sched.c 178 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/cpu_acct.h>
  55. #include <linux/kthread.h>
  56. #include <linux/seq_file.h>
  57. #include <linux/sysctl.h>
  58. #include <linux/syscalls.h>
  59. #include <linux/times.h>
  60. #include <linux/tsacct_kern.h>
  61. #include <linux/kprobes.h>
  62. #include <linux/delayacct.h>
  63. #include <linux/reciprocal_div.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <asm/tlb.h>
  67. #include <asm/irq_regs.h>
  68. /*
  69. * Scheduler clock - returns current time in nanosec units.
  70. * This is default implementation.
  71. * Architectures and sub-architectures can override this.
  72. */
  73. unsigned long long __attribute__((weak)) sched_clock(void)
  74. {
  75. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  76. }
  77. /*
  78. * Convert user-nice values [ -20 ... 0 ... 19 ]
  79. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  80. * and back.
  81. */
  82. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  83. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  84. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  85. /*
  86. * 'User priority' is the nice value converted to something we
  87. * can work with better when scaling various scheduler parameters,
  88. * it's a [ 0 ... 39 ] range.
  89. */
  90. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  91. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  92. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  93. /*
  94. * Some helpers for converting nanosecond timing to jiffy resolution
  95. */
  96. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  97. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. #ifdef CONFIG_FAIR_GROUP_SCHED
  144. #include <linux/cgroup.h>
  145. struct cfs_rq;
  146. /* task group related information */
  147. struct task_group {
  148. #ifdef CONFIG_FAIR_CGROUP_SCHED
  149. struct cgroup_subsys_state css;
  150. #endif
  151. /* schedulable entities of this group on each cpu */
  152. struct sched_entity **se;
  153. /* runqueue "owned" by this group on each cpu */
  154. struct cfs_rq **cfs_rq;
  155. unsigned long shares;
  156. /* spinlock to serialize modification to shares */
  157. spinlock_t lock;
  158. struct rcu_head rcu;
  159. };
  160. /* Default task group's sched entity on each cpu */
  161. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  162. /* Default task group's cfs_rq on each cpu */
  163. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  164. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  165. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  166. /* Default task group.
  167. * Every task in system belong to this group at bootup.
  168. */
  169. struct task_group init_task_group = {
  170. .se = init_sched_entity_p,
  171. .cfs_rq = init_cfs_rq_p,
  172. };
  173. #ifdef CONFIG_FAIR_USER_SCHED
  174. # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
  175. #else
  176. # define INIT_TASK_GRP_LOAD NICE_0_LOAD
  177. #endif
  178. static int init_task_group_load = INIT_TASK_GRP_LOAD;
  179. /* return group to which a task belongs */
  180. static inline struct task_group *task_group(struct task_struct *p)
  181. {
  182. struct task_group *tg;
  183. #ifdef CONFIG_FAIR_USER_SCHED
  184. tg = p->user->tg;
  185. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  186. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  187. struct task_group, css);
  188. #else
  189. tg = &init_task_group;
  190. #endif
  191. return tg;
  192. }
  193. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  194. static inline void set_task_cfs_rq(struct task_struct *p)
  195. {
  196. p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
  197. p->se.parent = task_group(p)->se[task_cpu(p)];
  198. }
  199. #else
  200. static inline void set_task_cfs_rq(struct task_struct *p) { }
  201. #endif /* CONFIG_FAIR_GROUP_SCHED */
  202. /* CFS-related fields in a runqueue */
  203. struct cfs_rq {
  204. struct load_weight load;
  205. unsigned long nr_running;
  206. u64 exec_clock;
  207. u64 min_vruntime;
  208. struct rb_root tasks_timeline;
  209. struct rb_node *rb_leftmost;
  210. struct rb_node *rb_load_balance_curr;
  211. /* 'curr' points to currently running entity on this cfs_rq.
  212. * It is set to NULL otherwise (i.e when none are currently running).
  213. */
  214. struct sched_entity *curr;
  215. unsigned long nr_spread_over;
  216. #ifdef CONFIG_FAIR_GROUP_SCHED
  217. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  218. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  219. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  220. * (like users, containers etc.)
  221. *
  222. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  223. * list is used during load balance.
  224. */
  225. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  226. struct task_group *tg; /* group that "owns" this runqueue */
  227. #endif
  228. };
  229. /* Real-Time classes' related field in a runqueue: */
  230. struct rt_rq {
  231. struct rt_prio_array active;
  232. int rt_load_balance_idx;
  233. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  234. };
  235. /*
  236. * This is the main, per-CPU runqueue data structure.
  237. *
  238. * Locking rule: those places that want to lock multiple runqueues
  239. * (such as the load balancing or the thread migration code), lock
  240. * acquire operations must be ordered by ascending &runqueue.
  241. */
  242. struct rq {
  243. /* runqueue lock: */
  244. spinlock_t lock;
  245. /*
  246. * nr_running and cpu_load should be in the same cacheline because
  247. * remote CPUs use both these fields when doing load calculation.
  248. */
  249. unsigned long nr_running;
  250. #define CPU_LOAD_IDX_MAX 5
  251. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  252. unsigned char idle_at_tick;
  253. #ifdef CONFIG_NO_HZ
  254. unsigned char in_nohz_recently;
  255. #endif
  256. /* capture load from *all* tasks on this cpu: */
  257. struct load_weight load;
  258. unsigned long nr_load_updates;
  259. u64 nr_switches;
  260. struct cfs_rq cfs;
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. /* list of leaf cfs_rq on this cpu: */
  263. struct list_head leaf_cfs_rq_list;
  264. #endif
  265. struct rt_rq rt;
  266. /*
  267. * This is part of a global counter where only the total sum
  268. * over all CPUs matters. A task can increase this counter on
  269. * one CPU and if it got migrated afterwards it may decrease
  270. * it on another CPU. Always updated under the runqueue lock:
  271. */
  272. unsigned long nr_uninterruptible;
  273. struct task_struct *curr, *idle;
  274. unsigned long next_balance;
  275. struct mm_struct *prev_mm;
  276. u64 clock, prev_clock_raw;
  277. s64 clock_max_delta;
  278. unsigned int clock_warps, clock_overflows;
  279. u64 idle_clock;
  280. unsigned int clock_deep_idle_events;
  281. u64 tick_timestamp;
  282. atomic_t nr_iowait;
  283. #ifdef CONFIG_SMP
  284. struct sched_domain *sd;
  285. /* For active balancing */
  286. int active_balance;
  287. int push_cpu;
  288. /* cpu of this runqueue: */
  289. int cpu;
  290. struct task_struct *migration_thread;
  291. struct list_head migration_queue;
  292. #endif
  293. #ifdef CONFIG_SCHEDSTATS
  294. /* latency stats */
  295. struct sched_info rq_sched_info;
  296. /* sys_sched_yield() stats */
  297. unsigned int yld_exp_empty;
  298. unsigned int yld_act_empty;
  299. unsigned int yld_both_empty;
  300. unsigned int yld_count;
  301. /* schedule() stats */
  302. unsigned int sched_switch;
  303. unsigned int sched_count;
  304. unsigned int sched_goidle;
  305. /* try_to_wake_up() stats */
  306. unsigned int ttwu_count;
  307. unsigned int ttwu_local;
  308. /* BKL stats */
  309. unsigned int bkl_count;
  310. #endif
  311. struct lock_class_key rq_lock_key;
  312. };
  313. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  314. static DEFINE_MUTEX(sched_hotcpu_mutex);
  315. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  316. {
  317. rq->curr->sched_class->check_preempt_curr(rq, p);
  318. }
  319. static inline int cpu_of(struct rq *rq)
  320. {
  321. #ifdef CONFIG_SMP
  322. return rq->cpu;
  323. #else
  324. return 0;
  325. #endif
  326. }
  327. /*
  328. * Update the per-runqueue clock, as finegrained as the platform can give
  329. * us, but without assuming monotonicity, etc.:
  330. */
  331. static void __update_rq_clock(struct rq *rq)
  332. {
  333. u64 prev_raw = rq->prev_clock_raw;
  334. u64 now = sched_clock();
  335. s64 delta = now - prev_raw;
  336. u64 clock = rq->clock;
  337. #ifdef CONFIG_SCHED_DEBUG
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. #endif
  340. /*
  341. * Protect against sched_clock() occasionally going backwards:
  342. */
  343. if (unlikely(delta < 0)) {
  344. clock++;
  345. rq->clock_warps++;
  346. } else {
  347. /*
  348. * Catch too large forward jumps too:
  349. */
  350. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  351. if (clock < rq->tick_timestamp + TICK_NSEC)
  352. clock = rq->tick_timestamp + TICK_NSEC;
  353. else
  354. clock++;
  355. rq->clock_overflows++;
  356. } else {
  357. if (unlikely(delta > rq->clock_max_delta))
  358. rq->clock_max_delta = delta;
  359. clock += delta;
  360. }
  361. }
  362. rq->prev_clock_raw = now;
  363. rq->clock = clock;
  364. }
  365. static void update_rq_clock(struct rq *rq)
  366. {
  367. if (likely(smp_processor_id() == cpu_of(rq)))
  368. __update_rq_clock(rq);
  369. }
  370. /*
  371. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  372. * See detach_destroy_domains: synchronize_sched for details.
  373. *
  374. * The domain tree of any CPU may only be accessed from within
  375. * preempt-disabled sections.
  376. */
  377. #define for_each_domain(cpu, __sd) \
  378. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  379. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  380. #define this_rq() (&__get_cpu_var(runqueues))
  381. #define task_rq(p) cpu_rq(task_cpu(p))
  382. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  383. /*
  384. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  385. */
  386. #ifdef CONFIG_SCHED_DEBUG
  387. # define const_debug __read_mostly
  388. #else
  389. # define const_debug static const
  390. #endif
  391. /*
  392. * Debugging: various feature bits
  393. */
  394. enum {
  395. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  396. SCHED_FEAT_START_DEBIT = 2,
  397. SCHED_FEAT_TREE_AVG = 4,
  398. SCHED_FEAT_APPROX_AVG = 8,
  399. SCHED_FEAT_WAKEUP_PREEMPT = 16,
  400. };
  401. const_debug unsigned int sysctl_sched_features =
  402. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  403. SCHED_FEAT_START_DEBIT * 1 |
  404. SCHED_FEAT_TREE_AVG * 0 |
  405. SCHED_FEAT_APPROX_AVG * 0 |
  406. SCHED_FEAT_WAKEUP_PREEMPT * 1;
  407. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  408. /*
  409. * Number of tasks to iterate in a single balance run.
  410. * Limited because this is done with IRQs disabled.
  411. */
  412. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  413. /*
  414. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  415. * clock constructed from sched_clock():
  416. */
  417. unsigned long long cpu_clock(int cpu)
  418. {
  419. unsigned long long now;
  420. unsigned long flags;
  421. struct rq *rq;
  422. local_irq_save(flags);
  423. rq = cpu_rq(cpu);
  424. update_rq_clock(rq);
  425. now = rq->clock;
  426. local_irq_restore(flags);
  427. return now;
  428. }
  429. EXPORT_SYMBOL_GPL(cpu_clock);
  430. #ifndef prepare_arch_switch
  431. # define prepare_arch_switch(next) do { } while (0)
  432. #endif
  433. #ifndef finish_arch_switch
  434. # define finish_arch_switch(prev) do { } while (0)
  435. #endif
  436. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  437. static inline int task_running(struct rq *rq, struct task_struct *p)
  438. {
  439. return rq->curr == p;
  440. }
  441. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  442. {
  443. }
  444. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  445. {
  446. #ifdef CONFIG_DEBUG_SPINLOCK
  447. /* this is a valid case when another task releases the spinlock */
  448. rq->lock.owner = current;
  449. #endif
  450. /*
  451. * If we are tracking spinlock dependencies then we have to
  452. * fix up the runqueue lock - which gets 'carried over' from
  453. * prev into current:
  454. */
  455. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  456. spin_unlock_irq(&rq->lock);
  457. }
  458. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  459. static inline int task_running(struct rq *rq, struct task_struct *p)
  460. {
  461. #ifdef CONFIG_SMP
  462. return p->oncpu;
  463. #else
  464. return rq->curr == p;
  465. #endif
  466. }
  467. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  468. {
  469. #ifdef CONFIG_SMP
  470. /*
  471. * We can optimise this out completely for !SMP, because the
  472. * SMP rebalancing from interrupt is the only thing that cares
  473. * here.
  474. */
  475. next->oncpu = 1;
  476. #endif
  477. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  478. spin_unlock_irq(&rq->lock);
  479. #else
  480. spin_unlock(&rq->lock);
  481. #endif
  482. }
  483. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  484. {
  485. #ifdef CONFIG_SMP
  486. /*
  487. * After ->oncpu is cleared, the task can be moved to a different CPU.
  488. * We must ensure this doesn't happen until the switch is completely
  489. * finished.
  490. */
  491. smp_wmb();
  492. prev->oncpu = 0;
  493. #endif
  494. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  495. local_irq_enable();
  496. #endif
  497. }
  498. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  499. /*
  500. * __task_rq_lock - lock the runqueue a given task resides on.
  501. * Must be called interrupts disabled.
  502. */
  503. static inline struct rq *__task_rq_lock(struct task_struct *p)
  504. __acquires(rq->lock)
  505. {
  506. for (;;) {
  507. struct rq *rq = task_rq(p);
  508. spin_lock(&rq->lock);
  509. if (likely(rq == task_rq(p)))
  510. return rq;
  511. spin_unlock(&rq->lock);
  512. }
  513. }
  514. /*
  515. * task_rq_lock - lock the runqueue a given task resides on and disable
  516. * interrupts. Note the ordering: we can safely lookup the task_rq without
  517. * explicitly disabling preemption.
  518. */
  519. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  520. __acquires(rq->lock)
  521. {
  522. struct rq *rq;
  523. for (;;) {
  524. local_irq_save(*flags);
  525. rq = task_rq(p);
  526. spin_lock(&rq->lock);
  527. if (likely(rq == task_rq(p)))
  528. return rq;
  529. spin_unlock_irqrestore(&rq->lock, *flags);
  530. }
  531. }
  532. static void __task_rq_unlock(struct rq *rq)
  533. __releases(rq->lock)
  534. {
  535. spin_unlock(&rq->lock);
  536. }
  537. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  538. __releases(rq->lock)
  539. {
  540. spin_unlock_irqrestore(&rq->lock, *flags);
  541. }
  542. /*
  543. * this_rq_lock - lock this runqueue and disable interrupts.
  544. */
  545. static struct rq *this_rq_lock(void)
  546. __acquires(rq->lock)
  547. {
  548. struct rq *rq;
  549. local_irq_disable();
  550. rq = this_rq();
  551. spin_lock(&rq->lock);
  552. return rq;
  553. }
  554. /*
  555. * We are going deep-idle (irqs are disabled):
  556. */
  557. void sched_clock_idle_sleep_event(void)
  558. {
  559. struct rq *rq = cpu_rq(smp_processor_id());
  560. spin_lock(&rq->lock);
  561. __update_rq_clock(rq);
  562. spin_unlock(&rq->lock);
  563. rq->clock_deep_idle_events++;
  564. }
  565. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  566. /*
  567. * We just idled delta nanoseconds (called with irqs disabled):
  568. */
  569. void sched_clock_idle_wakeup_event(u64 delta_ns)
  570. {
  571. struct rq *rq = cpu_rq(smp_processor_id());
  572. u64 now = sched_clock();
  573. rq->idle_clock += delta_ns;
  574. /*
  575. * Override the previous timestamp and ignore all
  576. * sched_clock() deltas that occured while we idled,
  577. * and use the PM-provided delta_ns to advance the
  578. * rq clock:
  579. */
  580. spin_lock(&rq->lock);
  581. rq->prev_clock_raw = now;
  582. rq->clock += delta_ns;
  583. spin_unlock(&rq->lock);
  584. }
  585. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  586. /*
  587. * resched_task - mark a task 'to be rescheduled now'.
  588. *
  589. * On UP this means the setting of the need_resched flag, on SMP it
  590. * might also involve a cross-CPU call to trigger the scheduler on
  591. * the target CPU.
  592. */
  593. #ifdef CONFIG_SMP
  594. #ifndef tsk_is_polling
  595. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  596. #endif
  597. static void resched_task(struct task_struct *p)
  598. {
  599. int cpu;
  600. assert_spin_locked(&task_rq(p)->lock);
  601. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  602. return;
  603. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  604. cpu = task_cpu(p);
  605. if (cpu == smp_processor_id())
  606. return;
  607. /* NEED_RESCHED must be visible before we test polling */
  608. smp_mb();
  609. if (!tsk_is_polling(p))
  610. smp_send_reschedule(cpu);
  611. }
  612. static void resched_cpu(int cpu)
  613. {
  614. struct rq *rq = cpu_rq(cpu);
  615. unsigned long flags;
  616. if (!spin_trylock_irqsave(&rq->lock, flags))
  617. return;
  618. resched_task(cpu_curr(cpu));
  619. spin_unlock_irqrestore(&rq->lock, flags);
  620. }
  621. #else
  622. static inline void resched_task(struct task_struct *p)
  623. {
  624. assert_spin_locked(&task_rq(p)->lock);
  625. set_tsk_need_resched(p);
  626. }
  627. #endif
  628. #if BITS_PER_LONG == 32
  629. # define WMULT_CONST (~0UL)
  630. #else
  631. # define WMULT_CONST (1UL << 32)
  632. #endif
  633. #define WMULT_SHIFT 32
  634. /*
  635. * Shift right and round:
  636. */
  637. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  638. static unsigned long
  639. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  640. struct load_weight *lw)
  641. {
  642. u64 tmp;
  643. if (unlikely(!lw->inv_weight))
  644. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  645. tmp = (u64)delta_exec * weight;
  646. /*
  647. * Check whether we'd overflow the 64-bit multiplication:
  648. */
  649. if (unlikely(tmp > WMULT_CONST))
  650. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  651. WMULT_SHIFT/2);
  652. else
  653. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  654. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  655. }
  656. static inline unsigned long
  657. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  658. {
  659. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  660. }
  661. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  662. {
  663. lw->weight += inc;
  664. }
  665. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  666. {
  667. lw->weight -= dec;
  668. }
  669. /*
  670. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  671. * of tasks with abnormal "nice" values across CPUs the contribution that
  672. * each task makes to its run queue's load is weighted according to its
  673. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  674. * scaled version of the new time slice allocation that they receive on time
  675. * slice expiry etc.
  676. */
  677. #define WEIGHT_IDLEPRIO 2
  678. #define WMULT_IDLEPRIO (1 << 31)
  679. /*
  680. * Nice levels are multiplicative, with a gentle 10% change for every
  681. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  682. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  683. * that remained on nice 0.
  684. *
  685. * The "10% effect" is relative and cumulative: from _any_ nice level,
  686. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  687. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  688. * If a task goes up by ~10% and another task goes down by ~10% then
  689. * the relative distance between them is ~25%.)
  690. */
  691. static const int prio_to_weight[40] = {
  692. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  693. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  694. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  695. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  696. /* 0 */ 1024, 820, 655, 526, 423,
  697. /* 5 */ 335, 272, 215, 172, 137,
  698. /* 10 */ 110, 87, 70, 56, 45,
  699. /* 15 */ 36, 29, 23, 18, 15,
  700. };
  701. /*
  702. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  703. *
  704. * In cases where the weight does not change often, we can use the
  705. * precalculated inverse to speed up arithmetics by turning divisions
  706. * into multiplications:
  707. */
  708. static const u32 prio_to_wmult[40] = {
  709. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  710. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  711. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  712. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  713. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  714. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  715. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  716. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  717. };
  718. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  719. /*
  720. * runqueue iterator, to support SMP load-balancing between different
  721. * scheduling classes, without having to expose their internal data
  722. * structures to the load-balancing proper:
  723. */
  724. struct rq_iterator {
  725. void *arg;
  726. struct task_struct *(*start)(void *);
  727. struct task_struct *(*next)(void *);
  728. };
  729. #ifdef CONFIG_SMP
  730. static unsigned long
  731. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  732. unsigned long max_load_move, struct sched_domain *sd,
  733. enum cpu_idle_type idle, int *all_pinned,
  734. int *this_best_prio, struct rq_iterator *iterator);
  735. static int
  736. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  737. struct sched_domain *sd, enum cpu_idle_type idle,
  738. struct rq_iterator *iterator);
  739. #endif
  740. #include "sched_stats.h"
  741. #include "sched_idletask.c"
  742. #include "sched_fair.c"
  743. #include "sched_rt.c"
  744. #ifdef CONFIG_SCHED_DEBUG
  745. # include "sched_debug.c"
  746. #endif
  747. #define sched_class_highest (&rt_sched_class)
  748. /*
  749. * Update delta_exec, delta_fair fields for rq.
  750. *
  751. * delta_fair clock advances at a rate inversely proportional to
  752. * total load (rq->load.weight) on the runqueue, while
  753. * delta_exec advances at the same rate as wall-clock (provided
  754. * cpu is not idle).
  755. *
  756. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  757. * runqueue over any given interval. This (smoothened) load is used
  758. * during load balance.
  759. *
  760. * This function is called /before/ updating rq->load
  761. * and when switching tasks.
  762. */
  763. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  764. {
  765. update_load_add(&rq->load, p->se.load.weight);
  766. }
  767. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  768. {
  769. update_load_sub(&rq->load, p->se.load.weight);
  770. }
  771. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  772. {
  773. rq->nr_running++;
  774. inc_load(rq, p);
  775. }
  776. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  777. {
  778. rq->nr_running--;
  779. dec_load(rq, p);
  780. }
  781. static void set_load_weight(struct task_struct *p)
  782. {
  783. if (task_has_rt_policy(p)) {
  784. p->se.load.weight = prio_to_weight[0] * 2;
  785. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  786. return;
  787. }
  788. /*
  789. * SCHED_IDLE tasks get minimal weight:
  790. */
  791. if (p->policy == SCHED_IDLE) {
  792. p->se.load.weight = WEIGHT_IDLEPRIO;
  793. p->se.load.inv_weight = WMULT_IDLEPRIO;
  794. return;
  795. }
  796. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  797. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  798. }
  799. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  800. {
  801. sched_info_queued(p);
  802. p->sched_class->enqueue_task(rq, p, wakeup);
  803. p->se.on_rq = 1;
  804. }
  805. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  806. {
  807. p->sched_class->dequeue_task(rq, p, sleep);
  808. p->se.on_rq = 0;
  809. }
  810. /*
  811. * __normal_prio - return the priority that is based on the static prio
  812. */
  813. static inline int __normal_prio(struct task_struct *p)
  814. {
  815. return p->static_prio;
  816. }
  817. /*
  818. * Calculate the expected normal priority: i.e. priority
  819. * without taking RT-inheritance into account. Might be
  820. * boosted by interactivity modifiers. Changes upon fork,
  821. * setprio syscalls, and whenever the interactivity
  822. * estimator recalculates.
  823. */
  824. static inline int normal_prio(struct task_struct *p)
  825. {
  826. int prio;
  827. if (task_has_rt_policy(p))
  828. prio = MAX_RT_PRIO-1 - p->rt_priority;
  829. else
  830. prio = __normal_prio(p);
  831. return prio;
  832. }
  833. /*
  834. * Calculate the current priority, i.e. the priority
  835. * taken into account by the scheduler. This value might
  836. * be boosted by RT tasks, or might be boosted by
  837. * interactivity modifiers. Will be RT if the task got
  838. * RT-boosted. If not then it returns p->normal_prio.
  839. */
  840. static int effective_prio(struct task_struct *p)
  841. {
  842. p->normal_prio = normal_prio(p);
  843. /*
  844. * If we are RT tasks or we were boosted to RT priority,
  845. * keep the priority unchanged. Otherwise, update priority
  846. * to the normal priority:
  847. */
  848. if (!rt_prio(p->prio))
  849. return p->normal_prio;
  850. return p->prio;
  851. }
  852. /*
  853. * activate_task - move a task to the runqueue.
  854. */
  855. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  856. {
  857. if (p->state == TASK_UNINTERRUPTIBLE)
  858. rq->nr_uninterruptible--;
  859. enqueue_task(rq, p, wakeup);
  860. inc_nr_running(p, rq);
  861. }
  862. /*
  863. * deactivate_task - remove a task from the runqueue.
  864. */
  865. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  866. {
  867. if (p->state == TASK_UNINTERRUPTIBLE)
  868. rq->nr_uninterruptible++;
  869. dequeue_task(rq, p, sleep);
  870. dec_nr_running(p, rq);
  871. }
  872. /**
  873. * task_curr - is this task currently executing on a CPU?
  874. * @p: the task in question.
  875. */
  876. inline int task_curr(const struct task_struct *p)
  877. {
  878. return cpu_curr(task_cpu(p)) == p;
  879. }
  880. /* Used instead of source_load when we know the type == 0 */
  881. unsigned long weighted_cpuload(const int cpu)
  882. {
  883. return cpu_rq(cpu)->load.weight;
  884. }
  885. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  886. {
  887. #ifdef CONFIG_SMP
  888. task_thread_info(p)->cpu = cpu;
  889. #endif
  890. set_task_cfs_rq(p);
  891. }
  892. #ifdef CONFIG_SMP
  893. /*
  894. * Is this task likely cache-hot:
  895. */
  896. static inline int
  897. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  898. {
  899. s64 delta;
  900. if (p->sched_class != &fair_sched_class)
  901. return 0;
  902. if (sysctl_sched_migration_cost == -1)
  903. return 1;
  904. if (sysctl_sched_migration_cost == 0)
  905. return 0;
  906. delta = now - p->se.exec_start;
  907. return delta < (s64)sysctl_sched_migration_cost;
  908. }
  909. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  910. {
  911. int old_cpu = task_cpu(p);
  912. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  913. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  914. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  915. u64 clock_offset;
  916. clock_offset = old_rq->clock - new_rq->clock;
  917. #ifdef CONFIG_SCHEDSTATS
  918. if (p->se.wait_start)
  919. p->se.wait_start -= clock_offset;
  920. if (p->se.sleep_start)
  921. p->se.sleep_start -= clock_offset;
  922. if (p->se.block_start)
  923. p->se.block_start -= clock_offset;
  924. if (old_cpu != new_cpu) {
  925. schedstat_inc(p, se.nr_migrations);
  926. if (task_hot(p, old_rq->clock, NULL))
  927. schedstat_inc(p, se.nr_forced2_migrations);
  928. }
  929. #endif
  930. p->se.vruntime -= old_cfsrq->min_vruntime -
  931. new_cfsrq->min_vruntime;
  932. __set_task_cpu(p, new_cpu);
  933. }
  934. struct migration_req {
  935. struct list_head list;
  936. struct task_struct *task;
  937. int dest_cpu;
  938. struct completion done;
  939. };
  940. /*
  941. * The task's runqueue lock must be held.
  942. * Returns true if you have to wait for migration thread.
