smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723
  1. /*
  2. ** SMP Support
  3. **
  4. ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  5. ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
  6. ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
  7. **
  8. ** Lots of stuff stolen from arch/alpha/kernel/smp.c
  9. ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
  10. **
  11. ** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
  12. ** -grant (1/12/2001)
  13. **
  14. ** This program is free software; you can redistribute it and/or modify
  15. ** it under the terms of the GNU General Public License as published by
  16. ** the Free Software Foundation; either version 2 of the License, or
  17. ** (at your option) any later version.
  18. */
  19. #undef ENTRY_SYS_CPUS /* syscall support for iCOD-like functionality */
  20. #include <linux/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/slab.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/sched.h>
  26. #include <linux/init.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/smp.h>
  29. #include <linux/kernel_stat.h>
  30. #include <linux/mm.h>
  31. #include <linux/delay.h>
  32. #include <linux/bitops.h>
  33. #include <asm/system.h>
  34. #include <asm/atomic.h>
  35. #include <asm/current.h>
  36. #include <asm/delay.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/io.h>
  39. #include <asm/irq.h> /* for CPU_IRQ_REGION and friends */
  40. #include <asm/mmu_context.h>
  41. #include <asm/page.h>
  42. #include <asm/pgtable.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/processor.h>
  45. #include <asm/ptrace.h>
  46. #include <asm/unistd.h>
  47. #include <asm/cacheflush.h>
  48. #define kDEBUG 0
  49. DEFINE_SPINLOCK(smp_lock);
  50. volatile struct task_struct *smp_init_current_idle_task;
  51. static volatile int cpu_now_booting __read_mostly = 0; /* track which CPU is booting */
  52. static int parisc_max_cpus __read_mostly = 1;
  53. /* online cpus are ones that we've managed to bring up completely
  54. * possible cpus are all valid cpu
  55. * present cpus are all detected cpu
  56. *
  57. * On startup we bring up the "possible" cpus. Since we discover
  58. * CPUs later, we add them as hotplug, so the possible cpu mask is
  59. * empty in the beginning.
  60. */
  61. cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE; /* Bitmap of online CPUs */
  62. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; /* Bitmap of Present CPUs */
  63. EXPORT_SYMBOL(cpu_online_map);
  64. EXPORT_SYMBOL(cpu_possible_map);
  65. DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED;
  66. struct smp_call_struct {
  67. void (*func) (void *info);
  68. void *info;
  69. long wait;
  70. atomic_t unstarted_count;
  71. atomic_t unfinished_count;
  72. };
  73. static volatile struct smp_call_struct *smp_call_function_data;
  74. enum ipi_message_type {
  75. IPI_NOP=0,
  76. IPI_RESCHEDULE=1,
  77. IPI_CALL_FUNC,
  78. IPI_CPU_START,
  79. IPI_CPU_STOP,
  80. IPI_CPU_TEST
  81. };
  82. /********** SMP inter processor interrupt and communication routines */
  83. #undef PER_CPU_IRQ_REGION
  84. #ifdef PER_CPU_IRQ_REGION
  85. /* XXX REVISIT Ignore for now.
  86. ** *May* need this "hook" to register IPI handler
  87. ** once we have perCPU ExtIntr switch tables.
  88. */
  89. static void
  90. ipi_init(int cpuid)
  91. {
  92. /* If CPU is present ... */
  93. #ifdef ENTRY_SYS_CPUS
  94. /* *and* running (not stopped) ... */
  95. #error iCOD support wants state checked here.
  96. #endif
  97. #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
  98. if(cpu_online(cpuid) )
  99. {
  100. switch_to_idle_task(current);
  101. }
  102. return;
  103. }
  104. #endif
  105. /*
  106. ** Yoink this CPU from the runnable list...
  107. **
  108. */
  109. static void
  110. halt_processor(void)
  111. {
  112. #ifdef ENTRY_SYS_CPUS
  113. #error halt_processor() needs rework
  114. /*
  115. ** o migrate I/O interrupts off this CPU.
  116. ** o leave IPI enabled - __cli() will disable IPI.
