normal_prio(p);
  1745. /*
  1746. * If we are RT tasks or we were boosted to RT priority,
  1747. * keep the priority unchanged. Otherwise, update priority
  1748. * to the normal priority:
  1749. */
  1750. if (!rt_prio(p->prio))
  1751. return p->normal_prio;
  1752. return p->prio;
  1753. }
  1754. /**
  1755. * task_curr - is this task currently executing on a CPU?
  1756. * @p: the task in question.
  1757. */
  1758. inline int task_curr(const struct task_struct *p)
  1759. {
  1760. return cpu_curr(task_cpu(p)) == p;
  1761. }
  1762. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1763. const struct sched_class *prev_class,
  1764. int oldprio)
  1765. {
  1766. if (prev_class != p->sched_class) {
  1767. if (prev_class->switched_from)
  1768. prev_class->switched_from(rq, p);
  1769. p->sched_class->switched_to(rq, p);
  1770. } else if (oldprio != p->prio)
  1771. p->sched_class->prio_changed(rq, p, oldprio);
  1772. }
  1773. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1774. {
  1775. const struct sched_class *class;
  1776. if (p->sched_class == rq->curr->sched_class) {
  1777. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1778. } else {
  1779. for_each_class(class) {
  1780. if (class == rq->curr->sched_class)
  1781. break;
  1782. if (class == p->sched_class) {
  1783. resched_task(rq->curr);
  1784. break;
  1785. }
  1786. }
  1787. }
  1788. /*
  1789. * A queue event has occurred, and we're going to schedule. In
  1790. * this case, we can save a useless back to back clock update.
  1791. */
  1792. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1793. rq->skip_clock_update = 1;
  1794. }
  1795. #ifdef CONFIG_SMP
  1796. /*
  1797. * Is this task likely cache-hot:
  1798. */
  1799. static int
  1800. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1801. {
  1802. s64 delta;
  1803. if (p->sched_class != &fair_sched_class)
  1804. return 0;
  1805. if (unlikely(p->policy == SCHED_IDLE))
  1806. return 0;
  1807. /*
  1808. * Buddy candidates are cache hot:
  1809. */
  1810. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1811. (&p->se == cfs_rq_of(&p->se)->next ||
  1812. &p->se == cfs_rq_of(&p->se)->last))
  1813. return 1;
  1814. if (sysctl_sched_migration_cost == -1)
  1815. return 1;
  1816. if (sysctl_sched_migration_cost == 0)
  1817. return 0;
  1818. delta = now - p->se.exec_start;
  1819. return delta < (s64)sysctl_sched_migration_cost;
  1820. }
  1821. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1822. {
  1823. #ifdef CONFIG_SCHED_DEBUG
  1824. /*
  1825. * We should never call set_task_cpu() on a blocked task,
  1826. * ttwu() will sort out the placement.
  1827. */
  1828. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1829. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1830. #endif
  1831. trace_sched_migrate_task(p, new_cpu);
  1832. if (task_cpu(p) != new_cpu) {
  1833. p->se.nr_migrations++;
  1834. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1835. }
  1836. __set_task_cpu(p, new_cpu);
  1837. }
  1838. struct migration_arg {
  1839. struct task_struct *task;
  1840. int dest_cpu;
  1841. };
  1842. static int migration_cpu_stop(void *data);
  1843. /*
  1844. * The task's runqueue lock must be held.
  1845. * Returns true if you have to wait for migration thread.
  1846. */
  1847. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1848. {
  1849. /*
  1850. * If the task is not on a runqueue (and not running), then
  1851. * the next wake-up will properly place the task.
  1852. */
  1853. return p->se.on_rq || task_running(rq, p);
  1854. }
  1855. /*
  1856. * wait_task_inactive - wait for a thread to unschedule.
  1857. *
  1858. * If @match_state is nonzero, it's the @p->state value just checked and
  1859. * not expected to change. If it changes, i.e. @p might have woken up,
  1860. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1861. * we return a positive number (its total switch count). If a second call
  1862. * a short while later returns the same number, the caller can be sure that
  1863. * @p has remained unscheduled the whole time.
  1864. *
  1865. * The caller must ensure that the task *will* unschedule sometime soon,
  1866. * else this function might spin for a *long* time. This function can't
  1867. * be called with interrupts off, or it may introduce deadlock with
  1868. * smp_call_function() if an IPI is sent by the same process we are
  1869. * waiting to become inactive.
  1870. */
  1871. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1872. {
  1873. unsigned long flags;
  1874. int running, on_rq;
  1875. unsigned long ncsw;
  1876. struct rq *rq;
  1877. for (;;) {
  1878. /*
  1879. * We do the initial early heuristics without holding
  1880. * any task-queue locks at all. We'll only try to get
  1881. * the runqueue lock when things look like they will
  1882. * work out!
  1883. */
  1884. rq = task_rq(p);
  1885. /*
  1886. * If the task is actively running on another CPU
  1887. * still, just relax and busy-wait without holding
  1888. * any locks.
  1889. *
  1890. * NOTE! Since we don't hold any locks, it's not
  1891. * even sure that "rq" stays as the right runqueue!
  1892. * But we don't care, since "task_running()" will
  1893. * return false if the runqueue has changed and p
  1894. * is actually now running somewhere else!
  1895. */
  1896. while (task_running(rq, p)) {
  1897. if (match_state && unlikely(p->state != match_state))
  1898. return 0;
  1899. cpu_relax();
  1900. }
  1901. /*
  1902. * Ok, time to look more closely! We need the rq
  1903. * lock now, to be *sure*. If we're wrong, we'll
  1904. * just go back and repeat.
  1905. */
  1906. rq = task_rq_lock(p, &flags);
  1907. trace_sched_wait_task(p);
  1908. running = task_running(rq, p);
  1909. on_rq = p->se.on_rq;
  1910. ncsw = 0;
  1911. if (!match_state || p->state == match_state)
  1912. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1913. task_rq_unlock(rq, &flags);
  1914. /*
  1915. * If it changed from the expected state, bail out now.
  1916. */
  1917. if (unlikely(!ncsw))
  1918. break;
  1919. /*
  1920. * Was it really running after all now that we
  1921. * checked with the proper locks actually held?
  1922. *
  1923. * Oops. Go back and try again..
  1924. */
  1925. if (unlikely(running)) {
  1926. cpu_relax();
  1927. continue;
  1928. }
  1929. /*
  1930. * It's not enough that it's not actively running,
  1931. * it must be off the runqueue _entirely_, and not
  1932. * preempted!
  1933. *
  1934. * So if it was still runnable (but just not actively
  1935. * running right now), it's preempted, and we should
  1936. * yield - it could be a while.
  1937. */
  1938. if (unlikely(on_rq)) {
  1939. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1940. set_current_state(TASK_UNINTERRUPTIBLE);
  1941. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1942. continue;
  1943. }
  1944. /*
  1945. * Ahh, all good. It wasn't running, and it wasn't
  1946. * runnable, which means that it will never become
  1947. * running in the future either. We're all done!
  1948. */
  1949. break;
  1950. }
  1951. return ncsw;
  1952. }
  1953. /***
  1954. * kick_process - kick a running thread to enter/exit the kernel
  1955. * @p: the to-be-kicked thread
  1956. *
  1957. * Cause a process which is running on another CPU to enter
  1958. * kernel-mode, without any delay. (to get signals handled.)
  1959. *
  1960. * NOTE: this function doesn't have to take the runqueue lock,
  1961. * because all it wants to ensure is that the remote task enters
  1962. * the kernel. If the IPI races and the task has been migrated
  1963. * to another CPU then no harm is done and the purpose has been
  1964. * achieved as well.
  1965. */
  1966. void kick_process(struct task_struct *p)
  1967. {
  1968. int cpu;
  1969. preempt_disable();
  1970. cpu = task_cpu(p);
  1971. if ((cpu != smp_processor_id()) && task_curr(p))
  1972. smp_send_reschedule(cpu);
  1973. preempt_enable();
  1974. }
  1975. EXPORT_SYMBOL_GPL(kick_process);
  1976. #endif /* CONFIG_SMP */
  1977. #ifdef CONFIG_SMP
  1978. /*
  1979. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1980. */
  1981. static int select_fallback_rq(int cpu, struct task_struct *p)
  1982. {
  1983. int dest_cpu;
  1984. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1985. /* Look for allowed, online CPU in same node. */
  1986. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1987. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1988. return dest_cpu;
  1989. /* Any allowed, online CPU? */
  1990. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1991. if (dest_cpu < nr_cpu_ids)
  1992. return dest_cpu;
  1993. /* No more Mr. Nice Guy. */
  1994. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1995. /*
  1996. * Don't tell them about moving exiting tasks or
  1997. * kernel threads (both mm NULL), since they never
  1998. * leave kernel.
  1999. */
  2000. if (p->mm && printk_ratelimit()) {
  2001. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2002. task_pid_nr(p), p->comm, cpu);
  2003. }
  2004. return dest_cpu;
  2005. }
  2006. /*
  2007. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  2008. */
  2009. static inline
  2010. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  2011. {
  2012. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2013. /*
  2014. * In order not to call set_task_cpu() on a blocking task we need
  2015. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2016. * cpu.
  2017. *
  2018. * Since this is common to all placement strategies, this lives here.
  2019. *
  2020. * [ this allows ->select_task() to simply return task_cpu(p) and
  2021. * not worry about this generic constraint ]
  2022. */
  2023. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2024. !cpu_online(cpu)))
  2025. cpu = select_fallback_rq(task_cpu(p), p);
  2026. return cpu;
  2027. }
  2028. static void update_avg(u64 *avg, u64 sample)
  2029. {
  2030. s64 diff = sample - *avg;
  2031. *avg += diff >> 3;
  2032. }
  2033. #endif
  2034. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2035. bool is_sync, bool is_migrate, bool is_local,
  2036. unsigned long en_flags)
  2037. {
  2038. schedstat_inc(p, se.statistics.nr_wakeups);
  2039. if (is_sync)
  2040. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2041. if (is_migrate)
  2042. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2043. if (is_local)
  2044. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2045. else
  2046. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2047. activate_task(rq, p, en_flags);
  2048. }
  2049. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2050. int wake_flags, bool success)
  2051. {
  2052. trace_sched_wakeup(p, success);
  2053. check_preempt_curr(rq, p, wake_flags);
  2054. p->state = TASK_RUNNING;
  2055. #ifdef CONFIG_SMP
  2056. if (p->sched_class->task_woken)
  2057. p->sched_class->task_woken(rq, p);
  2058. if (unlikely(rq->idle_stamp)) {
  2059. u64 delta = rq->clock - rq->idle_stamp;
  2060. u64 max = 2*sysctl_sched_migration_cost;
  2061. if (delta > max)
  2062. rq->avg_idle = max;
  2063. else
  2064. update_avg(&rq->avg_idle, delta);
  2065. rq->idle_stamp = 0;
  2066. }
  2067. #endif
  2068. /* if a worker is waking up, notify workqueue */
  2069. if ((p->flags & PF_WQ_WORKER) && success)
  2070. wq_worker_waking_up(p, cpu_of(rq));
  2071. }
  2072. /**
  2073. * try_to_wake_up - wake up a thread
  2074. * @p: the thread to be awakened
  2075. * @state: the mask of task states that can be woken
  2076. * @wake_flags: wake modifier flags (WF_*)
  2077. *
  2078. * Put it on the run-queue if it's not already there. The "current"
  2079. * thread is always on the run-queue (except when the actual
  2080. * re-schedule is in progress), and as such you're allowed to do
  2081. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2082. * runnable without the overhead of this.
  2083. *
  2084. * Returns %true if @p was woken up, %false if it was already running
  2085. * or @state didn't match @p's state.
  2086. */
  2087. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2088. int wake_flags)
  2089. {
  2090. int cpu, orig_cpu, this_cpu, success = 0;
  2091. unsigned long flags;
  2092. unsigned long en_flags = ENQUEUE_WAKEUP;
  2093. struct rq *rq;
  2094. this_cpu = get_cpu();
  2095. smp_wmb();
  2096. rq = task_rq_lock(p, &flags);
  2097. if (!(p->state & state))
  2098. goto out;
  2099. if (p->se.on_rq)
  2100. goto out_running;
  2101. cpu = task_cpu(p);
  2102. orig_cpu = cpu;
  2103. #ifdef CONFIG_SMP
  2104. if (unlikely(task_running(rq, p)))
  2105. goto out_activate;
  2106. /*
  2107. * In order to handle concurrent wakeups and release the rq->lock
  2108. * we put the task in TASK_WAKING state.
  2109. *
  2110. * First fix up the nr_uninterruptible count:
  2111. */
  2112. if (task_contributes_to_load(p)) {
  2113. if (likely(cpu_online(orig_cpu)))
  2114. rq->nr_uninterruptible--;
  2115. else
  2116. this_rq()->nr_uninterruptible--;
  2117. }
  2118. p->state = TASK_WAKING;
  2119. if (p->sched_class->task_waking) {
  2120. p->sched_class->task_waking(rq, p);
  2121. en_flags |= ENQUEUE_WAKING;
  2122. }
  2123. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2124. if (cpu != orig_cpu)
  2125. set_task_cpu(p, cpu);
  2126. __task_rq_unlock(rq);
  2127. rq = cpu_rq(cpu);
  2128. raw_spin_lock(&rq->lock);
  2129. /*
  2130. * We migrated the task without holding either rq->lock, however
  2131. * since the task is not on the task list itself, nobody else
  2132. * will try and migrate the task, hence the rq should match the
  2133. * cpu we just moved it to.
  2134. */
  2135. WARN_ON(task_cpu(p) != cpu);
  2136. WARN_ON(p->state != TASK_WAKING);
  2137. #ifdef CONFIG_SCHEDSTATS
  2138. schedstat_inc(rq, ttwu_count);
  2139. if (cpu == this_cpu)
  2140. schedstat_inc(rq, ttwu_local);
  2141. else {
  2142. struct sched_domain *sd;
  2143. for_each_domain(this_cpu, sd) {
  2144. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2145. schedstat_inc(sd, ttwu_wake_remote);
  2146. break;
  2147. }
  2148. }
  2149. }
  2150. #endif /* CONFIG_SCHEDSTATS */
  2151. out_activate:
  2152. #endif /* CONFIG_SMP */
  2153. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2154. cpu == this_cpu, en_flags);
  2155. success = 1;
  2156. out_running:
  2157. ttwu_post_activation(p, rq, wake_flags, success);
  2158. out:
  2159. task_rq_unlock(rq, &flags);
  2160. put_cpu();
  2161. return success;
  2162. }
  2163. /**
  2164. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2165. * @p: the thread to be awakened
  2166. *
  2167. * Put @p on the run-queue if it's not already there. The caller must
  2168. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2169. * the current task. this_rq() stays locked over invocation.
  2170. */
  2171. static void try_to_wake_up_local(struct task_struct *p)
  2172. {
  2173. struct rq *rq = task_rq(p);
  2174. bool success = false;
  2175. BUG_ON(rq != this_rq());
  2176. BUG_ON(p == current);
  2177. lockdep_assert_held(&rq->lock);
  2178. if (!(p->state & TASK_NORMAL))
  2179. return;
  2180. if (!p->se.on_rq) {
  2181. if (likely(!task_running(rq, p))) {
  2182. schedstat_inc(rq, ttwu_count);
  2183. schedstat_inc(rq, ttwu_local);
  2184. }
  2185. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2186. success = true;
  2187. }
  2188. ttwu_post_activation(p, rq, 0, success);
  2189. }
  2190. /**
  2191. * wake_up_process - Wake up a specific process
  2192. * @p: The process to be woken up.
  2193. *
  2194. * Attempt to wake up the nominated process and move it to the set of runnable
  2195. * processes. Returns 1 if the process was woken up, 0 if it was already
  2196. * running.
  2197. *
  2198. * It may be assumed that this function implies a write memory barrier before
  2199. * changing the task state if and only if any tasks are woken up.
  2200. */
  2201. int wake_up_process(struct task_struct *p)
  2202. {
  2203. return try_to_wake_up(p, TASK_ALL, 0);
  2204. }
  2205. EXPORT_SYMBOL(wake_up_process);
  2206. int wake_up_state(struct task_struct *p, unsigned int state)
  2207. {
  2208. return try_to_wake_up(p, state, 0);
  2209. }
  2210. /*
  2211. * Perform scheduler related setup for a newly forked process p.
  2212. * p is forked by current.
  2213. *
  2214. * __sched_fork() is basic setup used by init_idle() too:
  2215. */
  2216. static void __sched_fork(struct task_struct *p)
  2217. {
  2218. p->se.exec_start = 0;
  2219. p->se.sum_exec_runtime = 0;
  2220. p->se.prev_sum_exec_runtime = 0;
  2221. p->se.nr_migrations = 0;
  2222. p->se.vruntime = 0;
  2223. #ifdef CONFIG_SCHEDSTATS
  2224. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2225. #endif
  2226. INIT_LIST_HEAD(&p->rt.run_list);
  2227. p->se.on_rq = 0;
  2228. INIT_LIST_HEAD(&p->se.group_node);
  2229. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2230. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2231. #endif
  2232. }
  2233. /*
  2234. * fork()/clone()-time setup:
  2235. */
  2236. void sched_fork(struct task_struct *p, int clone_flags)
  2237. {
  2238. int cpu = get_cpu();
  2239. __sched_fork(p);
  2240. /*
  2241. * We mark the process as running here. This guarantees that
  2242. * nobody will actually run it, and a signal or other external
  2243. * event cannot wake it up and insert it on the runqueue either.
  2244. */
  2245. p->state = TASK_RUNNING;
  2246. /*
  2247. * Revert to default priority/policy on fork if requested.
  2248. */
  2249. if (unlikely(p->sched_reset_on_fork)) {
  2250. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2251. p->policy = SCHED_NORMAL;
  2252. p->normal_prio = p->static_prio;
  2253. }
  2254. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2255. p->static_prio = NICE_TO_PRIO(0);
  2256. p->normal_prio = p->static_prio;
  2257. set_load_weight(p);
  2258. }
  2259. /*
  2260. * We don't need the reset flag anymore after the fork. It has
  2261. * fulfilled its duty:
  2262. */
  2263. p->sched_reset_on_fork = 0;
  2264. }
  2265. /*
  2266. * Make sure we do not leak PI boosting priority to the child.
  2267. */
  2268. p->prio = current->normal_prio;
  2269. if (!rt_prio(p->prio))
  2270. p->sched_class = &fair_sched_class;
  2271. if (p->sched_class->task_fork)
  2272. p->sched_class->task_fork(p);
  2273. /*
  2274. * The child is not yet in the pid-hash so no cgroup attach races,
  2275. * and the cgroup is pinned to this child due to cgroup_fork()
  2276. * is ran before sched_fork().
  2277. *
  2278. * Silence PROVE_RCU.
  2279. */
  2280. rcu_read_lock();
  2281. set_task_cpu(p, cpu);
  2282. rcu_read_unlock();
  2283. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2284. if (likely(sched_info_on()))
  2285. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2286. #endif
  2287. #if defined(CONFIG_SMP)
  2288. p->on_cpu = 0;
  2289. #endif
  2290. #ifdef CONFIG_PREEMPT
  2291. /* Want to start with kernel preemption disabled. */
  2292. task_thread_info(p)->preempt_count = 1;
  2293. #endif
  2294. #ifdef CONFIG_SMP
  2295. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2296. #endif
  2297. put_cpu();
  2298. }
  2299. /*
  2300. * wake_up_new_task - wake up a newly created task for the first time.
  2301. *
  2302. * This function will do some initial scheduler statistics housekeeping
  2303. * that must be done for every newly created context, then puts the task
  2304. * on the runqueue and wakes it.
  2305. */
  2306. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2307. {
  2308. unsigned long flags;
  2309. struct rq *rq;
  2310. int cpu __maybe_unused = get_cpu();
  2311. #ifdef CONFIG_SMP
  2312. rq = task_rq_lock(p, &flags);
  2313. p->state = TASK_WAKING;
  2314. /*
  2315. * Fork balancing, do it here and not earlier because:
  2316. * - cpus_allowed can change in the fork path
  2317. * - any previously selected cpu might disappear through hotplug
  2318. *
  2319. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2320. * without people poking at ->cpus_allowed.
  2321. */
  2322. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2323. set_task_cpu(p, cpu);
  2324. p->state = TASK_RUNNING;
  2325. task_rq_unlock(rq, &flags);
  2326. #endif
  2327. rq = task_rq_lock(p, &flags);
  2328. activate_task(rq, p, 0);
  2329. trace_sched_wakeup_new(p, 1);
  2330. check_preempt_curr(rq, p, WF_FORK);
  2331. #ifdef CONFIG_SMP
  2332. if (p->sched_class->task_woken)
  2333. p->sched_class->task_woken(rq, p);
  2334. #endif
  2335. task_rq_unlock(rq, &flags);
  2336. put_cpu();
  2337. }
  2338. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2339. /**
  2340. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2341. * @notifier: notifier struct to register
  2342. */
  2343. void preempt_notifier_register(struct preempt_notifier *notifier)
  2344. {
  2345. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2346. }
  2347. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2348. /**
  2349. * preempt_notifier_unregister - no longer interested in preemption notifications
  2350. * @notifier: notifier struct to unregister
  2351. *
  2352. * This is safe to call from within a preemption notifier.
  2353. */
  2354. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2355. {
  2356. hlist_del(&notifier->link);
  2357. }
  2358. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2359. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2360. {
  2361. struct preempt_notifier *notifier;
  2362. struct hlist_node *node;
  2363. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2364. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2365. }
  2366. static void
  2367. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2368. struct task_struct *next)
  2369. {
  2370. struct preempt_notifier *notifier;
  2371. struct hlist_node *node;
  2372. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2373. notifier->ops->sched_out(notifier, next);
  2374. }
  2375. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2376. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2377. {
  2378. }
  2379. static void
  2380. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2381. struct task_struct *next)
  2382. {
  2383. }
  2384. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2385. /**
  2386. * prepare_task_switch - prepare to switch tasks
  2387. * @rq: the runqueue preparing to switch
  2388. * @prev: the current task that is being switched out
  2389. * @next: the task we are going to switch to.
  2390. *
  2391. * This is called with the rq lock held and interrupts off. It must
  2392. * be paired with a subsequent finish_task_switch after the context
  2393. * switch.
  2394. *
  2395. * prepare_task_switch sets up locking and calls architecture specific
  2396. * hooks.
  2397. */
  2398. static inline void
  2399. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2400. struct task_struct *next)
  2401. {
  2402. sched_info_switch(prev, next);
  2403. perf_event_task_sched_out(prev, next);
  2404. fire_sched_out_preempt_notifiers(prev, next);
  2405. prepare_lock_switch(rq, next);
  2406. prepare_arch_switch(next);
  2407. trace_sched_switch(prev, next);
  2408. }
  2409. /**
  2410. * finish_task_switch - clean up after a task-switch
  2411. * @rq: runqueue associated with task-switch
  2412. * @prev: the thread we just switched away from.
  2413. *
  2414. * finish_task_switch must be called after the context switch, paired
  2415. * with a prepare_task_switch call before the context switch.
  2416. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2417. * and do any other architecture-specific cleanup actions.
  2418. *
  2419. * Note that we may have delayed dropping an mm in context_switch(). If
  2420. * so, we finish that here outside of the runqueue lock. (Doing it
  2421. * with the lock held can cause deadlocks; see schedule() for
  2422. * details.)
  2423. */
  2424. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2425. __releases(rq->lock)
  2426. {
  2427. struct mm_struct *mm = rq->prev_mm;
  2428. long prev_state;
  2429. rq->prev_mm = NULL;
  2430. /*
  2431. * A task struct has one reference for the use as "current".
  2432. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2433. * schedule one last time. The schedule call will never return, and
  2434. * the scheduled task must drop that reference.
  2435. * The test for TASK_DEAD must occur while the runqueue locks are
  2436. * still held, otherwise prev could be scheduled on another cpu, die
  2437. * there before we look at prev->state, and then the reference would
  2438. * be dropped twice.
  2439. * Manfred Spraul <manfred@colorfullife.com>
  2440. */
  2441. prev_state = prev->state;
  2442. finish_arch_switch(prev);
  2443. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2444. local_irq_disable();
  2445. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2446. perf_event_task_sched_in(current);
  2447. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2448. local_irq_enable();
  2449. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2450. finish_lock_switch(rq, prev);
  2451. fire_sched_in_preempt_notifiers(current);
  2452. if (mm)
  2453. mmdrop(mm);
  2454. if (unlikely(prev_state == TASK_DEAD)) {
  2455. /*
  2456. * Remove function-return probe instances associated with this
  2457. * task and put them back on the free list.
  2458. */
  2459. kprobe_flush_task(prev);
  2460. put_task_struct(prev);
  2461. }
  2462. }
  2463. #ifdef CONFIG_SMP
  2464. /* assumes rq->lock is held */
  2465. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2466. {
  2467. if (prev->sched_class->pre_schedule)
  2468. prev->sched_class->pre_schedule(rq, prev);
  2469. }
  2470. /* rq->lock is NOT held, but preemption is disabled */
  2471. static inline void post_schedule(struct rq *rq)
  2472. {
  2473. if (rq->post_schedule) {
  2474. unsigned long flags;
  2475. raw_spin_lock_irqsave(&rq->lock, flags);
  2476. if (rq->curr->sched_class->post_schedule)
  2477. rq->curr->sched_class->post_schedule(rq);
  2478. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2479. rq->post_schedule = 0;
  2480. }
  2481. }
  2482. #else
  2483. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2484. {
  2485. }
  2486. static inline void post_schedule(struct rq *rq)
  2487. {
  2488. }
  2489. #endif
  2490. /**
  2491. * schedule_tail - first thing a freshly forked thread must call.
  2492. * @prev: the thread we just switched away from.
  2493. */
  2494. asmlinkage void schedule_tail(struct task_struct *prev)
  2495. __releases(rq->lock)
  2496. {
  2497. struct rq *rq = this_rq();
  2498. finish_task_switch(rq, prev);
  2499. /*
  2500. * FIXME: do we need to worry about rq being invalidated by the
  2501. * task_switch?
  2502. */
  2503. post_schedule(rq);
  2504. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2505. /* In this case, finish_task_switch does not reenable preemption */
  2506. preempt_enable();
  2507. #endif
  2508. if (current->set_child_tid)
  2509. put_user(task_pid_vnr(current), current->set_child_tid);
  2510. }
  2511. /*
  2512. * context_switch - switch to the new MM and the new
  2513. * thread's register state.
