niu.c 174 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/io.h>
  25. #ifdef CONFIG_SPARC64
  26. #include <linux/of_device.h>
  27. #endif
  28. #include "niu.h"
  29. #define DRV_MODULE_NAME "niu"
  30. #define PFX DRV_MODULE_NAME ": "
  31. #define DRV_MODULE_VERSION "0.5"
  32. #define DRV_MODULE_RELDATE "October 5, 2007"
  33. static char version[] __devinitdata =
  34. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  35. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  36. MODULE_DESCRIPTION("NIU ethernet driver");
  37. MODULE_LICENSE("GPL");
  38. MODULE_VERSION(DRV_MODULE_VERSION);
  39. #ifndef DMA_44BIT_MASK
  40. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  41. #endif
  42. #ifndef readq
  43. static u64 readq(void __iomem *reg)
  44. {
  45. return (((u64)readl(reg + 0x4UL) << 32) |
  46. (u64)readl(reg));
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay)
  93. {
  94. while (--limit >= 0) {
  95. u64 val = nr64_mac(reg);
  96. if (!(val & bits))
  97. break;
  98. udelay(delay);
  99. }
  100. if (limit < 0)
  101. return -ENODEV;
  102. return 0;
  103. }
  104. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  105. u64 bits, int limit, int delay,
  106. const char *reg_name)
  107. {
  108. int err;
  109. nw64_mac(reg, bits);
  110. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  111. if (err)
  112. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  113. "would not clear, val[%llx]\n",
  114. np->dev->name, (unsigned long long) bits, reg_name,
  115. (unsigned long long) nr64_mac(reg));
  116. return err;
  117. }
  118. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  119. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  120. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  121. })
  122. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  123. u64 bits, int limit, int delay)
  124. {
  125. while (--limit >= 0) {
  126. u64 val = nr64_ipp(reg);
  127. if (!(val & bits))
  128. break;
  129. udelay(delay);
  130. }
  131. if (limit < 0)
  132. return -ENODEV;
  133. return 0;
  134. }
  135. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  136. u64 bits, int limit, int delay,
  137. const char *reg_name)
  138. {
  139. int err;
  140. u64 val;
  141. val = nr64_ipp(reg);
  142. val |= bits;
  143. nw64_ipp(reg, val);
  144. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  145. if (err)
  146. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  147. "would not clear, val[%llx]\n",
  148. np->dev->name, (unsigned long long) bits, reg_name,
  149. (unsigned long long) nr64_ipp(reg));
  150. return err;
  151. }
  152. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  153. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  154. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  155. })
  156. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  157. u64 bits, int limit, int delay)
  158. {
  159. while (--limit >= 0) {
  160. u64 val = nr64(reg);
  161. if (!(val & bits))
  162. break;
  163. udelay(delay);
  164. }
  165. if (limit < 0)
  166. return -ENODEV;
  167. return 0;
  168. }
  169. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  170. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  171. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  172. })
  173. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  174. u64 bits, int limit, int delay,
  175. const char *reg_name)
  176. {
  177. int err;
  178. nw64(reg, bits);
  179. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  180. if (err)
  181. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  182. "would not clear, val[%llx]\n",
  183. np->dev->name, (unsigned long long) bits, reg_name,
  184. (unsigned long long) nr64(reg));
  185. return err;
  186. }
  187. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  188. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  189. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  190. })
  191. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  192. {
  193. u64 val = (u64) lp->timer;
  194. if (on)
  195. val |= LDG_IMGMT_ARM;
  196. nw64(LDG_IMGMT(lp->ldg_num), val);
  197. }
  198. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  199. {
  200. unsigned long mask_reg, bits;
  201. u64 val;
  202. if (ldn < 0 || ldn > LDN_MAX)
  203. return -EINVAL;
  204. if (ldn < 64) {
  205. mask_reg = LD_IM0(ldn);
  206. bits = LD_IM0_MASK;
  207. } else {
  208. mask_reg = LD_IM1(ldn - 64);
  209. bits = LD_IM1_MASK;
  210. }
  211. val = nr64(mask_reg);
  212. if (on)
  213. val &= ~bits;
  214. else
  215. val |= bits;
  216. nw64(mask_reg, val);
  217. return 0;
  218. }
  219. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  220. {
  221. struct niu_parent *parent = np->parent;
  222. int i;
  223. for (i = 0; i <= LDN_MAX; i++) {
  224. int err;
  225. if (parent->ldg_map[i] != lp->ldg_num)
  226. continue;
  227. err = niu_ldn_irq_enable(np, i, on);
  228. if (err)
  229. return err;
  230. }
  231. return 0;
  232. }
  233. static int niu_enable_interrupts(struct niu *np, int on)
  234. {
  235. int i;
  236. for (i = 0; i < np->num_ldg; i++) {
  237. struct niu_ldg *lp = &np->ldg[i];
  238. int err;
  239. err = niu_enable_ldn_in_ldg(np, lp, on);
  240. if (err)
  241. return err;
  242. }
  243. for (i = 0; i < np->num_ldg; i++)
  244. niu_ldg_rearm(np, &np->ldg[i], on);
  245. return 0;
  246. }
  247. static u32 phy_encode(u32 type, int port)
  248. {
  249. return (type << (port * 2));
  250. }
  251. static u32 phy_decode(u32 val, int port)
  252. {
  253. return (val >> (port * 2)) & PORT_TYPE_MASK;
  254. }
  255. static int mdio_wait(struct niu *np)
  256. {
  257. int limit = 1000;
  258. u64 val;
  259. while (--limit > 0) {
  260. val = nr64(MIF_FRAME_OUTPUT);
  261. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  262. return val & MIF_FRAME_OUTPUT_DATA;
  263. udelay(10);
  264. }
  265. return -ENODEV;
  266. }
  267. static int mdio_read(struct niu *np, int port, int dev, int reg)
  268. {
  269. int err;
  270. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  271. err = mdio_wait(np);
  272. if (err < 0)
  273. return err;
  274. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  275. return mdio_wait(np);
  276. }
  277. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  278. {
  279. int err;
  280. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  281. err = mdio_wait(np);
  282. if (err < 0)
  283. return err;
  284. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  285. err = mdio_wait(np);
  286. if (err < 0)
  287. return err;
  288. return 0;
  289. }
  290. static int mii_read(struct niu *np, int port, int reg)
  291. {
  292. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  293. return mdio_wait(np);
  294. }
  295. static int mii_write(struct niu *np, int port, int reg, int data)
  296. {
  297. int err;
  298. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  299. err = mdio_wait(np);
  300. if (err < 0)
  301. return err;
  302. return 0;
  303. }
  304. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  305. {
  306. int err;
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_TX_CFG_L(channel),
  309. val & 0xffff);
  310. if (!err)
  311. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  312. ESR2_TI_PLL_TX_CFG_H(channel),
  313. val >> 16);
  314. return err;
  315. }
  316. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  317. {
  318. int err;
  319. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  320. ESR2_TI_PLL_RX_CFG_L(channel),
  321. val & 0xffff);
  322. if (!err)
  323. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  324. ESR2_TI_PLL_RX_CFG_H(channel),
  325. val >> 16);
  326. return err;
  327. }
  328. /* Mode is always 10G fiber. */
  329. static int serdes_init_niu(struct niu *np)
  330. {
  331. struct niu_link_config *lp = &np->link_config;
  332. u32 tx_cfg, rx_cfg;
  333. unsigned long i;
  334. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  335. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  336. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  337. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  338. if (lp->loopback_mode == LOOPBACK_PHY) {
  339. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  340. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  341. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  342. tx_cfg |= PLL_TX_CFG_ENTEST;
  343. rx_cfg |= PLL_RX_CFG_ENTEST;
  344. }
  345. /* Initialize all 4 lanes of the SERDES. */
  346. for (i = 0; i < 4; i++) {
  347. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  348. if (err)
  349. return err;
  350. }
  351. for (i = 0; i < 4; i++) {
  352. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  353. if (err)
  354. return err;
  355. }
  356. return 0;
  357. }
  358. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  359. {
  360. int err;
  361. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  362. if (err >= 0) {
  363. *val = (err & 0xffff);
  364. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  365. ESR_RXTX_CTRL_H(chan));
  366. if (err >= 0)
  367. *val |= ((err & 0xffff) << 16);
  368. err = 0;
  369. }
  370. return err;
  371. }
  372. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  373. {
  374. int err;
  375. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  376. ESR_GLUE_CTRL0_L(chan));
  377. if (err >= 0) {
  378. *val = (err & 0xffff);
  379. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  380. ESR_GLUE_CTRL0_H(chan));
  381. if (err >= 0) {
  382. *val |= ((err & 0xffff) << 16);
  383. err = 0;
  384. }
  385. }
  386. return err;
  387. }
  388. static int esr_read_reset(struct niu *np, u32 *val)
  389. {
  390. int err;
  391. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  392. ESR_RXTX_RESET_CTRL_L);
  393. if (err >= 0) {
  394. *val = (err & 0xffff);
  395. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  396. ESR_RXTX_RESET_CTRL_H);
  397. if (err >= 0) {
  398. *val |= ((err & 0xffff) << 16);
  399. err = 0;
  400. }
  401. }
  402. return err;
  403. }
  404. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  405. {
  406. int err;
  407. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  408. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  409. if (!err)
  410. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  411. ESR_RXTX_CTRL_H(chan), (val >> 16));
  412. return err;
  413. }
  414. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  415. {
  416. int err;
  417. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  418. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  419. if (!err)
  420. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  421. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  422. return err;
  423. }
  424. static int esr_reset(struct niu *np)
  425. {
  426. u32 reset;
  427. int err;
  428. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  429. ESR_RXTX_RESET_CTRL_L, 0x0000);
  430. if (err)
  431. return err;
  432. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  433. ESR_RXTX_RESET_CTRL_H, 0xffff);
  434. if (err)
  435. return err;
  436. udelay(200);
  437. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  438. ESR_RXTX_RESET_CTRL_L, 0xffff);
  439. if (err)
  440. return err;
  441. udelay(200);
  442. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  443. ESR_RXTX_RESET_CTRL_H, 0x0000);
  444. if (err)
  445. return err;
  446. udelay(200);
  447. err = esr_read_reset(np, &reset);
  448. if (err)
  449. return err;
  450. if (reset != 0) {
  451. dev_err(np->device, PFX "Port %u ESR_RESET "
  452. "did not clear [%08x]\n",
  453. np->port, reset);
  454. return -ENODEV;
  455. }
  456. return 0;
  457. }
  458. static int serdes_init_10g(struct niu *np)
  459. {
  460. struct niu_link_config *lp = &np->link_config;
  461. unsigned long ctrl_reg, test_cfg_reg, i;
  462. u64 ctrl_val, test_cfg_val, sig, mask, val;
  463. int err;
  464. switch (np->port) {
  465. case 0:
  466. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  467. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  468. break;
  469. case 1:
  470. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  471. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  472. break;
  473. default:
  474. return -EINVAL;
  475. }
  476. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  477. ENET_SERDES_CTRL_SDET_1 |
  478. ENET_SERDES_CTRL_SDET_2 |
  479. ENET_SERDES_CTRL_SDET_3 |
  480. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  481. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  482. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  483. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  484. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  485. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  486. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  487. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  488. test_cfg_val = 0;
  489. if (lp->loopback_mode == LOOPBACK_PHY) {
  490. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  491. ENET_SERDES_TEST_MD_0_SHIFT) |
  492. (ENET_TEST_MD_PAD_LOOPBACK <<
  493. ENET_SERDES_TEST_MD_1_SHIFT) |
  494. (ENET_TEST_MD_PAD_LOOPBACK <<
  495. ENET_SERDES_TEST_MD_2_SHIFT) |
  496. (ENET_TEST_MD_PAD_LOOPBACK <<
  497. ENET_SERDES_TEST_MD_3_SHIFT));
  498. }
  499. nw64(ctrl_reg, ctrl_val);
  500. nw64(test_cfg_reg, test_cfg_val);
  501. /* Initialize all 4 lanes of the SERDES. */
  502. for (i = 0; i < 4; i++) {
  503. u32 rxtx_ctrl, glue0;
  504. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  505. if (err)
  506. return err;
  507. err = esr_read_glue0(np, i, &glue0);
  508. if (err)
  509. return err;
  510. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  511. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  512. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  513. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  514. ESR_GLUE_CTRL0_THCNT |
  515. ESR_GLUE_CTRL0_BLTIME);
  516. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  517. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  518. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  519. (BLTIME_300_CYCLES <<
  520. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  521. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  522. if (err)
  523. return err;
  524. err = esr_write_glue0(np, i, glue0);
  525. if (err)
  526. return err;
  527. }
  528. err = esr_reset(np);
  529. if (err)
  530. return err;
  531. sig = nr64(ESR_INT_SIGNALS);
  532. switch (np->port) {
  533. case 0:
  534. mask = ESR_INT_SIGNALS_P0_BITS;
  535. val = (ESR_INT_SRDY0_P0 |
  536. ESR_INT_DET0_P0 |
  537. ESR_INT_XSRDY_P0 |
  538. ESR_INT_XDP_P0_CH3 |
  539. ESR_INT_XDP_P0_CH2 |
  540. ESR_INT_XDP_P0_CH1 |
  541. ESR_INT_XDP_P0_CH0);
  542. break;
  543. case 1:
  544. mask = ESR_INT_SIGNALS_P1_BITS;
  545. val = (ESR_INT_SRDY0_P1 |
  546. ESR_INT_DET0_P1 |
  547. ESR_INT_XSRDY_P1 |
  548. ESR_INT_XDP_P1_CH3 |
  549. ESR_INT_XDP_P1_CH2 |
  550. ESR_INT_XDP_P1_CH1 |
  551. ESR_INT_XDP_P1_CH0);
  552. break;
  553. default:
  554. return -EINVAL;
  555. }
  556. if ((sig & mask) != val) {
  557. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  558. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  559. return -ENODEV;
  560. }
  561. return 0;
  562. }
  563. static int serdes_init_1g(struct niu *np)
  564. {
  565. u64 val;
  566. val = nr64(ENET_SERDES_1_PLL_CFG);
  567. val &= ~ENET_SERDES_PLL_FBDIV2;
  568. switch (np->port) {
  569. case 0:
  570. val |= ENET_SERDES_PLL_HRATE0;
  571. break;
  572. case 1:
  573. val |= ENET_SERDES_PLL_HRATE1;
  574. break;
  575. case 2:
  576. val |= ENET_SERDES_PLL_HRATE2;
  577. break;
  578. case 3:
  579. val |= ENET_SERDES_PLL_HRATE3;
  580. break;
  581. default:
  582. return -EINVAL;
  583. }
  584. nw64(ENET_SERDES_1_PLL_CFG, val);
  585. return 0;
  586. }
  587. static int bcm8704_reset(struct niu *np)
  588. {
  589. int err, limit;
  590. err = mdio_read(np, np->phy_addr,
  591. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  592. if (err < 0)
  593. return err;
  594. err |= BMCR_RESET;
  595. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  596. MII_BMCR, err);
  597. if (err)
  598. return err;
  599. limit = 1000;
  600. while (--limit >= 0) {
  601. err = mdio_read(np, np->phy_addr,
  602. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  603. if (err < 0)
  604. return err;
  605. if (!(err & BMCR_RESET))
  606. break;
  607. }
  608. if (limit < 0) {
  609. dev_err(np->device, PFX "Port %u PHY will not reset "
  610. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  611. return -ENODEV;
  612. }
  613. return 0;
  614. }
  615. /* When written, certain PHY registers need to be read back twice
  616. * in order for the bits to settle properly.