  117. ** o leave CPU in online map - just change the state
  118. */
  119. cpu_data[this_cpu].state = STATE_STOPPED;
  120. mark_bh(IPI_BH);
  121. #else
  122. /* REVISIT : redirect I/O Interrupts to another CPU? */
  123. /* REVISIT : does PM *know* this CPU isn't available? */
  124. cpu_clear(smp_processor_id(), cpu_online_map);
  125. local_irq_disable();
  126. for (;;)
  127. ;
  128. #endif
  129. }
  130. irqreturn_t
  131. ipi_interrupt(int irq, void *dev_id)
  132. {
  133. int this_cpu = smp_processor_id();
  134. struct cpuinfo_parisc *p = &cpu_data[this_cpu];
  135. unsigned long ops;
  136. unsigned long flags;
  137. /* Count this now; we may make a call that never returns. */
  138. p->ipi_count++;
  139. mb(); /* Order interrupt and bit testing. */
  140. for (;;) {
  141. spinlock_t *lock = &per_cpu(ipi_lock, this_cpu);
  142. spin_lock_irqsave(lock, flags);
  143. ops = p->pending_ipi;
  144. p->pending_ipi = 0;
  145. spin_unlock_irqrestore(lock, flags);
  146. mb(); /* Order bit clearing and data access. */
  147. if (!ops)
  148. break;
  149. while (ops) {
  150. unsigned long which = ffz(~ops);
  151. ops &= ~(1 << which);
  152. switch (which) {
  153. case IPI_NOP:
  154. #if (kDEBUG>=100)
  155. printk(KERN_DEBUG "CPU%d IPI_NOP\n",this_cpu);
  156. #endif /* kDEBUG */
  157. break;
  158. case IPI_RESCHEDULE:
  159. #if (kDEBUG>=100)
  160. printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
  161. #endif /* kDEBUG */
  162. /*
  163. * Reschedule callback. Everything to be
  164. * done is done by the interrupt return path.
  165. */
  166. break;
  167. case IPI_CALL_FUNC:
  168. #if (kDEBUG>=100)
  169. printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
  170. #endif /* kDEBUG */
  171. {
  172. volatile struct smp_call_struct *data;
  173. void (*func)(void *info);
  174. void *info;
  175. int wait;
  176. data = smp_call_function_data;
  177. func = data->func;
  178. info = data->info;
  179. wait = data->wait;
  180. mb();
  181. atomic_dec ((atomic_t *)&data->unstarted_count);
  182. /* At this point, *data can't
  183. * be relied upon.
  184. */
  185. (*func)(info);
  186. /* Notify the sending CPU that the
  187. * task is done.
  188. */
  189. mb();
  190. if (wait)
  191. atomic_dec ((atomic_t *)&data->unfinished_count);
  192. }
  193. break;
  194. case IPI_CPU_START:
  195. #if (kDEBUG>=100)
  196. printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
  197. #endif /* kDEBUG */
  198. #ifdef ENTRY_SYS_CPUS
  199. p->state = STATE_RUNNING;
  200. #endif
  201. break;
  202. case IPI_CPU_STOP:
  203. #if (kDEBUG>=100)
  204. printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
  205. #endif /* kDEBUG */
  206. #ifdef ENTRY_SYS_CPUS
  207. #else
  208. halt_processor();
  209. #endif
  210. break;
  211. case IPI_CPU_TEST:
  212. #if (kDEBUG>=100)
  213. printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
  214. #endif /* kDEBUG */
  215. break;
  216. default:
  217. printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
  218. this_cpu, which);
  219. return IRQ_NONE;
  220. } /* Switch */
  221. /* let in any pending interrupts */
  222. local_irq_enable();
  223. local_irq_disable();
  224. } /* while (ops) */
  225. }
  226. return IRQ_HANDLED;
  227. }
  228. static inline void
  229. ipi_send(int cpu, enum ipi_message_type op)
  230. {
  231. struct cpuinfo_parisc *p = &cpu_data[cpu];
  232. spinlock_t *lock = &per_cpu(ipi_lock, cpu);
  233. unsigned long flags;
  234. spin_lock_irqsave(lock, flags);
  235. p->pending_ipi |= 1 << op;
  236. gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
  237. spin_unlock_irqrestore(lock, flags);
  238. }
  239. static inline void
  240. send_IPI_single(int dest_cpu, enum ipi_message_type op)
  241. {
  242. if (dest_cpu == NO_PROC_ID) {
  243. BUG();
  244. return;
  245. }
  246. ipi_send(dest_cpu, op);
  247. }
  248. static inline void
  249. send_IPI_allbutself(enum ipi_message_type op)
  250. {
  251. int i;
  252. for_each_online_cpu(i) {
  253. if (i != smp_processor_id())
  254. send_IPI_single(i, op);
  255. }
  256. }
  257. inline void
  258. smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); }
  259. static inline void
  260. smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); }
  261. void
  262. smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
  263. void
  264. smp_send_all_nop(void)
  265. {
  266. send_IPI_allbutself(IPI_NOP);
  267. }
  268. /**
  269. * Run a function on all other CPUs.