  2514. */
  2515. static inline void
  2516. context_switch(struct rq *rq, struct task_struct *prev,
  2517. struct task_struct *next)
  2518. {
  2519. struct mm_struct *mm, *oldmm;
  2520. prepare_task_switch(rq, prev, next);
  2521. mm = next->mm;
  2522. oldmm = prev->active_mm;
  2523. /*
  2524. * For paravirt, this is coupled with an exit in switch_to to
  2525. * combine the page table reload and the switch backend into
  2526. * one hypercall.
  2527. */
  2528. arch_start_context_switch(prev);
  2529. if (!mm) {
  2530. next->active_mm = oldmm;
  2531. atomic_inc(&oldmm->mm_count);
  2532. enter_lazy_tlb(oldmm, next);
  2533. } else
  2534. switch_mm(oldmm, mm, next);
  2535. if (!prev->mm) {
  2536. prev->active_mm = NULL;
  2537. rq->prev_mm = oldmm;
  2538. }
  2539. /*
  2540. * Since the runqueue lock will be released by the next
  2541. * task (which is an invalid locking op but in the case
  2542. * of the scheduler it's an obvious special-case), so we
  2543. * do an early lockdep release here:
  2544. */
  2545. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2546. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2547. #endif
  2548. /* Here we just switch the register state and the stack. */
  2549. switch_to(prev, next, prev);
  2550. barrier();
  2551. /*
  2552. * this_rq must be evaluated again because prev may have moved
  2553. * CPUs since it called schedule(), thus the 'rq' on its stack
  2554. * frame will be invalid.
  2555. */
  2556. finish_task_switch(this_rq(), prev);
  2557. }
  2558. /*
  2559. * nr_running, nr_uninterruptible and nr_context_switches:
  2560. *
  2561. * externally visible scheduler statistics: current number of runnable
  2562. * threads, current number of uninterruptible-sleeping threads, total
  2563. * number of context switches performed since bootup.
  2564. */
  2565. unsigned long nr_running(void)
  2566. {
  2567. unsigned long i, sum = 0;
  2568. for_each_online_cpu(i)
  2569. sum += cpu_rq(i)->nr_running;
  2570. return sum;
  2571. }
  2572. unsigned long nr_uninterruptible(void)
  2573. {
  2574. unsigned long i, sum = 0;
  2575. for_each_possible_cpu(i)
  2576. sum += cpu_rq(i)->nr_uninterruptible;
  2577. /*
  2578. * Since we read the counters lockless, it might be slightly
  2579. * inaccurate. Do not allow it to go below zero though:
  2580. */
  2581. if (unlikely((long)sum < 0))
  2582. sum = 0;
  2583. return sum;
  2584. }
  2585. unsigned long long nr_context_switches(void)
  2586. {
  2587. int i;
  2588. unsigned long long sum = 0;
  2589. for_each_possible_cpu(i)
  2590. sum += cpu_rq(i)->nr_switches;
  2591. return sum;
  2592. }
  2593. unsigned long nr_iowait(void)
  2594. {
  2595. unsigned long i, sum = 0;
  2596. for_each_possible_cpu(i)
  2597. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2598. return sum;
  2599. }
  2600. unsigned long nr_iowait_cpu(int cpu)
  2601. {
  2602. struct rq *this = cpu_rq(cpu);
  2603. return atomic_read(&this->nr_iowait);
  2604. }
  2605. unsigned long this_cpu_load(void)
  2606. {
  2607. struct rq *this = this_rq();
  2608. return this->cpu_load[0];
  2609. }
  2610. /* Variables and functions for calc_load */
  2611. static atomic_long_t calc_load_tasks;
  2612. static unsigned long calc_load_update;
  2613. unsigned long avenrun[3];
  2614. EXPORT_SYMBOL(avenrun);
  2615. static long calc_load_fold_active(struct rq *this_rq)
  2616. {
  2617. long nr_active, delta = 0;
  2618. nr_active = this_rq->nr_running;
  2619. nr_active += (long) this_rq->nr_uninterruptible;
  2620. if (nr_active != this_rq->calc_load_active) {
  2621. delta = nr_active - this_rq->calc_load_active;
  2622. this_rq->calc_load_active = nr_active;
  2623. }
  2624. return delta;
  2625. }
  2626. static unsigned long
  2627. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2628. {
  2629. load *= exp;
  2630. load += active * (FIXED_1 - exp);
  2631. load += 1UL << (FSHIFT - 1);
  2632. return load >> FSHIFT;
  2633. }
  2634. #ifdef CONFIG_NO_HZ
  2635. /*
  2636. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2637. *
  2638. * When making the ILB scale, we should try to pull this in as well.
  2639. */
  2640. static atomic_long_t calc_load_tasks_idle;
  2641. static void calc_load_account_idle(struct rq *this_rq)
  2642. {
  2643. long delta;
  2644. delta = calc_load_fold_active(this_rq);
  2645. if (delta)
  2646. atomic_long_add(delta, &calc_load_tasks_idle);
  2647. }
  2648. static long calc_load_fold_idle(void)
  2649. {
  2650. long delta = 0;
  2651. /*
  2652. * Its got a race, we don't care...
  2653. */
  2654. if (atomic_long_read(&calc_load_tasks_idle))
  2655. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2656. return delta;
  2657. }
  2658. /**
  2659. * fixed_power_int - compute: x^n, in O(log n) time
  2660. *
  2661. * @x: base of the power
  2662. * @frac_bits: fractional bits of @x
  2663. * @n: power to raise @x to.
  2664. *
  2665. * By exploiting the relation between the definition of the natural power
  2666. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2667. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2668. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2669. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2670. * of course trivially computable in O(log_2 n), the length of our binary
  2671. * vector.
  2672. */
  2673. static unsigned long
  2674. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2675. {
  2676. unsigned long result = 1UL << frac_bits;
  2677. if (n) for (;;) {
  2678. if (n & 1) {
  2679. result *= x;
  2680. result += 1UL << (frac_bits - 1);
  2681. result >>= frac_bits;
  2682. }
  2683. n >>= 1;
  2684. if (!n)
  2685. break;
  2686. x *= x;
  2687. x += 1UL << (frac_bits - 1);
  2688. x >>= frac_bits;
  2689. }
  2690. return result;
  2691. }
  2692. /*
  2693. * a1 = a0 * e + a * (1 - e)
  2694. *
  2695. * a2 = a1 * e + a * (1 - e)
  2696. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2697. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2698. *
  2699. * a3 = a2 * e + a * (1 - e)
  2700. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2701. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2702. *
  2703. * ...
  2704. *
  2705. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2706. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2707. * = a0 * e^n + a * (1 - e^n)
  2708. *
  2709. * [1] application of the geometric series:
  2710. *
  2711. * n 1 - x^(n+1)
  2712. * S_n := \Sum x^i = -------------
  2713. * i=0 1 - x
  2714. */
  2715. static unsigned long
  2716. calc_load_n(unsigned long load, unsigned long exp,
  2717. unsigned long active, unsigned int n)
  2718. {
  2719. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2720. }
  2721. /*
  2722. * NO_HZ can leave us missing all per-cpu ticks calling
  2723. * calc_load_account_active(), but since an idle CPU folds its delta into
  2724. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2725. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2726. *
  2727. * Once we've updated the global active value, we need to apply the exponential
  2728. * weights adjusted to the number of cycles missed.
  2729. */
  2730. static void calc_global_nohz(unsigned long ticks)
  2731. {
  2732. long delta, active, n;
  2733. if (time_before(jiffies, calc_load_update))
  2734. return;
  2735. /*
  2736. * If we crossed a calc_load_update boundary, make sure to fold
  2737. * any pending idle changes, the respective CPUs might have
  2738. * missed the tick driven calc_load_account_active() update
  2739. * due to NO_HZ.
  2740. */
  2741. delta = calc_load_fold_idle();
  2742. if (delta)
  2743. atomic_long_add(delta, &calc_load_tasks);
  2744. /*
  2745. * If we were idle for multiple load cycles, apply them.
  2746. */
  2747. if (ticks >= LOAD_FREQ) {
  2748. n = ticks / LOAD_FREQ;
  2749. active = atomic_long_read(&calc_load_tasks);
  2750. active = active > 0 ? active * FIXED_1 : 0;
  2751. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2752. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2753. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2754. calc_load_update += n * LOAD_FREQ;
  2755. }
  2756. /*
  2757. * Its possible the remainder of the above division also crosses
  2758. * a LOAD_FREQ period, the regular check in calc_global_load()
  2759. * which comes after this will take care of that.
  2760. *
  2761. * Consider us being 11 ticks before a cycle completion, and us
  2762. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2763. * age us 4 cycles, and the test in calc_global_load() will
  2764. * pick up the final one.
  2765. */
  2766. }
  2767. #else
  2768. static void calc_load_account_idle(struct rq *this_rq)
  2769. {
  2770. }
  2771. static inline long calc_load_fold_idle(void)
  2772. {
  2773. return 0;
  2774. }
  2775. static void calc_global_nohz(unsigned long ticks)
  2776. {
  2777. }
  2778. #endif
  2779. /**
  2780. * get_avenrun - get the load average array
  2781. * @loads: pointer to dest load array
  2782. * @offset: offset to add
  2783. * @shift: shift count to shift the result left
  2784. *
  2785. * These values are estimates at best, so no need for locking.
  2786. */
  2787. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2788. {
  2789. loads[0] = (avenrun[0] + offset) << shift;
  2790. loads[1] = (avenrun[1] + offset) << shift;
  2791. loads[2] = (avenrun[2] + offset) << shift;
  2792. }
  2793. /*
  2794. * calc_load - update the avenrun load estimates 10 ticks after the
  2795. * CPUs have updated calc_load_tasks.
  2796. */
  2797. void calc_global_load(unsigned long ticks)
  2798. {
  2799. long active;
  2800. calc_global_nohz(ticks);
  2801. if (time_before(jiffies, calc_load_update + 10))
  2802. return;
  2803. active = atomic_long_read(&calc_load_tasks);
  2804. active = active > 0 ? active * FIXED_1 : 0;
  2805. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2806. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2807. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2808. calc_load_update += LOAD_FREQ;
  2809. }
  2810. /*
  2811. * Called from update_cpu_load() to periodically update this CPU's
  2812. * active count.
  2813. */
  2814. static void calc_load_account_active(struct rq *this_rq)
  2815. {
  2816. long delta;
  2817. if (time_before(jiffies, this_rq->calc_load_update))
  2818. return;
  2819. delta = calc_load_fold_active(this_rq);
  2820. delta += calc_load_fold_idle();
  2821. if (delta)
  2822. atomic_long_add(delta, &calc_load_tasks);
  2823. this_rq->calc_load_update += LOAD_FREQ;
  2824. }
  2825. /*
  2826. * The exact cpuload at various idx values, calculated at every tick would be
  2827. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2828. *
  2829. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2830. * on nth tick when cpu may be busy, then we have:
  2831. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2832. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2833. *
  2834. * decay_load_missed() below does efficient calculation of
  2835. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2836. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2837. *
  2838. * The calculation is approximated on a 128 point scale.
  2839. * degrade_zero_ticks is the number of ticks after which load at any
  2840. * particular idx is approximated to be zero.
  2841. * degrade_factor is a precomputed table, a row for each load idx.
  2842. * Each column corresponds to degradation factor for a power of two ticks,
  2843. * based on 128 point scale.
  2844. * Example:
  2845. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2846. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2847. *
  2848. * With this power of 2 load factors, we can degrade the load n times
  2849. * by looking at 1 bits in n and doing as many mult/shift instead of
  2850. * n mult/shifts needed by the exact degradation.
  2851. */
  2852. #define DEGRADE_SHIFT 7
  2853. static const unsigned char
  2854. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2855. static const unsigned char
  2856. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2857. {0, 0, 0, 0, 0, 0, 0, 0},
  2858. {64, 32, 8, 0, 0, 0, 0, 0},
  2859. {96, 72, 40, 12, 1, 0, 0},
  2860. {112, 98, 75, 43, 15, 1, 0},
  2861. {120, 112, 98, 76, 45, 16, 2} };
  2862. /*
  2863. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2864. * would be when CPU is idle and so we just decay the old load without
  2865. * adding any new load.
  2866. */
  2867. static unsigned long
  2868. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2869. {
  2870. int j = 0;
  2871. if (!missed_updates)
  2872. return load;
  2873. if (missed_updates >= degrade_zero_ticks[idx])
  2874. return 0;
  2875. if (idx == 1)
  2876. return load >> missed_updates;
  2877. while (missed_updates) {
  2878. if (missed_updates % 2)
  2879. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2880. missed_updates >>= 1;
  2881. j++;
  2882. }
  2883. return load;
  2884. }
  2885. /*
  2886. * Update rq->cpu_load[] statistics. This function is usually called every
  2887. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2888. * every tick. We fix it up based on jiffies.
  2889. */
  2890. static void update_cpu_load(struct rq *this_rq)
  2891. {
  2892. unsigned long this_load = this_rq->load.weight;
  2893. unsigned long curr_jiffies = jiffies;
  2894. unsigned long pending_updates;
  2895. int i, scale;
  2896. this_rq->nr_load_updates++;
  2897. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2898. if (curr_jiffies == this_rq->last_load_update_tick)
  2899. return;
  2900. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2901. this_rq->last_load_update_tick = curr_jiffies;
  2902. /* Update our load: */
  2903. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2904. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2905. unsigned long old_load, new_load;
  2906. /* scale is effectively 1 << i now, and >> i divides by scale */
  2907. old_load = this_rq->cpu_load[i];
  2908. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2909. new_load = this_load;
  2910. /*
  2911. * Round up the averaging division if load is increasing. This
  2912. * prevents us from getting stuck on 9 if the load is 10, for
  2913. * example.
  2914. */
  2915. if (new_load > old_load)
  2916. new_load += scale - 1;
  2917. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2918. }
  2919. sched_avg_update(this_rq);
  2920. }
  2921. static void update_cpu_load_active(struct rq *this_rq)
  2922. {
  2923. update_cpu_load(this_rq);
  2924. calc_load_account_active(this_rq);
  2925. }
  2926. #ifdef CONFIG_SMP
  2927. /*
  2928. * sched_exec - execve() is a valuable balancing opportunity, because at
  2929. * this point the task has the smallest effective memory and cache footprint.
  2930. */
  2931. void sched_exec(void)
  2932. {
  2933. struct task_struct *p = current;
  2934. unsigned long flags;
  2935. struct rq *rq;
  2936. int dest_cpu;
  2937. rq = task_rq_lock(p, &flags);
  2938. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2939. if (dest_cpu == smp_processor_id())
  2940. goto unlock;
  2941. /*
  2942. * select_task_rq() can race against ->cpus_allowed
  2943. */
  2944. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2945. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2946. struct migration_arg arg = { p, dest_cpu };
  2947. task_rq_unlock(rq, &flags);
  2948. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2949. return;
  2950. }
  2951. unlock:
  2952. task_rq_unlock(rq, &flags);
  2953. }
  2954. #endif
  2955. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2956. EXPORT_PER_CPU_SYMBOL(kstat);
  2957. /*
  2958. * Return any ns on the sched_clock that have not yet been accounted in
  2959. * @p in case that task is currently running.
  2960. *
  2961. * Called with task_rq_lock() held on @rq.
  2962. */
  2963. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2964. {
  2965. u64 ns = 0;
  2966. if (task_current(rq, p)) {
  2967. update_rq_clock(rq);
  2968. ns = rq->clock_task - p->se.exec_start;
  2969. if ((s64)ns < 0)
  2970. ns = 0;
  2971. }
  2972. return ns;
  2973. }
  2974. unsigned long long task_delta_exec(struct task_struct *p)
  2975. {
  2976. unsigned long flags;
  2977. struct rq *rq;
  2978. u64 ns = 0;
  2979. rq = task_rq_lock(p, &flags);
  2980. ns = do_task_delta_exec(p, rq);
  2981. task_rq_unlock(rq, &flags);
  2982. return ns;
  2983. }
  2984. /*
  2985. * Return accounted runtime for the task.
  2986. * In case the task is currently running, return the runtime plus current's
  2987. * pending runtime that have not been accounted yet.
  2988. */
  2989. unsigned long long task_sched_runtime(struct task_struct *p)
  2990. {
  2991. unsigned long flags;
  2992. struct rq *rq;
  2993. u64 ns = 0;
  2994. rq = task_rq_lock(p, &flags);
  2995. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2996. task_rq_unlock(rq, &flags);
  2997. return ns;
  2998. }
  2999. /*
  3000. * Return sum_exec_runtime for the thread group.
  3001. * In case the task is currently running, return the sum plus current's
  3002. * pending runtime that have not been accounted yet.
  3003. *
  3004. * Note that the thread group might have other running tasks as well,
  3005. * so the return value not includes other pending runtime that other
  3006. * running tasks might have.
  3007. */
  3008. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3009. {
  3010. struct task_cputime totals;
  3011. unsigned long flags;
  3012. struct rq *rq;
  3013. u64 ns;
  3014. rq = task_rq_lock(p, &flags);
  3015. thread_group_cputime(p, &totals);
  3016. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3017. task_rq_unlock(rq, &flags);
  3018. return ns;
  3019. }
  3020. /*
  3021. * Account user cpu time to a process.
  3022. * @p: the process that the cpu time gets accounted to
  3023. * @cputime: the cpu time spent in user space since the last update
  3024. * @cputime_scaled: cputime scaled by cpu frequency
  3025. */
  3026. void account_user_time(struct task_struct *p, cputime_t cputime,
  3027. cputime_t cputime_scaled)
  3028. {
  3029. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3030. cputime64_t tmp;
  3031. /* Add user time to process. */
  3032. p->utime = cputime_add(p->utime, cputime);
  3033. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3034. account_group_user_time(p, cputime);
  3035. /* Add user time to cpustat. */
  3036. tmp = cputime_to_cputime64(cputime);
  3037. if (TASK_NICE(p) > 0)
  3038. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3039. else
  3040. cpustat->user = cputime64_add(cpustat->user, tmp);
  3041. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3042. /* Account for user time used */
  3043. acct_update_integrals(p);
  3044. }
  3045. /*
  3046. * Account guest cpu time to a process.
  3047. * @p: the process that the cpu time gets accounted to
  3048. * @cputime: the cpu time spent in virtual machine since the last update
  3049. * @cputime_scaled: cputime scaled by cpu frequency
  3050. */
  3051. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3052. cputime_t cputime_scaled)
  3053. {
  3054. cputime64_t tmp;
  3055. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3056. tmp = cputime_to_cputime64(cputime);
  3057. /* Add guest time to process. */
  3058. p->utime = cputime_add(p->utime, cputime);
  3059. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3060. account_group_user_time(p, cputime);
  3061. p->gtime = cputime_add(p->gtime, cputime);
  3062. /* Add guest time to cpustat. */
  3063. if (TASK_NICE(p) > 0) {
  3064. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3065. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3066. } else {
  3067. cpustat->user = cputime64_add(cpustat->user, tmp);
  3068. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3069. }
  3070. }
  3071. /*
  3072. * Account system cpu time to a process and desired cpustat field
  3073. * @p: the process that the cpu time gets accounted to
  3074. * @cputime: the cpu time spent in kernel space since the last update
  3075. * @cputime_scaled: cputime scaled by cpu frequency
  3076. * @target_cputime64: pointer to cpustat field that has to be updated
  3077. */
  3078. static inline
  3079. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3080. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3081. {
  3082. cputime64_t tmp = cputime_to_cputime64(cputime);
  3083. /* Add system time to process. */
  3084. p->stime = cputime_add(p->stime, cputime);
  3085. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3086. account_group_system_time(p, cputime);
  3087. /* Add system time to cpustat. */
  3088. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3089. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3090. /* Account for system time used */
  3091. acct_update_integrals(p);
  3092. }
  3093. /*
  3094. * Account system cpu time to a process.
  3095. * @p: the process that the cpu time gets accounted to
  3096. * @hardirq_offset: the offset to subtract from hardirq_count()
  3097. * @cputime: the cpu time spent in kernel space since the last update
  3098. * @cputime_scaled: cputime scaled by cpu frequency
  3099. */
  3100. void account_system_time(struct task_struct *p, int hardirq_offset,
  3101. cputime_t cputime, cputime_t cputime_scaled)
  3102. {
  3103. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3104. cputime64_t *target_cputime64;
  3105. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3106. account_guest_time(p, cputime, cputime_scaled);
  3107. return;
  3108. }
  3109. if (hardirq_count() - hardirq_offset)
  3110. target_cputime64 = &cpustat->irq;
  3111. else if (in_serving_softirq())
  3112. target_cputime64 = &cpustat->softirq;
  3113. else
  3114. target_cputime64 = &cpustat->system;
  3115. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3116. }
  3117. /*
  3118. * Account for involuntary wait time.
  3119. * @cputime: the cpu time spent in involuntary wait
  3120. */
  3121. void account_steal_time(cputime_t cputime)
  3122. {
  3123. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3124. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3125. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3126. }
  3127. /*
  3128. * Account for idle time.
  3129. * @cputime: the cpu time spent in idle wait
  3130. */
  3131. void account_idle_time(cputime_t cputime)
  3132. {
  3133. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3134. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3135. struct rq *rq = this_rq();
  3136. if (atomic_read(&rq->nr_iowait) > 0)
  3137. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3138. else
  3139. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3140. }
  3141. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3142. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3143. /*
  3144. * Account a tick to a process and cpustat
  3145. * @p: the process that the cpu time gets accounted to
  3146. * @user_tick: is the tick from userspace
  3147. * @rq: the pointer to rq
  3148. *
  3149. * Tick demultiplexing follows the order
  3150. * - pending hardirq update
  3151. * - pending softirq update
  3152. * - user_time
  3153. * - idle_time
  3154. * - system time
  3155. * - check for guest_time
  3156. * - else account as system_time
  3157. *
  3158. * Check for hardirq is done both for system and user time as there is
  3159. * no timer going off while we are on hardirq and hence we may never get an
  3160. * opportunity to update it solely in system time.
  3161. * p->stime and friends are only updated on system time and not on irq
  3162. * softirq as those do not count in task exec_runtime any more.
  3163. */
  3164. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3165. struct rq *rq)
  3166. {
  3167. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3168. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3169. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3170. if (irqtime_account_hi_update()) {
  3171. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3172. } else if (irqtime_account_si_update()) {
  3173. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3174. } else if (this_cpu_ksoftirqd() == p) {
  3175. /*
  3176. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3177. * So, we have to handle it separately here.
  3178. * Also, p->stime needs to be updated for ksoftirqd.
  3179. */
  3180. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3181. &cpustat->softirq);
  3182. } else if (user_tick) {
  3183. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3184. } else if (p == rq->idle) {
  3185. account_idle_time(cputime_one_jiffy);
  3186. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3187. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3188. } else {
  3189. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3190. &cpustat->system);
  3191. }
  3192. }
  3193. static void irqtime_account_idle_ticks(int ticks)
  3194. {
  3195. int i;
  3196. struct rq *rq = this_rq();
  3197. for (i = 0; i < ticks; i++)
  3198. irqtime_account_process_tick(current, 0, rq);
  3199. }
  3200. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3201. static void irqtime_account_idle_ticks(int ticks) {}
  3202. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3203. struct rq *rq) {}
  3204. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3205. /*
  3206. * Account a single tick of cpu time.
  3207. * @p: the process that the cpu time gets accounted to
  3208. * @user_tick: indicates if the tick is a user or a system tick
  3209. */
  3210. void account_process_tick(struct task_struct *p, int user_tick)
  3211. {
  3212. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3213. struct rq *rq = this_rq();
  3214. if (sched_clock_irqtime) {
  3215. irqtime_account_process_tick(p, user_tick, rq);
  3216. return;
  3217. }
  3218. if (user_tick)
  3219. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3220. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3221. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3222. one_jiffy_scaled);
  3223. else
  3224. account_idle_time(cputime_one_jiffy);
  3225. }
  3226. /*
  3227. * Account multiple ticks of steal time.
  3228. * @p: the process from which the cpu time has been stolen
  3229. * @ticks: number of stolen ticks
  3230. */
  3231. void account_steal_ticks(unsigned long ticks)
  3232. {
  3233. account_steal_time(jiffies_to_cputime(ticks));
  3234. }
  3235. /*
  3236. * Account multiple ticks of idle time.
  3237. * @ticks: number of stolen ticks
  3238. */
  3239. void account_idle_ticks(unsigned long ticks)
  3240. {
  3241. if (sched_clock_irqtime) {
  3242. irqtime_account_idle_ticks(ticks);
  3243. return;
  3244. }
  3245. account_idle_time(jiffies_to_cputime(ticks));
  3246. }
  3247. #endif
  3248. /*
  3249. * Use precise platform statistics if available:
  3250. */
  3251. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3252. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3253. {
  3254. *ut = p->utime;
  3255. *st = p->stime;
  3256. }
  3257. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3258. {
  3259. struct task_cputime cputime;
  3260. thread_group_cputime(p, &cputime);
  3261. *ut = cputime.utime;
  3262. *st = cputime.stime;
  3263. }
  3264. #else
  3265. #ifndef nsecs_to_cputime
  3266. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3267. #endif
  3268. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3269. {
  3270. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3271. /*
  3272. * Use CFS's precise accounting:
  3273. */
  3274. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3275. if (total) {
  3276. u64 temp = rtime;
  3277. temp *= utime;
  3278. do_div(temp, total);
  3279. utime = (cputime_t)temp;
  3280. } else
  3281. utime = rtime;
  3282. /*
  3283. * Compare with previous values, to keep monotonicity:
  3284. */
  3285. p->prev_utime = max(p->prev_utime, utime);
  3286. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3287. *ut = p->prev_utime;
  3288. *st = p->prev_stime;
  3289. }
  3290. /*
  3291. * Must be called with siglock held.
  3292. */
  3293. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3294. {
  3295. struct signal_struct *sig = p->signal;
  3296. struct task_cputime cputime;
  3297. cputime_t rtime, utime, total;
  3298. thread_group_cputime(p, &cputime);
  3299. total = cputime_add(cputime.utime, cputime.stime);
  3300. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3301. if (total) {
  3302. u64 temp = rtime;
  3303. temp *= cputime.utime;
  3304. do_div(temp, total);
  3305. utime = (cputime_t)temp;
  3306. } else
  3307. utime = rtime;
  3308. sig->prev_utime = max(sig->prev_utime, utime);
  3309. sig->prev_stime = max(sig->prev_stime,
  3310. cputime_sub(rtime, sig->prev_utime));
  3311. *ut = sig->prev_utime;
  3312. *st = sig->prev_stime;
  3313. }
  3314. #endif
  3315. /*
  3316. * This function gets called by the timer code, with HZ frequency.
  3317. * We call it with interrupts disabled.
  3318. *
  3319. * It also gets called by the fork code, when changing the parent's
  3320. * timeslices.