  617. */
  618. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  619. {
  620. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  621. if (err < 0)
  622. return err;
  623. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  624. if (err < 0)
  625. return err;
  626. return 0;
  627. }
  628. static int bcm8704_init_user_dev3(struct niu *np)
  629. {
  630. int err;
  631. err = mdio_write(np, np->phy_addr,
  632. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  633. (USER_CONTROL_OPTXRST_LVL |
  634. USER_CONTROL_OPBIASFLT_LVL |
  635. USER_CONTROL_OBTMPFLT_LVL |
  636. USER_CONTROL_OPPRFLT_LVL |
  637. USER_CONTROL_OPTXFLT_LVL |
  638. USER_CONTROL_OPRXLOS_LVL |
  639. USER_CONTROL_OPRXFLT_LVL |
  640. USER_CONTROL_OPTXON_LVL |
  641. (0x3f << USER_CONTROL_RES1_SHIFT)));
  642. if (err)
  643. return err;
  644. err = mdio_write(np, np->phy_addr,
  645. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  646. (USER_PMD_TX_CTL_XFP_CLKEN |
  647. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  648. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  649. USER_PMD_TX_CTL_TSCK_LPWREN));
  650. if (err)
  651. return err;
  652. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  653. if (err)
  654. return err;
  655. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  656. if (err)
  657. return err;
  658. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  659. BCM8704_USER_OPT_DIGITAL_CTRL);
  660. if (err < 0)
  661. return err;
  662. err &= ~USER_ODIG_CTRL_GPIOS;
  663. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  664. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  665. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  666. if (err)
  667. return err;
  668. mdelay(1000);
  669. return 0;
  670. }
  671. static int xcvr_init_10g(struct niu *np)
  672. {
  673. struct niu_link_config *lp = &np->link_config;
  674. u16 analog_stat0, tx_alarm_status;
  675. int err;
  676. u64 val;
  677. val = nr64_mac(XMAC_CONFIG);
  678. val &= ~XMAC_CONFIG_LED_POLARITY;
  679. val |= XMAC_CONFIG_FORCE_LED_ON;
  680. nw64_mac(XMAC_CONFIG, val);
  681. /* XXX shared resource, lock parent XXX */
  682. val = nr64(MIF_CONFIG);
  683. val |= MIF_CONFIG_INDIRECT_MODE;
  684. nw64(MIF_CONFIG, val);
  685. err = bcm8704_reset(np);
  686. if (err)
  687. return err;
  688. err = bcm8704_init_user_dev3(np);
  689. if (err)
  690. return err;
  691. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  692. MII_BMCR);
  693. if (err < 0)
  694. return err;
  695. err &= ~BMCR_LOOPBACK;
  696. if (lp->loopback_mode == LOOPBACK_MAC)
  697. err |= BMCR_LOOPBACK;
  698. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  699. MII_BMCR, err);
  700. if (err)
  701. return err;
  702. #if 1
  703. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  704. MII_STAT1000);
  705. if (err < 0)
  706. return err;
  707. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  708. np->port, err);
  709. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  710. if (err < 0)
  711. return err;
  712. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  713. np->port, err);
  714. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  715. MII_NWAYTEST);
  716. if (err < 0)
  717. return err;
  718. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  719. np->port, err);
  720. #endif
  721. /* XXX dig this out it might not be so useful XXX */
  722. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  723. BCM8704_USER_ANALOG_STATUS0);
  724. if (err < 0)
  725. return err;
  726. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  727. BCM8704_USER_ANALOG_STATUS0);
  728. if (err < 0)
  729. return err;
  730. analog_stat0 = err;
  731. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  732. BCM8704_USER_TX_ALARM_STATUS);
  733. if (err < 0)
  734. return err;
  735. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  736. BCM8704_USER_TX_ALARM_STATUS);
  737. if (err < 0)
  738. return err;
  739. tx_alarm_status = err;
  740. if (analog_stat0 != 0x03fc) {
  741. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  742. pr_info(PFX "Port %u cable not connected "
  743. "or bad cable.\n", np->port);
  744. } else if (analog_stat0 == 0x639c) {
  745. pr_info(PFX "Port %u optical module is bad "
  746. "or missing.\n", np->port);
  747. }
  748. }
  749. return 0;
  750. }
  751. static int mii_reset(struct niu *np)
  752. {
  753. int limit, err;
  754. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  755. if (err)
  756. return err;
  757. limit = 1000;
  758. while (--limit >= 0) {
  759. udelay(500);
  760. err = mii_read(np, np->phy_addr, MII_BMCR);
  761. if (err < 0)
  762. return err;
  763. if (!(err & BMCR_RESET))
  764. break;
  765. }
  766. if (limit < 0) {
  767. dev_err(np->device, PFX "Port %u MII would not reset, "
  768. "bmcr[%04x]\n", np->port, err);
  769. return -ENODEV;
  770. }
  771. return 0;
  772. }
  773. static int mii_init_common(struct niu *np)
  774. {
  775. struct niu_link_config *lp = &np->link_config;
  776. u16 bmcr, bmsr, adv, estat;
  777. int err;
  778. err = mii_reset(np);
  779. if (err)
  780. return err;
  781. err = mii_read(np, np->phy_addr, MII_BMSR);
  782. if (err < 0)
  783. return err;
  784. bmsr = err;
  785. estat = 0;
  786. if (bmsr & BMSR_ESTATEN) {
  787. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  788. if (err < 0)
  789. return err;
  790. estat = err;
  791. }
  792. bmcr = 0;
  793. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  794. if (err)
  795. return err;
  796. if (lp->loopback_mode == LOOPBACK_MAC) {
  797. bmcr |= BMCR_LOOPBACK;
  798. if (lp->active_speed == SPEED_1000)
  799. bmcr |= BMCR_SPEED1000;
  800. if (lp->active_duplex == DUPLEX_FULL)
  801. bmcr |= BMCR_FULLDPLX;
  802. }
  803. if (lp->loopback_mode == LOOPBACK_PHY) {
  804. u16 aux;
  805. aux = (BCM5464R_AUX_CTL_EXT_LB |
  806. BCM5464R_AUX_CTL_WRITE_1);
  807. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  808. if (err)
  809. return err;
  810. }
  811. /* XXX configurable XXX */
  812. /* XXX for now don't advertise half-duplex or asym pause... XXX */
  813. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  814. if (bmsr & BMSR_10FULL)
  815. adv |= ADVERTISE_10FULL;
  816. if (bmsr & BMSR_100FULL)
  817. adv |= ADVERTISE_100FULL;
  818. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  819. if (err)
  820. return err;
  821. if (bmsr & BMSR_ESTATEN) {
  822. u16 ctrl1000 = 0;
  823. if (estat & ESTATUS_1000_TFULL)
  824. ctrl1000 |= ADVERTISE_1000FULL;
  825. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  826. if (err)
  827. return err;
  828. }
  829. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  830. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  831. if (err)
  832. return err;
  833. err = mii_read(np, np->phy_addr, MII_BMCR);
  834. if (err < 0)
  835. return err;
  836. err = mii_read(np, np->phy_addr, MII_BMSR);
  837. if (err < 0)
  838. return err;
  839. #if 0
  840. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  841. np->port, bmcr, bmsr);
  842. #endif
  843. return 0;
  844. }
  845. static int xcvr_init_1g(struct niu *np)
  846. {
  847. u64 val;
  848. /* XXX shared resource, lock parent XXX */
  849. val = nr64(MIF_CONFIG);
  850. val &= ~MIF_CONFIG_INDIRECT_MODE;
  851. nw64(MIF_CONFIG, val);
  852. return mii_init_common(np);
  853. }
  854. static int niu_xcvr_init(struct niu *np)
  855. {
  856. const struct niu_phy_ops *ops = np->phy_ops;
  857. int err;
  858. err = 0;
  859. if (ops->xcvr_init)
  860. err = ops->xcvr_init(np);
  861. return err;
  862. }
  863. static int niu_serdes_init(struct niu *np)
  864. {
  865. const struct niu_phy_ops *ops = np->phy_ops;
  866. int err;
  867. err = 0;
  868. if (ops->serdes_init)
  869. err = ops->serdes_init(np);
  870. return err;
  871. }
  872. static void niu_init_xif(struct niu *);
  873. static int niu_link_status_common(struct niu *np, int link_up)
  874. {
  875. struct niu_link_config *lp = &np->link_config;
  876. struct net_device *dev = np->dev;
  877. unsigned long flags;
  878. if (!netif_carrier_ok(dev) && link_up) {
  879. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  880. dev->name,
  881. (lp->active_speed == SPEED_10000 ?
  882. "10Gb/sec" :
  883. (lp->active_speed == SPEED_1000 ?
  884. "1Gb/sec" :
  885. (lp->active_speed == SPEED_100 ?
  886. "100Mbit/sec" : "10Mbit/sec"))),
  887. (lp->active_duplex == DUPLEX_FULL ?
  888. "full" : "half"));
  889. spin_lock_irqsave(&np->lock, flags);
  890. niu_init_xif(np);
  891. spin_unlock_irqrestore(&np->lock, flags);
  892. netif_carrier_on(dev);
  893. } else if (netif_carrier_ok(dev) && !link_up) {
  894. niuwarn(LINK, "%s: Link is down\n", dev->name);
  895. netif_carrier_off(dev);
  896. }
  897. return 0;
  898. }
  899. static int link_status_10g(struct niu *np, int *link_up_p)
  900. {
  901. unsigned long flags;
  902. int err, link_up;
  903. link_up = 0;
  904. spin_lock_irqsave(&np->lock, flags);
  905. err = -EINVAL;
  906. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  907. goto out;
  908. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  909. BCM8704_PMD_RCV_SIGDET);
  910. if (err < 0)
  911. goto out;
  912. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  913. err = 0;
  914. goto out;
  915. }
  916. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  917. BCM8704_PCS_10G_R_STATUS);
  918. if (err < 0)
  919. goto out;
  920. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  921. err = 0;
  922. goto out;
  923. }
  924. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  925. BCM8704_PHYXS_XGXS_LANE_STAT);
  926. if (err < 0)
  927. goto out;
  928. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  929. PHYXS_XGXS_LANE_STAT_MAGIC |
  930. PHYXS_XGXS_LANE_STAT_LANE3 |
  931. PHYXS_XGXS_LANE_STAT_LANE2 |
  932. PHYXS_XGXS_LANE_STAT_LANE1 |
  933. PHYXS_XGXS_LANE_STAT_LANE0)) {
  934. err = 0;
  935. goto out;
  936. }
  937. link_up = 1;
  938. np->link_config.active_speed = SPEED_10000;
  939. np->link_config.active_duplex = DUPLEX_FULL;
  940. err = 0;
  941. out:
  942. spin_unlock_irqrestore(&np->lock, flags);
  943. *link_up_p = link_up;
  944. return err;
  945. }
  946. static int link_status_1g(struct niu *np, int *link_up_p)
  947. {
  948. u16 current_speed, bmsr;
  949. unsigned long flags;
  950. u8 current_duplex;
  951. int err, link_up;
  952. link_up = 0;
  953. current_speed = SPEED_INVALID;
  954. current_duplex = DUPLEX_INVALID;
  955. spin_lock_irqsave(&np->lock, flags);
  956. err = -EINVAL;
  957. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  958. goto out;
  959. err = mii_read(np, np->phy_addr, MII_BMSR);
  960. if (err < 0)
  961. goto out;
  962. bmsr = err;
  963. if (bmsr & BMSR_LSTATUS) {
  964. u16 adv, lpa, common, estat;
  965. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  966. if (err < 0)
  967. goto out;
  968. adv = err;
  969. err = mii_read(np, np->phy_addr, MII_LPA);
  970. if (err < 0)
  971. goto out;
  972. lpa = err;
  973. common = adv & lpa;
  974. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  975. if (err < 0)
  976. goto out;
  977. estat = err;
  978. link_up = 1;
  979. if (estat & (ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) {
  980. current_speed = SPEED_1000;
  981. if (estat & ESTATUS_1000_TFULL)
  982. current_duplex = DUPLEX_FULL;
  983. else
  984. current_duplex = DUPLEX_HALF;
  985. } else {
  986. if (common & ADVERTISE_100BASE4) {
  987. current_speed = SPEED_100;
  988. current_duplex = DUPLEX_HALF;
  989. } else if (common & ADVERTISE_100FULL) {
  990. current_speed = SPEED_100;
  991. current_duplex = DUPLEX_FULL;
  992. } else if (common & ADVERTISE_100HALF) {
  993. current_speed = SPEED_100;
  994. current_duplex = DUPLEX_HALF;
  995. } else if (common & ADVERTISE_10FULL) {
  996. current_speed = SPEED_10;
  997. current_duplex = DUPLEX_FULL;
  998. } else if (common & ADVERTISE_10HALF) {
  999. current_speed = SPEED_10;
  1000. current_duplex = DUPLEX_HALF;
  1001. } else
  1002. link_up = 0;
  1003. }
  1004. }
  1005. err = 0;
  1006. out:
  1007. spin_unlock_irqrestore(&np->lock, flags);
  1008. *link_up_p = link_up;
  1009. return err;
  1010. }
  1011. static int niu_link_status(struct niu *np, int *link_up_p)
  1012. {
  1013. const struct niu_phy_ops *ops = np->phy_ops;
  1014. int err;
  1015. err = 0;
  1016. if (ops->link_status)
  1017. err = ops->link_status(np, link_up_p);
  1018. return err;
  1019. }
  1020. static void niu_timer(unsigned long __opaque)
  1021. {
  1022. struct niu *np = (struct niu *) __opaque;
  1023. unsigned long off;
  1024. int err, link_up;
  1025. err = niu_link_status(np, &link_up);
  1026. if (!err)
  1027. niu_link_status_common(np, link_up);
  1028. if (netif_carrier_ok(np->dev))
  1029. off = 5 * HZ;
  1030. else
  1031. off = 1 * HZ;
  1032. np->timer.expires = jiffies + off;
  1033. add_timer(&np->timer);
  1034. }
  1035. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1036. .serdes_init = serdes_init_niu,
  1037. .xcvr_init = xcvr_init_10g,
  1038. .link_status = link_status_10g,
  1039. };
  1040. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1041. .serdes_init = serdes_init_10g,
  1042. .xcvr_init = xcvr_init_10g,
  1043. .link_status = link_status_10g,
  1044. };
  1045. static const struct niu_phy_ops phy_ops_10g_copper = {
  1046. .serdes_init = serdes_init_10g,
  1047. .link_status = link_status_10g, /* XXX */
  1048. };
  1049. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1050. .serdes_init = serdes_init_1g,
  1051. .xcvr_init = xcvr_init_1g,