  270. * <func> The function to run. This must be fast and non-blocking.
  271. * <info> An arbitrary pointer to pass to the function.
  272. * <retry> If true, keep retrying until ready.
  273. * <wait> If true, wait until function has completed on other CPUs.
  274. * [RETURNS] 0 on success, else a negative status code.
  275. *
  276. * Does not return until remote CPUs are nearly ready to execute <func>
  277. * or have executed.
  278. */
  279. int
  280. smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
  281. {
  282. struct smp_call_struct data;
  283. unsigned long timeout;
  284. static DEFINE_SPINLOCK(lock);
  285. int retries = 0;
  286. if (num_online_cpus() < 2)
  287. return 0;
  288. /* Can deadlock when called with interrupts disabled */
  289. WARN_ON(irqs_disabled());
  290. /* can also deadlock if IPIs are disabled */
  291. WARN_ON((get_eiem() & (1UL<<(CPU_IRQ_MAX - IPI_IRQ))) == 0);
  292. data.func = func;
  293. data.info = info;
  294. data.wait = wait;
  295. atomic_set(&data.unstarted_count, num_online_cpus() - 1);
  296. atomic_set(&data.unfinished_count, num_online_cpus() - 1);
  297. if (retry) {
  298. spin_lock (&lock);
  299. while (smp_call_function_data != 0)
  300. barrier();
  301. }
  302. else {
  303. spin_lock (&lock);
  304. if (smp_call_function_data) {
  305. spin_unlock (&lock);
  306. return -EBUSY;
  307. }
  308. }
  309. smp_call_function_data = &data;
  310. spin_unlock (&lock);
  311. /* Send a message to all other CPUs and wait for them to respond */
  312. send_IPI_allbutself(IPI_CALL_FUNC);
  313. retry:
  314. /* Wait for response */
  315. timeout = jiffies + HZ;
  316. while ( (atomic_read (&data.unstarted_count) > 0) &&
  317. time_before (jiffies, timeout) )
  318. barrier ();
  319. if (atomic_read (&data.unstarted_count) > 0) {
  320. printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
  321. smp_processor_id(), ++retries);
  322. goto retry;
  323. }
  324. /* We either got one or timed out. Release the lock */
  325. mb();
  326. smp_call_function_data = NULL;
  327. while (wait && atomic_read (&data.unfinished_count) > 0)
  328. barrier ();
  329. return 0;
  330. }
  331. EXPORT_SYMBOL(smp_call_function);
  332. /*
  333. * Flush all other CPU's tlb and then mine. Do this with on_each_cpu()
  334. * as we want to ensure all TLB's flushed before proceeding.
  335. */
  336. void
  337. smp_flush_tlb_all(void)
  338. {
  339. on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
  340. }
  341. /*
  342. * Called by secondaries to update state and initialize CPU registers.
  343. */
  344. static void __init
  345. smp_cpu_init(int cpunum)
  346. {
  347. extern int init_per_cpu(int); /* arch/parisc/kernel/processor.c */
  348. extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */
  349. extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */
  350. /* Set modes and Enable floating point coprocessor */
  351. (void) init_per_cpu(cpunum);
  352. disable_sr_hashing();
  353. mb();
  354. /* Well, support 2.4 linux scheme as well. */
  355. if (cpu_test_and_set(cpunum, cpu_online_map))
  356. {
  357. extern void machine_halt(void); /* arch/parisc.../process.c */
  358. printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
  359. machine_halt();
  360. }
  361. /* Initialise the idle task for this CPU */
  362. atomic_inc(&init_mm.mm_count);
  363. current->active_mm = &init_mm;
  364. if(current->mm)
  365. BUG();
  366. enter_lazy_tlb(&init_mm, current);
  367. init_IRQ(); /* make sure no IRQ's are enabled or pending */
  368. start_cpu_itimer();
  369. }
  370. /*
  371. * Slaves start using C here. Indirectly called from smp_slave_stext.