  943. */
  944. static int
  945. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  946. {
  947. struct rq *rq = task_rq(p);
  948. /*
  949. * If the task is not on a runqueue (and not running), then
  950. * it is sufficient to simply update the task's cpu field.
  951. */
  952. if (!p->se.on_rq && !task_running(rq, p)) {
  953. set_task_cpu(p, dest_cpu);
  954. return 0;
  955. }
  956. init_completion(&req->done);
  957. req->task = p;
  958. req->dest_cpu = dest_cpu;
  959. list_add(&req->list, &rq->migration_queue);
  960. return 1;
  961. }
  962. /*
  963. * wait_task_inactive - wait for a thread to unschedule.
  964. *
  965. * The caller must ensure that the task *will* unschedule sometime soon,
  966. * else this function might spin for a *long* time. This function can't
  967. * be called with interrupts off, or it may introduce deadlock with
  968. * smp_call_function() if an IPI is sent by the same process we are
  969. * waiting to become inactive.
  970. */
  971. void wait_task_inactive(struct task_struct *p)
  972. {
  973. unsigned long flags;
  974. int running, on_rq;
  975. struct rq *rq;
  976. for (;;) {
  977. /*
  978. * We do the initial early heuristics without holding
  979. * any task-queue locks at all. We'll only try to get
  980. * the runqueue lock when things look like they will
  981. * work out!
  982. */
  983. rq = task_rq(p);
  984. /*
  985. * If the task is actively running on another CPU
  986. * still, just relax and busy-wait without holding
  987. * any locks.
  988. *
  989. * NOTE! Since we don't hold any locks, it's not
  990. * even sure that "rq" stays as the right runqueue!
  991. * But we don't care, since "task_running()" will
  992. * return false if the runqueue has changed and p
  993. * is actually now running somewhere else!
  994. */
  995. while (task_running(rq, p))
  996. cpu_relax();
  997. /*
  998. * Ok, time to look more closely! We need the rq
  999. * lock now, to be *sure*. If we're wrong, we'll
  1000. * just go back and repeat.
  1001. */
  1002. rq = task_rq_lock(p, &flags);
  1003. running = task_running(rq, p);
  1004. on_rq = p->se.on_rq;
  1005. task_rq_unlock(rq, &flags);
  1006. /*
  1007. * Was it really running after all now that we
  1008. * checked with the proper locks actually held?
  1009. *
  1010. * Oops. Go back and try again..
  1011. */
  1012. if (unlikely(running)) {
  1013. cpu_relax();
  1014. continue;
  1015. }
  1016. /*
  1017. * It's not enough that it's not actively running,
  1018. * it must be off the runqueue _entirely_, and not
  1019. * preempted!
  1020. *
  1021. * So if it wa still runnable (but just not actively
  1022. * running right now), it's preempted, and we should
  1023. * yield - it could be a while.
  1024. */
  1025. if (unlikely(on_rq)) {
  1026. schedule_timeout_uninterruptible(1);
  1027. continue;
  1028. }
  1029. /*
  1030. * Ahh, all good. It wasn't running, and it wasn't
  1031. * runnable, which means that it will never become
  1032. * running in the future either. We're all done!
  1033. */
  1034. break;
  1035. }
  1036. }
  1037. /***
  1038. * kick_process - kick a running thread to enter/exit the kernel
  1039. * @p: the to-be-kicked thread
  1040. *
  1041. * Cause a process which is running on another CPU to enter
  1042. * kernel-mode, without any delay. (to get signals handled.)
  1043. *
  1044. * NOTE: this function doesnt have to take the runqueue lock,
  1045. * because all it wants to ensure is that the remote task enters
  1046. * the kernel. If the IPI races and the task has been migrated
  1047. * to another CPU then no harm is done and the purpose has been
  1048. * achieved as well.
  1049. */
  1050. void kick_process(struct task_struct *p)
  1051. {
  1052. int cpu;
  1053. preempt_disable();
  1054. cpu = task_cpu(p);
  1055. if ((cpu != smp_processor_id()) && task_curr(p))
  1056. smp_send_reschedule(cpu);
  1057. preempt_enable();
  1058. }
  1059. /*
  1060. * Return a low guess at the load of a migration-source cpu weighted
  1061. * according to the scheduling class and "nice" value.
  1062. *
  1063. * We want to under-estimate the load of migration sources, to
  1064. * balance conservatively.
  1065. */
  1066. static unsigned long source_load(int cpu, int type)
  1067. {
  1068. struct rq *rq = cpu_rq(cpu);
  1069. unsigned long total = weighted_cpuload(cpu);
  1070. if (type == 0)
  1071. return total;
  1072. return min(rq->cpu_load[type-1], total);
  1073. }
  1074. /*
  1075. * Return a high guess at the load of a migration-target cpu weighted
  1076. * according to the scheduling class and "nice" value.
  1077. */
  1078. static unsigned long target_load(int cpu, int type)
  1079. {
  1080. struct rq *rq = cpu_rq(cpu);
  1081. unsigned long total = weighted_cpuload(cpu);
  1082. if (type == 0)
  1083. return total;
  1084. return max(rq->cpu_load[type-1], total);
  1085. }
  1086. /*
  1087. * Return the average load per task on the cpu's run queue
  1088. */
  1089. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1090. {
  1091. struct rq *rq = cpu_rq(cpu);
  1092. unsigned long total = weighted_cpuload(cpu);
  1093. unsigned long n = rq->nr_running;
  1094. return n ? total / n : SCHED_LOAD_SCALE;
  1095. }
  1096. /*
  1097. * find_idlest_group finds and returns the least busy CPU group within the
  1098. * domain.
  1099. */
  1100. static struct sched_group *
  1101. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1102. {
  1103. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1104. unsigned long min_load = ULONG_MAX, this_load = 0;
  1105. int load_idx = sd->forkexec_idx;
  1106. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1107. do {
  1108. unsigned long load, avg_load;
  1109. int local_group;
  1110. int i;
  1111. /* Skip over this group if it has no CPUs allowed */
  1112. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1113. continue;
  1114. local_group = cpu_isset(this_cpu, group->cpumask);
  1115. /* Tally up the load of all CPUs in the group */
  1116. avg_load = 0;
  1117. for_each_cpu_mask(i, group->cpumask) {
  1118. /* Bias balancing toward cpus of our domain */
  1119. if (local_group)
  1120. load = source_load(i, load_idx);
  1121. else
  1122. load = target_load(i, load_idx);
  1123. avg_load += load;
  1124. }
  1125. /* Adjust by relative CPU power of the group */
  1126. avg_load = sg_div_cpu_power(group,
  1127. avg_load * SCHED_LOAD_SCALE);
  1128. if (local_group) {
  1129. this_load = avg_load;
  1130. this = group;
  1131. } else if (avg_load < min_load) {
  1132. min_load = avg_load;
  1133. idlest = group;
  1134. }
  1135. } while (group = group->next, group != sd->groups);
  1136. if (!idlest || 100*this_load < imbalance*min_load)
  1137. return NULL;
  1138. return idlest;
  1139. }
  1140. /*
  1141. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1142. */
  1143. static int
  1144. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1145. {
  1146. cpumask_t tmp;
  1147. unsigned long load, min_load = ULONG_MAX;
  1148. int idlest = -1;
  1149. int i;
  1150. /* Traverse only the allowed CPUs */
  1151. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1152. for_each_cpu_mask(i, tmp) {
  1153. load = weighted_cpuload(i);
  1154. if (load < min_load || (load == min_load && i == this_cpu)) {
  1155. min_load = load;
  1156. idlest = i;
  1157. }
  1158. }
  1159. return idlest;
  1160. }
  1161. /*
  1162. * sched_balance_self: balance the current task (running on cpu) in domains
  1163. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1164. * SD_BALANCE_EXEC.
  1165. *
  1166. * Balance, ie. select the least loaded group.
  1167. *
  1168. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1169. *
  1170. * preempt must be disabled.
  1171. */
  1172. static int sched_balance_self(int cpu, int flag)
  1173. {
  1174. struct task_struct *t = current;
  1175. struct sched_domain *tmp, *sd = NULL;
  1176. for_each_domain(cpu, tmp) {
  1177. /*
  1178. * If power savings logic is enabled for a domain, stop there.
  1179. */
  1180. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1181. break;
  1182. if (tmp->flags & flag)
  1183. sd = tmp;
  1184. }
  1185. while (sd) {
  1186. cpumask_t span;
  1187. struct sched_group *group;
  1188. int new_cpu, weight;
  1189. if (!(sd->flags & flag)) {
  1190. sd = sd->child;
  1191. continue;
  1192. }
  1193. span = sd->span;
  1194. group = find_idlest_group(sd, t, cpu);
  1195. if (!group) {
  1196. sd = sd->child;
  1197. continue;
  1198. }
  1199. new_cpu = find_idlest_cpu(group, t, cpu);
  1200. if (new_cpu == -1 || new_cpu == cpu) {
  1201. /* Now try balancing at a lower domain level of cpu */
  1202. sd = sd->child;
  1203. continue;
  1204. }
  1205. /* Now try balancing at a lower domain level of new_cpu */
  1206. cpu = new_cpu;
  1207. sd = NULL;
  1208. weight = cpus_weight(span);
  1209. for_each_domain(cpu, tmp) {
  1210. if (weight <= cpus_weight(tmp->span))
  1211. break;
  1212. if (tmp->flags & flag)
  1213. sd = tmp;
  1214. }
  1215. /* while loop will break here if sd == NULL */
  1216. }
  1217. return cpu;
  1218. }
  1219. #endif /* CONFIG_SMP */
  1220. /*
  1221. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1222. * not idle and an idle cpu is available. The span of cpus to
  1223. * search starts with cpus closest then further out as needed,
  1224. * so we always favor a closer, idle cpu.
  1225. *
  1226. * Returns the CPU we should wake onto.
  1227. */
  1228. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1229. static int wake_idle(int cpu, struct task_struct *p)
  1230. {
  1231. cpumask_t tmp;
  1232. struct sched_domain *sd;
  1233. int i;
  1234. /*
  1235. * If it is idle, then it is the best cpu to run this task.
  1236. *
  1237. * This cpu is also the best, if it has more than one task already.
  1238. * Siblings must be also busy(in most cases) as they didn't already
  1239. * pickup the extra load from this cpu and hence we need not check
  1240. * sibling runqueue info. This will avoid the checks and cache miss
  1241. * penalities associated with that.
  1242. */
  1243. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1244. return cpu;
  1245. for_each_domain(cpu, sd) {
  1246. if (sd->flags & SD_WAKE_IDLE) {
  1247. cpus_and(tmp, sd->span, p->cpus_allowed);
  1248. for_each_cpu_mask(i, tmp) {
  1249. if (idle_cpu(i)) {
  1250. if (i != task_cpu(p)) {
  1251. schedstat_inc(p,
  1252. se.nr_wakeups_idle);
  1253. }
  1254. return i;
  1255. }
  1256. }
  1257. } else {
  1258. break;
  1259. }
  1260. }
  1261. return cpu;
  1262. }
  1263. #else
  1264. static inline int wake_idle(int cpu, struct task_struct *p)
  1265. {
  1266. return cpu;
  1267. }
  1268. #endif
  1269. /***
  1270. * try_to_wake_up - wake up a thread
  1271. * @p: the to-be-woken-up thread
  1272. * @state: the mask of task states that can be woken
  1273. * @sync: do a synchronous wakeup?
  1274. *
  1275. * Put it on the run-queue if it's not already there. The "current"
  1276. * thread is always on the run-queue (except when the actual
  1277. * re-schedule is in progress), and as such you're allowed to do
  1278. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1279. * runnable without the overhead of this.
  1280. *
  1281. * returns failure only if the task is already active.
  1282. */
  1283. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1284. {
  1285. int cpu, orig_cpu, this_cpu, success = 0;
  1286. unsigned long flags;
  1287. long old_state;
  1288. struct rq *rq;
  1289. #ifdef CONFIG_SMP
  1290. struct sched_domain *sd, *this_sd = NULL;
  1291. unsigned long load, this_load;
  1292. int new_cpu;
  1293. #endif
  1294. rq = task_rq_lock(p, &flags);
  1295. old_state = p->state;
  1296. if (!(old_state & state))
  1297. goto out;
  1298. if (p->se.on_rq)
  1299. goto out_running;
  1300. cpu = task_cpu(p);
  1301. orig_cpu = cpu;
  1302. this_cpu = smp_processor_id();
  1303. #ifdef CONFIG_SMP
  1304. if (unlikely(task_running(rq, p)))
  1305. goto out_activate;
  1306. new_cpu = cpu;
  1307. schedstat_inc(rq, ttwu_count);
  1308. if (cpu == this_cpu) {
  1309. schedstat_inc(rq, ttwu_local);
  1310. goto out_set_cpu;
  1311. }
  1312. for_each_domain(this_cpu, sd) {
  1313. if (cpu_isset(cpu, sd->span)) {
  1314. schedstat_inc(sd, ttwu_wake_remote);
  1315. this_sd = sd;
  1316. break;
  1317. }
  1318. }
  1319. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1320. goto out_set_cpu;
  1321. /*
  1322. * Check for affine wakeup and passive balancing possibilities.
  1323. */
  1324. if (this_sd) {
  1325. int idx = this_sd->wake_idx;
  1326. unsigned int imbalance;
  1327. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1328. load = source_load(cpu, idx);
  1329. this_load = target_load(this_cpu, idx);
  1330. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1331. if (this_sd->flags & SD_WAKE_AFFINE) {
  1332. unsigned long tl = this_load;
  1333. unsigned long tl_per_task;
  1334. /*
  1335. * Attract cache-cold tasks on sync wakeups:
  1336. */
  1337. if (sync && !task_hot(p, rq->clock, this_sd))
  1338. goto out_set_cpu;
  1339. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  1340. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1341. /*
  1342. * If sync wakeup then subtract the (maximum possible)
  1343. * effect of the currently running task from the load
  1344. * of the current CPU:
  1345. */
  1346. if (sync)
  1347. tl -= current->se.load.weight;
  1348. if ((tl <= load &&
  1349. tl + target_load(cpu, idx) <= tl_per_task) ||
  1350. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1351. /*
  1352. * This domain has SD_WAKE_AFFINE and
  1353. * p is cache cold in this domain, and
  1354. * there is no bad imbalance.
  1355. */
  1356. schedstat_inc(this_sd, ttwu_move_affine);
  1357. schedstat_inc(p, se.nr_wakeups_affine);
  1358. goto out_set_cpu;
  1359. }
  1360. }
  1361. /*
  1362. * Start passive balancing when half the imbalance_pct
  1363. * limit is reached.
  1364. */
  1365. if (this_sd->flags & SD_WAKE_BALANCE) {
  1366. if (imbalance*this_load <= 100*load) {
  1367. schedstat_inc(this_sd, ttwu_move_balance);
  1368. schedstat_inc(p, se.nr_wakeups_passive);
  1369. goto out_set_cpu;
  1370. }
  1371. }
  1372. }
  1373. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1374. out_set_cpu:
  1375. new_cpu = wake_idle(new_cpu, p);
  1376. if (new_cpu != cpu) {
  1377. set_task_cpu(p, new_cpu);
  1378. task_rq_unlock(rq, &flags);
  1379. /* might preempt at this point */
  1380. rq = task_rq_lock(p, &flags);
  1381. old_state = p->state;
  1382. if (!(old_state & state))
  1383. goto out;
  1384. if (p->se.on_rq)
  1385. goto out_running;
  1386. this_cpu = smp_processor_id();
  1387. cpu = task_cpu(p);
  1388. }
  1389. out_activate:
  1390. #endif /* CONFIG_SMP */
  1391. schedstat_inc(p, se.nr_wakeups);
  1392. if (sync)
  1393. schedstat_inc(p, se.nr_wakeups_sync);
  1394. if (orig_cpu != cpu)
  1395. schedstat_inc(p, se.nr_wakeups_migrate);
  1396. if (cpu == this_cpu)
  1397. schedstat_inc(p, se.nr_wakeups_local);
  1398. else
  1399. schedstat_inc(p, se.nr_wakeups_remote);
  1400. update_rq_clock(rq);
  1401. activate_task(rq, p, 1);
  1402. check_preempt_curr(rq, p);
  1403. success = 1;
  1404. out_running:
  1405. p->state = TASK_RUNNING;
  1406. out:
  1407. task_rq_unlock(rq, &flags);
  1408. return success;
  1409. }
  1410. int fastcall wake_up_process(struct task_struct *p)
  1411. {
  1412. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1413. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1414. }
  1415. EXPORT_SYMBOL(wake_up_process);
  1416. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1417. {
  1418. return try_to_wake_up(p, state, 0);
  1419. }
  1420. /*
  1421. * Perform scheduler related setup for a newly forked process p.
  1422. * p is forked by current.
  1423. *
  1424. * __sched_fork() is basic setup used by init_idle() too:
  1425. */
  1426. static void __sched_fork(struct task_struct *p)
  1427. {
  1428. p->se.exec_start = 0;
  1429. p->se.sum_exec_runtime = 0;
  1430. p->se.prev_sum_exec_runtime = 0;
  1431. #ifdef CONFIG_SCHEDSTATS
  1432. p->se.wait_start = 0;
  1433. p->se.sum_sleep_runtime = 0;
  1434. p->se.sleep_start = 0;
  1435. p->se.block_start = 0;
  1436. p->se.sleep_max = 0;
  1437. p->se.block_max = 0;
  1438. p->se.exec_max = 0;
  1439. p->se.slice_max = 0;
  1440. p->se.wait_max = 0;
  1441. #endif
  1442. INIT_LIST_HEAD(&p->run_list);
  1443. p->se.on_rq = 0;
  1444. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1445. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1446. #endif
  1447. /*
  1448. * We mark the process as running here, but have not actually
  1449. * inserted it onto the runqueue yet. This guarantees that
  1450. * nobody will actually run it, and a signal or other external
  1451. * event cannot wake it up and insert it on the runqueue either.
  1452. */
  1453. p->state = TASK_RUNNING;
  1454. }
  1455. /*
  1456. * fork()/clone()-time setup:
  1457. */
  1458. void sched_fork(struct task_struct *p, int clone_flags)
  1459. {
  1460. int cpu = get_cpu();
  1461. __sched_fork(p);
  1462. #ifdef CONFIG_SMP
  1463. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1464. #endif
  1465. set_task_cpu(p, cpu);
  1466. /*
  1467. * Make sure we do not leak PI boosting priority to the child:
  1468. */
  1469. p->prio = current->normal_prio;
  1470. if (!rt_prio(p->prio))
  1471. p->sched_class = &fair_sched_class;
  1472. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1473. if (likely(sched_info_on()))
  1474. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1475. #endif
  1476. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1477. p->oncpu = 0;
  1478. #endif
  1479. #ifdef CONFIG_PREEMPT
  1480. /* Want to start with kernel preemption disabled. */
  1481. task_thread_info(p)->preempt_count = 1;
  1482. #endif
  1483. put_cpu();
  1484. }
  1485. /*
  1486. * wake_up_new_task - wake up a newly created task for the first time.
  1487. *
  1488. * This function will do some initial scheduler statistics housekeeping
  1489. * that must be done for every newly created context, then puts the task
  1490. * on the runqueue and wakes it.
  1491. */
  1492. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1493. {
  1494. unsigned long flags;
  1495. struct rq *rq;
  1496. rq = task_rq_lock(p, &flags);
  1497. BUG_ON(p->state != TASK_RUNNING);
  1498. update_rq_clock(rq);
  1499. p->prio = effective_prio(p);
  1500. if (!p->sched_class->task_new || !current->se.on_rq) {
  1501. activate_task(rq, p, 0);
  1502. } else {
  1503. /*
  1504. * Let the scheduling class do new task startup
  1505. * management (if any):
  1506. */
  1507. p->sched_class->task_new(rq, p);
  1508. inc_nr_running(p, rq);
  1509. }
  1510. check_preempt_curr(rq, p);
  1511. task_rq_unlock(rq, &flags);
  1512. }
  1513. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1514. /**
  1515. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1516. * @notifier: notifier struct to register
  1517. */
  1518. void preempt_notifier_register(struct preempt_notifier *notifier)
  1519. {
  1520. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1521. }
  1522. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1523. /**
  1524. * preempt_notifier_unregister - no longer interested in preemption notifications
  1525. * @notifier: notifier struct to unregister
  1526. *
  1527. * This is safe to call from within a preemption notifier.
  1528. */
  1529. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1530. {
  1531. hlist_del(&notifier->link);
  1532. }
  1533. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1534. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1535. {
  1536. struct preempt_notifier *notifier;
  1537. struct hlist_node *node;
  1538. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1539. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1540. }
  1541. static void
  1542. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1543. struct task_struct *next)
  1544. {
  1545. struct preempt_notifier *notifier;
  1546. struct hlist_node *node;
  1547. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1548. notifier->ops->sched_out(notifier, next);
  1549. }
  1550. #else
  1551. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1552. {
  1553. }
  1554. static void
  1555. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1556. struct task_struct *next)
  1557. {
  1558. }
  1559. #endif
  1560. /**
  1561. * prepare_task_switch - prepare to switch tasks
  1562. * @rq: the runqueue preparing to switch
  1563. * @prev: the current task that is being switched out
  1564. * @next: the task we are going to switch to.
  1565. *
  1566. * This is called with the rq lock held and interrupts off. It must
  1567. * be paired with a subsequent finish_task_switch after the context
  1568. * switch.
  1569. *
  1570. * prepare_task_switch sets up locking and calls architecture specific
  1571. * hooks.
  1572. */
  1573. static inline void
  1574. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1575. struct task_struct *next)
  1576. {
  1577. fire_sched_out_preempt_notifiers(prev, next);
  1578. prepare_lock_switch(rq, next);
  1579. prepare_arch_switch(next);
  1580. }
  1581. /**
  1582. * finish_task_switch - clean up after a task-switch
  1583. * @rq: runqueue associated with task-switch
  1584. * @prev: the thread we just switched away from.
  1585. *
  1586. * finish_task_switch must be called after the context switch, paired
  1587. * with a prepare_task_switch call before the context switch.
  1588. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1589. * and do any other architecture-specific cleanup actions.
  1590. *
  1591. * Note that we may have delayed dropping an mm in context_switch(). If
  1592. * so, we finish that here outside of the runqueue lock. (Doing it
  1593. * with the lock held can cause deadlocks; see schedule() for
  1594. * details.)
  1595. */
  1596. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1597. __releases(rq->lock)
  1598. {
  1599. struct mm_struct *mm = rq->prev_mm;
  1600. long prev_state;
  1601. rq->prev_mm = NULL;
  1602. /*
  1603. * A task struct has one reference for the use as "current".
  1604. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1605. * schedule one last time. The schedule call will never return, and
  1606. * the scheduled task must drop that reference.
  1607. * The test for TASK_DEAD must occur while the runqueue locks are
  1608. * still held, otherwise prev could be scheduled on another cpu, die
  1609. * there before we look at prev->state, and then the reference would
  1610. * be dropped twice.
  1611. * Manfred Spraul <manfred@colorfullife.com>
  1612. */
  1613. prev_state = prev->state;
  1614. finish_arch_switch(prev);
  1615. finish_lock_switch(rq, prev);
  1616. fire_sched_in_preempt_notifiers(current);
  1617. if (mm)
  1618. mmdrop(mm);
  1619. if (unlikely(prev_state == TASK_DEAD)) {
  1620. /*
  1621. * Remove function-return probe instances associated with this
  1622. * task and put them back on the free list.
  1623. */
  1624. kprobe_flush_task(prev);
  1625. put_task_struct(prev);
  1626. }
  1627. }
  1628. /**
  1629. * schedule_tail - first thing a freshly forked thread must call.
  1630. * @prev: the thread we just switched away from.
  1631. */
  1632. asmlinkage void schedule_tail(struct task_struct *prev)
  1633. __releases(rq->lock)
  1634. {
  1635. struct rq *rq = this_rq();
  1636. finish_task_switch(rq, prev);
  1637. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1638. /* In this case, finish_task_switch does not reenable preemption */
  1639. preempt_enable();
  1640. #endif
  1641. if (current->set_child_tid)
  1642. put_user(task_pid_vnr(current), current->set_child_tid);
  1643. }
  1644. /*
  1645. * context_switch - switch to the new MM and the new
  1646. * thread's register state.
  1647. */
  1648. static inline void
  1649. context_switch(struct rq *rq, struct task_struct *prev,
  1650. struct task_struct *next)
  1651. {
  1652. struct mm_struct *mm, *oldmm;
  1653. prepare_task_switch(rq, prev, next);
  1654. mm = next->mm;
  1655. oldmm = prev->active_mm;
  1656. /*
  1657. * For paravirt, this is coupled with an exit in switch_to to
  1658. * combine the page table reload and the switch backend into
  1659. * one hypercall.
  1660. */
  1661. arch_enter_lazy_cpu_mode();
  1662. if (unlikely(!mm)) {
  1663. next->active_mm = oldmm;
  1664. atomic_inc(&oldmm->mm_count);
  1665. enter_lazy_tlb(oldmm, next);
  1666. } else
  1667. switch_mm(oldmm, mm, next);
  1668. if (unlikely(!prev->mm)) {
  1669. prev->active_mm = NULL;
  1670. rq->prev_mm = oldmm;
  1671. }
  1672. /*
  1673. * Since the runqueue lock will be released by the next
  1674. * task (which is an invalid locking op but in the case
  1675. * of the scheduler it's an obvious special-case), so we
  1676. * do an early lockdep release here:
  1677. */
  1678. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1679. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1680. #endif
  1681. /* Here we just switch the register state and the stack. */
  1682. switch_to(prev, next, prev);
  1683. barrier();
  1684. /*
  1685. * this_rq must be evaluated again because prev may have moved
  1686. * CPUs since it called schedule(), thus the 'rq' on its stack
  1687. * frame will be invalid.
  1688. */
  1689. finish_task_switch(this_rq(), prev);
  1690. }
  1691. /*
  1692. * nr_running, nr_uninterruptible and nr_context_switches:
  1693. *
  1694. * externally visible scheduler statistics: current number of runnable
  1695. * threads, current number of uninterruptible-sleeping threads, total
  1696. * number of context switches performed since bootup.