  1052. .link_status = link_status_1g,
  1053. };
  1054. static const struct niu_phy_ops phy_ops_1g_copper = {
  1055. .xcvr_init = xcvr_init_1g,
  1056. .link_status = link_status_1g,
  1057. };
  1058. struct niu_phy_template {
  1059. const struct niu_phy_ops *ops;
  1060. u32 phy_addr_base;
  1061. };
  1062. static const struct niu_phy_template phy_template_niu = {
  1063. .ops = &phy_ops_10g_fiber_niu,
  1064. .phy_addr_base = 16,
  1065. };
  1066. static const struct niu_phy_template phy_template_10g_fiber = {
  1067. .ops = &phy_ops_10g_fiber,
  1068. .phy_addr_base = 8,
  1069. };
  1070. static const struct niu_phy_template phy_template_10g_copper = {
  1071. .ops = &phy_ops_10g_copper,
  1072. .phy_addr_base = 10,
  1073. };
  1074. static const struct niu_phy_template phy_template_1g_fiber = {
  1075. .ops = &phy_ops_1g_fiber,
  1076. .phy_addr_base = 0,
  1077. };
  1078. static const struct niu_phy_template phy_template_1g_copper = {
  1079. .ops = &phy_ops_1g_copper,
  1080. .phy_addr_base = 0,
  1081. };
  1082. static int niu_determine_phy_disposition(struct niu *np)
  1083. {
  1084. struct niu_parent *parent = np->parent;
  1085. u8 plat_type = parent->plat_type;
  1086. const struct niu_phy_template *tp;
  1087. u32 phy_addr_off = 0;
  1088. if (plat_type == PLAT_TYPE_NIU) {
  1089. tp = &phy_template_niu;
  1090. phy_addr_off += np->port;
  1091. } else {
  1092. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  1093. case 0:
  1094. /* 1G copper */
  1095. tp = &phy_template_1g_copper;
  1096. if (plat_type == PLAT_TYPE_VF_P0)
  1097. phy_addr_off = 10;
  1098. else if (plat_type == PLAT_TYPE_VF_P1)
  1099. phy_addr_off = 26;
  1100. phy_addr_off += (np->port ^ 0x3);
  1101. break;
  1102. case NIU_FLAGS_10G:
  1103. /* 10G copper */
  1104. tp = &phy_template_1g_copper;
  1105. break;
  1106. case NIU_FLAGS_FIBER:
  1107. /* 1G fiber */
  1108. tp = &phy_template_1g_fiber;
  1109. break;
  1110. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  1111. /* 10G fiber */
  1112. tp = &phy_template_10g_fiber;
  1113. if (plat_type == PLAT_TYPE_VF_P0 ||
  1114. plat_type == PLAT_TYPE_VF_P1)
  1115. phy_addr_off = 8;
  1116. phy_addr_off += np->port;
  1117. break;
  1118. default:
  1119. return -EINVAL;
  1120. }
  1121. }
  1122. np->phy_ops = tp->ops;
  1123. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  1124. return 0;
  1125. }
  1126. static int niu_init_link(struct niu *np)
  1127. {
  1128. struct niu_parent *parent = np->parent;
  1129. int err, ignore;
  1130. if (parent->plat_type == PLAT_TYPE_NIU) {
  1131. err = niu_xcvr_init(np);
  1132. if (err)
  1133. return err;
  1134. msleep(200);
  1135. }
  1136. err = niu_serdes_init(np);
  1137. if (err)
  1138. return err;
  1139. msleep(200);
  1140. err = niu_xcvr_init(np);
  1141. if (!err)
  1142. niu_link_status(np, &ignore);
  1143. return 0;
  1144. }
  1145. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  1146. {
  1147. u16 reg0 = addr[4] << 8 | addr[5];
  1148. u16 reg1 = addr[2] << 8 | addr[3];
  1149. u16 reg2 = addr[0] << 8 | addr[1];
  1150. if (np->flags & NIU_FLAGS_XMAC) {
  1151. nw64_mac(XMAC_ADDR0, reg0);
  1152. nw64_mac(XMAC_ADDR1, reg1);
  1153. nw64_mac(XMAC_ADDR2, reg2);
  1154. } else {
  1155. nw64_mac(BMAC_ADDR0, reg0);
  1156. nw64_mac(BMAC_ADDR1, reg1);
  1157. nw64_mac(BMAC_ADDR2, reg2);
  1158. }
  1159. }
  1160. static int niu_num_alt_addr(struct niu *np)
  1161. {
  1162. if (np->flags & NIU_FLAGS_XMAC)
  1163. return XMAC_NUM_ALT_ADDR;
  1164. else
  1165. return BMAC_NUM_ALT_ADDR;
  1166. }
  1167. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  1168. {
  1169. u16 reg0 = addr[4] << 8 | addr[5];
  1170. u16 reg1 = addr[2] << 8 | addr[3];
  1171. u16 reg2 = addr[0] << 8 | addr[1];
  1172. if (index >= niu_num_alt_addr(np))
  1173. return -EINVAL;
  1174. if (np->flags & NIU_FLAGS_XMAC) {
  1175. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  1176. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  1177. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  1178. } else {
  1179. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  1180. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  1181. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  1182. }
  1183. return 0;
  1184. }
  1185. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  1186. {
  1187. unsigned long reg;
  1188. u64 val, mask;
  1189. if (index >= niu_num_alt_addr(np))
  1190. return -EINVAL;
  1191. if (np->flags & NIU_FLAGS_XMAC)
  1192. reg = XMAC_ADDR_CMPEN;
  1193. else
  1194. reg = BMAC_ADDR_CMPEN;
  1195. mask = 1 << index;
  1196. val = nr64_mac(reg);
  1197. if (on)
  1198. val |= mask;
  1199. else
  1200. val &= ~mask;
  1201. nw64_mac(reg, val);
  1202. return 0;
  1203. }
  1204. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  1205. int num, int mac_pref)
  1206. {
  1207. u64 val = nr64_mac(reg);
  1208. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  1209. val |= num;
  1210. if (mac_pref)
  1211. val |= HOST_INFO_MPR;
  1212. nw64_mac(reg, val);
  1213. }
  1214. static int __set_rdc_table_num(struct niu *np,
  1215. int xmac_index, int bmac_index,
  1216. int rdc_table_num, int mac_pref)
  1217. {
  1218. unsigned long reg;
  1219. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  1220. return -EINVAL;
  1221. if (np->flags & NIU_FLAGS_XMAC)
  1222. reg = XMAC_HOST_INFO(xmac_index);
  1223. else
  1224. reg = BMAC_HOST_INFO(bmac_index);
  1225. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  1226. return 0;
  1227. }
  1228. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  1229. int mac_pref)
  1230. {
  1231. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  1232. }
  1233. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  1234. int mac_pref)
  1235. {
  1236. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  1237. }
  1238. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  1239. int table_num, int mac_pref)
  1240. {
  1241. if (idx >= niu_num_alt_addr(np))
  1242. return -EINVAL;
  1243. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  1244. }
  1245. static u64 vlan_entry_set_parity(u64 reg_val)
  1246. {
  1247. u64 port01_mask;
  1248. u64 port23_mask;
  1249. port01_mask = 0x00ff;
  1250. port23_mask = 0xff00;
  1251. if (hweight64(reg_val & port01_mask) & 1)
  1252. reg_val |= ENET_VLAN_TBL_PARITY0;
  1253. else
  1254. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  1255. if (hweight64(reg_val & port23_mask) & 1)
  1256. reg_val |= ENET_VLAN_TBL_PARITY1;
  1257. else
  1258. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  1259. return reg_val;
  1260. }
  1261. static void vlan_tbl_write(struct niu *np, unsigned long index,
  1262. int port, int vpr, int rdc_table)
  1263. {
  1264. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  1265. reg_val &= ~((ENET_VLAN_TBL_VPR |
  1266. ENET_VLAN_TBL_VLANRDCTBLN) <<
  1267. ENET_VLAN_TBL_SHIFT(port));
  1268. if (vpr)
  1269. reg_val |= (ENET_VLAN_TBL_VPR <<
  1270. ENET_VLAN_TBL_SHIFT(port));
  1271. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  1272. reg_val = vlan_entry_set_parity(reg_val);
  1273. nw64(ENET_VLAN_TBL(index), reg_val);
  1274. }
  1275. static void vlan_tbl_clear(struct niu *np)
  1276. {
  1277. int i;
  1278. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  1279. nw64(ENET_VLAN_TBL(i), 0);
  1280. }
  1281. static int tcam_wait_bit(struct niu *np, u64 bit)
  1282. {
  1283. int limit = 1000;
  1284. while (--limit > 0) {
  1285. if (nr64(TCAM_CTL) & bit)
  1286. break;
  1287. udelay(1);
  1288. }
  1289. if (limit < 0)
  1290. return -ENODEV;
  1291. return 0;
  1292. }
  1293. static int tcam_flush(struct niu *np, int index)
  1294. {
  1295. nw64(TCAM_KEY_0, 0x00);
  1296. nw64(TCAM_KEY_MASK_0, 0xff);
  1297. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1298. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1299. }
  1300. #if 0
  1301. static int tcam_read(struct niu *np, int index,
  1302. u64 *key, u64 *mask)
  1303. {
  1304. int err;
  1305. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  1306. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1307. if (!err) {
  1308. key[0] = nr64(TCAM_KEY_0);
  1309. key[1] = nr64(TCAM_KEY_1);
  1310. key[2] = nr64(TCAM_KEY_2);
  1311. key[3] = nr64(TCAM_KEY_3);
  1312. mask[0] = nr64(TCAM_KEY_MASK_0);
  1313. mask[1] = nr64(TCAM_KEY_MASK_1);
  1314. mask[2] = nr64(TCAM_KEY_MASK_2);
  1315. mask[3] = nr64(TCAM_KEY_MASK_3);
  1316. }
  1317. return err;
  1318. }
  1319. #endif
  1320. static int tcam_write(struct niu *np, int index,
  1321. u64 *key, u64 *mask)
  1322. {
  1323. nw64(TCAM_KEY_0, key[0]);
  1324. nw64(TCAM_KEY_1, key[1]);
  1325. nw64(TCAM_KEY_2, key[2]);
  1326. nw64(TCAM_KEY_3, key[3]);
  1327. nw64(TCAM_KEY_MASK_0, mask[0]);
  1328. nw64(TCAM_KEY_MASK_1, mask[1]);
  1329. nw64(TCAM_KEY_MASK_2, mask[2]);
  1330. nw64(TCAM_KEY_MASK_3, mask[3]);
  1331. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  1332. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1333. }
  1334. #if 0
  1335. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  1336. {
  1337. int err;
  1338. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  1339. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  1340. if (!err)
  1341. *data = nr64(TCAM_KEY_1);
  1342. return err;
  1343. }
  1344. #endif
  1345. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  1346. {
  1347. nw64(TCAM_KEY_1, assoc_data);
  1348. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  1349. return tcam_wait_bit(np, TCAM_CTL_STAT);
  1350. }
  1351. static void tcam_enable(struct niu *np, int on)
  1352. {
  1353. u64 val = nr64(FFLP_CFG_1);
  1354. if (on)
  1355. val &= ~FFLP_CFG_1_TCAM_DIS;
  1356. else
  1357. val |= FFLP_CFG_1_TCAM_DIS;
  1358. nw64(FFLP_CFG_1, val);
  1359. }
  1360. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  1361. {
  1362. u64 val = nr64(FFLP_CFG_1);
  1363. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  1364. FFLP_CFG_1_CAMLAT |
  1365. FFLP_CFG_1_CAMRATIO);
  1366. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  1367. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  1368. nw64(FFLP_CFG_1, val);
  1369. val = nr64(FFLP_CFG_1);
  1370. val |= FFLP_CFG_1_FFLPINITDONE;
  1371. nw64(FFLP_CFG_1, val);
  1372. }
  1373. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  1374. int on)
  1375. {
  1376. unsigned long reg;
  1377. u64 val;
  1378. if (class < CLASS_CODE_ETHERTYPE1 ||
  1379. class > CLASS_CODE_ETHERTYPE2)
  1380. return -EINVAL;
  1381. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1382. val = nr64(reg);
  1383. if (on)
  1384. val |= L2_CLS_VLD;
  1385. else
  1386. val &= ~L2_CLS_VLD;
  1387. nw64(reg, val);
  1388. return 0;
  1389. }
  1390. #if 0
  1391. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  1392. u64 ether_type)
  1393. {
  1394. unsigned long reg;
  1395. u64 val;
  1396. if (class < CLASS_CODE_ETHERTYPE1 ||
  1397. class > CLASS_CODE_ETHERTYPE2 ||
  1398. (ether_type & ~(u64)0xffff) != 0)
  1399. return -EINVAL;
  1400. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  1401. val = nr64(reg);
  1402. val &= ~L2_CLS_ETYPE;
  1403. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  1404. nw64(reg, val);
  1405. return 0;
  1406. }
  1407. #endif
  1408. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  1409. int on)
  1410. {
  1411. unsigned long reg;
  1412. u64 val;
  1413. if (class < CLASS_CODE_USER_PROG1 ||
  1414. class > CLASS_CODE_USER_PROG4)
  1415. return -EINVAL;
  1416. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1417. val = nr64(reg);
  1418. if (on)
  1419. val |= L3_CLS_VALID;
  1420. else
  1421. val &= ~L3_CLS_VALID;
  1422. nw64(reg, val);
  1423. return 0;
  1424. }
  1425. #if 0
  1426. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  1427. int ipv6, u64 protocol_id,
  1428. u64 tos_mask, u64 tos_val)
  1429. {
  1430. unsigned long reg;
  1431. u64 val;
  1432. if (class < CLASS_CODE_USER_PROG1 ||
  1433. class > CLASS_CODE_USER_PROG4 ||
  1434. (protocol_id & ~(u64)0xff) != 0 ||
  1435. (tos_mask & ~(u64)0xff) != 0 ||
  1436. (tos_val & ~(u64)0xff) != 0)
  1437. return -EINVAL;
  1438. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  1439. val = nr64(reg);
  1440. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  1441. L3_CLS_TOSMASK | L3_CLS_TOS);
  1442. if (ipv6)
  1443. val |= L3_CLS_IPVER;
  1444. val |= (protocol_id << L3_CLS_PID_SHIFT);
  1445. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  1446. val |= (tos_val << L3_CLS_TOS_SHIFT);
  1447. nw64(reg, val);
  1448. return 0;
  1449. }
  1450. #endif
  1451. static int tcam_early_init(struct niu *np)
  1452. {
  1453. unsigned long i;
  1454. int err;
  1455. tcam_enable(np, 0);
  1456. tcam_set_lat_and_ratio(np,
  1457. DEFAULT_TCAM_LATENCY,
  1458. DEFAULT_TCAM_ACCESS_RATIO);
  1459. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  1460. err = tcam_user_eth_class_enable(np, i, 0);
  1461. if (err)
  1462. return err;
  1463. }
  1464. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  1465. err = tcam_user_ip_class_enable(np, i, 0);
  1466. if (err)
  1467. return err;
  1468. }
  1469. return 0;
  1470. }
  1471. static int tcam_flush_all(struct niu *np)
  1472. {
  1473. unsigned long i;
  1474. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  1475. int err = tcam_flush(np, i);
  1476. if (err)
  1477. return err;
  1478. }
  1479. return 0;
  1480. }
  1481. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  1482. {
  1483. return ((u64)index | (num_entries == 1 ?