  372. * Do what start_kernel() and main() do for boot strap processor (aka monarch)
  373. */
  374. void __init smp_callin(void)
  375. {
  376. int slave_id = cpu_now_booting;
  377. #if 0
  378. void *istack;
  379. #endif
  380. smp_cpu_init(slave_id);
  381. preempt_disable();
  382. #if 0 /* NOT WORKING YET - see entry.S */
  383. istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
  384. if (istack == NULL) {
  385. printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
  386. BUG();
  387. }
  388. mtctl(istack,31);
  389. #endif
  390. flush_cache_all_local(); /* start with known state */
  391. flush_tlb_all_local(NULL);
  392. local_irq_enable(); /* Interrupts have been off until now */
  393. cpu_idle(); /* Wait for timer to schedule some work */
  394. /* NOTREACHED */
  395. panic("smp_callin() AAAAaaaaahhhh....\n");
  396. }
  397. /*
  398. * Bring one cpu online.
  399. */
  400. int __init smp_boot_one_cpu(int cpuid)
  401. {
  402. struct task_struct *idle;
  403. long timeout;
  404. /*
  405. * Create an idle task for this CPU. Note the address wed* give
  406. * to kernel_thread is irrelevant -- it's going to start
  407. * where OS_BOOT_RENDEVZ vector in SAL says to start. But
  408. * this gets all the other task-y sort of data structures set
  409. * up like we wish. We need to pull the just created idle task
  410. * off the run queue and stuff it into the init_tasks[] array.
  411. * Sheesh . . .
  412. */
  413. idle = fork_idle(cpuid);
  414. if (IS_ERR(idle))
  415. panic("SMP: fork failed for CPU:%d", cpuid);
  416. task_thread_info(idle)->cpu = cpuid;
  417. /* Let _start know what logical CPU we're booting
  418. ** (offset into init_tasks[],cpu_data[])
  419. */
  420. cpu_now_booting = cpuid;
  421. /*
  422. ** boot strap code needs to know the task address since
  423. ** it also contains the process stack.
  424. */
  425. smp_init_current_idle_task = idle ;
  426. mb();
  427. printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
  428. /*
  429. ** This gets PDC to release the CPU from a very tight loop.
  430. **
  431. ** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
  432. ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
  433. ** is executed after receiving the rendezvous signal (an interrupt to
  434. ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
  435. ** contents of memory are valid."
  436. */
  437. gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
  438. mb();
  439. /*
  440. * OK, wait a bit for that CPU to finish staggering about.
  441. * Slave will set a bit when it reaches smp_cpu_init().
  442. * Once the "monarch CPU" sees the bit change, it can move on.
  443. */
  444. for (timeout = 0; timeout < 10000; timeout++) {
  445. if(cpu_online(cpuid)) {
  446. /* Which implies Slave has started up */
  447. cpu_now_booting = 0;
  448. smp_init_current_idle_task = NULL;
  449. goto alive ;
  450. }
  451. udelay(100);
  452. barrier();
  453. }
  454. put_task_struct(idle);
  455. idle = NULL;
  456. printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
  457. return -1;
  458. alive:
  459. /* Remember the Slave data */
  460. #if (kDEBUG>=100)
  461. printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
  462. cpuid, timeout * 100);
  463. #endif /* kDEBUG */
  464. #ifdef ENTRY_SYS_CPUS
  465. cpu_data[cpuid].state = STATE_RUNNING;
  466. #endif
  467. return 0;
  468. }
  469. void __devinit smp_prepare_boot_cpu(void)
  470. {
  471. int bootstrap_processor=cpu_data[0].cpuid; /* CPU ID of BSP */
  472. #ifdef ENTRY_SYS_CPUS
  473. cpu_data[0].state = STATE_RUNNING;
  474. #endif
  475. /* Setup BSP mappings */
  476. printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
  477. cpu_set(bootstrap_processor, cpu_online_map);
  478. cpu_set(bootstrap_processor, cpu_present_map);
  479. }
  480. /*
  481. ** inventory.c:do_inventory() hasn't yet been run and thus we
  482. ** don't 'discover' the additional CPU's until later.