  1697. */
  1698. unsigned long nr_running(void)
  1699. {
  1700. unsigned long i, sum = 0;
  1701. for_each_online_cpu(i)
  1702. sum += cpu_rq(i)->nr_running;
  1703. return sum;
  1704. }
  1705. unsigned long nr_uninterruptible(void)
  1706. {
  1707. unsigned long i, sum = 0;
  1708. for_each_possible_cpu(i)
  1709. sum += cpu_rq(i)->nr_uninterruptible;
  1710. /*
  1711. * Since we read the counters lockless, it might be slightly
  1712. * inaccurate. Do not allow it to go below zero though:
  1713. */
  1714. if (unlikely((long)sum < 0))
  1715. sum = 0;
  1716. return sum;
  1717. }
  1718. unsigned long long nr_context_switches(void)
  1719. {
  1720. int i;
  1721. unsigned long long sum = 0;
  1722. for_each_possible_cpu(i)
  1723. sum += cpu_rq(i)->nr_switches;
  1724. return sum;
  1725. }
  1726. unsigned long nr_iowait(void)
  1727. {
  1728. unsigned long i, sum = 0;
  1729. for_each_possible_cpu(i)
  1730. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1731. return sum;
  1732. }
  1733. unsigned long nr_active(void)
  1734. {
  1735. unsigned long i, running = 0, uninterruptible = 0;
  1736. for_each_online_cpu(i) {
  1737. running += cpu_rq(i)->nr_running;
  1738. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1739. }
  1740. if (unlikely((long)uninterruptible < 0))
  1741. uninterruptible = 0;
  1742. return running + uninterruptible;
  1743. }
  1744. /*
  1745. * Update rq->cpu_load[] statistics. This function is usually called every
  1746. * scheduler tick (TICK_NSEC).
  1747. */
  1748. static void update_cpu_load(struct rq *this_rq)
  1749. {
  1750. unsigned long this_load = this_rq->load.weight;
  1751. int i, scale;
  1752. this_rq->nr_load_updates++;
  1753. /* Update our load: */
  1754. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1755. unsigned long old_load, new_load;
  1756. /* scale is effectively 1 << i now, and >> i divides by scale */
  1757. old_load = this_rq->cpu_load[i];
  1758. new_load = this_load;
  1759. /*
  1760. * Round up the averaging division if load is increasing. This
  1761. * prevents us from getting stuck on 9 if the load is 10, for
  1762. * example.
  1763. */
  1764. if (new_load > old_load)
  1765. new_load += scale-1;
  1766. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1767. }
  1768. }
  1769. #ifdef CONFIG_SMP
  1770. /*
  1771. * double_rq_lock - safely lock two runqueues
  1772. *
  1773. * Note this does not disable interrupts like task_rq_lock,
  1774. * you need to do so manually before calling.
  1775. */
  1776. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1777. __acquires(rq1->lock)
  1778. __acquires(rq2->lock)
  1779. {
  1780. BUG_ON(!irqs_disabled());
  1781. if (rq1 == rq2) {
  1782. spin_lock(&rq1->lock);
  1783. __acquire(rq2->lock); /* Fake it out ;) */
  1784. } else {
  1785. if (rq1 < rq2) {
  1786. spin_lock(&rq1->lock);
  1787. spin_lock(&rq2->lock);
  1788. } else {
  1789. spin_lock(&rq2->lock);
  1790. spin_lock(&rq1->lock);
  1791. }
  1792. }
  1793. update_rq_clock(rq1);
  1794. update_rq_clock(rq2);
  1795. }
  1796. /*
  1797. * double_rq_unlock - safely unlock two runqueues
  1798. *
  1799. * Note this does not restore interrupts like task_rq_unlock,
  1800. * you need to do so manually after calling.
  1801. */
  1802. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1803. __releases(rq1->lock)
  1804. __releases(rq2->lock)
  1805. {
  1806. spin_unlock(&rq1->lock);
  1807. if (rq1 != rq2)
  1808. spin_unlock(&rq2->lock);
  1809. else
  1810. __release(rq2->lock);
  1811. }
  1812. /*
  1813. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1814. */
  1815. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1816. __releases(this_rq->lock)
  1817. __acquires(busiest->lock)
  1818. __acquires(this_rq->lock)
  1819. {
  1820. if (unlikely(!irqs_disabled())) {
  1821. /* printk() doesn't work good under rq->lock */
  1822. spin_unlock(&this_rq->lock);
  1823. BUG_ON(1);
  1824. }
  1825. if (unlikely(!spin_trylock(&busiest->lock))) {
  1826. if (busiest < this_rq) {
  1827. spin_unlock(&this_rq->lock);
  1828. spin_lock(&busiest->lock);
  1829. spin_lock(&this_rq->lock);
  1830. } else
  1831. spin_lock(&busiest->lock);
  1832. }
  1833. }
  1834. /*
  1835. * If dest_cpu is allowed for this process, migrate the task to it.
  1836. * This is accomplished by forcing the cpu_allowed mask to only
  1837. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1838. * the cpu_allowed mask is restored.
  1839. */
  1840. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1841. {
  1842. struct migration_req req;
  1843. unsigned long flags;
  1844. struct rq *rq;
  1845. rq = task_rq_lock(p, &flags);
  1846. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1847. || unlikely(cpu_is_offline(dest_cpu)))
  1848. goto out;
  1849. /* force the process onto the specified CPU */
  1850. if (migrate_task(p, dest_cpu, &req)) {
  1851. /* Need to wait for migration thread (might exit: take ref). */
  1852. struct task_struct *mt = rq->migration_thread;
  1853. get_task_struct(mt);
  1854. task_rq_unlock(rq, &flags);
  1855. wake_up_process(mt);
  1856. put_task_struct(mt);
  1857. wait_for_completion(&req.done);
  1858. return;
  1859. }
  1860. out:
  1861. task_rq_unlock(rq, &flags);
  1862. }
  1863. /*
  1864. * sched_exec - execve() is a valuable balancing opportunity, because at
  1865. * this point the task has the smallest effective memory and cache footprint.
  1866. */
  1867. void sched_exec(void)
  1868. {
  1869. int new_cpu, this_cpu = get_cpu();
  1870. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1871. put_cpu();
  1872. if (new_cpu != this_cpu)
  1873. sched_migrate_task(current, new_cpu);
  1874. }
  1875. /*
  1876. * pull_task - move a task from a remote runqueue to the local runqueue.
  1877. * Both runqueues must be locked.
  1878. */
  1879. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1880. struct rq *this_rq, int this_cpu)
  1881. {
  1882. deactivate_task(src_rq, p, 0);
  1883. set_task_cpu(p, this_cpu);
  1884. activate_task(this_rq, p, 0);
  1885. /*
  1886. * Note that idle threads have a prio of MAX_PRIO, for this test
  1887. * to be always true for them.
  1888. */
  1889. check_preempt_curr(this_rq, p);
  1890. }
  1891. /*
  1892. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1893. */
  1894. static
  1895. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1896. struct sched_domain *sd, enum cpu_idle_type idle,
  1897. int *all_pinned)
  1898. {
  1899. /*
  1900. * We do not migrate tasks that are:
  1901. * 1) running (obviously), or
  1902. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1903. * 3) are cache-hot on their current CPU.
  1904. */
  1905. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1906. schedstat_inc(p, se.nr_failed_migrations_affine);
  1907. return 0;
  1908. }
  1909. *all_pinned = 0;
  1910. if (task_running(rq, p)) {
  1911. schedstat_inc(p, se.nr_failed_migrations_running);
  1912. return 0;
  1913. }
  1914. /*
  1915. * Aggressive migration if:
  1916. * 1) task is cache cold, or
  1917. * 2) too many balance attempts have failed.
  1918. */
  1919. if (!task_hot(p, rq->clock, sd) ||
  1920. sd->nr_balance_failed > sd->cache_nice_tries) {
  1921. #ifdef CONFIG_SCHEDSTATS
  1922. if (task_hot(p, rq->clock, sd)) {
  1923. schedstat_inc(sd, lb_hot_gained[idle]);
  1924. schedstat_inc(p, se.nr_forced_migrations);
  1925. }
  1926. #endif
  1927. return 1;
  1928. }
  1929. if (task_hot(p, rq->clock, sd)) {
  1930. schedstat_inc(p, se.nr_failed_migrations_hot);
  1931. return 0;
  1932. }
  1933. return 1;
  1934. }
  1935. static unsigned long
  1936. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1937. unsigned long max_load_move, struct sched_domain *sd,
  1938. enum cpu_idle_type idle, int *all_pinned,
  1939. int *this_best_prio, struct rq_iterator *iterator)
  1940. {
  1941. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1942. struct task_struct *p;
  1943. long rem_load_move = max_load_move;
  1944. if (max_load_move == 0)
  1945. goto out;
  1946. pinned = 1;
  1947. /*
  1948. * Start the load-balancing iterator:
  1949. */
  1950. p = iterator->start(iterator->arg);
  1951. next:
  1952. if (!p || loops++ > sysctl_sched_nr_migrate)
  1953. goto out;
  1954. /*
  1955. * To help distribute high priority tasks across CPUs we don't
  1956. * skip a task if it will be the highest priority task (i.e. smallest
  1957. * prio value) on its new queue regardless of its load weight
  1958. */
  1959. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1960. SCHED_LOAD_SCALE_FUZZ;
  1961. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1962. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1963. p = iterator->next(iterator->arg);
  1964. goto next;
  1965. }
  1966. pull_task(busiest, p, this_rq, this_cpu);
  1967. pulled++;
  1968. rem_load_move -= p->se.load.weight;
  1969. /*
  1970. * We only want to steal up to the prescribed amount of weighted load.
  1971. */
  1972. if (rem_load_move > 0) {
  1973. if (p->prio < *this_best_prio)
  1974. *this_best_prio = p->prio;
  1975. p = iterator->next(iterator->arg);
  1976. goto next;
  1977. }
  1978. out:
  1979. /*
  1980. * Right now, this is one of only two places pull_task() is called,
  1981. * so we can safely collect pull_task() stats here rather than
  1982. * inside pull_task().
  1983. */
  1984. schedstat_add(sd, lb_gained[idle], pulled);
  1985. if (all_pinned)
  1986. *all_pinned = pinned;
  1987. return max_load_move - rem_load_move;
  1988. }
  1989. /*
  1990. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1991. * this_rq, as part of a balancing operation within domain "sd".
  1992. * Returns 1 if successful and 0 otherwise.
  1993. *
  1994. * Called with both runqueues locked.
  1995. */
  1996. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1997. unsigned long max_load_move,
  1998. struct sched_domain *sd, enum cpu_idle_type idle,
  1999. int *all_pinned)
  2000. {
  2001. const struct sched_class *class = sched_class_highest;
  2002. unsigned long total_load_moved = 0;
  2003. int this_best_prio = this_rq->curr->prio;
  2004. do {
  2005. total_load_moved +=
  2006. class->load_balance(this_rq, this_cpu, busiest,
  2007. max_load_move - total_load_moved,
  2008. sd, idle, all_pinned, &this_best_prio);
  2009. class = class->next;
  2010. } while (class && max_load_move > total_load_moved);
  2011. return total_load_moved > 0;
  2012. }
  2013. static int
  2014. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2015. struct sched_domain *sd, enum cpu_idle_type idle,
  2016. struct rq_iterator *iterator)
  2017. {
  2018. struct task_struct *p = iterator->start(iterator->arg);
  2019. int pinned = 0;
  2020. while (p) {
  2021. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2022. pull_task(busiest, p, this_rq, this_cpu);
  2023. /*
  2024. * Right now, this is only the second place pull_task()
  2025. * is called, so we can safely collect pull_task()
  2026. * stats here rather than inside pull_task().
  2027. */
  2028. schedstat_inc(sd, lb_gained[idle]);
  2029. return 1;
  2030. }
  2031. p = iterator->next(iterator->arg);
  2032. }
  2033. return 0;
  2034. }
  2035. /*
  2036. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2037. * part of active balancing operations within "domain".
  2038. * Returns 1 if successful and 0 otherwise.
  2039. *
  2040. * Called with both runqueues locked.
  2041. */
  2042. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2043. struct sched_domain *sd, enum cpu_idle_type idle)
  2044. {
  2045. const struct sched_class *class;
  2046. for (class = sched_class_highest; class; class = class->next)
  2047. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2048. return 1;
  2049. return 0;
  2050. }
  2051. /*
  2052. * find_busiest_group finds and returns the busiest CPU group within the
  2053. * domain. It calculates and returns the amount of weighted load which
  2054. * should be moved to restore balance via the imbalance parameter.
  2055. */
  2056. static struct sched_group *
  2057. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2058. unsigned long *imbalance, enum cpu_idle_type idle,
  2059. int *sd_idle, cpumask_t *cpus, int *balance)
  2060. {
  2061. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2062. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2063. unsigned long max_pull;
  2064. unsigned long busiest_load_per_task, busiest_nr_running;
  2065. unsigned long this_load_per_task, this_nr_running;
  2066. int load_idx, group_imb = 0;
  2067. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2068. int power_savings_balance = 1;
  2069. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2070. unsigned long min_nr_running = ULONG_MAX;
  2071. struct sched_group *group_min = NULL, *group_leader = NULL;
  2072. #endif
  2073. max_load = this_load = total_load = total_pwr = 0;
  2074. busiest_load_per_task = busiest_nr_running = 0;
  2075. this_load_per_task = this_nr_running = 0;
  2076. if (idle == CPU_NOT_IDLE)
  2077. load_idx = sd->busy_idx;
  2078. else if (idle == CPU_NEWLY_IDLE)
  2079. load_idx = sd->newidle_idx;
  2080. else
  2081. load_idx = sd->idle_idx;
  2082. do {
  2083. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2084. int local_group;
  2085. int i;
  2086. int __group_imb = 0;
  2087. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2088. unsigned long sum_nr_running, sum_weighted_load;
  2089. local_group = cpu_isset(this_cpu, group->cpumask);
  2090. if (local_group)
  2091. balance_cpu = first_cpu(group->cpumask);
  2092. /* Tally up the load of all CPUs in the group */
  2093. sum_weighted_load = sum_nr_running = avg_load = 0;
  2094. max_cpu_load = 0;
  2095. min_cpu_load = ~0UL;
  2096. for_each_cpu_mask(i, group->cpumask) {
  2097. struct rq *rq;
  2098. if (!cpu_isset(i, *cpus))
  2099. continue;
  2100. rq = cpu_rq(i);
  2101. if (*sd_idle && rq->nr_running)
  2102. *sd_idle = 0;
  2103. /* Bias balancing toward cpus of our domain */
  2104. if (local_group) {
  2105. if (idle_cpu(i) && !first_idle_cpu) {
  2106. first_idle_cpu = 1;
  2107. balance_cpu = i;
  2108. }
  2109. load = target_load(i, load_idx);
  2110. } else {
  2111. load = source_load(i, load_idx);
  2112. if (load > max_cpu_load)
  2113. max_cpu_load = load;
  2114. if (min_cpu_load > load)
  2115. min_cpu_load = load;
  2116. }
  2117. avg_load += load;
  2118. sum_nr_running += rq->nr_running;
  2119. sum_weighted_load += weighted_cpuload(i);
  2120. }
  2121. /*
  2122. * First idle cpu or the first cpu(busiest) in this sched group
  2123. * is eligible for doing load balancing at this and above
  2124. * domains. In the newly idle case, we will allow all the cpu's
  2125. * to do the newly idle load balance.
  2126. */
  2127. if (idle != CPU_NEWLY_IDLE && local_group &&
  2128. balance_cpu != this_cpu && balance) {
  2129. *balance = 0;
  2130. goto ret;
  2131. }
  2132. total_load += avg_load;
  2133. total_pwr += group->__cpu_power;
  2134. /* Adjust by relative CPU power of the group */
  2135. avg_load = sg_div_cpu_power(group,
  2136. avg_load * SCHED_LOAD_SCALE);
  2137. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2138. __group_imb = 1;
  2139. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2140. if (local_group) {
  2141. this_load = avg_load;
  2142. this = group;
  2143. this_nr_running = sum_nr_running;
  2144. this_load_per_task = sum_weighted_load;
  2145. } else if (avg_load > max_load &&
  2146. (sum_nr_running > group_capacity || __group_imb)) {
  2147. max_load = avg_load;
  2148. busiest = group;
  2149. busiest_nr_running = sum_nr_running;
  2150. busiest_load_per_task = sum_weighted_load;
  2151. group_imb = __group_imb;
  2152. }
  2153. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2154. /*
  2155. * Busy processors will not participate in power savings
  2156. * balance.
  2157. */
  2158. if (idle == CPU_NOT_IDLE ||
  2159. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2160. goto group_next;
  2161. /*
  2162. * If the local group is idle or completely loaded
  2163. * no need to do power savings balance at this domain
  2164. */
  2165. if (local_group && (this_nr_running >= group_capacity ||
  2166. !this_nr_running))
  2167. power_savings_balance = 0;
  2168. /*
  2169. * If a group is already running at full capacity or idle,
  2170. * don't include that group in power savings calculations
  2171. */
  2172. if (!power_savings_balance || sum_nr_running >= group_capacity
  2173. || !sum_nr_running)
  2174. goto group_next;
  2175. /*
  2176. * Calculate the group which has the least non-idle load.
  2177. * This is the group from where we need to pick up the load
  2178. * for saving power
  2179. */
  2180. if ((sum_nr_running < min_nr_running) ||
  2181. (sum_nr_running == min_nr_running &&
  2182. first_cpu(group->cpumask) <
  2183. first_cpu(group_min->cpumask))) {
  2184. group_min = group;
  2185. min_nr_running = sum_nr_running;
  2186. min_load_per_task = sum_weighted_load /
  2187. sum_nr_running;
  2188. }
  2189. /*
  2190. * Calculate the group which is almost near its
  2191. * capacity but still has some space to pick up some load
  2192. * from other group and save more power
  2193. */
  2194. if (sum_nr_running <= group_capacity - 1) {
  2195. if (sum_nr_running > leader_nr_running ||
  2196. (sum_nr_running == leader_nr_running &&
  2197. first_cpu(group->cpumask) >
  2198. first_cpu(group_leader->cpumask))) {
  2199. group_leader = group;
  2200. leader_nr_running = sum_nr_running;
  2201. }
  2202. }
  2203. group_next:
  2204. #endif
  2205. group = group->next;
  2206. } while (group != sd->groups);
  2207. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2208. goto out_balanced;
  2209. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2210. if (this_load >= avg_load ||
  2211. 100*max_load <= sd->imbalance_pct*this_load)
  2212. goto out_balanced;
  2213. busiest_load_per_task /= busiest_nr_running;
  2214. if (group_imb)
  2215. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2216. /*
  2217. * We're trying to get all the cpus to the average_load, so we don't
  2218. * want to push ourselves above the average load, nor do we wish to
  2219. * reduce the max loaded cpu below the average load, as either of these
  2220. * actions would just result in more rebalancing later, and ping-pong
  2221. * tasks around. Thus we look for the minimum possible imbalance.
  2222. * Negative imbalances (*we* are more loaded than anyone else) will
  2223. * be counted as no imbalance for these purposes -- we can't fix that
  2224. * by pulling tasks to us. Be careful of negative numbers as they'll
  2225. * appear as very large values with unsigned longs.
  2226. */
  2227. if (max_load <= busiest_load_per_task)
  2228. goto out_balanced;
  2229. /*
  2230. * In the presence of smp nice balancing, certain scenarios can have
  2231. * max load less than avg load(as we skip the groups at or below
  2232. * its cpu_power, while calculating max_load..)
  2233. */
  2234. if (max_load < avg_load) {
  2235. *imbalance = 0;
  2236. goto small_imbalance;
  2237. }
  2238. /* Don't want to pull so many tasks that a group would go idle */
  2239. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2240. /* How much load to actually move to equalise the imbalance */
  2241. *imbalance = min(max_pull * busiest->__cpu_power,
  2242. (avg_load - this_load) * this->__cpu_power)
  2243. / SCHED_LOAD_SCALE;
  2244. /*
  2245. * if *imbalance is less than the average load per runnable task
  2246. * there is no gaurantee that any tasks will be moved so we'll have
  2247. * a think about bumping its value to force at least one task to be
  2248. * moved
  2249. */
  2250. if (*imbalance < busiest_load_per_task) {
  2251. unsigned long tmp, pwr_now, pwr_move;
  2252. unsigned int imbn;
  2253. small_imbalance:
  2254. pwr_move = pwr_now = 0;
  2255. imbn = 2;
  2256. if (this_nr_running) {
  2257. this_load_per_task /= this_nr_running;
  2258. if (busiest_load_per_task > this_load_per_task)
  2259. imbn = 1;
  2260. } else
  2261. this_load_per_task = SCHED_LOAD_SCALE;
  2262. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2263. busiest_load_per_task * imbn) {
  2264. *imbalance = busiest_load_per_task;
  2265. return busiest;
  2266. }
  2267. /*
  2268. * OK, we don't have enough imbalance to justify moving tasks,
  2269. * however we may be able to increase total CPU power used by
  2270. * moving them.
  2271. */
  2272. pwr_now += busiest->__cpu_power *
  2273. min(busiest_load_per_task, max_load);
  2274. pwr_now += this->__cpu_power *
  2275. min(this_load_per_task, this_load);
  2276. pwr_now /= SCHED_LOAD_SCALE;
  2277. /* Amount of load we'd subtract */
  2278. tmp = sg_div_cpu_power(busiest,
  2279. busiest_load_per_task * SCHED_LOAD_SCALE);
  2280. if (max_load > tmp)
  2281. pwr_move += busiest->__cpu_power *
  2282. min(busiest_load_per_task, max_load - tmp);
  2283. /* Amount of load we'd add */
  2284. if (max_load * busiest->__cpu_power <
  2285. busiest_load_per_task * SCHED_LOAD_SCALE)
  2286. tmp = sg_div_cpu_power(this,
  2287. max_load * busiest->__cpu_power);
  2288. else
  2289. tmp = sg_div_cpu_power(this,
  2290. busiest_load_per_task * SCHED_LOAD_SCALE);
  2291. pwr_move += this->__cpu_power *
  2292. min(this_load_per_task, this_load + tmp);
  2293. pwr_move /= SCHED_LOAD_SCALE;
  2294. /* Move if we gain throughput */
  2295. if (pwr_move > pwr_now)
  2296. *imbalance = busiest_load_per_task;
  2297. }
  2298. return busiest;
  2299. out_balanced:
  2300. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2301. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2302. goto ret;
  2303. if (this == group_leader && group_leader != group_min) {
  2304. *imbalance = min_load_per_task;
  2305. return group_min;
  2306. }
  2307. #endif
  2308. ret:
  2309. *imbalance = 0;
  2310. return NULL;
  2311. }
  2312. /*
  2313. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2314. */
  2315. static struct rq *
  2316. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2317. unsigned long imbalance, cpumask_t *cpus)
  2318. {
  2319. struct rq *busiest = NULL, *rq;
  2320. unsigned long max_load = 0;
  2321. int i;
  2322. for_each_cpu_mask(i, group->cpumask) {
  2323. unsigned long wl;
  2324. if (!cpu_isset(i, *cpus))
  2325. continue;
  2326. rq = cpu_rq(i);
  2327. wl = weighted_cpuload(i);
  2328. if (rq->nr_running == 1 && wl > imbalance)
  2329. continue;
  2330. if (wl > max_load) {
  2331. max_load = wl;
  2332. busiest = rq;
  2333. }
  2334. }
  2335. return busiest;
  2336. }
  2337. /*
  2338. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2339. * so long as it is large enough.
  2340. */
  2341. #define MAX_PINNED_INTERVAL 512
  2342. /*
  2343. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2344. * tasks if there is an imbalance.
  2345. */
  2346. static int load_balance(int this_cpu, struct rq *this_rq,
  2347. struct sched_domain *sd, enum cpu_idle_type idle,
  2348. int *balance)
  2349. {
  2350. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2351. struct sched_group *group;
  2352. unsigned long imbalance;
  2353. struct rq *busiest;
  2354. cpumask_t cpus = CPU_MASK_ALL;
  2355. unsigned long flags;
  2356. /*
  2357. * When power savings policy is enabled for the parent domain, idle
  2358. * sibling can pick up load irrespective of busy siblings. In this case,
  2359. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2360. * portraying it as CPU_NOT_IDLE.
  2361. */
  2362. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2363. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2364. sd_idle = 1;
  2365. schedstat_inc(sd, lb_count[idle]);
  2366. redo:
  2367. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2368. &cpus, balance);
  2369. if (*balance == 0)
  2370. goto out_balanced;
  2371. if (!group) {
  2372. schedstat_inc(sd, lb_nobusyg[idle]);
  2373. goto out_balanced;
  2374. }
  2375. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2376. if (!busiest) {
  2377. schedstat_inc(sd, lb_nobusyq[idle]);
  2378. goto out_balanced;
  2379. }
  2380. BUG_ON(busiest == this_rq);
  2381. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2382. ld_moved = 0;
  2383. if (busiest->nr_running > 1) {
  2384. /*
  2385. * Attempt to move tasks. If find_busiest_group has found
  2386. * an imbalance but busiest->nr_running <= 1, the group is
  2387. * still unbalanced. ld_moved simply stays zero, so it is
  2388. * correctly treated as an imbalance.
  2389. */
  2390. local_irq_save(flags);
  2391. double_rq_lock(this_rq, busiest);
  2392. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2393. imbalance, sd, idle, &all_pinned);
  2394. double_rq_unlock(this_rq, busiest);
  2395. local_irq_restore(flags);
  2396. /*
  2397. * some other cpu did the load balance for us.
  2398. */
  2399. if (ld_moved && this_cpu != smp_processor_id())
  2400. resched_cpu(this_cpu);
  2401. /* All tasks on this runqueue were pinned by CPU affinity */
  2402. if (unlikely(all_pinned)) {
  2403. cpu_clear(cpu_of(busiest), cpus);
  2404. if (!cpus_empty(cpus))
  2405. goto redo;
  2406. goto out_balanced;
  2407. }
  2408. }
  2409. if (!ld_moved) {
  2410. schedstat_inc(sd, lb_failed[idle]);
  2411. sd->nr_balance_failed++;
  2412. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2413. spin_lock_irqsave(&busiest->lock, flags);
  2414. /* don't kick the migration_thread, if the curr
  2415. * task on busiest cpu can't be moved to this_cpu
  2416. */
  2417. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2418. spin_unlock_irqrestore(&busiest->lock, flags);
  2419. all_pinned = 1;
  2420. goto out_one_pinned;
  2421. }
  2422. if (!busiest->active_balance) {
  2423. busiest->active_balance = 1;
  2424. busiest->push_cpu = this_cpu;
  2425. active_balance = 1;
  2426. }
  2427. spin_unlock_irqrestore(&busiest->lock, flags);
  2428. if (active_balance)
  2429. wake_up_process(busiest->migration_thread);
  2430. /*
  2431. * We've kicked active balancing, reset the failure
  2432. * counter.
  2433. */
  2434. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2435. }
  2436. } else
  2437. sd->nr_balance_failed = 0;
  2438. if (likely(!active_balance)) {
  2439. /* We were unbalanced, so reset the balancing interval */
  2440. sd->balance_interval = sd->min_interval;
  2441. } else {
  2442. /*
  2443. * If we've begun active balancing, start to back off. This
  2444. * case may not be covered by the all_pinned logic if there
  2445. * is only 1 task on the busy runqueue (because we don't call
  2446. * move_tasks).
