pgtable.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. #ifndef _PPC64_PGTABLE_H
  2. #define _PPC64_PGTABLE_H
  3. /*
  4. * This file contains the functions and defines necessary to modify and use
  5. * the ppc64 hashed page table.
  6. */
  7. #ifndef __ASSEMBLY__
  8. #include <linux/config.h>
  9. #include <linux/stddef.h>
  10. #include <asm/processor.h> /* For TASK_SIZE */
  11. #include <asm/mmu.h>
  12. #include <asm/page.h>
  13. #include <asm/tlbflush.h>
  14. #endif /* __ASSEMBLY__ */
  15. #ifdef CONFIG_PPC_64K_PAGES
  16. #include <asm/pgtable-64k.h>
  17. #else
  18. #include <asm/pgtable-4k.h>
  19. #endif
  20. #define FIRST_USER_ADDRESS 0
  21. /*
  22. * Size of EA range mapped by our pagetables.
  23. */
  24. #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  25. PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  26. #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
  27. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  28. #error TASK_SIZE_USER64 exceeds pagetable range
  29. #endif
  30. #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
  31. #error TASK_SIZE_USER64 exceeds user VSID range
  32. #endif
  33. /*
  34. * Define the address range of the vmalloc VM area.
  35. */
  36. #define VMALLOC_START (0xD000000000000000ul)
  37. #define VMALLOC_SIZE (0x80000000000UL)
  38. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  39. /*
  40. * Common bits in a linux-style PTE. These match the bits in the
  41. * (hardware-defined) PowerPC PTE as closely as possible. Additional
  42. * bits may be defined in pgtable-*.h
  43. */
  44. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  45. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  46. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  47. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  48. #define _PAGE_GUARDED 0x0008
  49. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  50. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  51. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  52. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  53. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  54. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  55. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  56. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  57. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  58. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  59. /* __pgprot defined in asm-ppc64/page.h */
  60. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  61. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  62. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  63. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  64. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  65. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  66. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  67. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  68. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  69. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  70. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  71. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  72. #define HAVE_PAGE_AGP
  73. /* PTEIDX nibble */
  74. #define _PTEIDX_SECONDARY 0x8
  75. #define _PTEIDX_GROUP_IX 0x7
  76. /*
  77. * POWER4 and newer have per page execute protection, older chips can only
  78. * do this on a segment (256MB) basis.
  79. *
  80. * Also, write permissions imply read permissions.
  81. * This is the closest we can get..
  82. *
  83. * Note due to the way vm flags are laid out, the bits are XWR
  84. */
  85. #define __P000 PAGE_NONE
  86. #define __P001 PAGE_READONLY
  87. #define __P010 PAGE_COPY
  88. #define __P011 PAGE_COPY
  89. #define __P100 PAGE_READONLY_X
  90. #define __P101 PAGE_READONLY_X
  91. #define __P110 PAGE_COPY_X
  92. #define __P111 PAGE_COPY_X
  93. #define __S000 PAGE_NONE
  94. #define __S001 PAGE_READONLY
  95. #define __S010 PAGE_SHARED
  96. #define __S011 PAGE_SHARED
  97. #define __S100 PAGE_READONLY_X
  98. #define __S101 PAGE_READONLY_X
  99. #define __S110 PAGE_SHARED_X
  100. #define __S111 PAGE_SHARED_X
  101. #ifndef __ASSEMBLY__
  102. /*
  103. * ZERO_PAGE is a global shared page that is always zero: used
  104. * for zero-mapped memory areas etc..
  105. */
  106. extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
  107. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  108. #endif /* __ASSEMBLY__ */
  109. #ifdef CONFIG_HUGETLB_PAGE
  110. #define HAVE_ARCH_UNMAPPED_AREA
  111. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  112. #endif
  113. #ifndef __ASSEMBLY__
  114. /*
  115. * Conversion functions: convert a page and protection to a page entry,
  116. * and a page entry and page directory to the page they refer to.
  117. *
  118. * mk_pte takes a (struct page *) as input
  119. */
  120. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  121. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  122. {
  123. pte_t pte;
  124. pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
  125. return pte;
  126. }
  127. #define pte_modify(_pte, newprot) \
  128. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  129. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  130. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  131. /* pte_clear moved to later in this file */
  132. #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
  133. #define pte_page(x) pfn_to_page(pte_pfn(x))
  134. #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
  135. #define pmd_none(pmd) (!pmd_val(pmd))
  136. #define pmd_bad(pmd) (pmd_val(pmd) == 0)
  137. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  138. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  139. #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
  140. #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
  141. #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
  142. #define pud_none(pud) (!pud_val(pud))
  143. #define pud_bad(pud) ((pud_val(pud)) == 0)
  144. #define pud_present(pud) (pud_val(pud) != 0)
  145. #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
  146. #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
  147. #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
  148. /*
  149. * Find an entry in a page-table-directory. We combine the address region
  150. * (the high order N bits) and the pgd portion of the address.
