tkip.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/bitops.h>
  11. #include <linux/types.h>
  12. #include <linux/netdevice.h>
  13. #include <asm/unaligned.h>
  14. #include <net/mac80211.h>
  15. #include "key.h"
  16. #include "tkip.h"
  17. #include "wep.h"
  18. #define PHASE1_LOOP_COUNT 8
  19. /*
  20. * 2-byte by 2-byte subset of the full AES S-box table; second part of this
  21. * table is identical to first part but byte-swapped
  22. */
  23. static const u16 tkip_sbox[256] =
  24. {
  25. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  26. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  27. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  28. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  29. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  30. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  31. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  32. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  33. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  34. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  35. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  36. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  37. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  38. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  39. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  40. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  41. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  42. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  43. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  44. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  45. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  46. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  47. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  48. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  49. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  50. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  51. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  52. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  53. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  54. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  55. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  56. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  57. };
  58. static u16 tkipS(u16 val)
  59. {
  60. return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
  61. }
  62. /*
  63. * P1K := Phase1(TA, TK, TSC)
  64. * TA = transmitter address (48 bits)
  65. * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
  66. * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
  67. * P1K: 80 bits
  68. */
  69. static void tkip_mixing_phase1(struct ieee80211_key *key, const u8 *ta,
  70. struct tkip_ctx *ctx, u32 tsc_IV32)
  71. {
  72. int i, j;
  73. const u8 *tk = &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY];
  74. u16 *p1k = ctx->p1k;
  75. p1k[0] = tsc_IV32 & 0xFFFF;
  76. p1k[1] = tsc_IV32 >> 16;
  77. p1k[2] = get_unaligned_le16(ta + 0);
  78. p1k[3] = get_unaligned_le16(ta + 2);
  79. p1k[4] = get_unaligned_le16(ta + 4);
  80. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  81. j = 2 * (i & 1);
  82. p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
  83. p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
  84. p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
  85. p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
  86. p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
  87. }
  88. ctx->initialized = 1;
  89. }
  90. static void tkip_mixing_phase2(struct ieee80211_key *key, struct tkip_ctx *ctx,
  91. u16 tsc_IV16, u8 *rc4key)
  92. {
  93. u16 ppk[6];
  94. const u16 *p1k = ctx->p1k;
  95. const u8 *tk = &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY];
  96. int i;
  97. ppk[0] = p1k[0];
  98. ppk[1] = p1k[1];
  99. ppk[2] = p1k[2];
  100. ppk[3] = p1k[3];
  101. ppk[4] = p1k[4];
  102. ppk[5] = p1k[4] + tsc_IV16;