  3321. */
  3322. void scheduler_tick(void)
  3323. {
  3324. int cpu = smp_processor_id();
  3325. struct rq *rq = cpu_rq(cpu);
  3326. struct task_struct *curr = rq->curr;
  3327. sched_clock_tick();
  3328. raw_spin_lock(&rq->lock);
  3329. update_rq_clock(rq);
  3330. update_cpu_load_active(rq);
  3331. curr->sched_class->task_tick(rq, curr, 0);
  3332. raw_spin_unlock(&rq->lock);
  3333. perf_event_task_tick();
  3334. #ifdef CONFIG_SMP
  3335. rq->idle_at_tick = idle_cpu(cpu);
  3336. trigger_load_balance(rq, cpu);
  3337. #endif
  3338. }
  3339. notrace unsigned long get_parent_ip(unsigned long addr)
  3340. {
  3341. if (in_lock_functions(addr)) {
  3342. addr = CALLER_ADDR2;
  3343. if (in_lock_functions(addr))
  3344. addr = CALLER_ADDR3;
  3345. }
  3346. return addr;
  3347. }
  3348. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3349. defined(CONFIG_PREEMPT_TRACER))
  3350. void __kprobes add_preempt_count(int val)
  3351. {
  3352. #ifdef CONFIG_DEBUG_PREEMPT
  3353. /*
  3354. * Underflow?
  3355. */
  3356. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3357. return;
  3358. #endif
  3359. preempt_count() += val;
  3360. #ifdef CONFIG_DEBUG_PREEMPT
  3361. /*
  3362. * Spinlock count overflowing soon?
  3363. */
  3364. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3365. PREEMPT_MASK - 10);
  3366. #endif
  3367. if (preempt_count() == val)
  3368. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3369. }
  3370. EXPORT_SYMBOL(add_preempt_count);
  3371. void __kprobes sub_preempt_count(int val)
  3372. {
  3373. #ifdef CONFIG_DEBUG_PREEMPT
  3374. /*
  3375. * Underflow?
  3376. */
  3377. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3378. return;
  3379. /*
  3380. * Is the spinlock portion underflowing?
  3381. */
  3382. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3383. !(preempt_count() & PREEMPT_MASK)))
  3384. return;
  3385. #endif
  3386. if (preempt_count() == val)
  3387. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3388. preempt_count() -= val;
  3389. }
  3390. EXPORT_SYMBOL(sub_preempt_count);
  3391. #endif
  3392. /*
  3393. * Print scheduling while atomic bug:
  3394. */
  3395. static noinline void __schedule_bug(struct task_struct *prev)
  3396. {
  3397. struct pt_regs *regs = get_irq_regs();
  3398. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3399. prev->comm, prev->pid, preempt_count());
  3400. debug_show_held_locks(prev);
  3401. print_modules();
  3402. if (irqs_disabled())
  3403. print_irqtrace_events(prev);
  3404. if (regs)
  3405. show_regs(regs);
  3406. else
  3407. dump_stack();
  3408. }
  3409. /*
  3410. * Various schedule()-time debugging checks and statistics:
  3411. */
  3412. static inline void schedule_debug(struct task_struct *prev)
  3413. {
  3414. /*
  3415. * Test if we are atomic. Since do_exit() needs to call into
  3416. * schedule() atomically, we ignore that path for now.
  3417. * Otherwise, whine if we are scheduling when we should not be.
  3418. */
  3419. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3420. __schedule_bug(prev);
  3421. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3422. schedstat_inc(this_rq(), sched_count);
  3423. #ifdef CONFIG_SCHEDSTATS
  3424. if (unlikely(prev->lock_depth >= 0)) {
  3425. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3426. schedstat_inc(prev, sched_info.bkl_count);
  3427. }
  3428. #endif
  3429. }
  3430. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3431. {
  3432. if (prev->se.on_rq)
  3433. update_rq_clock(rq);
  3434. prev->sched_class->put_prev_task(rq, prev);
  3435. }
  3436. /*
  3437. * Pick up the highest-prio task:
  3438. */
  3439. static inline struct task_struct *
  3440. pick_next_task(struct rq *rq)
  3441. {
  3442. const struct sched_class *class;
  3443. struct task_struct *p;
  3444. /*
  3445. * Optimization: we know that if all tasks are in
  3446. * the fair class we can call that function directly:
  3447. */
  3448. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3449. p = fair_sched_class.pick_next_task(rq);
  3450. if (likely(p))
  3451. return p;
  3452. }
  3453. for_each_class(class) {
  3454. p = class->pick_next_task(rq);
  3455. if (p)
  3456. return p;
  3457. }
  3458. BUG(); /* the idle class will always have a runnable task */
  3459. }
  3460. /*
  3461. * schedule() is the main scheduler function.
  3462. */
  3463. asmlinkage void __sched schedule(void)
  3464. {
  3465. struct task_struct *prev, *next;
  3466. unsigned long *switch_count;
  3467. struct rq *rq;
  3468. int cpu;
  3469. need_resched:
  3470. preempt_disable();
  3471. cpu = smp_processor_id();
  3472. rq = cpu_rq(cpu);
  3473. rcu_note_context_switch(cpu);
  3474. prev = rq->curr;
  3475. schedule_debug(prev);
  3476. if (sched_feat(HRTICK))
  3477. hrtick_clear(rq);
  3478. raw_spin_lock_irq(&rq->lock);
  3479. switch_count = &prev->nivcsw;
  3480. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3481. if (unlikely(signal_pending_state(prev->state, prev))) {
  3482. prev->state = TASK_RUNNING;
  3483. } else {
  3484. /*
  3485. * If a worker is going to sleep, notify and
  3486. * ask workqueue whether it wants to wake up a
  3487. * task to maintain concurrency. If so, wake
  3488. * up the task.
  3489. */
  3490. if (prev->flags & PF_WQ_WORKER) {
  3491. struct task_struct *to_wakeup;
  3492. to_wakeup = wq_worker_sleeping(prev, cpu);
  3493. if (to_wakeup)
  3494. try_to_wake_up_local(to_wakeup);
  3495. }
  3496. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3497. /*
  3498. * If we are going to sleep and we have plugged IO queued, make
  3499. * sure to submit it to avoid deadlocks.
  3500. */
  3501. if (blk_needs_flush_plug(prev)) {
  3502. raw_spin_unlock(&rq->lock);
  3503. blk_flush_plug(prev);
  3504. raw_spin_lock(&rq->lock);
  3505. }
  3506. }
  3507. switch_count = &prev->nvcsw;
  3508. }
  3509. pre_schedule(rq, prev);
  3510. if (unlikely(!rq->nr_running))
  3511. idle_balance(cpu, rq);
  3512. put_prev_task(rq, prev);
  3513. next = pick_next_task(rq);
  3514. clear_tsk_need_resched(prev);
  3515. rq->skip_clock_update = 0;
  3516. if (likely(prev != next)) {
  3517. rq->nr_switches++;
  3518. rq->curr = next;
  3519. ++*switch_count;
  3520. context_switch(rq, prev, next); /* unlocks the rq */
  3521. /*
  3522. * The context switch have flipped the stack from under us
  3523. * and restored the local variables which were saved when
  3524. * this task called schedule() in the past. prev == current
  3525. * is still correct, but it can be moved to another cpu/rq.
  3526. */
  3527. cpu = smp_processor_id();
  3528. rq = cpu_rq(cpu);
  3529. } else
  3530. raw_spin_unlock_irq(&rq->lock);
  3531. post_schedule(rq);
  3532. preempt_enable_no_resched();
  3533. if (need_resched())
  3534. goto need_resched;
  3535. }
  3536. EXPORT_SYMBOL(schedule);
  3537. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3538. /*
  3539. * Look out! "owner" is an entirely speculative pointer
  3540. * access and not reliable.
  3541. */
  3542. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3543. {
  3544. unsigned int cpu;
  3545. struct rq *rq;
  3546. if (!sched_feat(OWNER_SPIN))
  3547. return 0;
  3548. #ifdef CONFIG_DEBUG_PAGEALLOC
  3549. /*
  3550. * Need to access the cpu field knowing that
  3551. * DEBUG_PAGEALLOC could have unmapped it if
  3552. * the mutex owner just released it and exited.
  3553. */
  3554. if (probe_kernel_address(&owner->cpu, cpu))
  3555. return 0;
  3556. #else
  3557. cpu = owner->cpu;
  3558. #endif
  3559. /*
  3560. * Even if the access succeeded (likely case),
  3561. * the cpu field may no longer be valid.
  3562. */
  3563. if (cpu >= nr_cpumask_bits)
  3564. return 0;
  3565. /*
  3566. * We need to validate that we can do a
  3567. * get_cpu() and that we have the percpu area.
  3568. */
  3569. if (!cpu_online(cpu))
  3570. return 0;
  3571. rq = cpu_rq(cpu);
  3572. for (;;) {
  3573. /*
  3574. * Owner changed, break to re-assess state.
  3575. */
  3576. if (lock->owner != owner) {
  3577. /*
  3578. * If the lock has switched to a different owner,
  3579. * we likely have heavy contention. Return 0 to quit
  3580. * optimistic spinning and not contend further:
  3581. */
  3582. if (lock->owner)
  3583. return 0;
  3584. break;
  3585. }
  3586. /*
  3587. * Is that owner really running on that cpu?
  3588. */
  3589. if (task_thread_info(rq->curr) != owner || need_resched())
  3590. return 0;
  3591. arch_mutex_cpu_relax();
  3592. }
  3593. return 1;
  3594. }
  3595. #endif
  3596. #ifdef CONFIG_PREEMPT
  3597. /*
  3598. * this is the entry point to schedule() from in-kernel preemption
  3599. * off of preempt_enable. Kernel preemptions off return from interrupt
  3600. * occur there and call schedule directly.
  3601. */
  3602. asmlinkage void __sched notrace preempt_schedule(void)
  3603. {
  3604. struct thread_info *ti = current_thread_info();
  3605. /*
  3606. * If there is a non-zero preempt_count or interrupts are disabled,
  3607. * we do not want to preempt the current task. Just return..
  3608. */
  3609. if (likely(ti->preempt_count || irqs_disabled()))
  3610. return;
  3611. do {
  3612. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3613. schedule();
  3614. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3615. /*
  3616. * Check again in case we missed a preemption opportunity
  3617. * between schedule and now.
  3618. */
  3619. barrier();
  3620. } while (need_resched());
  3621. }
  3622. EXPORT_SYMBOL(preempt_schedule);
  3623. /*
  3624. * this is the entry point to schedule() from kernel preemption
  3625. * off of irq context.
  3626. * Note, that this is called and return with irqs disabled. This will
  3627. * protect us against recursive calling from irq.
  3628. */
  3629. asmlinkage void __sched preempt_schedule_irq(void)
  3630. {
  3631. struct thread_info *ti = current_thread_info();
  3632. /* Catch callers which need to be fixed */
  3633. BUG_ON(ti->preempt_count || !irqs_disabled());
  3634. do {
  3635. add_preempt_count(PREEMPT_ACTIVE);
  3636. local_irq_enable();
  3637. schedule();
  3638. local_irq_disable();
  3639. sub_preempt_count(PREEMPT_ACTIVE);
  3640. /*
  3641. * Check again in case we missed a preemption opportunity
  3642. * between schedule and now.
  3643. */
  3644. barrier();
  3645. } while (need_resched());
  3646. }
  3647. #endif /* CONFIG_PREEMPT */
  3648. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3649. void *key)
  3650. {
  3651. return try_to_wake_up(curr->private, mode, wake_flags);
  3652. }
  3653. EXPORT_SYMBOL(default_wake_function);
  3654. /*
  3655. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3656. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3657. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3658. *
  3659. * There are circumstances in which we can try to wake a task which has already
  3660. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3661. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3662. */
  3663. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3664. int nr_exclusive, int wake_flags, void *key)
  3665. {
  3666. wait_queue_t *curr, *next;
  3667. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3668. unsigned flags = curr->flags;
  3669. if (curr->func(curr, mode, wake_flags, key) &&
  3670. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3671. break;
  3672. }
  3673. }
  3674. /**
  3675. * __wake_up - wake up threads blocked on a waitqueue.
  3676. * @q: the waitqueue
  3677. * @mode: which threads
  3678. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3679. * @key: is directly passed to the wakeup function
  3680. *
  3681. * It may be assumed that this function implies a write memory barrier before
  3682. * changing the task state if and only if any tasks are woken up.
  3683. */
  3684. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3685. int nr_exclusive, void *key)
  3686. {
  3687. unsigned long flags;
  3688. spin_lock_irqsave(&q->lock, flags);
  3689. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3690. spin_unlock_irqrestore(&q->lock, flags);
  3691. }
  3692. EXPORT_SYMBOL(__wake_up);
  3693. /*
  3694. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3695. */
  3696. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3697. {
  3698. __wake_up_common(q, mode, 1, 0, NULL);
  3699. }
  3700. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3701. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3702. {
  3703. __wake_up_common(q, mode, 1, 0, key);
  3704. }
  3705. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3706. /**
  3707. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3708. * @q: the waitqueue
  3709. * @mode: which threads
  3710. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3711. * @key: opaque value to be passed to wakeup targets
  3712. *
  3713. * The sync wakeup differs that the waker knows that it will schedule
  3714. * away soon, so while the target thread will be woken up, it will not
  3715. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3716. * with each other. This can prevent needless bouncing between CPUs.
  3717. *
  3718. * On UP it can prevent extra preemption.
  3719. *
  3720. * It may be assumed that this function implies a write memory barrier before
  3721. * changing the task state if and only if any tasks are woken up.
  3722. */
  3723. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3724. int nr_exclusive, void *key)
  3725. {
  3726. unsigned long flags;
  3727. int wake_flags = WF_SYNC;
  3728. if (unlikely(!q))
  3729. return;
  3730. if (unlikely(!nr_exclusive))
  3731. wake_flags = 0;
  3732. spin_lock_irqsave(&q->lock, flags);
  3733. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3734. spin_unlock_irqrestore(&q->lock, flags);
  3735. }
  3736. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3737. /*
  3738. * __wake_up_sync - see __wake_up_sync_key()
  3739. */
  3740. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3741. {
  3742. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3743. }
  3744. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3745. /**
  3746. * complete: - signals a single thread waiting on this completion
  3747. * @x: holds the state of this particular completion
  3748. *
  3749. * This will wake up a single thread waiting on this completion. Threads will be
  3750. * awakened in the same order in which they were queued.
  3751. *
  3752. * See also complete_all(), wait_for_completion() and related routines.
  3753. *
  3754. * It may be assumed that this function implies a write memory barrier before
  3755. * changing the task state if and only if any tasks are woken up.
  3756. */
  3757. void complete(struct completion *x)
  3758. {
  3759. unsigned long flags;
  3760. spin_lock_irqsave(&x->wait.lock, flags);
  3761. x->done++;
  3762. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3763. spin_unlock_irqrestore(&x->wait.lock, flags);
  3764. }
  3765. EXPORT_SYMBOL(complete);
  3766. /**
  3767. * complete_all: - signals all threads waiting on this completion
  3768. * @x: holds the state of this particular completion
  3769. *
  3770. * This will wake up all threads waiting on this particular completion event.
  3771. *
  3772. * It may be assumed that this function implies a write memory barrier before
  3773. * changing the task state if and only if any tasks are woken up.
  3774. */
  3775. void complete_all(struct completion *x)
  3776. {
  3777. unsigned long flags;
  3778. spin_lock_irqsave(&x->wait.lock, flags);
  3779. x->done += UINT_MAX/2;
  3780. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3781. spin_unlock_irqrestore(&x->wait.lock, flags);
  3782. }
  3783. EXPORT_SYMBOL(complete_all);
  3784. static inline long __sched
  3785. do_wait_for_common(struct completion *x, long timeout, int state)
  3786. {
  3787. if (!x->done) {
  3788. DECLARE_WAITQUEUE(wait, current);
  3789. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3790. do {
  3791. if (signal_pending_state(state, current)) {
  3792. timeout = -ERESTARTSYS;
  3793. break;
  3794. }
  3795. __set_current_state(state);
  3796. spin_unlock_irq(&x->wait.lock);
  3797. timeout = schedule_timeout(timeout);
  3798. spin_lock_irq(&x->wait.lock);
  3799. } while (!x->done && timeout);
  3800. __remove_wait_queue(&x->wait, &wait);
  3801. if (!x->done)
  3802. return timeout;
  3803. }
  3804. x->done--;
  3805. return timeout ?: 1;
  3806. }
  3807. static long __sched
  3808. wait_for_common(struct completion *x, long timeout, int state)
  3809. {
  3810. might_sleep();
  3811. spin_lock_irq(&x->wait.lock);
  3812. timeout = do_wait_for_common(x, timeout, state);
  3813. spin_unlock_irq(&x->wait.lock);
  3814. return timeout;
  3815. }
  3816. /**
  3817. * wait_for_completion: - waits for completion of a task
  3818. * @x: holds the state of this particular completion
  3819. *
  3820. * This waits to be signaled for completion of a specific task. It is NOT
  3821. * interruptible and there is no timeout.
  3822. *
  3823. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3824. * and interrupt capability. Also see complete().
  3825. */
  3826. void __sched wait_for_completion(struct completion *x)
  3827. {
  3828. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3829. }
  3830. EXPORT_SYMBOL(wait_for_completion);
  3831. /**
  3832. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3833. * @x: holds the state of this particular completion
  3834. * @timeout: timeout value in jiffies
  3835. *
  3836. * This waits for either a completion of a specific task to be signaled or for a
  3837. * specified timeout to expire. The timeout is in jiffies. It is not
  3838. * interruptible.
  3839. */
  3840. unsigned long __sched
  3841. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3842. {
  3843. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3844. }
  3845. EXPORT_SYMBOL(wait_for_completion_timeout);
  3846. /**
  3847. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3848. * @x: holds the state of this particular completion
  3849. *
  3850. * This waits for completion of a specific task to be signaled. It is
  3851. * interruptible.
  3852. */
  3853. int __sched wait_for_completion_interruptible(struct completion *x)
  3854. {
  3855. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3856. if (t == -ERESTARTSYS)
  3857. return t;
  3858. return 0;
  3859. }
  3860. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3861. /**
  3862. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3863. * @x: holds the state of this particular completion
  3864. * @timeout: timeout value in jiffies
  3865. *
  3866. * This waits for either a completion of a specific task to be signaled or for a
  3867. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3868. */
  3869. long __sched
  3870. wait_for_completion_interruptible_timeout(struct completion *x,
  3871. unsigned long timeout)
  3872. {
  3873. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3874. }
  3875. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3876. /**
  3877. * wait_for_completion_killable: - waits for completion of a task (killable)
  3878. * @x: holds the state of this particular completion
  3879. *
  3880. * This waits to be signaled for completion of a specific task. It can be
  3881. * interrupted by a kill signal.
  3882. */
  3883. int __sched wait_for_completion_killable(struct completion *x)
  3884. {
  3885. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3886. if (t == -ERESTARTSYS)
  3887. return t;
  3888. return 0;
  3889. }
  3890. EXPORT_SYMBOL(wait_for_completion_killable);
  3891. /**
  3892. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3893. * @x: holds the state of this particular completion
  3894. * @timeout: timeout value in jiffies
  3895. *
  3896. * This waits for either a completion of a specific task to be
  3897. * signaled or for a specified timeout to expire. It can be
  3898. * interrupted by a kill signal. The timeout is in jiffies.
  3899. */
  3900. long __sched
  3901. wait_for_completion_killable_timeout(struct completion *x,
  3902. unsigned long timeout)
  3903. {
  3904. return wait_for_common(x, timeout, TASK_KILLABLE);
  3905. }
  3906. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3907. /**
  3908. * try_wait_for_completion - try to decrement a completion without blocking
  3909. * @x: completion structure
  3910. *
  3911. * Returns: 0 if a decrement cannot be done without blocking
  3912. * 1 if a decrement succeeded.
  3913. *
  3914. * If a completion is being used as a counting completion,
  3915. * attempt to decrement the counter without blocking. This
  3916. * enables us to avoid waiting if the resource the completion
  3917. * is protecting is not available.
  3918. */
  3919. bool try_wait_for_completion(struct completion *x)
  3920. {
  3921. unsigned long flags;
  3922. int ret = 1;
  3923. spin_lock_irqsave(&x->wait.lock, flags);
  3924. if (!x->done)
  3925. ret = 0;
  3926. else
  3927. x->done--;
  3928. spin_unlock_irqrestore(&x->wait.lock, flags);
  3929. return ret;
  3930. }
  3931. EXPORT_SYMBOL(try_wait_for_completion);
  3932. /**
  3933. * completion_done - Test to see if a completion has any waiters
  3934. * @x: completion structure
  3935. *
  3936. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3937. * 1 if there are no waiters.
  3938. *
  3939. */
  3940. bool completion_done(struct completion *x)
  3941. {
  3942. unsigned long flags;
  3943. int ret = 1;
  3944. spin_lock_irqsave(&x->wait.lock, flags);
  3945. if (!x->done)
  3946. ret = 0;
  3947. spin_unlock_irqrestore(&x->wait.lock, flags);
  3948. return ret;
  3949. }
  3950. EXPORT_SYMBOL(completion_done);
  3951. static long __sched
  3952. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3953. {
  3954. unsigned long flags;
  3955. wait_queue_t wait;
  3956. init_waitqueue_entry(&wait, current);
  3957. __set_current_state(state);
  3958. spin_lock_irqsave(&q->lock, flags);
  3959. __add_wait_queue(q, &wait);
  3960. spin_unlock(&q->lock);
  3961. timeout = schedule_timeout(timeout);
  3962. spin_lock_irq(&q->lock);
  3963. __remove_wait_queue(q, &wait);
  3964. spin_unlock_irqrestore(&q->lock, flags);
  3965. return timeout;
  3966. }
  3967. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3968. {
  3969. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3970. }
  3971. EXPORT_SYMBOL(interruptible_sleep_on);
  3972. long __sched
  3973. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3974. {
  3975. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3976. }
  3977. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3978. void __sched sleep_on(wait_queue_head_t *q)
  3979. {
  3980. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3981. }
  3982. EXPORT_SYMBOL(sleep_on);
  3983. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3984. {
  3985. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3986. }
  3987. EXPORT_SYMBOL(sleep_on_timeout);
  3988. #ifdef CONFIG_RT_MUTEXES
  3989. /*
  3990. * rt_mutex_setprio - set the current priority of a task
  3991. * @p: task
  3992. * @prio: prio value (kernel-internal form)
  3993. *
  3994. * This function changes the 'effective' priority of a task. It does
  3995. * not touch ->normal_prio like __setscheduler().
  3996. *
  3997. * Used by the rt_mutex code to implement priority inheritance logic.
  3998. */
  3999. void rt_mutex_setprio(struct task_struct *p, int prio)
  4000. {
  4001. unsigned long flags;
  4002. int oldprio, on_rq, running;
  4003. struct rq *rq;
  4004. const struct sched_class *prev_class;
  4005. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4006. rq = task_rq_lock(p, &flags);
  4007. trace_sched_pi_setprio(p, prio);
  4008. oldprio = p->prio;
  4009. prev_class = p->sched_class;
  4010. on_rq = p->se.on_rq;
  4011. running = task_current(rq, p);
  4012. if (on_rq)
  4013. dequeue_task(rq, p, 0);
  4014. if (running)
  4015. p->sched_class->put_prev_task(rq, p);
  4016. if (rt_prio(prio))
  4017. p->sched_class = &rt_sched_class;
  4018. else
  4019. p->sched_class = &fair_sched_class;
  4020. p->prio = prio;
  4021. if (running)
  4022. p->sched_class->set_curr_task(rq);
  4023. if (on_rq)
  4024. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4025. check_class_changed(rq, p, prev_class, oldprio);
  4026. task_rq_unlock(rq, &flags);
  4027. }
  4028. #endif
  4029. void set_user_nice(struct task_struct *p, long nice)
  4030. {
  4031. int old_prio, delta, on_rq;
  4032. unsigned long flags;
  4033. struct rq *rq;
  4034. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4035. return;
  4036. /*
  4037. * We have to be careful, if called from sys_setpriority(),
  4038. * the task might be in the middle of scheduling on another CPU.
  4039. */
  4040. rq = task_rq_lock(p, &flags);
  4041. /*
  4042. * The RT priorities are set via sched_setscheduler(), but we still
  4043. * allow the 'normal' nice value to be set - but as expected
  4044. * it wont have any effect on scheduling until the task is
  4045. * SCHED_FIFO/SCHED_RR:
  4046. */
  4047. if (task_has_rt_policy(p)) {
  4048. p->static_prio = NICE_TO_PRIO(nice);
  4049. goto out_unlock;
  4050. }
  4051. on_rq = p->se.on_rq;
  4052. if (on_rq)
  4053. dequeue_task(rq, p, 0);
  4054. p->static_prio = NICE_TO_PRIO(nice);
  4055. set_load_weight(p);
  4056. old_prio = p->prio;
  4057. p->prio = effective_prio(p);
  4058. delta = p->prio - old_prio;
  4059. if (on_rq) {
  4060. enqueue_task(rq, p, 0);
  4061. /*
  4062. * If the task increased its priority or is running and
  4063. * lowered its priority, then reschedule its CPU:
  4064. */
  4065. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4066. resched_task(rq->curr);
  4067. }
  4068. out_unlock:
  4069. task_rq_unlock(rq, &flags);
  4070. }
  4071. EXPORT_SYMBOL(set_user_nice);
  4072. /*
  4073. * can_nice - check if a task can reduce its nice value
  4074. * @p: task
  4075. * @nice: nice value
  4076. */
  4077. int can_nice(const struct task_struct *p, const int nice)
  4078. {
  4079. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4080. int nice_rlim = 20 - nice;
  4081. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4082. capable(CAP_SYS_NICE));
  4083. }
  4084. #ifdef __ARCH_WANT_SYS_NICE
  4085. /*
  4086. * sys_nice - change the priority of the current process.
  4087. * @increment: priority increment
  4088. *
  4089. * sys_setpriority is a more generic, but much slower function that
  4090. * does similar things.
  4091. */
  4092. SYSCALL_DEFINE1(nice, int, increment)
  4093. {
  4094. long nice, retval;
  4095. /*
  4096. * Setpriority might change our priority at the same moment.
  4097. * We don't have to worry. Conceptually one call occurs first
  4098. * and we have a single winner.
  4099. */
  4100. if (increment < -40)
  4101. increment = -40;
  4102. if (increment > 40)
  4103. increment = 40;
  4104. nice = TASK_NICE(current) + increment;
  4105. if (nice < -20)
  4106. nice = -20;
  4107. if (nice > 19)
  4108. nice = 19;
  4109. if (increment < 0 && !can_nice(current, nice))
  4110. return -EPERM;
  4111. retval = security_task_setnice(current, nice);
  4112. if (retval)
  4113. return retval;
  4114. set_user_nice(current, nice);
  4115. return 0;
  4116. }
  4117. #endif
  4118. /**
  4119. * task_prio - return the priority value of a given task.
