fork.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/mnt_namespace.h>
  19. #include <linux/personality.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/sem.h>
  22. #include <linux/file.h>
  23. #include <linux/key.h>
  24. #include <linux/binfmts.h>
  25. #include <linux/mman.h>
  26. #include <linux/fs.h>
  27. #include <linux/nsproxy.h>
  28. #include <linux/capability.h>
  29. #include <linux/cpu.h>
  30. #include <linux/cgroup.h>
  31. #include <linux/security.h>
  32. #include <linux/swap.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/jiffies.h>
  35. #include <linux/futex.h>
  36. #include <linux/task_io_accounting_ops.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/mount.h>
  40. #include <linux/audit.h>
  41. #include <linux/profile.h>
  42. #include <linux/rmap.h>
  43. #include <linux/acct.h>
  44. #include <linux/tsacct_kern.h>
  45. #include <linux/cn_proc.h>
  46. #include <linux/freezer.h>
  47. #include <linux/delayacct.h>
  48. #include <linux/taskstats_kern.h>
  49. #include <linux/random.h>
  50. #include <linux/tty.h>
  51. #include <linux/proc_fs.h>
  52. #include <asm/pgtable.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/cacheflush.h>
  57. #include <asm/tlbflush.h>
  58. /*
  59. * Protected counters by write_lock_irq(&tasklist_lock)
  60. */
  61. unsigned long total_forks; /* Handle normal Linux uptimes. */
  62. int nr_threads; /* The idle threads do not count.. */
  63. int max_threads; /* tunable limit on nr_threads */
  64. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  65. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  66. int nr_processes(void)
  67. {
  68. int cpu;
  69. int total = 0;
  70. for_each_online_cpu(cpu)
  71. total += per_cpu(process_counts, cpu);
  72. return total;
  73. }
  74. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  75. # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  76. # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
  77. static struct kmem_cache *task_struct_cachep;
  78. #endif
  79. /* SLAB cache for signal_struct structures (tsk->signal) */
  80. static struct kmem_cache *signal_cachep;
  81. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  82. struct kmem_cache *sighand_cachep;
  83. /* SLAB cache for files_struct structures (tsk->files) */
  84. struct kmem_cache *files_cachep;
  85. /* SLAB cache for fs_struct structures (tsk->fs) */
  86. struct kmem_cache *fs_cachep;
  87. /* SLAB cache for vm_area_struct structures */
  88. struct kmem_cache *vm_area_cachep;
  89. /* SLAB cache for mm_struct structures (tsk->mm) */
  90. static struct kmem_cache *mm_cachep;
  91. void free_task(struct task_struct *tsk)
  92. {
  93. prop_local_destroy_single(&tsk->dirties);
  94. free_thread_info(tsk->stack);
  95. rt_mutex_debug_task_free(tsk);
  96. free_task_struct(tsk);
  97. }
  98. EXPORT_SYMBOL(free_task);
  99. void __put_task_struct(struct task_struct *tsk)
  100. {
  101. WARN_ON(!tsk->exit_state);
  102. WARN_ON(atomic_read(&tsk->usage));
  103. WARN_ON(tsk == current);
  104. security_task_free(tsk);
  105. free_uid(tsk->user);
  106. put_group_info(tsk->group_info);
  107. delayacct_tsk_free(tsk);
  108. if (!profile_handoff_task(tsk))
  109. free_task(tsk);
  110. }
  111. void __init fork_init(unsigned long mempages)
  112. {
  113. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  114. #ifndef ARCH_MIN_TASKALIGN
  115. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  116. #endif
  117. /* create a slab on which task_structs can be allocated */
  118. task_struct_cachep =
  119. kmem_cache_create("task_struct", sizeof(struct task_struct),
  120. ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
  121. #endif
  122. /*
  123. * The default maximum number of threads is set to a safe
  124. * value: the thread structures can take up at most half
  125. * of memory.
  126. */
  127. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  128. /*
  129. * we need to allow at least 20 threads to boot a system
  130. */
  131. if(max_threads < 20)
  132. max_threads = 20;
  133. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  134. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  135. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  136. init_task.signal->rlim[RLIMIT_NPROC];
  137. }
  138. static struct task_struct *dup_task_struct(struct task_struct *orig)
  139. {
  140. struct task_struct *tsk;
  141. struct thread_info *ti;
  142. int err;
  143. prepare_to_copy(orig);
  144. tsk = alloc_task_struct();
  145. if (!tsk)
  146. return NULL;
  147. ti = alloc_thread_info(tsk);
  148. if (!ti) {
  149. free_task_struct(tsk);
  150. return NULL;
  151. }
  152. *tsk = *orig;
  153. tsk->stack = ti;
  154. err = prop_local_init_single(&tsk->dirties);
  155. if (err) {
  156. free_thread_info(ti);
  157. free_task_struct(tsk);
  158. return NULL;
  159. }
  160. setup_thread_stack(tsk, orig);
  161. #ifdef CONFIG_CC_STACKPROTECTOR
  162. tsk->stack_canary = get_random_int();
  163. #endif
  164. /* One for us, one for whoever does the "release_task()" (usually parent) */
  165. atomic_set(&tsk->usage,2);
  166. atomic_set(&tsk->fs_excl, 0);
  167. #ifdef CONFIG_BLK_DEV_IO_TRACE
  168. tsk->btrace_seq = 0;
  169. #endif
  170. tsk->splice_pipe = NULL;
  171. return tsk;
  172. }
  173. #ifdef CONFIG_MMU
  174. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  175. {
  176. struct vm_area_struct *mpnt, *tmp, **pprev;
  177. struct rb_node **rb_link, *rb_parent;
  178. int retval;
  179. unsigned long charge;
  180. struct mempolicy *pol;
  181. down_write(&oldmm->mmap_sem);
  182. flush_cache_dup_mm(oldmm);
  183. /*
  184. * Not linked in yet - no deadlock potential:
  185. */
  186. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  187. mm->locked_vm = 0;
  188. mm->mmap = NULL;
  189. mm->mmap_cache = NULL;
  190. mm->free_area_cache = oldmm->mmap_base;
  191. mm->cached_hole_size = ~0UL;
  192. mm->map_count = 0;
  193. cpus_clear(mm->cpu_vm_mask);
  194. mm->mm_rb = RB_ROOT;
  195. rb_link = &mm->mm_rb.rb_node;
  196. rb_parent = NULL;
  197. pprev = &mm->mmap;
  198. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  199. struct file *file;
  200. if (mpnt->vm_flags & VM_DONTCOPY) {
  201. long pages = vma_pages(mpnt);
  202. mm->total_vm -= pages;
  203. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  204. -pages);
  205. continue;
  206. }
  207. charge = 0;
  208. if (mpnt->vm_flags & VM_ACCOUNT) {
  209. unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  210. if (security_vm_enough_memory(len))
  211. goto fail_nomem;
  212. charge = len;
  213. }
  214. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  215. if (!tmp)
  216. goto fail_nomem;
  217. *tmp = *mpnt;
  218. pol = mpol_copy(vma_policy(mpnt));
  219. retval = PTR_ERR(pol);
  220. if (IS_ERR(pol))
  221. goto fail_nomem_policy;
  222. vma_set_policy(tmp, pol);
  223. tmp->vm_flags &= ~VM_LOCKED;
  224. tmp->vm_mm = mm;
  225. tmp->vm_next = NULL;
  226. anon_vma_link(tmp);
  227. file = tmp->vm_file;
  228. if (file) {
  229. struct inode *inode = file->f_path.dentry->d_inode;
  230. get_file(file);
  231. if (tmp->vm_flags & VM_DENYWRITE)
  232. atomic_dec(&inode->i_writecount);
  233. /* insert tmp into the share list, just after mpnt */
  234. spin_lock(&file->f_mapping->i_mmap_lock);
  235. tmp->vm_truncate_count = mpnt->vm_truncate_count;
  236. flush_dcache_mmap_lock(file->f_mapping);
  237. vma_prio_tree_add(tmp, mpnt);
  238. flush_dcache_mmap_unlock(file->f_mapping);
  239. spin_unlock(&file->f_mapping->i_mmap_lock);
  240. }
  241. /*
  242. * Link in the new vma and copy the page table entries.