  2447. */
  2448. if (sd->balance_interval < sd->max_interval)
  2449. sd->balance_interval *= 2;
  2450. }
  2451. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2452. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2453. return -1;
  2454. return ld_moved;
  2455. out_balanced:
  2456. schedstat_inc(sd, lb_balanced[idle]);
  2457. sd->nr_balance_failed = 0;
  2458. out_one_pinned:
  2459. /* tune up the balancing interval */
  2460. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2461. (sd->balance_interval < sd->max_interval))
  2462. sd->balance_interval *= 2;
  2463. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2464. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2465. return -1;
  2466. return 0;
  2467. }
  2468. /*
  2469. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2470. * tasks if there is an imbalance.
  2471. *
  2472. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2473. * this_rq is locked.
  2474. */
  2475. static int
  2476. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2477. {
  2478. struct sched_group *group;
  2479. struct rq *busiest = NULL;
  2480. unsigned long imbalance;
  2481. int ld_moved = 0;
  2482. int sd_idle = 0;
  2483. int all_pinned = 0;
  2484. cpumask_t cpus = CPU_MASK_ALL;
  2485. /*
  2486. * When power savings policy is enabled for the parent domain, idle
  2487. * sibling can pick up load irrespective of busy siblings. In this case,
  2488. * let the state of idle sibling percolate up as IDLE, instead of
  2489. * portraying it as CPU_NOT_IDLE.
  2490. */
  2491. if (sd->flags & SD_SHARE_CPUPOWER &&
  2492. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2493. sd_idle = 1;
  2494. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2495. redo:
  2496. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2497. &sd_idle, &cpus, NULL);
  2498. if (!group) {
  2499. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2500. goto out_balanced;
  2501. }
  2502. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2503. &cpus);
  2504. if (!busiest) {
  2505. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2506. goto out_balanced;
  2507. }
  2508. BUG_ON(busiest == this_rq);
  2509. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2510. ld_moved = 0;
  2511. if (busiest->nr_running > 1) {
  2512. /* Attempt to move tasks */
  2513. double_lock_balance(this_rq, busiest);
  2514. /* this_rq->clock is already updated */
  2515. update_rq_clock(busiest);
  2516. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2517. imbalance, sd, CPU_NEWLY_IDLE,
  2518. &all_pinned);
  2519. spin_unlock(&busiest->lock);
  2520. if (unlikely(all_pinned)) {
  2521. cpu_clear(cpu_of(busiest), cpus);
  2522. if (!cpus_empty(cpus))
  2523. goto redo;
  2524. }
  2525. }
  2526. if (!ld_moved) {
  2527. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2528. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2529. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2530. return -1;
  2531. } else
  2532. sd->nr_balance_failed = 0;
  2533. return ld_moved;
  2534. out_balanced:
  2535. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2536. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2537. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2538. return -1;
  2539. sd->nr_balance_failed = 0;
  2540. return 0;
  2541. }
  2542. /*
  2543. * idle_balance is called by schedule() if this_cpu is about to become
  2544. * idle. Attempts to pull tasks from other CPUs.
  2545. */
  2546. static void idle_balance(int this_cpu, struct rq *this_rq)
  2547. {
  2548. struct sched_domain *sd;
  2549. int pulled_task = -1;
  2550. unsigned long next_balance = jiffies + HZ;
  2551. for_each_domain(this_cpu, sd) {
  2552. unsigned long interval;
  2553. if (!(sd->flags & SD_LOAD_BALANCE))
  2554. continue;
  2555. if (sd->flags & SD_BALANCE_NEWIDLE)
  2556. /* If we've pulled tasks over stop searching: */
  2557. pulled_task = load_balance_newidle(this_cpu,
  2558. this_rq, sd);
  2559. interval = msecs_to_jiffies(sd->balance_interval);
  2560. if (time_after(next_balance, sd->last_balance + interval))
  2561. next_balance = sd->last_balance + interval;
  2562. if (pulled_task)
  2563. break;
  2564. }
  2565. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2566. /*
  2567. * We are going idle. next_balance may be set based on
  2568. * a busy processor. So reset next_balance.
  2569. */
  2570. this_rq->next_balance = next_balance;
  2571. }
  2572. }
  2573. /*
  2574. * active_load_balance is run by migration threads. It pushes running tasks
  2575. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2576. * running on each physical CPU where possible, and avoids physical /
  2577. * logical imbalances.
  2578. *
  2579. * Called with busiest_rq locked.
  2580. */
  2581. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2582. {
  2583. int target_cpu = busiest_rq->push_cpu;
  2584. struct sched_domain *sd;
  2585. struct rq *target_rq;
  2586. /* Is there any task to move? */
  2587. if (busiest_rq->nr_running <= 1)
  2588. return;
  2589. target_rq = cpu_rq(target_cpu);
  2590. /*
  2591. * This condition is "impossible", if it occurs
  2592. * we need to fix it. Originally reported by
  2593. * Bjorn Helgaas on a 128-cpu setup.
  2594. */
  2595. BUG_ON(busiest_rq == target_rq);
  2596. /* move a task from busiest_rq to target_rq */
  2597. double_lock_balance(busiest_rq, target_rq);
  2598. update_rq_clock(busiest_rq);
  2599. update_rq_clock(target_rq);
  2600. /* Search for an sd spanning us and the target CPU. */
  2601. for_each_domain(target_cpu, sd) {
  2602. if ((sd->flags & SD_LOAD_BALANCE) &&
  2603. cpu_isset(busiest_cpu, sd->span))
  2604. break;
  2605. }
  2606. if (likely(sd)) {
  2607. schedstat_inc(sd, alb_count);
  2608. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2609. sd, CPU_IDLE))
  2610. schedstat_inc(sd, alb_pushed);
  2611. else
  2612. schedstat_inc(sd, alb_failed);
  2613. }
  2614. spin_unlock(&target_rq->lock);
  2615. }
  2616. #ifdef CONFIG_NO_HZ
  2617. static struct {
  2618. atomic_t load_balancer;
  2619. cpumask_t cpu_mask;
  2620. } nohz ____cacheline_aligned = {
  2621. .load_balancer = ATOMIC_INIT(-1),
  2622. .cpu_mask = CPU_MASK_NONE,
  2623. };
  2624. /*
  2625. * This routine will try to nominate the ilb (idle load balancing)
  2626. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2627. * load balancing on behalf of all those cpus. If all the cpus in the system
  2628. * go into this tickless mode, then there will be no ilb owner (as there is
  2629. * no need for one) and all the cpus will sleep till the next wakeup event
  2630. * arrives...
  2631. *
  2632. * For the ilb owner, tick is not stopped. And this tick will be used
  2633. * for idle load balancing. ilb owner will still be part of
  2634. * nohz.cpu_mask..
  2635. *
  2636. * While stopping the tick, this cpu will become the ilb owner if there
  2637. * is no other owner. And will be the owner till that cpu becomes busy
  2638. * or if all cpus in the system stop their ticks at which point
  2639. * there is no need for ilb owner.
  2640. *
  2641. * When the ilb owner becomes busy, it nominates another owner, during the
  2642. * next busy scheduler_tick()
  2643. */
  2644. int select_nohz_load_balancer(int stop_tick)
  2645. {
  2646. int cpu = smp_processor_id();
  2647. if (stop_tick) {
  2648. cpu_set(cpu, nohz.cpu_mask);
  2649. cpu_rq(cpu)->in_nohz_recently = 1;
  2650. /*
  2651. * If we are going offline and still the leader, give up!
  2652. */
  2653. if (cpu_is_offline(cpu) &&
  2654. atomic_read(&nohz.load_balancer) == cpu) {
  2655. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2656. BUG();
  2657. return 0;
  2658. }
  2659. /* time for ilb owner also to sleep */
  2660. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2661. if (atomic_read(&nohz.load_balancer) == cpu)
  2662. atomic_set(&nohz.load_balancer, -1);
  2663. return 0;
  2664. }
  2665. if (atomic_read(&nohz.load_balancer) == -1) {
  2666. /* make me the ilb owner */
  2667. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2668. return 1;
  2669. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2670. return 1;
  2671. } else {
  2672. if (!cpu_isset(cpu, nohz.cpu_mask))
  2673. return 0;
  2674. cpu_clear(cpu, nohz.cpu_mask);
  2675. if (atomic_read(&nohz.load_balancer) == cpu)
  2676. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2677. BUG();
  2678. }
  2679. return 0;
  2680. }
  2681. #endif
  2682. static DEFINE_SPINLOCK(balancing);
  2683. /*
  2684. * It checks each scheduling domain to see if it is due to be balanced,
  2685. * and initiates a balancing operation if so.
  2686. *
  2687. * Balancing parameters are set up in arch_init_sched_domains.
  2688. */
  2689. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2690. {
  2691. int balance = 1;
  2692. struct rq *rq = cpu_rq(cpu);
  2693. unsigned long interval;
  2694. struct sched_domain *sd;
  2695. /* Earliest time when we have to do rebalance again */
  2696. unsigned long next_balance = jiffies + 60*HZ;
  2697. int update_next_balance = 0;
  2698. for_each_domain(cpu, sd) {
  2699. if (!(sd->flags & SD_LOAD_BALANCE))
  2700. continue;
  2701. interval = sd->balance_interval;
  2702. if (idle != CPU_IDLE)
  2703. interval *= sd->busy_factor;
  2704. /* scale ms to jiffies */
  2705. interval = msecs_to_jiffies(interval);
  2706. if (unlikely(!interval))
  2707. interval = 1;
  2708. if (interval > HZ*NR_CPUS/10)
  2709. interval = HZ*NR_CPUS/10;
  2710. if (sd->flags & SD_SERIALIZE) {
  2711. if (!spin_trylock(&balancing))
  2712. goto out;
  2713. }
  2714. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2715. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2716. /*
  2717. * We've pulled tasks over so either we're no
  2718. * longer idle, or one of our SMT siblings is
  2719. * not idle.
  2720. */
  2721. idle = CPU_NOT_IDLE;
  2722. }
  2723. sd->last_balance = jiffies;
  2724. }
  2725. if (sd->flags & SD_SERIALIZE)
  2726. spin_unlock(&balancing);
  2727. out:
  2728. if (time_after(next_balance, sd->last_balance + interval)) {
  2729. next_balance = sd->last_balance + interval;
  2730. update_next_balance = 1;
  2731. }
  2732. /*
  2733. * Stop the load balance at this level. There is another
  2734. * CPU in our sched group which is doing load balancing more
  2735. * actively.
  2736. */
  2737. if (!balance)
  2738. break;
  2739. }
  2740. /*
  2741. * next_balance will be updated only when there is a need.
  2742. * When the cpu is attached to null domain for ex, it will not be
  2743. * updated.
  2744. */
  2745. if (likely(update_next_balance))
  2746. rq->next_balance = next_balance;
  2747. }
  2748. /*
  2749. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2750. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2751. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2752. */
  2753. static void run_rebalance_domains(struct softirq_action *h)
  2754. {
  2755. int this_cpu = smp_processor_id();
  2756. struct rq *this_rq = cpu_rq(this_cpu);
  2757. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2758. CPU_IDLE : CPU_NOT_IDLE;
  2759. rebalance_domains(this_cpu, idle);
  2760. #ifdef CONFIG_NO_HZ
  2761. /*
  2762. * If this cpu is the owner for idle load balancing, then do the
  2763. * balancing on behalf of the other idle cpus whose ticks are
  2764. * stopped.
  2765. */
  2766. if (this_rq->idle_at_tick &&
  2767. atomic_read(&nohz.load_balancer) == this_cpu) {
  2768. cpumask_t cpus = nohz.cpu_mask;
  2769. struct rq *rq;
  2770. int balance_cpu;
  2771. cpu_clear(this_cpu, cpus);
  2772. for_each_cpu_mask(balance_cpu, cpus) {
  2773. /*
  2774. * If this cpu gets work to do, stop the load balancing
  2775. * work being done for other cpus. Next load
  2776. * balancing owner will pick it up.
  2777. */
  2778. if (need_resched())
  2779. break;
  2780. rebalance_domains(balance_cpu, CPU_IDLE);
  2781. rq = cpu_rq(balance_cpu);
  2782. if (time_after(this_rq->next_balance, rq->next_balance))
  2783. this_rq->next_balance = rq->next_balance;
  2784. }
  2785. }
  2786. #endif
  2787. }
  2788. /*
  2789. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2790. *
  2791. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2792. * idle load balancing owner or decide to stop the periodic load balancing,
  2793. * if the whole system is idle.
  2794. */
  2795. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2796. {
  2797. #ifdef CONFIG_NO_HZ
  2798. /*
  2799. * If we were in the nohz mode recently and busy at the current
  2800. * scheduler tick, then check if we need to nominate new idle
  2801. * load balancer.
  2802. */
  2803. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2804. rq->in_nohz_recently = 0;
  2805. if (atomic_read(&nohz.load_balancer) == cpu) {
  2806. cpu_clear(cpu, nohz.cpu_mask);
  2807. atomic_set(&nohz.load_balancer, -1);
  2808. }
  2809. if (atomic_read(&nohz.load_balancer) == -1) {
  2810. /*
  2811. * simple selection for now: Nominate the
  2812. * first cpu in the nohz list to be the next
  2813. * ilb owner.
  2814. *
  2815. * TBD: Traverse the sched domains and nominate
  2816. * the nearest cpu in the nohz.cpu_mask.
  2817. */
  2818. int ilb = first_cpu(nohz.cpu_mask);
  2819. if (ilb != NR_CPUS)
  2820. resched_cpu(ilb);
  2821. }
  2822. }
  2823. /*
  2824. * If this cpu is idle and doing idle load balancing for all the
  2825. * cpus with ticks stopped, is it time for that to stop?
  2826. */
  2827. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2828. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2829. resched_cpu(cpu);
  2830. return;
  2831. }
  2832. /*
  2833. * If this cpu is idle and the idle load balancing is done by
  2834. * someone else, then no need raise the SCHED_SOFTIRQ
  2835. */
  2836. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2837. cpu_isset(cpu, nohz.cpu_mask))
  2838. return;
  2839. #endif
  2840. if (time_after_eq(jiffies, rq->next_balance))
  2841. raise_softirq(SCHED_SOFTIRQ);
  2842. }
  2843. #else /* CONFIG_SMP */
  2844. /*
  2845. * on UP we do not need to balance between CPUs:
  2846. */
  2847. static inline void idle_balance(int cpu, struct rq *rq)
  2848. {
  2849. }
  2850. #endif
  2851. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2852. EXPORT_PER_CPU_SYMBOL(kstat);
  2853. /*
  2854. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2855. * that have not yet been banked in case the task is currently running.
  2856. */
  2857. unsigned long long task_sched_runtime(struct task_struct *p)
  2858. {
  2859. unsigned long flags;
  2860. u64 ns, delta_exec;
  2861. struct rq *rq;
  2862. rq = task_rq_lock(p, &flags);
  2863. ns = p->se.sum_exec_runtime;
  2864. if (rq->curr == p) {
  2865. update_rq_clock(rq);
  2866. delta_exec = rq->clock - p->se.exec_start;
  2867. if ((s64)delta_exec > 0)
  2868. ns += delta_exec;
  2869. }
  2870. task_rq_unlock(rq, &flags);
  2871. return ns;
  2872. }
  2873. /*
  2874. * Account user cpu time to a process.
  2875. * @p: the process that the cpu time gets accounted to
  2876. * @cputime: the cpu time spent in user space since the last update
  2877. */
  2878. void account_user_time(struct task_struct *p, cputime_t cputime)
  2879. {
  2880. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2881. cputime64_t tmp;
  2882. struct rq *rq = this_rq();
  2883. p->utime = cputime_add(p->utime, cputime);
  2884. if (p != rq->idle)
  2885. cpuacct_charge(p, cputime);
  2886. /* Add user time to cpustat. */
  2887. tmp = cputime_to_cputime64(cputime);
  2888. if (TASK_NICE(p) > 0)
  2889. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2890. else
  2891. cpustat->user = cputime64_add(cpustat->user, tmp);
  2892. }
  2893. /*
  2894. * Account guest cpu time to a process.
  2895. * @p: the process that the cpu time gets accounted to
  2896. * @cputime: the cpu time spent in virtual machine since the last update
  2897. */
  2898. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2899. {
  2900. cputime64_t tmp;
  2901. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2902. tmp = cputime_to_cputime64(cputime);
  2903. p->utime = cputime_add(p->utime, cputime);
  2904. p->gtime = cputime_add(p->gtime, cputime);
  2905. cpustat->user = cputime64_add(cpustat->user, tmp);
  2906. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2907. }
  2908. /*
  2909. * Account scaled user cpu time to a process.
  2910. * @p: the process that the cpu time gets accounted to
  2911. * @cputime: the cpu time spent in user space since the last update
  2912. */
  2913. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2914. {
  2915. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2916. }
  2917. /*
  2918. * Account system cpu time to a process.
  2919. * @p: the process that the cpu time gets accounted to
  2920. * @hardirq_offset: the offset to subtract from hardirq_count()
  2921. * @cputime: the cpu time spent in kernel space since the last update
  2922. */
  2923. void account_system_time(struct task_struct *p, int hardirq_offset,
  2924. cputime_t cputime)
  2925. {
  2926. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2927. struct rq *rq = this_rq();
  2928. cputime64_t tmp;
  2929. if (p->flags & PF_VCPU) {
  2930. account_guest_time(p, cputime);
  2931. return;
  2932. }
  2933. p->stime = cputime_add(p->stime, cputime);
  2934. /* Add system time to cpustat. */
  2935. tmp = cputime_to_cputime64(cputime);
  2936. if (hardirq_count() - hardirq_offset)
  2937. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2938. else if (softirq_count())
  2939. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2940. else if (p != rq->idle) {
  2941. cpustat->system = cputime64_add(cpustat->system, tmp);
  2942. cpuacct_charge(p, cputime);
  2943. } else if (atomic_read(&rq->nr_iowait) > 0)
  2944. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2945. else
  2946. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2947. /* Account for system time used */
  2948. acct_update_integrals(p);
  2949. }
  2950. /*
  2951. * Account scaled system cpu time to a process.
  2952. * @p: the process that the cpu time gets accounted to
  2953. * @hardirq_offset: the offset to subtract from hardirq_count()
  2954. * @cputime: the cpu time spent in kernel space since the last update
  2955. */
  2956. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2957. {
  2958. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2959. }
  2960. /*
  2961. * Account for involuntary wait time.
  2962. * @p: the process from which the cpu time has been stolen
  2963. * @steal: the cpu time spent in involuntary wait
  2964. */
  2965. void account_steal_time(struct task_struct *p, cputime_t steal)
  2966. {
  2967. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2968. cputime64_t tmp = cputime_to_cputime64(steal);
  2969. struct rq *rq = this_rq();
  2970. if (p == rq->idle) {
  2971. p->stime = cputime_add(p->stime, steal);
  2972. if (atomic_read(&rq->nr_iowait) > 0)
  2973. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2974. else
  2975. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2976. } else {
  2977. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2978. cpuacct_charge(p, -tmp);
  2979. }
  2980. }
  2981. /*
  2982. * This function gets called by the timer code, with HZ frequency.
  2983. * We call it with interrupts disabled.
  2984. *
  2985. * It also gets called by the fork code, when changing the parent's
  2986. * timeslices.
  2987. */
  2988. void scheduler_tick(void)
  2989. {
  2990. int cpu = smp_processor_id();
  2991. struct rq *rq = cpu_rq(cpu);
  2992. struct task_struct *curr = rq->curr;
  2993. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2994. spin_lock(&rq->lock);
  2995. __update_rq_clock(rq);
  2996. /*
  2997. * Let rq->clock advance by at least TICK_NSEC:
  2998. */
  2999. if (unlikely(rq->clock < next_tick))
  3000. rq->clock = next_tick;
  3001. rq->tick_timestamp = rq->clock;
  3002. update_cpu_load(rq);
  3003. if (curr != rq->idle) /* FIXME: needed? */
  3004. curr->sched_class->task_tick(rq, curr);
  3005. spin_unlock(&rq->lock);
  3006. #ifdef CONFIG_SMP
  3007. rq->idle_at_tick = idle_cpu(cpu);
  3008. trigger_load_balance(rq, cpu);
  3009. #endif
  3010. }
  3011. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3012. void fastcall add_preempt_count(int val)
  3013. {
  3014. /*
  3015. * Underflow?
  3016. */
  3017. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3018. return;
  3019. preempt_count() += val;
  3020. /*
  3021. * Spinlock count overflowing soon?
  3022. */
  3023. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3024. PREEMPT_MASK - 10);
  3025. }
  3026. EXPORT_SYMBOL(add_preempt_count);
  3027. void fastcall sub_preempt_count(int val)
  3028. {
  3029. /*
  3030. * Underflow?
  3031. */
  3032. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3033. return;
  3034. /*
  3035. * Is the spinlock portion underflowing?
  3036. */
  3037. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3038. !(preempt_count() & PREEMPT_MASK)))
  3039. return;
  3040. preempt_count() -= val;
  3041. }
  3042. EXPORT_SYMBOL(sub_preempt_count);
  3043. #endif
  3044. /*
  3045. * Print scheduling while atomic bug:
  3046. */
  3047. static noinline void __schedule_bug(struct task_struct *prev)
  3048. {
  3049. struct pt_regs *regs = get_irq_regs();
  3050. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3051. prev->comm, prev->pid, preempt_count());
  3052. debug_show_held_locks(prev);
  3053. if (irqs_disabled())
  3054. print_irqtrace_events(prev);
  3055. if (regs)
  3056. show_regs(regs);
  3057. else
  3058. dump_stack();
  3059. }
  3060. /*
  3061. * Various schedule()-time debugging checks and statistics:
  3062. */
  3063. static inline void schedule_debug(struct task_struct *prev)
  3064. {
  3065. /*
  3066. * Test if we are atomic. Since do_exit() needs to call into
  3067. * schedule() atomically, we ignore that path for now.
  3068. * Otherwise, whine if we are scheduling when we should not be.
  3069. */
  3070. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3071. __schedule_bug(prev);
  3072. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3073. schedstat_inc(this_rq(), sched_count);
  3074. #ifdef CONFIG_SCHEDSTATS
  3075. if (unlikely(prev->lock_depth >= 0)) {
  3076. schedstat_inc(this_rq(), bkl_count);
  3077. schedstat_inc(prev, sched_info.bkl_count);
  3078. }
  3079. #endif
  3080. }
  3081. /*
  3082. * Pick up the highest-prio task:
  3083. */
  3084. static inline struct task_struct *
  3085. pick_next_task(struct rq *rq, struct task_struct *prev)
  3086. {
  3087. const struct sched_class *class;
  3088. struct task_struct *p;
  3089. /*
  3090. * Optimization: we know that if all tasks are in
  3091. * the fair class we can call that function directly:
  3092. */
  3093. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3094. p = fair_sched_class.pick_next_task(rq);
  3095. if (likely(p))
  3096. return p;
  3097. }
  3098. class = sched_class_highest;
  3099. for ( ; ; ) {
  3100. p = class->pick_next_task(rq);
  3101. if (p)
  3102. return p;
  3103. /*
  3104. * Will never be NULL as the idle class always
  3105. * returns a non-NULL p:
  3106. */
  3107. class = class->next;
  3108. }
  3109. }
  3110. /*
  3111. * schedule() is the main scheduler function.
  3112. */
  3113. asmlinkage void __sched schedule(void)
  3114. {
  3115. struct task_struct *prev, *next;
  3116. long *switch_count;
  3117. struct rq *rq;
  3118. int cpu;
  3119. need_resched:
  3120. preempt_disable();
  3121. cpu = smp_processor_id();
  3122. rq = cpu_rq(cpu);
  3123. rcu_qsctr_inc(cpu);
  3124. prev = rq->curr;
  3125. switch_count = &prev->nivcsw;
  3126. release_kernel_lock(prev);
  3127. need_resched_nonpreemptible:
  3128. schedule_debug(prev);
  3129. /*
  3130. * Do the rq-clock update outside the rq lock:
  3131. */
  3132. local_irq_disable();
  3133. __update_rq_clock(rq);
  3134. spin_lock(&rq->lock);
  3135. clear_tsk_need_resched(prev);
  3136. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3137. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3138. unlikely(signal_pending(prev)))) {
  3139. prev->state = TASK_RUNNING;
  3140. } else {
  3141. deactivate_task(rq, prev, 1);
  3142. }
  3143. switch_count = &prev->nvcsw;
  3144. }
  3145. if (unlikely(!rq->nr_running))
  3146. idle_balance(cpu, rq);
  3147. prev->sched_class->put_prev_task(rq, prev);
  3148. next = pick_next_task(rq, prev);
  3149. sched_info_switch(prev, next);
  3150. if (likely(prev != next)) {
  3151. rq->nr_switches++;
  3152. rq->curr = next;
  3153. ++*switch_count;
  3154. context_switch(rq, prev, next); /* unlocks the rq */
  3155. } else
  3156. spin_unlock_irq(&rq->lock);
  3157. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3158. cpu = smp_processor_id();
  3159. rq = cpu_rq(cpu);
  3160. goto need_resched_nonpreemptible;
  3161. }
  3162. preempt_enable_no_resched();
  3163. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3164. goto need_resched;
  3165. }
  3166. EXPORT_SYMBOL(schedule);
  3167. #ifdef CONFIG_PREEMPT
  3168. /*
  3169. * this is the entry point to schedule() from in-kernel preemption
  3170. * off of preempt_enable. Kernel preemptions off return from interrupt
  3171. * occur there and call schedule directly.
  3172. */
  3173. asmlinkage void __sched preempt_schedule(void)
  3174. {
  3175. struct thread_info *ti = current_thread_info();
  3176. #ifdef CONFIG_PREEMPT_BKL
  3177. struct task_struct *task = current;
  3178. int saved_lock_depth;
  3179. #endif
  3180. /*
  3181. * If there is a non-zero preempt_count or interrupts are disabled,
  3182. * we do not want to preempt the current task. Just return..
  3183. */
  3184. if (likely(ti->preempt_count || irqs_disabled()))
  3185. return;
  3186. do {
  3187. add_preempt_count(PREEMPT_ACTIVE);
  3188. /*
  3189. * We keep the big kernel semaphore locked, but we
  3190. * clear ->lock_depth so that schedule() doesnt
  3191. * auto-release the semaphore:
  3192. */
  3193. #ifdef CONFIG_PREEMPT_BKL
  3194. saved_lock_depth = task->lock_depth;
  3195. task->lock_depth = -1;
  3196. #endif
  3197. schedule();
  3198. #ifdef CONFIG_PREEMPT_BKL
  3199. task->lock_depth = saved_lock_depth;
  3200. #endif
  3201. sub_preempt_count(PREEMPT_ACTIVE);
  3202. /*
  3203. * Check again in case we missed a preemption opportunity
  3204. * between schedule and now.
  3205. */
  3206. barrier();
  3207. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3208. }
  3209. EXPORT_SYMBOL(preempt_schedule);
  3210. /*
  3211. * this is the entry point to schedule() from kernel preemption
  3212. * off of irq context.
  3213. * Note, that this is called and return with irqs disabled. This will
  3214. * protect us against recursive calling from irq.
