ctree.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include "ctree.h"
  19. #include "disk-io.h"
  20. #include "transaction.h"
  21. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  22. *root, struct btrfs_path *path, int level);
  23. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_key *ins_key,
  25. struct btrfs_path *path, int data_size);
  26. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  27. *root, struct buffer_head *dst, struct buffer_head
  28. *src);
  29. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  30. btrfs_root *root, struct buffer_head *dst_buf,
  31. struct buffer_head *src_buf);
  32. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  33. struct btrfs_path *path, int level, int slot);
  34. inline void btrfs_init_path(struct btrfs_path *p)
  35. {
  36. memset(p, 0, sizeof(*p));
  37. }
  38. struct btrfs_path *btrfs_alloc_path(void)
  39. {
  40. struct btrfs_path *path;
  41. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  42. if (path)
  43. btrfs_init_path(path);
  44. return path;
  45. }
  46. void btrfs_free_path(struct btrfs_path *p)
  47. {
  48. btrfs_release_path(NULL, p);
  49. kmem_cache_free(btrfs_path_cachep, p);
  50. }
  51. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  52. {
  53. int i;
  54. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  55. if (!p->nodes[i])
  56. break;
  57. btrfs_block_release(root, p->nodes[i]);
  58. }
  59. memset(p, 0, sizeof(*p));
  60. }
  61. static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  62. *root, struct buffer_head *buf, struct buffer_head
  63. *parent, int parent_slot, struct buffer_head
  64. **cow_ret)
  65. {
  66. struct buffer_head *cow;
  67. struct btrfs_node *cow_node;
  68. int ret;
  69. WARN_ON(!buffer_uptodate(buf));
  70. if (trans->transaction != root->fs_info->running_transaction) {
  71. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  72. root->fs_info->running_transaction->transid);
  73. WARN_ON(1);
  74. }
  75. if (trans->transid != root->fs_info->generation) {
  76. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  77. root->fs_info->generation);
  78. WARN_ON(1);
  79. }
  80. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  81. trans->transid) {
  82. *cow_ret = buf;
  83. return 0;
  84. }
  85. cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
  86. if (IS_ERR(cow))
  87. return PTR_ERR(cow);
  88. cow_node = btrfs_buffer_node(cow);
  89. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  90. WARN_ON(1);
  91. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  92. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  93. btrfs_set_header_generation(&cow_node->header, trans->transid);
  94. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  95. ret = btrfs_inc_ref(trans, root, buf);
  96. if (ret)
  97. return ret;
  98. if (buf == root->node) {
  99. root->node = cow;
  100. get_bh(cow);
  101. if (buf != root->commit_root) {
  102. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  103. }
  104. btrfs_block_release(root, buf);
  105. } else {
  106. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  107. bh_blocknr(cow));
  108. btrfs_mark_buffer_dirty(parent);
  109. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  110. }
  111. btrfs_block_release(root, buf);
  112. btrfs_mark_buffer_dirty(cow);
  113. *cow_ret = cow;
  114. return 0;
  115. }
  116. /*
  117. * The leaf data grows from end-to-front in the node.
  118. * this returns the address of the start of the last item,
  119. * which is the stop of the leaf data stack
  120. */
  121. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  122. struct btrfs_leaf *leaf)
  123. {
  124. u32 nr = btrfs_header_nritems(&leaf->header);
  125. if (nr == 0)
  126. return BTRFS_LEAF_DATA_SIZE(root);
  127. return btrfs_item_offset(leaf->items + nr - 1);
  128. }
  129. /*
  130. * compare two keys in a memcmp fashion
  131. */
  132. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  133. {
  134. struct btrfs_key k1;
  135. btrfs_disk_key_to_cpu(&k1, disk);
  136. if (k1.objectid > k2->objectid)
  137. return 1;
  138. if (k1.objectid < k2->objectid)
  139. return -1;
  140. if (k1.flags > k2->flags)
  141. return 1;
  142. if (k1.flags < k2->flags)
  143. return -1;
  144. if (k1.offset > k2->offset)
  145. return 1;
  146. if (k1.offset < k2->offset)
  147. return -1;
  148. return 0;
  149. }
  150. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  151. int level)
  152. {
  153. struct btrfs_node *parent = NULL;
  154. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  155. int parent_slot;
  156. int slot;
  157. struct btrfs_key cpukey;
  158. u32 nritems = btrfs_header_nritems(&node->header);
  159. if (path->nodes[level + 1])
  160. parent = btrfs_buffer_node(path->nodes[level + 1]);
  161. slot = path->slots[level];
  162. BUG_ON(nritems == 0);
  163. if (parent) {
  164. struct btrfs_disk_key *parent_key;
  165. parent_slot = path->slots[level + 1];
  166. parent_key = &parent->ptrs[parent_slot].key;
  167. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  168. sizeof(struct btrfs_disk_key)));
  169. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  170. btrfs_header_blocknr(&node->header));
  171. }
  172. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  173. if (slot != 0) {
  174. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  175. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  176. }
  177. if (slot < nritems - 1) {
  178. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  179. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  180. }
  181. return 0;
  182. }
  183. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  184. int level)
  185. {
  186. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  187. struct btrfs_node *parent = NULL;
  188. int parent_slot;
  189. int slot = path->slots[0];
  190. struct btrfs_key cpukey;
  191. u32 nritems = btrfs_header_nritems(&leaf->header);
  192. if (path->nodes[level + 1])
  193. parent = btrfs_buffer_node(path->nodes[level + 1]);
  194. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  195. if (nritems == 0)
  196. return 0;
  197. if (parent) {
  198. struct btrfs_disk_key *parent_key;
  199. parent_slot = path->slots[level + 1];
  200. parent_key = &parent->ptrs[parent_slot].key;
  201. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  202. sizeof(struct btrfs_disk_key)));
  203. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  204. btrfs_header_blocknr(&leaf->header));
  205. }
  206. if (slot != 0) {
  207. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  208. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  209. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  210. btrfs_item_end(leaf->items + slot));
  211. }
  212. if (slot < nritems - 1) {
  213. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  214. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  215. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  216. btrfs_item_end(leaf->items + slot + 1));
  217. }
  218. BUG_ON(btrfs_item_offset(leaf->items) +
  219. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  220. return 0;
  221. }
  222. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  223. int level)
  224. {
  225. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  226. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  227. sizeof(node->header.fsid)))
  228. BUG();
  229. if (level == 0)
  230. return check_leaf(root, path, level);
  231. return check_node(root, path, level);
  232. }
  233. /*
  234. * search for key in the array p. items p are item_size apart
  235. * and there are 'max' items in p
  236. * the slot in the array is returned via slot, and it points to
  237. * the place where you would insert key if it is not found in
  238. * the array.