  1484. HASH_TBL_ADDR_AUTOINC : 0));
  1485. }
  1486. #if 0
  1487. static int hash_read(struct niu *np, unsigned long partition,
  1488. unsigned long index, unsigned long num_entries,
  1489. u64 *data)
  1490. {
  1491. u64 val = hash_addr_regval(index, num_entries);
  1492. unsigned long i;
  1493. if (partition >= FCRAM_NUM_PARTITIONS ||
  1494. index + num_entries > FCRAM_SIZE)
  1495. return -EINVAL;
  1496. nw64(HASH_TBL_ADDR(partition), val);
  1497. for (i = 0; i < num_entries; i++)
  1498. data[i] = nr64(HASH_TBL_DATA(partition));
  1499. return 0;
  1500. }
  1501. #endif
  1502. static int hash_write(struct niu *np, unsigned long partition,
  1503. unsigned long index, unsigned long num_entries,
  1504. u64 *data)
  1505. {
  1506. u64 val = hash_addr_regval(index, num_entries);
  1507. unsigned long i;
  1508. if (partition >= FCRAM_NUM_PARTITIONS ||
  1509. index + (num_entries * 8) > FCRAM_SIZE)
  1510. return -EINVAL;
  1511. nw64(HASH_TBL_ADDR(partition), val);
  1512. for (i = 0; i < num_entries; i++)
  1513. nw64(HASH_TBL_DATA(partition), data[i]);
  1514. return 0;
  1515. }
  1516. static void fflp_reset(struct niu *np)
  1517. {
  1518. u64 val;
  1519. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  1520. udelay(10);
  1521. nw64(FFLP_CFG_1, 0);
  1522. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  1523. nw64(FFLP_CFG_1, val);
  1524. }
  1525. static void fflp_set_timings(struct niu *np)
  1526. {
  1527. u64 val = nr64(FFLP_CFG_1);
  1528. val &= ~FFLP_CFG_1_FFLPINITDONE;
  1529. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  1530. nw64(FFLP_CFG_1, val);
  1531. val = nr64(FFLP_CFG_1);
  1532. val |= FFLP_CFG_1_FFLPINITDONE;
  1533. nw64(FFLP_CFG_1, val);
  1534. val = nr64(FCRAM_REF_TMR);
  1535. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  1536. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  1537. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  1538. nw64(FCRAM_REF_TMR, val);
  1539. }
  1540. static int fflp_set_partition(struct niu *np, u64 partition,
  1541. u64 mask, u64 base, int enable)
  1542. {
  1543. unsigned long reg;
  1544. u64 val;
  1545. if (partition >= FCRAM_NUM_PARTITIONS ||
  1546. (mask & ~(u64)0x1f) != 0 ||
  1547. (base & ~(u64)0x1f) != 0)
  1548. return -EINVAL;
  1549. reg = FLW_PRT_SEL(partition);
  1550. val = nr64(reg);
  1551. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  1552. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  1553. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  1554. if (enable)
  1555. val |= FLW_PRT_SEL_EXT;
  1556. nw64(reg, val);
  1557. return 0;
  1558. }
  1559. static int fflp_disable_all_partitions(struct niu *np)
  1560. {
  1561. unsigned long i;
  1562. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  1563. int err = fflp_set_partition(np, 0, 0, 0, 0);
  1564. if (err)
  1565. return err;
  1566. }
  1567. return 0;
  1568. }
  1569. static void fflp_llcsnap_enable(struct niu *np, int on)
  1570. {
  1571. u64 val = nr64(FFLP_CFG_1);
  1572. if (on)
  1573. val |= FFLP_CFG_1_LLCSNAP;
  1574. else
  1575. val &= ~FFLP_CFG_1_LLCSNAP;
  1576. nw64(FFLP_CFG_1, val);
  1577. }
  1578. static void fflp_errors_enable(struct niu *np, int on)
  1579. {
  1580. u64 val = nr64(FFLP_CFG_1);
  1581. if (on)
  1582. val &= ~FFLP_CFG_1_ERRORDIS;
  1583. else
  1584. val |= FFLP_CFG_1_ERRORDIS;
  1585. nw64(FFLP_CFG_1, val);
  1586. }
  1587. static int fflp_hash_clear(struct niu *np)
  1588. {
  1589. struct fcram_hash_ipv4 ent;
  1590. unsigned long i;
  1591. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  1592. memset(&ent, 0, sizeof(ent));
  1593. ent.header = HASH_HEADER_EXT;
  1594. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  1595. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  1596. if (err)
  1597. return err;
  1598. }
  1599. return 0;
  1600. }
  1601. static int fflp_early_init(struct niu *np)
  1602. {
  1603. struct niu_parent *parent;
  1604. unsigned long flags;
  1605. int err;
  1606. niu_lock_parent(np, flags);
  1607. parent = np->parent;
  1608. err = 0;
  1609. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  1610. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  1611. np->port);
  1612. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1613. fflp_reset(np);
  1614. fflp_set_timings(np);
  1615. err = fflp_disable_all_partitions(np);
  1616. if (err) {
  1617. niudbg(PROBE, "fflp_disable_all_partitions "
  1618. "failed, err=%d\n", err);
  1619. goto out;
  1620. }
  1621. }
  1622. err = tcam_early_init(np);
  1623. if (err) {
  1624. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  1625. err);
  1626. goto out;
  1627. }
  1628. fflp_llcsnap_enable(np, 1);
  1629. fflp_errors_enable(np, 0);
  1630. nw64(H1POLY, 0);
  1631. nw64(H2POLY, 0);
  1632. err = tcam_flush_all(np);
  1633. if (err) {
  1634. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  1635. err);
  1636. goto out;
  1637. }
  1638. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  1639. err = fflp_hash_clear(np);
  1640. if (err) {
  1641. niudbg(PROBE, "fflp_hash_clear failed, "
  1642. "err=%d\n", err);
  1643. goto out;
  1644. }
  1645. }
  1646. vlan_tbl_clear(np);
  1647. niudbg(PROBE, "fflp_early_init: Success\n");
  1648. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  1649. }
  1650. out:
  1651. niu_unlock_parent(np, flags);
  1652. return err;
  1653. }
  1654. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  1655. {
  1656. if (class_code < CLASS_CODE_USER_PROG1 ||
  1657. class_code > CLASS_CODE_SCTP_IPV6)
  1658. return -EINVAL;
  1659. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1660. return 0;
  1661. }
  1662. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  1663. {
  1664. if (class_code < CLASS_CODE_USER_PROG1 ||
  1665. class_code > CLASS_CODE_SCTP_IPV6)
  1666. return -EINVAL;
  1667. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  1668. return 0;
  1669. }
  1670. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  1671. u32 offset, u32 size)
  1672. {
  1673. int i = skb_shinfo(skb)->nr_frags;
  1674. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1675. frag->page = page;
  1676. frag->page_offset = offset;
  1677. frag->size = size;
  1678. skb->len += size;
  1679. skb->data_len += size;
  1680. skb->truesize += size;
  1681. skb_shinfo(skb)->nr_frags = i + 1;
  1682. }
  1683. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  1684. {
  1685. a >>= PAGE_SHIFT;
  1686. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  1687. return (a & (MAX_RBR_RING_SIZE - 1));
  1688. }
  1689. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  1690. struct page ***link)
  1691. {
  1692. unsigned int h = niu_hash_rxaddr(rp, addr);
  1693. struct page *p, **pp;
  1694. addr &= PAGE_MASK;
  1695. pp = &rp->rxhash[h];
  1696. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  1697. if (p->index == addr) {
  1698. *link = pp;
  1699. break;
  1700. }
  1701. }
  1702. return p;
  1703. }
  1704. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  1705. {
  1706. unsigned int h = niu_hash_rxaddr(rp, base);
  1707. page->index = base;
  1708. page->mapping = (struct address_space *) rp->rxhash[h];
  1709. rp->rxhash[h] = page;
  1710. }
  1711. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  1712. gfp_t mask, int start_index)
  1713. {
  1714. struct page *page;
  1715. u64 addr;
  1716. int i;
  1717. page = alloc_page(mask);
  1718. if (!page)
  1719. return -ENOMEM;
  1720. addr = np->ops->map_page(np->device, page, 0,
  1721. PAGE_SIZE, DMA_FROM_DEVICE);
  1722. niu_hash_page(rp, page, addr);
  1723. if (rp->rbr_blocks_per_page > 1)
  1724. atomic_add(rp->rbr_blocks_per_page - 1,
  1725. &compound_head(page)->_count);
  1726. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  1727. __le32 *rbr = &rp->rbr[start_index + i];
  1728. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  1729. addr += rp->rbr_block_size;
  1730. }
  1731. return 0;
  1732. }
  1733. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1734. {
  1735. int index = rp->rbr_index;
  1736. rp->rbr_pending++;
  1737. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  1738. int err = niu_rbr_add_page(np, rp, mask, index);
  1739. if (unlikely(err)) {
  1740. rp->rbr_pending--;
  1741. return;
  1742. }
  1743. rp->rbr_index += rp->rbr_blocks_per_page;
  1744. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  1745. if (rp->rbr_index == rp->rbr_table_size)
  1746. rp->rbr_index = 0;
  1747. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  1748. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  1749. rp->rbr_pending = 0;
  1750. }
  1751. }
  1752. }
  1753. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  1754. {
  1755. unsigned int index = rp->rcr_index;
  1756. int num_rcr = 0;
  1757. rp->rx_dropped++;
  1758. while (1) {
  1759. struct page *page, **link;
  1760. u64 addr, val;
  1761. u32 rcr_size;
  1762. num_rcr++;
  1763. val = le64_to_cpup(&rp->rcr[index]);
  1764. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1765. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1766. page = niu_find_rxpage(rp, addr, &link);
  1767. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1768. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1769. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  1770. *link = (struct page *) page->mapping;
  1771. np->ops->unmap_page(np->device, page->index,
  1772. PAGE_SIZE, DMA_FROM_DEVICE);
  1773. page->index = 0;
  1774. page->mapping = NULL;
  1775. __free_page(page);
  1776. rp->rbr_refill_pending++;
  1777. }
  1778. index = NEXT_RCR(rp, index);
  1779. if (!(val & RCR_ENTRY_MULTI))
  1780. break;
  1781. }
  1782. rp->rcr_index = index;
  1783. return num_rcr;
  1784. }
  1785. static int niu_process_rx_pkt(struct niu *np, struct rx_ring_info *rp)
  1786. {
  1787. unsigned int index = rp->rcr_index;
  1788. struct sk_buff *skb;
  1789. int len, num_rcr;
  1790. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  1791. if (unlikely(!skb))
  1792. return niu_rx_pkt_ignore(np, rp);
  1793. num_rcr = 0;
  1794. while (1) {
  1795. struct page *page, **link;
  1796. u32 rcr_size, append_size;
  1797. u64 addr, val, off;
  1798. num_rcr++;
  1799. val = le64_to_cpup(&rp->rcr[index]);
  1800. len = (val & RCR_ENTRY_L2_LEN) >>
  1801. RCR_ENTRY_L2_LEN_SHIFT;
  1802. len -= ETH_FCS_LEN;
  1803. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  1804. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  1805. page = niu_find_rxpage(rp, addr, &link);
  1806. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  1807. RCR_ENTRY_PKTBUFSZ_SHIFT];
  1808. off = addr & ~PAGE_MASK;
  1809. append_size = rcr_size;
  1810. if (num_rcr == 1) {
  1811. int ptype;
  1812. off += 2;
  1813. append_size -= 2;
  1814. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  1815. if ((ptype == RCR_PKT_TYPE_TCP ||
  1816. ptype == RCR_PKT_TYPE_UDP) &&
  1817. !(val & (RCR_ENTRY_NOPORT |
  1818. RCR_ENTRY_ERROR)))
  1819. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1820. else
  1821. skb->ip_summed = CHECKSUM_NONE;
  1822. }
  1823. if (!(val & RCR_ENTRY_MULTI))
  1824. append_size = len - skb->len;
  1825. niu_rx_skb_append(skb, page, off, append_size);
  1826. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  1827. *link = (struct page *) page->mapping;
  1828. np->ops->unmap_page(np->device, page->index,
  1829. PAGE_SIZE, DMA_FROM_DEVICE);
  1830. page->index = 0;
  1831. page->mapping = NULL;
  1832. rp->rbr_refill_pending++;
  1833. } else
  1834. get_page(page);
  1835. index = NEXT_RCR(rp, index);
  1836. if (!(val & RCR_ENTRY_MULTI))
  1837. break;
  1838. }
  1839. rp->rcr_index = index;
  1840. skb_reserve(skb, NET_IP_ALIGN);
  1841. __pskb_pull_tail(skb, min(len, NIU_RXPULL_MAX));
  1842. rp->rx_packets++;
  1843. rp->rx_bytes += skb->len;
  1844. skb->protocol = eth_type_trans(skb, np->dev);
  1845. netif_receive_skb(skb);
  1846. return num_rcr;
  1847. }
  1848. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  1849. {
  1850. int blocks_per_page = rp->rbr_blocks_per_page;
  1851. int err, index = rp->rbr_index;
  1852. err = 0;
  1853. while (index < (rp->rbr_table_size - blocks_per_page)) {
  1854. err = niu_rbr_add_page(np, rp, mask, index);
  1855. if (err)
  1856. break;
  1857. index += blocks_per_page;
  1858. }
  1859. rp->rbr_index = index;
  1860. return err;
  1861. }
  1862. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  1863. {
  1864. int i;
  1865. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  1866. struct page *page;
  1867. page = rp->rxhash[i];
  1868. while (page) {
  1869. struct page *next = (struct page *) page->mapping;
  1870. u64 base = page->index;
  1871. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  1872. DMA_FROM_DEVICE);
  1873. page->index = 0;
  1874. page->mapping = NULL;
  1875. __free_page(page);
  1876. page = next;
  1877. }
  1878. }
  1879. for (i = 0; i < rp->rbr_table_size; i++)
  1880. rp->rbr[i] = cpu_to_le32(0);
  1881. rp->rbr_index = 0;
  1882. }
  1883. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  1884. {
  1885. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  1886. struct sk_buff *skb = tb->skb;
  1887. struct tx_pkt_hdr *tp;
  1888. u64 tx_flags;
  1889. int i, len;
  1890. tp = (struct tx_pkt_hdr *) skb->data;
  1891. tx_flags = le64_to_cpup(&tp->flags);
  1892. rp->tx_packets++;
  1893. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  1894. ((tx_flags & TXHDR_PAD) / 2));
  1895. len = skb_headlen(skb);
  1896. np->ops->unmap_single(np->device, tb->mapping,
  1897. len, DMA_TO_DEVICE);
  1898. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  1899. rp->mark_pending--;
  1900. tb->skb = NULL;
  1901. do {
  1902. idx = NEXT_TX(rp, idx);
  1903. len -= MAX_TX_DESC_LEN;
  1904. } while (len > 0);
  1905. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1906. tb = &rp->tx_buffs[idx];
  1907. BUG_ON(tb->skb != NULL);
  1908. np->ops->unmap_page(np->device, tb->mapping,
  1909. skb_shinfo(skb)->frags[i].size,
  1910. DMA_TO_DEVICE);
  1911. idx = NEXT_TX(rp, idx);
  1912. }
  1913. dev_kfree_skb(skb);
  1914. return idx;
  1915. }
  1916. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  1917. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  1918. {
  1919. u16 pkt_cnt, tmp;
  1920. int cons;
  1921. u64 cs;
  1922. cs = rp->tx_cs;
  1923. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  1924. goto out;
  1925. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  1926. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  1927. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  1928. rp->last_pkt_cnt = tmp;
  1929. cons = rp->cons;
  1930. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  1931. np->dev->name, pkt_cnt, cons);
  1932. while (pkt_cnt--)
  1933. cons = release_tx_packet(np, rp, cons);
  1934. rp->cons = cons;
  1935. smp_mb();
  1936. out:
  1937. if (unlikely(netif_queue_stopped(np->dev) &&
  1938. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  1939. netif_tx_lock(np->dev);
  1940. if (netif_queue_stopped(np->dev) &&
  1941. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  1942. netif_wake_queue(np->dev);
  1943. netif_tx_unlock(np->dev);
  1944. }
  1945. }
  1946. static int niu_rx_work(struct niu *np, struct rx_ring_info *rp, int budget)
  1947. {
  1948. int qlen, rcr_done = 0, work_done = 0;
  1949. struct rxdma_mailbox *mbox = rp->mbox;
  1950. u64 stat;
  1951. #if 1
  1952. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  1953. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  1954. #else
  1955. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  1956. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  1957. #endif
  1958. mbox->rx_dma_ctl_stat = 0;
  1959. mbox->rcrstat_a = 0;
  1960. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  1961. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  1962. rcr_done = work_done = 0;
  1963. qlen = min(qlen, budget);
  1964. while (work_done < qlen) {
  1965. rcr_done += niu_process_rx_pkt(np, rp);
  1966. work_done++;
  1967. }
  1968. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  1969. unsigned int i;
  1970. for (i = 0; i < rp->rbr_refill_pending; i++)
  1971. niu_rbr_refill(np, rp, GFP_ATOMIC);
  1972. rp->rbr_refill_pending = 0;
  1973. }
  1974. stat = (RX_DMA_CTL_STAT_MEX |
  1975. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  1976. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  1977. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  1978. return work_done;
  1979. }
  1980. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  1981. {
  1982. u64 v0 = lp->v0;
  1983. u32 tx_vec = (v0 >> 32);
  1984. u32 rx_vec = (v0 & 0xffffffff);
  1985. int i, work_done = 0;
  1986. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  1987. np->dev->name, (unsigned long long) v0);
  1988. for (i = 0; i < np->num_tx_rings; i++) {
  1989. struct tx_ring_info *rp = &np->tx_rings[i];
  1990. if (tx_vec & (1 << rp->tx_channel))
  1991. niu_tx_work(np, rp);
  1992. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  1993. }
  1994. for (i = 0; i < np->num_rx_rings; i++) {
  1995. struct rx_ring_info *rp = &np->rx_rings[i];
  1996. if (rx_vec & (1 << rp->rx_channel)) {
  1997. int this_work_done;
  1998. this_work_done = niu_rx_work(np, rp,
  1999. budget);
  2000. budget -= this_work_done;
  2001. work_done += this_work_done;
  2002. }
  2003. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  2004. }
  2005. return work_done;
  2006. }
  2007. static int niu_poll(struct napi_struct *napi, int budget)
  2008. {
  2009. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  2010. struct niu *np = lp->np;
  2011. int work_done;
  2012. work_done = niu_poll_core(np, lp, budget);
  2013. if (work_done < budget) {
  2014. netif_rx_complete(np->dev, napi);
  2015. niu_ldg_rearm(np, lp, 1);
  2016. }
  2017. return work_done;
  2018. }
  2019. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  2020. u64 stat)
  2021. {
  2022. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  2023. np->dev->name, rp->rx_channel);
  2024. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  2025. printk("RBR_TMOUT ");
  2026. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  2027. printk("RSP_CNT ");