  243. */
  244. *pprev = tmp;
  245. pprev = &tmp->vm_next;
  246. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  247. rb_link = &tmp->vm_rb.rb_right;
  248. rb_parent = &tmp->vm_rb;
  249. mm->map_count++;
  250. retval = copy_page_range(mm, oldmm, mpnt);
  251. if (tmp->vm_ops && tmp->vm_ops->open)
  252. tmp->vm_ops->open(tmp);
  253. if (retval)
  254. goto out;
  255. }
  256. /* a new mm has just been created */
  257. arch_dup_mmap(oldmm, mm);
  258. retval = 0;
  259. out:
  260. up_write(&mm->mmap_sem);
  261. flush_tlb_mm(oldmm);
  262. up_write(&oldmm->mmap_sem);
  263. return retval;
  264. fail_nomem_policy:
  265. kmem_cache_free(vm_area_cachep, tmp);
  266. fail_nomem:
  267. retval = -ENOMEM;
  268. vm_unacct_memory(charge);
  269. goto out;
  270. }
  271. static inline int mm_alloc_pgd(struct mm_struct * mm)
  272. {
  273. mm->pgd = pgd_alloc(mm);
  274. if (unlikely(!mm->pgd))
  275. return -ENOMEM;
  276. return 0;
  277. }
  278. static inline void mm_free_pgd(struct mm_struct * mm)
  279. {
  280. pgd_free(mm->pgd);
  281. }
  282. #else
  283. #define dup_mmap(mm, oldmm) (0)
  284. #define mm_alloc_pgd(mm) (0)
  285. #define mm_free_pgd(mm)
  286. #endif /* CONFIG_MMU */
  287. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  288. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  289. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  290. #include <linux/init_task.h>
  291. static struct mm_struct * mm_init(struct mm_struct * mm)
  292. {
  293. atomic_set(&mm->mm_users, 1);
  294. atomic_set(&mm->mm_count, 1);
  295. init_rwsem(&mm->mmap_sem);
  296. INIT_LIST_HEAD(&mm->mmlist);
  297. mm->flags = (current->mm) ? current->mm->flags
  298. : MMF_DUMP_FILTER_DEFAULT;
  299. mm->core_waiters = 0;
  300. mm->nr_ptes = 0;
  301. set_mm_counter(mm, file_rss, 0);
  302. set_mm_counter(mm, anon_rss, 0);
  303. spin_lock_init(&mm->page_table_lock);
  304. rwlock_init(&mm->ioctx_list_lock);
  305. mm->ioctx_list = NULL;
  306. mm->free_area_cache = TASK_UNMAPPED_BASE;
  307. mm->cached_hole_size = ~0UL;
  308. if (likely(!mm_alloc_pgd(mm))) {
  309. mm->def_flags = 0;
  310. return mm;
  311. }
  312. free_mm(mm);
  313. return NULL;
  314. }
  315. /*
  316. * Allocate and initialize an mm_struct.
  317. */
  318. struct mm_struct * mm_alloc(void)
  319. {
  320. struct mm_struct * mm;
  321. mm = allocate_mm();
  322. if (mm) {
  323. memset(mm, 0, sizeof(*mm));
  324. mm = mm_init(mm);
  325. }
  326. return mm;
  327. }
  328. /*
  329. * Called when the last reference to the mm
  330. * is dropped: either by a lazy thread or by
  331. * mmput. Free the page directory and the mm.
  332. */
  333. void fastcall __mmdrop(struct mm_struct *mm)
  334. {
  335. BUG_ON(mm == &init_mm);
  336. mm_free_pgd(mm);
  337. destroy_context(mm);
  338. free_mm(mm);
  339. }
  340. /*
  341. * Decrement the use count and release all resources for an mm.
  342. */
  343. void mmput(struct mm_struct *mm)
  344. {
  345. might_sleep();
  346. if (atomic_dec_and_test(&mm->mm_users)) {
  347. exit_aio(mm);
  348. exit_mmap(mm);
  349. if (!list_empty(&mm->mmlist)) {
  350. spin_lock(&mmlist_lock);
  351. list_del(&mm->mmlist);
  352. spin_unlock(&mmlist_lock);
  353. }
  354. put_swap_token(mm);
  355. mmdrop(mm);
  356. }
  357. }
  358. EXPORT_SYMBOL_GPL(mmput);
  359. /**
  360. * get_task_mm - acquire a reference to the task's mm
  361. *
  362. * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
  363. * this kernel workthread has transiently adopted a user mm with use_mm,
  364. * to do its AIO) is not set and if so returns a reference to it, after
  365. * bumping up the use count. User must release the mm via mmput()
  366. * after use. Typically used by /proc and ptrace.
  367. */
  368. struct mm_struct *get_task_mm(struct task_struct *task)
  369. {
  370. struct mm_struct *mm;
  371. task_lock(task);
  372. mm = task->mm;
  373. if (mm) {
  374. if (task->flags & PF_BORROWED_MM)
  375. mm = NULL;
  376. else
  377. atomic_inc(&mm->mm_users);
  378. }
  379. task_unlock(task);
  380. return mm;
  381. }
  382. EXPORT_SYMBOL_GPL(get_task_mm);
  383. /* Please note the differences between mmput and mm_release.
  384. * mmput is called whenever we stop holding onto a mm_struct,
  385. * error success whatever.
  386. *
  387. * mm_release is called after a mm_struct has been removed
  388. * from the current process.
  389. *
  390. * This difference is important for error handling, when we
  391. * only half set up a mm_struct for a new process and need to restore
  392. * the old one. Because we mmput the new mm_struct before
  393. * restoring the old one. . .