  4120. * @p: the task in question.
  4121. *
  4122. * This is the priority value as seen by users in /proc.
  4123. * RT tasks are offset by -200. Normal tasks are centered
  4124. * around 0, value goes from -16 to +15.
  4125. */
  4126. int task_prio(const struct task_struct *p)
  4127. {
  4128. return p->prio - MAX_RT_PRIO;
  4129. }
  4130. /**
  4131. * task_nice - return the nice value of a given task.
  4132. * @p: the task in question.
  4133. */
  4134. int task_nice(const struct task_struct *p)
  4135. {
  4136. return TASK_NICE(p);
  4137. }
  4138. EXPORT_SYMBOL(task_nice);
  4139. /**
  4140. * idle_cpu - is a given cpu idle currently?
  4141. * @cpu: the processor in question.
  4142. */
  4143. int idle_cpu(int cpu)
  4144. {
  4145. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4146. }
  4147. /**
  4148. * idle_task - return the idle task for a given cpu.
  4149. * @cpu: the processor in question.
  4150. */
  4151. struct task_struct *idle_task(int cpu)
  4152. {
  4153. return cpu_rq(cpu)->idle;
  4154. }
  4155. /**
  4156. * find_process_by_pid - find a process with a matching PID value.
  4157. * @pid: the pid in question.
  4158. */
  4159. static struct task_struct *find_process_by_pid(pid_t pid)
  4160. {
  4161. return pid ? find_task_by_vpid(pid) : current;
  4162. }
  4163. /* Actually do priority change: must hold rq lock. */
  4164. static void
  4165. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4166. {
  4167. BUG_ON(p->se.on_rq);
  4168. p->policy = policy;
  4169. p->rt_priority = prio;
  4170. p->normal_prio = normal_prio(p);
  4171. /* we are holding p->pi_lock already */
  4172. p->prio = rt_mutex_getprio(p);
  4173. if (rt_prio(p->prio))
  4174. p->sched_class = &rt_sched_class;
  4175. else
  4176. p->sched_class = &fair_sched_class;
  4177. set_load_weight(p);
  4178. }
  4179. /*
  4180. * check the target process has a UID that matches the current process's
  4181. */
  4182. static bool check_same_owner(struct task_struct *p)
  4183. {
  4184. const struct cred *cred = current_cred(), *pcred;
  4185. bool match;
  4186. rcu_read_lock();
  4187. pcred = __task_cred(p);
  4188. if (cred->user->user_ns == pcred->user->user_ns)
  4189. match = (cred->euid == pcred->euid ||
  4190. cred->euid == pcred->uid);
  4191. else
  4192. match = false;
  4193. rcu_read_unlock();
  4194. return match;
  4195. }
  4196. static int __sched_setscheduler(struct task_struct *p, int policy,
  4197. const struct sched_param *param, bool user)
  4198. {
  4199. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4200. unsigned long flags;
  4201. const struct sched_class *prev_class;
  4202. struct rq *rq;
  4203. int reset_on_fork;
  4204. /* may grab non-irq protected spin_locks */
  4205. BUG_ON(in_interrupt());
  4206. recheck:
  4207. /* double check policy once rq lock held */
  4208. if (policy < 0) {
  4209. reset_on_fork = p->sched_reset_on_fork;
  4210. policy = oldpolicy = p->policy;
  4211. } else {
  4212. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4213. policy &= ~SCHED_RESET_ON_FORK;
  4214. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4215. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4216. policy != SCHED_IDLE)
  4217. return -EINVAL;
  4218. }
  4219. /*
  4220. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4221. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4222. * SCHED_BATCH and SCHED_IDLE is 0.
  4223. */
  4224. if (param->sched_priority < 0 ||
  4225. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4226. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4227. return -EINVAL;
  4228. if (rt_policy(policy) != (param->sched_priority != 0))
  4229. return -EINVAL;
  4230. /*
  4231. * Allow unprivileged RT tasks to decrease priority:
  4232. */
  4233. if (user && !capable(CAP_SYS_NICE)) {
  4234. if (rt_policy(policy)) {
  4235. unsigned long rlim_rtprio =
  4236. task_rlimit(p, RLIMIT_RTPRIO);
  4237. /* can't set/change the rt policy */
  4238. if (policy != p->policy && !rlim_rtprio)
  4239. return -EPERM;
  4240. /* can't increase priority */
  4241. if (param->sched_priority > p->rt_priority &&
  4242. param->sched_priority > rlim_rtprio)
  4243. return -EPERM;
  4244. }
  4245. /*
  4246. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4247. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4248. */
  4249. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4250. if (!can_nice(p, TASK_NICE(p)))
  4251. return -EPERM;
  4252. }
  4253. /* can't change other user's priorities */
  4254. if (!check_same_owner(p))
  4255. return -EPERM;
  4256. /* Normal users shall not reset the sched_reset_on_fork flag */
  4257. if (p->sched_reset_on_fork && !reset_on_fork)
  4258. return -EPERM;
  4259. }
  4260. if (user) {
  4261. retval = security_task_setscheduler(p);
  4262. if (retval)
  4263. return retval;
  4264. }
  4265. /*
  4266. * make sure no PI-waiters arrive (or leave) while we are
  4267. * changing the priority of the task:
  4268. */
  4269. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4270. /*
  4271. * To be able to change p->policy safely, the appropriate
  4272. * runqueue lock must be held.
  4273. */
  4274. rq = __task_rq_lock(p);
  4275. /*
  4276. * Changing the policy of the stop threads its a very bad idea
  4277. */
  4278. if (p == rq->stop) {
  4279. __task_rq_unlock(rq);
  4280. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4281. return -EINVAL;
  4282. }
  4283. /*
  4284. * If not changing anything there's no need to proceed further:
  4285. */
  4286. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4287. param->sched_priority == p->rt_priority))) {
  4288. __task_rq_unlock(rq);
  4289. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4290. return 0;
  4291. }
  4292. #ifdef CONFIG_RT_GROUP_SCHED
  4293. if (user) {
  4294. /*
  4295. * Do not allow realtime tasks into groups that have no runtime
  4296. * assigned.
  4297. */
  4298. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4299. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4300. !task_group_is_autogroup(task_group(p))) {
  4301. __task_rq_unlock(rq);
  4302. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4303. return -EPERM;
  4304. }
  4305. }
  4306. #endif
  4307. /* recheck policy now with rq lock held */
  4308. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4309. policy = oldpolicy = -1;
  4310. __task_rq_unlock(rq);
  4311. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4312. goto recheck;
  4313. }
  4314. on_rq = p->se.on_rq;
  4315. running = task_current(rq, p);
  4316. if (on_rq)
  4317. deactivate_task(rq, p, 0);
  4318. if (running)
  4319. p->sched_class->put_prev_task(rq, p);
  4320. p->sched_reset_on_fork = reset_on_fork;
  4321. oldprio = p->prio;
  4322. prev_class = p->sched_class;
  4323. __setscheduler(rq, p, policy, param->sched_priority);
  4324. if (running)
  4325. p->sched_class->set_curr_task(rq);
  4326. if (on_rq)
  4327. activate_task(rq, p, 0);
  4328. check_class_changed(rq, p, prev_class, oldprio);
  4329. __task_rq_unlock(rq);
  4330. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4331. rt_mutex_adjust_pi(p);
  4332. return 0;
  4333. }
  4334. /**
  4335. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4336. * @p: the task in question.
  4337. * @policy: new policy.
  4338. * @param: structure containing the new RT priority.
  4339. *
  4340. * NOTE that the task may be already dead.
  4341. */
  4342. int sched_setscheduler(struct task_struct *p, int policy,
  4343. const struct sched_param *param)
  4344. {
  4345. return __sched_setscheduler(p, policy, param, true);
  4346. }
  4347. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4348. /**
  4349. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4350. * @p: the task in question.
  4351. * @policy: new policy.
  4352. * @param: structure containing the new RT priority.
  4353. *
  4354. * Just like sched_setscheduler, only don't bother checking if the
  4355. * current context has permission. For example, this is needed in
  4356. * stop_machine(): we create temporary high priority worker threads,
  4357. * but our caller might not have that capability.
  4358. */
  4359. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4360. const struct sched_param *param)
  4361. {
  4362. return __sched_setscheduler(p, policy, param, false);
  4363. }
  4364. static int
  4365. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4366. {
  4367. struct sched_param lparam;
  4368. struct task_struct *p;
  4369. int retval;
  4370. if (!param || pid < 0)
  4371. return -EINVAL;
  4372. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4373. return -EFAULT;
  4374. rcu_read_lock();
  4375. retval = -ESRCH;
  4376. p = find_process_by_pid(pid);
  4377. if (p != NULL)
  4378. retval = sched_setscheduler(p, policy, &lparam);
  4379. rcu_read_unlock();
  4380. return retval;
  4381. }
  4382. /**
  4383. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4384. * @pid: the pid in question.
  4385. * @policy: new policy.
  4386. * @param: structure containing the new RT priority.
  4387. */
  4388. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4389. struct sched_param __user *, param)
  4390. {
  4391. /* negative values for policy are not valid */
  4392. if (policy < 0)
  4393. return -EINVAL;
  4394. return do_sched_setscheduler(pid, policy, param);
  4395. }
  4396. /**
  4397. * sys_sched_setparam - set/change the RT priority of a thread
  4398. * @pid: the pid in question.
  4399. * @param: structure containing the new RT priority.
  4400. */
  4401. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4402. {
  4403. return do_sched_setscheduler(pid, -1, param);
  4404. }
  4405. /**
  4406. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4407. * @pid: the pid in question.
  4408. */
  4409. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4410. {
  4411. struct task_struct *p;
  4412. int retval;
  4413. if (pid < 0)
  4414. return -EINVAL;
  4415. retval = -ESRCH;
  4416. rcu_read_lock();
  4417. p = find_process_by_pid(pid);
  4418. if (p) {
  4419. retval = security_task_getscheduler(p);
  4420. if (!retval)
  4421. retval = p->policy
  4422. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4423. }
  4424. rcu_read_unlock();
  4425. return retval;
  4426. }
  4427. /**
  4428. * sys_sched_getparam - get the RT priority of a thread
  4429. * @pid: the pid in question.
  4430. * @param: structure containing the RT priority.
  4431. */
  4432. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4433. {
  4434. struct sched_param lp;
  4435. struct task_struct *p;
  4436. int retval;
  4437. if (!param || pid < 0)
  4438. return -EINVAL;
  4439. rcu_read_lock();
  4440. p = find_process_by_pid(pid);
  4441. retval = -ESRCH;
  4442. if (!p)
  4443. goto out_unlock;
  4444. retval = security_task_getscheduler(p);
  4445. if (retval)
  4446. goto out_unlock;
  4447. lp.sched_priority = p->rt_priority;
  4448. rcu_read_unlock();
  4449. /*
  4450. * This one might sleep, we cannot do it with a spinlock held ...
  4451. */
  4452. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4453. return retval;
  4454. out_unlock:
  4455. rcu_read_unlock();
  4456. return retval;
  4457. }
  4458. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4459. {
  4460. cpumask_var_t cpus_allowed, new_mask;
  4461. struct task_struct *p;
  4462. int retval;
  4463. get_online_cpus();
  4464. rcu_read_lock();
  4465. p = find_process_by_pid(pid);
  4466. if (!p) {
  4467. rcu_read_unlock();
  4468. put_online_cpus();
  4469. return -ESRCH;
  4470. }
  4471. /* Prevent p going away */
  4472. get_task_struct(p);
  4473. rcu_read_unlock();
  4474. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4475. retval = -ENOMEM;
  4476. goto out_put_task;
  4477. }
  4478. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4479. retval = -ENOMEM;
  4480. goto out_free_cpus_allowed;
  4481. }
  4482. retval = -EPERM;
  4483. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4484. goto out_unlock;
  4485. retval = security_task_setscheduler(p);
  4486. if (retval)
  4487. goto out_unlock;
  4488. cpuset_cpus_allowed(p, cpus_allowed);
  4489. cpumask_and(new_mask, in_mask, cpus_allowed);
  4490. again:
  4491. retval = set_cpus_allowed_ptr(p, new_mask);
  4492. if (!retval) {
  4493. cpuset_cpus_allowed(p, cpus_allowed);
  4494. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4495. /*
  4496. * We must have raced with a concurrent cpuset
  4497. * update. Just reset the cpus_allowed to the
  4498. * cpuset's cpus_allowed
  4499. */
  4500. cpumask_copy(new_mask, cpus_allowed);
  4501. goto again;
  4502. }
  4503. }
  4504. out_unlock:
  4505. free_cpumask_var(new_mask);
  4506. out_free_cpus_allowed:
  4507. free_cpumask_var(cpus_allowed);
  4508. out_put_task:
  4509. put_task_struct(p);
  4510. put_online_cpus();
  4511. return retval;
  4512. }
  4513. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4514. struct cpumask *new_mask)
  4515. {
  4516. if (len < cpumask_size())
  4517. cpumask_clear(new_mask);
  4518. else if (len > cpumask_size())
  4519. len = cpumask_size();
  4520. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4521. }
  4522. /**
  4523. * sys_sched_setaffinity - set the cpu affinity of a process
  4524. * @pid: pid of the process
  4525. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4526. * @user_mask_ptr: user-space pointer to the new cpu mask
  4527. */
  4528. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4529. unsigned long __user *, user_mask_ptr)
  4530. {
  4531. cpumask_var_t new_mask;
  4532. int retval;
  4533. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4534. return -ENOMEM;
  4535. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4536. if (retval == 0)
  4537. retval = sched_setaffinity(pid, new_mask);
  4538. free_cpumask_var(new_mask);
  4539. return retval;
  4540. }
  4541. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4542. {
  4543. struct task_struct *p;
  4544. unsigned long flags;
  4545. struct rq *rq;
  4546. int retval;
  4547. get_online_cpus();
  4548. rcu_read_lock();
  4549. retval = -ESRCH;
  4550. p = find_process_by_pid(pid);
  4551. if (!p)
  4552. goto out_unlock;
  4553. retval = security_task_getscheduler(p);
  4554. if (retval)
  4555. goto out_unlock;
  4556. rq = task_rq_lock(p, &flags);
  4557. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4558. task_rq_unlock(rq, &flags);
  4559. out_unlock:
  4560. rcu_read_unlock();
  4561. put_online_cpus();
  4562. return retval;
  4563. }
  4564. /**
  4565. * sys_sched_getaffinity - get the cpu affinity of a process
  4566. * @pid: pid of the process
  4567. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4568. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4569. */
  4570. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4571. unsigned long __user *, user_mask_ptr)
  4572. {
  4573. int ret;
  4574. cpumask_var_t mask;
  4575. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4576. return -EINVAL;
  4577. if (len & (sizeof(unsigned long)-1))
  4578. return -EINVAL;
  4579. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4580. return -ENOMEM;
  4581. ret = sched_getaffinity(pid, mask);
  4582. if (ret == 0) {
  4583. size_t retlen = min_t(size_t, len, cpumask_size());
  4584. if (copy_to_user(user_mask_ptr, mask, retlen))
  4585. ret = -EFAULT;
  4586. else
  4587. ret = retlen;
  4588. }
  4589. free_cpumask_var(mask);
  4590. return ret;
  4591. }
  4592. /**
  4593. * sys_sched_yield - yield the current processor to other threads.
  4594. *
  4595. * This function yields the current CPU to other tasks. If there are no
  4596. * other threads running on this CPU then this function will return.
  4597. */
  4598. SYSCALL_DEFINE0(sched_yield)
  4599. {
  4600. struct rq *rq = this_rq_lock();
  4601. schedstat_inc(rq, yld_count);
  4602. current->sched_class->yield_task(rq);
  4603. /*
  4604. * Since we are going to call schedule() anyway, there's
  4605. * no need to preempt or enable interrupts:
  4606. */
  4607. __release(rq->lock);
  4608. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4609. do_raw_spin_unlock(&rq->lock);
  4610. preempt_enable_no_resched();
  4611. schedule();
  4612. return 0;
  4613. }
  4614. static inline int should_resched(void)
  4615. {
  4616. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4617. }
  4618. static void __cond_resched(void)
  4619. {
  4620. add_preempt_count(PREEMPT_ACTIVE);
  4621. schedule();
  4622. sub_preempt_count(PREEMPT_ACTIVE);
  4623. }
  4624. int __sched _cond_resched(void)
  4625. {
  4626. if (should_resched()) {
  4627. __cond_resched();
  4628. return 1;
  4629. }
  4630. return 0;
  4631. }
  4632. EXPORT_SYMBOL(_cond_resched);
  4633. /*
  4634. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4635. * call schedule, and on return reacquire the lock.
  4636. *
  4637. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4638. * operations here to prevent schedule() from being called twice (once via
  4639. * spin_unlock(), once by hand).
  4640. */
  4641. int __cond_resched_lock(spinlock_t *lock)
  4642. {
  4643. int resched = should_resched();
  4644. int ret = 0;
  4645. lockdep_assert_held(lock);
  4646. if (spin_needbreak(lock) || resched) {
  4647. spin_unlock(lock);
  4648. if (resched)
  4649. __cond_resched();
  4650. else
  4651. cpu_relax();
  4652. ret = 1;
  4653. spin_lock(lock);
  4654. }
  4655. return ret;
  4656. }
  4657. EXPORT_SYMBOL(__cond_resched_lock);
  4658. int __sched __cond_resched_softirq(void)
  4659. {
  4660. BUG_ON(!in_softirq());
  4661. if (should_resched()) {
  4662. local_bh_enable();
  4663. __cond_resched();
  4664. local_bh_disable();
  4665. return 1;
  4666. }
  4667. return 0;
  4668. }
  4669. EXPORT_SYMBOL(__cond_resched_softirq);
  4670. /**
  4671. * yield - yield the current processor to other threads.
  4672. *
  4673. * This is a shortcut for kernel-space yielding - it marks the
  4674. * thread runnable and calls sys_sched_yield().
  4675. */
  4676. void __sched yield(void)
  4677. {
  4678. set_current_state(TASK_RUNNING);
  4679. sys_sched_yield();
  4680. }
  4681. EXPORT_SYMBOL(yield);
  4682. /**
  4683. * yield_to - yield the current processor to another thread in
  4684. * your thread group, or accelerate that thread toward the
  4685. * processor it's on.
  4686. * @p: target task
  4687. * @preempt: whether task preemption is allowed or not
  4688. *
  4689. * It's the caller's job to ensure that the target task struct
  4690. * can't go away on us before we can do any checks.
  4691. *
  4692. * Returns true if we indeed boosted the target task.
  4693. */
  4694. bool __sched yield_to(struct task_struct *p, bool preempt)
  4695. {
  4696. struct task_struct *curr = current;
  4697. struct rq *rq, *p_rq;
  4698. unsigned long flags;
  4699. bool yielded = 0;
  4700. local_irq_save(flags);
  4701. rq = this_rq();
  4702. again:
  4703. p_rq = task_rq(p);
  4704. double_rq_lock(rq, p_rq);
  4705. while (task_rq(p) != p_rq) {
  4706. double_rq_unlock(rq, p_rq);
  4707. goto again;
  4708. }
  4709. if (!curr->sched_class->yield_to_task)
  4710. goto out;
  4711. if (curr->sched_class != p->sched_class)
  4712. goto out;
  4713. if (task_running(p_rq, p) || p->state)
  4714. goto out;
  4715. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4716. if (yielded) {
  4717. schedstat_inc(rq, yld_count);
  4718. /*
  4719. * Make p's CPU reschedule; pick_next_entity takes care of
  4720. * fairness.
  4721. */
  4722. if (preempt && rq != p_rq)
  4723. resched_task(p_rq->curr);
  4724. }
  4725. out:
  4726. double_rq_unlock(rq, p_rq);
  4727. local_irq_restore(flags);
  4728. if (yielded)
  4729. schedule();
  4730. return yielded;
  4731. }
  4732. EXPORT_SYMBOL_GPL(yield_to);
  4733. /*
  4734. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4735. * that process accounting knows that this is a task in IO wait state.
  4736. */
  4737. void __sched io_schedule(void)
  4738. {
  4739. struct rq *rq = raw_rq();
  4740. delayacct_blkio_start();
  4741. atomic_inc(&rq->nr_iowait);
  4742. blk_flush_plug(current);
  4743. current->in_iowait = 1;
  4744. schedule();
  4745. current->in_iowait = 0;
  4746. atomic_dec(&rq->nr_iowait);
  4747. delayacct_blkio_end();
  4748. }
  4749. EXPORT_SYMBOL(io_schedule);
  4750. long __sched io_schedule_timeout(long timeout)
  4751. {
  4752. struct rq *rq = raw_rq();
  4753. long ret;
  4754. delayacct_blkio_start();
  4755. atomic_inc(&rq->nr_iowait);
  4756. blk_flush_plug(current);
  4757. current->in_iowait = 1;
  4758. ret = schedule_timeout(timeout);
  4759. current->in_iowait = 0;
  4760. atomic_dec(&rq->nr_iowait);
  4761. delayacct_blkio_end();
  4762. return ret;
  4763. }
  4764. /**
  4765. * sys_sched_get_priority_max - return maximum RT priority.
  4766. * @policy: scheduling class.
  4767. *
  4768. * this syscall returns the maximum rt_priority that can be used
  4769. * by a given scheduling class.
  4770. */
  4771. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4772. {
  4773. int ret = -EINVAL;
  4774. switch (policy) {
  4775. case SCHED_FIFO:
  4776. case SCHED_RR:
  4777. ret = MAX_USER_RT_PRIO-1;
  4778. break;
  4779. case SCHED_NORMAL:
  4780. case SCHED_BATCH:
  4781. case SCHED_IDLE:
  4782. ret = 0;
  4783. break;
  4784. }
  4785. return ret;
  4786. }
  4787. /**
  4788. * sys_sched_get_priority_min - return minimum RT priority.
  4789. * @policy: scheduling class.
  4790. *
  4791. * this syscall returns the minimum rt_priority that can be used
  4792. * by a given scheduling class.
  4793. */
  4794. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4795. {
  4796. int ret = -EINVAL;
  4797. switch (policy) {
  4798. case SCHED_FIFO:
  4799. case SCHED_RR:
  4800. ret = 1;
  4801. break;
  4802. case SCHED_NORMAL:
  4803. case SCHED_BATCH:
  4804. case SCHED_IDLE:
  4805. ret = 0;
  4806. }
  4807. return ret;
  4808. }
  4809. /**
  4810. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4811. * @pid: pid of the process.
  4812. * @interval: userspace pointer to the timeslice value.
  4813. *
  4814. * this syscall writes the default timeslice value of a given process
  4815. * into the user-space timespec buffer. A value of '0' means infinity.
  4816. */
  4817. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4818. struct timespec __user *, interval)
  4819. {
  4820. struct task_struct *p;
  4821. unsigned int time_slice;
  4822. unsigned long flags;
  4823. struct rq *rq;
  4824. int retval;
  4825. struct timespec t;
  4826. if (pid < 0)
  4827. return -EINVAL;
  4828. retval = -ESRCH;
  4829. rcu_read_lock();
  4830. p = find_process_by_pid(pid);
  4831. if (!p)
  4832. goto out_unlock;
  4833. retval = security_task_getscheduler(p);
  4834. if (retval)
  4835. goto out_unlock;
  4836. rq = task_rq_lock(p, &flags);
  4837. time_slice = p->sched_class->get_rr_interval(rq, p);
  4838. task_rq_unlock(rq, &flags);
  4839. rcu_read_unlock();
  4840. jiffies_to_timespec(time_slice, &t);
  4841. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4842. return retval;
  4843. out_unlock:
  4844. rcu_read_unlock();
  4845. return retval;
  4846. }
  4847. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4848. void sched_show_task(struct task_struct *p)
  4849. {
  4850. unsigned long free = 0;
  4851. unsigned state;
  4852. state = p->state ? __ffs(p->state) + 1 : 0;
  4853. printk(KERN_INFO "%-15.15s %c", p->comm,
  4854. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4855. #if BITS_PER_LONG == 32
  4856. if (state == TASK_RUNNING)
  4857. printk(KERN_CONT " running ");
  4858. else
  4859. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4860. #else
  4861. if (state == TASK_RUNNING)
  4862. printk(KERN_CONT " running task ");
  4863. else
  4864. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4865. #endif
  4866. #ifdef CONFIG_DEBUG_STACK_USAGE
  4867. free = stack_not_used(p);
  4868. #endif
  4869. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4870. task_pid_nr(p), task_pid_nr(p->real_parent),
  4871. (unsigned long)task_thread_info(p)->flags);
  4872. show_stack(p, NULL);
  4873. }
  4874. void show_state_filter(unsigned long state_filter)
  4875. {
  4876. struct task_struct *g, *p;
  4877. #if BITS_PER_LONG == 32
  4878. printk(KERN_INFO
  4879. " task PC stack pid father\n");
  4880. #else
  4881. printk(KERN_INFO
  4882. " task PC stack pid father\n");
  4883. #endif
  4884. read_lock(&tasklist_lock);
  4885. do_each_thread(g, p) {
  4886. /*
  4887. * reset the NMI-timeout, listing all files on a slow
  4888. * console might take a lot of time:
  4889. */
  4890. touch_nmi_watchdog();
  4891. if (!state_filter || (p->state & state_filter))
  4892. sched_show_task(p);
  4893. } while_each_thread(g, p);
  4894. touch_all_softlockup_watchdogs();
  4895. #ifdef CONFIG_SCHED_DEBUG
  4896. sysrq_sched_debug_show();
  4897. #endif
  4898. read_unlock(&tasklist_lock);
  4899. /*
  4900. * Only show locks if all tasks are dumped:
  4901. */
  4902. if (!state_filter)
  4903. debug_show_all_locks();
  4904. }
  4905. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4906. {
  4907. idle->sched_class = &idle_sched_class;
  4908. }
  4909. /**
  4910. * init_idle - set up an idle thread for a given CPU
  4911. * @idle: task in question
  4912. * @cpu: cpu the idle task belongs to
  4913. *
  4914. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4915. * flag, to make booting more robust.
  4916. */
  4917. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4918. {
  4919. struct rq *rq = cpu_rq(cpu);
  4920. unsigned long flags;
  4921. raw_spin_lock_irqsave(&rq->lock, flags);
  4922. __sched_fork(idle);
  4923. idle->state = TASK_RUNNING;
  4924. idle->se.exec_start = sched_clock();
  4925. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4926. /*
  4927. * We're having a chicken and egg problem, even though we are
  4928. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4929. * lockdep check in task_group() will fail.
  4930. *
  4931. * Similar case to sched_fork(). / Alternatively we could
  4932. * use task_rq_lock() here and obtain the other rq->lock.