  3215. */
  3216. asmlinkage void __sched preempt_schedule_irq(void)
  3217. {
  3218. struct thread_info *ti = current_thread_info();
  3219. #ifdef CONFIG_PREEMPT_BKL
  3220. struct task_struct *task = current;
  3221. int saved_lock_depth;
  3222. #endif
  3223. /* Catch callers which need to be fixed */
  3224. BUG_ON(ti->preempt_count || !irqs_disabled());
  3225. do {
  3226. add_preempt_count(PREEMPT_ACTIVE);
  3227. /*
  3228. * We keep the big kernel semaphore locked, but we
  3229. * clear ->lock_depth so that schedule() doesnt
  3230. * auto-release the semaphore:
  3231. */
  3232. #ifdef CONFIG_PREEMPT_BKL
  3233. saved_lock_depth = task->lock_depth;
  3234. task->lock_depth = -1;
  3235. #endif
  3236. local_irq_enable();
  3237. schedule();
  3238. local_irq_disable();
  3239. #ifdef CONFIG_PREEMPT_BKL
  3240. task->lock_depth = saved_lock_depth;
  3241. #endif
  3242. sub_preempt_count(PREEMPT_ACTIVE);
  3243. /*
  3244. * Check again in case we missed a preemption opportunity
  3245. * between schedule and now.
  3246. */
  3247. barrier();
  3248. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3249. }
  3250. #endif /* CONFIG_PREEMPT */
  3251. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3252. void *key)
  3253. {
  3254. return try_to_wake_up(curr->private, mode, sync);
  3255. }
  3256. EXPORT_SYMBOL(default_wake_function);
  3257. /*
  3258. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3259. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3260. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3261. *
  3262. * There are circumstances in which we can try to wake a task which has already
  3263. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3264. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3265. */
  3266. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3267. int nr_exclusive, int sync, void *key)
  3268. {
  3269. wait_queue_t *curr, *next;
  3270. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3271. unsigned flags = curr->flags;
  3272. if (curr->func(curr, mode, sync, key) &&
  3273. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3274. break;
  3275. }
  3276. }
  3277. /**
  3278. * __wake_up - wake up threads blocked on a waitqueue.
  3279. * @q: the waitqueue
  3280. * @mode: which threads
  3281. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3282. * @key: is directly passed to the wakeup function
  3283. */
  3284. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3285. int nr_exclusive, void *key)
  3286. {
  3287. unsigned long flags;
  3288. spin_lock_irqsave(&q->lock, flags);
  3289. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3290. spin_unlock_irqrestore(&q->lock, flags);
  3291. }
  3292. EXPORT_SYMBOL(__wake_up);
  3293. /*
  3294. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3295. */
  3296. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3297. {
  3298. __wake_up_common(q, mode, 1, 0, NULL);
  3299. }
  3300. /**
  3301. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3302. * @q: the waitqueue
  3303. * @mode: which threads
  3304. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3305. *
  3306. * The sync wakeup differs that the waker knows that it will schedule
  3307. * away soon, so while the target thread will be woken up, it will not
  3308. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3309. * with each other. This can prevent needless bouncing between CPUs.
  3310. *
  3311. * On UP it can prevent extra preemption.
  3312. */
  3313. void fastcall
  3314. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3315. {
  3316. unsigned long flags;
  3317. int sync = 1;
  3318. if (unlikely(!q))
  3319. return;
  3320. if (unlikely(!nr_exclusive))
  3321. sync = 0;
  3322. spin_lock_irqsave(&q->lock, flags);
  3323. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3324. spin_unlock_irqrestore(&q->lock, flags);
  3325. }
  3326. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3327. void complete(struct completion *x)
  3328. {
  3329. unsigned long flags;
  3330. spin_lock_irqsave(&x->wait.lock, flags);
  3331. x->done++;
  3332. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3333. 1, 0, NULL);
  3334. spin_unlock_irqrestore(&x->wait.lock, flags);
  3335. }
  3336. EXPORT_SYMBOL(complete);
  3337. void complete_all(struct completion *x)
  3338. {
  3339. unsigned long flags;
  3340. spin_lock_irqsave(&x->wait.lock, flags);
  3341. x->done += UINT_MAX/2;
  3342. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3343. 0, 0, NULL);
  3344. spin_unlock_irqrestore(&x->wait.lock, flags);
  3345. }
  3346. EXPORT_SYMBOL(complete_all);
  3347. static inline long __sched
  3348. do_wait_for_common(struct completion *x, long timeout, int state)
  3349. {
  3350. if (!x->done) {
  3351. DECLARE_WAITQUEUE(wait, current);
  3352. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3353. __add_wait_queue_tail(&x->wait, &wait);
  3354. do {
  3355. if (state == TASK_INTERRUPTIBLE &&
  3356. signal_pending(current)) {
  3357. __remove_wait_queue(&x->wait, &wait);
  3358. return -ERESTARTSYS;
  3359. }
  3360. __set_current_state(state);
  3361. spin_unlock_irq(&x->wait.lock);
  3362. timeout = schedule_timeout(timeout);
  3363. spin_lock_irq(&x->wait.lock);
  3364. if (!timeout) {
  3365. __remove_wait_queue(&x->wait, &wait);
  3366. return timeout;
  3367. }
  3368. } while (!x->done);
  3369. __remove_wait_queue(&x->wait, &wait);
  3370. }
  3371. x->done--;
  3372. return timeout;
  3373. }
  3374. static long __sched
  3375. wait_for_common(struct completion *x, long timeout, int state)
  3376. {
  3377. might_sleep();
  3378. spin_lock_irq(&x->wait.lock);
  3379. timeout = do_wait_for_common(x, timeout, state);
  3380. spin_unlock_irq(&x->wait.lock);
  3381. return timeout;
  3382. }
  3383. void __sched wait_for_completion(struct completion *x)
  3384. {
  3385. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3386. }
  3387. EXPORT_SYMBOL(wait_for_completion);
  3388. unsigned long __sched
  3389. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3390. {
  3391. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3392. }
  3393. EXPORT_SYMBOL(wait_for_completion_timeout);
  3394. int __sched wait_for_completion_interruptible(struct completion *x)
  3395. {
  3396. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3397. if (t == -ERESTARTSYS)
  3398. return t;
  3399. return 0;
  3400. }
  3401. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3402. unsigned long __sched
  3403. wait_for_completion_interruptible_timeout(struct completion *x,
  3404. unsigned long timeout)
  3405. {
  3406. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3407. }
  3408. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3409. static long __sched
  3410. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3411. {
  3412. unsigned long flags;
  3413. wait_queue_t wait;
  3414. init_waitqueue_entry(&wait, current);
  3415. __set_current_state(state);
  3416. spin_lock_irqsave(&q->lock, flags);
  3417. __add_wait_queue(q, &wait);
  3418. spin_unlock(&q->lock);
  3419. timeout = schedule_timeout(timeout);
  3420. spin_lock_irq(&q->lock);
  3421. __remove_wait_queue(q, &wait);
  3422. spin_unlock_irqrestore(&q->lock, flags);
  3423. return timeout;
  3424. }
  3425. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3426. {
  3427. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3428. }
  3429. EXPORT_SYMBOL(interruptible_sleep_on);
  3430. long __sched
  3431. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3432. {
  3433. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3434. }
  3435. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3436. void __sched sleep_on(wait_queue_head_t *q)
  3437. {
  3438. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3439. }
  3440. EXPORT_SYMBOL(sleep_on);
  3441. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3442. {
  3443. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3444. }
  3445. EXPORT_SYMBOL(sleep_on_timeout);
  3446. #ifdef CONFIG_RT_MUTEXES
  3447. /*
  3448. * rt_mutex_setprio - set the current priority of a task
  3449. * @p: task
  3450. * @prio: prio value (kernel-internal form)
  3451. *
  3452. * This function changes the 'effective' priority of a task. It does
  3453. * not touch ->normal_prio like __setscheduler().
  3454. *
  3455. * Used by the rt_mutex code to implement priority inheritance logic.
  3456. */
  3457. void rt_mutex_setprio(struct task_struct *p, int prio)
  3458. {
  3459. unsigned long flags;
  3460. int oldprio, on_rq, running;
  3461. struct rq *rq;
  3462. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3463. rq = task_rq_lock(p, &flags);
  3464. update_rq_clock(rq);
  3465. oldprio = p->prio;
  3466. on_rq = p->se.on_rq;
  3467. running = task_running(rq, p);
  3468. if (on_rq) {
  3469. dequeue_task(rq, p, 0);
  3470. if (running)
  3471. p->sched_class->put_prev_task(rq, p);
  3472. }
  3473. if (rt_prio(prio))
  3474. p->sched_class = &rt_sched_class;
  3475. else
  3476. p->sched_class = &fair_sched_class;
  3477. p->prio = prio;
  3478. if (on_rq) {
  3479. if (running)
  3480. p->sched_class->set_curr_task(rq);
  3481. enqueue_task(rq, p, 0);
  3482. /*
  3483. * Reschedule if we are currently running on this runqueue and
  3484. * our priority decreased, or if we are not currently running on
  3485. * this runqueue and our priority is higher than the current's
  3486. */
  3487. if (running) {
  3488. if (p->prio > oldprio)
  3489. resched_task(rq->curr);
  3490. } else {
  3491. check_preempt_curr(rq, p);
  3492. }
  3493. }
  3494. task_rq_unlock(rq, &flags);
  3495. }
  3496. #endif
  3497. void set_user_nice(struct task_struct *p, long nice)
  3498. {
  3499. int old_prio, delta, on_rq;
  3500. unsigned long flags;
  3501. struct rq *rq;
  3502. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3503. return;
  3504. /*
  3505. * We have to be careful, if called from sys_setpriority(),
  3506. * the task might be in the middle of scheduling on another CPU.
  3507. */
  3508. rq = task_rq_lock(p, &flags);
  3509. update_rq_clock(rq);
  3510. /*
  3511. * The RT priorities are set via sched_setscheduler(), but we still
  3512. * allow the 'normal' nice value to be set - but as expected
  3513. * it wont have any effect on scheduling until the task is
  3514. * SCHED_FIFO/SCHED_RR:
  3515. */
  3516. if (task_has_rt_policy(p)) {
  3517. p->static_prio = NICE_TO_PRIO(nice);
  3518. goto out_unlock;
  3519. }
  3520. on_rq = p->se.on_rq;
  3521. if (on_rq) {
  3522. dequeue_task(rq, p, 0);
  3523. dec_load(rq, p);
  3524. }
  3525. p->static_prio = NICE_TO_PRIO(nice);
  3526. set_load_weight(p);
  3527. old_prio = p->prio;
  3528. p->prio = effective_prio(p);
  3529. delta = p->prio - old_prio;
  3530. if (on_rq) {
  3531. enqueue_task(rq, p, 0);
  3532. inc_load(rq, p);
  3533. /*
  3534. * If the task increased its priority or is running and
  3535. * lowered its priority, then reschedule its CPU:
  3536. */
  3537. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3538. resched_task(rq->curr);
  3539. }
  3540. out_unlock:
  3541. task_rq_unlock(rq, &flags);
  3542. }
  3543. EXPORT_SYMBOL(set_user_nice);
  3544. /*
  3545. * can_nice - check if a task can reduce its nice value
  3546. * @p: task
  3547. * @nice: nice value
  3548. */
  3549. int can_nice(const struct task_struct *p, const int nice)
  3550. {
  3551. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3552. int nice_rlim = 20 - nice;
  3553. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3554. capable(CAP_SYS_NICE));
  3555. }
  3556. #ifdef __ARCH_WANT_SYS_NICE
  3557. /*
  3558. * sys_nice - change the priority of the current process.
  3559. * @increment: priority increment
  3560. *
  3561. * sys_setpriority is a more generic, but much slower function that
  3562. * does similar things.
  3563. */
  3564. asmlinkage long sys_nice(int increment)
  3565. {
  3566. long nice, retval;
  3567. /*
  3568. * Setpriority might change our priority at the same moment.
  3569. * We don't have to worry. Conceptually one call occurs first
  3570. * and we have a single winner.
  3571. */
  3572. if (increment < -40)
  3573. increment = -40;
  3574. if (increment > 40)
  3575. increment = 40;
  3576. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3577. if (nice < -20)
  3578. nice = -20;
  3579. if (nice > 19)
  3580. nice = 19;
  3581. if (increment < 0 && !can_nice(current, nice))
  3582. return -EPERM;
  3583. retval = security_task_setnice(current, nice);
  3584. if (retval)
  3585. return retval;
  3586. set_user_nice(current, nice);
  3587. return 0;
  3588. }
  3589. #endif
  3590. /**
  3591. * task_prio - return the priority value of a given task.
  3592. * @p: the task in question.
  3593. *
  3594. * This is the priority value as seen by users in /proc.
  3595. * RT tasks are offset by -200. Normal tasks are centered
  3596. * around 0, value goes from -16 to +15.
  3597. */
  3598. int task_prio(const struct task_struct *p)
  3599. {
  3600. return p->prio - MAX_RT_PRIO;
  3601. }
  3602. /**
  3603. * task_nice - return the nice value of a given task.
  3604. * @p: the task in question.
  3605. */
  3606. int task_nice(const struct task_struct *p)
  3607. {
  3608. return TASK_NICE(p);
  3609. }
  3610. EXPORT_SYMBOL_GPL(task_nice);
  3611. /**
  3612. * idle_cpu - is a given cpu idle currently?
  3613. * @cpu: the processor in question.
  3614. */
  3615. int idle_cpu(int cpu)
  3616. {
  3617. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3618. }
  3619. /**
  3620. * idle_task - return the idle task for a given cpu.
  3621. * @cpu: the processor in question.
  3622. */
  3623. struct task_struct *idle_task(int cpu)
  3624. {
  3625. return cpu_rq(cpu)->idle;
  3626. }
  3627. /**
  3628. * find_process_by_pid - find a process with a matching PID value.
  3629. * @pid: the pid in question.
  3630. */
  3631. static struct task_struct *find_process_by_pid(pid_t pid)
  3632. {
  3633. return pid ? find_task_by_vpid(pid) : current;
  3634. }
  3635. /* Actually do priority change: must hold rq lock. */
  3636. static void
  3637. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3638. {
  3639. BUG_ON(p->se.on_rq);
  3640. p->policy = policy;
  3641. switch (p->policy) {
  3642. case SCHED_NORMAL:
  3643. case SCHED_BATCH:
  3644. case SCHED_IDLE:
  3645. p->sched_class = &fair_sched_class;
  3646. break;
  3647. case SCHED_FIFO:
  3648. case SCHED_RR:
  3649. p->sched_class = &rt_sched_class;
  3650. break;
  3651. }
  3652. p->rt_priority = prio;
  3653. p->normal_prio = normal_prio(p);
  3654. /* we are holding p->pi_lock already */
  3655. p->prio = rt_mutex_getprio(p);
  3656. set_load_weight(p);
  3657. }
  3658. /**
  3659. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3660. * @p: the task in question.
  3661. * @policy: new policy.
  3662. * @param: structure containing the new RT priority.
  3663. *
  3664. * NOTE that the task may be already dead.
  3665. */
  3666. int sched_setscheduler(struct task_struct *p, int policy,
  3667. struct sched_param *param)
  3668. {
  3669. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3670. unsigned long flags;
  3671. struct rq *rq;
  3672. /* may grab non-irq protected spin_locks */
  3673. BUG_ON(in_interrupt());
  3674. recheck:
  3675. /* double check policy once rq lock held */
  3676. if (policy < 0)
  3677. policy = oldpolicy = p->policy;
  3678. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3679. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3680. policy != SCHED_IDLE)
  3681. return -EINVAL;
  3682. /*
  3683. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3684. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3685. * SCHED_BATCH and SCHED_IDLE is 0.
  3686. */
  3687. if (param->sched_priority < 0 ||
  3688. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3689. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3690. return -EINVAL;
  3691. if (rt_policy(policy) != (param->sched_priority != 0))
  3692. return -EINVAL;
  3693. /*
  3694. * Allow unprivileged RT tasks to decrease priority:
  3695. */
  3696. if (!capable(CAP_SYS_NICE)) {
  3697. if (rt_policy(policy)) {
  3698. unsigned long rlim_rtprio;
  3699. if (!lock_task_sighand(p, &flags))
  3700. return -ESRCH;
  3701. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3702. unlock_task_sighand(p, &flags);
  3703. /* can't set/change the rt policy */
  3704. if (policy != p->policy && !rlim_rtprio)
  3705. return -EPERM;
  3706. /* can't increase priority */
  3707. if (param->sched_priority > p->rt_priority &&
  3708. param->sched_priority > rlim_rtprio)
  3709. return -EPERM;
  3710. }
  3711. /*
  3712. * Like positive nice levels, dont allow tasks to
  3713. * move out of SCHED_IDLE either:
  3714. */
  3715. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3716. return -EPERM;
  3717. /* can't change other user's priorities */
  3718. if ((current->euid != p->euid) &&
  3719. (current->euid != p->uid))
  3720. return -EPERM;
  3721. }
  3722. retval = security_task_setscheduler(p, policy, param);
  3723. if (retval)
  3724. return retval;
  3725. /*
  3726. * make sure no PI-waiters arrive (or leave) while we are
  3727. * changing the priority of the task:
  3728. */
  3729. spin_lock_irqsave(&p->pi_lock, flags);
  3730. /*
  3731. * To be able to change p->policy safely, the apropriate
  3732. * runqueue lock must be held.
  3733. */
  3734. rq = __task_rq_lock(p);
  3735. /* recheck policy now with rq lock held */
  3736. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3737. policy = oldpolicy = -1;
  3738. __task_rq_unlock(rq);
  3739. spin_unlock_irqrestore(&p->pi_lock, flags);
  3740. goto recheck;
  3741. }
  3742. update_rq_clock(rq);
  3743. on_rq = p->se.on_rq;
  3744. running = task_running(rq, p);
  3745. if (on_rq) {
  3746. deactivate_task(rq, p, 0);
  3747. if (running)
  3748. p->sched_class->put_prev_task(rq, p);
  3749. }
  3750. oldprio = p->prio;
  3751. __setscheduler(rq, p, policy, param->sched_priority);
  3752. if (on_rq) {
  3753. if (running)
  3754. p->sched_class->set_curr_task(rq);
  3755. activate_task(rq, p, 0);
  3756. /*
  3757. * Reschedule if we are currently running on this runqueue and
  3758. * our priority decreased, or if we are not currently running on
  3759. * this runqueue and our priority is higher than the current's
  3760. */
  3761. if (running) {
  3762. if (p->prio > oldprio)
  3763. resched_task(rq->curr);
  3764. } else {
  3765. check_preempt_curr(rq, p);
  3766. }
  3767. }
  3768. __task_rq_unlock(rq);
  3769. spin_unlock_irqrestore(&p->pi_lock, flags);
  3770. rt_mutex_adjust_pi(p);
  3771. return 0;
  3772. }
  3773. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3774. static int
  3775. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3776. {
  3777. struct sched_param lparam;
  3778. struct task_struct *p;
  3779. int retval;
  3780. if (!param || pid < 0)
  3781. return -EINVAL;
  3782. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3783. return -EFAULT;
  3784. rcu_read_lock();
  3785. retval = -ESRCH;
  3786. p = find_process_by_pid(pid);
  3787. if (p != NULL)
  3788. retval = sched_setscheduler(p, policy, &lparam);
  3789. rcu_read_unlock();
  3790. return retval;
  3791. }
  3792. /**
  3793. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3794. * @pid: the pid in question.
  3795. * @policy: new policy.
  3796. * @param: structure containing the new RT priority.
  3797. */
  3798. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3799. struct sched_param __user *param)
  3800. {
  3801. /* negative values for policy are not valid */
  3802. if (policy < 0)
  3803. return -EINVAL;
  3804. return do_sched_setscheduler(pid, policy, param);
  3805. }
  3806. /**
  3807. * sys_sched_setparam - set/change the RT priority of a thread
  3808. * @pid: the pid in question.
  3809. * @param: structure containing the new RT priority.
  3810. */
  3811. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3812. {
  3813. return do_sched_setscheduler(pid, -1, param);
  3814. }
  3815. /**
  3816. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3817. * @pid: the pid in question.
  3818. */
  3819. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3820. {
  3821. struct task_struct *p;
  3822. int retval;
  3823. if (pid < 0)
  3824. return -EINVAL;
  3825. retval = -ESRCH;
  3826. read_lock(&tasklist_lock);
  3827. p = find_process_by_pid(pid);
  3828. if (p) {
  3829. retval = security_task_getscheduler(p);
  3830. if (!retval)
  3831. retval = p->policy;
  3832. }
  3833. read_unlock(&tasklist_lock);
  3834. return retval;
  3835. }
  3836. /**
  3837. * sys_sched_getscheduler - get the RT priority of a thread
  3838. * @pid: the pid in question.
  3839. * @param: structure containing the RT priority.
  3840. */
  3841. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3842. {
  3843. struct sched_param lp;
  3844. struct task_struct *p;
  3845. int retval;
  3846. if (!param || pid < 0)
  3847. return -EINVAL;
  3848. read_lock(&tasklist_lock);
  3849. p = find_process_by_pid(pid);
  3850. retval = -ESRCH;
  3851. if (!p)
  3852. goto out_unlock;
  3853. retval = security_task_getscheduler(p);
  3854. if (retval)
  3855. goto out_unlock;
  3856. lp.sched_priority = p->rt_priority;
  3857. read_unlock(&tasklist_lock);
  3858. /*
  3859. * This one might sleep, we cannot do it with a spinlock held ...
  3860. */
  3861. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3862. return retval;
  3863. out_unlock:
  3864. read_unlock(&tasklist_lock);
  3865. return retval;
  3866. }
  3867. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3868. {
  3869. cpumask_t cpus_allowed;
  3870. struct task_struct *p;
  3871. int retval;
  3872. mutex_lock(&sched_hotcpu_mutex);
  3873. read_lock(&tasklist_lock);
  3874. p = find_process_by_pid(pid);
  3875. if (!p) {
  3876. read_unlock(&tasklist_lock);
  3877. mutex_unlock(&sched_hotcpu_mutex);
  3878. return -ESRCH;
  3879. }
  3880. /*
  3881. * It is not safe to call set_cpus_allowed with the
  3882. * tasklist_lock held. We will bump the task_struct's
  3883. * usage count and then drop tasklist_lock.
  3884. */
  3885. get_task_struct(p);
  3886. read_unlock(&tasklist_lock);
  3887. retval = -EPERM;
  3888. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3889. !capable(CAP_SYS_NICE))
  3890. goto out_unlock;
  3891. retval = security_task_setscheduler(p, 0, NULL);
  3892. if (retval)
  3893. goto out_unlock;
  3894. cpus_allowed = cpuset_cpus_allowed(p);
  3895. cpus_and(new_mask, new_mask, cpus_allowed);
  3896. again:
  3897. retval = set_cpus_allowed(p, new_mask);
  3898. if (!retval) {
  3899. cpus_allowed = cpuset_cpus_allowed(p);
  3900. if (!cpus_subset(new_mask, cpus_allowed)) {
  3901. /*
  3902. * We must have raced with a concurrent cpuset
  3903. * update. Just reset the cpus_allowed to the
  3904. * cpuset's cpus_allowed
  3905. */
  3906. new_mask = cpus_allowed;
  3907. goto again;
  3908. }
  3909. }
  3910. out_unlock:
  3911. put_task_struct(p);
  3912. mutex_unlock(&sched_hotcpu_mutex);
  3913. return retval;
  3914. }
  3915. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3916. cpumask_t *new_mask)
  3917. {
  3918. if (len < sizeof(cpumask_t)) {
  3919. memset(new_mask, 0, sizeof(cpumask_t));
  3920. } else if (len > sizeof(cpumask_t)) {
  3921. len = sizeof(cpumask_t);
  3922. }
  3923. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3924. }
  3925. /**
  3926. * sys_sched_setaffinity - set the cpu affinity of a process
  3927. * @pid: pid of the process
  3928. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3929. * @user_mask_ptr: user-space pointer to the new cpu mask
  3930. */
  3931. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3932. unsigned long __user *user_mask_ptr)
  3933. {
  3934. cpumask_t new_mask;
  3935. int retval;
  3936. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3937. if (retval)
  3938. return retval;
  3939. return sched_setaffinity(pid, new_mask);
  3940. }
  3941. /*
  3942. * Represents all cpu's present in the system
  3943. * In systems capable of hotplug, this map could dynamically grow
  3944. * as new cpu's are detected in the system via any platform specific
  3945. * method, such as ACPI for e.g.
  3946. */
  3947. cpumask_t cpu_present_map __read_mostly;
  3948. EXPORT_SYMBOL(cpu_present_map);
  3949. #ifndef CONFIG_SMP
  3950. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3951. EXPORT_SYMBOL(cpu_online_map);
  3952. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3953. EXPORT_SYMBOL(cpu_possible_map);
  3954. #endif
  3955. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3956. {
  3957. struct task_struct *p;
  3958. int retval;
  3959. mutex_lock(&sched_hotcpu_mutex);
  3960. read_lock(&tasklist_lock);
  3961. retval = -ESRCH;
  3962. p = find_process_by_pid(pid);
  3963. if (!p)
  3964. goto out_unlock;
  3965. retval = security_task_getscheduler(p);
  3966. if (retval)
  3967. goto out_unlock;
  3968. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3969. out_unlock:
  3970. read_unlock(&tasklist_lock);
  3971. mutex_unlock(&sched_hotcpu_mutex);
  3972. return retval;
  3973. }
  3974. /**
  3975. * sys_sched_getaffinity - get the cpu affinity of a process
  3976. * @pid: pid of the process
  3977. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3978. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3979. */
  3980. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3981. unsigned long __user *user_mask_ptr)
  3982. {
  3983. int ret;
  3984. cpumask_t mask;
  3985. if (len < sizeof(cpumask_t))
  3986. return -EINVAL;
  3987. ret = sched_getaffinity(pid, &mask);
  3988. if (ret < 0)
  3989. return ret;
  3990. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3991. return -EFAULT;
  3992. return sizeof(cpumask_t);
  3993. }
  3994. /**
  3995. * sys_sched_yield - yield the current processor to other threads.
  3996. *
  3997. * This function yields the current CPU to other tasks. If there are no
  3998. * other threads running on this CPU then this function will return.
  3999. */
  4000. asmlinkage long sys_sched_yield(void)
  4001. {
  4002. struct rq *rq = this_rq_lock();
  4003. schedstat_inc(rq, yld_count);
  4004. current->sched_class->yield_task(rq);
  4005. /*
  4006. * Since we are going to call schedule() anyway, there's
  4007. * no need to preempt or enable interrupts:
  4008. */
  4009. __release(rq->lock);
  4010. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4011. _raw_spin_unlock(&rq->lock);
  4012. preempt_enable_no_resched();
  4013. schedule();
  4014. return 0;
  4015. }
  4016. static void __cond_resched(void)
  4017. {
  4018. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4019. __might_sleep(__FILE__, __LINE__);
  4020. #endif
  4021. /*
  4022. * The BKS might be reacquired before we have dropped
  4023. * PREEMPT_ACTIVE, which could trigger a second
  4024. * cond_resched() call.