  394. * Eric Biederman 10 January 1998
  395. */
  396. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  397. {
  398. struct completion *vfork_done = tsk->vfork_done;
  399. /* Get rid of any cached register state */
  400. deactivate_mm(tsk, mm);
  401. /* notify parent sleeping on vfork() */
  402. if (vfork_done) {
  403. tsk->vfork_done = NULL;
  404. complete(vfork_done);
  405. }
  406. /*
  407. * If we're exiting normally, clear a user-space tid field if
  408. * requested. We leave this alone when dying by signal, to leave
  409. * the value intact in a core dump, and to save the unnecessary
  410. * trouble otherwise. Userland only wants this done for a sys_exit.
  411. */
  412. if (tsk->clear_child_tid
  413. && !(tsk->flags & PF_SIGNALED)
  414. && atomic_read(&mm->mm_users) > 1) {
  415. u32 __user * tidptr = tsk->clear_child_tid;
  416. tsk->clear_child_tid = NULL;
  417. /*
  418. * We don't check the error code - if userspace has
  419. * not set up a proper pointer then tough luck.
  420. */
  421. put_user(0, tidptr);
  422. sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
  423. }
  424. }
  425. /*
  426. * Allocate a new mm structure and copy contents from the
  427. * mm structure of the passed in task structure.
  428. */
  429. static struct mm_struct *dup_mm(struct task_struct *tsk)
  430. {
  431. struct mm_struct *mm, *oldmm = current->mm;
  432. int err;
  433. if (!oldmm)
  434. return NULL;
  435. mm = allocate_mm();
  436. if (!mm)
  437. goto fail_nomem;
  438. memcpy(mm, oldmm, sizeof(*mm));
  439. /* Initializing for Swap token stuff */
  440. mm->token_priority = 0;
  441. mm->last_interval = 0;
  442. if (!mm_init(mm))
  443. goto fail_nomem;
  444. if (init_new_context(tsk, mm))
  445. goto fail_nocontext;
  446. err = dup_mmap(mm, oldmm);
  447. if (err)
  448. goto free_pt;
  449. mm->hiwater_rss = get_mm_rss(mm);
  450. mm->hiwater_vm = mm->total_vm;
  451. return mm;
  452. free_pt:
  453. mmput(mm);
  454. fail_nomem:
  455. return NULL;
  456. fail_nocontext:
  457. /*
  458. * If init_new_context() failed, we cannot use mmput() to free the mm
  459. * because it calls destroy_context()
  460. */
  461. mm_free_pgd(mm);
  462. free_mm(mm);
  463. return NULL;
  464. }
  465. static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
  466. {
  467. struct mm_struct * mm, *oldmm;
  468. int retval;
  469. tsk->min_flt = tsk->maj_flt = 0;
  470. tsk->nvcsw = tsk->nivcsw = 0;
  471. tsk->mm = NULL;
  472. tsk->active_mm = NULL;
  473. /*
  474. * Are we cloning a kernel thread?
  475. *
  476. * We need to steal a active VM for that..
  477. */
  478. oldmm = current->mm;
  479. if (!oldmm)
  480. return 0;
  481. if (clone_flags & CLONE_VM) {
  482. atomic_inc(&oldmm->mm_users);
  483. mm = oldmm;
  484. goto good_mm;
  485. }
  486. retval = -ENOMEM;
  487. mm = dup_mm(tsk);
  488. if (!mm)
  489. goto fail_nomem;
  490. good_mm:
  491. /* Initializing for Swap token stuff */
  492. mm->token_priority = 0;
  493. mm->last_interval = 0;
  494. tsk->mm = mm;
  495. tsk->active_mm = mm;
  496. return 0;
  497. fail_nomem:
  498. return retval;
  499. }
  500. static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
  501. {
  502. struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  503. /* We don't need to lock fs - think why ;-) */
  504. if (fs) {
  505. atomic_set(&fs->count, 1);
  506. rwlock_init(&fs->lock);
  507. fs->umask = old->umask;
  508. read_lock(&old->lock);
  509. fs->rootmnt = mntget(old->rootmnt);
  510. fs->root = dget(old->root);
  511. fs->pwdmnt = mntget(old->pwdmnt);
  512. fs->pwd = dget(old->pwd);
  513. if (old->altroot) {
  514. fs->altrootmnt = mntget(old->altrootmnt);
  515. fs->altroot = dget(old->altroot);
  516. } else {
  517. fs->altrootmnt = NULL;
  518. fs->altroot = NULL;
  519. }
  520. read_unlock(&old->lock);
  521. }
  522. return fs;
  523. }
  524. struct fs_struct *copy_fs_struct(struct fs_struct *old)
  525. {
  526. return __copy_fs_struct(old);
  527. }
  528. EXPORT_SYMBOL_GPL(copy_fs_struct);
  529. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  530. {
  531. if (clone_flags & CLONE_FS) {
  532. atomic_inc(&current->fs->count);
  533. return 0;
  534. }
  535. tsk->fs = __copy_fs_struct(current->fs);
  536. if (!tsk->fs)
  537. return -ENOMEM;
  538. return 0;
  539. }
  540. static int count_open_files(struct fdtable *fdt)
  541. {
  542. int size = fdt->max_fds;
  543. int i;
  544. /* Find the last open fd */
  545. for (i = size/(8*sizeof(long)); i > 0; ) {
  546. if (fdt->open_fds->fds_bits[--i])
  547. break;
  548. }
  549. i = (i+1) * 8 * sizeof(long);
  550. return i;
  551. }
  552. static struct files_struct *alloc_files(void)
  553. {
  554. struct files_struct *newf;
  555. struct fdtable *fdt;
  556. newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  557. if (!newf)
  558. goto out;
  559. atomic_set(&newf->count, 1);
  560. spin_lock_init(&newf->file_lock);
  561. newf->next_fd = 0;
  562. fdt = &newf->fdtab;
  563. fdt->max_fds = NR_OPEN_DEFAULT;
  564. fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
  565. fdt->open_fds = (fd_set *)&newf->open_fds_init;
  566. fdt->fd = &newf->fd_array[0];
  567. INIT_RCU_HEAD(&fdt->rcu);
  568. fdt->next = NULL;
  569. rcu_assign_pointer(newf->fdt, fdt);
  570. out:
  571. return newf;
  572. }
  573. /*
  574. * Allocate a new files structure and copy contents from the
  575. * passed in files structure.
  576. * errorp will be valid only when the returned files_struct is NULL.
  577. */
  578. static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
  579. {
  580. struct files_struct *newf;
  581. struct file **old_fds, **new_fds;
  582. int open_files, size, i;
  583. struct fdtable *old_fdt, *new_fdt;
  584. *errorp = -ENOMEM;
  585. newf = alloc_files();
  586. if (!newf)
  587. goto out;
  588. spin_lock(&oldf->file_lock);
  589. old_fdt = files_fdtable(oldf);
  590. new_fdt = files_fdtable(newf);
  591. open_files = count_open_files(old_fdt);
  592. /*
  593. * Check whether we need to allocate a larger fd array and fd set.
  594. * Note: we're not a clone task, so the open count won't change.