  103. ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
  104. ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
  105. ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
  106. ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
  107. ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
  108. ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
  109. ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
  110. ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
  111. ppk[2] += ror16(ppk[1], 1);
  112. ppk[3] += ror16(ppk[2], 1);
  113. ppk[4] += ror16(ppk[3], 1);
  114. ppk[5] += ror16(ppk[4], 1);
  115. rc4key[0] = tsc_IV16 >> 8;
  116. rc4key[1] = ((tsc_IV16 >> 8) | 0x20) & 0x7f;
  117. rc4key[2] = tsc_IV16 & 0xFF;
  118. rc4key[3] = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
  119. rc4key += 4;
  120. for (i = 0; i < 6; i++)
  121. put_unaligned_le16(ppk[i], rc4key + 2 * i);
  122. }
  123. /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
  124. * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
  125. * the packet payload). */
  126. u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key,
  127. u8 iv0, u8 iv1, u8 iv2)
  128. {
  129. *pos++ = iv0;
  130. *pos++ = iv1;
  131. *pos++ = iv2;
  132. *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
  133. put_unaligned_le32(key->u.tkip.tx.iv32, pos);
  134. return pos + 4;
  135. }
  136. static void ieee80211_tkip_gen_rc4key(struct ieee80211_key *key, u8 *ta,
  137. u8 *rc4key)
  138. {
  139. /* Calculate per-packet key */
  140. if (key->u.tkip.tx.iv16 == 0 || !key->u.tkip.tx.initialized)
  141. tkip_mixing_phase1(key, ta, &key->u.tkip.tx, key->u.tkip.tx.iv32);
  142. tkip_mixing_phase2(key, &key->u.tkip.tx, key->u.tkip.tx.iv16, rc4key);
  143. }
  144. void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
  145. struct sk_buff *skb, enum ieee80211_tkip_key_type type,
  146. u8 *outkey)
  147. {
  148. struct ieee80211_key *key = (struct ieee80211_key *)
  149. container_of(keyconf, struct ieee80211_key, conf);
  150. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  151. u8 *data = (u8 *) hdr;
  152. u16 fc = le16_to_cpu(hdr->frame_control);
  153. int hdr_len = ieee80211_get_hdrlen(fc);
  154. u8 *ta = hdr->addr2;
  155. u16 iv16;
  156. u32 iv32;
  157. iv16 = data[hdr_len + 2] | (data[hdr_len] << 8);
  158. iv32 = get_unaligned_le32(data + hdr_len + 4);
  159. #ifdef CONFIG_TKIP_DEBUG
  160. printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
  161. iv16, iv32);
  162. if (iv32 != key->u.tkip.tx.iv32) {
  163. printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
  164. iv32, key->u.tkip.tx.iv32);
  165. printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
  166. "fragmented packet\n");
  167. }
  168. #endif /* CONFIG_TKIP_DEBUG */
  169. /* Update the p1k only when the iv16 in the packet wraps around, this
  170. * might occur after the wrap around of iv16 in the key in case of
  171. * fragmented packets. */
  172. if (iv16 == 0 || !key->u.tkip.tx.initialized)
  173. tkip_mixing_phase1(key, ta, &key->u.tkip.tx, iv32);
  174. if (type == IEEE80211_TKIP_P1_KEY) {
  175. memcpy(outkey, key->u.tkip.tx.p1k, sizeof(u16) * 5);
  176. return;
  177. }
  178. tkip_mixing_phase2(key, &key->u.tkip.tx, iv16, outkey);
  179. }
  180. EXPORT_SYMBOL(ieee80211_get_tkip_key);
  181. /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
  182. * beginning of the buffer containing payload. This payload must include
  183. * headroom of eight octets for IV and Ext. IV and taildroom of four octets
  184. * for ICV. @payload_len is the length of payload (_not_ including extra
  185. * headroom and tailroom). @ta is the transmitter addresses. */
  186. void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
  187. struct ieee80211_key *key,
  188. u8 *pos, size_t payload_len, u8 *ta)
  189. {
  190. u8 rc4key[16];
  191. ieee80211_tkip_gen_rc4key(key, ta, rc4key);
  192. pos = ieee80211_tkip_add_iv(pos, key, rc4key[0], rc4key[1], rc4key[2]);