  151. */
  152. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  153. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
  154. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  155. #define pmd_offset(pudp,addr) \
  156. (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  157. #define pte_offset_kernel(dir,addr) \
  158. (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  159. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  160. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  161. #define pte_unmap(pte) do { } while(0)
  162. #define pte_unmap_nested(pte) do { } while(0)
  163. /* to find an entry in a kernel page-table-directory */
  164. /* This now only contains the vmalloc pages */
  165. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  166. /*
  167. * The following only work if pte_present() is true.
  168. * Undefined behaviour if not..
  169. */
  170. static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
  171. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  172. static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
  173. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  174. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  175. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  176. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  177. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  178. static inline pte_t pte_rdprotect(pte_t pte) {
  179. pte_val(pte) &= ~_PAGE_USER; return pte; }
  180. static inline pte_t pte_exprotect(pte_t pte) {
  181. pte_val(pte) &= ~_PAGE_EXEC; return pte; }
  182. static inline pte_t pte_wrprotect(pte_t pte) {
  183. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  184. static inline pte_t pte_mkclean(pte_t pte) {
  185. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  186. static inline pte_t pte_mkold(pte_t pte) {
  187. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  188. static inline pte_t pte_mkread(pte_t pte) {
  189. pte_val(pte) |= _PAGE_USER; return pte; }
  190. static inline pte_t pte_mkexec(pte_t pte) {
  191. pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
  192. static inline pte_t pte_mkwrite(pte_t pte) {
  193. pte_val(pte) |= _PAGE_RW; return pte; }
  194. static inline pte_t pte_mkdirty(pte_t pte) {
  195. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  196. static inline pte_t pte_mkyoung(pte_t pte) {
  197. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  198. static inline pte_t pte_mkhuge(pte_t pte) {
  199. return pte; }
  200. /* Atomic PTE updates */
  201. static inline unsigned long pte_update(pte_t *p, unsigned long clr)
  202. {
  203. unsigned long old, tmp;
  204. __asm__ __volatile__(
  205. "1: ldarx %0,0,%3 # pte_update\n\
  206. andi. %1,%0,%6\n\
  207. bne- 1b \n\
  208. andc %1,%0,%4 \n\
  209. stdcx. %1,0,%3 \n\
  210. bne- 1b"
  211. : "=&r" (old), "=&r" (tmp), "=m" (*p)
  212. : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
  213. : "cc" );
  214. return old;
  215. }
  216. /* PTE updating functions, this function puts the PTE in the
  217. * batch, doesn't actually triggers the hash flush immediately,
  218. * you need to call flush_tlb_pending() to do that.
  219. * Pass -1 for "normal" size (4K or 64K)
  220. */
  221. extern void hpte_update(struct mm_struct *mm, unsigned long addr,
  222. pte_t *ptep, unsigned long pte, int huge);
  223. static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
  224. unsigned long addr, pte_t *ptep)
  225. {
  226. unsigned long old;
  227. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  228. return 0;
  229. old = pte_update(ptep, _PAGE_ACCESSED);
  230. if (old & _PAGE_HASHPTE) {
  231. hpte_update(mm, addr, ptep, old, 0);
  232. flush_tlb_pending();
  233. }
  234. return (old & _PAGE_ACCESSED) != 0;
  235. }
  236. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  237. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  238. ({ \
  239. int __r; \
  240. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  241. __r; \
  242. })
  243. /*
  244. * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
  245. * moment we always flush but we need to fix hpte_update and test if the
  246. * optimisation is worth it.
  247. */
  248. static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
  249. unsigned long addr, pte_t *ptep)
  250. {
  251. unsigned long old;
  252. if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
  253. return 0;
  254. old = pte_update(ptep, _PAGE_DIRTY);
  255. if (old & _PAGE_HASHPTE)
  256. hpte_update(mm, addr, ptep, old, 0);
  257. return (old & _PAGE_DIRTY) != 0;
  258. }
  259. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  260. #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
  261. ({ \
  262. int __r; \
  263. __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
  264. __r; \
  265. })
  266. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  267. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
  268. pte_t *ptep)
  269. {
  270. unsigned long old;
  271. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  272. return;
  273. old = pte_update(ptep, _PAGE_RW);
  274. if (old & _PAGE_HASHPTE)
  275. hpte_update(mm, addr, ptep, old, 0);
  276. }
  277. /*
  278. * We currently remove entries from the hashtable regardless of whether
  279. * the entry was young or dirty. The generic routines only flush if the
  280. * entry was young or dirty which is not good enough.