  595. */
  596. if (open_files > new_fdt->max_fds) {
  597. new_fdt->max_fds = 0;
  598. spin_unlock(&oldf->file_lock);
  599. spin_lock(&newf->file_lock);
  600. *errorp = expand_files(newf, open_files-1);
  601. spin_unlock(&newf->file_lock);
  602. if (*errorp < 0)
  603. goto out_release;
  604. new_fdt = files_fdtable(newf);
  605. /*
  606. * Reacquire the oldf lock and a pointer to its fd table
  607. * who knows it may have a new bigger fd table. We need
  608. * the latest pointer.
  609. */
  610. spin_lock(&oldf->file_lock);
  611. old_fdt = files_fdtable(oldf);
  612. }
  613. old_fds = old_fdt->fd;
  614. new_fds = new_fdt->fd;
  615. memcpy(new_fdt->open_fds->fds_bits,
  616. old_fdt->open_fds->fds_bits, open_files/8);
  617. memcpy(new_fdt->close_on_exec->fds_bits,
  618. old_fdt->close_on_exec->fds_bits, open_files/8);
  619. for (i = open_files; i != 0; i--) {
  620. struct file *f = *old_fds++;
  621. if (f) {
  622. get_file(f);
  623. } else {
  624. /*
  625. * The fd may be claimed in the fd bitmap but not yet
  626. * instantiated in the files array if a sibling thread
  627. * is partway through open(). So make sure that this
  628. * fd is available to the new process.
  629. */
  630. FD_CLR(open_files - i, new_fdt->open_fds);
  631. }
  632. rcu_assign_pointer(*new_fds++, f);
  633. }
  634. spin_unlock(&oldf->file_lock);
  635. /* compute the remainder to be cleared */
  636. size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
  637. /* This is long word aligned thus could use a optimized version */
  638. memset(new_fds, 0, size);
  639. if (new_fdt->max_fds > open_files) {
  640. int left = (new_fdt->max_fds-open_files)/8;
  641. int start = open_files / (8 * sizeof(unsigned long));
  642. memset(&new_fdt->open_fds->fds_bits[start], 0, left);
  643. memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
  644. }
  645. return newf;
  646. out_release:
  647. kmem_cache_free(files_cachep, newf);
  648. out:
  649. return NULL;
  650. }
  651. static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
  652. {
  653. struct files_struct *oldf, *newf;
  654. int error = 0;
  655. /*
  656. * A background process may not have any files ...
  657. */
  658. oldf = current->files;
  659. if (!oldf)
  660. goto out;
  661. if (clone_flags & CLONE_FILES) {
  662. atomic_inc(&oldf->count);
  663. goto out;
  664. }
  665. /*
  666. * Note: we may be using current for both targets (See exec.c)
  667. * This works because we cache current->files (old) as oldf. Don't
  668. * break this.
  669. */
  670. tsk->files = NULL;
  671. newf = dup_fd(oldf, &error);
  672. if (!newf)
  673. goto out;
  674. tsk->files = newf;
  675. error = 0;
  676. out:
  677. return error;
  678. }
  679. /*
  680. * Helper to unshare the files of the current task.
  681. * We don't want to expose copy_files internals to
  682. * the exec layer of the kernel.
  683. */
  684. int unshare_files(void)
  685. {
  686. struct files_struct *files = current->files;
  687. int rc;
  688. BUG_ON(!files);
  689. /* This can race but the race causes us to copy when we don't
  690. need to and drop the copy */
  691. if(atomic_read(&files->count) == 1)
  692. {
  693. atomic_inc(&files->count);
  694. return 0;
  695. }
  696. rc = copy_files(0, current);
  697. if(rc)
  698. current->files = files;
  699. return rc;
  700. }
  701. EXPORT_SYMBOL(unshare_files);
  702. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  703. {
  704. struct sighand_struct *sig;
  705. if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
  706. atomic_inc(&current->sighand->count);
  707. return 0;
  708. }
  709. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  710. rcu_assign_pointer(tsk->sighand, sig);
  711. if (!sig)
  712. return -ENOMEM;
  713. atomic_set(&sig->count, 1);
  714. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  715. return 0;
  716. }
  717. void __cleanup_sighand(struct sighand_struct *sighand)
  718. {
  719. if (atomic_dec_and_test(&sighand->count))
  720. kmem_cache_free(sighand_cachep, sighand);
  721. }
  722. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  723. {
  724. struct signal_struct *sig;
  725. int ret;
  726. if (clone_flags & CLONE_THREAD) {
  727. atomic_inc(&current->signal->count);
  728. atomic_inc(&current->signal->live);
  729. return 0;
  730. }
  731. sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
  732. tsk->signal = sig;
  733. if (!sig)
  734. return -ENOMEM;
  735. ret = copy_thread_group_keys(tsk);
  736. if (ret < 0) {
  737. kmem_cache_free(signal_cachep, sig);
  738. return ret;
  739. }
  740. atomic_set(&sig->count, 1);
  741. atomic_set(&sig->live, 1);
  742. init_waitqueue_head(&sig->wait_chldexit);
  743. sig->flags = 0;
  744. sig->group_exit_code = 0;
  745. sig->group_exit_task = NULL;
  746. sig->group_stop_count = 0;
  747. sig->curr_target = NULL;
  748. init_sigpending(&sig->shared_pending);
  749. INIT_LIST_HEAD(&sig->posix_timers);
  750. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  751. sig->it_real_incr.tv64 = 0;
  752. sig->real_timer.function = it_real_fn;
  753. sig->tsk = tsk;
  754. sig->it_virt_expires = cputime_zero;
  755. sig->it_virt_incr = cputime_zero;
  756. sig->it_prof_expires = cputime_zero;
  757. sig->it_prof_incr = cputime_zero;
  758. sig->leader = 0; /* session leadership doesn't inherit */
  759. sig->tty_old_pgrp = NULL;
  760. sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
  761. sig->gtime = cputime_zero;
  762. sig->cgtime = cputime_zero;
  763. sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
  764. sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
  765. sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
  766. sig->sum_sched_runtime = 0;
  767. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  768. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  769. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  770. taskstats_tgid_init(sig);
  771. task_lock(current->group_leader);
  772. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  773. task_unlock(current->group_leader);
  774. if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
  775. /*
  776. * New sole thread in the process gets an expiry time
  777. * of the whole CPU time limit.
  778. */
  779. tsk->it_prof_expires =
  780. secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
  781. }
  782. acct_init_pacct(&sig->pacct);
  783. tty_audit_fork(sig);
  784. return 0;
  785. }
  786. void __cleanup_signal(struct signal_struct *sig)
  787. {
  788. exit_thread_group_keys(sig);
  789. kmem_cache_free(signal_cachep, sig);
  790. }
  791. static void cleanup_signal(struct task_struct *tsk)
  792. {
  793. struct signal_struct *sig = tsk->signal;
  794. atomic_dec(&sig->live);
  795. if (atomic_dec_and_test(&sig->count))
  796. __cleanup_signal(sig);
  797. }
  798. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  799. {
  800. unsigned long new_flags = p->flags;
  801. new_flags &= ~PF_SUPERPRIV;
  802. new_flags |= PF_FORKNOEXEC;
  803. if (!(clone_flags & CLONE_PTRACE))
  804. p->ptrace = 0;
  805. p->flags = new_flags;
  806. clear_freeze_flag(p);
  807. }
  808. asmlinkage long sys_set_tid_address(int __user *tidptr)
  809. {
  810. current->clear_child_tid = tidptr;
  811. return task_pid_vnr(current);
  812. }
  813. static void rt_mutex_init_task(struct task_struct *p)
  814. {
  815. spin_lock_init(&p->pi_lock);
  816. #ifdef CONFIG_RT_MUTEXES
  817. plist_head_init(&p->pi_waiters, &p->pi_lock);
  818. p->pi_blocked_on = NULL;
  819. #endif
  820. }
  821. /*
  822. * This creates a new process as a copy of the old one,
  823. * but does not actually start it yet.