  239. *
  240. * slot may point to max if the key is bigger than all of the keys
  241. */
  242. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  243. int max, int *slot)
  244. {
  245. int low = 0;
  246. int high = max;
  247. int mid;
  248. int ret;
  249. struct btrfs_disk_key *tmp;
  250. while(low < high) {
  251. mid = (low + high) / 2;
  252. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  253. ret = comp_keys(tmp, key);
  254. if (ret < 0)
  255. low = mid + 1;
  256. else if (ret > 0)
  257. high = mid;
  258. else {
  259. *slot = mid;
  260. return 0;
  261. }
  262. }
  263. *slot = low;
  264. return 1;
  265. }
  266. /*
  267. * simple bin_search frontend that does the right thing for
  268. * leaves vs nodes
  269. */
  270. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  271. {
  272. if (btrfs_is_leaf(c)) {
  273. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  274. return generic_bin_search((void *)l->items,
  275. sizeof(struct btrfs_item),
  276. key, btrfs_header_nritems(&c->header),
  277. slot);
  278. } else {
  279. return generic_bin_search((void *)c->ptrs,
  280. sizeof(struct btrfs_key_ptr),
  281. key, btrfs_header_nritems(&c->header),
  282. slot);
  283. }
  284. return -1;
  285. }
  286. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  287. struct buffer_head *parent_buf,
  288. int slot)
  289. {
  290. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  291. if (slot < 0)
  292. return NULL;
  293. if (slot >= btrfs_header_nritems(&node->header))
  294. return NULL;
  295. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  296. }
  297. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  298. *root, struct btrfs_path *path, int level)
  299. {
  300. struct buffer_head *right_buf;
  301. struct buffer_head *mid_buf;
  302. struct buffer_head *left_buf;
  303. struct buffer_head *parent_buf = NULL;
  304. struct btrfs_node *right = NULL;
  305. struct btrfs_node *mid;
  306. struct btrfs_node *left = NULL;
  307. struct btrfs_node *parent = NULL;
  308. int ret = 0;
  309. int wret;
  310. int pslot;
  311. int orig_slot = path->slots[level];
  312. int err_on_enospc = 0;
  313. u64 orig_ptr;
  314. if (level == 0)
  315. return 0;
  316. mid_buf = path->nodes[level];
  317. mid = btrfs_buffer_node(mid_buf);
  318. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  319. if (level < BTRFS_MAX_LEVEL - 1)
  320. parent_buf = path->nodes[level + 1];
  321. pslot = path->slots[level + 1];
  322. /*
  323. * deal with the case where there is only one pointer in the root
  324. * by promoting the node below to a root
  325. */
  326. if (!parent_buf) {
  327. struct buffer_head *child;
  328. u64 blocknr = bh_blocknr(mid_buf);
  329. if (btrfs_header_nritems(&mid->header) != 1)
  330. return 0;
  331. /* promote the child to a root */
  332. child = read_node_slot(root, mid_buf, 0);
  333. BUG_ON(!child);
  334. root->node = child;
  335. path->nodes[level] = NULL;
  336. clean_tree_block(trans, root, mid_buf);
  337. wait_on_buffer(mid_buf);
  338. /* once for the path */
  339. btrfs_block_release(root, mid_buf);
  340. /* once for the root ptr */
  341. btrfs_block_release(root, mid_buf);
  342. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  343. }
  344. parent = btrfs_buffer_node(parent_buf);
  345. if (btrfs_header_nritems(&mid->header) >
  346. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  347. return 0;
  348. if (btrfs_header_nritems(&mid->header) < 2)
  349. err_on_enospc = 1;
  350. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  351. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  352. /* first, try to make some room in the middle buffer */
  353. if (left_buf) {
  354. wret = btrfs_cow_block(trans, root, left_buf,
  355. parent_buf, pslot - 1, &left_buf);
  356. if (wret) {
  357. ret = wret;
  358. goto enospc;
  359. }
  360. left = btrfs_buffer_node(left_buf);
  361. orig_slot += btrfs_header_nritems(&left->header);
  362. wret = push_node_left(trans, root, left_buf, mid_buf);
  363. if (wret < 0)
  364. ret = wret;
  365. if (btrfs_header_nritems(&mid->header) < 2)
  366. err_on_enospc = 1;
  367. }
  368. /*
  369. * then try to empty the right most buffer into the middle
  370. */
  371. if (right_buf) {
  372. wret = btrfs_cow_block(trans, root, right_buf,
  373. parent_buf, pslot + 1, &right_buf);
  374. if (wret) {
  375. ret = wret;
  376. goto enospc;
  377. }
  378. right = btrfs_buffer_node(right_buf);
  379. wret = push_node_left(trans, root, mid_buf, right_buf);
  380. if (wret < 0 && wret != -ENOSPC)
  381. ret = wret;
  382. if (btrfs_header_nritems(&right->header) == 0) {
  383. u64 blocknr = bh_blocknr(right_buf);
  384. clean_tree_block(trans, root, right_buf);
  385. wait_on_buffer(right_buf);
  386. btrfs_block_release(root, right_buf);
  387. right_buf = NULL;
  388. right = NULL;
  389. wret = del_ptr(trans, root, path, level + 1, pslot +
  390. 1);
  391. if (wret)
  392. ret = wret;
  393. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  394. if (wret)
  395. ret = wret;
  396. } else {
  397. btrfs_memcpy(root, parent,
  398. &parent->ptrs[pslot + 1].key,
  399. &right->ptrs[0].key,
  400. sizeof(struct btrfs_disk_key));
  401. btrfs_mark_buffer_dirty(parent_buf);
  402. }
  403. }
  404. if (btrfs_header_nritems(&mid->header) == 1) {
  405. /*
  406. * we're not allowed to leave a node with one item in the
  407. * tree during a delete. A deletion from lower in the tree
  408. * could try to delete the only pointer in this node.
  409. * So, pull some keys from the left.
  410. * There has to be a left pointer at this point because
  411. * otherwise we would have pulled some pointers from the
  412. * right
  413. */
  414. BUG_ON(!left_buf);
  415. wret = balance_node_right(trans, root, mid_buf, left_buf);
  416. if (wret < 0) {
  417. ret = wret;
  418. goto enospc;
  419. }
  420. BUG_ON(wret == 1);
  421. }
  422. if (btrfs_header_nritems(&mid->header) == 0) {
  423. /* we've managed to empty the middle node, drop it */
  424. u64 blocknr = bh_blocknr(mid_buf);
  425. clean_tree_block(trans, root, mid_buf);
  426. wait_on_buffer(mid_buf);
  427. btrfs_block_release(root, mid_buf);
  428. mid_buf = NULL;
  429. mid = NULL;
  430. wret = del_ptr(trans, root, path, level + 1, pslot);
  431. if (wret)
  432. ret = wret;
  433. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  434. if (wret)
  435. ret = wret;
  436. } else {
  437. /* update the parent key to reflect our changes */
  438. btrfs_memcpy(root, parent,
  439. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  440. sizeof(struct btrfs_disk_key));
  441. btrfs_mark_buffer_dirty(parent_buf);
  442. }
  443. /* update the path */
  444. if (left_buf) {
  445. if (btrfs_header_nritems(&left->header) > orig_slot) {
  446. get_bh(left_buf);
  447. path->nodes[level] = left_buf;
  448. path->slots[level + 1] -= 1;
  449. path->slots[level] = orig_slot;
  450. if (mid_buf)
  451. btrfs_block_release(root, mid_buf);
  452. } else {
  453. orig_slot -= btrfs_header_nritems(&left->header);
  454. path->slots[level] = orig_slot;
  455. }
  456. }
  457. /* double check we haven't messed things up */
  458. check_block(root, path, level);
  459. if (orig_ptr !=
  460. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  461. path->slots[level]))
  462. BUG();
  463. enospc:
  464. if (right_buf)
  465. btrfs_block_release(root, right_buf);
  466. if (left_buf)
  467. btrfs_block_release(root, left_buf);
  468. return ret;
  469. }
  470. /* returns zero if the push worked, non-zero otherwise */
  471. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  472. struct btrfs_root *root,
  473. struct btrfs_path *path, int level)
  474. {
  475. struct buffer_head *right_buf;
  476. struct buffer_head *mid_buf;
  477. struct buffer_head *left_buf;
  478. struct buffer_head *parent_buf = NULL;
  479. struct btrfs_node *right = NULL;
  480. struct btrfs_node *mid;
  481. struct btrfs_node *left = NULL;
  482. struct btrfs_node *parent = NULL;
  483. int ret = 0;
  484. int wret;
  485. int pslot;
  486. int orig_slot = path->slots[level];
  487. u64 orig_ptr;
  488. if (level == 0)
  489. return 1;
  490. mid_buf = path->nodes[level];
  491. mid = btrfs_buffer_node(mid_buf);
  492. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  493. if (level < BTRFS_MAX_LEVEL - 1)
  494. parent_buf = path->nodes[level + 1];