  4933. *
  4934. * Silence PROVE_RCU
  4935. */
  4936. rcu_read_lock();
  4937. __set_task_cpu(idle, cpu);
  4938. rcu_read_unlock();
  4939. rq->curr = rq->idle = idle;
  4940. #if defined(CONFIG_SMP)
  4941. idle->on_cpu = 1;
  4942. #endif
  4943. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4944. /* Set the preempt count _outside_ the spinlocks! */
  4945. #if defined(CONFIG_PREEMPT)
  4946. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4947. #else
  4948. task_thread_info(idle)->preempt_count = 0;
  4949. #endif
  4950. /*
  4951. * The idle tasks have their own, simple scheduling class:
  4952. */
  4953. idle->sched_class = &idle_sched_class;
  4954. ftrace_graph_init_idle_task(idle, cpu);
  4955. }
  4956. /*
  4957. * In a system that switches off the HZ timer nohz_cpu_mask
  4958. * indicates which cpus entered this state. This is used
  4959. * in the rcu update to wait only for active cpus. For system
  4960. * which do not switch off the HZ timer nohz_cpu_mask should
  4961. * always be CPU_BITS_NONE.
  4962. */
  4963. cpumask_var_t nohz_cpu_mask;
  4964. /*
  4965. * Increase the granularity value when there are more CPUs,
  4966. * because with more CPUs the 'effective latency' as visible
  4967. * to users decreases. But the relationship is not linear,
  4968. * so pick a second-best guess by going with the log2 of the
  4969. * number of CPUs.
  4970. *
  4971. * This idea comes from the SD scheduler of Con Kolivas:
  4972. */
  4973. static int get_update_sysctl_factor(void)
  4974. {
  4975. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4976. unsigned int factor;
  4977. switch (sysctl_sched_tunable_scaling) {
  4978. case SCHED_TUNABLESCALING_NONE:
  4979. factor = 1;
  4980. break;
  4981. case SCHED_TUNABLESCALING_LINEAR:
  4982. factor = cpus;
  4983. break;
  4984. case SCHED_TUNABLESCALING_LOG:
  4985. default:
  4986. factor = 1 + ilog2(cpus);
  4987. break;
  4988. }
  4989. return factor;
  4990. }
  4991. static void update_sysctl(void)
  4992. {
  4993. unsigned int factor = get_update_sysctl_factor();
  4994. #define SET_SYSCTL(name) \
  4995. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4996. SET_SYSCTL(sched_min_granularity);
  4997. SET_SYSCTL(sched_latency);
  4998. SET_SYSCTL(sched_wakeup_granularity);
  4999. #undef SET_SYSCTL
  5000. }
  5001. static inline void sched_init_granularity(void)
  5002. {
  5003. update_sysctl();
  5004. }
  5005. #ifdef CONFIG_SMP
  5006. /*
  5007. * This is how migration works:
  5008. *
  5009. * 1) we invoke migration_cpu_stop() on the target CPU using
  5010. * stop_one_cpu().
  5011. * 2) stopper starts to run (implicitly forcing the migrated thread
  5012. * off the CPU)
  5013. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5014. * 4) if it's in the wrong runqueue then the migration thread removes
  5015. * it and puts it into the right queue.
  5016. * 5) stopper completes and stop_one_cpu() returns and the migration
  5017. * is done.
  5018. */
  5019. /*
  5020. * Change a given task's CPU affinity. Migrate the thread to a
  5021. * proper CPU and schedule it away if the CPU it's executing on
  5022. * is removed from the allowed bitmask.
  5023. *
  5024. * NOTE: the caller must have a valid reference to the task, the
  5025. * task must not exit() & deallocate itself prematurely. The
  5026. * call is not atomic; no spinlocks may be held.
  5027. */
  5028. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5029. {
  5030. unsigned long flags;
  5031. struct rq *rq;
  5032. unsigned int dest_cpu;
  5033. int ret = 0;
  5034. /*
  5035. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  5036. * drop the rq->lock and still rely on ->cpus_allowed.
  5037. */
  5038. again:
  5039. while (task_is_waking(p))
  5040. cpu_relax();
  5041. rq = task_rq_lock(p, &flags);
  5042. if (task_is_waking(p)) {
  5043. task_rq_unlock(rq, &flags);
  5044. goto again;
  5045. }
  5046. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5047. ret = -EINVAL;
  5048. goto out;
  5049. }
  5050. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5051. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5052. ret = -EINVAL;
  5053. goto out;
  5054. }
  5055. if (p->sched_class->set_cpus_allowed)
  5056. p->sched_class->set_cpus_allowed(p, new_mask);
  5057. else {
  5058. cpumask_copy(&p->cpus_allowed, new_mask);
  5059. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5060. }
  5061. /* Can the task run on the task's current CPU? If so, we're done */
  5062. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5063. goto out;
  5064. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5065. if (migrate_task(p, rq)) {
  5066. struct migration_arg arg = { p, dest_cpu };
  5067. /* Need help from migration thread: drop lock and wait. */
  5068. task_rq_unlock(rq, &flags);
  5069. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5070. tlb_migrate_finish(p->mm);
  5071. return 0;
  5072. }
  5073. out:
  5074. task_rq_unlock(rq, &flags);
  5075. return ret;
  5076. }
  5077. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5078. /*
  5079. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5080. * this because either it can't run here any more (set_cpus_allowed()
  5081. * away from this CPU, or CPU going down), or because we're
  5082. * attempting to rebalance this task on exec (sched_exec).
  5083. *
  5084. * So we race with normal scheduler movements, but that's OK, as long
  5085. * as the task is no longer on this CPU.
  5086. *
  5087. * Returns non-zero if task was successfully migrated.
  5088. */
  5089. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5090. {
  5091. struct rq *rq_dest, *rq_src;
  5092. int ret = 0;
  5093. if (unlikely(!cpu_active(dest_cpu)))
  5094. return ret;
  5095. rq_src = cpu_rq(src_cpu);
  5096. rq_dest = cpu_rq(dest_cpu);
  5097. double_rq_lock(rq_src, rq_dest);
  5098. /* Already moved. */
  5099. if (task_cpu(p) != src_cpu)
  5100. goto done;
  5101. /* Affinity changed (again). */
  5102. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5103. goto fail;
  5104. /*
  5105. * If we're not on a rq, the next wake-up will ensure we're
  5106. * placed properly.
  5107. */
  5108. if (p->se.on_rq) {
  5109. deactivate_task(rq_src, p, 0);
  5110. set_task_cpu(p, dest_cpu);
  5111. activate_task(rq_dest, p, 0);
  5112. check_preempt_curr(rq_dest, p, 0);
  5113. }
  5114. done:
  5115. ret = 1;
  5116. fail:
  5117. double_rq_unlock(rq_src, rq_dest);
  5118. return ret;
  5119. }
  5120. /*
  5121. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5122. * and performs thread migration by bumping thread off CPU then
  5123. * 'pushing' onto another runqueue.
  5124. */
  5125. static int migration_cpu_stop(void *data)
  5126. {
  5127. struct migration_arg *arg = data;
  5128. /*
  5129. * The original target cpu might have gone down and we might
  5130. * be on another cpu but it doesn't matter.
  5131. */
  5132. local_irq_disable();
  5133. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5134. local_irq_enable();
  5135. return 0;
  5136. }
  5137. #ifdef CONFIG_HOTPLUG_CPU
  5138. /*
  5139. * Ensures that the idle task is using init_mm right before its cpu goes
  5140. * offline.
  5141. */
  5142. void idle_task_exit(void)
  5143. {
  5144. struct mm_struct *mm = current->active_mm;
  5145. BUG_ON(cpu_online(smp_processor_id()));
  5146. if (mm != &init_mm)
  5147. switch_mm(mm, &init_mm, current);
  5148. mmdrop(mm);
  5149. }
  5150. /*
  5151. * While a dead CPU has no uninterruptible tasks queued at this point,
  5152. * it might still have a nonzero ->nr_uninterruptible counter, because
  5153. * for performance reasons the counter is not stricly tracking tasks to
  5154. * their home CPUs. So we just add the counter to another CPU's counter,
  5155. * to keep the global sum constant after CPU-down:
  5156. */
  5157. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5158. {
  5159. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5160. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5161. rq_src->nr_uninterruptible = 0;
  5162. }
  5163. /*
  5164. * remove the tasks which were accounted by rq from calc_load_tasks.
  5165. */
  5166. static void calc_global_load_remove(struct rq *rq)
  5167. {
  5168. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5169. rq->calc_load_active = 0;
  5170. }
  5171. /*
  5172. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5173. * try_to_wake_up()->select_task_rq().
  5174. *
  5175. * Called with rq->lock held even though we'er in stop_machine() and
  5176. * there's no concurrency possible, we hold the required locks anyway
  5177. * because of lock validation efforts.
  5178. */
  5179. static void migrate_tasks(unsigned int dead_cpu)
  5180. {
  5181. struct rq *rq = cpu_rq(dead_cpu);
  5182. struct task_struct *next, *stop = rq->stop;
  5183. int dest_cpu;
  5184. /*
  5185. * Fudge the rq selection such that the below task selection loop
  5186. * doesn't get stuck on the currently eligible stop task.
  5187. *
  5188. * We're currently inside stop_machine() and the rq is either stuck
  5189. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5190. * either way we should never end up calling schedule() until we're
  5191. * done here.
  5192. */
  5193. rq->stop = NULL;
  5194. for ( ; ; ) {
  5195. /*
  5196. * There's this thread running, bail when that's the only
  5197. * remaining thread.
  5198. */
  5199. if (rq->nr_running == 1)
  5200. break;
  5201. next = pick_next_task(rq);
  5202. BUG_ON(!next);
  5203. next->sched_class->put_prev_task(rq, next);
  5204. /* Find suitable destination for @next, with force if needed. */
  5205. dest_cpu = select_fallback_rq(dead_cpu, next);
  5206. raw_spin_unlock(&rq->lock);
  5207. __migrate_task(next, dead_cpu, dest_cpu);
  5208. raw_spin_lock(&rq->lock);
  5209. }
  5210. rq->stop = stop;
  5211. }
  5212. #endif /* CONFIG_HOTPLUG_CPU */
  5213. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5214. static struct ctl_table sd_ctl_dir[] = {
  5215. {
  5216. .procname = "sched_domain",
  5217. .mode = 0555,
  5218. },
  5219. {}
  5220. };
  5221. static struct ctl_table sd_ctl_root[] = {
  5222. {
  5223. .procname = "kernel",
  5224. .mode = 0555,
  5225. .child = sd_ctl_dir,
  5226. },
  5227. {}
  5228. };
  5229. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5230. {
  5231. struct ctl_table *entry =
  5232. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5233. return entry;
  5234. }
  5235. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5236. {
  5237. struct ctl_table *entry;
  5238. /*
  5239. * In the intermediate directories, both the child directory and
  5240. * procname are dynamically allocated and could fail but the mode
  5241. * will always be set. In the lowest directory the names are
  5242. * static strings and all have proc handlers.
  5243. */
  5244. for (entry = *tablep; entry->mode; entry++) {
  5245. if (entry->child)
  5246. sd_free_ctl_entry(&entry->child);
  5247. if (entry->proc_handler == NULL)
  5248. kfree(entry->procname);
  5249. }
  5250. kfree(*tablep);
  5251. *tablep = NULL;
  5252. }
  5253. static void
  5254. set_table_entry(struct ctl_table *entry,
  5255. const char *procname, void *data, int maxlen,
  5256. mode_t mode, proc_handler *proc_handler)
  5257. {
  5258. entry->procname = procname;
  5259. entry->data = data;
  5260. entry->maxlen = maxlen;
  5261. entry->mode = mode;
  5262. entry->proc_handler = proc_handler;
  5263. }
  5264. static struct ctl_table *
  5265. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5266. {
  5267. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5268. if (table == NULL)
  5269. return NULL;
  5270. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5271. sizeof(long), 0644, proc_doulongvec_minmax);
  5272. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5273. sizeof(long), 0644, proc_doulongvec_minmax);
  5274. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5275. sizeof(int), 0644, proc_dointvec_minmax);
  5276. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5277. sizeof(int), 0644, proc_dointvec_minmax);
  5278. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5279. sizeof(int), 0644, proc_dointvec_minmax);
  5280. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5281. sizeof(int), 0644, proc_dointvec_minmax);
  5282. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5283. sizeof(int), 0644, proc_dointvec_minmax);
  5284. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5285. sizeof(int), 0644, proc_dointvec_minmax);
  5286. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5287. sizeof(int), 0644, proc_dointvec_minmax);
  5288. set_table_entry(&table[9], "cache_nice_tries",
  5289. &sd->cache_nice_tries,
  5290. sizeof(int), 0644, proc_dointvec_minmax);
  5291. set_table_entry(&table[10], "flags", &sd->flags,
  5292. sizeof(int), 0644, proc_dointvec_minmax);
  5293. set_table_entry(&table[11], "name", sd->name,
  5294. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5295. /* &table[12] is terminator */
  5296. return table;
  5297. }
  5298. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5299. {
  5300. struct ctl_table *entry, *table;
  5301. struct sched_domain *sd;
  5302. int domain_num = 0, i;
  5303. char buf[32];
  5304. for_each_domain(cpu, sd)
  5305. domain_num++;
  5306. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5307. if (table == NULL)
  5308. return NULL;
  5309. i = 0;
  5310. for_each_domain(cpu, sd) {
  5311. snprintf(buf, 32, "domain%d", i);
  5312. entry->procname = kstrdup(buf, GFP_KERNEL);
  5313. entry->mode = 0555;
  5314. entry->child = sd_alloc_ctl_domain_table(sd);
  5315. entry++;
  5316. i++;
  5317. }
  5318. return table;
  5319. }
  5320. static struct ctl_table_header *sd_sysctl_header;
  5321. static void register_sched_domain_sysctl(void)
  5322. {
  5323. int i, cpu_num = num_possible_cpus();
  5324. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5325. char buf[32];
  5326. WARN_ON(sd_ctl_dir[0].child);
  5327. sd_ctl_dir[0].child = entry;
  5328. if (entry == NULL)
  5329. return;
  5330. for_each_possible_cpu(i) {
  5331. snprintf(buf, 32, "cpu%d", i);
  5332. entry->procname = kstrdup(buf, GFP_KERNEL);
  5333. entry->mode = 0555;
  5334. entry->child = sd_alloc_ctl_cpu_table(i);
  5335. entry++;
  5336. }
  5337. WARN_ON(sd_sysctl_header);
  5338. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5339. }
  5340. /* may be called multiple times per register */
  5341. static void unregister_sched_domain_sysctl(void)
  5342. {
  5343. if (sd_sysctl_header)
  5344. unregister_sysctl_table(sd_sysctl_header);
  5345. sd_sysctl_header = NULL;
  5346. if (sd_ctl_dir[0].child)
  5347. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5348. }
  5349. #else
  5350. static void register_sched_domain_sysctl(void)
  5351. {
  5352. }
  5353. static void unregister_sched_domain_sysctl(void)
  5354. {
  5355. }
  5356. #endif
  5357. static void set_rq_online(struct rq *rq)
  5358. {
  5359. if (!rq->online) {
  5360. const struct sched_class *class;
  5361. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5362. rq->online = 1;
  5363. for_each_class(class) {
  5364. if (class->rq_online)
  5365. class->rq_online(rq);
  5366. }
  5367. }
  5368. }
  5369. static void set_rq_offline(struct rq *rq)
  5370. {
  5371. if (rq->online) {
  5372. const struct sched_class *class;
  5373. for_each_class(class) {
  5374. if (class->rq_offline)
  5375. class->rq_offline(rq);
  5376. }
  5377. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5378. rq->online = 0;
  5379. }
  5380. }
  5381. /*
  5382. * migration_call - callback that gets triggered when a CPU is added.
  5383. * Here we can start up the necessary migration thread for the new CPU.
  5384. */
  5385. static int __cpuinit
  5386. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5387. {
  5388. int cpu = (long)hcpu;
  5389. unsigned long flags;
  5390. struct rq *rq = cpu_rq(cpu);
  5391. switch (action & ~CPU_TASKS_FROZEN) {
  5392. case CPU_UP_PREPARE:
  5393. rq->calc_load_update = calc_load_update;
  5394. break;
  5395. case CPU_ONLINE:
  5396. /* Update our root-domain */
  5397. raw_spin_lock_irqsave(&rq->lock, flags);
  5398. if (rq->rd) {
  5399. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5400. set_rq_online(rq);
  5401. }
  5402. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5403. break;
  5404. #ifdef CONFIG_HOTPLUG_CPU
  5405. case CPU_DYING:
  5406. /* Update our root-domain */
  5407. raw_spin_lock_irqsave(&rq->lock, flags);
  5408. if (rq->rd) {
  5409. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5410. set_rq_offline(rq);
  5411. }
  5412. migrate_tasks(cpu);
  5413. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5414. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5415. migrate_nr_uninterruptible(rq);
  5416. calc_global_load_remove(rq);
  5417. break;
  5418. #endif
  5419. }
  5420. update_max_interval();
  5421. return NOTIFY_OK;
  5422. }
  5423. /*
  5424. * Register at high priority so that task migration (migrate_all_tasks)
  5425. * happens before everything else. This has to be lower priority than
  5426. * the notifier in the perf_event subsystem, though.
  5427. */
  5428. static struct notifier_block __cpuinitdata migration_notifier = {
  5429. .notifier_call = migration_call,
  5430. .priority = CPU_PRI_MIGRATION,
  5431. };
  5432. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5433. unsigned long action, void *hcpu)
  5434. {
  5435. switch (action & ~CPU_TASKS_FROZEN) {
  5436. case CPU_ONLINE:
  5437. case CPU_DOWN_FAILED:
  5438. set_cpu_active((long)hcpu, true);
  5439. return NOTIFY_OK;
  5440. default:
  5441. return NOTIFY_DONE;
  5442. }
  5443. }
  5444. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5445. unsigned long action, void *hcpu)
  5446. {
  5447. switch (action & ~CPU_TASKS_FROZEN) {
  5448. case CPU_DOWN_PREPARE:
  5449. set_cpu_active((long)hcpu, false);
  5450. return NOTIFY_OK;
  5451. default:
  5452. return NOTIFY_DONE;
  5453. }
  5454. }
  5455. static int __init migration_init(void)
  5456. {
  5457. void *cpu = (void *)(long)smp_processor_id();
  5458. int err;
  5459. /* Initialize migration for the boot CPU */
  5460. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5461. BUG_ON(err == NOTIFY_BAD);
  5462. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5463. register_cpu_notifier(&migration_notifier);
  5464. /* Register cpu active notifiers */
  5465. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5466. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5467. return 0;
  5468. }
  5469. early_initcall(migration_init);
  5470. #endif
  5471. #ifdef CONFIG_SMP
  5472. #ifdef CONFIG_SCHED_DEBUG
  5473. static __read_mostly int sched_domain_debug_enabled;
  5474. static int __init sched_domain_debug_setup(char *str)
  5475. {
  5476. sched_domain_debug_enabled = 1;
  5477. return 0;
  5478. }
  5479. early_param("sched_debug", sched_domain_debug_setup);
  5480. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5481. struct cpumask *groupmask)
  5482. {
  5483. struct sched_group *group = sd->groups;
  5484. char str[256];
  5485. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5486. cpumask_clear(groupmask);
  5487. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5488. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5489. printk("does not load-balance\n");
  5490. if (sd->parent)
  5491. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5492. " has parent");
  5493. return -1;
  5494. }
  5495. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5496. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5497. printk(KERN_ERR "ERROR: domain->span does not contain "
  5498. "CPU%d\n", cpu);
  5499. }
  5500. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5501. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5502. " CPU%d\n", cpu);
  5503. }
  5504. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5505. do {
  5506. if (!group) {
  5507. printk("\n");
  5508. printk(KERN_ERR "ERROR: group is NULL\n");
  5509. break;
  5510. }
  5511. if (!group->cpu_power) {
  5512. printk(KERN_CONT "\n");
  5513. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5514. "set\n");
  5515. break;
  5516. }
  5517. if (!cpumask_weight(sched_group_cpus(group))) {
  5518. printk(KERN_CONT "\n");
  5519. printk(KERN_ERR "ERROR: empty group\n");
  5520. break;
  5521. }
  5522. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5523. printk(KERN_CONT "\n");
  5524. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5525. break;
  5526. }
  5527. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5528. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5529. printk(KERN_CONT " %s", str);
  5530. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5531. printk(KERN_CONT " (cpu_power = %d)",
  5532. group->cpu_power);
  5533. }
  5534. group = group->next;
  5535. } while (group != sd->groups);
  5536. printk(KERN_CONT "\n");
  5537. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5538. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5539. if (sd->parent &&
  5540. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5541. printk(KERN_ERR "ERROR: parent span is not a superset "
  5542. "of domain->span\n");
  5543. return 0;
  5544. }
  5545. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5546. {
  5547. cpumask_var_t groupmask;
  5548. int level = 0;
  5549. if (!sched_domain_debug_enabled)
  5550. return;
  5551. if (!sd) {
  5552. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5553. return;
  5554. }
  5555. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5556. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5557. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5558. return;
  5559. }
  5560. for (;;) {
  5561. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5562. break;
  5563. level++;
  5564. sd = sd->parent;
  5565. if (!sd)
  5566. break;
  5567. }
  5568. free_cpumask_var(groupmask);
  5569. }
  5570. #else /* !CONFIG_SCHED_DEBUG */
  5571. # define sched_domain_debug(sd, cpu) do { } while (0)
  5572. #endif /* CONFIG_SCHED_DEBUG */
  5573. static int sd_degenerate(struct sched_domain *sd)
  5574. {
  5575. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5576. return 1;
  5577. /* Following flags need at least 2 groups */
  5578. if (sd->flags & (SD_LOAD_BALANCE |
  5579. SD_BALANCE_NEWIDLE |
  5580. SD_BALANCE_FORK |
  5581. SD_BALANCE_EXEC |
  5582. SD_SHARE_CPUPOWER |
  5583. SD_SHARE_PKG_RESOURCES)) {
  5584. if (sd->groups != sd->groups->next)
  5585. return 0;
  5586. }
  5587. /* Following flags don't use groups */
  5588. if (sd->flags & (SD_WAKE_AFFINE))
  5589. return 0;
  5590. return 1;
  5591. }
  5592. static int
  5593. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5594. {
  5595. unsigned long cflags = sd->flags, pflags = parent->flags;
  5596. if (sd_degenerate(parent))
  5597. return 1;
  5598. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5599. return 0;
  5600. /* Flags needing groups don't count if only 1 group in parent */
  5601. if (parent->groups == parent->groups->next) {
  5602. pflags &= ~(SD_LOAD_BALANCE |
  5603. SD_BALANCE_NEWIDLE |
  5604. SD_BALANCE_FORK |
  5605. SD_BALANCE_EXEC |
  5606. SD_SHARE_CPUPOWER |
  5607. SD_SHARE_PKG_RESOURCES);
  5608. if (nr_node_ids == 1)
  5609. pflags &= ~SD_SERIALIZE;
  5610. }
  5611. if (~cflags & pflags)
  5612. return 0;
  5613. return 1;
  5614. }
  5615. static void free_rootdomain(struct root_domain *rd)
  5616. {
  5617. synchronize_sched();
  5618. cpupri_cleanup(&rd->cpupri);
  5619. free_cpumask_var(rd->rto_mask);
  5620. free_cpumask_var(rd->online);
  5621. free_cpumask_var(rd->span);
  5622. kfree(rd);
  5623. }
  5624. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5625. {
  5626. struct root_domain *old_rd = NULL;
  5627. unsigned long flags;
  5628. raw_spin_lock_irqsave(&rq->lock, flags);
  5629. if (rq->rd) {
  5630. old_rd = rq->rd;
  5631. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5632. set_rq_offline(rq);
  5633. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5634. /*
  5635. * If we dont want to free the old_rt yet then
  5636. * set old_rd to NULL to skip the freeing later
  5637. * in this function:
  5638. */
  5639. if (!atomic_dec_and_test(&old_rd->refcount))
  5640. old_rd = NULL;
  5641. }
  5642. atomic_inc(&rd->refcount);
  5643. rq->rd = rd;
  5644. cpumask_set_cpu(rq->cpu, rd->span);
  5645. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5646. set_rq_online(rq);
  5647. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5648. if (old_rd)
  5649. free_rootdomain(old_rd);
  5650. }
  5651. static int init_rootdomain(struct root_domain *rd)
  5652. {
  5653. memset(rd, 0, sizeof(*rd));
  5654. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5655. goto out;
  5656. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5657. goto free_span;
  5658. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5659. goto free_online;
  5660. if (cpupri_init(&rd->cpupri) != 0)
  5661. goto free_rto_mask;
  5662. return 0;
  5663. free_rto_mask:
  5664. free_cpumask_var(rd->rto_mask);
  5665. free_online:
  5666. free_cpumask_var(rd->online);
  5667. free_span:
  5668. free_cpumask_var(rd->span);
  5669. out:
  5670. return -ENOMEM;
  5671. }
  5672. static void init_defrootdomain(void)
  5673. {
  5674. init_rootdomain(&def_root_domain);
  5675. atomic_set(&def_root_domain.refcount, 1);
  5676. }
  5677. static struct root_domain *alloc_rootdomain(void)
  5678. {
  5679. struct root_domain *rd;
  5680. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5681. if (!rd)
  5682. return NULL;
  5683. if (init_rootdomain(rd) != 0) {
  5684. kfree(rd);
  5685. return NULL;
  5686. }
  5687. return rd;
  5688. }
  5689. /*
  5690. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5691. * hold the hotplug lock.
  5692. */
  5693. static void
  5694. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5695. {
  5696. struct rq *rq = cpu_rq(cpu);
  5697. struct sched_domain *tmp;
  5698. for (tmp = sd; tmp; tmp = tmp->parent)
  5699. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5700. /* Remove the sched domains which do not contribute to scheduling. */
  5701. for (tmp = sd; tmp; ) {
  5702. struct sched_domain *parent = tmp->parent;
  5703. if (!parent)
  5704. break;
  5705. if (sd_parent_degenerate(tmp, parent)) {
  5706. tmp->parent = parent->parent;
  5707. if (parent->parent)
  5708. parent->parent->child = tmp;
  5709. } else
  5710. tmp = tmp->parent;
  5711. }
  5712. if (sd && sd_degenerate(sd)) {
  5713. sd = sd->parent;
  5714. if (sd)
  5715. sd->child = NULL;
  5716. }
  5717. sched_domain_debug(sd, cpu);
  5718. rq_attach_root(rq, rd);
  5719. rcu_assign_pointer(rq->sd, sd);
  5720. }
  5721. /* cpus with isolated domains */
  5722. static cpumask_var_t cpu_isolated_map;
  5723. /* Setup the mask of cpus configured for isolated domains */
  5724. static int __init isolated_cpu_setup(char *str)
  5725. {
  5726. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5727. cpulist_parse(str, cpu_isolated_map);
  5728. return 1;
  5729. }
  5730. __setup("isolcpus=", isolated_cpu_setup);
  5731. /*
  5732. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5733. * to a function which identifies what group(along with sched group) a CPU
  5734. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5735. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5736. *
  5737. * init_sched_build_groups will build a circular linked list of the groups
  5738. * covered by the given span, and will set each group's ->cpumask correctly,
  5739. * and ->cpu_power to 0.