  824. *
  825. * It copies the registers, and all the appropriate
  826. * parts of the process environment (as per the clone
  827. * flags). The actual kick-off is left to the caller.
  828. */
  829. static struct task_struct *copy_process(unsigned long clone_flags,
  830. unsigned long stack_start,
  831. struct pt_regs *regs,
  832. unsigned long stack_size,
  833. int __user *child_tidptr,
  834. struct pid *pid)
  835. {
  836. int retval;
  837. struct task_struct *p;
  838. int cgroup_callbacks_done = 0;
  839. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  840. return ERR_PTR(-EINVAL);
  841. /*
  842. * Thread groups must share signals as well, and detached threads
  843. * can only be started up within the thread group.
  844. */
  845. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  846. return ERR_PTR(-EINVAL);
  847. /*
  848. * Shared signal handlers imply shared VM. By way of the above,
  849. * thread groups also imply shared VM. Blocking this case allows
  850. * for various simplifications in other code.
  851. */
  852. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  853. return ERR_PTR(-EINVAL);
  854. retval = security_task_create(clone_flags);
  855. if (retval)
  856. goto fork_out;
  857. retval = -ENOMEM;
  858. p = dup_task_struct(current);
  859. if (!p)
  860. goto fork_out;
  861. rt_mutex_init_task(p);
  862. #ifdef CONFIG_TRACE_IRQFLAGS
  863. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  864. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  865. #endif
  866. retval = -EAGAIN;
  867. if (atomic_read(&p->user->processes) >=
  868. p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
  869. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  870. p->user != current->nsproxy->user_ns->root_user)
  871. goto bad_fork_free;
  872. }
  873. atomic_inc(&p->user->__count);
  874. atomic_inc(&p->user->processes);
  875. get_group_info(p->group_info);
  876. /*
  877. * If multiple threads are within copy_process(), then this check
  878. * triggers too late. This doesn't hurt, the check is only there
  879. * to stop root fork bombs.
  880. */
  881. if (nr_threads >= max_threads)
  882. goto bad_fork_cleanup_count;
  883. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  884. goto bad_fork_cleanup_count;
  885. if (p->binfmt && !try_module_get(p->binfmt->module))
  886. goto bad_fork_cleanup_put_domain;
  887. p->did_exec = 0;
  888. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  889. copy_flags(clone_flags, p);
  890. INIT_LIST_HEAD(&p->children);
  891. INIT_LIST_HEAD(&p->sibling);
  892. p->vfork_done = NULL;
  893. spin_lock_init(&p->alloc_lock);
  894. clear_tsk_thread_flag(p, TIF_SIGPENDING);
  895. init_sigpending(&p->pending);
  896. p->utime = cputime_zero;
  897. p->stime = cputime_zero;
  898. p->gtime = cputime_zero;
  899. p->utimescaled = cputime_zero;
  900. p->stimescaled = cputime_zero;
  901. p->prev_utime = cputime_zero;
  902. p->prev_stime = cputime_zero;
  903. #ifdef CONFIG_TASK_XACCT
  904. p->rchar = 0; /* I/O counter: bytes read */
  905. p->wchar = 0; /* I/O counter: bytes written */
  906. p->syscr = 0; /* I/O counter: read syscalls */
  907. p->syscw = 0; /* I/O counter: write syscalls */
  908. #endif
  909. task_io_accounting_init(p);
  910. acct_clear_integrals(p);
  911. p->it_virt_expires = cputime_zero;
  912. p->it_prof_expires = cputime_zero;
  913. p->it_sched_expires = 0;
  914. INIT_LIST_HEAD(&p->cpu_timers[0]);
  915. INIT_LIST_HEAD(&p->cpu_timers[1]);
  916. INIT_LIST_HEAD(&p->cpu_timers[2]);
  917. p->lock_depth = -1; /* -1 = no lock */
  918. do_posix_clock_monotonic_gettime(&p->start_time);
  919. p->real_start_time = p->start_time;
  920. monotonic_to_bootbased(&p->real_start_time);
  921. #ifdef CONFIG_SECURITY
  922. p->security = NULL;
  923. #endif
  924. p->io_context = NULL;
  925. p->audit_context = NULL;
  926. cgroup_fork(p);
  927. #ifdef CONFIG_NUMA
  928. p->mempolicy = mpol_copy(p->mempolicy);
  929. if (IS_ERR(p->mempolicy)) {
  930. retval = PTR_ERR(p->mempolicy);
  931. p->mempolicy = NULL;
  932. goto bad_fork_cleanup_cgroup;
  933. }
  934. mpol_fix_fork_child_flag(p);
  935. #endif
  936. #ifdef CONFIG_TRACE_IRQFLAGS
  937. p->irq_events = 0;
  938. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  939. p->hardirqs_enabled = 1;
  940. #else
  941. p->hardirqs_enabled = 0;
  942. #endif
  943. p->hardirq_enable_ip = 0;
  944. p->hardirq_enable_event = 0;
  945. p->hardirq_disable_ip = _THIS_IP_;
  946. p->hardirq_disable_event = 0;
  947. p->softirqs_enabled = 1;
  948. p->softirq_enable_ip = _THIS_IP_;
  949. p->softirq_enable_event = 0;
  950. p->softirq_disable_ip = 0;
  951. p->softirq_disable_event = 0;
  952. p->hardirq_context = 0;
  953. p->softirq_context = 0;
  954. #endif
  955. #ifdef CONFIG_LOCKDEP
  956. p->lockdep_depth = 0; /* no locks held yet */
  957. p->curr_chain_key = 0;
  958. p->lockdep_recursion = 0;
  959. #endif
  960. #ifdef CONFIG_DEBUG_MUTEXES
  961. p->blocked_on = NULL; /* not blocked yet */
  962. #endif
  963. /* Perform scheduler related setup. Assign this task to a CPU. */
  964. sched_fork(p, clone_flags);
  965. if ((retval = security_task_alloc(p)))
  966. goto bad_fork_cleanup_policy;
  967. if ((retval = audit_alloc(p)))
  968. goto bad_fork_cleanup_security;
  969. /* copy all the process information */
  970. if ((retval = copy_semundo(clone_flags, p)))
  971. goto bad_fork_cleanup_audit;
  972. if ((retval = copy_files(clone_flags, p)))
  973. goto bad_fork_cleanup_semundo;
  974. if ((retval = copy_fs(clone_flags, p)))
  975. goto bad_fork_cleanup_files;
  976. if ((retval = copy_sighand(clone_flags, p)))
  977. goto bad_fork_cleanup_fs;
  978. if ((retval = copy_signal(clone_flags, p)))
  979. goto bad_fork_cleanup_sighand;
  980. if ((retval = copy_mm(clone_flags, p)))
  981. goto bad_fork_cleanup_signal;
  982. if ((retval = copy_keys(clone_flags, p)))
  983. goto bad_fork_cleanup_mm;
  984. if ((retval = copy_namespaces(clone_flags, p)))
  985. goto bad_fork_cleanup_keys;
  986. retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
  987. if (retval)
  988. goto bad_fork_cleanup_namespaces;
  989. if (pid != &init_struct_pid) {
  990. retval = -ENOMEM;
  991. pid = alloc_pid(task_active_pid_ns(p));
  992. if (!pid)
  993. goto bad_fork_cleanup_namespaces;
  994. if (clone_flags & CLONE_NEWPID) {
  995. retval = pid_ns_prepare_proc(task_active_pid_ns(p));
  996. if (retval < 0)
  997. goto bad_fork_free_pid;
  998. }
  999. }
  1000. p->pid = pid_nr(pid);
  1001. p->tgid = p->pid;
  1002. if (clone_flags & CLONE_THREAD)
  1003. p->tgid = current->tgid;
  1004. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1005. /*
  1006. * Clear TID on mm_release()?