  495. pslot = path->slots[level + 1];
  496. if (!parent_buf)
  497. return 1;
  498. parent = btrfs_buffer_node(parent_buf);
  499. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  500. /* first, try to make some room in the middle buffer */
  501. if (left_buf) {
  502. u32 left_nr;
  503. left = btrfs_buffer_node(left_buf);
  504. left_nr = btrfs_header_nritems(&left->header);
  505. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  506. wret = 1;
  507. } else {
  508. ret = btrfs_cow_block(trans, root, left_buf, parent_buf,
  509. pslot - 1, &left_buf);
  510. if (ret)
  511. wret = 1;
  512. else {
  513. left = btrfs_buffer_node(left_buf);
  514. wret = push_node_left(trans, root,
  515. left_buf, mid_buf);
  516. }
  517. }
  518. if (wret < 0)
  519. ret = wret;
  520. if (wret == 0) {
  521. orig_slot += left_nr;
  522. btrfs_memcpy(root, parent,
  523. &parent->ptrs[pslot].key,
  524. &mid->ptrs[0].key,
  525. sizeof(struct btrfs_disk_key));
  526. btrfs_mark_buffer_dirty(parent_buf);
  527. if (btrfs_header_nritems(&left->header) > orig_slot) {
  528. path->nodes[level] = left_buf;
  529. path->slots[level + 1] -= 1;
  530. path->slots[level] = orig_slot;
  531. btrfs_block_release(root, mid_buf);
  532. } else {
  533. orig_slot -=
  534. btrfs_header_nritems(&left->header);
  535. path->slots[level] = orig_slot;
  536. btrfs_block_release(root, left_buf);
  537. }
  538. check_node(root, path, level);
  539. return 0;
  540. }
  541. btrfs_block_release(root, left_buf);
  542. }
  543. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  544. /*
  545. * then try to empty the right most buffer into the middle
  546. */
  547. if (right_buf) {
  548. u32 right_nr;
  549. right = btrfs_buffer_node(right_buf);
  550. right_nr = btrfs_header_nritems(&right->header);
  551. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  552. wret = 1;
  553. } else {
  554. ret = btrfs_cow_block(trans, root, right_buf,
  555. parent_buf, pslot + 1,
  556. &right_buf);
  557. if (ret)
  558. wret = 1;
  559. else {
  560. right = btrfs_buffer_node(right_buf);
  561. wret = balance_node_right(trans, root,
  562. right_buf, mid_buf);
  563. }
  564. }
  565. if (wret < 0)
  566. ret = wret;
  567. if (wret == 0) {
  568. btrfs_memcpy(root, parent,
  569. &parent->ptrs[pslot + 1].key,
  570. &right->ptrs[0].key,
  571. sizeof(struct btrfs_disk_key));
  572. btrfs_mark_buffer_dirty(parent_buf);
  573. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  574. path->nodes[level] = right_buf;
  575. path->slots[level + 1] += 1;
  576. path->slots[level] = orig_slot -
  577. btrfs_header_nritems(&mid->header);
  578. btrfs_block_release(root, mid_buf);
  579. } else {
  580. btrfs_block_release(root, right_buf);
  581. }
  582. check_node(root, path, level);
  583. return 0;
  584. }
  585. btrfs_block_release(root, right_buf);
  586. }
  587. check_node(root, path, level);
  588. return 1;
  589. }
  590. /*
  591. * readahead one full node of leaves
  592. */
  593. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  594. int slot)
  595. {
  596. struct btrfs_node *node;
  597. int i;
  598. u32 nritems;
  599. u64 item_objectid;
  600. u64 blocknr;
  601. u64 search;
  602. u64 cluster_start;
  603. int ret;
  604. int nread = 0;
  605. int direction = path->reada;
  606. struct radix_tree_root found;
  607. unsigned long gang[8];
  608. struct buffer_head *bh;
  609. if (!path->nodes[1])
  610. return;
  611. node = btrfs_buffer_node(path->nodes[1]);
  612. search = btrfs_node_blockptr(node, slot);
  613. bh = btrfs_find_tree_block(root, search);
  614. if (bh) {
  615. brelse(bh);
  616. return;
  617. }
  618. init_bit_radix(&found);
  619. nritems = btrfs_header_nritems(&node->header);
  620. for (i = slot; i < nritems; i++) {
  621. item_objectid = btrfs_disk_key_objectid(&node->ptrs[i].key);
  622. blocknr = btrfs_node_blockptr(node, i);
  623. set_radix_bit(&found, blocknr);
  624. }
  625. if (direction > 0) {
  626. cluster_start = search - 4;
  627. if (cluster_start > search)
  628. cluster_start = 0;
  629. } else
  630. cluster_start = search + 4;
  631. while(1) {
  632. ret = find_first_radix_bit(&found, gang, 0, ARRAY_SIZE(gang));
  633. if (!ret)
  634. break;
  635. for (i = 0; i < ret; i++) {
  636. blocknr = gang[i];
  637. clear_radix_bit(&found, blocknr);
  638. if (nread > 64)
  639. continue;
  640. if (direction > 0 && cluster_start <= blocknr &&
  641. cluster_start + 8 > blocknr) {
  642. cluster_start = blocknr;
  643. readahead_tree_block(root, blocknr);
  644. nread++;
  645. } else if (direction < 0 && cluster_start >= blocknr &&
  646. blocknr + 8 > cluster_start) {
  647. cluster_start = blocknr;
  648. readahead_tree_block(root, blocknr);
  649. nread++;
  650. }
  651. }
  652. }
  653. }
  654. /*
  655. * look for key in the tree. path is filled in with nodes along the way
  656. * if key is found, we return zero and you can find the item in the leaf
  657. * level of the path (level 0)
  658. *
  659. * If the key isn't found, the path points to the slot where it should
  660. * be inserted, and 1 is returned. If there are other errors during the
  661. * search a negative error number is returned.
  662. *
  663. * if ins_len > 0, nodes and leaves will be split as we walk down the
  664. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  665. * possible)
  666. */
  667. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  668. *root, struct btrfs_key *key, struct btrfs_path *p, int
  669. ins_len, int cow)
  670. {
  671. struct buffer_head *b;
  672. struct buffer_head *cow_buf;
  673. struct btrfs_node *c;
  674. struct btrfs_root_item *root_item = &root->root_item;
  675. u64 blocknr;
  676. int slot;
  677. int ret;
  678. int level;
  679. int should_reada = p->reada;
  680. u8 lowest_level = 0;
  681. if (btrfs_root_refs(root_item) == 0 && root->ref_cows) {
  682. lowest_level = root_item->drop_level;
  683. WARN_ON(ins_len || cow);
  684. }
  685. WARN_ON(p->nodes[0] != NULL);
  686. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  687. again:
  688. b = root->node;
  689. get_bh(b);
  690. while (b) {
  691. c = btrfs_buffer_node(b);
  692. level = btrfs_header_level(&c->header);
  693. if (cow) {
  694. int wret;
  695. wret = btrfs_cow_block(trans, root, b,
  696. p->nodes[level + 1],
  697. p->slots[level + 1],
  698. &cow_buf);
  699. if (wret) {
  700. btrfs_block_release(root, cow_buf);
  701. return wret;
  702. }
  703. b = cow_buf;
  704. c = btrfs_buffer_node(b);
  705. }
  706. BUG_ON(!cow && ins_len);
  707. if (level != btrfs_header_level(&c->header))
  708. WARN_ON(1);
  709. level = btrfs_header_level(&c->header);
  710. p->nodes[level] = b;
  711. ret = check_block(root, p, level);
  712. if (ret)
  713. return -1;
  714. ret = bin_search(c, key, &slot);
  715. if (!btrfs_is_leaf(c)) {
  716. if (ret && slot > 0)
  717. slot -= 1;
  718. p->slots[level] = slot;
  719. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  720. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  721. int sret = split_node(trans, root, p, level);
  722. BUG_ON(sret > 0);
  723. if (sret)
  724. return sret;
  725. b = p->nodes[level];
  726. c = btrfs_buffer_node(b);
  727. slot = p->slots[level];
  728. } else if (ins_len < 0) {
  729. int sret = balance_level(trans, root, p,
  730. level);
  731. if (sret)
  732. return sret;
  733. b = p->nodes[level];
  734. if (!b)
  735. goto again;
  736. c = btrfs_buffer_node(b);
  737. slot = p->slots[level];
  738. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  739. }
  740. /* this is only true while dropping a snapshot */
  741. if (level == lowest_level)
  742. break;
  743. blocknr = btrfs_node_blockptr(c, slot);
  744. if (level == 1 && should_reada)
  745. reada_for_search(root, p, slot);
  746. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  747. } else {
  748. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  749. p->slots[level] = slot;
  750. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  751. sizeof(struct btrfs_item) + ins_len) {
  752. int sret = split_leaf(trans, root, key,
  753. p, ins_len);
  754. BUG_ON(sret > 0);
  755. if (sret)
  756. return sret;
  757. }
  758. return ret;
  759. }
  760. }
  761. return 1;
  762. }
  763. /*
  764. * adjust the pointers going up the tree, starting at level
  765. * making sure the right key of each node is points to 'key'.