  2028. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  2029. printk("BYTE_EN_BUS ");
  2030. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  2031. printk("RSP_DAT ");
  2032. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  2033. printk("RCR_ACK ");
  2034. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  2035. printk("RCR_SHA_PAR ");
  2036. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  2037. printk("RBR_PRE_PAR ");
  2038. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  2039. printk("CONFIG ");
  2040. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  2041. printk("RCRINCON ");
  2042. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  2043. printk("RCRFULL ");
  2044. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  2045. printk("RBRFULL ");
  2046. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  2047. printk("RBRLOGPAGE ");
  2048. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  2049. printk("CFIGLOGPAGE ");
  2050. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  2051. printk("DC_FIDO ");
  2052. printk(")\n");
  2053. }
  2054. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  2055. {
  2056. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  2057. int err = 0;
  2058. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  2059. np->dev->name, rp->rx_channel, (unsigned long long) stat);
  2060. niu_log_rxchan_errors(np, rp, stat);
  2061. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  2062. RX_DMA_CTL_STAT_PORT_FATAL))
  2063. err = -EINVAL;
  2064. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  2065. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  2066. return err;
  2067. }
  2068. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  2069. u64 cs)
  2070. {
  2071. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  2072. np->dev->name, rp->tx_channel);
  2073. if (cs & TX_CS_MBOX_ERR)
  2074. printk("MBOX ");
  2075. if (cs & TX_CS_PKT_SIZE_ERR)
  2076. printk("PKT_SIZE ");
  2077. if (cs & TX_CS_TX_RING_OFLOW)
  2078. printk("TX_RING_OFLOW ");
  2079. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  2080. printk("PREF_BUF_PAR ");
  2081. if (cs & TX_CS_NACK_PREF)
  2082. printk("NACK_PREF ");
  2083. if (cs & TX_CS_NACK_PKT_RD)
  2084. printk("NACK_PKT_RD ");
  2085. if (cs & TX_CS_CONF_PART_ERR)
  2086. printk("CONF_PART ");
  2087. if (cs & TX_CS_PKT_PRT_ERR)
  2088. printk("PKT_PTR ");
  2089. printk(")\n");
  2090. }
  2091. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  2092. {
  2093. u64 cs, logh, logl;
  2094. cs = nr64(TX_CS(rp->tx_channel));
  2095. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  2096. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  2097. dev_err(np->device, PFX "%s: TX channel %u error, "
  2098. "cs[%llx] logh[%llx] logl[%llx]\n",
  2099. np->dev->name, rp->tx_channel,
  2100. (unsigned long long) cs,
  2101. (unsigned long long) logh,
  2102. (unsigned long long) logl);
  2103. niu_log_txchan_errors(np, rp, cs);
  2104. return -ENODEV;
  2105. }
  2106. static int niu_mif_interrupt(struct niu *np)
  2107. {
  2108. u64 mif_status = nr64(MIF_STATUS);
  2109. int phy_mdint = 0;
  2110. if (np->flags & NIU_FLAGS_XMAC) {
  2111. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  2112. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  2113. phy_mdint = 1;
  2114. }
  2115. dev_err(np->device, PFX "%s: MIF interrupt, "
  2116. "stat[%llx] phy_mdint(%d)\n",
  2117. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  2118. return -ENODEV;
  2119. }
  2120. static void niu_xmac_interrupt(struct niu *np)
  2121. {
  2122. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  2123. u64 val;
  2124. val = nr64_mac(XTXMAC_STATUS);
  2125. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  2126. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  2127. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  2128. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  2129. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  2130. mp->tx_fifo_errors++;
  2131. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  2132. mp->tx_overflow_errors++;
  2133. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  2134. mp->tx_max_pkt_size_errors++;
  2135. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  2136. mp->tx_underflow_errors++;
  2137. val = nr64_mac(XRXMAC_STATUS);
  2138. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  2139. mp->rx_local_faults++;
  2140. if (val & XRXMAC_STATUS_RFLT_DET)
  2141. mp->rx_remote_faults++;
  2142. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  2143. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  2144. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  2145. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  2146. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  2147. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  2148. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  2149. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  2150. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2151. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2152. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  2153. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  2154. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  2155. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  2156. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  2157. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  2158. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  2159. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  2160. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  2161. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  2162. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  2163. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  2164. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  2165. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  2166. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  2167. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  2168. if (val & XRXMAC_STAT_MSK_RXOCTET_CNT_EXP)
  2169. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  2170. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  2171. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  2172. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  2173. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  2174. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  2175. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  2176. if (val & XRXMAC_STATUS_RXUFLOW)
  2177. mp->rx_underflows++;
  2178. if (val & XRXMAC_STATUS_RXOFLOW)
  2179. mp->rx_overflows++;
  2180. val = nr64_mac(XMAC_FC_STAT);
  2181. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  2182. mp->pause_off_state++;
  2183. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  2184. mp->pause_on_state++;
  2185. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  2186. mp->pause_received++;
  2187. }
  2188. static void niu_bmac_interrupt(struct niu *np)
  2189. {
  2190. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  2191. u64 val;
  2192. val = nr64_mac(BTXMAC_STATUS);
  2193. if (val & BTXMAC_STATUS_UNDERRUN)
  2194. mp->tx_underflow_errors++;
  2195. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  2196. mp->tx_max_pkt_size_errors++;
  2197. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  2198. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  2199. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  2200. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  2201. val = nr64_mac(BRXMAC_STATUS);
  2202. if (val & BRXMAC_STATUS_OVERFLOW)
  2203. mp->rx_overflows++;
  2204. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  2205. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  2206. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  2207. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2208. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  2209. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  2210. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  2211. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  2212. val = nr64_mac(BMAC_CTRL_STATUS);
  2213. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  2214. mp->pause_off_state++;
  2215. if (val & BMAC_CTRL_STATUS_PAUSE)
  2216. mp->pause_on_state++;
  2217. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  2218. mp->pause_received++;
  2219. }
  2220. static int niu_mac_interrupt(struct niu *np)
  2221. {
  2222. if (np->flags & NIU_FLAGS_XMAC)
  2223. niu_xmac_interrupt(np);
  2224. else
  2225. niu_bmac_interrupt(np);
  2226. return 0;
  2227. }
  2228. static void niu_log_device_error(struct niu *np, u64 stat)
  2229. {
  2230. dev_err(np->device, PFX "%s: Core device errors ( ",
  2231. np->dev->name);
  2232. if (stat & SYS_ERR_MASK_META2)
  2233. printk("META2 ");
  2234. if (stat & SYS_ERR_MASK_META1)
  2235. printk("META1 ");
  2236. if (stat & SYS_ERR_MASK_PEU)
  2237. printk("PEU ");
  2238. if (stat & SYS_ERR_MASK_TXC)
  2239. printk("TXC ");
  2240. if (stat & SYS_ERR_MASK_RDMC)
  2241. printk("RDMC ");
  2242. if (stat & SYS_ERR_MASK_TDMC)
  2243. printk("TDMC ");
  2244. if (stat & SYS_ERR_MASK_ZCP)
  2245. printk("ZCP ");
  2246. if (stat & SYS_ERR_MASK_FFLP)
  2247. printk("FFLP ");
  2248. if (stat & SYS_ERR_MASK_IPP)
  2249. printk("IPP ");
  2250. if (stat & SYS_ERR_MASK_MAC)
  2251. printk("MAC ");
  2252. if (stat & SYS_ERR_MASK_SMX)
  2253. printk("SMX ");
  2254. printk(")\n");
  2255. }
  2256. static int niu_device_error(struct niu *np)
  2257. {
  2258. u64 stat = nr64(SYS_ERR_STAT);
  2259. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  2260. np->dev->name, (unsigned long long) stat);
  2261. niu_log_device_error(np, stat);
  2262. return -ENODEV;
  2263. }
  2264. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp)
  2265. {
  2266. u64 v0 = lp->v0;
  2267. u64 v1 = lp->v1;
  2268. u64 v2 = lp->v2;
  2269. int i, err = 0;
  2270. if (v1 & 0x00000000ffffffffULL) {
  2271. u32 rx_vec = (v1 & 0xffffffff);
  2272. for (i = 0; i < np->num_rx_rings; i++) {
  2273. struct rx_ring_info *rp = &np->rx_rings[i];
  2274. if (rx_vec & (1 << rp->rx_channel)) {
  2275. int r = niu_rx_error(np, rp);
  2276. if (r)
  2277. err = r;
  2278. }
  2279. }
  2280. }
  2281. if (v1 & 0x7fffffff00000000ULL) {
  2282. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  2283. for (i = 0; i < np->num_tx_rings; i++) {
  2284. struct tx_ring_info *rp = &np->tx_rings[i];
  2285. if (tx_vec & (1 << rp->tx_channel)) {
  2286. int r = niu_tx_error(np, rp);
  2287. if (r)
  2288. err = r;
  2289. }
  2290. }
  2291. }
  2292. if ((v0 | v1) & 0x8000000000000000ULL) {
  2293. int r = niu_mif_interrupt(np);
  2294. if (r)
  2295. err = r;
  2296. }
  2297. if (v2) {
  2298. if (v2 & 0x01ef) {
  2299. int r = niu_mac_interrupt(np);
  2300. if (r)
  2301. err = r;
  2302. }
  2303. if (v2 & 0x0210) {
  2304. int r = niu_device_error(np);
  2305. if (r)
  2306. err = r;
  2307. }
  2308. }
  2309. if (err)
  2310. niu_enable_interrupts(np, 0);
  2311. return -EINVAL;
  2312. }
  2313. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  2314. int ldn)
  2315. {
  2316. struct rxdma_mailbox *mbox = rp->mbox;
  2317. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  2318. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  2319. RX_DMA_CTL_STAT_RCRTO);
  2320. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  2321. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  2322. np->dev->name, (unsigned long long) stat);
  2323. }
  2324. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  2325. int ldn)
  2326. {
  2327. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  2328. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  2329. np->dev->name, (unsigned long long) rp->tx_cs);
  2330. }
  2331. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  2332. {
  2333. struct niu_parent *parent = np->parent;
  2334. u32 rx_vec, tx_vec;
  2335. int i;
  2336. tx_vec = (v0 >> 32);
  2337. rx_vec = (v0 & 0xffffffff);
  2338. for (i = 0; i < np->num_rx_rings; i++) {
  2339. struct rx_ring_info *rp = &np->rx_rings[i];
  2340. int ldn = LDN_RXDMA(rp->rx_channel);
  2341. if (parent->ldg_map[ldn] != ldg)
  2342. continue;
  2343. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2344. if (rx_vec & (1 << rp->rx_channel))
  2345. niu_rxchan_intr(np, rp, ldn);
  2346. }
  2347. for (i = 0; i < np->num_tx_rings; i++) {
  2348. struct tx_ring_info *rp = &np->tx_rings[i];
  2349. int ldn = LDN_TXDMA(rp->tx_channel);
  2350. if (parent->ldg_map[ldn] != ldg)
  2351. continue;
  2352. nw64(LD_IM0(ldn), LD_IM0_MASK);
  2353. if (tx_vec & (1 << rp->tx_channel))
  2354. niu_txchan_intr(np, rp, ldn);
  2355. }
  2356. }
  2357. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  2358. u64 v0, u64 v1, u64 v2)
  2359. {
  2360. if (likely(netif_rx_schedule_prep(np->dev, &lp->napi))) {
  2361. lp->v0 = v0;
  2362. lp->v1 = v1;
  2363. lp->v2 = v2;
  2364. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  2365. __netif_rx_schedule(np->dev, &lp->napi);
  2366. }
  2367. }
  2368. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  2369. {
  2370. struct niu_ldg *lp = dev_id;
  2371. struct niu *np = lp->np;
  2372. int ldg = lp->ldg_num;
  2373. unsigned long flags;
  2374. u64 v0, v1, v2;
  2375. if (netif_msg_intr(np))
  2376. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  2377. lp, ldg);
  2378. spin_lock_irqsave(&np->lock, flags);
  2379. v0 = nr64(LDSV0(ldg));
  2380. v1 = nr64(LDSV1(ldg));
  2381. v2 = nr64(LDSV2(ldg));
  2382. if (netif_msg_intr(np))
  2383. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  2384. (unsigned long long) v0,
  2385. (unsigned long long) v1,
  2386. (unsigned long long) v2);
  2387. if (unlikely(!v0 && !v1 && !v2)) {
  2388. spin_unlock_irqrestore(&np->lock, flags);
  2389. return IRQ_NONE;
  2390. }
  2391. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  2392. int err = niu_slowpath_interrupt(np, lp);
  2393. if (err)
  2394. goto out;
  2395. }
  2396. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  2397. niu_schedule_napi(np, lp, v0, v1, v2);
  2398. else
  2399. niu_ldg_rearm(np, lp, 1);
  2400. out:
  2401. spin_unlock_irqrestore(&np->lock, flags);
  2402. return IRQ_HANDLED;
  2403. }
  2404. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  2405. {
  2406. if (rp->mbox) {
  2407. np->ops->free_coherent(np->device,
  2408. sizeof(struct rxdma_mailbox),
  2409. rp->mbox, rp->mbox_dma);
  2410. rp->mbox = NULL;
  2411. }
  2412. if (rp->rcr) {
  2413. np->ops->free_coherent(np->device,
  2414. MAX_RCR_RING_SIZE * sizeof(__le64),
  2415. rp->rcr, rp->rcr_dma);
  2416. rp->rcr = NULL;
  2417. rp->rcr_table_size = 0;
  2418. rp->rcr_index = 0;
  2419. }
  2420. if (rp->rbr) {
  2421. niu_rbr_free(np, rp);
  2422. np->ops->free_coherent(np->device,
  2423. MAX_RBR_RING_SIZE * sizeof(__le32),
  2424. rp->rbr, rp->rbr_dma);
  2425. rp->rbr = NULL;
  2426. rp->rbr_table_size = 0;
  2427. rp->rbr_index = 0;
  2428. }
  2429. kfree(rp->rxhash);
  2430. rp->rxhash = NULL;
  2431. }
  2432. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  2433. {
  2434. if (rp->mbox) {
  2435. np->ops->free_coherent(np->device,
  2436. sizeof(struct txdma_mailbox),
  2437. rp->mbox, rp->mbox_dma);
  2438. rp->mbox = NULL;
  2439. }
  2440. if (rp->descr) {
  2441. int i;
  2442. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  2443. if (rp->tx_buffs[i].skb)
  2444. (void) release_tx_packet(np, rp, i);
  2445. }
  2446. np->ops->free_coherent(np->device,
  2447. MAX_TX_RING_SIZE * sizeof(__le64),
  2448. rp->descr, rp->descr_dma);
  2449. rp->descr = NULL;
  2450. rp->pending = 0;
  2451. rp->prod = 0;
  2452. rp->cons = 0;
  2453. rp->wrap_bit = 0;
  2454. }
  2455. }
  2456. static void niu_free_channels(struct niu *np)
  2457. {
  2458. int i;
  2459. if (np->rx_rings) {
  2460. for (i = 0; i < np->num_rx_rings; i++) {
  2461. struct rx_ring_info *rp = &np->rx_rings[i];
  2462. niu_free_rx_ring_info(np, rp);
  2463. }
  2464. kfree(np->rx_rings);
  2465. np->rx_rings = NULL;
  2466. np->num_rx_rings = 0;
  2467. }
  2468. if (np->tx_rings) {
  2469. for (i = 0; i < np->num_tx_rings; i++) {
  2470. struct tx_ring_info *rp = &np->tx_rings[i];
  2471. niu_free_tx_ring_info(np, rp);
  2472. }
  2473. kfree(np->tx_rings);
  2474. np->tx_rings = NULL;
  2475. np->num_tx_rings = 0;
  2476. }
  2477. }
  2478. static int niu_alloc_rx_ring_info(struct niu *np,
  2479. struct rx_ring_info *rp)
  2480. {
  2481. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  2482. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  2483. GFP_KERNEL);
  2484. if (!rp->rxhash)
  2485. return -ENOMEM;
  2486. rp->mbox = np->ops->alloc_coherent(np->device,
  2487. sizeof(struct rxdma_mailbox),
  2488. &rp->mbox_dma, GFP_KERNEL);
  2489. if (!rp->mbox)
  2490. return -ENOMEM;
  2491. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2492. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2493. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2494. return -EINVAL;
  2495. }
  2496. rp->rcr = np->ops->alloc_coherent(np->device,
  2497. MAX_RCR_RING_SIZE * sizeof(__le64),
  2498. &rp->rcr_dma, GFP_KERNEL);
  2499. if (!rp->rcr)
  2500. return -ENOMEM;
  2501. if ((unsigned long)rp->rcr & (64UL - 1)) {
  2502. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2503. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  2504. return -EINVAL;
  2505. }
  2506. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  2507. rp->rcr_index = 0;
  2508. rp->rbr = np->ops->alloc_coherent(np->device,
  2509. MAX_RBR_RING_SIZE * sizeof(__le32),
  2510. &rp->rbr_dma, GFP_KERNEL);
  2511. if (!rp->rbr)
  2512. return -ENOMEM;
  2513. if ((unsigned long)rp->rbr & (64UL - 1)) {
  2514. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2515. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  2516. return -EINVAL;
  2517. }
  2518. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  2519. rp->rbr_index = 0;
  2520. rp->rbr_pending = 0;
  2521. return 0;
  2522. }
  2523. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  2524. {
  2525. int mtu = np->dev->mtu;
  2526. /* These values are recommended by the HW designers for fair
  2527. * utilization of DRR amongst the rings.