  1007. */
  1008. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
  1009. #ifdef CONFIG_FUTEX
  1010. p->robust_list = NULL;
  1011. #ifdef CONFIG_COMPAT
  1012. p->compat_robust_list = NULL;
  1013. #endif
  1014. INIT_LIST_HEAD(&p->pi_state_list);
  1015. p->pi_state_cache = NULL;
  1016. #endif
  1017. /*
  1018. * sigaltstack should be cleared when sharing the same VM
  1019. */
  1020. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1021. p->sas_ss_sp = p->sas_ss_size = 0;
  1022. /*
  1023. * Syscall tracing should be turned off in the child regardless
  1024. * of CLONE_PTRACE.
  1025. */
  1026. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1027. #ifdef TIF_SYSCALL_EMU
  1028. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1029. #endif
  1030. /* Our parent execution domain becomes current domain
  1031. These must match for thread signalling to apply */
  1032. p->parent_exec_id = p->self_exec_id;
  1033. /* ok, now we should be set up.. */
  1034. p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
  1035. p->pdeath_signal = 0;
  1036. p->exit_state = 0;
  1037. /*
  1038. * Ok, make it visible to the rest of the system.
  1039. * We dont wake it up yet.
  1040. */
  1041. p->group_leader = p;
  1042. INIT_LIST_HEAD(&p->thread_group);
  1043. INIT_LIST_HEAD(&p->ptrace_children);
  1044. INIT_LIST_HEAD(&p->ptrace_list);
  1045. /* Now that the task is set up, run cgroup callbacks if
  1046. * necessary. We need to run them before the task is visible
  1047. * on the tasklist. */
  1048. cgroup_fork_callbacks(p);
  1049. cgroup_callbacks_done = 1;
  1050. /* Need tasklist lock for parent etc handling! */
  1051. write_lock_irq(&tasklist_lock);
  1052. /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
  1053. p->ioprio = current->ioprio;
  1054. /*
  1055. * The task hasn't been attached yet, so its cpus_allowed mask will
  1056. * not be changed, nor will its assigned CPU.
  1057. *
  1058. * The cpus_allowed mask of the parent may have changed after it was
  1059. * copied first time - so re-copy it here, then check the child's CPU
  1060. * to ensure it is on a valid CPU (and if not, just force it back to
  1061. * parent's CPU). This avoids alot of nasty races.
  1062. */
  1063. p->cpus_allowed = current->cpus_allowed;
  1064. if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
  1065. !cpu_online(task_cpu(p))))
  1066. set_task_cpu(p, smp_processor_id());
  1067. /* CLONE_PARENT re-uses the old parent */
  1068. if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
  1069. p->real_parent = current->real_parent;
  1070. else
  1071. p->real_parent = current;
  1072. p->parent = p->real_parent;
  1073. spin_lock(&current->sighand->siglock);
  1074. /*
  1075. * Process group and session signals need to be delivered to just the
  1076. * parent before the fork or both the parent and the child after the
  1077. * fork. Restart if a signal comes in before we add the new process to
  1078. * it's process group.
  1079. * A fatal signal pending means that current will exit, so the new
  1080. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1081. */
  1082. recalc_sigpending();
  1083. if (signal_pending(current)) {
  1084. spin_unlock(&current->sighand->siglock);
  1085. write_unlock_irq(&tasklist_lock);
  1086. retval = -ERESTARTNOINTR;
  1087. goto bad_fork_free_pid;
  1088. }
  1089. if (clone_flags & CLONE_THREAD) {
  1090. p->group_leader = current->group_leader;
  1091. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1092. if (!cputime_eq(current->signal->it_virt_expires,
  1093. cputime_zero) ||
  1094. !cputime_eq(current->signal->it_prof_expires,
  1095. cputime_zero) ||
  1096. current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
  1097. !list_empty(&current->signal->cpu_timers[0]) ||
  1098. !list_empty(&current->signal->cpu_timers[1]) ||
  1099. !list_empty(&current->signal->cpu_timers[2])) {
  1100. /*
  1101. * Have child wake up on its first tick to check
  1102. * for process CPU timers.