  766. * This is used after shifting pointers to the left, so it stops
  767. * fixing up pointers when a given leaf/node is not in slot 0 of the
  768. * higher levels
  769. *
  770. * If this fails to write a tree block, it returns -1, but continues
  771. * fixing up the blocks in ram so the tree is consistent.
  772. */
  773. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  774. *root, struct btrfs_path *path, struct btrfs_disk_key
  775. *key, int level)
  776. {
  777. int i;
  778. int ret = 0;
  779. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  780. struct btrfs_node *t;
  781. int tslot = path->slots[i];
  782. if (!path->nodes[i])
  783. break;
  784. t = btrfs_buffer_node(path->nodes[i]);
  785. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  786. btrfs_mark_buffer_dirty(path->nodes[i]);
  787. if (tslot != 0)
  788. break;
  789. }
  790. return ret;
  791. }
  792. /*
  793. * try to push data from one node into the next node left in the
  794. * tree.
  795. *
  796. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  797. * error, and > 0 if there was no room in the left hand block.
  798. */
  799. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  800. *root, struct buffer_head *dst_buf, struct
  801. buffer_head *src_buf)
  802. {
  803. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  804. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  805. int push_items = 0;
  806. int src_nritems;
  807. int dst_nritems;
  808. int ret = 0;
  809. src_nritems = btrfs_header_nritems(&src->header);
  810. dst_nritems = btrfs_header_nritems(&dst->header);
  811. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  812. if (push_items <= 0) {
  813. return 1;
  814. }
  815. if (src_nritems < push_items)
  816. push_items = src_nritems;
  817. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  818. push_items * sizeof(struct btrfs_key_ptr));
  819. if (push_items < src_nritems) {
  820. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  821. (src_nritems - push_items) *
  822. sizeof(struct btrfs_key_ptr));
  823. }
  824. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  825. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  826. btrfs_mark_buffer_dirty(src_buf);
  827. btrfs_mark_buffer_dirty(dst_buf);
  828. return ret;
  829. }
  830. /*
  831. * try to push data from one node into the next node right in the
  832. * tree.
  833. *
  834. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  835. * error, and > 0 if there was no room in the right hand block.
  836. *
  837. * this will only push up to 1/2 the contents of the left node over
  838. */
  839. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  840. btrfs_root *root, struct buffer_head *dst_buf,
  841. struct buffer_head *src_buf)
  842. {
  843. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  844. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  845. int push_items = 0;
  846. int max_push;
  847. int src_nritems;
  848. int dst_nritems;
  849. int ret = 0;
  850. src_nritems = btrfs_header_nritems(&src->header);
  851. dst_nritems = btrfs_header_nritems(&dst->header);
  852. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  853. if (push_items <= 0) {
  854. return 1;
  855. }
  856. max_push = src_nritems / 2 + 1;
  857. /* don't try to empty the node */
  858. if (max_push > src_nritems)
  859. return 1;
  860. if (max_push < push_items)
  861. push_items = max_push;
  862. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  863. dst_nritems * sizeof(struct btrfs_key_ptr));
  864. btrfs_memcpy(root, dst, dst->ptrs,
  865. src->ptrs + src_nritems - push_items,
  866. push_items * sizeof(struct btrfs_key_ptr));
  867. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  868. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  869. btrfs_mark_buffer_dirty(src_buf);
  870. btrfs_mark_buffer_dirty(dst_buf);
  871. return ret;
  872. }
  873. /*
  874. * helper function to insert a new root level in the tree.
  875. * A new node is allocated, and a single item is inserted to
  876. * point to the existing root
  877. *
  878. * returns zero on success or < 0 on failure.
  879. */
  880. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  881. *root, struct btrfs_path *path, int level)
  882. {
  883. struct buffer_head *t;
  884. struct btrfs_node *lower;
  885. struct btrfs_node *c;
  886. struct btrfs_disk_key *lower_key;
  887. BUG_ON(path->nodes[level]);
  888. BUG_ON(path->nodes[level-1] != root->node);
  889. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
  890. if (IS_ERR(t))
  891. return PTR_ERR(t);
  892. c = btrfs_buffer_node(t);
  893. memset(c, 0, root->blocksize);
  894. btrfs_set_header_nritems(&c->header, 1);
  895. btrfs_set_header_level(&c->header, level);
  896. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  897. btrfs_set_header_generation(&c->header, trans->transid);
  898. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  899. lower = btrfs_buffer_node(path->nodes[level-1]);
  900. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  901. sizeof(c->header.fsid));
  902. if (btrfs_is_leaf(lower))
  903. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  904. else
  905. lower_key = &lower->ptrs[0].key;
  906. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  907. sizeof(struct btrfs_disk_key));
  908. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  909. btrfs_mark_buffer_dirty(t);
  910. /* the super has an extra ref to root->node */
  911. btrfs_block_release(root, root->node);
  912. root->node = t;
  913. get_bh(t);
  914. path->nodes[level] = t;
  915. path->slots[level] = 0;
  916. return 0;
  917. }
  918. /*
  919. * worker function to insert a single pointer in a node.
  920. * the node should have enough room for the pointer already
  921. *
  922. * slot and level indicate where you want the key to go, and
  923. * blocknr is the block the key points to.
  924. *
  925. * returns zero on success and < 0 on any error
  926. */
  927. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  928. *root, struct btrfs_path *path, struct btrfs_disk_key
  929. *key, u64 blocknr, int slot, int level)
  930. {
  931. struct btrfs_node *lower;
  932. int nritems;
  933. BUG_ON(!path->nodes[level]);
  934. lower = btrfs_buffer_node(path->nodes[level]);
  935. nritems = btrfs_header_nritems(&lower->header);
  936. if (slot > nritems)
  937. BUG();
  938. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  939. BUG();
  940. if (slot != nritems) {
  941. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  942. lower->ptrs + slot,
  943. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  944. }
  945. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  946. key, sizeof(struct btrfs_disk_key));
  947. btrfs_set_node_blockptr(lower, slot, blocknr);
  948. btrfs_set_header_nritems(&lower->header, nritems + 1);
  949. btrfs_mark_buffer_dirty(path->nodes[level]);
  950. check_node(root, path, level);
  951. return 0;
  952. }
  953. /*
  954. * split the node at the specified level in path in two.
  955. * The path is corrected to point to the appropriate node after the split
  956. *
  957. * Before splitting this tries to make some room in the node by pushing
  958. * left and right, if either one works, it returns right away.