  4025. */
  4026. do {
  4027. add_preempt_count(PREEMPT_ACTIVE);
  4028. schedule();
  4029. sub_preempt_count(PREEMPT_ACTIVE);
  4030. } while (need_resched());
  4031. }
  4032. int __sched cond_resched(void)
  4033. {
  4034. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4035. system_state == SYSTEM_RUNNING) {
  4036. __cond_resched();
  4037. return 1;
  4038. }
  4039. return 0;
  4040. }
  4041. EXPORT_SYMBOL(cond_resched);
  4042. /*
  4043. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4044. * call schedule, and on return reacquire the lock.
  4045. *
  4046. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4047. * operations here to prevent schedule() from being called twice (once via
  4048. * spin_unlock(), once by hand).
  4049. */
  4050. int cond_resched_lock(spinlock_t *lock)
  4051. {
  4052. int ret = 0;
  4053. if (need_lockbreak(lock)) {
  4054. spin_unlock(lock);
  4055. cpu_relax();
  4056. ret = 1;
  4057. spin_lock(lock);
  4058. }
  4059. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4060. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4061. _raw_spin_unlock(lock);
  4062. preempt_enable_no_resched();
  4063. __cond_resched();
  4064. ret = 1;
  4065. spin_lock(lock);
  4066. }
  4067. return ret;
  4068. }
  4069. EXPORT_SYMBOL(cond_resched_lock);
  4070. int __sched cond_resched_softirq(void)
  4071. {
  4072. BUG_ON(!in_softirq());
  4073. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4074. local_bh_enable();
  4075. __cond_resched();
  4076. local_bh_disable();
  4077. return 1;
  4078. }
  4079. return 0;
  4080. }
  4081. EXPORT_SYMBOL(cond_resched_softirq);
  4082. /**
  4083. * yield - yield the current processor to other threads.
  4084. *
  4085. * This is a shortcut for kernel-space yielding - it marks the
  4086. * thread runnable and calls sys_sched_yield().
  4087. */
  4088. void __sched yield(void)
  4089. {
  4090. set_current_state(TASK_RUNNING);
  4091. sys_sched_yield();
  4092. }
  4093. EXPORT_SYMBOL(yield);
  4094. /*
  4095. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4096. * that process accounting knows that this is a task in IO wait state.
  4097. *
  4098. * But don't do that if it is a deliberate, throttling IO wait (this task
  4099. * has set its backing_dev_info: the queue against which it should throttle)
  4100. */
  4101. void __sched io_schedule(void)
  4102. {
  4103. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4104. delayacct_blkio_start();
  4105. atomic_inc(&rq->nr_iowait);
  4106. schedule();
  4107. atomic_dec(&rq->nr_iowait);
  4108. delayacct_blkio_end();
  4109. }
  4110. EXPORT_SYMBOL(io_schedule);
  4111. long __sched io_schedule_timeout(long timeout)
  4112. {
  4113. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4114. long ret;
  4115. delayacct_blkio_start();
  4116. atomic_inc(&rq->nr_iowait);
  4117. ret = schedule_timeout(timeout);
  4118. atomic_dec(&rq->nr_iowait);
  4119. delayacct_blkio_end();
  4120. return ret;
  4121. }
  4122. /**
  4123. * sys_sched_get_priority_max - return maximum RT priority.
  4124. * @policy: scheduling class.
  4125. *
  4126. * this syscall returns the maximum rt_priority that can be used
  4127. * by a given scheduling class.
  4128. */
  4129. asmlinkage long sys_sched_get_priority_max(int policy)
  4130. {
  4131. int ret = -EINVAL;
  4132. switch (policy) {
  4133. case SCHED_FIFO:
  4134. case SCHED_RR:
  4135. ret = MAX_USER_RT_PRIO-1;
  4136. break;
  4137. case SCHED_NORMAL:
  4138. case SCHED_BATCH:
  4139. case SCHED_IDLE:
  4140. ret = 0;
  4141. break;
  4142. }
  4143. return ret;
  4144. }
  4145. /**
  4146. * sys_sched_get_priority_min - return minimum RT priority.
  4147. * @policy: scheduling class.
  4148. *
  4149. * this syscall returns the minimum rt_priority that can be used
  4150. * by a given scheduling class.
  4151. */
  4152. asmlinkage long sys_sched_get_priority_min(int policy)
  4153. {
  4154. int ret = -EINVAL;
  4155. switch (policy) {
  4156. case SCHED_FIFO:
  4157. case SCHED_RR:
  4158. ret = 1;
  4159. break;
  4160. case SCHED_NORMAL:
  4161. case SCHED_BATCH:
  4162. case SCHED_IDLE:
  4163. ret = 0;
  4164. }
  4165. return ret;
  4166. }
  4167. /**
  4168. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4169. * @pid: pid of the process.
  4170. * @interval: userspace pointer to the timeslice value.
  4171. *
  4172. * this syscall writes the default timeslice value of a given process
  4173. * into the user-space timespec buffer. A value of '0' means infinity.
  4174. */
  4175. asmlinkage
  4176. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4177. {
  4178. struct task_struct *p;
  4179. unsigned int time_slice;
  4180. int retval;
  4181. struct timespec t;
  4182. if (pid < 0)
  4183. return -EINVAL;
  4184. retval = -ESRCH;
  4185. read_lock(&tasklist_lock);
  4186. p = find_process_by_pid(pid);
  4187. if (!p)
  4188. goto out_unlock;
  4189. retval = security_task_getscheduler(p);
  4190. if (retval)
  4191. goto out_unlock;
  4192. if (p->policy == SCHED_FIFO)
  4193. time_slice = 0;
  4194. else if (p->policy == SCHED_RR)
  4195. time_slice = DEF_TIMESLICE;
  4196. else {
  4197. struct sched_entity *se = &p->se;
  4198. unsigned long flags;
  4199. struct rq *rq;
  4200. rq = task_rq_lock(p, &flags);
  4201. time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4202. task_rq_unlock(rq, &flags);
  4203. }
  4204. read_unlock(&tasklist_lock);
  4205. jiffies_to_timespec(time_slice, &t);
  4206. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4207. return retval;
  4208. out_unlock:
  4209. read_unlock(&tasklist_lock);
  4210. return retval;
  4211. }
  4212. static const char stat_nam[] = "RSDTtZX";
  4213. static void show_task(struct task_struct *p)
  4214. {
  4215. unsigned long free = 0;
  4216. unsigned state;
  4217. state = p->state ? __ffs(p->state) + 1 : 0;
  4218. printk(KERN_INFO "%-13.13s %c", p->comm,
  4219. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4220. #if BITS_PER_LONG == 32
  4221. if (state == TASK_RUNNING)
  4222. printk(KERN_CONT " running ");
  4223. else
  4224. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4225. #else
  4226. if (state == TASK_RUNNING)
  4227. printk(KERN_CONT " running task ");
  4228. else
  4229. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4230. #endif
  4231. #ifdef CONFIG_DEBUG_STACK_USAGE
  4232. {
  4233. unsigned long *n = end_of_stack(p);
  4234. while (!*n)
  4235. n++;
  4236. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4237. }
  4238. #endif
  4239. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4240. task_pid_nr(p), task_pid_nr(p->parent));
  4241. if (state != TASK_RUNNING)
  4242. show_stack(p, NULL);
  4243. }
  4244. void show_state_filter(unsigned long state_filter)
  4245. {
  4246. struct task_struct *g, *p;
  4247. #if BITS_PER_LONG == 32
  4248. printk(KERN_INFO
  4249. " task PC stack pid father\n");
  4250. #else
  4251. printk(KERN_INFO
  4252. " task PC stack pid father\n");
  4253. #endif
  4254. read_lock(&tasklist_lock);
  4255. do_each_thread(g, p) {
  4256. /*
  4257. * reset the NMI-timeout, listing all files on a slow
  4258. * console might take alot of time:
  4259. */
  4260. touch_nmi_watchdog();
  4261. if (!state_filter || (p->state & state_filter))
  4262. show_task(p);
  4263. } while_each_thread(g, p);
  4264. touch_all_softlockup_watchdogs();
  4265. #ifdef CONFIG_SCHED_DEBUG
  4266. sysrq_sched_debug_show();
  4267. #endif
  4268. read_unlock(&tasklist_lock);
  4269. /*
  4270. * Only show locks if all tasks are dumped:
  4271. */
  4272. if (state_filter == -1)
  4273. debug_show_all_locks();
  4274. }
  4275. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4276. {
  4277. idle->sched_class = &idle_sched_class;
  4278. }
  4279. /**
  4280. * init_idle - set up an idle thread for a given CPU
  4281. * @idle: task in question
  4282. * @cpu: cpu the idle task belongs to
  4283. *
  4284. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4285. * flag, to make booting more robust.
  4286. */
  4287. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4288. {
  4289. struct rq *rq = cpu_rq(cpu);
  4290. unsigned long flags;
  4291. __sched_fork(idle);
  4292. idle->se.exec_start = sched_clock();
  4293. idle->prio = idle->normal_prio = MAX_PRIO;
  4294. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4295. __set_task_cpu(idle, cpu);
  4296. spin_lock_irqsave(&rq->lock, flags);
  4297. rq->curr = rq->idle = idle;
  4298. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4299. idle->oncpu = 1;
  4300. #endif
  4301. spin_unlock_irqrestore(&rq->lock, flags);
  4302. /* Set the preempt count _outside_ the spinlocks! */
  4303. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4304. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4305. #else
  4306. task_thread_info(idle)->preempt_count = 0;
  4307. #endif
  4308. /*
  4309. * The idle tasks have their own, simple scheduling class:
  4310. */
  4311. idle->sched_class = &idle_sched_class;
  4312. }
  4313. /*
  4314. * In a system that switches off the HZ timer nohz_cpu_mask
  4315. * indicates which cpus entered this state. This is used
  4316. * in the rcu update to wait only for active cpus. For system
  4317. * which do not switch off the HZ timer nohz_cpu_mask should
  4318. * always be CPU_MASK_NONE.
  4319. */
  4320. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4321. /*
  4322. * Increase the granularity value when there are more CPUs,
  4323. * because with more CPUs the 'effective latency' as visible
  4324. * to users decreases. But the relationship is not linear,
  4325. * so pick a second-best guess by going with the log2 of the
  4326. * number of CPUs.
  4327. *
  4328. * This idea comes from the SD scheduler of Con Kolivas:
  4329. */
  4330. static inline void sched_init_granularity(void)
  4331. {
  4332. unsigned int factor = 1 + ilog2(num_online_cpus());
  4333. const unsigned long limit = 200000000;
  4334. sysctl_sched_min_granularity *= factor;
  4335. if (sysctl_sched_min_granularity > limit)
  4336. sysctl_sched_min_granularity = limit;
  4337. sysctl_sched_latency *= factor;
  4338. if (sysctl_sched_latency > limit)
  4339. sysctl_sched_latency = limit;
  4340. sysctl_sched_wakeup_granularity *= factor;
  4341. sysctl_sched_batch_wakeup_granularity *= factor;
  4342. }
  4343. #ifdef CONFIG_SMP
  4344. /*
  4345. * This is how migration works:
  4346. *
  4347. * 1) we queue a struct migration_req structure in the source CPU's
  4348. * runqueue and wake up that CPU's migration thread.
  4349. * 2) we down() the locked semaphore => thread blocks.
  4350. * 3) migration thread wakes up (implicitly it forces the migrated
  4351. * thread off the CPU)
  4352. * 4) it gets the migration request and checks whether the migrated
  4353. * task is still in the wrong runqueue.
  4354. * 5) if it's in the wrong runqueue then the migration thread removes
  4355. * it and puts it into the right queue.
  4356. * 6) migration thread up()s the semaphore.
  4357. * 7) we wake up and the migration is done.
  4358. */
  4359. /*
  4360. * Change a given task's CPU affinity. Migrate the thread to a
  4361. * proper CPU and schedule it away if the CPU it's executing on
  4362. * is removed from the allowed bitmask.
  4363. *
  4364. * NOTE: the caller must have a valid reference to the task, the
  4365. * task must not exit() & deallocate itself prematurely. The
  4366. * call is not atomic; no spinlocks may be held.
  4367. */
  4368. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4369. {
  4370. struct migration_req req;
  4371. unsigned long flags;
  4372. struct rq *rq;
  4373. int ret = 0;
  4374. rq = task_rq_lock(p, &flags);
  4375. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4376. ret = -EINVAL;
  4377. goto out;
  4378. }
  4379. p->cpus_allowed = new_mask;
  4380. /* Can the task run on the task's current CPU? If so, we're done */
  4381. if (cpu_isset(task_cpu(p), new_mask))
  4382. goto out;
  4383. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4384. /* Need help from migration thread: drop lock and wait. */
  4385. task_rq_unlock(rq, &flags);
  4386. wake_up_process(rq->migration_thread);
  4387. wait_for_completion(&req.done);
  4388. tlb_migrate_finish(p->mm);
  4389. return 0;
  4390. }
  4391. out:
  4392. task_rq_unlock(rq, &flags);
  4393. return ret;
  4394. }
  4395. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4396. /*
  4397. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4398. * this because either it can't run here any more (set_cpus_allowed()
  4399. * away from this CPU, or CPU going down), or because we're
  4400. * attempting to rebalance this task on exec (sched_exec).
  4401. *
  4402. * So we race with normal scheduler movements, but that's OK, as long
  4403. * as the task is no longer on this CPU.
  4404. *
  4405. * Returns non-zero if task was successfully migrated.
  4406. */
  4407. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4408. {
  4409. struct rq *rq_dest, *rq_src;
  4410. int ret = 0, on_rq;
  4411. if (unlikely(cpu_is_offline(dest_cpu)))
  4412. return ret;
  4413. rq_src = cpu_rq(src_cpu);
  4414. rq_dest = cpu_rq(dest_cpu);
  4415. double_rq_lock(rq_src, rq_dest);
  4416. /* Already moved. */
  4417. if (task_cpu(p) != src_cpu)
  4418. goto out;
  4419. /* Affinity changed (again). */
  4420. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4421. goto out;
  4422. on_rq = p->se.on_rq;
  4423. if (on_rq)
  4424. deactivate_task(rq_src, p, 0);
  4425. set_task_cpu(p, dest_cpu);
  4426. if (on_rq) {
  4427. activate_task(rq_dest, p, 0);
  4428. check_preempt_curr(rq_dest, p);
  4429. }
  4430. ret = 1;
  4431. out:
  4432. double_rq_unlock(rq_src, rq_dest);
  4433. return ret;
  4434. }
  4435. /*
  4436. * migration_thread - this is a highprio system thread that performs
  4437. * thread migration by bumping thread off CPU then 'pushing' onto
  4438. * another runqueue.
  4439. */
  4440. static int migration_thread(void *data)
  4441. {
  4442. int cpu = (long)data;
  4443. struct rq *rq;
  4444. rq = cpu_rq(cpu);
  4445. BUG_ON(rq->migration_thread != current);
  4446. set_current_state(TASK_INTERRUPTIBLE);
  4447. while (!kthread_should_stop()) {
  4448. struct migration_req *req;
  4449. struct list_head *head;
  4450. spin_lock_irq(&rq->lock);
  4451. if (cpu_is_offline(cpu)) {
  4452. spin_unlock_irq(&rq->lock);
  4453. goto wait_to_die;
  4454. }
  4455. if (rq->active_balance) {
  4456. active_load_balance(rq, cpu);
  4457. rq->active_balance = 0;
  4458. }
  4459. head = &rq->migration_queue;
  4460. if (list_empty(head)) {
  4461. spin_unlock_irq(&rq->lock);
  4462. schedule();
  4463. set_current_state(TASK_INTERRUPTIBLE);
  4464. continue;
  4465. }
  4466. req = list_entry(head->next, struct migration_req, list);
  4467. list_del_init(head->next);
  4468. spin_unlock(&rq->lock);
  4469. __migrate_task(req->task, cpu, req->dest_cpu);
  4470. local_irq_enable();
  4471. complete(&req->done);
  4472. }
  4473. __set_current_state(TASK_RUNNING);
  4474. return 0;
  4475. wait_to_die:
  4476. /* Wait for kthread_stop */
  4477. set_current_state(TASK_INTERRUPTIBLE);
  4478. while (!kthread_should_stop()) {
  4479. schedule();
  4480. set_current_state(TASK_INTERRUPTIBLE);
  4481. }
  4482. __set_current_state(TASK_RUNNING);
  4483. return 0;
  4484. }
  4485. #ifdef CONFIG_HOTPLUG_CPU
  4486. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4487. {
  4488. int ret;
  4489. local_irq_disable();
  4490. ret = __migrate_task(p, src_cpu, dest_cpu);
  4491. local_irq_enable();
  4492. return ret;
  4493. }
  4494. /*
  4495. * Figure out where task on dead CPU should go, use force if necessary.
  4496. * NOTE: interrupts should be disabled by the caller
  4497. */
  4498. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4499. {
  4500. unsigned long flags;
  4501. cpumask_t mask;
  4502. struct rq *rq;
  4503. int dest_cpu;
  4504. do {
  4505. /* On same node? */
  4506. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4507. cpus_and(mask, mask, p->cpus_allowed);
  4508. dest_cpu = any_online_cpu(mask);
  4509. /* On any allowed CPU? */
  4510. if (dest_cpu == NR_CPUS)
  4511. dest_cpu = any_online_cpu(p->cpus_allowed);
  4512. /* No more Mr. Nice Guy. */
  4513. if (dest_cpu == NR_CPUS) {
  4514. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4515. /*
  4516. * Try to stay on the same cpuset, where the
  4517. * current cpuset may be a subset of all cpus.
  4518. * The cpuset_cpus_allowed_locked() variant of
  4519. * cpuset_cpus_allowed() will not block. It must be
  4520. * called within calls to cpuset_lock/cpuset_unlock.
  4521. */
  4522. rq = task_rq_lock(p, &flags);
  4523. p->cpus_allowed = cpus_allowed;
  4524. dest_cpu = any_online_cpu(p->cpus_allowed);
  4525. task_rq_unlock(rq, &flags);
  4526. /*
  4527. * Don't tell them about moving exiting tasks or
  4528. * kernel threads (both mm NULL), since they never
  4529. * leave kernel.
  4530. */
  4531. if (p->mm && printk_ratelimit())
  4532. printk(KERN_INFO "process %d (%s) no "
  4533. "longer affine to cpu%d\n",
  4534. task_pid_nr(p), p->comm, dead_cpu);
  4535. }
  4536. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4537. }
  4538. /*
  4539. * While a dead CPU has no uninterruptible tasks queued at this point,
  4540. * it might still have a nonzero ->nr_uninterruptible counter, because
  4541. * for performance reasons the counter is not stricly tracking tasks to
  4542. * their home CPUs. So we just add the counter to another CPU's counter,
  4543. * to keep the global sum constant after CPU-down:
  4544. */
  4545. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4546. {
  4547. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4548. unsigned long flags;
  4549. local_irq_save(flags);
  4550. double_rq_lock(rq_src, rq_dest);
  4551. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4552. rq_src->nr_uninterruptible = 0;
  4553. double_rq_unlock(rq_src, rq_dest);
  4554. local_irq_restore(flags);
  4555. }
  4556. /* Run through task list and migrate tasks from the dead cpu. */
  4557. static void migrate_live_tasks(int src_cpu)
  4558. {
  4559. struct task_struct *p, *t;
  4560. read_lock(&tasklist_lock);
  4561. do_each_thread(t, p) {
  4562. if (p == current)
  4563. continue;
  4564. if (task_cpu(p) == src_cpu)
  4565. move_task_off_dead_cpu(src_cpu, p);
  4566. } while_each_thread(t, p);
  4567. read_unlock(&tasklist_lock);
  4568. }
  4569. /*
  4570. * activate_idle_task - move idle task to the _front_ of runqueue.
  4571. */
  4572. static void activate_idle_task(struct task_struct *p, struct rq *rq)
  4573. {
  4574. update_rq_clock(rq);
  4575. if (p->state == TASK_UNINTERRUPTIBLE)
  4576. rq->nr_uninterruptible--;
  4577. enqueue_task(rq, p, 0);
  4578. inc_nr_running(p, rq);
  4579. }
  4580. /*
  4581. * Schedules idle task to be the next runnable task on current CPU.
  4582. * It does so by boosting its priority to highest possible and adding it to
  4583. * the _front_ of the runqueue. Used by CPU offline code.
  4584. */
  4585. void sched_idle_next(void)
  4586. {
  4587. int this_cpu = smp_processor_id();
  4588. struct rq *rq = cpu_rq(this_cpu);
  4589. struct task_struct *p = rq->idle;
  4590. unsigned long flags;
  4591. /* cpu has to be offline */
  4592. BUG_ON(cpu_online(this_cpu));
  4593. /*
  4594. * Strictly not necessary since rest of the CPUs are stopped by now
  4595. * and interrupts disabled on the current cpu.
  4596. */
  4597. spin_lock_irqsave(&rq->lock, flags);
  4598. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4599. /* Add idle task to the _front_ of its priority queue: */
  4600. activate_idle_task(p, rq);
  4601. spin_unlock_irqrestore(&rq->lock, flags);
  4602. }
  4603. /*
  4604. * Ensures that the idle task is using init_mm right before its cpu goes
  4605. * offline.
  4606. */
  4607. void idle_task_exit(void)
  4608. {
  4609. struct mm_struct *mm = current->active_mm;
  4610. BUG_ON(cpu_online(smp_processor_id()));
  4611. if (mm != &init_mm)
  4612. switch_mm(mm, &init_mm, current);
  4613. mmdrop(mm);
  4614. }
  4615. /* called under rq->lock with disabled interrupts */
  4616. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4617. {
  4618. struct rq *rq = cpu_rq(dead_cpu);
  4619. /* Must be exiting, otherwise would be on tasklist. */
  4620. BUG_ON(!p->exit_state);
  4621. /* Cannot have done final schedule yet: would have vanished. */
  4622. BUG_ON(p->state == TASK_DEAD);
  4623. get_task_struct(p);
  4624. /*
  4625. * Drop lock around migration; if someone else moves it,
  4626. * that's OK. No task can be added to this CPU, so iteration is
  4627. * fine.
  4628. */
  4629. spin_unlock_irq(&rq->lock);
  4630. move_task_off_dead_cpu(dead_cpu, p);
  4631. spin_lock_irq(&rq->lock);
  4632. put_task_struct(p);
  4633. }
  4634. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4635. static void migrate_dead_tasks(unsigned int dead_cpu)
  4636. {
  4637. struct rq *rq = cpu_rq(dead_cpu);
  4638. struct task_struct *next;
  4639. for ( ; ; ) {
  4640. if (!rq->nr_running)
  4641. break;
  4642. update_rq_clock(rq);
  4643. next = pick_next_task(rq, rq->curr);
  4644. if (!next)
  4645. break;
  4646. migrate_dead(dead_cpu, next);
  4647. }
  4648. }
  4649. #endif /* CONFIG_HOTPLUG_CPU */
  4650. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4651. static struct ctl_table sd_ctl_dir[] = {
  4652. {
  4653. .procname = "sched_domain",
  4654. .mode = 0555,
  4655. },
  4656. {0, },
  4657. };
  4658. static struct ctl_table sd_ctl_root[] = {
  4659. {
  4660. .ctl_name = CTL_KERN,
  4661. .procname = "kernel",
  4662. .mode = 0555,
  4663. .child = sd_ctl_dir,
  4664. },
  4665. {0, },
  4666. };
  4667. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4668. {
  4669. struct ctl_table *entry =
  4670. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4671. return entry;
  4672. }
  4673. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4674. {
  4675. struct ctl_table *entry;
  4676. /*
  4677. * In the intermediate directories, both the child directory and
  4678. * procname are dynamically allocated and could fail but the mode
  4679. * will always be set. In the lowest directory the names are
  4680. * static strings and all have proc handlers.
  4681. */
  4682. for (entry = *tablep; entry->mode; entry++) {
  4683. if (entry->child)
  4684. sd_free_ctl_entry(&entry->child);
  4685. if (entry->proc_handler == NULL)
  4686. kfree(entry->procname);
  4687. }
  4688. kfree(*tablep);
  4689. *tablep = NULL;
  4690. }
  4691. static void
  4692. set_table_entry(struct ctl_table *entry,
  4693. const char *procname, void *data, int maxlen,
  4694. mode_t mode, proc_handler *proc_handler)
  4695. {
  4696. entry->procname = procname;
  4697. entry->data = data;
  4698. entry->maxlen = maxlen;
  4699. entry->mode = mode;
  4700. entry->proc_handler = proc_handler;
  4701. }
  4702. static struct ctl_table *
  4703. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4704. {
  4705. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4706. if (table == NULL)
  4707. return NULL;
  4708. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4709. sizeof(long), 0644, proc_doulongvec_minmax);
  4710. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4711. sizeof(long), 0644, proc_doulongvec_minmax);
  4712. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4713. sizeof(int), 0644, proc_dointvec_minmax);
  4714. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4715. sizeof(int), 0644, proc_dointvec_minmax);
  4716. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4717. sizeof(int), 0644, proc_dointvec_minmax);
  4718. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4719. sizeof(int), 0644, proc_dointvec_minmax);
  4720. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4725. sizeof(int), 0644, proc_dointvec_minmax);
  4726. set_table_entry(&table[9], "cache_nice_tries",
  4727. &sd->cache_nice_tries,
  4728. sizeof(int), 0644, proc_dointvec_minmax);
  4729. set_table_entry(&table[10], "flags", &sd->flags,
  4730. sizeof(int), 0644, proc_dointvec_minmax);
  4731. /* &table[11] is terminator */
  4732. return table;
  4733. }
  4734. static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
  4735. {
  4736. struct ctl_table *entry, *table;
  4737. struct sched_domain *sd;
  4738. int domain_num = 0, i;
  4739. char buf[32];
  4740. for_each_domain(cpu, sd)
  4741. domain_num++;
  4742. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4743. if (table == NULL)
  4744. return NULL;
  4745. i = 0;
  4746. for_each_domain(cpu, sd) {
  4747. snprintf(buf, 32, "domain%d", i);
  4748. entry->procname = kstrdup(buf, GFP_KERNEL);
  4749. entry->mode = 0555;
  4750. entry->child = sd_alloc_ctl_domain_table(sd);
  4751. entry++;
  4752. i++;
  4753. }
  4754. return table;
  4755. }
  4756. static struct ctl_table_header *sd_sysctl_header;
  4757. static void register_sched_domain_sysctl(void)
  4758. {
  4759. int i, cpu_num = num_online_cpus();
  4760. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4761. char buf[32];
  4762. WARN_ON(sd_ctl_dir[0].child);
  4763. sd_ctl_dir[0].child = entry;
  4764. if (entry == NULL)
  4765. return;
  4766. for_each_online_cpu(i) {
  4767. snprintf(buf, 32, "cpu%d", i);
  4768. entry->procname = kstrdup(buf, GFP_KERNEL);
  4769. entry->mode = 0555;
  4770. entry->child = sd_alloc_ctl_cpu_table(i);
  4771. entry++;
  4772. }
  4773. WARN_ON(sd_sysctl_header);
  4774. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4775. }
  4776. /* may be called multiple times per register */
  4777. static void unregister_sched_domain_sysctl(void)
  4778. {
  4779. if (sd_sysctl_header)
  4780. unregister_sysctl_table(sd_sysctl_header);
  4781. sd_sysctl_header = NULL;
  4782. if (sd_ctl_dir[0].child)
  4783. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4784. }
  4785. #else
  4786. static void register_sched_domain_sysctl(void)
  4787. {
  4788. }
  4789. static void unregister_sched_domain_sysctl(void)
  4790. {
  4791. }
  4792. #endif
  4793. /*
  4794. * migration_call - callback that gets triggered when a CPU is added.