  5740. */
  5741. static void
  5742. init_sched_build_groups(const struct cpumask *span,
  5743. const struct cpumask *cpu_map,
  5744. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5745. struct sched_group **sg,
  5746. struct cpumask *tmpmask),
  5747. struct cpumask *covered, struct cpumask *tmpmask)
  5748. {
  5749. struct sched_group *first = NULL, *last = NULL;
  5750. int i;
  5751. cpumask_clear(covered);
  5752. for_each_cpu(i, span) {
  5753. struct sched_group *sg;
  5754. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5755. int j;
  5756. if (cpumask_test_cpu(i, covered))
  5757. continue;
  5758. cpumask_clear(sched_group_cpus(sg));
  5759. sg->cpu_power = 0;
  5760. for_each_cpu(j, span) {
  5761. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5762. continue;
  5763. cpumask_set_cpu(j, covered);
  5764. cpumask_set_cpu(j, sched_group_cpus(sg));
  5765. }
  5766. if (!first)
  5767. first = sg;
  5768. if (last)
  5769. last->next = sg;
  5770. last = sg;
  5771. }
  5772. last->next = first;
  5773. }
  5774. #define SD_NODES_PER_DOMAIN 16
  5775. #ifdef CONFIG_NUMA
  5776. /**
  5777. * find_next_best_node - find the next node to include in a sched_domain
  5778. * @node: node whose sched_domain we're building
  5779. * @used_nodes: nodes already in the sched_domain
  5780. *
  5781. * Find the next node to include in a given scheduling domain. Simply
  5782. * finds the closest node not already in the @used_nodes map.
  5783. *
  5784. * Should use nodemask_t.
  5785. */
  5786. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5787. {
  5788. int i, n, val, min_val, best_node = 0;
  5789. min_val = INT_MAX;
  5790. for (i = 0; i < nr_node_ids; i++) {
  5791. /* Start at @node */
  5792. n = (node + i) % nr_node_ids;
  5793. if (!nr_cpus_node(n))
  5794. continue;
  5795. /* Skip already used nodes */
  5796. if (node_isset(n, *used_nodes))
  5797. continue;
  5798. /* Simple min distance search */
  5799. val = node_distance(node, n);
  5800. if (val < min_val) {
  5801. min_val = val;
  5802. best_node = n;
  5803. }
  5804. }
  5805. node_set(best_node, *used_nodes);
  5806. return best_node;
  5807. }
  5808. /**
  5809. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5810. * @node: node whose cpumask we're constructing
  5811. * @span: resulting cpumask
  5812. *
  5813. * Given a node, construct a good cpumask for its sched_domain to span. It
  5814. * should be one that prevents unnecessary balancing, but also spreads tasks
  5815. * out optimally.
  5816. */
  5817. static void sched_domain_node_span(int node, struct cpumask *span)
  5818. {
  5819. nodemask_t used_nodes;
  5820. int i;
  5821. cpumask_clear(span);
  5822. nodes_clear(used_nodes);
  5823. cpumask_or(span, span, cpumask_of_node(node));
  5824. node_set(node, used_nodes);
  5825. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5826. int next_node = find_next_best_node(node, &used_nodes);
  5827. cpumask_or(span, span, cpumask_of_node(next_node));
  5828. }
  5829. }
  5830. #endif /* CONFIG_NUMA */
  5831. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5832. /*
  5833. * The cpus mask in sched_group and sched_domain hangs off the end.
  5834. *
  5835. * ( See the the comments in include/linux/sched.h:struct sched_group
  5836. * and struct sched_domain. )
  5837. */
  5838. struct static_sched_group {
  5839. struct sched_group sg;
  5840. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5841. };
  5842. struct static_sched_domain {
  5843. struct sched_domain sd;
  5844. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5845. };
  5846. struct s_data {
  5847. #ifdef CONFIG_NUMA
  5848. int sd_allnodes;
  5849. cpumask_var_t domainspan;
  5850. cpumask_var_t covered;
  5851. cpumask_var_t notcovered;
  5852. #endif
  5853. cpumask_var_t nodemask;
  5854. cpumask_var_t this_sibling_map;
  5855. cpumask_var_t this_core_map;
  5856. cpumask_var_t this_book_map;
  5857. cpumask_var_t send_covered;
  5858. cpumask_var_t tmpmask;
  5859. struct sched_group **sched_group_nodes;
  5860. struct root_domain *rd;
  5861. };
  5862. enum s_alloc {
  5863. sa_sched_groups = 0,
  5864. sa_rootdomain,
  5865. sa_tmpmask,
  5866. sa_send_covered,
  5867. sa_this_book_map,
  5868. sa_this_core_map,
  5869. sa_this_sibling_map,
  5870. sa_nodemask,
  5871. sa_sched_group_nodes,
  5872. #ifdef CONFIG_NUMA
  5873. sa_notcovered,
  5874. sa_covered,
  5875. sa_domainspan,
  5876. #endif
  5877. sa_none,
  5878. };
  5879. /*
  5880. * SMT sched-domains:
  5881. */
  5882. #ifdef CONFIG_SCHED_SMT
  5883. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5884. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5885. static int
  5886. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5887. struct sched_group **sg, struct cpumask *unused)
  5888. {
  5889. if (sg)
  5890. *sg = &per_cpu(sched_groups, cpu).sg;
  5891. return cpu;
  5892. }
  5893. #endif /* CONFIG_SCHED_SMT */
  5894. /*
  5895. * multi-core sched-domains:
  5896. */
  5897. #ifdef CONFIG_SCHED_MC
  5898. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5899. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5900. static int
  5901. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5902. struct sched_group **sg, struct cpumask *mask)
  5903. {
  5904. int group;
  5905. #ifdef CONFIG_SCHED_SMT
  5906. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5907. group = cpumask_first(mask);
  5908. #else
  5909. group = cpu;
  5910. #endif
  5911. if (sg)
  5912. *sg = &per_cpu(sched_group_core, group).sg;
  5913. return group;
  5914. }
  5915. #endif /* CONFIG_SCHED_MC */
  5916. /*
  5917. * book sched-domains:
  5918. */
  5919. #ifdef CONFIG_SCHED_BOOK
  5920. static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
  5921. static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
  5922. static int
  5923. cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
  5924. struct sched_group **sg, struct cpumask *mask)
  5925. {
  5926. int group = cpu;
  5927. #ifdef CONFIG_SCHED_MC
  5928. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5929. group = cpumask_first(mask);
  5930. #elif defined(CONFIG_SCHED_SMT)
  5931. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5932. group = cpumask_first(mask);
  5933. #endif
  5934. if (sg)
  5935. *sg = &per_cpu(sched_group_book, group).sg;
  5936. return group;
  5937. }
  5938. #endif /* CONFIG_SCHED_BOOK */
  5939. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5940. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5941. static int
  5942. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5943. struct sched_group **sg, struct cpumask *mask)
  5944. {
  5945. int group;
  5946. #ifdef CONFIG_SCHED_BOOK
  5947. cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
  5948. group = cpumask_first(mask);
  5949. #elif defined(CONFIG_SCHED_MC)
  5950. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5951. group = cpumask_first(mask);
  5952. #elif defined(CONFIG_SCHED_SMT)
  5953. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5954. group = cpumask_first(mask);
  5955. #else
  5956. group = cpu;
  5957. #endif
  5958. if (sg)
  5959. *sg = &per_cpu(sched_group_phys, group).sg;
  5960. return group;
  5961. }
  5962. #ifdef CONFIG_NUMA
  5963. /*
  5964. * The init_sched_build_groups can't handle what we want to do with node
  5965. * groups, so roll our own. Now each node has its own list of groups which
  5966. * gets dynamically allocated.
  5967. */
  5968. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5969. static struct sched_group ***sched_group_nodes_bycpu;
  5970. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5971. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5972. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5973. struct sched_group **sg,
  5974. struct cpumask *nodemask)
  5975. {
  5976. int group;
  5977. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5978. group = cpumask_first(nodemask);
  5979. if (sg)
  5980. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5981. return group;
  5982. }
  5983. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5984. {
  5985. struct sched_group *sg = group_head;
  5986. int j;
  5987. if (!sg)
  5988. return;
  5989. do {
  5990. for_each_cpu(j, sched_group_cpus(sg)) {
  5991. struct sched_domain *sd;
  5992. sd = &per_cpu(phys_domains, j).sd;
  5993. if (j != group_first_cpu(sd->groups)) {
  5994. /*
  5995. * Only add "power" once for each
  5996. * physical package.
  5997. */
  5998. continue;
  5999. }
  6000. sg->cpu_power += sd->groups->cpu_power;
  6001. }
  6002. sg = sg->next;
  6003. } while (sg != group_head);
  6004. }
  6005. static int build_numa_sched_groups(struct s_data *d,
  6006. const struct cpumask *cpu_map, int num)
  6007. {
  6008. struct sched_domain *sd;
  6009. struct sched_group *sg, *prev;
  6010. int n, j;
  6011. cpumask_clear(d->covered);
  6012. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  6013. if (cpumask_empty(d->nodemask)) {
  6014. d->sched_group_nodes[num] = NULL;
  6015. goto out;
  6016. }
  6017. sched_domain_node_span(num, d->domainspan);
  6018. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  6019. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6020. GFP_KERNEL, num);
  6021. if (!sg) {
  6022. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  6023. num);
  6024. return -ENOMEM;
  6025. }
  6026. d->sched_group_nodes[num] = sg;
  6027. for_each_cpu(j, d->nodemask) {
  6028. sd = &per_cpu(node_domains, j).sd;
  6029. sd->groups = sg;
  6030. }
  6031. sg->cpu_power = 0;
  6032. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  6033. sg->next = sg;
  6034. cpumask_or(d->covered, d->covered, d->nodemask);
  6035. prev = sg;
  6036. for (j = 0; j < nr_node_ids; j++) {
  6037. n = (num + j) % nr_node_ids;
  6038. cpumask_complement(d->notcovered, d->covered);
  6039. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  6040. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  6041. if (cpumask_empty(d->tmpmask))
  6042. break;
  6043. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  6044. if (cpumask_empty(d->tmpmask))
  6045. continue;
  6046. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6047. GFP_KERNEL, num);
  6048. if (!sg) {
  6049. printk(KERN_WARNING
  6050. "Can not alloc domain group for node %d\n", j);
  6051. return -ENOMEM;
  6052. }
  6053. sg->cpu_power = 0;
  6054. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  6055. sg->next = prev->next;
  6056. cpumask_or(d->covered, d->covered, d->tmpmask);
  6057. prev->next = sg;
  6058. prev = sg;
  6059. }
  6060. out:
  6061. return 0;
  6062. }
  6063. #endif /* CONFIG_NUMA */
  6064. #ifdef CONFIG_NUMA
  6065. /* Free memory allocated for various sched_group structures */
  6066. static void free_sched_groups(const struct cpumask *cpu_map,
  6067. struct cpumask *nodemask)
  6068. {
  6069. int cpu, i;
  6070. for_each_cpu(cpu, cpu_map) {
  6071. struct sched_group **sched_group_nodes
  6072. = sched_group_nodes_bycpu[cpu];
  6073. if (!sched_group_nodes)
  6074. continue;
  6075. for (i = 0; i < nr_node_ids; i++) {
  6076. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6077. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6078. if (cpumask_empty(nodemask))
  6079. continue;
  6080. if (sg == NULL)
  6081. continue;
  6082. sg = sg->next;
  6083. next_sg:
  6084. oldsg = sg;
  6085. sg = sg->next;
  6086. kfree(oldsg);
  6087. if (oldsg != sched_group_nodes[i])
  6088. goto next_sg;
  6089. }
  6090. kfree(sched_group_nodes);
  6091. sched_group_nodes_bycpu[cpu] = NULL;
  6092. }
  6093. }
  6094. #else /* !CONFIG_NUMA */
  6095. static void free_sched_groups(const struct cpumask *cpu_map,
  6096. struct cpumask *nodemask)
  6097. {
  6098. }
  6099. #endif /* CONFIG_NUMA */
  6100. /*
  6101. * Initialize sched groups cpu_power.
  6102. *
  6103. * cpu_power indicates the capacity of sched group, which is used while
  6104. * distributing the load between different sched groups in a sched domain.
  6105. * Typically cpu_power for all the groups in a sched domain will be same unless
  6106. * there are asymmetries in the topology. If there are asymmetries, group
  6107. * having more cpu_power will pickup more load compared to the group having
  6108. * less cpu_power.
  6109. */
  6110. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6111. {
  6112. struct sched_domain *child;
  6113. struct sched_group *group;
  6114. long power;
  6115. int weight;
  6116. WARN_ON(!sd || !sd->groups);
  6117. if (cpu != group_first_cpu(sd->groups))
  6118. return;
  6119. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  6120. child = sd->child;
  6121. sd->groups->cpu_power = 0;
  6122. if (!child) {
  6123. power = SCHED_LOAD_SCALE;
  6124. weight = cpumask_weight(sched_domain_span(sd));
  6125. /*
  6126. * SMT siblings share the power of a single core.
  6127. * Usually multiple threads get a better yield out of
  6128. * that one core than a single thread would have,
  6129. * reflect that in sd->smt_gain.
  6130. */
  6131. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  6132. power *= sd->smt_gain;
  6133. power /= weight;
  6134. power >>= SCHED_LOAD_SHIFT;
  6135. }
  6136. sd->groups->cpu_power += power;
  6137. return;
  6138. }
  6139. /*
  6140. * Add cpu_power of each child group to this groups cpu_power.
  6141. */
  6142. group = child->groups;
  6143. do {
  6144. sd->groups->cpu_power += group->cpu_power;
  6145. group = group->next;
  6146. } while (group != child->groups);
  6147. }
  6148. /*
  6149. * Initializers for schedule domains
  6150. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6151. */
  6152. #ifdef CONFIG_SCHED_DEBUG
  6153. # define SD_INIT_NAME(sd, type) sd->name = #type
  6154. #else
  6155. # define SD_INIT_NAME(sd, type) do { } while (0)
  6156. #endif
  6157. #define SD_INIT(sd, type) sd_init_##type(sd)
  6158. #define SD_INIT_FUNC(type) \
  6159. static noinline void sd_init_##type(struct sched_domain *sd) \
  6160. { \
  6161. memset(sd, 0, sizeof(*sd)); \
  6162. *sd = SD_##type##_INIT; \
  6163. sd->level = SD_LV_##type; \
  6164. SD_INIT_NAME(sd, type); \
  6165. }
  6166. SD_INIT_FUNC(CPU)
  6167. #ifdef CONFIG_NUMA
  6168. SD_INIT_FUNC(ALLNODES)
  6169. SD_INIT_FUNC(NODE)
  6170. #endif
  6171. #ifdef CONFIG_SCHED_SMT
  6172. SD_INIT_FUNC(SIBLING)
  6173. #endif
  6174. #ifdef CONFIG_SCHED_MC
  6175. SD_INIT_FUNC(MC)
  6176. #endif
  6177. #ifdef CONFIG_SCHED_BOOK
  6178. SD_INIT_FUNC(BOOK)
  6179. #endif
  6180. static int default_relax_domain_level = -1;
  6181. static int __init setup_relax_domain_level(char *str)
  6182. {
  6183. unsigned long val;
  6184. val = simple_strtoul(str, NULL, 0);
  6185. if (val < SD_LV_MAX)
  6186. default_relax_domain_level = val;
  6187. return 1;
  6188. }
  6189. __setup("relax_domain_level=", setup_relax_domain_level);
  6190. static void set_domain_attribute(struct sched_domain *sd,
  6191. struct sched_domain_attr *attr)
  6192. {
  6193. int request;
  6194. if (!attr || attr->relax_domain_level < 0) {
  6195. if (default_relax_domain_level < 0)
  6196. return;
  6197. else
  6198. request = default_relax_domain_level;
  6199. } else
  6200. request = attr->relax_domain_level;
  6201. if (request < sd->level) {
  6202. /* turn off idle balance on this domain */
  6203. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6204. } else {
  6205. /* turn on idle balance on this domain */
  6206. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6207. }
  6208. }
  6209. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6210. const struct cpumask *cpu_map)
  6211. {
  6212. switch (what) {
  6213. case sa_sched_groups:
  6214. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  6215. d->sched_group_nodes = NULL;
  6216. case sa_rootdomain:
  6217. free_rootdomain(d->rd); /* fall through */
  6218. case sa_tmpmask:
  6219. free_cpumask_var(d->tmpmask); /* fall through */
  6220. case sa_send_covered:
  6221. free_cpumask_var(d->send_covered); /* fall through */
  6222. case sa_this_book_map:
  6223. free_cpumask_var(d->this_book_map); /* fall through */
  6224. case sa_this_core_map:
  6225. free_cpumask_var(d->this_core_map); /* fall through */
  6226. case sa_this_sibling_map:
  6227. free_cpumask_var(d->this_sibling_map); /* fall through */
  6228. case sa_nodemask:
  6229. free_cpumask_var(d->nodemask); /* fall through */
  6230. case sa_sched_group_nodes:
  6231. #ifdef CONFIG_NUMA
  6232. kfree(d->sched_group_nodes); /* fall through */
  6233. case sa_notcovered:
  6234. free_cpumask_var(d->notcovered); /* fall through */
  6235. case sa_covered:
  6236. free_cpumask_var(d->covered); /* fall through */
  6237. case sa_domainspan:
  6238. free_cpumask_var(d->domainspan); /* fall through */
  6239. #endif
  6240. case sa_none:
  6241. break;
  6242. }
  6243. }
  6244. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6245. const struct cpumask *cpu_map)
  6246. {
  6247. #ifdef CONFIG_NUMA
  6248. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  6249. return sa_none;
  6250. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  6251. return sa_domainspan;
  6252. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  6253. return sa_covered;
  6254. /* Allocate the per-node list of sched groups */
  6255. d->sched_group_nodes = kcalloc(nr_node_ids,
  6256. sizeof(struct sched_group *), GFP_KERNEL);
  6257. if (!d->sched_group_nodes) {
  6258. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6259. return sa_notcovered;
  6260. }
  6261. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  6262. #endif
  6263. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  6264. return sa_sched_group_nodes;
  6265. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  6266. return sa_nodemask;
  6267. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  6268. return sa_this_sibling_map;
  6269. if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
  6270. return sa_this_core_map;
  6271. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  6272. return sa_this_book_map;
  6273. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  6274. return sa_send_covered;
  6275. d->rd = alloc_rootdomain();
  6276. if (!d->rd) {
  6277. printk(KERN_WARNING "Cannot alloc root domain\n");
  6278. return sa_tmpmask;
  6279. }
  6280. return sa_rootdomain;
  6281. }
  6282. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  6283. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  6284. {
  6285. struct sched_domain *sd = NULL;
  6286. #ifdef CONFIG_NUMA
  6287. struct sched_domain *parent;
  6288. d->sd_allnodes = 0;
  6289. if (cpumask_weight(cpu_map) >
  6290. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  6291. sd = &per_cpu(allnodes_domains, i).sd;
  6292. SD_INIT(sd, ALLNODES);
  6293. set_domain_attribute(sd, attr);
  6294. cpumask_copy(sched_domain_span(sd), cpu_map);
  6295. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  6296. d->sd_allnodes = 1;
  6297. }
  6298. parent = sd;
  6299. sd = &per_cpu(node_domains, i).sd;
  6300. SD_INIT(sd, NODE);
  6301. set_domain_attribute(sd, attr);
  6302. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6303. sd->parent = parent;
  6304. if (parent)
  6305. parent->child = sd;
  6306. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6307. #endif
  6308. return sd;
  6309. }
  6310. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6311. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6312. struct sched_domain *parent, int i)
  6313. {
  6314. struct sched_domain *sd;
  6315. sd = &per_cpu(phys_domains, i).sd;
  6316. SD_INIT(sd, CPU);
  6317. set_domain_attribute(sd, attr);
  6318. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6319. sd->parent = parent;
  6320. if (parent)
  6321. parent->child = sd;
  6322. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  6323. return sd;
  6324. }
  6325. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6326. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6327. struct sched_domain *parent, int i)
  6328. {
  6329. struct sched_domain *sd = parent;
  6330. #ifdef CONFIG_SCHED_BOOK
  6331. sd = &per_cpu(book_domains, i).sd;
  6332. SD_INIT(sd, BOOK);
  6333. set_domain_attribute(sd, attr);
  6334. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6335. sd->parent = parent;
  6336. parent->child = sd;
  6337. cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
  6338. #endif
  6339. return sd;
  6340. }
  6341. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6342. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6343. struct sched_domain *parent, int i)
  6344. {
  6345. struct sched_domain *sd = parent;
  6346. #ifdef CONFIG_SCHED_MC
  6347. sd = &per_cpu(core_domains, i).sd;
  6348. SD_INIT(sd, MC);
  6349. set_domain_attribute(sd, attr);
  6350. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6351. sd->parent = parent;
  6352. parent->child = sd;
  6353. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  6354. #endif
  6355. return sd;
  6356. }
  6357. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6358. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6359. struct sched_domain *parent, int i)
  6360. {
  6361. struct sched_domain *sd = parent;
  6362. #ifdef CONFIG_SCHED_SMT
  6363. sd = &per_cpu(cpu_domains, i).sd;
  6364. SD_INIT(sd, SIBLING);
  6365. set_domain_attribute(sd, attr);
  6366. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6367. sd->parent = parent;
  6368. parent->child = sd;
  6369. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  6370. #endif
  6371. return sd;
  6372. }
  6373. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6374. const struct cpumask *cpu_map, int cpu)
  6375. {
  6376. switch (l) {
  6377. #ifdef CONFIG_SCHED_SMT
  6378. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6379. cpumask_and(d->this_sibling_map, cpu_map,
  6380. topology_thread_cpumask(cpu));
  6381. if (cpu == cpumask_first(d->this_sibling_map))
  6382. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6383. &cpu_to_cpu_group,
  6384. d->send_covered, d->tmpmask);
  6385. break;
  6386. #endif
  6387. #ifdef CONFIG_SCHED_MC
  6388. case SD_LV_MC: /* set up multi-core groups */
  6389. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6390. if (cpu == cpumask_first(d->this_core_map))
  6391. init_sched_build_groups(d->this_core_map, cpu_map,
  6392. &cpu_to_core_group,
  6393. d->send_covered, d->tmpmask);
  6394. break;
  6395. #endif
  6396. #ifdef CONFIG_SCHED_BOOK
  6397. case SD_LV_BOOK: /* set up book groups */
  6398. cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
  6399. if (cpu == cpumask_first(d->this_book_map))
  6400. init_sched_build_groups(d->this_book_map, cpu_map,
  6401. &cpu_to_book_group,
  6402. d->send_covered, d->tmpmask);
  6403. break;
  6404. #endif
  6405. case SD_LV_CPU: /* set up physical groups */
  6406. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6407. if (!cpumask_empty(d->nodemask))
  6408. init_sched_build_groups(d->nodemask, cpu_map,
  6409. &cpu_to_phys_group,
  6410. d->send_covered, d->tmpmask);
  6411. break;
  6412. #ifdef CONFIG_NUMA
  6413. case SD_LV_ALLNODES:
  6414. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6415. d->send_covered, d->tmpmask);
  6416. break;
  6417. #endif
  6418. default:
  6419. break;
  6420. }
  6421. }
  6422. /*
  6423. * Build sched domains for a given set of cpus and attach the sched domains
  6424. * to the individual cpus
  6425. */
  6426. static int __build_sched_domains(const struct cpumask *cpu_map,
  6427. struct sched_domain_attr *attr)
  6428. {
  6429. enum s_alloc alloc_state = sa_none;
  6430. struct s_data d;
  6431. struct sched_domain *sd;
  6432. int i;
  6433. #ifdef CONFIG_NUMA
  6434. d.sd_allnodes = 0;
  6435. #endif
  6436. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6437. if (alloc_state != sa_rootdomain)
  6438. goto error;
  6439. alloc_state = sa_sched_groups;
  6440. /*
  6441. * Set up domains for cpus specified by the cpu_map.
  6442. */
  6443. for_each_cpu(i, cpu_map) {
  6444. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6445. cpu_map);
  6446. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6447. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6448. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6449. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6450. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6451. }
  6452. for_each_cpu(i, cpu_map) {
  6453. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6454. build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
  6455. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6456. }
  6457. /* Set up physical groups */
  6458. for (i = 0; i < nr_node_ids; i++)
  6459. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6460. #ifdef CONFIG_NUMA
  6461. /* Set up node groups */
  6462. if (d.sd_allnodes)
  6463. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6464. for (i = 0; i < nr_node_ids; i++)
  6465. if (build_numa_sched_groups(&d, cpu_map, i))
  6466. goto error;
  6467. #endif
  6468. /* Calculate CPU power for physical packages and nodes */
  6469. #ifdef CONFIG_SCHED_SMT
  6470. for_each_cpu(i, cpu_map) {
  6471. sd = &per_cpu(cpu_domains, i).sd;
  6472. init_sched_groups_power(i, sd);
  6473. }
  6474. #endif
  6475. #ifdef CONFIG_SCHED_MC
  6476. for_each_cpu(i, cpu_map) {
  6477. sd = &per_cpu(core_domains, i).sd;
  6478. init_sched_groups_power(i, sd);
  6479. }
  6480. #endif
  6481. #ifdef CONFIG_SCHED_BOOK
  6482. for_each_cpu(i, cpu_map) {
  6483. sd = &per_cpu(book_domains, i).sd;
  6484. init_sched_groups_power(i, sd);
  6485. }
  6486. #endif
  6487. for_each_cpu(i, cpu_map) {
  6488. sd = &per_cpu(phys_domains, i).sd;
  6489. init_sched_groups_power(i, sd);
  6490. }
  6491. #ifdef CONFIG_NUMA
  6492. for (i = 0; i < nr_node_ids; i++)
  6493. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6494. if (d.sd_allnodes) {
  6495. struct sched_group *sg;
  6496. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6497. d.tmpmask);
  6498. init_numa_sched_groups_power(sg);
  6499. }
  6500. #endif
  6501. /* Attach the domains */
  6502. for_each_cpu(i, cpu_map) {
  6503. #ifdef CONFIG_SCHED_SMT
  6504. sd = &per_cpu(cpu_domains, i).sd;
  6505. #elif defined(CONFIG_SCHED_MC)
  6506. sd = &per_cpu(core_domains, i).sd;
  6507. #elif defined(CONFIG_SCHED_BOOK)
  6508. sd = &per_cpu(book_domains, i).sd;
  6509. #else
  6510. sd = &per_cpu(phys_domains, i).sd;
  6511. #endif
  6512. cpu_attach_domain(sd, d.rd, i);
  6513. }
  6514. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6515. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6516. return 0;
  6517. error:
  6518. __free_domain_allocs(&d, alloc_state, cpu_map);
  6519. return -ENOMEM;
  6520. }
  6521. static int build_sched_domains(const struct cpumask *cpu_map)
  6522. {
  6523. return __build_sched_domains(cpu_map, NULL);
  6524. }
  6525. static cpumask_var_t *doms_cur; /* current sched domains */
  6526. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6527. static struct sched_domain_attr *dattr_cur;
  6528. /* attribues of custom domains in 'doms_cur' */
  6529. /*
  6530. * Special case: If a kmalloc of a doms_cur partition (array of
  6531. * cpumask) fails, then fallback to a single sched domain,
  6532. * as determined by the single cpumask fallback_doms.