  959. *
  960. * returns 0 on success and < 0 on failure
  961. */
  962. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  963. *root, struct btrfs_path *path, int level)
  964. {
  965. struct buffer_head *t;
  966. struct btrfs_node *c;
  967. struct buffer_head *split_buffer;
  968. struct btrfs_node *split;
  969. int mid;
  970. int ret;
  971. int wret;
  972. u32 c_nritems;
  973. t = path->nodes[level];
  974. c = btrfs_buffer_node(t);
  975. if (t == root->node) {
  976. /* trying to split the root, lets make a new one */
  977. ret = insert_new_root(trans, root, path, level + 1);
  978. if (ret)
  979. return ret;
  980. } else {
  981. ret = push_nodes_for_insert(trans, root, path, level);
  982. t = path->nodes[level];
  983. c = btrfs_buffer_node(t);
  984. if (!ret &&
  985. btrfs_header_nritems(&c->header) <
  986. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  987. return 0;
  988. if (ret < 0)
  989. return ret;
  990. }
  991. c_nritems = btrfs_header_nritems(&c->header);
  992. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
  993. if (IS_ERR(split_buffer))
  994. return PTR_ERR(split_buffer);
  995. split = btrfs_buffer_node(split_buffer);
  996. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  997. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  998. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  999. btrfs_set_header_generation(&split->header, trans->transid);
  1000. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  1001. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  1002. sizeof(split->header.fsid));
  1003. mid = (c_nritems + 1) / 2;
  1004. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  1005. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1006. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  1007. btrfs_set_header_nritems(&c->header, mid);
  1008. ret = 0;
  1009. btrfs_mark_buffer_dirty(t);
  1010. btrfs_mark_buffer_dirty(split_buffer);
  1011. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  1012. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  1013. level + 1);
  1014. if (wret)
  1015. ret = wret;
  1016. if (path->slots[level] >= mid) {
  1017. path->slots[level] -= mid;
  1018. btrfs_block_release(root, t);
  1019. path->nodes[level] = split_buffer;
  1020. path->slots[level + 1] += 1;
  1021. } else {
  1022. btrfs_block_release(root, split_buffer);
  1023. }
  1024. return ret;
  1025. }
  1026. /*
  1027. * how many bytes are required to store the items in a leaf. start
  1028. * and nr indicate which items in the leaf to check. This totals up the
  1029. * space used both by the item structs and the item data
  1030. */
  1031. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  1032. {
  1033. int data_len;
  1034. int nritems = btrfs_header_nritems(&l->header);
  1035. int end = min(nritems, start + nr) - 1;
  1036. if (!nr)
  1037. return 0;
  1038. data_len = btrfs_item_end(l->items + start);
  1039. data_len = data_len - btrfs_item_offset(l->items + end);
  1040. data_len += sizeof(struct btrfs_item) * nr;
  1041. WARN_ON(data_len < 0);
  1042. return data_len;
  1043. }
  1044. /*
  1045. * The space between the end of the leaf items and
  1046. * the start of the leaf data. IOW, how much room
  1047. * the leaf has left for both items and data
  1048. */
  1049. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  1050. {
  1051. int nritems = btrfs_header_nritems(&leaf->header);
  1052. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1053. }
  1054. /*
  1055. * push some data in the path leaf to the right, trying to free up at
  1056. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1057. *
  1058. * returns 1 if the push failed because the other node didn't have enough
  1059. * room, 0 if everything worked out and < 0 if there were major errors.
  1060. */
  1061. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1062. *root, struct btrfs_path *path, int data_size)
  1063. {
  1064. struct buffer_head *left_buf = path->nodes[0];
  1065. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  1066. struct btrfs_leaf *right;
  1067. struct buffer_head *right_buf;
  1068. struct buffer_head *upper;
  1069. struct btrfs_node *upper_node;
  1070. int slot;
  1071. int i;
  1072. int free_space;
  1073. int push_space = 0;
  1074. int push_items = 0;
  1075. struct btrfs_item *item;
  1076. u32 left_nritems;
  1077. u32 right_nritems;
  1078. int ret;
  1079. slot = path->slots[1];
  1080. if (!path->nodes[1]) {
  1081. return 1;
  1082. }
  1083. upper = path->nodes[1];
  1084. upper_node = btrfs_buffer_node(upper);
  1085. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  1086. return 1;
  1087. }
  1088. right_buf = read_tree_block(root,
  1089. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  1090. right = btrfs_buffer_leaf(right_buf);
  1091. free_space = btrfs_leaf_free_space(root, right);
  1092. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1093. btrfs_block_release(root, right_buf);
  1094. return 1;
  1095. }
  1096. /* cow and double check */
  1097. ret = btrfs_cow_block(trans, root, right_buf, upper,
  1098. slot + 1, &right_buf);
  1099. if (ret) {
  1100. btrfs_block_release(root, right_buf);
  1101. return 1;
  1102. }
  1103. right = btrfs_buffer_leaf(right_buf);
  1104. free_space = btrfs_leaf_free_space(root, right);
  1105. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1106. btrfs_block_release(root, right_buf);
  1107. return 1;
  1108. }
  1109. left_nritems = btrfs_header_nritems(&left->header);
  1110. if (left_nritems == 0) {
  1111. btrfs_block_release(root, right_buf);
  1112. return 1;
  1113. }
  1114. for (i = left_nritems - 1; i >= 1; i--) {
  1115. item = left->items + i;
  1116. if (path->slots[0] == i)
  1117. push_space += data_size + sizeof(*item);
  1118. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1119. free_space)
  1120. break;
  1121. push_items++;
  1122. push_space += btrfs_item_size(item) + sizeof(*item);
  1123. }
  1124. if (push_items == 0) {
  1125. btrfs_block_release(root, right_buf);
  1126. return 1;
  1127. }
  1128. if (push_items == left_nritems)
  1129. WARN_ON(1);
  1130. right_nritems = btrfs_header_nritems(&right->header);
  1131. /* push left to right */
  1132. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  1133. push_space -= leaf_data_end(root, left);
  1134. /* make room in the right data area */
  1135. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1136. leaf_data_end(root, right) - push_space,
  1137. btrfs_leaf_data(right) +
  1138. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  1139. leaf_data_end(root, right));
  1140. /* copy from the left data area */
  1141. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  1142. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1143. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1144. push_space);
  1145. btrfs_memmove(root, right, right->items + push_items, right->items,
  1146. right_nritems * sizeof(struct btrfs_item));
  1147. /* copy the items from left to right */
  1148. btrfs_memcpy(root, right, right->items, left->items +
  1149. left_nritems - push_items,
  1150. push_items * sizeof(struct btrfs_item));
  1151. /* update the item pointers */
  1152. right_nritems += push_items;
  1153. btrfs_set_header_nritems(&right->header, right_nritems);
  1154. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1155. for (i = 0; i < right_nritems; i++) {
  1156. btrfs_set_item_offset(right->items + i, push_space -
  1157. btrfs_item_size(right->items + i));
  1158. push_space = btrfs_item_offset(right->items + i);
  1159. }
  1160. left_nritems -= push_items;
  1161. btrfs_set_header_nritems(&left->header, left_nritems);
  1162. btrfs_mark_buffer_dirty(left_buf);
  1163. btrfs_mark_buffer_dirty(right_buf);
  1164. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1165. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1166. btrfs_mark_buffer_dirty(upper);
  1167. /* then fixup the leaf pointer in the path */
  1168. if (path->slots[0] >= left_nritems) {
  1169. path->slots[0] -= left_nritems;
  1170. btrfs_block_release(root, path->nodes[0]);
  1171. path->nodes[0] = right_buf;
  1172. path->slots[1] += 1;
  1173. } else {
  1174. btrfs_block_release(root, right_buf);
  1175. }
  1176. if (path->nodes[1])
  1177. check_node(root, path, 1);
  1178. return 0;
  1179. }
  1180. /*
  1181. * push some data in the path leaf to the left, trying to free up at
