hugetlb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <asm/page.h>
  15. #include <asm/pgtable.h>
  16. #include <linux/hugetlb.h>
  17. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  18. static unsigned long nr_huge_pages, free_huge_pages;
  19. unsigned long max_huge_pages;
  20. static struct list_head hugepage_freelists[MAX_NUMNODES];
  21. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  22. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  23. static DEFINE_SPINLOCK(hugetlb_lock);
  24. static void enqueue_huge_page(struct page *page)
  25. {
  26. int nid = page_to_nid(page);
  27. list_add(&page->lru, &hugepage_freelists[nid]);
  28. free_huge_pages++;
  29. free_huge_pages_node[nid]++;
  30. }
  31. static struct page *dequeue_huge_page(void)
  32. {
  33. int nid = numa_node_id();
  34. struct page *page = NULL;
  35. if (list_empty(&hugepage_freelists[nid])) {
  36. for (nid = 0; nid < MAX_NUMNODES; ++nid)
  37. if (!list_empty(&hugepage_freelists[nid]))
  38. break;
  39. }
  40. if (nid >= 0 && nid < MAX_NUMNODES &&
  41. !list_empty(&hugepage_freelists[nid])) {
  42. page = list_entry(hugepage_freelists[nid].next,
  43. struct page, lru);
  44. list_del(&page->lru);
  45. free_huge_pages--;
  46. free_huge_pages_node[nid]--;
  47. }
  48. return page;
  49. }
  50. static struct page *alloc_fresh_huge_page(void)
  51. {
  52. static int nid = 0;
  53. struct page *page;
  54. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  55. HUGETLB_PAGE_ORDER);
  56. nid = (nid + 1) % num_online_nodes();
  57. if (page) {
  58. nr_huge_pages++;
  59. nr_huge_pages_node[page_to_nid(page)]++;
  60. }
  61. return page;
  62. }
  63. void free_huge_page(struct page *page)
  64. {
  65. BUG_ON(page_count(page));
  66. INIT_LIST_HEAD(&page->lru);
  67. page[1].mapping = NULL;
  68. spin_lock(&hugetlb_lock);
  69. enqueue_huge_page(page);
  70. spin_unlock(&hugetlb_lock);
  71. }
  72. struct page *alloc_huge_page(void)
  73. {
  74. struct page *page;
  75. int i;
  76. spin_lock(&hugetlb_lock);
  77. page = dequeue_huge_page();
  78. if (!page) {
  79. spin_unlock(&hugetlb_lock);
  80. return NULL;
  81. }
  82. spin_unlock(&hugetlb_lock);
  83. set_page_count(page, 1);
  84. page[1].mapping = (void *)free_huge_page;
  85. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
  86. clear_highpage(&page[i]);
  87. return page;
  88. }
  89. static int __init hugetlb_init(void)
  90. {
  91. unsigned long i;
  92. struct page *page;
  93. if (HPAGE_SHIFT == 0)
  94. return 0;
  95. for (i = 0; i < MAX_NUMNODES; ++i)
  96. INIT_LIST_HEAD(&hugepage_freelists[i]);
  97. for (i = 0; i < max_huge_pages; ++i) {
  98. page = alloc_fresh_huge_page();
  99. if (!page)
  100. break;
  101. spin_lock(&hugetlb_lock);
  102. enqueue_huge_page(page);
  103. spin_unlock(&hugetlb_lock);
  104. }
  105. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  106. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  107. return 0;
  108. }
  109. module_init(hugetlb_init);
  110. static int __init hugetlb_setup(char *s)
  111. {
  112. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  113. max_huge_pages = 0;
  114. return 1;
  115. }
  116. __setup("hugepages=", hugetlb_setup);
  117. #ifdef CONFIG_SYSCTL
  118. static void update_and_free_page(struct page *page)
  119. {
  120. int i;
  121. nr_huge_pages--;
  122. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  123. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  124. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  125. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  126. 1 << PG_private | 1<< PG_writeback);
  127. set_page_count(&page[i], 0);
  128. }
  129. set_page_count(page, 1);
  130. __free_pages(page, HUGETLB_PAGE_ORDER);
  131. }
  132. #ifdef CONFIG_HIGHMEM
  133. static void try_to_free_low(unsigned long count)
  134. {
  135. int i, nid;
  136. for (i = 0; i < MAX_NUMNODES; ++i) {
  137. struct page *page, *next;
  138. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  139. if (PageHighMem(page))
  140. continue;
  141. list_del(&page->lru);
  142. update_and_free_page(page);
  143. nid = page_zone(page)->zone_pgdat->node_id;
  144. free_huge_pages--;