  483. */
  484. void __init smp_prepare_cpus(unsigned int max_cpus)
  485. {
  486. cpus_clear(cpu_present_map);
  487. cpu_set(0, cpu_present_map);
  488. parisc_max_cpus = max_cpus;
  489. if (!max_cpus)
  490. printk(KERN_INFO "SMP mode deactivated.\n");
  491. }
  492. void smp_cpus_done(unsigned int cpu_max)
  493. {
  494. return;
  495. }
  496. int __devinit __cpu_up(unsigned int cpu)
  497. {
  498. if (cpu != 0 && cpu < parisc_max_cpus)
  499. smp_boot_one_cpu(cpu);
  500. return cpu_online(cpu) ? 0 : -ENOSYS;
  501. }
  502. #ifdef ENTRY_SYS_CPUS
  503. /* Code goes along with:
  504. ** entry.s: ENTRY_NAME(sys_cpus) / * 215, for cpu stat * /
  505. */
  506. int sys_cpus(int argc, char **argv)
  507. {
  508. int i,j=0;
  509. extern int current_pid(int cpu);
  510. if( argc > 2 ) {
  511. printk("sys_cpus:Only one argument supported\n");
  512. return (-1);
  513. }
  514. if ( argc == 1 ){
  515. #ifdef DUMP_MORE_STATE
  516. for_each_online_cpu(i) {
  517. int cpus_per_line = 4;
  518. if (j++ % cpus_per_line)
  519. printk(" %3d",i);
  520. else
  521. printk("\n %3d",i);
  522. }
  523. printk("\n");
  524. #else
  525. printk("\n 0\n");
  526. #endif
  527. } else if((argc==2) && !(strcmp(argv[1],"-l"))) {
  528. printk("\nCPUSTATE TASK CPUNUM CPUID HARDCPU(HPA)\n");
  529. #ifdef DUMP_MORE_STATE
  530. for_each_online_cpu(i) {
  531. if (cpu_data[i].cpuid != NO_PROC_ID) {
  532. switch(cpu_data[i].state) {
  533. case STATE_RENDEZVOUS:
  534. printk("RENDEZVS ");
  535. break;
  536. case STATE_RUNNING:
  537. printk((current_pid(i)!=0) ? "RUNNING " : "IDLING ");
  538. break;
  539. case STATE_STOPPED:
  540. printk("STOPPED ");
  541. break;
  542. case STATE_HALTED:
  543. printk("HALTED ");
  544. break;
  545. default:
  546. printk("%08x?", cpu_data[i].state);
  547. break;
  548. }
  549. if(cpu_online(i)) {
  550. printk(" %4d",current_pid(i));
  551. }
  552. printk(" %6d",cpu_number_map(i));
  553. printk(" %5d",i);
  554. printk(" 0x%lx\n",cpu_data[i].hpa);
  555. }
  556. }
  557. #else
  558. printk("\n%s %4d 0 0 --------",
  559. (current->pid)?"RUNNING ": "IDLING ",current->pid);
  560. #endif
  561. } else if ((argc==2) && !(strcmp(argv[1],"-s"))) {
  562. #ifdef DUMP_MORE_STATE
  563. printk("\nCPUSTATE CPUID\n");
  564. for_each_online_cpu(i) {
  565. if (cpu_data[i].cpuid != NO_PROC_ID) {
  566. switch(cpu_data[i].state) {
  567. case STATE_RENDEZVOUS:
  568. printk("RENDEZVS");break;
  569. case STATE_RUNNING:
  570. printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
  571. break;
  572. case STATE_STOPPED:
  573. printk("STOPPED ");break;
  574. case STATE_HALTED:
  575. printk("HALTED ");break;
  576. default:
  577. }
  578. printk(" %5d\n",i);
  579. }
  580. }
  581. #else
  582. printk("\n%s CPU0",(current->pid==0)?"RUNNING ":"IDLING ");
  583. #endif
  584. } else {
  585. printk("sys_cpus:Unknown request\n");
  586. return (-1);
  587. }
  588. return 0;
  589. }
  590. #endif /* ENTRY_SYS_CPUS */
  591. #ifdef CONFIG_PROC_FS
  592. int __init
  593. setup_profiling_timer(unsigned int multiplier)
  594. {
  595. return -EINVAL;
  596. }
  597. #endif