  1182. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1183. */
  1184. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1185. *root, struct btrfs_path *path, int data_size)
  1186. {
  1187. struct buffer_head *right_buf = path->nodes[0];
  1188. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1189. struct buffer_head *t;
  1190. struct btrfs_leaf *left;
  1191. int slot;
  1192. int i;
  1193. int free_space;
  1194. int push_space = 0;
  1195. int push_items = 0;
  1196. struct btrfs_item *item;
  1197. u32 old_left_nritems;
  1198. int ret = 0;
  1199. int wret;
  1200. slot = path->slots[1];
  1201. if (slot == 0) {
  1202. return 1;
  1203. }
  1204. if (!path->nodes[1]) {
  1205. return 1;
  1206. }
  1207. t = read_tree_block(root,
  1208. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1209. left = btrfs_buffer_leaf(t);
  1210. free_space = btrfs_leaf_free_space(root, left);
  1211. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1212. btrfs_block_release(root, t);
  1213. return 1;
  1214. }
  1215. /* cow and double check */
  1216. ret = btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1217. if (ret) {
  1218. /* we hit -ENOSPC, but it isn't fatal here */
  1219. return 1;
  1220. }
  1221. left = btrfs_buffer_leaf(t);
  1222. free_space = btrfs_leaf_free_space(root, left);
  1223. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1224. btrfs_block_release(root, t);
  1225. return 1;
  1226. }
  1227. if (btrfs_header_nritems(&right->header) == 0) {
  1228. btrfs_block_release(root, t);
  1229. return 1;
  1230. }
  1231. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1232. item = right->items + i;
  1233. if (path->slots[0] == i)
  1234. push_space += data_size + sizeof(*item);
  1235. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1236. free_space)
  1237. break;
  1238. push_items++;
  1239. push_space += btrfs_item_size(item) + sizeof(*item);
  1240. }
  1241. if (push_items == 0) {
  1242. btrfs_block_release(root, t);
  1243. return 1;
  1244. }
  1245. if (push_items == btrfs_header_nritems(&right->header))
  1246. WARN_ON(1);
  1247. /* push data from right to left */
  1248. btrfs_memcpy(root, left, left->items +
  1249. btrfs_header_nritems(&left->header),
  1250. right->items, push_items * sizeof(struct btrfs_item));
  1251. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1252. btrfs_item_offset(right->items + push_items -1);
  1253. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1254. leaf_data_end(root, left) - push_space,
  1255. btrfs_leaf_data(right) +
  1256. btrfs_item_offset(right->items + push_items - 1),
  1257. push_space);
  1258. old_left_nritems = btrfs_header_nritems(&left->header);
  1259. BUG_ON(old_left_nritems < 0);
  1260. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1261. u32 ioff = btrfs_item_offset(left->items + i);
  1262. btrfs_set_item_offset(left->items + i, ioff -
  1263. (BTRFS_LEAF_DATA_SIZE(root) -
  1264. btrfs_item_offset(left->items +
  1265. old_left_nritems - 1)));
  1266. }
  1267. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1268. /* fixup right node */
  1269. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1270. leaf_data_end(root, right);
  1271. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1272. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1273. btrfs_leaf_data(right) +
  1274. leaf_data_end(root, right), push_space);
  1275. btrfs_memmove(root, right, right->items, right->items + push_items,
  1276. (btrfs_header_nritems(&right->header) - push_items) *
  1277. sizeof(struct btrfs_item));
  1278. btrfs_set_header_nritems(&right->header,
  1279. btrfs_header_nritems(&right->header) -
  1280. push_items);
  1281. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1282. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1283. btrfs_set_item_offset(right->items + i, push_space -
  1284. btrfs_item_size(right->items + i));
  1285. push_space = btrfs_item_offset(right->items + i);
  1286. }
  1287. btrfs_mark_buffer_dirty(t);
  1288. btrfs_mark_buffer_dirty(right_buf);
  1289. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1290. if (wret)
  1291. ret = wret;
  1292. /* then fixup the leaf pointer in the path */
  1293. if (path->slots[0] < push_items) {
  1294. path->slots[0] += old_left_nritems;
  1295. btrfs_block_release(root, path->nodes[0]);
  1296. path->nodes[0] = t;
  1297. path->slots[1] -= 1;
  1298. } else {
  1299. btrfs_block_release(root, t);
  1300. path->slots[0] -= push_items;
  1301. }
  1302. BUG_ON(path->slots[0] < 0);
  1303. if (path->nodes[1])
  1304. check_node(root, path, 1);
  1305. return ret;
  1306. }
  1307. /*
  1308. * split the path's leaf in two, making sure there is at least data_size
  1309. * available for the resulting leaf level of the path.
  1310. *
  1311. * returns 0 if all went well and < 0 on failure.
  1312. */
  1313. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1314. *root, struct btrfs_key *ins_key,
  1315. struct btrfs_path *path, int data_size)
  1316. {
  1317. struct buffer_head *l_buf;
  1318. struct btrfs_leaf *l;
  1319. u32 nritems;
  1320. int mid;
  1321. int slot;
  1322. struct btrfs_leaf *right;
  1323. struct buffer_head *right_buffer;
  1324. int space_needed = data_size + sizeof(struct btrfs_item);
  1325. int data_copy_size;
  1326. int rt_data_off;
  1327. int i;
  1328. int ret = 0;
  1329. int wret;
  1330. int double_split = 0;
  1331. struct btrfs_disk_key disk_key;
  1332. /* first try to make some room by pushing left and right */
  1333. wret = push_leaf_left(trans, root, path, data_size);
  1334. if (wret < 0)
  1335. return wret;
  1336. if (wret) {
  1337. wret = push_leaf_right(trans, root, path, data_size);
  1338. if (wret < 0)
  1339. return wret;
  1340. }
  1341. l_buf = path->nodes[0];
  1342. l = btrfs_buffer_leaf(l_buf);
  1343. /* did the pushes work? */
  1344. if (btrfs_leaf_free_space(root, l) >=
  1345. sizeof(struct btrfs_item) + data_size)
  1346. return 0;
  1347. if (!path->nodes[1]) {
  1348. ret = insert_new_root(trans, root, path, 1);
  1349. if (ret)
  1350. return ret;
  1351. }
  1352. slot = path->slots[0];
  1353. nritems = btrfs_header_nritems(&l->header);
  1354. mid = (nritems + 1)/ 2;
  1355. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1356. if (IS_ERR(right_buffer))
  1357. return PTR_ERR(right_buffer);
  1358. right = btrfs_buffer_leaf(right_buffer);
  1359. memset(&right->header, 0, sizeof(right->header));
  1360. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1361. btrfs_set_header_generation(&right->header, trans->transid);
  1362. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1363. btrfs_set_header_level(&right->header, 0);
  1364. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1365. sizeof(right->header.fsid));
  1366. if (mid <= slot) {
  1367. if (nritems == 1 ||
  1368. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1369. BTRFS_LEAF_DATA_SIZE(root)) {
  1370. if (slot >= nritems) {
  1371. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1372. btrfs_set_header_nritems(&right->header, 0);
  1373. wret = insert_ptr(trans, root, path,
  1374. &disk_key,
  1375. bh_blocknr(right_buffer),
  1376. path->slots[1] + 1, 1);
  1377. if (wret)
  1378. ret = wret;
  1379. btrfs_block_release(root, path->nodes[0]);
  1380. path->nodes[0] = right_buffer;
  1381. path->slots[0] = 0;
  1382. path->slots[1] += 1;
  1383. return ret;
  1384. }
  1385. mid = slot;
  1386. double_split = 1;
  1387. }
  1388. } else {
  1389. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1390. BTRFS_LEAF_DATA_SIZE(root)) {
  1391. if (slot == 0) {
  1392. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1393. btrfs_set_header_nritems(&right->header, 0);
  1394. wret = insert_ptr(trans, root, path,
  1395. &disk_key,
  1396. bh_blocknr(right_buffer),
  1397. path->slots[1], 1);
  1398. if (wret)
  1399. ret = wret;
  1400. btrfs_block_release(root, path->nodes[0]);
  1401. path->nodes[0] = right_buffer;
  1402. path->slots[0] = 0;
  1403. if (path->slots[1] == 0) {
  1404. wret = fixup_low_keys(trans, root,
  1405. path, &disk_key, 1);
  1406. if (wret)
  1407. ret = wret;
  1408. }
  1409. return ret;
  1410. }
  1411. mid = slot;
  1412. double_split = 1;
  1413. }
  1414. }
  1415. btrfs_set_header_nritems(&right->header, nritems - mid);
  1416. data_copy_size = btrfs_item_end(l->items + mid) -
  1417. leaf_data_end(root, l);
  1418. btrfs_memcpy(root, right, right->items, l->items + mid,