  4795. * Here we can start up the necessary migration thread for the new CPU.
  4796. */
  4797. static int __cpuinit
  4798. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4799. {
  4800. struct task_struct *p;
  4801. int cpu = (long)hcpu;
  4802. unsigned long flags;
  4803. struct rq *rq;
  4804. switch (action) {
  4805. case CPU_LOCK_ACQUIRE:
  4806. mutex_lock(&sched_hotcpu_mutex);
  4807. break;
  4808. case CPU_UP_PREPARE:
  4809. case CPU_UP_PREPARE_FROZEN:
  4810. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4811. if (IS_ERR(p))
  4812. return NOTIFY_BAD;
  4813. kthread_bind(p, cpu);
  4814. /* Must be high prio: stop_machine expects to yield to it. */
  4815. rq = task_rq_lock(p, &flags);
  4816. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4817. task_rq_unlock(rq, &flags);
  4818. cpu_rq(cpu)->migration_thread = p;
  4819. break;
  4820. case CPU_ONLINE:
  4821. case CPU_ONLINE_FROZEN:
  4822. /* Strictly unnecessary, as first user will wake it. */
  4823. wake_up_process(cpu_rq(cpu)->migration_thread);
  4824. break;
  4825. #ifdef CONFIG_HOTPLUG_CPU
  4826. case CPU_UP_CANCELED:
  4827. case CPU_UP_CANCELED_FROZEN:
  4828. if (!cpu_rq(cpu)->migration_thread)
  4829. break;
  4830. /* Unbind it from offline cpu so it can run. Fall thru. */
  4831. kthread_bind(cpu_rq(cpu)->migration_thread,
  4832. any_online_cpu(cpu_online_map));
  4833. kthread_stop(cpu_rq(cpu)->migration_thread);
  4834. cpu_rq(cpu)->migration_thread = NULL;
  4835. break;
  4836. case CPU_DEAD:
  4837. case CPU_DEAD_FROZEN:
  4838. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4839. migrate_live_tasks(cpu);
  4840. rq = cpu_rq(cpu);
  4841. kthread_stop(rq->migration_thread);
  4842. rq->migration_thread = NULL;
  4843. /* Idle task back to normal (off runqueue, low prio) */
  4844. spin_lock_irq(&rq->lock);
  4845. update_rq_clock(rq);
  4846. deactivate_task(rq, rq->idle, 0);
  4847. rq->idle->static_prio = MAX_PRIO;
  4848. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4849. rq->idle->sched_class = &idle_sched_class;
  4850. migrate_dead_tasks(cpu);
  4851. spin_unlock_irq(&rq->lock);
  4852. cpuset_unlock();
  4853. migrate_nr_uninterruptible(rq);
  4854. BUG_ON(rq->nr_running != 0);
  4855. /* No need to migrate the tasks: it was best-effort if
  4856. * they didn't take sched_hotcpu_mutex. Just wake up
  4857. * the requestors. */
  4858. spin_lock_irq(&rq->lock);
  4859. while (!list_empty(&rq->migration_queue)) {
  4860. struct migration_req *req;
  4861. req = list_entry(rq->migration_queue.next,
  4862. struct migration_req, list);
  4863. list_del_init(&req->list);
  4864. complete(&req->done);
  4865. }
  4866. spin_unlock_irq(&rq->lock);
  4867. break;
  4868. #endif
  4869. case CPU_LOCK_RELEASE:
  4870. mutex_unlock(&sched_hotcpu_mutex);
  4871. break;
  4872. }
  4873. return NOTIFY_OK;
  4874. }
  4875. /* Register at highest priority so that task migration (migrate_all_tasks)
  4876. * happens before everything else.
  4877. */
  4878. static struct notifier_block __cpuinitdata migration_notifier = {
  4879. .notifier_call = migration_call,
  4880. .priority = 10
  4881. };
  4882. void __init migration_init(void)
  4883. {
  4884. void *cpu = (void *)(long)smp_processor_id();
  4885. int err;
  4886. /* Start one for the boot CPU: */
  4887. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4888. BUG_ON(err == NOTIFY_BAD);
  4889. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4890. register_cpu_notifier(&migration_notifier);
  4891. }
  4892. #endif
  4893. #ifdef CONFIG_SMP
  4894. /* Number of possible processor ids */
  4895. int nr_cpu_ids __read_mostly = NR_CPUS;
  4896. EXPORT_SYMBOL(nr_cpu_ids);
  4897. #ifdef CONFIG_SCHED_DEBUG
  4898. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4899. {
  4900. struct sched_group *group = sd->groups;
  4901. cpumask_t groupmask;
  4902. char str[NR_CPUS];
  4903. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4904. cpus_clear(groupmask);
  4905. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4906. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4907. printk("does not load-balance\n");
  4908. if (sd->parent)
  4909. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4910. " has parent");
  4911. return -1;
  4912. }
  4913. printk(KERN_CONT "span %s\n", str);
  4914. if (!cpu_isset(cpu, sd->span)) {
  4915. printk(KERN_ERR "ERROR: domain->span does not contain "
  4916. "CPU%d\n", cpu);
  4917. }
  4918. if (!cpu_isset(cpu, group->cpumask)) {
  4919. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4920. " CPU%d\n", cpu);
  4921. }
  4922. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4923. do {
  4924. if (!group) {
  4925. printk("\n");
  4926. printk(KERN_ERR "ERROR: group is NULL\n");
  4927. break;
  4928. }
  4929. if (!group->__cpu_power) {
  4930. printk(KERN_CONT "\n");
  4931. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4932. "set\n");
  4933. break;
  4934. }
  4935. if (!cpus_weight(group->cpumask)) {
  4936. printk(KERN_CONT "\n");
  4937. printk(KERN_ERR "ERROR: empty group\n");
  4938. break;
  4939. }
  4940. if (cpus_intersects(groupmask, group->cpumask)) {
  4941. printk(KERN_CONT "\n");
  4942. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4943. break;
  4944. }
  4945. cpus_or(groupmask, groupmask, group->cpumask);
  4946. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4947. printk(KERN_CONT " %s", str);
  4948. group = group->next;
  4949. } while (group != sd->groups);
  4950. printk(KERN_CONT "\n");
  4951. if (!cpus_equal(sd->span, groupmask))
  4952. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4953. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4954. printk(KERN_ERR "ERROR: parent span is not a superset "
  4955. "of domain->span\n");
  4956. return 0;
  4957. }
  4958. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4959. {
  4960. int level = 0;
  4961. if (!sd) {
  4962. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4963. return;
  4964. }
  4965. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4966. for (;;) {
  4967. if (sched_domain_debug_one(sd, cpu, level))
  4968. break;
  4969. level++;
  4970. sd = sd->parent;
  4971. if (!sd)
  4972. break;
  4973. }
  4974. }
  4975. #else
  4976. # define sched_domain_debug(sd, cpu) do { } while (0)
  4977. #endif
  4978. static int sd_degenerate(struct sched_domain *sd)
  4979. {
  4980. if (cpus_weight(sd->span) == 1)
  4981. return 1;
  4982. /* Following flags need at least 2 groups */
  4983. if (sd->flags & (SD_LOAD_BALANCE |
  4984. SD_BALANCE_NEWIDLE |
  4985. SD_BALANCE_FORK |
  4986. SD_BALANCE_EXEC |
  4987. SD_SHARE_CPUPOWER |
  4988. SD_SHARE_PKG_RESOURCES)) {
  4989. if (sd->groups != sd->groups->next)
  4990. return 0;
  4991. }
  4992. /* Following flags don't use groups */
  4993. if (sd->flags & (SD_WAKE_IDLE |
  4994. SD_WAKE_AFFINE |
  4995. SD_WAKE_BALANCE))
  4996. return 0;
  4997. return 1;
  4998. }
  4999. static int
  5000. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5001. {
  5002. unsigned long cflags = sd->flags, pflags = parent->flags;
  5003. if (sd_degenerate(parent))
  5004. return 1;
  5005. if (!cpus_equal(sd->span, parent->span))
  5006. return 0;
  5007. /* Does parent contain flags not in child? */
  5008. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5009. if (cflags & SD_WAKE_AFFINE)
  5010. pflags &= ~SD_WAKE_BALANCE;
  5011. /* Flags needing groups don't count if only 1 group in parent */
  5012. if (parent->groups == parent->groups->next) {
  5013. pflags &= ~(SD_LOAD_BALANCE |
  5014. SD_BALANCE_NEWIDLE |
  5015. SD_BALANCE_FORK |
  5016. SD_BALANCE_EXEC |
  5017. SD_SHARE_CPUPOWER |
  5018. SD_SHARE_PKG_RESOURCES);
  5019. }
  5020. if (~cflags & pflags)
  5021. return 0;
  5022. return 1;
  5023. }
  5024. /*
  5025. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5026. * hold the hotplug lock.
  5027. */
  5028. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  5029. {
  5030. struct rq *rq = cpu_rq(cpu);
  5031. struct sched_domain *tmp;
  5032. /* Remove the sched domains which do not contribute to scheduling. */
  5033. for (tmp = sd; tmp; tmp = tmp->parent) {
  5034. struct sched_domain *parent = tmp->parent;
  5035. if (!parent)
  5036. break;
  5037. if (sd_parent_degenerate(tmp, parent)) {
  5038. tmp->parent = parent->parent;
  5039. if (parent->parent)
  5040. parent->parent->child = tmp;
  5041. }
  5042. }
  5043. if (sd && sd_degenerate(sd)) {
  5044. sd = sd->parent;
  5045. if (sd)
  5046. sd->child = NULL;
  5047. }
  5048. sched_domain_debug(sd, cpu);
  5049. rcu_assign_pointer(rq->sd, sd);
  5050. }
  5051. /* cpus with isolated domains */
  5052. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5053. /* Setup the mask of cpus configured for isolated domains */
  5054. static int __init isolated_cpu_setup(char *str)
  5055. {
  5056. int ints[NR_CPUS], i;
  5057. str = get_options(str, ARRAY_SIZE(ints), ints);
  5058. cpus_clear(cpu_isolated_map);
  5059. for (i = 1; i <= ints[0]; i++)
  5060. if (ints[i] < NR_CPUS)
  5061. cpu_set(ints[i], cpu_isolated_map);
  5062. return 1;
  5063. }
  5064. __setup("isolcpus=", isolated_cpu_setup);
  5065. /*
  5066. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5067. * to a function which identifies what group(along with sched group) a CPU
  5068. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5069. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5070. *
  5071. * init_sched_build_groups will build a circular linked list of the groups
  5072. * covered by the given span, and will set each group's ->cpumask correctly,
  5073. * and ->cpu_power to 0.
  5074. */
  5075. static void
  5076. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5077. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5078. struct sched_group **sg))
  5079. {
  5080. struct sched_group *first = NULL, *last = NULL;
  5081. cpumask_t covered = CPU_MASK_NONE;
  5082. int i;
  5083. for_each_cpu_mask(i, span) {
  5084. struct sched_group *sg;
  5085. int group = group_fn(i, cpu_map, &sg);
  5086. int j;
  5087. if (cpu_isset(i, covered))
  5088. continue;
  5089. sg->cpumask = CPU_MASK_NONE;
  5090. sg->__cpu_power = 0;
  5091. for_each_cpu_mask(j, span) {
  5092. if (group_fn(j, cpu_map, NULL) != group)
  5093. continue;
  5094. cpu_set(j, covered);
  5095. cpu_set(j, sg->cpumask);
  5096. }
  5097. if (!first)
  5098. first = sg;
  5099. if (last)
  5100. last->next = sg;
  5101. last = sg;
  5102. }
  5103. last->next = first;
  5104. }
  5105. #define SD_NODES_PER_DOMAIN 16
  5106. #ifdef CONFIG_NUMA
  5107. /**
  5108. * find_next_best_node - find the next node to include in a sched_domain
  5109. * @node: node whose sched_domain we're building
  5110. * @used_nodes: nodes already in the sched_domain
  5111. *
  5112. * Find the next node to include in a given scheduling domain. Simply
  5113. * finds the closest node not already in the @used_nodes map.
  5114. *
  5115. * Should use nodemask_t.
  5116. */
  5117. static int find_next_best_node(int node, unsigned long *used_nodes)
  5118. {
  5119. int i, n, val, min_val, best_node = 0;
  5120. min_val = INT_MAX;
  5121. for (i = 0; i < MAX_NUMNODES; i++) {
  5122. /* Start at @node */
  5123. n = (node + i) % MAX_NUMNODES;
  5124. if (!nr_cpus_node(n))
  5125. continue;
  5126. /* Skip already used nodes */
  5127. if (test_bit(n, used_nodes))
  5128. continue;
  5129. /* Simple min distance search */
  5130. val = node_distance(node, n);
  5131. if (val < min_val) {
  5132. min_val = val;
  5133. best_node = n;
  5134. }
  5135. }
  5136. set_bit(best_node, used_nodes);
  5137. return best_node;
  5138. }
  5139. /**
  5140. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5141. * @node: node whose cpumask we're constructing
  5142. * @size: number of nodes to include in this span
  5143. *
  5144. * Given a node, construct a good cpumask for its sched_domain to span. It
  5145. * should be one that prevents unnecessary balancing, but also spreads tasks
  5146. * out optimally.
  5147. */
  5148. static cpumask_t sched_domain_node_span(int node)
  5149. {
  5150. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5151. cpumask_t span, nodemask;
  5152. int i;
  5153. cpus_clear(span);
  5154. bitmap_zero(used_nodes, MAX_NUMNODES);
  5155. nodemask = node_to_cpumask(node);
  5156. cpus_or(span, span, nodemask);
  5157. set_bit(node, used_nodes);
  5158. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5159. int next_node = find_next_best_node(node, used_nodes);
  5160. nodemask = node_to_cpumask(next_node);
  5161. cpus_or(span, span, nodemask);
  5162. }
  5163. return span;
  5164. }
  5165. #endif
  5166. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5167. /*
  5168. * SMT sched-domains:
  5169. */
  5170. #ifdef CONFIG_SCHED_SMT
  5171. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5172. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5173. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  5174. struct sched_group **sg)
  5175. {
  5176. if (sg)
  5177. *sg = &per_cpu(sched_group_cpus, cpu);
  5178. return cpu;
  5179. }
  5180. #endif
  5181. /*
  5182. * multi-core sched-domains:
  5183. */
  5184. #ifdef CONFIG_SCHED_MC
  5185. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5186. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5187. #endif
  5188. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5189. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5190. struct sched_group **sg)
  5191. {
  5192. int group;
  5193. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5194. cpus_and(mask, mask, *cpu_map);
  5195. group = first_cpu(mask);
  5196. if (sg)
  5197. *sg = &per_cpu(sched_group_core, group);
  5198. return group;
  5199. }
  5200. #elif defined(CONFIG_SCHED_MC)
  5201. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  5202. struct sched_group **sg)
  5203. {
  5204. if (sg)
  5205. *sg = &per_cpu(sched_group_core, cpu);
  5206. return cpu;
  5207. }
  5208. #endif
  5209. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5210. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5211. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  5212. struct sched_group **sg)
  5213. {
  5214. int group;
  5215. #ifdef CONFIG_SCHED_MC
  5216. cpumask_t mask = cpu_coregroup_map(cpu);
  5217. cpus_and(mask, mask, *cpu_map);
  5218. group = first_cpu(mask);
  5219. #elif defined(CONFIG_SCHED_SMT)
  5220. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5221. cpus_and(mask, mask, *cpu_map);
  5222. group = first_cpu(mask);
  5223. #else
  5224. group = cpu;
  5225. #endif
  5226. if (sg)
  5227. *sg = &per_cpu(sched_group_phys, group);
  5228. return group;
  5229. }
  5230. #ifdef CONFIG_NUMA
  5231. /*
  5232. * The init_sched_build_groups can't handle what we want to do with node
  5233. * groups, so roll our own. Now each node has its own list of groups which
  5234. * gets dynamically allocated.
  5235. */
  5236. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5237. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5238. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5239. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5240. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5241. struct sched_group **sg)
  5242. {
  5243. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5244. int group;
  5245. cpus_and(nodemask, nodemask, *cpu_map);
  5246. group = first_cpu(nodemask);
  5247. if (sg)
  5248. *sg = &per_cpu(sched_group_allnodes, group);
  5249. return group;
  5250. }
  5251. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5252. {
  5253. struct sched_group *sg = group_head;
  5254. int j;
  5255. if (!sg)
  5256. return;
  5257. do {
  5258. for_each_cpu_mask(j, sg->cpumask) {
  5259. struct sched_domain *sd;
  5260. sd = &per_cpu(phys_domains, j);
  5261. if (j != first_cpu(sd->groups->cpumask)) {
  5262. /*
  5263. * Only add "power" once for each
  5264. * physical package.
  5265. */
  5266. continue;
  5267. }
  5268. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5269. }
  5270. sg = sg->next;
  5271. } while (sg != group_head);
  5272. }
  5273. #endif
  5274. #ifdef CONFIG_NUMA
  5275. /* Free memory allocated for various sched_group structures */
  5276. static void free_sched_groups(const cpumask_t *cpu_map)
  5277. {
  5278. int cpu, i;
  5279. for_each_cpu_mask(cpu, *cpu_map) {
  5280. struct sched_group **sched_group_nodes
  5281. = sched_group_nodes_bycpu[cpu];
  5282. if (!sched_group_nodes)
  5283. continue;
  5284. for (i = 0; i < MAX_NUMNODES; i++) {
  5285. cpumask_t nodemask = node_to_cpumask(i);
  5286. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5287. cpus_and(nodemask, nodemask, *cpu_map);
  5288. if (cpus_empty(nodemask))
  5289. continue;
  5290. if (sg == NULL)
  5291. continue;
  5292. sg = sg->next;
  5293. next_sg:
  5294. oldsg = sg;
  5295. sg = sg->next;
  5296. kfree(oldsg);
  5297. if (oldsg != sched_group_nodes[i])
  5298. goto next_sg;
  5299. }
  5300. kfree(sched_group_nodes);
  5301. sched_group_nodes_bycpu[cpu] = NULL;
  5302. }
  5303. }
  5304. #else
  5305. static void free_sched_groups(const cpumask_t *cpu_map)
  5306. {
  5307. }
  5308. #endif
  5309. /*
  5310. * Initialize sched groups cpu_power.
  5311. *
  5312. * cpu_power indicates the capacity of sched group, which is used while
  5313. * distributing the load between different sched groups in a sched domain.
  5314. * Typically cpu_power for all the groups in a sched domain will be same unless
  5315. * there are asymmetries in the topology. If there are asymmetries, group
  5316. * having more cpu_power will pickup more load compared to the group having
  5317. * less cpu_power.
  5318. *
  5319. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5320. * the maximum number of tasks a group can handle in the presence of other idle
  5321. * or lightly loaded groups in the same sched domain.
  5322. */
  5323. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5324. {
  5325. struct sched_domain *child;
  5326. struct sched_group *group;
  5327. WARN_ON(!sd || !sd->groups);
  5328. if (cpu != first_cpu(sd->groups->cpumask))
  5329. return;
  5330. child = sd->child;
  5331. sd->groups->__cpu_power = 0;
  5332. /*
  5333. * For perf policy, if the groups in child domain share resources
  5334. * (for example cores sharing some portions of the cache hierarchy
  5335. * or SMT), then set this domain groups cpu_power such that each group
  5336. * can handle only one task, when there are other idle groups in the
  5337. * same sched domain.
  5338. */
  5339. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5340. (child->flags &
  5341. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5342. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5343. return;
  5344. }
  5345. /*
  5346. * add cpu_power of each child group to this groups cpu_power
  5347. */
  5348. group = child->groups;
  5349. do {
  5350. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5351. group = group->next;
  5352. } while (group != child->groups);
  5353. }
  5354. /*
  5355. * Build sched domains for a given set of cpus and attach the sched domains
  5356. * to the individual cpus
  5357. */
  5358. static int build_sched_domains(const cpumask_t *cpu_map)
  5359. {
  5360. int i;
  5361. #ifdef CONFIG_NUMA
  5362. struct sched_group **sched_group_nodes = NULL;
  5363. int sd_allnodes = 0;
  5364. /*
  5365. * Allocate the per-node list of sched groups
  5366. */
  5367. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5368. GFP_KERNEL);
  5369. if (!sched_group_nodes) {
  5370. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5371. return -ENOMEM;
  5372. }
  5373. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5374. #endif
  5375. /*
  5376. * Set up domains for cpus specified by the cpu_map.
  5377. */
  5378. for_each_cpu_mask(i, *cpu_map) {
  5379. struct sched_domain *sd = NULL, *p;
  5380. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5381. cpus_and(nodemask, nodemask, *cpu_map);
  5382. #ifdef CONFIG_NUMA
  5383. if (cpus_weight(*cpu_map) >
  5384. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5385. sd = &per_cpu(allnodes_domains, i);
  5386. *sd = SD_ALLNODES_INIT;
  5387. sd->span = *cpu_map;
  5388. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5389. p = sd;
  5390. sd_allnodes = 1;
  5391. } else
  5392. p = NULL;
  5393. sd = &per_cpu(node_domains, i);
  5394. *sd = SD_NODE_INIT;
  5395. sd->span = sched_domain_node_span(cpu_to_node(i));
  5396. sd->parent = p;
  5397. if (p)
  5398. p->child = sd;
  5399. cpus_and(sd->span, sd->span, *cpu_map);
  5400. #endif
  5401. p = sd;
  5402. sd = &per_cpu(phys_domains, i);
  5403. *sd = SD_CPU_INIT;
  5404. sd->span = nodemask;
  5405. sd->parent = p;
  5406. if (p)
  5407. p->child = sd;
  5408. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5409. #ifdef CONFIG_SCHED_MC
  5410. p = sd;
  5411. sd = &per_cpu(core_domains, i);
  5412. *sd = SD_MC_INIT;
  5413. sd->span = cpu_coregroup_map(i);
  5414. cpus_and(sd->span, sd->span, *cpu_map);
  5415. sd->parent = p;
  5416. p->child = sd;
  5417. cpu_to_core_group(i, cpu_map, &sd->groups);
  5418. #endif
  5419. #ifdef CONFIG_SCHED_SMT
  5420. p = sd;
  5421. sd = &per_cpu(cpu_domains, i);
  5422. *sd = SD_SIBLING_INIT;
  5423. sd->span = per_cpu(cpu_sibling_map, i);
  5424. cpus_and(sd->span, sd->span, *cpu_map);
  5425. sd->parent = p;
  5426. p->child = sd;
  5427. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5428. #endif
  5429. }
  5430. #ifdef CONFIG_SCHED_SMT
  5431. /* Set up CPU (sibling) groups */
  5432. for_each_cpu_mask(i, *cpu_map) {
  5433. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5434. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5435. if (i != first_cpu(this_sibling_map))
  5436. continue;
  5437. init_sched_build_groups(this_sibling_map, cpu_map,
  5438. &cpu_to_cpu_group);
  5439. }
  5440. #endif
  5441. #ifdef CONFIG_SCHED_MC
  5442. /* Set up multi-core groups */
  5443. for_each_cpu_mask(i, *cpu_map) {
  5444. cpumask_t this_core_map = cpu_coregroup_map(i);
  5445. cpus_and(this_core_map, this_core_map, *cpu_map);
  5446. if (i != first_cpu(this_core_map))
  5447. continue;
  5448. init_sched_build_groups(this_core_map, cpu_map,
  5449. &cpu_to_core_group);
  5450. }
  5451. #endif
  5452. /* Set up physical groups */
  5453. for (i = 0; i < MAX_NUMNODES; i++) {
  5454. cpumask_t nodemask = node_to_cpumask(i);
  5455. cpus_and(nodemask, nodemask, *cpu_map);
  5456. if (cpus_empty(nodemask))
  5457. continue;
  5458. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5459. }
  5460. #ifdef CONFIG_NUMA
  5461. /* Set up node groups */
  5462. if (sd_allnodes)
  5463. init_sched_build_groups(*cpu_map, cpu_map,
  5464. &cpu_to_allnodes_group);
  5465. for (i = 0; i < MAX_NUMNODES; i++) {
  5466. /* Set up node groups */
  5467. struct sched_group *sg, *prev;
  5468. cpumask_t nodemask = node_to_cpumask(i);
  5469. cpumask_t domainspan;
  5470. cpumask_t covered = CPU_MASK_NONE;
  5471. int j;
  5472. cpus_and(nodemask, nodemask, *cpu_map);
  5473. if (cpus_empty(nodemask)) {
  5474. sched_group_nodes[i] = NULL;
  5475. continue;
  5476. }
  5477. domainspan = sched_domain_node_span(i);
  5478. cpus_and(domainspan, domainspan, *cpu_map);
  5479. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5480. if (!sg) {
  5481. printk(KERN_WARNING "Can not alloc domain group for "
  5482. "node %d\n", i);
  5483. goto error;
  5484. }
  5485. sched_group_nodes[i] = sg;
  5486. for_each_cpu_mask(j, nodemask) {
  5487. struct sched_domain *sd;
  5488. sd = &per_cpu(node_domains, j);
  5489. sd->groups = sg;
  5490. }
  5491. sg->__cpu_power = 0;
  5492. sg->cpumask = nodemask;
  5493. sg->next = sg;
  5494. cpus_or(covered, covered, nodemask);
  5495. prev = sg;
  5496. for (j = 0; j < MAX_NUMNODES; j++) {
  5497. cpumask_t tmp, notcovered;
  5498. int n = (i + j) % MAX_NUMNODES;
  5499. cpus_complement(notcovered, covered);
  5500. cpus_and(tmp, notcovered, *cpu_map);
  5501. cpus_and(tmp, tmp, domainspan);
  5502. if (cpus_empty(tmp))
  5503. break;
  5504. nodemask = node_to_cpumask(n);
  5505. cpus_and(tmp, tmp, nodemask);
  5506. if (cpus_empty(tmp))
  5507. continue;
  5508. sg = kmalloc_node(sizeof(struct sched_group),
  5509. GFP_KERNEL, i);
  5510. if (!sg) {
  5511. printk(KERN_WARNING
  5512. "Can not alloc domain group for node %d\n", j);
  5513. goto error;
  5514. }
  5515. sg->__cpu_power = 0;
  5516. sg->cpumask = tmp;
  5517. sg->next = prev->next;
  5518. cpus_or(covered, covered, tmp);
  5519. prev->next = sg;
  5520. prev = sg;
  5521. }
  5522. }
  5523. #endif
  5524. /* Calculate CPU power for physical packages and nodes */
  5525. #ifdef CONFIG_SCHED_SMT
  5526. for_each_cpu_mask(i, *cpu_map) {
  5527. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5528. init_sched_groups_power(i, sd);
  5529. }
  5530. #endif
  5531. #ifdef CONFIG_SCHED_MC
  5532. for_each_cpu_mask(i, *cpu_map) {
  5533. struct sched_domain *sd = &per_cpu(core_domains, i);
  5534. init_sched_groups_power(i, sd);
  5535. }
  5536. #endif
  5537. for_each_cpu_mask(i, *cpu_map) {
  5538. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5539. init_sched_groups_power(i, sd);
  5540. }
  5541. #ifdef CONFIG_NUMA
  5542. for (i = 0; i < MAX_NUMNODES; i++)
  5543. init_numa_sched_groups_power(sched_group_nodes[i]);
  5544. if (sd_allnodes) {
  5545. struct sched_group *sg;
  5546. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5547. init_numa_sched_groups_power(sg);
  5548. }
  5549. #endif
  5550. /* Attach the domains */
  5551. for_each_cpu_mask(i, *cpu_map) {
  5552. struct sched_domain *sd;
  5553. #ifdef CONFIG_SCHED_SMT
  5554. sd = &per_cpu(cpu_domains, i);
  5555. #elif defined(CONFIG_SCHED_MC)
  5556. sd = &per_cpu(core_domains, i);
  5557. #else
  5558. sd = &per_cpu(phys_domains, i);
  5559. #endif
  5560. cpu_attach_domain(sd, i);
  5561. }
  5562. return 0;
  5563. #ifdef CONFIG_NUMA
  5564. error:
  5565. free_sched_groups(cpu_map);
  5566. return -ENOMEM;
  5567. #endif
  5568. }
  5569. static cpumask_t *doms_cur; /* current sched domains */
  5570. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5571. /*
  5572. * Special case: If a kmalloc of a doms_cur partition (array of
  5573. * cpumask_t) fails, then fallback to a single sched domain,
  5574. * as determined by the single cpumask_t fallback_doms.