  1103. */
  1104. p->it_prof_expires = jiffies_to_cputime(1);
  1105. }
  1106. }
  1107. if (likely(p->pid)) {
  1108. add_parent(p);
  1109. if (unlikely(p->ptrace & PT_PTRACED))
  1110. __ptrace_link(p, current->parent);
  1111. if (thread_group_leader(p)) {
  1112. if (clone_flags & CLONE_NEWPID) {
  1113. p->nsproxy->pid_ns->child_reaper = p;
  1114. p->signal->tty = NULL;
  1115. set_task_pgrp(p, p->pid);
  1116. set_task_session(p, p->pid);
  1117. attach_pid(p, PIDTYPE_PGID, pid);
  1118. attach_pid(p, PIDTYPE_SID, pid);
  1119. } else {
  1120. p->signal->tty = current->signal->tty;
  1121. set_task_pgrp(p, task_pgrp_nr(current));
  1122. set_task_session(p, task_session_nr(current));
  1123. attach_pid(p, PIDTYPE_PGID,
  1124. task_pgrp(current));
  1125. attach_pid(p, PIDTYPE_SID,
  1126. task_session(current));
  1127. }
  1128. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1129. __get_cpu_var(process_counts)++;
  1130. }
  1131. attach_pid(p, PIDTYPE_PID, pid);
  1132. nr_threads++;
  1133. }
  1134. total_forks++;
  1135. spin_unlock(&current->sighand->siglock);
  1136. write_unlock_irq(&tasklist_lock);
  1137. proc_fork_connector(p);
  1138. cgroup_post_fork(p);
  1139. return p;
  1140. bad_fork_free_pid:
  1141. if (pid != &init_struct_pid)
  1142. free_pid(pid);
  1143. bad_fork_cleanup_namespaces:
  1144. exit_task_namespaces(p);
  1145. bad_fork_cleanup_keys:
  1146. exit_keys(p);
  1147. bad_fork_cleanup_mm:
  1148. if (p->mm)
  1149. mmput(p->mm);
  1150. bad_fork_cleanup_signal:
  1151. cleanup_signal(p);
  1152. bad_fork_cleanup_sighand:
  1153. __cleanup_sighand(p->sighand);
  1154. bad_fork_cleanup_fs:
  1155. exit_fs(p); /* blocking */
  1156. bad_fork_cleanup_files:
  1157. exit_files(p); /* blocking */
  1158. bad_fork_cleanup_semundo:
  1159. exit_sem(p);
  1160. bad_fork_cleanup_audit:
  1161. audit_free(p);
  1162. bad_fork_cleanup_security:
  1163. security_task_free(p);
  1164. bad_fork_cleanup_policy:
  1165. #ifdef CONFIG_NUMA
  1166. mpol_free(p->mempolicy);
  1167. bad_fork_cleanup_cgroup:
  1168. #endif
  1169. cgroup_exit(p, cgroup_callbacks_done);
  1170. delayacct_tsk_free(p);
  1171. if (p->binfmt)
  1172. module_put(p->binfmt->module);
  1173. bad_fork_cleanup_put_domain:
  1174. module_put(task_thread_info(p)->exec_domain->module);
  1175. bad_fork_cleanup_count:
  1176. put_group_info(p->group_info);
  1177. atomic_dec(&p->user->processes);
  1178. free_uid(p->user);
  1179. bad_fork_free:
  1180. free_task(p);
  1181. fork_out:
  1182. return ERR_PTR(retval);
  1183. }
  1184. noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1185. {
  1186. memset(regs, 0, sizeof(struct pt_regs));
  1187. return regs;
  1188. }
  1189. struct task_struct * __cpuinit fork_idle(int cpu)
  1190. {
  1191. struct task_struct *task;
  1192. struct pt_regs regs;
  1193. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1194. &init_struct_pid);
  1195. if (!IS_ERR(task))
  1196. init_idle(task, cpu);
  1197. return task;
  1198. }
  1199. static int fork_traceflag(unsigned clone_flags)
  1200. {
  1201. if (clone_flags & CLONE_UNTRACED)
  1202. return 0;
  1203. else if (clone_flags & CLONE_VFORK) {
  1204. if (current->ptrace & PT_TRACE_VFORK)
  1205. return PTRACE_EVENT_VFORK;
  1206. } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
  1207. if (current->ptrace & PT_TRACE_CLONE)
  1208. return PTRACE_EVENT_CLONE;
  1209. } else if (current->ptrace & PT_TRACE_FORK)
  1210. return PTRACE_EVENT_FORK;
  1211. return 0;
  1212. }
  1213. /*
  1214. * Ok, this is the main fork-routine.
  1215. *
  1216. * It copies the process, and if successful kick-starts
  1217. * it and waits for it to finish using the VM if required.
  1218. */
  1219. long do_fork(unsigned long clone_flags,
  1220. unsigned long stack_start,
  1221. struct pt_regs *regs,
  1222. unsigned long stack_size,
  1223. int __user *parent_tidptr,
  1224. int __user *child_tidptr)
  1225. {
  1226. struct task_struct *p;
  1227. int trace = 0;
  1228. long nr;
  1229. if (unlikely(current->ptrace)) {
  1230. trace = fork_traceflag (clone_flags);
  1231. if (trace)
  1232. clone_flags |= CLONE_PTRACE;
  1233. }
  1234. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1235. child_tidptr, NULL);
  1236. /*
  1237. * Do this prior waking up the new thread - the thread pointer
  1238. * might get invalid after that point, if the thread exits quickly.
  1239. */
  1240. if (!IS_ERR(p)) {
  1241. struct completion vfork;
  1242. /*
  1243. * this is enough to call pid_nr_ns here, but this if
  1244. * improves optimisation of regular fork()
  1245. */
  1246. nr = (clone_flags & CLONE_NEWPID) ?
  1247. task_pid_nr_ns(p, current->nsproxy->pid_ns) :
  1248. task_pid_vnr(p);
  1249. if (clone_flags & CLONE_PARENT_SETTID)
  1250. put_user(nr, parent_tidptr);
  1251. if (clone_flags & CLONE_VFORK) {
  1252. p->vfork_done = &vfork;
  1253. init_completion(&vfork);
  1254. }
  1255. if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
  1256. /*
  1257. * We'll start up with an immediate SIGSTOP.
  1258. */
  1259. sigaddset(&p->pending.signal, SIGSTOP);
  1260. set_tsk_thread_flag(p, TIF_SIGPENDING);
  1261. }
  1262. if (!(clone_flags & CLONE_STOPPED))
  1263. wake_up_new_task(p, clone_flags);
  1264. else
  1265. p->state = TASK_STOPPED;
  1266. if (unlikely (trace)) {
  1267. current->ptrace_message = nr;
  1268. ptrace_notify ((trace << 8) | SIGTRAP);
  1269. }
  1270. if (clone_flags & CLONE_VFORK) {
  1271. freezer_do_not_count();
  1272. wait_for_completion(&vfork);
  1273. freezer_count();
  1274. if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
  1275. current->ptrace_message = nr;
  1276. ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
  1277. }
  1278. }
  1279. } else {
  1280. nr = PTR_ERR(p);
  1281. }
  1282. return nr;
  1283. }
  1284. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1285. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1286. #endif
  1287. static void sighand_ctor(struct kmem_cache *cachep, void *data)
  1288. {
  1289. struct sighand_struct *sighand = data;
  1290. spin_lock_init(&sighand->siglock);
  1291. init_waitqueue_head(&sighand->signalfd_wqh);
  1292. }
  1293. void __init proc_caches_init(void)
  1294. {
  1295. sighand_cachep = kmem_cache_create("sighand_cache",
  1296. sizeof(struct sighand_struct), 0,
  1297. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
  1298. sighand_ctor);
  1299. signal_cachep = kmem_cache_create("signal_cache",
  1300. sizeof(struct signal_struct), 0,
  1301. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1302. files_cachep = kmem_cache_create("files_cache",
  1303. sizeof(struct files_struct), 0,
  1304. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1305. fs_cachep = kmem_cache_create("fs_cache",
  1306. sizeof(struct fs_struct), 0,
  1307. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1308. vm_area_cachep = kmem_cache_create("vm_area_struct",
  1309. sizeof(struct vm_area_struct), 0,
  1310. SLAB_PANIC, NULL);
  1311. mm_cachep = kmem_cache_create("mm_struct",
  1312. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1313. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1314. }
  1315. /*
  1316. * Check constraints on flags passed to the unshare system call and
  1317. * force unsharing of additional process context as appropriate.