  1419. (nritems - mid) * sizeof(struct btrfs_item));
  1420. btrfs_memcpy(root, right,
  1421. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1422. data_copy_size, btrfs_leaf_data(l) +
  1423. leaf_data_end(root, l), data_copy_size);
  1424. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1425. btrfs_item_end(l->items + mid);
  1426. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1427. u32 ioff = btrfs_item_offset(right->items + i);
  1428. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1429. }
  1430. btrfs_set_header_nritems(&l->header, mid);
  1431. ret = 0;
  1432. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1433. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1434. if (wret)
  1435. ret = wret;
  1436. btrfs_mark_buffer_dirty(right_buffer);
  1437. btrfs_mark_buffer_dirty(l_buf);
  1438. BUG_ON(path->slots[0] != slot);
  1439. if (mid <= slot) {
  1440. btrfs_block_release(root, path->nodes[0]);
  1441. path->nodes[0] = right_buffer;
  1442. path->slots[0] -= mid;
  1443. path->slots[1] += 1;
  1444. } else
  1445. btrfs_block_release(root, right_buffer);
  1446. BUG_ON(path->slots[0] < 0);
  1447. check_node(root, path, 1);
  1448. if (!double_split)
  1449. return ret;
  1450. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1451. if (IS_ERR(right_buffer))
  1452. return PTR_ERR(right_buffer);
  1453. right = btrfs_buffer_leaf(right_buffer);
  1454. memset(&right->header, 0, sizeof(right->header));
  1455. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1456. btrfs_set_header_generation(&right->header, trans->transid);
  1457. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1458. btrfs_set_header_level(&right->header, 0);
  1459. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1460. sizeof(right->header.fsid));
  1461. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1462. btrfs_set_header_nritems(&right->header, 0);
  1463. wret = insert_ptr(trans, root, path,
  1464. &disk_key,
  1465. bh_blocknr(right_buffer),
  1466. path->slots[1], 1);
  1467. if (wret)
  1468. ret = wret;
  1469. if (path->slots[1] == 0) {
  1470. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1471. if (wret)
  1472. ret = wret;
  1473. }
  1474. btrfs_block_release(root, path->nodes[0]);
  1475. path->nodes[0] = right_buffer;
  1476. path->slots[0] = 0;
  1477. check_node(root, path, 1);
  1478. check_leaf(root, path, 0);
  1479. return ret;
  1480. }
  1481. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1482. struct btrfs_root *root,
  1483. struct btrfs_path *path,
  1484. u32 new_size)
  1485. {
  1486. int ret = 0;
  1487. int slot;
  1488. int slot_orig;
  1489. struct btrfs_leaf *leaf;
  1490. struct buffer_head *leaf_buf;
  1491. u32 nritems;
  1492. unsigned int data_end;
  1493. unsigned int old_data_start;
  1494. unsigned int old_size;
  1495. unsigned int size_diff;
  1496. int i;
  1497. slot_orig = path->slots[0];
  1498. leaf_buf = path->nodes[0];
  1499. leaf = btrfs_buffer_leaf(leaf_buf);
  1500. nritems = btrfs_header_nritems(&leaf->header);
  1501. data_end = leaf_data_end(root, leaf);
  1502. slot = path->slots[0];
  1503. old_data_start = btrfs_item_offset(leaf->items + slot);
  1504. old_size = btrfs_item_size(leaf->items + slot);
  1505. BUG_ON(old_size <= new_size);
  1506. size_diff = old_size - new_size;
  1507. BUG_ON(slot < 0);
  1508. BUG_ON(slot >= nritems);
  1509. /*
  1510. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1511. */
  1512. /* first correct the data pointers */
  1513. for (i = slot; i < nritems; i++) {
  1514. u32 ioff = btrfs_item_offset(leaf->items + i);
  1515. btrfs_set_item_offset(leaf->items + i,
  1516. ioff + size_diff);
  1517. }
  1518. /* shift the data */
  1519. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1520. data_end + size_diff, btrfs_leaf_data(leaf) +
  1521. data_end, old_data_start + new_size - data_end);
  1522. btrfs_set_item_size(leaf->items + slot, new_size);
  1523. btrfs_mark_buffer_dirty(leaf_buf);
  1524. ret = 0;
  1525. if (btrfs_leaf_free_space(root, leaf) < 0)
  1526. BUG();
  1527. check_leaf(root, path, 0);
  1528. return ret;
  1529. }
  1530. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1531. *root, struct btrfs_path *path, u32 data_size)
  1532. {
  1533. int ret = 0;
  1534. int slot;
  1535. int slot_orig;
  1536. struct btrfs_leaf *leaf;
  1537. struct buffer_head *leaf_buf;
  1538. u32 nritems;
  1539. unsigned int data_end;
  1540. unsigned int old_data;
  1541. unsigned int old_size;
  1542. int i;
  1543. slot_orig = path->slots[0];
  1544. leaf_buf = path->nodes[0];
  1545. leaf = btrfs_buffer_leaf(leaf_buf);
  1546. nritems = btrfs_header_nritems(&leaf->header);
  1547. data_end = leaf_data_end(root, leaf);
  1548. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1549. BUG();
  1550. slot = path->slots[0];
  1551. old_data = btrfs_item_end(leaf->items + slot);
  1552. BUG_ON(slot < 0);
  1553. BUG_ON(slot >= nritems);
  1554. /*
  1555. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1556. */
  1557. /* first correct the data pointers */
  1558. for (i = slot; i < nritems; i++) {
  1559. u32 ioff = btrfs_item_offset(leaf->items + i);
  1560. btrfs_set_item_offset(leaf->items + i,
  1561. ioff - data_size);
  1562. }
  1563. /* shift the data */
  1564. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1565. data_end - data_size, btrfs_leaf_data(leaf) +
  1566. data_end, old_data - data_end);
  1567. data_end = old_data;
  1568. old_size = btrfs_item_size(leaf->items + slot);
  1569. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1570. btrfs_mark_buffer_dirty(leaf_buf);
  1571. ret = 0;
  1572. if (btrfs_leaf_free_space(root, leaf) < 0)
  1573. BUG();
  1574. check_leaf(root, path, 0);
  1575. return ret;
  1576. }
  1577. /*
  1578. * Given a key and some data, insert an item into the tree.
  1579. * This does all the path init required, making room in the tree if needed.
  1580. */
  1581. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1582. *root, struct btrfs_path *path, struct btrfs_key
  1583. *cpu_key, u32 data_size)
  1584. {
  1585. int ret = 0;
  1586. int slot;
  1587. int slot_orig;
  1588. struct btrfs_leaf *leaf;
  1589. struct buffer_head *leaf_buf;
  1590. u32 nritems;
  1591. unsigned int data_end;
  1592. struct btrfs_disk_key disk_key;
  1593. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1594. /* create a root if there isn't one */
  1595. if (!root->node)
  1596. BUG();
  1597. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1598. if (ret == 0) {
  1599. return -EEXIST;
  1600. }
  1601. if (ret < 0)
  1602. goto out;
  1603. slot_orig = path->slots[0];
  1604. leaf_buf = path->nodes[0];
  1605. leaf = btrfs_buffer_leaf(leaf_buf);
  1606. nritems = btrfs_header_nritems(&leaf->header);
  1607. data_end = leaf_data_end(root, leaf);
  1608. if (btrfs_leaf_free_space(root, leaf) <
  1609. sizeof(struct btrfs_item) + data_size) {
  1610. BUG();
  1611. }
  1612. slot = path->slots[0];
  1613. BUG_ON(slot < 0);
  1614. if (slot != nritems) {
  1615. int i;
  1616. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1617. /*
  1618. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1619. */
  1620. /* first correct the data pointers */
  1621. for (i = slot; i < nritems; i++) {
  1622. u32 ioff = btrfs_item_offset(leaf->items + i);
  1623. btrfs_set_item_offset(leaf->items + i,
  1624. ioff - data_size);
  1625. }
  1626. /* shift the items */
  1627. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1628. leaf->items + slot,
  1629. (nritems - slot) * sizeof(struct btrfs_item));
  1630. /* shift the data */
  1631. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1632. data_end - data_size, btrfs_leaf_data(leaf) +
  1633. data_end, old_data - data_end);
  1634. data_end = old_data;
  1635. }
  1636. /* setup the item for the new data */
  1637. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1638. sizeof(struct btrfs_disk_key));
  1639. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1640. btrfs_set_item_size(leaf->items + slot, data_size);
  1641. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1642. btrfs_mark_buffer_dirty(leaf_buf);
  1643. ret = 0;
  1644. if (slot == 0)
  1645. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1646. if (btrfs_leaf_free_space(root, leaf) < 0)
  1647. BUG();
  1648. check_leaf(root, path, 0);
  1649. out:
  1650. return ret;
  1651. }
  1652. /*
  1653. * Given a key and some data, insert an item into the tree.