  145. free_huge_pages_node[nid]--;
  146. if (count >= nr_huge_pages)
  147. return;
  148. }
  149. }
  150. }
  151. #else
  152. static inline void try_to_free_low(unsigned long count)
  153. {
  154. }
  155. #endif
  156. static unsigned long set_max_huge_pages(unsigned long count)
  157. {
  158. while (count > nr_huge_pages) {
  159. struct page *page = alloc_fresh_huge_page();
  160. if (!page)
  161. return nr_huge_pages;
  162. spin_lock(&hugetlb_lock);
  163. enqueue_huge_page(page);
  164. spin_unlock(&hugetlb_lock);
  165. }
  166. if (count >= nr_huge_pages)
  167. return nr_huge_pages;
  168. spin_lock(&hugetlb_lock);
  169. try_to_free_low(count);
  170. while (count < nr_huge_pages) {
  171. struct page *page = dequeue_huge_page();
  172. if (!page)
  173. break;
  174. update_and_free_page(page);
  175. }
  176. spin_unlock(&hugetlb_lock);
  177. return nr_huge_pages;
  178. }
  179. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  180. struct file *file, void __user *buffer,
  181. size_t *length, loff_t *ppos)
  182. {
  183. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  184. max_huge_pages = set_max_huge_pages(max_huge_pages);
  185. return 0;
  186. }
  187. #endif /* CONFIG_SYSCTL */
  188. int hugetlb_report_meminfo(char *buf)
  189. {
  190. return sprintf(buf,
  191. "HugePages_Total: %5lu\n"
  192. "HugePages_Free: %5lu\n"
  193. "Hugepagesize: %5lu kB\n",
  194. nr_huge_pages,
  195. free_huge_pages,
  196. HPAGE_SIZE/1024);
  197. }
  198. int hugetlb_report_node_meminfo(int nid, char *buf)
  199. {
  200. return sprintf(buf,
  201. "Node %d HugePages_Total: %5u\n"
  202. "Node %d HugePages_Free: %5u\n",
  203. nid, nr_huge_pages_node[nid],
  204. nid, free_huge_pages_node[nid]);
  205. }
  206. int is_hugepage_mem_enough(size_t size)
  207. {
  208. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  209. }
  210. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  211. unsigned long hugetlb_total_pages(void)
  212. {
  213. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  214. }
  215. EXPORT_SYMBOL(hugetlb_total_pages);
  216. /*
  217. * We cannot handle pagefaults against hugetlb pages at all. They cause
  218. * handle_mm_fault() to try to instantiate regular-sized pages in the
  219. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  220. * this far.
  221. */
  222. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  223. unsigned long address, int *unused)
  224. {
  225. BUG();
  226. return NULL;
  227. }
  228. struct vm_operations_struct hugetlb_vm_ops = {
  229. .nopage = hugetlb_nopage,
  230. };
  231. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page)
  232. {
  233. pte_t entry;
  234. if (vma->vm_flags & VM_WRITE) {
  235. entry =
  236. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  237. } else {
  238. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  239. }
  240. entry = pte_mkyoung(entry);
  241. entry = pte_mkhuge(entry);
  242. return entry;
  243. }
  244. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  245. struct vm_area_struct *vma)
  246. {
  247. pte_t *src_pte, *dst_pte, entry;
  248. struct page *ptepage;
  249. unsigned long addr;
  250. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  251. src_pte = huge_pte_offset(src, addr);
  252. if (!src_pte)
  253. continue;
  254. dst_pte = huge_pte_alloc(dst, addr);
  255. if (!dst_pte)
  256. goto nomem;
  257. spin_lock(&dst->page_table_lock);
  258. spin_lock(&src->page_table_lock);
  259. if (!pte_none(*src_pte)) {
  260. entry = *src_pte;
  261. ptepage = pte_page(entry);
  262. get_page(ptepage);
  263. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  264. set_huge_pte_at(dst, addr, dst_pte, entry);
  265. }
  266. spin_unlock(&src->page_table_lock);
  267. spin_unlock(&dst->page_table_lock);
  268. }
  269. return 0;
  270. nomem:
  271. return -ENOMEM;
  272. }
  273. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  274. unsigned long end)
  275. {
  276. struct mm_struct *mm = vma->vm_mm;
  277. unsigned long address;
  278. pte_t *ptep;
  279. pte_t pte;
  280. struct page *page;
  281. WARN_ON(!is_vm_hugetlb_page(vma));
  282. BUG_ON(start & ~HPAGE_MASK);