  5575. */
  5576. static cpumask_t fallback_doms;
  5577. /*
  5578. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5579. * For now this just excludes isolated cpus, but could be used to
  5580. * exclude other special cases in the future.
  5581. */
  5582. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5583. {
  5584. int err;
  5585. ndoms_cur = 1;
  5586. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5587. if (!doms_cur)
  5588. doms_cur = &fallback_doms;
  5589. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5590. err = build_sched_domains(doms_cur);
  5591. register_sched_domain_sysctl();
  5592. return err;
  5593. }
  5594. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5595. {
  5596. free_sched_groups(cpu_map);
  5597. }
  5598. /*
  5599. * Detach sched domains from a group of cpus specified in cpu_map
  5600. * These cpus will now be attached to the NULL domain
  5601. */
  5602. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5603. {
  5604. int i;
  5605. unregister_sched_domain_sysctl();
  5606. for_each_cpu_mask(i, *cpu_map)
  5607. cpu_attach_domain(NULL, i);
  5608. synchronize_sched();
  5609. arch_destroy_sched_domains(cpu_map);
  5610. }
  5611. /*
  5612. * Partition sched domains as specified by the 'ndoms_new'
  5613. * cpumasks in the array doms_new[] of cpumasks. This compares
  5614. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5615. * It destroys each deleted domain and builds each new domain.
  5616. *
  5617. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5618. * The masks don't intersect (don't overlap.) We should setup one
  5619. * sched domain for each mask. CPUs not in any of the cpumasks will
  5620. * not be load balanced. If the same cpumask appears both in the
  5621. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5622. * it as it is.
  5623. *
  5624. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5625. * ownership of it and will kfree it when done with it. If the caller
  5626. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5627. * and partition_sched_domains() will fallback to the single partition
  5628. * 'fallback_doms'.
  5629. *
  5630. * Call with hotplug lock held
  5631. */
  5632. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5633. {
  5634. int i, j;
  5635. /* always unregister in case we don't destroy any domains */
  5636. unregister_sched_domain_sysctl();
  5637. if (doms_new == NULL) {
  5638. ndoms_new = 1;
  5639. doms_new = &fallback_doms;
  5640. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5641. }
  5642. /* Destroy deleted domains */
  5643. for (i = 0; i < ndoms_cur; i++) {
  5644. for (j = 0; j < ndoms_new; j++) {
  5645. if (cpus_equal(doms_cur[i], doms_new[j]))
  5646. goto match1;
  5647. }
  5648. /* no match - a current sched domain not in new doms_new[] */
  5649. detach_destroy_domains(doms_cur + i);
  5650. match1:
  5651. ;
  5652. }
  5653. /* Build new domains */
  5654. for (i = 0; i < ndoms_new; i++) {
  5655. for (j = 0; j < ndoms_cur; j++) {
  5656. if (cpus_equal(doms_new[i], doms_cur[j]))
  5657. goto match2;
  5658. }
  5659. /* no match - add a new doms_new */
  5660. build_sched_domains(doms_new + i);
  5661. match2:
  5662. ;
  5663. }
  5664. /* Remember the new sched domains */
  5665. if (doms_cur != &fallback_doms)
  5666. kfree(doms_cur);
  5667. doms_cur = doms_new;
  5668. ndoms_cur = ndoms_new;
  5669. register_sched_domain_sysctl();
  5670. }
  5671. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5672. static int arch_reinit_sched_domains(void)
  5673. {
  5674. int err;
  5675. mutex_lock(&sched_hotcpu_mutex);
  5676. detach_destroy_domains(&cpu_online_map);
  5677. err = arch_init_sched_domains(&cpu_online_map);
  5678. mutex_unlock(&sched_hotcpu_mutex);
  5679. return err;
  5680. }
  5681. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5682. {
  5683. int ret;
  5684. if (buf[0] != '0' && buf[0] != '1')
  5685. return -EINVAL;
  5686. if (smt)
  5687. sched_smt_power_savings = (buf[0] == '1');
  5688. else
  5689. sched_mc_power_savings = (buf[0] == '1');
  5690. ret = arch_reinit_sched_domains();
  5691. return ret ? ret : count;
  5692. }
  5693. #ifdef CONFIG_SCHED_MC
  5694. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5695. {
  5696. return sprintf(page, "%u\n", sched_mc_power_savings);
  5697. }
  5698. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5699. const char *buf, size_t count)
  5700. {
  5701. return sched_power_savings_store(buf, count, 0);
  5702. }
  5703. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5704. sched_mc_power_savings_store);
  5705. #endif
  5706. #ifdef CONFIG_SCHED_SMT
  5707. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5708. {
  5709. return sprintf(page, "%u\n", sched_smt_power_savings);
  5710. }
  5711. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5712. const char *buf, size_t count)
  5713. {
  5714. return sched_power_savings_store(buf, count, 1);
  5715. }
  5716. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5717. sched_smt_power_savings_store);
  5718. #endif
  5719. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5720. {
  5721. int err = 0;
  5722. #ifdef CONFIG_SCHED_SMT
  5723. if (smt_capable())
  5724. err = sysfs_create_file(&cls->kset.kobj,
  5725. &attr_sched_smt_power_savings.attr);
  5726. #endif
  5727. #ifdef CONFIG_SCHED_MC
  5728. if (!err && mc_capable())
  5729. err = sysfs_create_file(&cls->kset.kobj,
  5730. &attr_sched_mc_power_savings.attr);
  5731. #endif
  5732. return err;
  5733. }
  5734. #endif
  5735. /*
  5736. * Force a reinitialization of the sched domains hierarchy. The domains
  5737. * and groups cannot be updated in place without racing with the balancing
  5738. * code, so we temporarily attach all running cpus to the NULL domain
  5739. * which will prevent rebalancing while the sched domains are recalculated.
  5740. */
  5741. static int update_sched_domains(struct notifier_block *nfb,
  5742. unsigned long action, void *hcpu)
  5743. {
  5744. switch (action) {
  5745. case CPU_UP_PREPARE:
  5746. case CPU_UP_PREPARE_FROZEN:
  5747. case CPU_DOWN_PREPARE:
  5748. case CPU_DOWN_PREPARE_FROZEN:
  5749. detach_destroy_domains(&cpu_online_map);
  5750. return NOTIFY_OK;
  5751. case CPU_UP_CANCELED:
  5752. case CPU_UP_CANCELED_FROZEN:
  5753. case CPU_DOWN_FAILED:
  5754. case CPU_DOWN_FAILED_FROZEN:
  5755. case CPU_ONLINE:
  5756. case CPU_ONLINE_FROZEN:
  5757. case CPU_DEAD:
  5758. case CPU_DEAD_FROZEN:
  5759. /*
  5760. * Fall through and re-initialise the domains.
  5761. */
  5762. break;
  5763. default:
  5764. return NOTIFY_DONE;
  5765. }
  5766. /* The hotplug lock is already held by cpu_up/cpu_down */
  5767. arch_init_sched_domains(&cpu_online_map);
  5768. return NOTIFY_OK;
  5769. }
  5770. void __init sched_init_smp(void)
  5771. {
  5772. cpumask_t non_isolated_cpus;
  5773. mutex_lock(&sched_hotcpu_mutex);
  5774. arch_init_sched_domains(&cpu_online_map);
  5775. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5776. if (cpus_empty(non_isolated_cpus))
  5777. cpu_set(smp_processor_id(), non_isolated_cpus);
  5778. mutex_unlock(&sched_hotcpu_mutex);
  5779. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5780. hotcpu_notifier(update_sched_domains, 0);
  5781. /* Move init over to a non-isolated CPU */
  5782. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5783. BUG();
  5784. sched_init_granularity();
  5785. }
  5786. #else
  5787. void __init sched_init_smp(void)
  5788. {
  5789. sched_init_granularity();
  5790. }
  5791. #endif /* CONFIG_SMP */
  5792. int in_sched_functions(unsigned long addr)
  5793. {
  5794. /* Linker adds these: start and end of __sched functions */
  5795. extern char __sched_text_start[], __sched_text_end[];
  5796. return in_lock_functions(addr) ||
  5797. (addr >= (unsigned long)__sched_text_start
  5798. && addr < (unsigned long)__sched_text_end);
  5799. }
  5800. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5801. {
  5802. cfs_rq->tasks_timeline = RB_ROOT;
  5803. #ifdef CONFIG_FAIR_GROUP_SCHED
  5804. cfs_rq->rq = rq;
  5805. #endif
  5806. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5807. }
  5808. void __init sched_init(void)
  5809. {
  5810. int highest_cpu = 0;
  5811. int i, j;
  5812. for_each_possible_cpu(i) {
  5813. struct rt_prio_array *array;
  5814. struct rq *rq;
  5815. rq = cpu_rq(i);
  5816. spin_lock_init(&rq->lock);
  5817. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5818. rq->nr_running = 0;
  5819. rq->clock = 1;
  5820. init_cfs_rq(&rq->cfs, rq);
  5821. #ifdef CONFIG_FAIR_GROUP_SCHED
  5822. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5823. {
  5824. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5825. struct sched_entity *se =
  5826. &per_cpu(init_sched_entity, i);
  5827. init_cfs_rq_p[i] = cfs_rq;
  5828. init_cfs_rq(cfs_rq, rq);
  5829. cfs_rq->tg = &init_task_group;
  5830. list_add(&cfs_rq->leaf_cfs_rq_list,
  5831. &rq->leaf_cfs_rq_list);
  5832. init_sched_entity_p[i] = se;
  5833. se->cfs_rq = &rq->cfs;
  5834. se->my_q = cfs_rq;
  5835. se->load.weight = init_task_group_load;
  5836. se->load.inv_weight =
  5837. div64_64(1ULL<<32, init_task_group_load);
  5838. se->parent = NULL;
  5839. }
  5840. init_task_group.shares = init_task_group_load;
  5841. spin_lock_init(&init_task_group.lock);
  5842. #endif
  5843. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5844. rq->cpu_load[j] = 0;
  5845. #ifdef CONFIG_SMP
  5846. rq->sd = NULL;
  5847. rq->active_balance = 0;
  5848. rq->next_balance = jiffies;
  5849. rq->push_cpu = 0;
  5850. rq->cpu = i;
  5851. rq->migration_thread = NULL;
  5852. INIT_LIST_HEAD(&rq->migration_queue);
  5853. #endif
  5854. atomic_set(&rq->nr_iowait, 0);
  5855. array = &rq->rt.active;
  5856. for (j = 0; j < MAX_RT_PRIO; j++) {
  5857. INIT_LIST_HEAD(array->queue + j);
  5858. __clear_bit(j, array->bitmap);
  5859. }
  5860. highest_cpu = i;
  5861. /* delimiter for bitsearch: */
  5862. __set_bit(MAX_RT_PRIO, array->bitmap);
  5863. }
  5864. set_load_weight(&init_task);
  5865. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5866. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5867. #endif
  5868. #ifdef CONFIG_SMP
  5869. nr_cpu_ids = highest_cpu + 1;
  5870. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5871. #endif
  5872. #ifdef CONFIG_RT_MUTEXES
  5873. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5874. #endif
  5875. /*
  5876. * The boot idle thread does lazy MMU switching as well:
  5877. */
  5878. atomic_inc(&init_mm.mm_count);
  5879. enter_lazy_tlb(&init_mm, current);
  5880. /*
  5881. * Make us the idle thread. Technically, schedule() should not be
  5882. * called from this thread, however somewhere below it might be,
  5883. * but because we are the idle thread, we just pick up running again
  5884. * when this runqueue becomes "idle".
  5885. */
  5886. init_idle(current, smp_processor_id());
  5887. /*
  5888. * During early bootup we pretend to be a normal task:
  5889. */
  5890. current->sched_class = &fair_sched_class;
  5891. }
  5892. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5893. void __might_sleep(char *file, int line)
  5894. {
  5895. #ifdef in_atomic
  5896. static unsigned long prev_jiffy; /* ratelimiting */
  5897. if ((in_atomic() || irqs_disabled()) &&
  5898. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5899. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5900. return;
  5901. prev_jiffy = jiffies;
  5902. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5903. " context at %s:%d\n", file, line);
  5904. printk("in_atomic():%d, irqs_disabled():%d\n",
  5905. in_atomic(), irqs_disabled());
  5906. debug_show_held_locks(current);
  5907. if (irqs_disabled())
  5908. print_irqtrace_events(current);
  5909. dump_stack();
  5910. }
  5911. #endif
  5912. }
  5913. EXPORT_SYMBOL(__might_sleep);
  5914. #endif
  5915. #ifdef CONFIG_MAGIC_SYSRQ
  5916. static void normalize_task(struct rq *rq, struct task_struct *p)
  5917. {
  5918. int on_rq;
  5919. update_rq_clock(rq);
  5920. on_rq = p->se.on_rq;
  5921. if (on_rq)
  5922. deactivate_task(rq, p, 0);
  5923. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5924. if (on_rq) {
  5925. activate_task(rq, p, 0);
  5926. resched_task(rq->curr);
  5927. }
  5928. }
  5929. void normalize_rt_tasks(void)
  5930. {
  5931. struct task_struct *g, *p;
  5932. unsigned long flags;
  5933. struct rq *rq;
  5934. read_lock_irq(&tasklist_lock);
  5935. do_each_thread(g, p) {
  5936. /*
  5937. * Only normalize user tasks:
  5938. */
  5939. if (!p->mm)
  5940. continue;
  5941. p->se.exec_start = 0;
  5942. #ifdef CONFIG_SCHEDSTATS
  5943. p->se.wait_start = 0;
  5944. p->se.sleep_start = 0;
  5945. p->se.block_start = 0;
  5946. #endif
  5947. task_rq(p)->clock = 0;
  5948. if (!rt_task(p)) {
  5949. /*
  5950. * Renice negative nice level userspace
  5951. * tasks back to 0:
  5952. */
  5953. if (TASK_NICE(p) < 0 && p->mm)
  5954. set_user_nice(p, 0);
  5955. continue;
  5956. }
  5957. spin_lock_irqsave(&p->pi_lock, flags);
  5958. rq = __task_rq_lock(p);
  5959. normalize_task(rq, p);
  5960. __task_rq_unlock(rq);
  5961. spin_unlock_irqrestore(&p->pi_lock, flags);
  5962. } while_each_thread(g, p);
  5963. read_unlock_irq(&tasklist_lock);
  5964. }
  5965. #endif /* CONFIG_MAGIC_SYSRQ */
  5966. #ifdef CONFIG_IA64
  5967. /*
  5968. * These functions are only useful for the IA64 MCA handling.
  5969. *
  5970. * They can only be called when the whole system has been
  5971. * stopped - every CPU needs to be quiescent, and no scheduling
  5972. * activity can take place. Using them for anything else would
  5973. * be a serious bug, and as a result, they aren't even visible
  5974. * under any other configuration.
  5975. */
  5976. /**
  5977. * curr_task - return the current task for a given cpu.
  5978. * @cpu: the processor in question.
  5979. *
  5980. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5981. */
  5982. struct task_struct *curr_task(int cpu)
  5983. {
  5984. return cpu_curr(cpu);
  5985. }
  5986. /**
  5987. * set_curr_task - set the current task for a given cpu.
  5988. * @cpu: the processor in question.
  5989. * @p: the task pointer to set.
  5990. *
  5991. * Description: This function must only be used when non-maskable interrupts
  5992. * are serviced on a separate stack. It allows the architecture to switch the
  5993. * notion of the current task on a cpu in a non-blocking manner. This function
  5994. * must be called with all CPU's synchronized, and interrupts disabled, the
  5995. * and caller must save the original value of the current task (see
  5996. * curr_task() above) and restore that value before reenabling interrupts and
  5997. * re-starting the system.
  5998. *
  5999. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6000. */
  6001. void set_curr_task(int cpu, struct task_struct *p)
  6002. {
  6003. cpu_curr(cpu) = p;
  6004. }
  6005. #endif
  6006. #ifdef CONFIG_FAIR_GROUP_SCHED
  6007. /* allocate runqueue etc for a new task group */
  6008. struct task_group *sched_create_group(void)
  6009. {
  6010. struct task_group *tg;
  6011. struct cfs_rq *cfs_rq;
  6012. struct sched_entity *se;
  6013. struct rq *rq;
  6014. int i;
  6015. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6016. if (!tg)
  6017. return ERR_PTR(-ENOMEM);
  6018. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6019. if (!tg->cfs_rq)
  6020. goto err;
  6021. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6022. if (!tg->se)
  6023. goto err;
  6024. for_each_possible_cpu(i) {
  6025. rq = cpu_rq(i);
  6026. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6027. cpu_to_node(i));
  6028. if (!cfs_rq)
  6029. goto err;
  6030. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6031. cpu_to_node(i));
  6032. if (!se)
  6033. goto err;
  6034. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6035. memset(se, 0, sizeof(struct sched_entity));
  6036. tg->cfs_rq[i] = cfs_rq;
  6037. init_cfs_rq(cfs_rq, rq);
  6038. cfs_rq->tg = tg;
  6039. tg->se[i] = se;
  6040. se->cfs_rq = &rq->cfs;
  6041. se->my_q = cfs_rq;
  6042. se->load.weight = NICE_0_LOAD;
  6043. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6044. se->parent = NULL;
  6045. }
  6046. for_each_possible_cpu(i) {
  6047. rq = cpu_rq(i);
  6048. cfs_rq = tg->cfs_rq[i];
  6049. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6050. }
  6051. tg->shares = NICE_0_LOAD;
  6052. spin_lock_init(&tg->lock);
  6053. return tg;
  6054. err:
  6055. for_each_possible_cpu(i) {
  6056. if (tg->cfs_rq)
  6057. kfree(tg->cfs_rq[i]);
  6058. if (tg->se)
  6059. kfree(tg->se[i]);
  6060. }
  6061. kfree(tg->cfs_rq);
  6062. kfree(tg->se);
  6063. kfree(tg);
  6064. return ERR_PTR(-ENOMEM);
  6065. }
  6066. /* rcu callback to free various structures associated with a task group */
  6067. static void free_sched_group(struct rcu_head *rhp)
  6068. {
  6069. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6070. struct cfs_rq *cfs_rq;
  6071. struct sched_entity *se;
  6072. int i;
  6073. /* now it should be safe to free those cfs_rqs */
  6074. for_each_possible_cpu(i) {
  6075. cfs_rq = tg->cfs_rq[i];
  6076. kfree(cfs_rq);
  6077. se = tg->se[i];
  6078. kfree(se);
  6079. }
  6080. kfree(tg->cfs_rq);
  6081. kfree(tg->se);
  6082. kfree(tg);
  6083. }
  6084. /* Destroy runqueue etc associated with a task group */
  6085. void sched_destroy_group(struct task_group *tg)
  6086. {
  6087. struct cfs_rq *cfs_rq = NULL;
  6088. int i;
  6089. for_each_possible_cpu(i) {
  6090. cfs_rq = tg->cfs_rq[i];
  6091. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6092. }
  6093. BUG_ON(!cfs_rq);
  6094. /* wait for possible concurrent references to cfs_rqs complete */
  6095. call_rcu(&tg->rcu, free_sched_group);
  6096. }
  6097. /* change task's runqueue when it moves between groups.
  6098. * The caller of this function should have put the task in its new group
  6099. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6100. * reflect its new group.
  6101. */
  6102. void sched_move_task(struct task_struct *tsk)
  6103. {
  6104. int on_rq, running;
  6105. unsigned long flags;
  6106. struct rq *rq;
  6107. rq = task_rq_lock(tsk, &flags);
  6108. if (tsk->sched_class != &fair_sched_class)
  6109. goto done;
  6110. update_rq_clock(rq);
  6111. running = task_running(rq, tsk);
  6112. on_rq = tsk->se.on_rq;
  6113. if (on_rq) {
  6114. dequeue_task(rq, tsk, 0);
  6115. if (unlikely(running))
  6116. tsk->sched_class->put_prev_task(rq, tsk);
  6117. }
  6118. set_task_cfs_rq(tsk);
  6119. if (on_rq) {
  6120. if (unlikely(running))
  6121. tsk->sched_class->set_curr_task(rq);
  6122. enqueue_task(rq, tsk, 0);
  6123. }
  6124. done:
  6125. task_rq_unlock(rq, &flags);
  6126. }
  6127. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6128. {
  6129. struct cfs_rq *cfs_rq = se->cfs_rq;
  6130. struct rq *rq = cfs_rq->rq;
  6131. int on_rq;
  6132. spin_lock_irq(&rq->lock);
  6133. on_rq = se->on_rq;
  6134. if (on_rq)
  6135. dequeue_entity(cfs_rq, se, 0);
  6136. se->load.weight = shares;
  6137. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6138. if (on_rq)
  6139. enqueue_entity(cfs_rq, se, 0);
  6140. spin_unlock_irq(&rq->lock);
  6141. }
  6142. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6143. {
  6144. int i;
  6145. spin_lock(&tg->lock);
  6146. if (tg->shares == shares)
  6147. goto done;
  6148. tg->shares = shares;
  6149. for_each_possible_cpu(i)
  6150. set_se_shares(tg->se[i], shares);
  6151. done:
  6152. spin_unlock(&tg->lock);
  6153. return 0;
  6154. }
  6155. unsigned long sched_group_shares(struct task_group *tg)
  6156. {
  6157. return tg->shares;
  6158. }
  6159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6160. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6161. /* return corresponding task_group object of a cgroup */
  6162. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6163. {
  6164. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6165. struct task_group, css);
  6166. }
  6167. static struct cgroup_subsys_state *
  6168. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6169. {
  6170. struct task_group *tg;
  6171. if (!cgrp->parent) {
  6172. /* This is early initialization for the top cgroup */
  6173. init_task_group.css.cgroup = cgrp;
  6174. return &init_task_group.css;
  6175. }
  6176. /* we support only 1-level deep hierarchical scheduler atm */
  6177. if (cgrp->parent->parent)
  6178. return ERR_PTR(-EINVAL);
  6179. tg = sched_create_group();
  6180. if (IS_ERR(tg))
  6181. return ERR_PTR(-ENOMEM);
  6182. /* Bind the cgroup to task_group object we just created */
  6183. tg->css.cgroup = cgrp;
  6184. return &tg->css;
  6185. }
  6186. static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
  6187. struct cgroup *cgrp)
  6188. {
  6189. struct task_group *tg = cgroup_tg(cgrp);
  6190. sched_destroy_group(tg);
  6191. }
  6192. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
  6193. struct cgroup *cgrp, struct task_struct *tsk)
  6194. {
  6195. /* We don't support RT-tasks being in separate groups */
  6196. if (tsk->sched_class != &fair_sched_class)
  6197. return -EINVAL;
  6198. return 0;
  6199. }
  6200. static void
  6201. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6202. struct cgroup *old_cont, struct task_struct *tsk)
  6203. {
  6204. sched_move_task(tsk);
  6205. }
  6206. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6207. u64 shareval)
  6208. {
  6209. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6210. }
  6211. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6212. {
  6213. struct task_group *tg = cgroup_tg(cgrp);
  6214. return (u64) tg->shares;
  6215. }
  6216. static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
  6217. {
  6218. struct task_group *tg = cgroup_tg(cgrp);
  6219. unsigned long flags;
  6220. u64 res = 0;
  6221. int i;
  6222. for_each_possible_cpu(i) {
  6223. /*
  6224. * Lock to prevent races with updating 64-bit counters
  6225. * on 32-bit arches.
  6226. */
  6227. spin_lock_irqsave(&cpu_rq(i)->lock, flags);
  6228. res += tg->se[i]->sum_exec_runtime;
  6229. spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
  6230. }
  6231. /* Convert from ns to ms */
  6232. do_div(res, NSEC_PER_MSEC);
  6233. return res;
  6234. }
  6235. static struct cftype cpu_files[] = {
  6236. {
  6237. .name = "shares",
  6238. .read_uint = cpu_shares_read_uint,
  6239. .write_uint = cpu_shares_write_uint,
  6240. },
  6241. {
  6242. .name = "usage",
  6243. .read_uint = cpu_usage_read,
  6244. },
  6245. };
  6246. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6247. {
  6248. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6249. }
  6250. struct cgroup_subsys cpu_cgroup_subsys = {
  6251. .name = "cpu",
  6252. .create = cpu_cgroup_create,
  6253. .destroy = cpu_cgroup_destroy,
  6254. .can_attach = cpu_cgroup_can_attach,
  6255. .attach = cpu_cgroup_attach,
  6256. .populate = cpu_cgroup_populate,
  6257. .subsys_id = cpu_cgroup_subsys_id,
  6258. .early_init = 1,
  6259. };
  6260. #endif /* CONFIG_FAIR_CGROUP_SCHED */