  6533. */
  6534. static cpumask_var_t fallback_doms;
  6535. /*
  6536. * arch_update_cpu_topology lets virtualized architectures update the
  6537. * cpu core maps. It is supposed to return 1 if the topology changed
  6538. * or 0 if it stayed the same.
  6539. */
  6540. int __attribute__((weak)) arch_update_cpu_topology(void)
  6541. {
  6542. return 0;
  6543. }
  6544. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6545. {
  6546. int i;
  6547. cpumask_var_t *doms;
  6548. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6549. if (!doms)
  6550. return NULL;
  6551. for (i = 0; i < ndoms; i++) {
  6552. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6553. free_sched_domains(doms, i);
  6554. return NULL;
  6555. }
  6556. }
  6557. return doms;
  6558. }
  6559. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6560. {
  6561. unsigned int i;
  6562. for (i = 0; i < ndoms; i++)
  6563. free_cpumask_var(doms[i]);
  6564. kfree(doms);
  6565. }
  6566. /*
  6567. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6568. * For now this just excludes isolated cpus, but could be used to
  6569. * exclude other special cases in the future.
  6570. */
  6571. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6572. {
  6573. int err;
  6574. arch_update_cpu_topology();
  6575. ndoms_cur = 1;
  6576. doms_cur = alloc_sched_domains(ndoms_cur);
  6577. if (!doms_cur)
  6578. doms_cur = &fallback_doms;
  6579. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6580. dattr_cur = NULL;
  6581. err = build_sched_domains(doms_cur[0]);
  6582. register_sched_domain_sysctl();
  6583. return err;
  6584. }
  6585. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6586. struct cpumask *tmpmask)
  6587. {
  6588. free_sched_groups(cpu_map, tmpmask);
  6589. }
  6590. /*
  6591. * Detach sched domains from a group of cpus specified in cpu_map
  6592. * These cpus will now be attached to the NULL domain
  6593. */
  6594. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6595. {
  6596. /* Save because hotplug lock held. */
  6597. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6598. int i;
  6599. for_each_cpu(i, cpu_map)
  6600. cpu_attach_domain(NULL, &def_root_domain, i);
  6601. synchronize_sched();
  6602. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6603. }
  6604. /* handle null as "default" */
  6605. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6606. struct sched_domain_attr *new, int idx_new)
  6607. {
  6608. struct sched_domain_attr tmp;
  6609. /* fast path */
  6610. if (!new && !cur)
  6611. return 1;
  6612. tmp = SD_ATTR_INIT;
  6613. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6614. new ? (new + idx_new) : &tmp,
  6615. sizeof(struct sched_domain_attr));
  6616. }
  6617. /*
  6618. * Partition sched domains as specified by the 'ndoms_new'
  6619. * cpumasks in the array doms_new[] of cpumasks. This compares
  6620. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6621. * It destroys each deleted domain and builds each new domain.
  6622. *
  6623. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6624. * The masks don't intersect (don't overlap.) We should setup one
  6625. * sched domain for each mask. CPUs not in any of the cpumasks will
  6626. * not be load balanced. If the same cpumask appears both in the
  6627. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6628. * it as it is.
  6629. *
  6630. * The passed in 'doms_new' should be allocated using
  6631. * alloc_sched_domains. This routine takes ownership of it and will
  6632. * free_sched_domains it when done with it. If the caller failed the
  6633. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6634. * and partition_sched_domains() will fallback to the single partition
  6635. * 'fallback_doms', it also forces the domains to be rebuilt.
  6636. *
  6637. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6638. * ndoms_new == 0 is a special case for destroying existing domains,
  6639. * and it will not create the default domain.
  6640. *
  6641. * Call with hotplug lock held
  6642. */
  6643. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6644. struct sched_domain_attr *dattr_new)
  6645. {
  6646. int i, j, n;
  6647. int new_topology;
  6648. mutex_lock(&sched_domains_mutex);
  6649. /* always unregister in case we don't destroy any domains */
  6650. unregister_sched_domain_sysctl();
  6651. /* Let architecture update cpu core mappings. */
  6652. new_topology = arch_update_cpu_topology();
  6653. n = doms_new ? ndoms_new : 0;
  6654. /* Destroy deleted domains */
  6655. for (i = 0; i < ndoms_cur; i++) {
  6656. for (j = 0; j < n && !new_topology; j++) {
  6657. if (cpumask_equal(doms_cur[i], doms_new[j])
  6658. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6659. goto match1;
  6660. }
  6661. /* no match - a current sched domain not in new doms_new[] */
  6662. detach_destroy_domains(doms_cur[i]);
  6663. match1:
  6664. ;
  6665. }
  6666. if (doms_new == NULL) {
  6667. ndoms_cur = 0;
  6668. doms_new = &fallback_doms;
  6669. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6670. WARN_ON_ONCE(dattr_new);
  6671. }
  6672. /* Build new domains */
  6673. for (i = 0; i < ndoms_new; i++) {
  6674. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6675. if (cpumask_equal(doms_new[i], doms_cur[j])
  6676. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6677. goto match2;
  6678. }
  6679. /* no match - add a new doms_new */
  6680. __build_sched_domains(doms_new[i],
  6681. dattr_new ? dattr_new + i : NULL);
  6682. match2:
  6683. ;
  6684. }
  6685. /* Remember the new sched domains */
  6686. if (doms_cur != &fallback_doms)
  6687. free_sched_domains(doms_cur, ndoms_cur);
  6688. kfree(dattr_cur); /* kfree(NULL) is safe */
  6689. doms_cur = doms_new;
  6690. dattr_cur = dattr_new;
  6691. ndoms_cur = ndoms_new;
  6692. register_sched_domain_sysctl();
  6693. mutex_unlock(&sched_domains_mutex);
  6694. }
  6695. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6696. static void arch_reinit_sched_domains(void)
  6697. {
  6698. get_online_cpus();
  6699. /* Destroy domains first to force the rebuild */
  6700. partition_sched_domains(0, NULL, NULL);
  6701. rebuild_sched_domains();
  6702. put_online_cpus();
  6703. }
  6704. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6705. {
  6706. unsigned int level = 0;
  6707. if (sscanf(buf, "%u", &level) != 1)
  6708. return -EINVAL;
  6709. /*
  6710. * level is always be positive so don't check for
  6711. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6712. * What happens on 0 or 1 byte write,
  6713. * need to check for count as well?
  6714. */
  6715. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6716. return -EINVAL;
  6717. if (smt)
  6718. sched_smt_power_savings = level;
  6719. else
  6720. sched_mc_power_savings = level;
  6721. arch_reinit_sched_domains();
  6722. return count;
  6723. }
  6724. #ifdef CONFIG_SCHED_MC
  6725. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6726. struct sysdev_class_attribute *attr,
  6727. char *page)
  6728. {
  6729. return sprintf(page, "%u\n", sched_mc_power_savings);
  6730. }
  6731. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6732. struct sysdev_class_attribute *attr,
  6733. const char *buf, size_t count)
  6734. {
  6735. return sched_power_savings_store(buf, count, 0);
  6736. }
  6737. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6738. sched_mc_power_savings_show,
  6739. sched_mc_power_savings_store);
  6740. #endif
  6741. #ifdef CONFIG_SCHED_SMT
  6742. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6743. struct sysdev_class_attribute *attr,
  6744. char *page)
  6745. {
  6746. return sprintf(page, "%u\n", sched_smt_power_savings);
  6747. }
  6748. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6749. struct sysdev_class_attribute *attr,
  6750. const char *buf, size_t count)
  6751. {
  6752. return sched_power_savings_store(buf, count, 1);
  6753. }
  6754. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6755. sched_smt_power_savings_show,
  6756. sched_smt_power_savings_store);
  6757. #endif
  6758. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6759. {
  6760. int err = 0;
  6761. #ifdef CONFIG_SCHED_SMT
  6762. if (smt_capable())
  6763. err = sysfs_create_file(&cls->kset.kobj,
  6764. &attr_sched_smt_power_savings.attr);
  6765. #endif
  6766. #ifdef CONFIG_SCHED_MC
  6767. if (!err && mc_capable())
  6768. err = sysfs_create_file(&cls->kset.kobj,
  6769. &attr_sched_mc_power_savings.attr);
  6770. #endif
  6771. return err;
  6772. }
  6773. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6774. /*
  6775. * Update cpusets according to cpu_active mask. If cpusets are
  6776. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6777. * around partition_sched_domains().
  6778. */
  6779. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6780. void *hcpu)
  6781. {
  6782. switch (action & ~CPU_TASKS_FROZEN) {
  6783. case CPU_ONLINE:
  6784. case CPU_DOWN_FAILED:
  6785. cpuset_update_active_cpus();
  6786. return NOTIFY_OK;
  6787. default:
  6788. return NOTIFY_DONE;
  6789. }
  6790. }
  6791. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6792. void *hcpu)
  6793. {
  6794. switch (action & ~CPU_TASKS_FROZEN) {
  6795. case CPU_DOWN_PREPARE:
  6796. cpuset_update_active_cpus();
  6797. return NOTIFY_OK;
  6798. default:
  6799. return NOTIFY_DONE;
  6800. }
  6801. }
  6802. static int update_runtime(struct notifier_block *nfb,
  6803. unsigned long action, void *hcpu)
  6804. {
  6805. int cpu = (int)(long)hcpu;
  6806. switch (action) {
  6807. case CPU_DOWN_PREPARE:
  6808. case CPU_DOWN_PREPARE_FROZEN:
  6809. disable_runtime(cpu_rq(cpu));
  6810. return NOTIFY_OK;
  6811. case CPU_DOWN_FAILED:
  6812. case CPU_DOWN_FAILED_FROZEN:
  6813. case CPU_ONLINE:
  6814. case CPU_ONLINE_FROZEN:
  6815. enable_runtime(cpu_rq(cpu));
  6816. return NOTIFY_OK;
  6817. default:
  6818. return NOTIFY_DONE;
  6819. }
  6820. }
  6821. void __init sched_init_smp(void)
  6822. {
  6823. cpumask_var_t non_isolated_cpus;
  6824. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6825. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6826. #if defined(CONFIG_NUMA)
  6827. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6828. GFP_KERNEL);
  6829. BUG_ON(sched_group_nodes_bycpu == NULL);
  6830. #endif
  6831. get_online_cpus();
  6832. mutex_lock(&sched_domains_mutex);
  6833. arch_init_sched_domains(cpu_active_mask);
  6834. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6835. if (cpumask_empty(non_isolated_cpus))
  6836. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6837. mutex_unlock(&sched_domains_mutex);
  6838. put_online_cpus();
  6839. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6840. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6841. /* RT runtime code needs to handle some hotplug events */
  6842. hotcpu_notifier(update_runtime, 0);
  6843. init_hrtick();
  6844. /* Move init over to a non-isolated CPU */
  6845. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6846. BUG();
  6847. sched_init_granularity();
  6848. free_cpumask_var(non_isolated_cpus);
  6849. init_sched_rt_class();
  6850. }
  6851. #else
  6852. void __init sched_init_smp(void)
  6853. {
  6854. sched_init_granularity();
  6855. }
  6856. #endif /* CONFIG_SMP */
  6857. const_debug unsigned int sysctl_timer_migration = 1;
  6858. int in_sched_functions(unsigned long addr)
  6859. {
  6860. return in_lock_functions(addr) ||
  6861. (addr >= (unsigned long)__sched_text_start
  6862. && addr < (unsigned long)__sched_text_end);
  6863. }
  6864. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6865. {
  6866. cfs_rq->tasks_timeline = RB_ROOT;
  6867. INIT_LIST_HEAD(&cfs_rq->tasks);
  6868. #ifdef CONFIG_FAIR_GROUP_SCHED
  6869. cfs_rq->rq = rq;
  6870. /* allow initial update_cfs_load() to truncate */
  6871. #ifdef CONFIG_SMP
  6872. cfs_rq->load_stamp = 1;
  6873. #endif
  6874. #endif
  6875. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6876. }
  6877. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6878. {
  6879. struct rt_prio_array *array;
  6880. int i;
  6881. array = &rt_rq->active;
  6882. for (i = 0; i < MAX_RT_PRIO; i++) {
  6883. INIT_LIST_HEAD(array->queue + i);
  6884. __clear_bit(i, array->bitmap);
  6885. }
  6886. /* delimiter for bitsearch: */
  6887. __set_bit(MAX_RT_PRIO, array->bitmap);
  6888. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6889. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6890. #ifdef CONFIG_SMP
  6891. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6892. #endif
  6893. #endif
  6894. #ifdef CONFIG_SMP
  6895. rt_rq->rt_nr_migratory = 0;
  6896. rt_rq->overloaded = 0;
  6897. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6898. #endif
  6899. rt_rq->rt_time = 0;
  6900. rt_rq->rt_throttled = 0;
  6901. rt_rq->rt_runtime = 0;
  6902. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6903. #ifdef CONFIG_RT_GROUP_SCHED
  6904. rt_rq->rt_nr_boosted = 0;
  6905. rt_rq->rq = rq;
  6906. #endif
  6907. }
  6908. #ifdef CONFIG_FAIR_GROUP_SCHED
  6909. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6910. struct sched_entity *se, int cpu,
  6911. struct sched_entity *parent)
  6912. {
  6913. struct rq *rq = cpu_rq(cpu);
  6914. tg->cfs_rq[cpu] = cfs_rq;
  6915. init_cfs_rq(cfs_rq, rq);
  6916. cfs_rq->tg = tg;
  6917. tg->se[cpu] = se;
  6918. /* se could be NULL for root_task_group */
  6919. if (!se)
  6920. return;
  6921. if (!parent)
  6922. se->cfs_rq = &rq->cfs;
  6923. else
  6924. se->cfs_rq = parent->my_q;
  6925. se->my_q = cfs_rq;
  6926. update_load_set(&se->load, 0);
  6927. se->parent = parent;
  6928. }
  6929. #endif
  6930. #ifdef CONFIG_RT_GROUP_SCHED
  6931. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6932. struct sched_rt_entity *rt_se, int cpu,
  6933. struct sched_rt_entity *parent)
  6934. {
  6935. struct rq *rq = cpu_rq(cpu);
  6936. tg->rt_rq[cpu] = rt_rq;
  6937. init_rt_rq(rt_rq, rq);
  6938. rt_rq->tg = tg;
  6939. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6940. tg->rt_se[cpu] = rt_se;
  6941. if (!rt_se)
  6942. return;
  6943. if (!parent)
  6944. rt_se->rt_rq = &rq->rt;
  6945. else
  6946. rt_se->rt_rq = parent->my_q;
  6947. rt_se->my_q = rt_rq;
  6948. rt_se->parent = parent;
  6949. INIT_LIST_HEAD(&rt_se->run_list);
  6950. }
  6951. #endif
  6952. void __init sched_init(void)
  6953. {
  6954. int i, j;
  6955. unsigned long alloc_size = 0, ptr;
  6956. #ifdef CONFIG_FAIR_GROUP_SCHED
  6957. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6958. #endif
  6959. #ifdef CONFIG_RT_GROUP_SCHED
  6960. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6961. #endif
  6962. #ifdef CONFIG_CPUMASK_OFFSTACK
  6963. alloc_size += num_possible_cpus() * cpumask_size();
  6964. #endif
  6965. if (alloc_size) {
  6966. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6967. #ifdef CONFIG_FAIR_GROUP_SCHED
  6968. root_task_group.se = (struct sched_entity **)ptr;
  6969. ptr += nr_cpu_ids * sizeof(void **);
  6970. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6971. ptr += nr_cpu_ids * sizeof(void **);
  6972. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6973. #ifdef CONFIG_RT_GROUP_SCHED
  6974. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6975. ptr += nr_cpu_ids * sizeof(void **);
  6976. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6977. ptr += nr_cpu_ids * sizeof(void **);
  6978. #endif /* CONFIG_RT_GROUP_SCHED */
  6979. #ifdef CONFIG_CPUMASK_OFFSTACK
  6980. for_each_possible_cpu(i) {
  6981. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6982. ptr += cpumask_size();
  6983. }
  6984. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6985. }
  6986. #ifdef CONFIG_SMP
  6987. init_defrootdomain();
  6988. #endif
  6989. init_rt_bandwidth(&def_rt_bandwidth,
  6990. global_rt_period(), global_rt_runtime());
  6991. #ifdef CONFIG_RT_GROUP_SCHED
  6992. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6993. global_rt_period(), global_rt_runtime());
  6994. #endif /* CONFIG_RT_GROUP_SCHED */
  6995. #ifdef CONFIG_CGROUP_SCHED
  6996. list_add(&root_task_group.list, &task_groups);
  6997. INIT_LIST_HEAD(&root_task_group.children);
  6998. autogroup_init(&init_task);
  6999. #endif /* CONFIG_CGROUP_SCHED */
  7000. for_each_possible_cpu(i) {
  7001. struct rq *rq;
  7002. rq = cpu_rq(i);
  7003. raw_spin_lock_init(&rq->lock);
  7004. rq->nr_running = 0;
  7005. rq->calc_load_active = 0;
  7006. rq->calc_load_update = jiffies + LOAD_FREQ;
  7007. init_cfs_rq(&rq->cfs, rq);
  7008. init_rt_rq(&rq->rt, rq);
  7009. #ifdef CONFIG_FAIR_GROUP_SCHED
  7010. root_task_group.shares = root_task_group_load;
  7011. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7012. /*
  7013. * How much cpu bandwidth does root_task_group get?
  7014. *
  7015. * In case of task-groups formed thr' the cgroup filesystem, it
  7016. * gets 100% of the cpu resources in the system. This overall
  7017. * system cpu resource is divided among the tasks of
  7018. * root_task_group and its child task-groups in a fair manner,
  7019. * based on each entity's (task or task-group's) weight
  7020. * (se->load.weight).
  7021. *
  7022. * In other words, if root_task_group has 10 tasks of weight
  7023. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7024. * then A0's share of the cpu resource is:
  7025. *
  7026. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7027. *
  7028. * We achieve this by letting root_task_group's tasks sit
  7029. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  7030. */
  7031. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  7032. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7033. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7034. #ifdef CONFIG_RT_GROUP_SCHED
  7035. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7036. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  7037. #endif
  7038. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7039. rq->cpu_load[j] = 0;
  7040. rq->last_load_update_tick = jiffies;
  7041. #ifdef CONFIG_SMP
  7042. rq->sd = NULL;
  7043. rq->rd = NULL;
  7044. rq->cpu_power = SCHED_LOAD_SCALE;
  7045. rq->post_schedule = 0;
  7046. rq->active_balance = 0;
  7047. rq->next_balance = jiffies;
  7048. rq->push_cpu = 0;
  7049. rq->cpu = i;
  7050. rq->online = 0;
  7051. rq->idle_stamp = 0;
  7052. rq->avg_idle = 2*sysctl_sched_migration_cost;
  7053. rq_attach_root(rq, &def_root_domain);
  7054. #ifdef CONFIG_NO_HZ
  7055. rq->nohz_balance_kick = 0;
  7056. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  7057. #endif
  7058. #endif
  7059. init_rq_hrtick(rq);
  7060. atomic_set(&rq->nr_iowait, 0);
  7061. }
  7062. set_load_weight(&init_task);
  7063. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7064. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7065. #endif
  7066. #ifdef CONFIG_SMP
  7067. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7068. #endif
  7069. #ifdef CONFIG_RT_MUTEXES
  7070. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  7071. #endif
  7072. /*
  7073. * The boot idle thread does lazy MMU switching as well:
  7074. */
  7075. atomic_inc(&init_mm.mm_count);
  7076. enter_lazy_tlb(&init_mm, current);
  7077. /*
  7078. * Make us the idle thread. Technically, schedule() should not be
  7079. * called from this thread, however somewhere below it might be,
  7080. * but because we are the idle thread, we just pick up running again
  7081. * when this runqueue becomes "idle".
  7082. */
  7083. init_idle(current, smp_processor_id());
  7084. calc_load_update = jiffies + LOAD_FREQ;
  7085. /*
  7086. * During early bootup we pretend to be a normal task:
  7087. */
  7088. current->sched_class = &fair_sched_class;
  7089. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7090. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7091. #ifdef CONFIG_SMP
  7092. #ifdef CONFIG_NO_HZ
  7093. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  7094. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  7095. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  7096. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  7097. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  7098. #endif
  7099. /* May be allocated at isolcpus cmdline parse time */
  7100. if (cpu_isolated_map == NULL)
  7101. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7102. #endif /* SMP */
  7103. scheduler_running = 1;
  7104. }
  7105. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7106. static inline int preempt_count_equals(int preempt_offset)
  7107. {
  7108. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  7109. return (nested == preempt_offset);
  7110. }
  7111. void __might_sleep(const char *file, int line, int preempt_offset)
  7112. {
  7113. #ifdef in_atomic
  7114. static unsigned long prev_jiffy; /* ratelimiting */
  7115. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  7116. system_state != SYSTEM_RUNNING || oops_in_progress)
  7117. return;
  7118. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7119. return;
  7120. prev_jiffy = jiffies;
  7121. printk(KERN_ERR
  7122. "BUG: sleeping function called from invalid context at %s:%d\n",
  7123. file, line);
  7124. printk(KERN_ERR
  7125. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7126. in_atomic(), irqs_disabled(),
  7127. current->pid, current->comm);
  7128. debug_show_held_locks(current);
  7129. if (irqs_disabled())
  7130. print_irqtrace_events(current);
  7131. dump_stack();
  7132. #endif
  7133. }
  7134. EXPORT_SYMBOL(__might_sleep);
  7135. #endif
  7136. #ifdef CONFIG_MAGIC_SYSRQ
  7137. static void normalize_task(struct rq *rq, struct task_struct *p)
  7138. {
  7139. const struct sched_class *prev_class = p->sched_class;
  7140. int old_prio = p->prio;
  7141. int on_rq;
  7142. on_rq = p->se.on_rq;
  7143. if (on_rq)
  7144. deactivate_task(rq, p, 0);
  7145. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7146. if (on_rq) {
  7147. activate_task(rq, p, 0);
  7148. resched_task(rq->curr);
  7149. }
  7150. check_class_changed(rq, p, prev_class, old_prio);
  7151. }
  7152. void normalize_rt_tasks(void)
  7153. {
  7154. struct task_struct *g, *p;
  7155. unsigned long flags;
  7156. struct rq *rq;
  7157. read_lock_irqsave(&tasklist_lock, flags);
  7158. do_each_thread(g, p) {
  7159. /*
  7160. * Only normalize user tasks:
  7161. */
  7162. if (!p->mm)
  7163. continue;
  7164. p->se.exec_start = 0;
  7165. #ifdef CONFIG_SCHEDSTATS
  7166. p->se.statistics.wait_start = 0;
  7167. p->se.statistics.sleep_start = 0;
  7168. p->se.statistics.block_start = 0;
  7169. #endif
  7170. if (!rt_task(p)) {
  7171. /*
  7172. * Renice negative nice level userspace
  7173. * tasks back to 0:
  7174. */
  7175. if (TASK_NICE(p) < 0 && p->mm)
  7176. set_user_nice(p, 0);
  7177. continue;
  7178. }
  7179. raw_spin_lock(&p->pi_lock);
  7180. rq = __task_rq_lock(p);
  7181. normalize_task(rq, p);
  7182. __task_rq_unlock(rq);
  7183. raw_spin_unlock(&p->pi_lock);
  7184. } while_each_thread(g, p);
  7185. read_unlock_irqrestore(&tasklist_lock, flags);
  7186. }
  7187. #endif /* CONFIG_MAGIC_SYSRQ */
  7188. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7189. /*
  7190. * These functions are only useful for the IA64 MCA handling, or kdb.
  7191. *
  7192. * They can only be called when the whole system has been
  7193. * stopped - every CPU needs to be quiescent, and no scheduling
  7194. * activity can take place. Using them for anything else would
  7195. * be a serious bug, and as a result, they aren't even visible
  7196. * under any other configuration.
  7197. */
  7198. /**
  7199. * curr_task - return the current task for a given cpu.
  7200. * @cpu: the processor in question.
  7201. *
  7202. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7203. */
  7204. struct task_struct *curr_task(int cpu)
  7205. {
  7206. return cpu_curr(cpu);
  7207. }
  7208. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7209. #ifdef CONFIG_IA64
  7210. /**
  7211. * set_curr_task - set the current task for a given cpu.
  7212. * @cpu: the processor in question.
  7213. * @p: the task pointer to set.
  7214. *
  7215. * Description: This function must only be used when non-maskable interrupts
  7216. * are serviced on a separate stack. It allows the architecture to switch the
  7217. * notion of the current task on a cpu in a non-blocking manner. This function
  7218. * must be called with all CPU's synchronized, and interrupts disabled, the
  7219. * and caller must save the original value of the current task (see
  7220. * curr_task() above) and restore that value before reenabling interrupts and
  7221. * re-starting the system.