  193. ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
  194. }
  195. /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
  196. * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
  197. * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
  198. * length of payload, including IV, Ext. IV, MIC, ICV. */
  199. int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
  200. struct ieee80211_key *key,
  201. u8 *payload, size_t payload_len, u8 *ta,
  202. u8 *ra, int only_iv, int queue,
  203. u32 *out_iv32, u16 *out_iv16)
  204. {
  205. u32 iv32;
  206. u32 iv16;
  207. u8 rc4key[16], keyid, *pos = payload;
  208. int res;
  209. if (payload_len < 12)
  210. return -1;
  211. iv16 = (pos[0] << 8) | pos[2];
  212. keyid = pos[3];
  213. iv32 = get_unaligned_le32(pos + 4);
  214. pos += 8;
  215. #ifdef CONFIG_TKIP_DEBUG
  216. {
  217. int i;
  218. printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
  219. for (i = 0; i < payload_len; i++)
  220. printk(" %02x", payload[i]);
  221. printk("\n");
  222. printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
  223. iv16, iv32);
  224. }
  225. #endif /* CONFIG_TKIP_DEBUG */
  226. if (!(keyid & (1 << 5)))
  227. return TKIP_DECRYPT_NO_EXT_IV;
  228. if ((keyid >> 6) != key->conf.keyidx)
  229. return TKIP_DECRYPT_INVALID_KEYIDX;
  230. if (key->u.tkip.rx[queue].initialized &&
  231. (iv32 < key->u.tkip.rx[queue].iv32 ||
  232. (iv32 == key->u.tkip.rx[queue].iv32 &&
  233. iv16 <= key->u.tkip.rx[queue].iv16))) {
  234. #ifdef CONFIG_TKIP_DEBUG
  235. DECLARE_MAC_BUF(mac);
  236. printk(KERN_DEBUG "TKIP replay detected for RX frame from "
  237. "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
  238. print_mac(mac, ta),
  239. iv32, iv16, key->u.tkip.rx[queue].iv32,
  240. key->u.tkip.rx[queue].iv16);
  241. #endif /* CONFIG_TKIP_DEBUG */
  242. return TKIP_DECRYPT_REPLAY;
  243. }
  244. if (only_iv) {
  245. res = TKIP_DECRYPT_OK;
  246. key->u.tkip.rx[queue].initialized = 1;
  247. goto done;
  248. }
  249. if (!key->u.tkip.rx[queue].initialized ||
  250. key->u.tkip.rx[queue].iv32 != iv32) {
  251. /* IV16 wrapped around - perform TKIP phase 1 */
  252. tkip_mixing_phase1(key, ta, &key->u.tkip.rx[queue], iv32);
  253. #ifdef CONFIG_TKIP_DEBUG
  254. {
  255. int i;
  256. DECLARE_MAC_BUF(mac);
  257. printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%s"
  258. " TK=", print_mac(mac, ta));
  259. for (i = 0; i < 16; i++)
  260. printk("%02x ",
  261. key->conf.key[
  262. ALG_TKIP_TEMP_ENCR_KEY + i]);
  263. printk("\n");
  264. printk(KERN_DEBUG "TKIP decrypt: P1K=");
  265. for (i = 0; i < 5; i++)
  266. printk("%04x ", key->u.tkip.rx[queue].p1k[i]);
  267. printk("\n");
  268. }
  269. #endif /* CONFIG_TKIP_DEBUG */
  270. if (key->local->ops->update_tkip_key &&
  271. key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
  272. u8 bcast[ETH_ALEN] =
  273. {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
  274. u8 *sta_addr = key->sta->addr;
  275. if (is_multicast_ether_addr(ra))
  276. sta_addr = bcast;
  277. key->local->ops->update_tkip_key(
  278. local_to_hw(key->local), &key->conf,
  279. sta_addr, iv32, key->u.tkip.rx[queue].p1k);
  280. }
  281. }
  282. tkip_mixing_phase2(key, &key->u.tkip.rx[queue], iv16, rc4key);
  283. #ifdef CONFIG_TKIP_DEBUG
  284. {
  285. int i;
  286. printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
  287. for (i = 0; i < 16; i++)
  288. printk("%02x ", rc4key[i]);
  289. printk("\n");
  290. }
  291. #endif /* CONFIG_TKIP_DEBUG */
  292. res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
  293. done:
  294. if (res == TKIP_DECRYPT_OK) {
  295. /*
  296. * Record previously received IV, will be copied into the
  297. * key information after MIC verification. It is possible
  298. * that we don't catch replays of fragments but that's ok
  299. * because the Michael MIC verication will then fail.
  300. */
  301. *out_iv32 = iv32;
  302. *out_iv16 = iv16;
  303. }
  304. return res;
  305. }