  1318. */
  1319. static void check_unshare_flags(unsigned long *flags_ptr)
  1320. {
  1321. /*
  1322. * If unsharing a thread from a thread group, must also
  1323. * unshare vm.
  1324. */
  1325. if (*flags_ptr & CLONE_THREAD)
  1326. *flags_ptr |= CLONE_VM;
  1327. /*
  1328. * If unsharing vm, must also unshare signal handlers.
  1329. */
  1330. if (*flags_ptr & CLONE_VM)
  1331. *flags_ptr |= CLONE_SIGHAND;
  1332. /*
  1333. * If unsharing signal handlers and the task was created
  1334. * using CLONE_THREAD, then must unshare the thread
  1335. */
  1336. if ((*flags_ptr & CLONE_SIGHAND) &&
  1337. (atomic_read(&current->signal->count) > 1))
  1338. *flags_ptr |= CLONE_THREAD;
  1339. /*
  1340. * If unsharing namespace, must also unshare filesystem information.
  1341. */
  1342. if (*flags_ptr & CLONE_NEWNS)
  1343. *flags_ptr |= CLONE_FS;
  1344. }
  1345. /*
  1346. * Unsharing of tasks created with CLONE_THREAD is not supported yet
  1347. */
  1348. static int unshare_thread(unsigned long unshare_flags)
  1349. {
  1350. if (unshare_flags & CLONE_THREAD)
  1351. return -EINVAL;
  1352. return 0;
  1353. }
  1354. /*
  1355. * Unshare the filesystem structure if it is being shared
  1356. */
  1357. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1358. {
  1359. struct fs_struct *fs = current->fs;
  1360. if ((unshare_flags & CLONE_FS) &&
  1361. (fs && atomic_read(&fs->count) > 1)) {
  1362. *new_fsp = __copy_fs_struct(current->fs);
  1363. if (!*new_fsp)
  1364. return -ENOMEM;
  1365. }
  1366. return 0;
  1367. }
  1368. /*
  1369. * Unsharing of sighand is not supported yet
  1370. */
  1371. static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
  1372. {
  1373. struct sighand_struct *sigh = current->sighand;
  1374. if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
  1375. return -EINVAL;
  1376. else
  1377. return 0;
  1378. }
  1379. /*
  1380. * Unshare vm if it is being shared
  1381. */
  1382. static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
  1383. {
  1384. struct mm_struct *mm = current->mm;
  1385. if ((unshare_flags & CLONE_VM) &&
  1386. (mm && atomic_read(&mm->mm_users) > 1)) {
  1387. return -EINVAL;
  1388. }
  1389. return 0;
  1390. }
  1391. /*
  1392. * Unshare file descriptor table if it is being shared
  1393. */
  1394. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1395. {
  1396. struct files_struct *fd = current->files;
  1397. int error = 0;
  1398. if ((unshare_flags & CLONE_FILES) &&
  1399. (fd && atomic_read(&fd->count) > 1)) {
  1400. *new_fdp = dup_fd(fd, &error);
  1401. if (!*new_fdp)
  1402. return error;
  1403. }
  1404. return 0;
  1405. }
  1406. /*
  1407. * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
  1408. * supported yet
  1409. */
  1410. static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
  1411. {
  1412. if (unshare_flags & CLONE_SYSVSEM)
  1413. return -EINVAL;
  1414. return 0;
  1415. }
  1416. /*
  1417. * unshare allows a process to 'unshare' part of the process
  1418. * context which was originally shared using clone. copy_*
  1419. * functions used by do_fork() cannot be used here directly
  1420. * because they modify an inactive task_struct that is being
  1421. * constructed. Here we are modifying the current, active,
  1422. * task_struct.
  1423. */
  1424. asmlinkage long sys_unshare(unsigned long unshare_flags)
  1425. {
  1426. int err = 0;
  1427. struct fs_struct *fs, *new_fs = NULL;
  1428. struct sighand_struct *new_sigh = NULL;
  1429. struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
  1430. struct files_struct *fd, *new_fd = NULL;
  1431. struct sem_undo_list *new_ulist = NULL;
  1432. struct nsproxy *new_nsproxy = NULL;
  1433. check_unshare_flags(&unshare_flags);
  1434. /* Return -EINVAL for all unsupported flags */
  1435. err = -EINVAL;
  1436. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1437. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1438. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
  1439. CLONE_NEWNET))
  1440. goto bad_unshare_out;
  1441. if ((err = unshare_thread(unshare_flags)))
  1442. goto bad_unshare_out;
  1443. if ((err = unshare_fs(unshare_flags, &new_fs)))
  1444. goto bad_unshare_cleanup_thread;
  1445. if ((err = unshare_sighand(unshare_flags, &new_sigh)))
  1446. goto bad_unshare_cleanup_fs;
  1447. if ((err = unshare_vm(unshare_flags, &new_mm)))
  1448. goto bad_unshare_cleanup_sigh;
  1449. if ((err = unshare_fd(unshare_flags, &new_fd)))
  1450. goto bad_unshare_cleanup_vm;
  1451. if ((err = unshare_semundo(unshare_flags, &new_ulist)))
  1452. goto bad_unshare_cleanup_fd;
  1453. if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1454. new_fs)))
  1455. goto bad_unshare_cleanup_semundo;
  1456. if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
  1457. if (new_nsproxy) {
  1458. switch_task_namespaces(current, new_nsproxy);
  1459. new_nsproxy = NULL;
  1460. }
  1461. task_lock(current);
  1462. if (new_fs) {
  1463. fs = current->fs;
  1464. current->fs = new_fs;
  1465. new_fs = fs;
  1466. }
  1467. if (new_mm) {
  1468. mm = current->mm;
  1469. active_mm = current->active_mm;
  1470. current->mm = new_mm;
  1471. current->active_mm = new_mm;
  1472. activate_mm(active_mm, new_mm);
  1473. new_mm = mm;
  1474. }
  1475. if (new_fd) {
  1476. fd = current->files;
  1477. current->files = new_fd;
  1478. new_fd = fd;
  1479. }
  1480. task_unlock(current);
  1481. }
  1482. if (new_nsproxy)
  1483. put_nsproxy(new_nsproxy);
  1484. bad_unshare_cleanup_semundo:
  1485. bad_unshare_cleanup_fd:
  1486. if (new_fd)
  1487. put_files_struct(new_fd);
  1488. bad_unshare_cleanup_vm:
  1489. if (new_mm)
  1490. mmput(new_mm);
  1491. bad_unshare_cleanup_sigh:
  1492. if (new_sigh)
  1493. if (atomic_dec_and_test(&new_sigh->count))
  1494. kmem_cache_free(sighand_cachep, new_sigh);
  1495. bad_unshare_cleanup_fs:
  1496. if (new_fs)
  1497. put_fs_struct(new_fs);
  1498. bad_unshare_cleanup_thread:
  1499. bad_unshare_out:
  1500. return err;
  1501. }