  7222. *
  7223. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7224. */
  7225. void set_curr_task(int cpu, struct task_struct *p)
  7226. {
  7227. cpu_curr(cpu) = p;
  7228. }
  7229. #endif
  7230. #ifdef CONFIG_FAIR_GROUP_SCHED
  7231. static void free_fair_sched_group(struct task_group *tg)
  7232. {
  7233. int i;
  7234. for_each_possible_cpu(i) {
  7235. if (tg->cfs_rq)
  7236. kfree(tg->cfs_rq[i]);
  7237. if (tg->se)
  7238. kfree(tg->se[i]);
  7239. }
  7240. kfree(tg->cfs_rq);
  7241. kfree(tg->se);
  7242. }
  7243. static
  7244. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7245. {
  7246. struct cfs_rq *cfs_rq;
  7247. struct sched_entity *se;
  7248. int i;
  7249. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7250. if (!tg->cfs_rq)
  7251. goto err;
  7252. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7253. if (!tg->se)
  7254. goto err;
  7255. tg->shares = NICE_0_LOAD;
  7256. for_each_possible_cpu(i) {
  7257. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7258. GFP_KERNEL, cpu_to_node(i));
  7259. if (!cfs_rq)
  7260. goto err;
  7261. se = kzalloc_node(sizeof(struct sched_entity),
  7262. GFP_KERNEL, cpu_to_node(i));
  7263. if (!se)
  7264. goto err_free_rq;
  7265. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7266. }
  7267. return 1;
  7268. err_free_rq:
  7269. kfree(cfs_rq);
  7270. err:
  7271. return 0;
  7272. }
  7273. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7274. {
  7275. struct rq *rq = cpu_rq(cpu);
  7276. unsigned long flags;
  7277. /*
  7278. * Only empty task groups can be destroyed; so we can speculatively
  7279. * check on_list without danger of it being re-added.
  7280. */
  7281. if (!tg->cfs_rq[cpu]->on_list)
  7282. return;
  7283. raw_spin_lock_irqsave(&rq->lock, flags);
  7284. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7285. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7286. }
  7287. #else /* !CONFG_FAIR_GROUP_SCHED */
  7288. static inline void free_fair_sched_group(struct task_group *tg)
  7289. {
  7290. }
  7291. static inline
  7292. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7293. {
  7294. return 1;
  7295. }
  7296. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7297. {
  7298. }
  7299. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7300. #ifdef CONFIG_RT_GROUP_SCHED
  7301. static void free_rt_sched_group(struct task_group *tg)
  7302. {
  7303. int i;
  7304. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7305. for_each_possible_cpu(i) {
  7306. if (tg->rt_rq)
  7307. kfree(tg->rt_rq[i]);
  7308. if (tg->rt_se)
  7309. kfree(tg->rt_se[i]);
  7310. }
  7311. kfree(tg->rt_rq);
  7312. kfree(tg->rt_se);
  7313. }
  7314. static
  7315. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7316. {
  7317. struct rt_rq *rt_rq;
  7318. struct sched_rt_entity *rt_se;
  7319. struct rq *rq;
  7320. int i;
  7321. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7322. if (!tg->rt_rq)
  7323. goto err;
  7324. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7325. if (!tg->rt_se)
  7326. goto err;
  7327. init_rt_bandwidth(&tg->rt_bandwidth,
  7328. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7329. for_each_possible_cpu(i) {
  7330. rq = cpu_rq(i);
  7331. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7332. GFP_KERNEL, cpu_to_node(i));
  7333. if (!rt_rq)
  7334. goto err;
  7335. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7336. GFP_KERNEL, cpu_to_node(i));
  7337. if (!rt_se)
  7338. goto err_free_rq;
  7339. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7340. }
  7341. return 1;
  7342. err_free_rq:
  7343. kfree(rt_rq);
  7344. err:
  7345. return 0;
  7346. }
  7347. #else /* !CONFIG_RT_GROUP_SCHED */
  7348. static inline void free_rt_sched_group(struct task_group *tg)
  7349. {
  7350. }
  7351. static inline
  7352. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7353. {
  7354. return 1;
  7355. }
  7356. #endif /* CONFIG_RT_GROUP_SCHED */
  7357. #ifdef CONFIG_CGROUP_SCHED
  7358. static void free_sched_group(struct task_group *tg)
  7359. {
  7360. free_fair_sched_group(tg);
  7361. free_rt_sched_group(tg);
  7362. autogroup_free(tg);
  7363. kfree(tg);
  7364. }
  7365. /* allocate runqueue etc for a new task group */
  7366. struct task_group *sched_create_group(struct task_group *parent)
  7367. {
  7368. struct task_group *tg;
  7369. unsigned long flags;
  7370. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7371. if (!tg)
  7372. return ERR_PTR(-ENOMEM);
  7373. if (!alloc_fair_sched_group(tg, parent))
  7374. goto err;
  7375. if (!alloc_rt_sched_group(tg, parent))
  7376. goto err;
  7377. spin_lock_irqsave(&task_group_lock, flags);
  7378. list_add_rcu(&tg->list, &task_groups);
  7379. WARN_ON(!parent); /* root should already exist */
  7380. tg->parent = parent;
  7381. INIT_LIST_HEAD(&tg->children);
  7382. list_add_rcu(&tg->siblings, &parent->children);
  7383. spin_unlock_irqrestore(&task_group_lock, flags);
  7384. return tg;
  7385. err:
  7386. free_sched_group(tg);
  7387. return ERR_PTR(-ENOMEM);
  7388. }
  7389. /* rcu callback to free various structures associated with a task group */
  7390. static void free_sched_group_rcu(struct rcu_head *rhp)
  7391. {
  7392. /* now it should be safe to free those cfs_rqs */
  7393. free_sched_group(container_of(rhp, struct task_group, rcu));
  7394. }
  7395. /* Destroy runqueue etc associated with a task group */
  7396. void sched_destroy_group(struct task_group *tg)
  7397. {
  7398. unsigned long flags;
  7399. int i;
  7400. /* end participation in shares distribution */
  7401. for_each_possible_cpu(i)
  7402. unregister_fair_sched_group(tg, i);
  7403. spin_lock_irqsave(&task_group_lock, flags);
  7404. list_del_rcu(&tg->list);
  7405. list_del_rcu(&tg->siblings);
  7406. spin_unlock_irqrestore(&task_group_lock, flags);
  7407. /* wait for possible concurrent references to cfs_rqs complete */
  7408. call_rcu(&tg->rcu, free_sched_group_rcu);
  7409. }
  7410. /* change task's runqueue when it moves between groups.
  7411. * The caller of this function should have put the task in its new group
  7412. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7413. * reflect its new group.
  7414. */
  7415. void sched_move_task(struct task_struct *tsk)
  7416. {
  7417. int on_rq, running;
  7418. unsigned long flags;
  7419. struct rq *rq;
  7420. rq = task_rq_lock(tsk, &flags);
  7421. running = task_current(rq, tsk);
  7422. on_rq = tsk->se.on_rq;
  7423. if (on_rq)
  7424. dequeue_task(rq, tsk, 0);
  7425. if (unlikely(running))
  7426. tsk->sched_class->put_prev_task(rq, tsk);
  7427. #ifdef CONFIG_FAIR_GROUP_SCHED
  7428. if (tsk->sched_class->task_move_group)
  7429. tsk->sched_class->task_move_group(tsk, on_rq);
  7430. else
  7431. #endif
  7432. set_task_rq(tsk, task_cpu(tsk));
  7433. if (unlikely(running))
  7434. tsk->sched_class->set_curr_task(rq);
  7435. if (on_rq)
  7436. enqueue_task(rq, tsk, 0);
  7437. task_rq_unlock(rq, &flags);
  7438. }
  7439. #endif /* CONFIG_CGROUP_SCHED */
  7440. #ifdef CONFIG_FAIR_GROUP_SCHED
  7441. static DEFINE_MUTEX(shares_mutex);
  7442. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7443. {
  7444. int i;
  7445. unsigned long flags;
  7446. /*
  7447. * We can't change the weight of the root cgroup.
  7448. */
  7449. if (!tg->se[0])
  7450. return -EINVAL;
  7451. if (shares < MIN_SHARES)
  7452. shares = MIN_SHARES;
  7453. else if (shares > MAX_SHARES)
  7454. shares = MAX_SHARES;
  7455. mutex_lock(&shares_mutex);
  7456. if (tg->shares == shares)
  7457. goto done;
  7458. tg->shares = shares;
  7459. for_each_possible_cpu(i) {
  7460. struct rq *rq = cpu_rq(i);
  7461. struct sched_entity *se;
  7462. se = tg->se[i];
  7463. /* Propagate contribution to hierarchy */
  7464. raw_spin_lock_irqsave(&rq->lock, flags);
  7465. for_each_sched_entity(se)
  7466. update_cfs_shares(group_cfs_rq(se));
  7467. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7468. }
  7469. done:
  7470. mutex_unlock(&shares_mutex);
  7471. return 0;
  7472. }
  7473. unsigned long sched_group_shares(struct task_group *tg)
  7474. {
  7475. return tg->shares;
  7476. }
  7477. #endif
  7478. #ifdef CONFIG_RT_GROUP_SCHED
  7479. /*
  7480. * Ensure that the real time constraints are schedulable.
  7481. */
  7482. static DEFINE_MUTEX(rt_constraints_mutex);
  7483. static unsigned long to_ratio(u64 period, u64 runtime)
  7484. {
  7485. if (runtime == RUNTIME_INF)
  7486. return 1ULL << 20;
  7487. return div64_u64(runtime << 20, period);
  7488. }
  7489. /* Must be called with tasklist_lock held */
  7490. static inline int tg_has_rt_tasks(struct task_group *tg)
  7491. {
  7492. struct task_struct *g, *p;
  7493. do_each_thread(g, p) {
  7494. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7495. return 1;
  7496. } while_each_thread(g, p);
  7497. return 0;
  7498. }
  7499. struct rt_schedulable_data {
  7500. struct task_group *tg;
  7501. u64 rt_period;
  7502. u64 rt_runtime;
  7503. };
  7504. static int tg_schedulable(struct task_group *tg, void *data)
  7505. {
  7506. struct rt_schedulable_data *d = data;
  7507. struct task_group *child;
  7508. unsigned long total, sum = 0;
  7509. u64 period, runtime;
  7510. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7511. runtime = tg->rt_bandwidth.rt_runtime;
  7512. if (tg == d->tg) {
  7513. period = d->rt_period;
  7514. runtime = d->rt_runtime;
  7515. }
  7516. /*
  7517. * Cannot have more runtime than the period.
  7518. */
  7519. if (runtime > period && runtime != RUNTIME_INF)
  7520. return -EINVAL;
  7521. /*
  7522. * Ensure we don't starve existing RT tasks.
  7523. */
  7524. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7525. return -EBUSY;
  7526. total = to_ratio(period, runtime);
  7527. /*
  7528. * Nobody can have more than the global setting allows.
  7529. */
  7530. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7531. return -EINVAL;
  7532. /*
  7533. * The sum of our children's runtime should not exceed our own.
  7534. */
  7535. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7536. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7537. runtime = child->rt_bandwidth.rt_runtime;
  7538. if (child == d->tg) {
  7539. period = d->rt_period;
  7540. runtime = d->rt_runtime;
  7541. }
  7542. sum += to_ratio(period, runtime);
  7543. }
  7544. if (sum > total)
  7545. return -EINVAL;
  7546. return 0;
  7547. }
  7548. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7549. {
  7550. struct rt_schedulable_data data = {
  7551. .tg = tg,
  7552. .rt_period = period,
  7553. .rt_runtime = runtime,
  7554. };
  7555. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7556. }
  7557. static int tg_set_bandwidth(struct task_group *tg,
  7558. u64 rt_period, u64 rt_runtime)
  7559. {
  7560. int i, err = 0;
  7561. mutex_lock(&rt_constraints_mutex);
  7562. read_lock(&tasklist_lock);
  7563. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7564. if (err)
  7565. goto unlock;
  7566. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7567. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7568. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7569. for_each_possible_cpu(i) {
  7570. struct rt_rq *rt_rq = tg->rt_rq[i];
  7571. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7572. rt_rq->rt_runtime = rt_runtime;
  7573. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7574. }
  7575. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7576. unlock:
  7577. read_unlock(&tasklist_lock);
  7578. mutex_unlock(&rt_constraints_mutex);
  7579. return err;
  7580. }
  7581. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7582. {
  7583. u64 rt_runtime, rt_period;
  7584. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7585. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7586. if (rt_runtime_us < 0)
  7587. rt_runtime = RUNTIME_INF;
  7588. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7589. }
  7590. long sched_group_rt_runtime(struct task_group *tg)
  7591. {
  7592. u64 rt_runtime_us;
  7593. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7594. return -1;
  7595. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7596. do_div(rt_runtime_us, NSEC_PER_USEC);
  7597. return rt_runtime_us;
  7598. }
  7599. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7600. {
  7601. u64 rt_runtime, rt_period;
  7602. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7603. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7604. if (rt_period == 0)
  7605. return -EINVAL;
  7606. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7607. }
  7608. long sched_group_rt_period(struct task_group *tg)
  7609. {
  7610. u64 rt_period_us;
  7611. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7612. do_div(rt_period_us, NSEC_PER_USEC);
  7613. return rt_period_us;
  7614. }
  7615. static int sched_rt_global_constraints(void)
  7616. {
  7617. u64 runtime, period;
  7618. int ret = 0;
  7619. if (sysctl_sched_rt_period <= 0)
  7620. return -EINVAL;
  7621. runtime = global_rt_runtime();
  7622. period = global_rt_period();
  7623. /*
  7624. * Sanity check on the sysctl variables.
  7625. */
  7626. if (runtime > period && runtime != RUNTIME_INF)
  7627. return -EINVAL;
  7628. mutex_lock(&rt_constraints_mutex);
  7629. read_lock(&tasklist_lock);
  7630. ret = __rt_schedulable(NULL, 0, 0);
  7631. read_unlock(&tasklist_lock);
  7632. mutex_unlock(&rt_constraints_mutex);
  7633. return ret;
  7634. }
  7635. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7636. {
  7637. /* Don't accept realtime tasks when there is no way for them to run */
  7638. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7639. return 0;
  7640. return 1;
  7641. }
  7642. #else /* !CONFIG_RT_GROUP_SCHED */
  7643. static int sched_rt_global_constraints(void)
  7644. {
  7645. unsigned long flags;
  7646. int i;
  7647. if (sysctl_sched_rt_period <= 0)
  7648. return -EINVAL;
  7649. /*
  7650. * There's always some RT tasks in the root group
  7651. * -- migration, kstopmachine etc..
  7652. */
  7653. if (sysctl_sched_rt_runtime == 0)
  7654. return -EBUSY;
  7655. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7656. for_each_possible_cpu(i) {
  7657. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7658. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7659. rt_rq->rt_runtime = global_rt_runtime();
  7660. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7661. }
  7662. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7663. return 0;
  7664. }
  7665. #endif /* CONFIG_RT_GROUP_SCHED */
  7666. int sched_rt_handler(struct ctl_table *table, int write,
  7667. void __user *buffer, size_t *lenp,
  7668. loff_t *ppos)
  7669. {
  7670. int ret;
  7671. int old_period, old_runtime;
  7672. static DEFINE_MUTEX(mutex);
  7673. mutex_lock(&mutex);
  7674. old_period = sysctl_sched_rt_period;
  7675. old_runtime = sysctl_sched_rt_runtime;
  7676. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7677. if (!ret && write) {
  7678. ret = sched_rt_global_constraints();
  7679. if (ret) {
  7680. sysctl_sched_rt_period = old_period;
  7681. sysctl_sched_rt_runtime = old_runtime;
  7682. } else {
  7683. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7684. def_rt_bandwidth.rt_period =
  7685. ns_to_ktime(global_rt_period());
  7686. }
  7687. }
  7688. mutex_unlock(&mutex);
  7689. return ret;
  7690. }
  7691. #ifdef CONFIG_CGROUP_SCHED
  7692. /* return corresponding task_group object of a cgroup */
  7693. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7694. {
  7695. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7696. struct task_group, css);
  7697. }
  7698. static struct cgroup_subsys_state *
  7699. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7700. {
  7701. struct task_group *tg, *parent;
  7702. if (!cgrp->parent) {
  7703. /* This is early initialization for the top cgroup */
  7704. return &root_task_group.css;
  7705. }
  7706. parent = cgroup_tg(cgrp->parent);
  7707. tg = sched_create_group(parent);
  7708. if (IS_ERR(tg))
  7709. return ERR_PTR(-ENOMEM);
  7710. return &tg->css;
  7711. }
  7712. static void
  7713. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7714. {
  7715. struct task_group *tg = cgroup_tg(cgrp);
  7716. sched_destroy_group(tg);
  7717. }
  7718. static int
  7719. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7720. {
  7721. #ifdef CONFIG_RT_GROUP_SCHED
  7722. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7723. return -EINVAL;
  7724. #else
  7725. /* We don't support RT-tasks being in separate groups */
  7726. if (tsk->sched_class != &fair_sched_class)
  7727. return -EINVAL;
  7728. #endif
  7729. return 0;
  7730. }
  7731. static int
  7732. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7733. struct task_struct *tsk, bool threadgroup)
  7734. {
  7735. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7736. if (retval)
  7737. return retval;
  7738. if (threadgroup) {
  7739. struct task_struct *c;
  7740. rcu_read_lock();
  7741. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7742. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7743. if (retval) {
  7744. rcu_read_unlock();
  7745. return retval;
  7746. }
  7747. }
  7748. rcu_read_unlock();
  7749. }
  7750. return 0;
  7751. }
  7752. static void
  7753. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7754. struct cgroup *old_cont, struct task_struct *tsk,
  7755. bool threadgroup)
  7756. {
  7757. sched_move_task(tsk);
  7758. if (threadgroup) {
  7759. struct task_struct *c;
  7760. rcu_read_lock();
  7761. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7762. sched_move_task(c);
  7763. }
  7764. rcu_read_unlock();
  7765. }
  7766. }
  7767. static void
  7768. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7769. struct cgroup *old_cgrp, struct task_struct *task)
  7770. {
  7771. /*
  7772. * cgroup_exit() is called in the copy_process() failure path.
  7773. * Ignore this case since the task hasn't ran yet, this avoids
  7774. * trying to poke a half freed task state from generic code.
  7775. */
  7776. if (!(task->flags & PF_EXITING))
  7777. return;
  7778. sched_move_task(task);
  7779. }
  7780. #ifdef CONFIG_FAIR_GROUP_SCHED
  7781. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7782. u64 shareval)
  7783. {
  7784. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7785. }
  7786. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7787. {
  7788. struct task_group *tg = cgroup_tg(cgrp);
  7789. return (u64) tg->shares;
  7790. }
  7791. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7792. #ifdef CONFIG_RT_GROUP_SCHED
  7793. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7794. s64 val)
  7795. {
  7796. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7797. }
  7798. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7799. {
  7800. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7801. }
  7802. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7803. u64 rt_period_us)
  7804. {
  7805. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7806. }
  7807. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7808. {
  7809. return sched_group_rt_period(cgroup_tg(cgrp));
  7810. }
  7811. #endif /* CONFIG_RT_GROUP_SCHED */
  7812. static struct cftype cpu_files[] = {
  7813. #ifdef CONFIG_FAIR_GROUP_SCHED
  7814. {
  7815. .name = "shares",
  7816. .read_u64 = cpu_shares_read_u64,
  7817. .write_u64 = cpu_shares_write_u64,
  7818. },
  7819. #endif
  7820. #ifdef CONFIG_RT_GROUP_SCHED
  7821. {
  7822. .name = "rt_runtime_us",
  7823. .read_s64 = cpu_rt_runtime_read,
  7824. .write_s64 = cpu_rt_runtime_write,
  7825. },
  7826. {
  7827. .name = "rt_period_us",
  7828. .read_u64 = cpu_rt_period_read_uint,
  7829. .write_u64 = cpu_rt_period_write_uint,
  7830. },
  7831. #endif
  7832. };
  7833. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7834. {
  7835. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7836. }
  7837. struct cgroup_subsys cpu_cgroup_subsys = {
  7838. .name = "cpu",
  7839. .create = cpu_cgroup_create,
  7840. .destroy = cpu_cgroup_destroy,
  7841. .can_attach = cpu_cgroup_can_attach,
  7842. .attach = cpu_cgroup_attach,
  7843. .exit = cpu_cgroup_exit,
  7844. .populate = cpu_cgroup_populate,
  7845. .subsys_id = cpu_cgroup_subsys_id,
  7846. .early_init = 1,
  7847. };
  7848. #endif /* CONFIG_CGROUP_SCHED */
  7849. #ifdef CONFIG_CGROUP_CPUACCT
  7850. /*
  7851. * CPU accounting code for task groups.
  7852. *
  7853. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7854. * (balbir@in.ibm.com).
  7855. */
  7856. /* track cpu usage of a group of tasks and its child groups */
  7857. struct cpuacct {
  7858. struct cgroup_subsys_state css;
  7859. /* cpuusage holds pointer to a u64-type object on every cpu */
  7860. u64 __percpu *cpuusage;
  7861. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7862. struct cpuacct *parent;
  7863. };
  7864. struct cgroup_subsys cpuacct_subsys;
  7865. /* return cpu accounting group corresponding to this container */
  7866. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7867. {
  7868. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7869. struct cpuacct, css);
  7870. }
  7871. /* return cpu accounting group to which this task belongs */
  7872. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7873. {
  7874. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7875. struct cpuacct, css);
  7876. }
  7877. /* create a new cpu accounting group */
  7878. static struct cgroup_subsys_state *cpuacct_create(
  7879. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7880. {
  7881. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7882. int i;
  7883. if (!ca)
  7884. goto out;
  7885. ca->cpuusage = alloc_percpu(u64);
  7886. if (!ca->cpuusage)
  7887. goto out_free_ca;
  7888. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7889. if (percpu_counter_init(&ca->cpustat[i], 0))
  7890. goto out_free_counters;
  7891. if (cgrp->parent)
  7892. ca->parent = cgroup_ca(cgrp->parent);
  7893. return &ca->css;
  7894. out_free_counters:
  7895. while (--i >= 0)
  7896. percpu_counter_destroy(&ca->cpustat[i]);
  7897. free_percpu(ca->cpuusage);
  7898. out_free_ca:
  7899. kfree(ca);
  7900. out:
  7901. return ERR_PTR(-ENOMEM);
  7902. }
  7903. /* destroy an existing cpu accounting group */
  7904. static void
  7905. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7906. {
  7907. struct cpuacct *ca = cgroup_ca(cgrp);
  7908. int i;
  7909. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7910. percpu_counter_destroy(&ca->cpustat[i]);
  7911. free_percpu(ca->cpuusage);
  7912. kfree(ca);
  7913. }
  7914. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7915. {
  7916. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7917. u64 data;
  7918. #ifndef CONFIG_64BIT
  7919. /*
  7920. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7921. */
  7922. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7923. data = *cpuusage;
  7924. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7925. #else
  7926. data = *cpuusage;
  7927. #endif
  7928. return data;
  7929. }
  7930. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7931. {
  7932. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7933. #ifndef CONFIG_64BIT
  7934. /*
  7935. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7936. */
  7937. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7938. *cpuusage = val;
  7939. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7940. #else
  7941. *cpuusage = val;
  7942. #endif
  7943. }
  7944. /* return total cpu usage (in nanoseconds) of a group */
  7945. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7946. {
  7947. struct cpuacct *ca = cgroup_ca(cgrp);
  7948. u64 totalcpuusage = 0;
  7949. int i;
  7950. for_each_present_cpu(i)
  7951. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7952. return totalcpuusage;
  7953. }
  7954. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7955. u64 reset)
  7956. {
  7957. struct cpuacct *ca = cgroup_ca(cgrp);
  7958. int err = 0;
  7959. int i;
  7960. if (reset) {
  7961. err = -EINVAL;
  7962. goto out;
  7963. }
  7964. for_each_present_cpu(i)
  7965. cpuacct_cpuusage_write(ca, i, 0);
  7966. out:
  7967. return err;
  7968. }
  7969. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7970. struct seq_file *m)
  7971. {
  7972. struct cpuacct *ca = cgroup_ca(cgroup);
  7973. u64 percpu;
  7974. int i;
  7975. for_each_present_cpu(i) {
  7976. percpu = cpuacct_cpuusage_read(ca, i);
  7977. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7978. }
  7979. seq_printf(m, "\n");
  7980. return 0;
  7981. }
  7982. static const char *cpuacct_stat_desc[] = {
  7983. [CPUACCT_STAT_USER] = "user",
  7984. [CPUACCT_STAT_SYSTEM] = "system",
  7985. };
  7986. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7987. struct cgroup_map_cb *cb)
  7988. {
  7989. struct cpuacct *ca = cgroup_ca(cgrp);
  7990. int i;
  7991. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7992. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7993. val = cputime64_to_clock_t(val);
  7994. cb->fill(cb, cpuacct_stat_desc[i], val);
  7995. }
  7996. return 0;
  7997. }
  7998. static struct cftype files[] = {
  7999. {
  8000. .name = "usage",
  8001. .read_u64 = cpuusage_read,
  8002. .write_u64 = cpuusage_write,
  8003. },
  8004. {
  8005. .name = "usage_percpu",
  8006. .read_seq_string = cpuacct_percpu_seq_read,
  8007. },
  8008. {
  8009. .name = "stat",
  8010. .read_map = cpuacct_stats_show,
  8011. },
  8012. };
  8013. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8014. {
  8015. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8016. }
  8017. /*
  8018. * charge this task's execution time to its accounting group.
  8019. *
  8020. * called with rq->lock held.
  8021. */
  8022. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8023. {
  8024. struct cpuacct *ca;
  8025. int cpu;
  8026. if (unlikely(!cpuacct_subsys.active))
  8027. return;
  8028. cpu = task_cpu(tsk);
  8029. rcu_read_lock();
  8030. ca = task_ca(tsk);
  8031. for (; ca; ca = ca->parent) {
  8032. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8033. *cpuusage += cputime;
  8034. }
  8035. rcu_read_unlock();
  8036. }
  8037. /*
  8038. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  8039. * in cputime_t units. As a result, cpuacct_update_stats calls
  8040. * percpu_counter_add with values large enough to always overflow the
  8041. * per cpu batch limit causing bad SMP scalability.
  8042. *
  8043. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  8044. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  8045. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  8046. */
  8047. #ifdef CONFIG_SMP
  8048. #define CPUACCT_BATCH \
  8049. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  8050. #else
  8051. #define CPUACCT_BATCH 0
  8052. #endif
  8053. /*
  8054. * Charge the system/user time to the task's accounting group.
  8055. */
  8056. static void cpuacct_update_stats(struct task_struct *tsk,
  8057. enum cpuacct_stat_index idx, cputime_t val)
  8058. {
  8059. struct cpuacct *ca;
  8060. int batch = CPUACCT_BATCH;
  8061. if (unlikely(!cpuacct_subsys.active))
  8062. return;
  8063. rcu_read_lock();
  8064. ca = task_ca(tsk);
  8065. do {
  8066. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8067. ca = ca->parent;
  8068. } while (ca);
  8069. rcu_read_unlock();
  8070. }
  8071. struct cgroup_subsys cpuacct_subsys = {
  8072. .name = "cpuacct",
  8073. .create = cpuacct_create,
  8074. .destroy = cpuacct_destroy,
  8075. .populate = cpuacct_populate,
  8076. .subsys_id = cpuacct_subsys_id,
  8077. };
  8078. #endif /* CONFIG_CGROUP_CPUACCT */