  281. *
  282. * We should be more intelligent about this but for the moment we override
  283. * these functions and force a tlb flush unconditionally
  284. */
  285. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  286. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  287. ({ \
  288. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  289. __ptep); \
  290. __young; \
  291. })
  292. #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
  293. #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
  294. ({ \
  295. int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
  296. __ptep); \
  297. flush_tlb_page(__vma, __address); \
  298. __dirty; \
  299. })
  300. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  301. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  302. unsigned long addr, pte_t *ptep)
  303. {
  304. unsigned long old = pte_update(ptep, ~0UL);
  305. if (old & _PAGE_HASHPTE)
  306. hpte_update(mm, addr, ptep, old, 0);
  307. return __pte(old);
  308. }
  309. static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
  310. pte_t * ptep)
  311. {
  312. unsigned long old = pte_update(ptep, ~0UL);
  313. if (old & _PAGE_HASHPTE)
  314. hpte_update(mm, addr, ptep, old, 0);
  315. }
  316. /*
  317. * set_pte stores a linux PTE into the linux page table.
  318. */
  319. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  320. pte_t *ptep, pte_t pte)
  321. {
  322. if (pte_present(*ptep)) {
  323. pte_clear(mm, addr, ptep);
  324. flush_tlb_pending();
  325. }
  326. pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  327. #ifdef CONFIG_PPC_64K_PAGES
  328. if (mmu_virtual_psize != MMU_PAGE_64K)
  329. pte = __pte(pte_val(pte) | _PAGE_COMBO);
  330. #endif /* CONFIG_PPC_64K_PAGES */
  331. *ptep = pte;
  332. }
  333. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  334. * function doesn't need to flush the hash entry
  335. */
  336. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  337. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  338. {
  339. unsigned long bits = pte_val(entry) &
  340. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  341. unsigned long old, tmp;
  342. __asm__ __volatile__(
  343. "1: ldarx %0,0,%4\n\
  344. andi. %1,%0,%6\n\
  345. bne- 1b \n\
  346. or %0,%3,%0\n\
  347. stdcx. %0,0,%4\n\
  348. bne- 1b"
  349. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  350. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  351. :"cc");
  352. }
  353. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  354. do { \
  355. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  356. flush_tlb_page_nohash(__vma, __address); \
  357. } while(0)
  358. /*
  359. * Macro to mark a page protection value as "uncacheable".
  360. */
  361. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  362. struct file;
  363. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  364. unsigned long size, pgprot_t vma_prot);
  365. #define __HAVE_PHYS_MEM_ACCESS_PROT
  366. #define __HAVE_ARCH_PTE_SAME
  367. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  368. #define pte_ERROR(e) \
  369. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  370. #define pmd_ERROR(e) \
  371. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
  372. #define pgd_ERROR(e) \
  373. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  374. extern pgd_t swapper_pg_dir[];
  375. extern void paging_init(void);
  376. #ifdef CONFIG_HUGETLB_PAGE
  377. #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
  378. free_pgd_range(tlb, addr, end, floor, ceiling)
  379. #endif
  380. /*
  381. * This gets called at the end of handling a page fault, when
  382. * the kernel has put a new PTE into the page table for the process.
  383. * We use it to put a corresponding HPTE into the hash table
  384. * ahead of time, instead of waiting for the inevitable extra
  385. * hash-table miss exception.
  386. */
  387. struct vm_area_struct;
  388. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  389. /* Encode and de-code a swap entry */
  390. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  391. #define __swp_offset(entry) ((entry).val >> 8)
  392. #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
  393. #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
  394. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
  395. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
  396. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
  397. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
  398. /*
  399. * kern_addr_valid is intended to indicate whether an address is a valid
  400. * kernel address. Most 32-bit archs define it as always true (like this)
  401. * but most 64-bit archs actually perform a test. What should we do here?
  402. * The only use is in fs/ncpfs/dir.c
  403. */
  404. #define kern_addr_valid(addr) (1)
  405. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  406. remap_pfn_range(vma, vaddr, pfn, size, prot)
  407. void pgtable_cache_init(void);
  408. /*
  409. * find_linux_pte returns the address of a linux pte for a given
  410. * effective address and directory. If not found, it returns zero.
  411. */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  412. {
  413. pgd_t *pg;
  414. pud_t *pu;
  415. pmd_t *pm;
  416. pte_t *pt = NULL;
  417. pg = pgdir + pgd_index(ea);
  418. if (!pgd_none(*pg)) {
  419. pu = pud_offset(pg, ea);
  420. if (!pud_none(*pu)) {
  421. pm = pmd_offset(pu, ea);
  422. if (pmd_present(*pm))
  423. pt = pte_offset_kernel(pm, ea);
  424. }
  425. }
  426. return pt;
  427. }
  428. #include <asm-generic/pgtable.h>
  429. #endif /* __ASSEMBLY__ */
  430. #endif /* _PPC64_PGTABLE_H */