  2528. */
  2529. rp->max_burst = mtu + 32;
  2530. if (rp->max_burst > 4096)
  2531. rp->max_burst = 4096;
  2532. }
  2533. static int niu_alloc_tx_ring_info(struct niu *np,
  2534. struct tx_ring_info *rp)
  2535. {
  2536. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  2537. rp->mbox = np->ops->alloc_coherent(np->device,
  2538. sizeof(struct txdma_mailbox),
  2539. &rp->mbox_dma, GFP_KERNEL);
  2540. if (!rp->mbox)
  2541. return -ENOMEM;
  2542. if ((unsigned long)rp->mbox & (64UL - 1)) {
  2543. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2544. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  2545. return -EINVAL;
  2546. }
  2547. rp->descr = np->ops->alloc_coherent(np->device,
  2548. MAX_TX_RING_SIZE * sizeof(__le64),
  2549. &rp->descr_dma, GFP_KERNEL);
  2550. if (!rp->descr)
  2551. return -ENOMEM;
  2552. if ((unsigned long)rp->descr & (64UL - 1)) {
  2553. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  2554. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  2555. return -EINVAL;
  2556. }
  2557. rp->pending = MAX_TX_RING_SIZE;
  2558. rp->prod = 0;
  2559. rp->cons = 0;
  2560. rp->wrap_bit = 0;
  2561. /* XXX make these configurable... XXX */
  2562. rp->mark_freq = rp->pending / 4;
  2563. niu_set_max_burst(np, rp);
  2564. return 0;
  2565. }
  2566. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  2567. {
  2568. u16 bss;
  2569. bss = min(PAGE_SHIFT, 15);
  2570. rp->rbr_block_size = 1 << bss;
  2571. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  2572. rp->rbr_sizes[0] = 256;
  2573. rp->rbr_sizes[1] = 1024;
  2574. if (np->dev->mtu > ETH_DATA_LEN) {
  2575. switch (PAGE_SIZE) {
  2576. case 4 * 1024:
  2577. rp->rbr_sizes[2] = 4096;
  2578. break;
  2579. default:
  2580. rp->rbr_sizes[2] = 8192;
  2581. break;
  2582. }
  2583. } else {
  2584. rp->rbr_sizes[2] = 2048;
  2585. }
  2586. rp->rbr_sizes[3] = rp->rbr_block_size;
  2587. }
  2588. static int niu_alloc_channels(struct niu *np)
  2589. {
  2590. struct niu_parent *parent = np->parent;
  2591. int first_rx_channel, first_tx_channel;
  2592. int i, port, err;
  2593. port = np->port;
  2594. first_rx_channel = first_tx_channel = 0;
  2595. for (i = 0; i < port; i++) {
  2596. first_rx_channel += parent->rxchan_per_port[i];
  2597. first_tx_channel += parent->txchan_per_port[i];
  2598. }
  2599. np->num_rx_rings = parent->rxchan_per_port[port];
  2600. np->num_tx_rings = parent->txchan_per_port[port];
  2601. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  2602. GFP_KERNEL);
  2603. err = -ENOMEM;
  2604. if (!np->rx_rings)
  2605. goto out_err;
  2606. for (i = 0; i < np->num_rx_rings; i++) {
  2607. struct rx_ring_info *rp = &np->rx_rings[i];
  2608. rp->np = np;
  2609. rp->rx_channel = first_rx_channel + i;
  2610. err = niu_alloc_rx_ring_info(np, rp);
  2611. if (err)
  2612. goto out_err;
  2613. niu_size_rbr(np, rp);
  2614. /* XXX better defaults, configurable, etc... XXX */
  2615. rp->nonsyn_window = 64;
  2616. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  2617. rp->syn_window = 64;
  2618. rp->syn_threshold = rp->rcr_table_size - 64;
  2619. rp->rcr_pkt_threshold = 16;
  2620. rp->rcr_timeout = 8;
  2621. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  2622. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  2623. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  2624. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  2625. if (err)
  2626. return err;
  2627. }
  2628. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  2629. GFP_KERNEL);
  2630. err = -ENOMEM;
  2631. if (!np->tx_rings)
  2632. goto out_err;
  2633. for (i = 0; i < np->num_tx_rings; i++) {
  2634. struct tx_ring_info *rp = &np->tx_rings[i];
  2635. rp->np = np;
  2636. rp->tx_channel = first_tx_channel + i;
  2637. err = niu_alloc_tx_ring_info(np, rp);
  2638. if (err)
  2639. goto out_err;
  2640. }
  2641. return 0;
  2642. out_err:
  2643. niu_free_channels(np);
  2644. return err;
  2645. }
  2646. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  2647. {
  2648. int limit = 1000;
  2649. while (--limit > 0) {
  2650. u64 val = nr64(TX_CS(channel));
  2651. if (val & TX_CS_SNG_STATE)
  2652. return 0;
  2653. }
  2654. return -ENODEV;
  2655. }
  2656. static int niu_tx_channel_stop(struct niu *np, int channel)
  2657. {
  2658. u64 val = nr64(TX_CS(channel));
  2659. val |= TX_CS_STOP_N_GO;
  2660. nw64(TX_CS(channel), val);
  2661. return niu_tx_cs_sng_poll(np, channel);
  2662. }
  2663. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  2664. {
  2665. int limit = 1000;
  2666. while (--limit > 0) {
  2667. u64 val = nr64(TX_CS(channel));
  2668. if (!(val & TX_CS_RST))
  2669. return 0;
  2670. }
  2671. return -ENODEV;
  2672. }
  2673. static int niu_tx_channel_reset(struct niu *np, int channel)
  2674. {
  2675. u64 val = nr64(TX_CS(channel));
  2676. int err;
  2677. val |= TX_CS_RST;
  2678. nw64(TX_CS(channel), val);
  2679. err = niu_tx_cs_reset_poll(np, channel);
  2680. if (!err)
  2681. nw64(TX_RING_KICK(channel), 0);
  2682. return err;
  2683. }
  2684. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  2685. {
  2686. u64 val;
  2687. nw64(TX_LOG_MASK1(channel), 0);
  2688. nw64(TX_LOG_VAL1(channel), 0);
  2689. nw64(TX_LOG_MASK2(channel), 0);
  2690. nw64(TX_LOG_VAL2(channel), 0);
  2691. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  2692. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  2693. nw64(TX_LOG_PAGE_HDL(channel), 0);
  2694. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  2695. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  2696. nw64(TX_LOG_PAGE_VLD(channel), val);
  2697. /* XXX TXDMA 32bit mode? XXX */
  2698. return 0;
  2699. }
  2700. static void niu_txc_enable_port(struct niu *np, int on)
  2701. {
  2702. unsigned long flags;
  2703. u64 val, mask;
  2704. niu_lock_parent(np, flags);
  2705. val = nr64(TXC_CONTROL);
  2706. mask = (u64)1 << np->port;
  2707. if (on) {
  2708. val |= TXC_CONTROL_ENABLE | mask;
  2709. } else {
  2710. val &= ~mask;
  2711. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  2712. val &= ~TXC_CONTROL_ENABLE;
  2713. }
  2714. nw64(TXC_CONTROL, val);
  2715. niu_unlock_parent(np, flags);
  2716. }
  2717. static void niu_txc_set_imask(struct niu *np, u64 imask)
  2718. {
  2719. unsigned long flags;
  2720. u64 val;
  2721. niu_lock_parent(np, flags);
  2722. val = nr64(TXC_INT_MASK);
  2723. val &= ~TXC_INT_MASK_VAL(np->port);
  2724. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  2725. niu_unlock_parent(np, flags);
  2726. }
  2727. static void niu_txc_port_dma_enable(struct niu *np, int on)
  2728. {
  2729. u64 val = 0;
  2730. if (on) {
  2731. int i;
  2732. for (i = 0; i < np->num_tx_rings; i++)
  2733. val |= (1 << np->tx_rings[i].tx_channel);
  2734. }
  2735. nw64(TXC_PORT_DMA(np->port), val);
  2736. }
  2737. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  2738. {
  2739. int err, channel = rp->tx_channel;
  2740. u64 val, ring_len;
  2741. err = niu_tx_channel_stop(np, channel);
  2742. if (err)
  2743. return err;
  2744. err = niu_tx_channel_reset(np, channel);
  2745. if (err)
  2746. return err;
  2747. err = niu_tx_channel_lpage_init(np, channel);
  2748. if (err)
  2749. return err;
  2750. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  2751. nw64(TX_ENT_MSK(channel), 0);
  2752. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  2753. TX_RNG_CFIG_STADDR)) {
  2754. dev_err(np->device, PFX "%s: TX ring channel %d "
  2755. "DMA addr (%llx) is not aligned.\n",
  2756. np->dev->name, channel,
  2757. (unsigned long long) rp->descr_dma);
  2758. return -EINVAL;
  2759. }
  2760. /* The length field in TX_RNG_CFIG is measured in 64-byte
  2761. * blocks. rp->pending is the number of TX descriptors in
  2762. * our ring, 8 bytes each, thus we divide by 8 bytes more
  2763. * to get the proper value the chip wants.
  2764. */
  2765. ring_len = (rp->pending / 8);
  2766. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  2767. rp->descr_dma);
  2768. nw64(TX_RNG_CFIG(channel), val);
  2769. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  2770. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  2771. dev_err(np->device, PFX "%s: TX ring channel %d "
  2772. "MBOX addr (%llx) is has illegal bits.\n",
  2773. np->dev->name, channel,
  2774. (unsigned long long) rp->mbox_dma);
  2775. return -EINVAL;
  2776. }
  2777. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  2778. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  2779. nw64(TX_CS(channel), 0);
  2780. rp->last_pkt_cnt = 0;
  2781. return 0;
  2782. }
  2783. static void niu_init_rdc_groups(struct niu *np)
  2784. {
  2785. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  2786. int i, first_table_num = tp->first_table_num;
  2787. for (i = 0; i < tp->num_tables; i++) {
  2788. struct rdc_table *tbl = &tp->tables[i];
  2789. int this_table = first_table_num + i;
  2790. int slot;
  2791. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  2792. nw64(RDC_TBL(this_table, slot),
  2793. tbl->rxdma_channel[slot]);
  2794. }
  2795. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  2796. }
  2797. static void niu_init_drr_weight(struct niu *np)
  2798. {
  2799. int type = phy_decode(np->parent->port_phy, np->port);
  2800. u64 val;
  2801. switch (type) {
  2802. case PORT_TYPE_10G:
  2803. val = PT_DRR_WEIGHT_DEFAULT_10G;
  2804. break;
  2805. case PORT_TYPE_1G:
  2806. default:
  2807. val = PT_DRR_WEIGHT_DEFAULT_1G;
  2808. break;
  2809. }
  2810. nw64(PT_DRR_WT(np->port), val);
  2811. }
  2812. static int niu_init_hostinfo(struct niu *np)
  2813. {
  2814. struct niu_parent *parent = np->parent;
  2815. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  2816. int i, err, num_alt = niu_num_alt_addr(np);
  2817. int first_rdc_table = tp->first_table_num;
  2818. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  2819. if (err)
  2820. return err;
  2821. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  2822. if (err)
  2823. return err;
  2824. for (i = 0; i < num_alt; i++) {
  2825. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  2826. if (err)
  2827. return err;
  2828. }
  2829. return 0;
  2830. }
  2831. static int niu_rx_channel_reset(struct niu *np, int channel)
  2832. {
  2833. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  2834. RXDMA_CFIG1_RST, 1000, 10,
  2835. "RXDMA_CFIG1");
  2836. }
  2837. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  2838. {
  2839. u64 val;
  2840. nw64(RX_LOG_MASK1(channel), 0);
  2841. nw64(RX_LOG_VAL1(channel), 0);
  2842. nw64(RX_LOG_MASK2(channel), 0);
  2843. nw64(RX_LOG_VAL2(channel), 0);
  2844. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  2845. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  2846. nw64(RX_LOG_PAGE_HDL(channel), 0);
  2847. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  2848. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  2849. nw64(RX_LOG_PAGE_VLD(channel), val);
  2850. return 0;
  2851. }
  2852. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  2853. {
  2854. u64 val;
  2855. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  2856. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  2857. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  2858. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  2859. nw64(RDC_RED_PARA(rp->rx_channel), val);
  2860. }
  2861. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  2862. {
  2863. u64 val = 0;
  2864. switch (rp->rbr_block_size) {
  2865. case 4 * 1024:
  2866. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2867. break;
  2868. case 8 * 1024:
  2869. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2870. break;
  2871. case 16 * 1024:
  2872. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2873. break;
  2874. case 32 * 1024:
  2875. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  2876. break;
  2877. default:
  2878. return -EINVAL;
  2879. }
  2880. val |= RBR_CFIG_B_VLD2;
  2881. switch (rp->rbr_sizes[2]) {
  2882. case 2 * 1024:
  2883. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2884. break;
  2885. case 4 * 1024:
  2886. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2887. break;
  2888. case 8 * 1024:
  2889. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2890. break;
  2891. case 16 * 1024:
  2892. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  2893. break;
  2894. default:
  2895. return -EINVAL;
  2896. }
  2897. val |= RBR_CFIG_B_VLD1;
  2898. switch (rp->rbr_sizes[1]) {
  2899. case 1 * 1024:
  2900. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2901. break;
  2902. case 2 * 1024:
  2903. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2904. break;
  2905. case 4 * 1024:
  2906. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2907. break;
  2908. case 8 * 1024:
  2909. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  2910. break;
  2911. default:
  2912. return -EINVAL;
  2913. }
  2914. val |= RBR_CFIG_B_VLD0;
  2915. switch (rp->rbr_sizes[0]) {
  2916. case 256:
  2917. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  2918. break;
  2919. case 512:
  2920. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  2921. break;
  2922. case 1 * 1024:
  2923. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  2924. break;
  2925. case 2 * 1024:
  2926. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  2927. break;
  2928. default:
  2929. return -EINVAL;
  2930. }
  2931. *ret = val;
  2932. return 0;
  2933. }
  2934. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  2935. {
  2936. u64 val = nr64(RXDMA_CFIG1(channel));
  2937. int limit;
  2938. if (on)
  2939. val |= RXDMA_CFIG1_EN;
  2940. else
  2941. val &= ~RXDMA_CFIG1_EN;
  2942. nw64(RXDMA_CFIG1(channel), val);
  2943. limit = 1000;
  2944. while (--limit > 0) {
  2945. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  2946. break;
  2947. udelay(10);
  2948. }
  2949. if (limit <= 0)
  2950. return -ENODEV;
  2951. return 0;
  2952. }
  2953. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  2954. {
  2955. int err, channel = rp->rx_channel;
  2956. u64 val;
  2957. err = niu_rx_channel_reset(np, channel);
  2958. if (err)
  2959. return err;
  2960. err = niu_rx_channel_lpage_init(np, channel);
  2961. if (err)
  2962. return err;
  2963. niu_rx_channel_wred_init(np, rp);
  2964. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  2965. nw64(RX_DMA_CTL_STAT(channel),
  2966. (RX_DMA_CTL_STAT_MEX |
  2967. RX_DMA_CTL_STAT_RCRTHRES |
  2968. RX_DMA_CTL_STAT_RCRTO |
  2969. RX_DMA_CTL_STAT_RBR_EMPTY));
  2970. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  2971. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  2972. nw64(RBR_CFIG_A(channel),
  2973. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  2974. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  2975. err = niu_compute_rbr_cfig_b(rp, &val);
  2976. if (err)
  2977. return err;
  2978. nw64(RBR_CFIG_B(channel), val);
  2979. nw64(RCRCFIG_A(channel),
  2980. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  2981. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  2982. nw64(RCRCFIG_B(channel),
  2983. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  2984. RCRCFIG_B_ENTOUT |
  2985. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  2986. err = niu_enable_rx_channel(np, channel, 1);
  2987. if (err)
  2988. return err;
  2989. nw64(RBR_KICK(channel), rp->rbr_index);
  2990. val = nr64(RX_DMA_CTL_STAT(channel));
  2991. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  2992. nw64(RX_DMA_CTL_STAT(channel), val);
  2993. return 0;
  2994. }
  2995. static int niu_init_rx_channels(struct niu *np)
  2996. {
  2997. unsigned long flags;
  2998. u64 seed = jiffies_64;
  2999. int err, i;
  3000. niu_lock_parent(np, flags);
  3001. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  3002. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  3003. niu_unlock_parent(np, flags);
  3004. /* XXX RXDMA 32bit mode? XXX */
  3005. niu_init_rdc_groups(np);
  3006. niu_init_drr_weight(np);
  3007. err = niu_init_hostinfo(np);
  3008. if (err)
  3009. return err;
  3010. for (i = 0; i < np->num_rx_rings; i++) {
  3011. struct rx_ring_info *rp = &np->rx_rings[i];
  3012. err = niu_init_one_rx_channel(np, rp);
  3013. if (err)
  3014. return err;
  3015. }
  3016. return 0;
  3017. }
  3018. static int niu_set_ip_frag_rule(struct niu *np)
  3019. {
  3020. struct niu_parent *parent = np->parent;
  3021. struct niu_classifier *cp = &np->clas;
  3022. struct niu_tcam_entry *tp;
  3023. int index, err;
  3024. /* XXX fix this allocation scheme XXX */
  3025. index = cp->tcam_index;
  3026. tp = &parent->tcam[index];
  3027. /* Note that the noport bit is the same in both ipv4 and
  3028. * ipv6 format TCAM entries.