  1654. * This does all the path init required, making room in the tree if needed.
  1655. */
  1656. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1657. *root, struct btrfs_key *cpu_key, void *data, u32
  1658. data_size)
  1659. {
  1660. int ret = 0;
  1661. struct btrfs_path *path;
  1662. u8 *ptr;
  1663. path = btrfs_alloc_path();
  1664. BUG_ON(!path);
  1665. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1666. if (!ret) {
  1667. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1668. path->slots[0], u8);
  1669. btrfs_memcpy(root, path->nodes[0]->b_data,
  1670. ptr, data, data_size);
  1671. btrfs_mark_buffer_dirty(path->nodes[0]);
  1672. }
  1673. btrfs_free_path(path);
  1674. return ret;
  1675. }
  1676. /*
  1677. * delete the pointer from a given node.
  1678. *
  1679. * If the delete empties a node, the node is removed from the tree,
  1680. * continuing all the way the root if required. The root is converted into
  1681. * a leaf if all the nodes are emptied.
  1682. */
  1683. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1684. struct btrfs_path *path, int level, int slot)
  1685. {
  1686. struct btrfs_node *node;
  1687. struct buffer_head *parent = path->nodes[level];
  1688. u32 nritems;
  1689. int ret = 0;
  1690. int wret;
  1691. node = btrfs_buffer_node(parent);
  1692. nritems = btrfs_header_nritems(&node->header);
  1693. if (slot != nritems -1) {
  1694. btrfs_memmove(root, node, node->ptrs + slot,
  1695. node->ptrs + slot + 1,
  1696. sizeof(struct btrfs_key_ptr) *
  1697. (nritems - slot - 1));
  1698. }
  1699. nritems--;
  1700. btrfs_set_header_nritems(&node->header, nritems);
  1701. if (nritems == 0 && parent == root->node) {
  1702. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1703. BUG_ON(btrfs_header_level(header) != 1);
  1704. /* just turn the root into a leaf and break */
  1705. btrfs_set_header_level(header, 0);
  1706. } else if (slot == 0) {
  1707. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1708. level + 1);
  1709. if (wret)
  1710. ret = wret;
  1711. }
  1712. btrfs_mark_buffer_dirty(parent);
  1713. return ret;
  1714. }
  1715. /*
  1716. * delete the item at the leaf level in path. If that empties
  1717. * the leaf, remove it from the tree
  1718. */
  1719. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1720. struct btrfs_path *path)
  1721. {
  1722. int slot;
  1723. struct btrfs_leaf *leaf;
  1724. struct buffer_head *leaf_buf;
  1725. int doff;
  1726. int dsize;
  1727. int ret = 0;
  1728. int wret;
  1729. u32 nritems;
  1730. leaf_buf = path->nodes[0];
  1731. leaf = btrfs_buffer_leaf(leaf_buf);
  1732. slot = path->slots[0];
  1733. doff = btrfs_item_offset(leaf->items + slot);
  1734. dsize = btrfs_item_size(leaf->items + slot);
  1735. nritems = btrfs_header_nritems(&leaf->header);
  1736. if (slot != nritems - 1) {
  1737. int i;
  1738. int data_end = leaf_data_end(root, leaf);
  1739. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1740. data_end + dsize,
  1741. btrfs_leaf_data(leaf) + data_end,
  1742. doff - data_end);
  1743. for (i = slot + 1; i < nritems; i++) {
  1744. u32 ioff = btrfs_item_offset(leaf->items + i);
  1745. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1746. }
  1747. btrfs_memmove(root, leaf, leaf->items + slot,
  1748. leaf->items + slot + 1,
  1749. sizeof(struct btrfs_item) *
  1750. (nritems - slot - 1));
  1751. }
  1752. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1753. nritems--;
  1754. /* delete the leaf if we've emptied it */
  1755. if (nritems == 0) {
  1756. if (leaf_buf == root->node) {
  1757. btrfs_set_header_level(&leaf->header, 0);
  1758. } else {
  1759. clean_tree_block(trans, root, leaf_buf);
  1760. wait_on_buffer(leaf_buf);
  1761. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1762. if (wret)
  1763. ret = wret;
  1764. wret = btrfs_free_extent(trans, root,
  1765. bh_blocknr(leaf_buf), 1, 1);
  1766. if (wret)
  1767. ret = wret;
  1768. }
  1769. } else {
  1770. int used = leaf_space_used(leaf, 0, nritems);
  1771. if (slot == 0) {
  1772. wret = fixup_low_keys(trans, root, path,
  1773. &leaf->items[0].key, 1);
  1774. if (wret)
  1775. ret = wret;
  1776. }
  1777. /* delete the leaf if it is mostly empty */
  1778. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1779. /* push_leaf_left fixes the path.
  1780. * make sure the path still points to our leaf
  1781. * for possible call to del_ptr below
  1782. */
  1783. slot = path->slots[1];
  1784. get_bh(leaf_buf);
  1785. wret = push_leaf_left(trans, root, path, 1);
  1786. if (wret < 0 && wret != -ENOSPC)
  1787. ret = wret;
  1788. if (path->nodes[0] == leaf_buf &&
  1789. btrfs_header_nritems(&leaf->header)) {
  1790. wret = push_leaf_right(trans, root, path, 1);
  1791. if (wret < 0 && wret != -ENOSPC)
  1792. ret = wret;
  1793. }
  1794. if (btrfs_header_nritems(&leaf->header) == 0) {
  1795. u64 blocknr = bh_blocknr(leaf_buf);
  1796. clean_tree_block(trans, root, leaf_buf);
  1797. wait_on_buffer(leaf_buf);
  1798. wret = del_ptr(trans, root, path, 1, slot);
  1799. if (wret)
  1800. ret = wret;
  1801. btrfs_block_release(root, leaf_buf);
  1802. wret = btrfs_free_extent(trans, root, blocknr,
  1803. 1, 1);
  1804. if (wret)
  1805. ret = wret;
  1806. } else {
  1807. btrfs_mark_buffer_dirty(leaf_buf);
  1808. btrfs_block_release(root, leaf_buf);
  1809. }
  1810. } else {
  1811. btrfs_mark_buffer_dirty(leaf_buf);
  1812. }
  1813. }
  1814. return ret;
  1815. }
  1816. /*
  1817. * walk up the tree as far as required to find the next leaf.
  1818. * returns 0 if it found something or 1 if there are no greater leaves.
  1819. * returns < 0 on io errors.
  1820. */
  1821. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1822. {
  1823. int slot;
  1824. int level = 1;
  1825. u64 blocknr;
  1826. struct buffer_head *c;
  1827. struct btrfs_node *c_node;
  1828. struct buffer_head *next = NULL;
  1829. while(level < BTRFS_MAX_LEVEL) {
  1830. if (!path->nodes[level])
  1831. return 1;
  1832. slot = path->slots[level] + 1;
  1833. c = path->nodes[level];
  1834. c_node = btrfs_buffer_node(c);
  1835. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1836. level++;
  1837. continue;
  1838. }
  1839. blocknr = btrfs_node_blockptr(c_node, slot);
  1840. if (next)
  1841. btrfs_block_release(root, next);
  1842. if (level == 1 && path->reada)
  1843. reada_for_search(root, path, slot);
  1844. next = read_tree_block(root, blocknr);
  1845. break;
  1846. }
  1847. path->slots[level] = slot;
  1848. while(1) {
  1849. level--;
  1850. c = path->nodes[level];
  1851. btrfs_block_release(root, c);
  1852. path->nodes[level] = next;
  1853. path->slots[level] = 0;
  1854. if (!level)
  1855. break;
  1856. if (level == 1 && path->reada)
  1857. reada_for_search(root, path, slot);
  1858. next = read_tree_block(root,
  1859. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1860. }
  1861. return 0;
  1862. }