  283. BUG_ON(end & ~HPAGE_MASK);
  284. spin_lock(&mm->page_table_lock);
  285. /* Update high watermark before we lower rss */
  286. update_hiwater_rss(mm);
  287. for (address = start; address < end; address += HPAGE_SIZE) {
  288. ptep = huge_pte_offset(mm, address);
  289. if (!ptep)
  290. continue;
  291. pte = huge_ptep_get_and_clear(mm, address, ptep);
  292. if (pte_none(pte))
  293. continue;
  294. page = pte_page(pte);
  295. put_page(page);
  296. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  297. }
  298. spin_unlock(&mm->page_table_lock);
  299. flush_tlb_range(vma, start, end);
  300. }
  301. static struct page *find_lock_huge_page(struct address_space *mapping,
  302. unsigned long idx)
  303. {
  304. struct page *page;
  305. int err;
  306. struct inode *inode = mapping->host;
  307. unsigned long size;
  308. retry:
  309. page = find_lock_page(mapping, idx);
  310. if (page)
  311. goto out;
  312. /* Check to make sure the mapping hasn't been truncated */
  313. size = i_size_read(inode) >> HPAGE_SHIFT;
  314. if (idx >= size)
  315. goto out;
  316. if (hugetlb_get_quota(mapping))
  317. goto out;
  318. page = alloc_huge_page();
  319. if (!page) {
  320. hugetlb_put_quota(mapping);
  321. goto out;
  322. }
  323. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  324. if (err) {
  325. put_page(page);
  326. hugetlb_put_quota(mapping);
  327. if (err == -EEXIST)
  328. goto retry;
  329. page = NULL;
  330. }
  331. out:
  332. return page;
  333. }
  334. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  335. unsigned long address, int write_access)
  336. {
  337. int ret = VM_FAULT_SIGBUS;
  338. unsigned long idx;
  339. unsigned long size;
  340. pte_t *pte;
  341. struct page *page;
  342. struct address_space *mapping;
  343. pte = huge_pte_alloc(mm, address);
  344. if (!pte)
  345. goto out;
  346. mapping = vma->vm_file->f_mapping;
  347. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  348. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  349. /*
  350. * Use page lock to guard against racing truncation
  351. * before we get page_table_lock.
  352. */
  353. page = find_lock_huge_page(mapping, idx);
  354. if (!page)
  355. goto out;
  356. spin_lock(&mm->page_table_lock);
  357. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  358. if (idx >= size)
  359. goto backout;
  360. ret = VM_FAULT_MINOR;
  361. if (!pte_none(*pte))
  362. goto backout;
  363. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  364. set_huge_pte_at(mm, address, pte, make_huge_pte(vma, page));
  365. spin_unlock(&mm->page_table_lock);
  366. unlock_page(page);
  367. out:
  368. return ret;
  369. backout:
  370. spin_unlock(&mm->page_table_lock);
  371. hugetlb_put_quota(mapping);
  372. unlock_page(page);
  373. put_page(page);
  374. goto out;
  375. }
  376. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  377. struct page **pages, struct vm_area_struct **vmas,
  378. unsigned long *position, int *length, int i)
  379. {
  380. unsigned long vpfn, vaddr = *position;
  381. int remainder = *length;
  382. vpfn = vaddr/PAGE_SIZE;
  383. spin_lock(&mm->page_table_lock);
  384. while (vaddr < vma->vm_end && remainder) {
  385. pte_t *pte;
  386. struct page *page;
  387. /*
  388. * Some archs (sparc64, sh*) have multiple pte_ts to
  389. * each hugepage. We have to make * sure we get the
  390. * first, for the page indexing below to work.
  391. */
  392. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  393. if (!pte || pte_none(*pte)) {
  394. int ret;
  395. spin_unlock(&mm->page_table_lock);
  396. ret = hugetlb_fault(mm, vma, vaddr, 0);
  397. spin_lock(&mm->page_table_lock);
  398. if (ret == VM_FAULT_MINOR)
  399. continue;
  400. remainder = 0;
  401. if (!i)
  402. i = -EFAULT;
  403. break;
  404. }
  405. if (pages) {
  406. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  407. get_page(page);
  408. pages[i] = page;
  409. }
  410. if (vmas)
  411. vmas[i] = vma;
  412. vaddr += PAGE_SIZE;
  413. ++vpfn;
  414. --remainder;
  415. ++i;
  416. }
  417. spin_unlock(&mm->page_table_lock);
  418. *length = remainder;
  419. *position = vaddr;
  420. return i;
  421. }