  3029. */
  3030. memset(tp, 0, sizeof(*tp));
  3031. tp->key[1] = TCAM_V4KEY1_NOPORT;
  3032. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  3033. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  3034. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  3035. err = tcam_write(np, index, tp->key, tp->key_mask);
  3036. if (err)
  3037. return err;
  3038. err = tcam_assoc_write(np, index, tp->assoc_data);
  3039. if (err)
  3040. return err;
  3041. return 0;
  3042. }
  3043. static int niu_init_classifier_hw(struct niu *np)
  3044. {
  3045. struct niu_parent *parent = np->parent;
  3046. struct niu_classifier *cp = &np->clas;
  3047. int i, err;
  3048. nw64(H1POLY, cp->h1_init);
  3049. nw64(H2POLY, cp->h2_init);
  3050. err = niu_init_hostinfo(np);
  3051. if (err)
  3052. return err;
  3053. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  3054. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  3055. vlan_tbl_write(np, i, np->port,
  3056. vp->vlan_pref, vp->rdc_num);
  3057. }
  3058. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  3059. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  3060. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  3061. ap->rdc_num, ap->mac_pref);
  3062. if (err)
  3063. return err;
  3064. }
  3065. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  3066. int index = i - CLASS_CODE_USER_PROG1;
  3067. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  3068. if (err)
  3069. return err;
  3070. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  3071. if (err)
  3072. return err;
  3073. }
  3074. err = niu_set_ip_frag_rule(np);
  3075. if (err)
  3076. return err;
  3077. tcam_enable(np, 1);
  3078. return 0;
  3079. }
  3080. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  3081. {
  3082. nw64(ZCP_RAM_DATA0, data[0]);
  3083. nw64(ZCP_RAM_DATA1, data[1]);
  3084. nw64(ZCP_RAM_DATA2, data[2]);
  3085. nw64(ZCP_RAM_DATA3, data[3]);
  3086. nw64(ZCP_RAM_DATA4, data[4]);
  3087. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  3088. nw64(ZCP_RAM_ACC,
  3089. (ZCP_RAM_ACC_WRITE |
  3090. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3091. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3092. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3093. 1000, 100);
  3094. }
  3095. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  3096. {
  3097. int err;
  3098. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3099. 1000, 100);
  3100. if (err) {
  3101. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  3102. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3103. (unsigned long long) nr64(ZCP_RAM_ACC));
  3104. return err;
  3105. }
  3106. nw64(ZCP_RAM_ACC,
  3107. (ZCP_RAM_ACC_READ |
  3108. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  3109. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  3110. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  3111. 1000, 100);
  3112. if (err) {
  3113. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  3114. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  3115. (unsigned long long) nr64(ZCP_RAM_ACC));
  3116. return err;
  3117. }
  3118. data[0] = nr64(ZCP_RAM_DATA0);
  3119. data[1] = nr64(ZCP_RAM_DATA1);
  3120. data[2] = nr64(ZCP_RAM_DATA2);
  3121. data[3] = nr64(ZCP_RAM_DATA3);
  3122. data[4] = nr64(ZCP_RAM_DATA4);
  3123. return 0;
  3124. }
  3125. static void niu_zcp_cfifo_reset(struct niu *np)
  3126. {
  3127. u64 val = nr64(RESET_CFIFO);
  3128. val |= RESET_CFIFO_RST(np->port);
  3129. nw64(RESET_CFIFO, val);
  3130. udelay(10);
  3131. val &= ~RESET_CFIFO_RST(np->port);
  3132. nw64(RESET_CFIFO, val);
  3133. }
  3134. static int niu_init_zcp(struct niu *np)
  3135. {
  3136. u64 data[5], rbuf[5];
  3137. int i, max, err;
  3138. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3139. if (np->port == 0 || np->port == 1)
  3140. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  3141. else
  3142. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  3143. } else
  3144. max = NIU_CFIFO_ENTRIES;
  3145. data[0] = 0;
  3146. data[1] = 0;
  3147. data[2] = 0;
  3148. data[3] = 0;
  3149. data[4] = 0;
  3150. for (i = 0; i < max; i++) {
  3151. err = niu_zcp_write(np, i, data);
  3152. if (err)
  3153. return err;
  3154. err = niu_zcp_read(np, i, rbuf);
  3155. if (err)
  3156. return err;
  3157. }
  3158. niu_zcp_cfifo_reset(np);
  3159. nw64(CFIFO_ECC(np->port), 0);
  3160. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  3161. (void) nr64(ZCP_INT_STAT);
  3162. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  3163. return 0;
  3164. }
  3165. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  3166. {
  3167. u64 val = nr64_ipp(IPP_CFIG);
  3168. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  3169. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  3170. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  3171. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  3172. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  3173. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  3174. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  3175. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  3176. }
  3177. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  3178. {
  3179. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  3180. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  3181. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  3182. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  3183. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  3184. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  3185. }
  3186. static int niu_ipp_reset(struct niu *np)
  3187. {
  3188. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  3189. 1000, 100, "IPP_CFIG");
  3190. }
  3191. static int niu_init_ipp(struct niu *np)
  3192. {
  3193. u64 data[5], rbuf[5], val;
  3194. int i, max, err;
  3195. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  3196. if (np->port == 0 || np->port == 1)
  3197. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  3198. else
  3199. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  3200. } else
  3201. max = NIU_DFIFO_ENTRIES;
  3202. data[0] = 0;
  3203. data[1] = 0;
  3204. data[2] = 0;
  3205. data[3] = 0;
  3206. data[4] = 0;
  3207. for (i = 0; i < max; i++) {
  3208. niu_ipp_write(np, i, data);
  3209. niu_ipp_read(np, i, rbuf);
  3210. }
  3211. (void) nr64_ipp(IPP_INT_STAT);
  3212. (void) nr64_ipp(IPP_INT_STAT);
  3213. err = niu_ipp_reset(np);
  3214. if (err)
  3215. return err;
  3216. (void) nr64_ipp(IPP_PKT_DIS);
  3217. (void) nr64_ipp(IPP_BAD_CS_CNT);
  3218. (void) nr64_ipp(IPP_ECC);
  3219. (void) nr64_ipp(IPP_INT_STAT);
  3220. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  3221. val = nr64_ipp(IPP_CFIG);
  3222. val &= ~IPP_CFIG_IP_MAX_PKT;
  3223. val |= (IPP_CFIG_IPP_ENABLE |
  3224. IPP_CFIG_DFIFO_ECC_EN |
  3225. IPP_CFIG_DROP_BAD_CRC |
  3226. IPP_CFIG_CKSUM_EN |
  3227. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  3228. nw64_ipp(IPP_CFIG, val);
  3229. return 0;
  3230. }
  3231. static void niu_init_xif_xmac(struct niu *np)
  3232. {
  3233. struct niu_link_config *lp = &np->link_config;
  3234. u64 val;
  3235. val = nr64_mac(XMAC_CONFIG);
  3236. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  3237. (np->flags & NIU_FLAGS_FIBER) != 0) {
  3238. if (netif_carrier_ok(np->dev)) {
  3239. val |= XMAC_CONFIG_LED_POLARITY;
  3240. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  3241. } else {
  3242. val |= XMAC_CONFIG_FORCE_LED_ON;
  3243. val &= ~XMAC_CONFIG_LED_POLARITY;
  3244. }
  3245. }
  3246. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3247. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  3248. if (lp->loopback_mode == LOOPBACK_MAC) {
  3249. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  3250. val |= XMAC_CONFIG_LOOPBACK;
  3251. } else {
  3252. val &= ~XMAC_CONFIG_LOOPBACK;
  3253. }
  3254. if (np->flags & NIU_FLAGS_10G) {
  3255. val &= ~XMAC_CONFIG_LFS_DISABLE;
  3256. } else {
  3257. val |= XMAC_CONFIG_LFS_DISABLE;
  3258. if (!(np->flags & NIU_FLAGS_FIBER))
  3259. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  3260. else
  3261. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  3262. }
  3263. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3264. if (lp->active_speed == SPEED_100)
  3265. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  3266. else
  3267. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  3268. nw64_mac(XMAC_CONFIG, val);
  3269. val = nr64_mac(XMAC_CONFIG);
  3270. val &= ~XMAC_CONFIG_MODE_MASK;
  3271. if (np->flags & NIU_FLAGS_10G) {
  3272. val |= XMAC_CONFIG_MODE_XGMII;
  3273. } else {
  3274. if (lp->active_speed == SPEED_100)
  3275. val |= XMAC_CONFIG_MODE_MII;
  3276. else
  3277. val |= XMAC_CONFIG_MODE_GMII;
  3278. }
  3279. nw64_mac(XMAC_CONFIG, val);
  3280. }
  3281. static void niu_init_xif_bmac(struct niu *np)
  3282. {
  3283. struct niu_link_config *lp = &np->link_config;
  3284. u64 val;
  3285. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  3286. if (lp->loopback_mode == LOOPBACK_MAC)
  3287. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  3288. else
  3289. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  3290. if (lp->active_speed == SPEED_1000)
  3291. val |= BMAC_XIF_CONFIG_GMII_MODE;
  3292. else
  3293. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  3294. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  3295. BMAC_XIF_CONFIG_LED_POLARITY);
  3296. if (!(np->flags & NIU_FLAGS_10G) &&
  3297. !(np->flags & NIU_FLAGS_FIBER) &&
  3298. lp->active_speed == SPEED_100)
  3299. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3300. else
  3301. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  3302. nw64_mac(BMAC_XIF_CONFIG, val);
  3303. }
  3304. static void niu_init_xif(struct niu *np)
  3305. {
  3306. if (np->flags & NIU_FLAGS_XMAC)
  3307. niu_init_xif_xmac(np);
  3308. else
  3309. niu_init_xif_bmac(np);
  3310. }
  3311. static void niu_pcs_mii_reset(struct niu *np)
  3312. {
  3313. u64 val = nr64_pcs(PCS_MII_CTL);
  3314. val |= PCS_MII_CTL_RST;
  3315. nw64_pcs(PCS_MII_CTL, val);
  3316. }
  3317. static void niu_xpcs_reset(struct niu *np)
  3318. {
  3319. u64 val = nr64_xpcs(XPCS_CONTROL1);
  3320. val |= XPCS_CONTROL1_RESET;
  3321. nw64_xpcs(XPCS_CONTROL1, val);
  3322. }
  3323. static int niu_init_pcs(struct niu *np)
  3324. {
  3325. struct niu_link_config *lp = &np->link_config;
  3326. u64 val;
  3327. switch (np->flags & (NIU_FLAGS_10G | NIU_FLAGS_FIBER)) {
  3328. case NIU_FLAGS_FIBER:
  3329. /* 1G fiber */
  3330. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  3331. nw64_pcs(PCS_DPATH_MODE, 0);
  3332. niu_pcs_mii_reset(np);
  3333. break;
  3334. case NIU_FLAGS_10G:
  3335. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  3336. if (!(np->flags & NIU_FLAGS_XMAC))
  3337. return -EINVAL;
  3338. /* 10G copper or fiber */
  3339. val = nr64_mac(XMAC_CONFIG);
  3340. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  3341. nw64_mac(XMAC_CONFIG, val);
  3342. niu_xpcs_reset(np);
  3343. val = nr64_xpcs(XPCS_CONTROL1);
  3344. if (lp->loopback_mode == LOOPBACK_PHY)
  3345. val |= XPCS_CONTROL1_LOOPBACK;
  3346. else
  3347. val &= ~XPCS_CONTROL1_LOOPBACK;
  3348. nw64_xpcs(XPCS_CONTROL1, val);
  3349. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  3350. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  3351. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  3352. break;
  3353. case 0:
  3354. /* 1G copper */
  3355. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  3356. niu_pcs_mii_reset(np);
  3357. break;
  3358. default:
  3359. return -EINVAL;
  3360. }
  3361. return 0;
  3362. }
  3363. static int niu_reset_tx_xmac(struct niu *np)
  3364. {
  3365. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  3366. (XTXMAC_SW_RST_REG_RS |
  3367. XTXMAC_SW_RST_SOFT_RST),
  3368. 1000, 100, "XTXMAC_SW_RST");
  3369. }
  3370. static int niu_reset_tx_bmac(struct niu *np)
  3371. {
  3372. int limit;
  3373. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  3374. limit = 1000;
  3375. while (--limit >= 0) {
  3376. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  3377. break;
  3378. udelay(100);
  3379. }
  3380. if (limit < 0) {
  3381. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  3382. "BTXMAC_SW_RST[%llx]\n",
  3383. np->port,
  3384. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  3385. return -ENODEV;
  3386. }
  3387. return 0;
  3388. }
  3389. static int niu_reset_tx_mac(struct niu *np)
  3390. {
  3391. if (np->flags & NIU_FLAGS_XMAC)
  3392. return niu_reset_tx_xmac(np);
  3393. else
  3394. return niu_reset_tx_bmac(np);
  3395. }
  3396. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  3397. {
  3398. u64 val;
  3399. val = nr64_mac(XMAC_MIN);
  3400. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  3401. XMAC_MIN_RX_MIN_PKT_SIZE);
  3402. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  3403. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  3404. nw64_mac(XMAC_MIN, val);
  3405. nw64_mac(XMAC_MAX, max);
  3406. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  3407. val = nr64_mac(XMAC_IPG);
  3408. if (np->flags & NIU_FLAGS_10G) {
  3409. val &= ~XMAC_IPG_IPG_XGMII;
  3410. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  3411. } else {
  3412. val &= ~XMAC_IPG_IPG_MII_GMII;
  3413. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  3414. }
  3415. nw64_mac(XMAC_IPG, val);
  3416. val = nr64_mac(XMAC_CONFIG);
  3417. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  3418. XMAC_CONFIG_STRETCH_MODE |
  3419. XMAC_CONFIG_VAR_MIN_IPG_EN |
  3420. XMAC_CONFIG_TX_ENABLE);
  3421. nw64_mac(XMAC_CONFIG, val);
  3422. nw64_mac(TXMAC_FRM_CNT, 0);
  3423. nw64_mac(TXMAC_BYTE_CNT, 0);
  3424. }
  3425. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  3426. {
  3427. u64 val;
  3428. nw64_mac(BMAC_MIN_FRAME, min);
  3429. nw64_mac(BMAC_MAX_FRAME, max);
  3430. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  3431. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  3432. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  3433. val = nr64_mac(BTXMAC_CONFIG);
  3434. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  3435. BTXMAC_CONFIG_ENABLE);
  3436. nw64_mac(BTXMAC_CONFIG, val);
  3437. }
  3438. static void niu_init_tx_mac(struct niu *np)
  3439. {
  3440. u64 min, max;
  3441. min = 64;
  3442. if (np->dev->mtu > ETH_DATA_LEN)
  3443. max = 9216;
  3444. else
  3445. max = 1522;
  3446. /* The XMAC_MIN register only accepts values for TX min which
  3447. * have the low 3 bits cleared.
  3448. */
  3449. BUILD_BUG_ON(min & 0x7);
  3450. if (np->flags & NIU_FLAGS_XMAC)
  3451. niu_init_tx_xmac(np, min, max);
  3452. else
  3453. niu_init_tx_bmac(np, min, max);
  3454. }
  3455. static int niu_reset_rx_xmac(struct niu *np)
  3456. {
  3457. int limit;
  3458. nw64_mac(XRXMAC_SW_RST,
  3459. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  3460. limit = 1000;
  3461. while (--limit >= 0) {
  3462. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  3463. XRXMAC_SW_RST_SOFT_RST)))
  3464. break;
  3465. udelay(100);
  3466. }
  3467. if (limit < 0) {
  3468. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  3469. "XRXMAC_SW_RST[%llx]\n",
  3470. np->port,
  3471. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  3472. return -ENODEV;
  3473. }
  3474. return 0;
  3475. }
  3476. static int niu_reset_rx_bmac(struct niu *np)
  3477. {
  3478. int limit;
  3479. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  3480. limit = 1000;
  3481. while (--limit >= 0) {
  3482. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  3483. break;
  3484. udelay(100);
  3485. }
  3486. if (limit < 0) {
  3487. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  3488. "BRXMAC_SW_RST[%llx]\n",
  3489. np->port,
  3490. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  3491. return -ENODEV;
  3492. }
  3493. return 0;
  3494. }
  3495. static int niu_reset_rx_mac(struct niu *np)
  3496. {
  3497. if (np->flags & NIU_FLAGS_XMAC)
  3498. return niu_reset_rx_xmac(np);
  3499. else
  3500. return niu_reset_rx_bmac(np);
  3501. }
  3502. static void niu_init_rx_xmac(struct niu *np)
  3503. {
  3504. struct niu_parent *parent = np->parent;
  3505. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3506. int first_rdc_table = tp->first_table_num;
  3507. unsigned long i;
  3508. u64 val;
  3509. nw64_mac(XMAC_ADD_FILT0, 0);
  3510. nw64_mac(XMAC_ADD_FILT1, 0);
  3511. nw64_mac(XMAC_ADD_FILT2, 0);
  3512. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  3513. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  3514. for (i = 0; i < MAC_NUM_HASH; i++)
  3515. nw64_mac(XMAC_HASH_TBL(i), 0);
  3516. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  3517. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3518. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3519. val = nr64_mac(XMAC_CONFIG);
  3520. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  3521. XMAC_CONFIG_PROMISCUOUS |
  3522. XMAC_CONFIG_PROMISC_GROUP |
  3523. XMAC_CONFIG_ERR_CHK_DIS |
  3524. XMAC_CONFIG_RX_CRC_CHK_DIS |
  3525. XMAC_CONFIG_RESERVED_MULTICAST |
  3526. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  3527. XMAC_CONFIG_ADDR_FILTER_EN |
  3528. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  3529. XMAC_CONFIG_STRIP_CRC |
  3530. XMAC_CONFIG_PASS_FLOW_CTRL |
  3531. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  3532. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  3533. nw64_mac(XMAC_CONFIG, val);
  3534. nw64_mac(RXMAC_BT_CNT, 0);
  3535. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  3536. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  3537. nw64_mac(RXMAC_FRAG_CNT, 0);
  3538. nw64_mac(RXMAC_HIST_CNT1, 0);
  3539. nw64_mac(RXMAC_HIST_CNT2, 0);
  3540. nw64_mac(RXMAC_HIST_CNT3, 0);
  3541. nw64_mac(RXMAC_HIST_CNT4, 0);
  3542. nw64_mac(RXMAC_HIST_CNT5, 0);
  3543. nw64_mac(RXMAC_HIST_CNT6, 0);
  3544. nw64_mac(RXMAC_HIST_CNT7, 0);
  3545. nw64_mac(RXMAC_MPSZER_CNT, 0);
  3546. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  3547. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  3548. nw64_mac(LINK_FAULT_CNT, 0);
  3549. }
  3550. static void niu_init_rx_bmac(struct niu *np)
  3551. {
  3552. struct niu_parent *parent = np->parent;
  3553. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3554. int first_rdc_table = tp->first_table_num;
  3555. unsigned long i;
  3556. u64 val;
  3557. nw64_mac(BMAC_ADD_FILT0, 0);
  3558. nw64_mac(BMAC_ADD_FILT1, 0);
  3559. nw64_mac(BMAC_ADD_FILT2, 0);
  3560. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  3561. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  3562. for (i = 0; i < MAC_NUM_HASH; i++)
  3563. nw64_mac(BMAC_HASH_TBL(i), 0);
  3564. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3565. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3566. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  3567. val = nr64_mac(BRXMAC_CONFIG);
  3568. val &= ~(BRXMAC_CONFIG_ENABLE |
  3569. BRXMAC_CONFIG_STRIP_PAD |
  3570. BRXMAC_CONFIG_STRIP_FCS |
  3571. BRXMAC_CONFIG_PROMISC |
  3572. BRXMAC_CONFIG_PROMISC_GRP |
  3573. BRXMAC_CONFIG_ADDR_FILT_EN |
  3574. BRXMAC_CONFIG_DISCARD_DIS);
  3575. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  3576. nw64_mac(BRXMAC_CONFIG, val);
  3577. val = nr64_mac(BMAC_ADDR_CMPEN);
  3578. val |= BMAC_ADDR_CMPEN_EN0;
  3579. nw64_mac(BMAC_ADDR_CMPEN, val);
  3580. }
  3581. static void niu_init_rx_mac(struct niu *np)
  3582. {
  3583. niu_set_primary_mac(np, np->dev->dev_addr);
  3584. if (np->flags & NIU_FLAGS_XMAC)
  3585. niu_init_rx_xmac(np);
  3586. else
  3587. niu_init_rx_bmac(np);
  3588. }
  3589. static void niu_enable_tx_xmac(struct niu *np, int on)
  3590. {
  3591. u64 val = nr64_mac(XMAC_CONFIG);
  3592. if (on)
  3593. val |= XMAC_CONFIG_TX_ENABLE;
  3594. else
  3595. val &= ~XMAC_CONFIG_TX_ENABLE;
  3596. nw64_mac(XMAC_CONFIG, val);
  3597. }
  3598. static void niu_enable_tx_bmac(struct niu *np, int on)
  3599. {
  3600. u64 val = nr64_mac(BTXMAC_CONFIG);
  3601. if (on)
  3602. val |= BTXMAC_CONFIG_ENABLE;
  3603. else
  3604. val &= ~BTXMAC_CONFIG_ENABLE;
  3605. nw64_mac(BTXMAC_CONFIG, val);
  3606. }
  3607. static void niu_enable_tx_mac(struct niu *np, int on)
  3608. {
  3609. if (np->flags & NIU_FLAGS_XMAC)
  3610. niu_enable_tx_xmac(np, on);
  3611. else
  3612. niu_enable_tx_bmac(np, on);
  3613. }
  3614. static void niu_enable_rx_xmac(struct niu *np, int on)
  3615. {
  3616. u64 val = nr64_mac(XMAC_CONFIG);
  3617. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  3618. XMAC_CONFIG_PROMISCUOUS);
  3619. if (np->flags & NIU_FLAGS_MCAST)
  3620. val |= XMAC_CONFIG_HASH_FILTER_EN;
  3621. if (np->flags & NIU_FLAGS_PROMISC)
  3622. val |= XMAC_CONFIG_PROMISCUOUS;
  3623. if (on)
  3624. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  3625. else
  3626. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  3627. nw64_mac(XMAC_CONFIG, val);
  3628. }
  3629. static void niu_enable_rx_bmac(struct niu *np, int on)
  3630. {
  3631. u64 val = nr64_mac(BRXMAC_CONFIG);
  3632. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  3633. BRXMAC_CONFIG_PROMISC);
  3634. if (np->flags & NIU_FLAGS_MCAST)
  3635. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  3636. if (np->flags & NIU_FLAGS_PROMISC)
  3637. val |= BRXMAC_CONFIG_PROMISC;
  3638. if (on)
  3639. val |= BRXMAC_CONFIG_ENABLE;
  3640. else
  3641. val &= ~BRXMAC_CONFIG_ENABLE;
  3642. nw64_mac(BRXMAC_CONFIG, val);
  3643. }
  3644. static void niu_enable_rx_mac(struct niu *np, int on)
  3645. {
  3646. if (np->flags & NIU_FLAGS_XMAC)
  3647. niu_enable_rx_xmac(np, on);
  3648. else
  3649. niu_enable_rx_bmac(np, on);
  3650. }
  3651. static int niu_init_mac(struct niu *np)
  3652. {
  3653. int err;
  3654. niu_init_xif(np);
  3655. err = niu_init_pcs(np);
  3656. if (err)
  3657. return err;
  3658. err = niu_reset_tx_mac(np);
  3659. if (err)
  3660. return err;
  3661. niu_init_tx_mac(np);
  3662. err = niu_reset_rx_mac(np);
  3663. if (err)
  3664. return err;
  3665. niu_init_rx_mac(np);
  3666. /* This looks hookey but the RX MAC reset we just did will
  3667. * undo some of the state we setup in niu_init_tx_mac() so we
  3668. * have to call it again. In particular, the RX MAC reset will
  3669. * set the XMAC_MAX register back to it's default value.
  3670. */
  3671. niu_init_tx_mac(np);
  3672. niu_enable_tx_mac(np, 1);
  3673. niu_enable_rx_mac(np, 1);
  3674. return 0;
  3675. }
  3676. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3677. {
  3678. (void) niu_tx_channel_stop(np, rp->tx_channel);
  3679. }
  3680. static void niu_stop_tx_channels(struct niu *np)
  3681. {
  3682. int i;
  3683. for (i = 0; i < np->num_tx_rings; i++) {
  3684. struct tx_ring_info *rp = &np->tx_rings[i];
  3685. niu_stop_one_tx_channel(np, rp);
  3686. }
  3687. }
  3688. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3689. {
  3690. (void) niu_tx_channel_reset(np, rp->tx_channel);
  3691. }
  3692. static void niu_reset_tx_channels(struct niu *np)
  3693. {
  3694. int i;
  3695. for (i = 0; i < np->num_tx_rings; i++) {
  3696. struct tx_ring_info *rp = &np->tx_rings[i];
  3697. niu_reset_one_tx_channel(np, rp);
  3698. }
  3699. }
  3700. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3701. {
  3702. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  3703. }
  3704. static void niu_stop_rx_channels(struct niu *np)
  3705. {
  3706. int i;
  3707. for (i = 0; i < np->num_rx_rings; i++) {
  3708. struct rx_ring_info *rp = &np->rx_rings[i];
  3709. niu_stop_one_rx_channel(np, rp);
  3710. }
  3711. }
  3712. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  3713. {
  3714. int channel = rp->rx_channel;
  3715. (void) niu_rx_channel_reset(np, channel);
  3716. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  3717. nw64(RX_DMA_CTL_STAT(channel), 0);
  3718. (void) niu_enable_rx_channel(np, channel, 0);
  3719. }
  3720. static void niu_reset_rx_channels(struct niu *np)
  3721. {
  3722. int i;
  3723. for (i = 0; i < np->num_rx_rings; i++) {
  3724. struct rx_ring_info *rp = &np->rx_rings[i];
  3725. niu_reset_one_rx_channel(np, rp);
  3726. }
  3727. }
  3728. static void niu_disable_ipp(struct niu *np)
  3729. {
  3730. u64 rd, wr, val;
  3731. int limit;
  3732. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3733. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3734. limit = 100;
  3735. while (--limit >= 0 && (rd != wr)) {
  3736. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  3737. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  3738. }
  3739. if (limit < 0 &&
  3740. (rd != 0 && wr != 1)) {
  3741. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  3742. "rd_ptr[%llx] wr_ptr[%llx]\n",
  3743. np->dev->name,
  3744. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  3745. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  3746. }
  3747. val = nr64_ipp(IPP_CFIG);
  3748. val &= ~(IPP_CFIG_IPP_ENABLE |
  3749. IPP_CFIG_DFIFO_ECC_EN |
  3750. IPP_CFIG_DROP_BAD_CRC |
  3751. IPP_CFIG_CKSUM_EN);
  3752. nw64_ipp(IPP_CFIG, val);
  3753. (void) niu_ipp_reset(np);
  3754. }
  3755. static int niu_init_hw(struct niu *np)
  3756. {
  3757. int i, err;
  3758. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  3759. niu_txc_enable_port(np, 1);
  3760. niu_txc_port_dma_enable(np, 1);
  3761. niu_txc_set_imask(np, 0);
  3762. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  3763. for (i = 0; i < np->num_tx_rings; i++) {
  3764. struct tx_ring_info *rp = &np->tx_rings[i];
  3765. err = niu_init_one_tx_channel(np, rp);
  3766. if (err)
  3767. return err;
  3768. }
  3769. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  3770. err = niu_init_rx_channels(np);
  3771. if (err)
  3772. goto out_uninit_tx_channels;
  3773. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  3774. err = niu_init_classifier_hw(np);
  3775. if (err)
  3776. goto out_uninit_rx_channels;
  3777. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  3778. err = niu_init_zcp(np);
  3779. if (err)
  3780. goto out_uninit_rx_channels;
  3781. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  3782. err = niu_init_ipp(np);
  3783. if (err)
  3784. goto out_uninit_rx_channels;
  3785. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  3786. err = niu_init_mac(np);
  3787. if (err)
  3788. goto out_uninit_ipp;
  3789. return 0;
  3790. out_uninit_ipp:
  3791. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  3792. niu_disable_ipp(np);
  3793. out_uninit_rx_channels:
  3794. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  3795. niu_stop_rx_channels(np);
  3796. niu_reset_rx_channels(np);
  3797. out_uninit_tx_channels:
  3798. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  3799. niu_stop_tx_channels(np);
  3800. niu_reset_tx_channels(np);
  3801. return err;
  3802. }
  3803. static void niu_stop_hw(struct niu *np)
  3804. {
  3805. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  3806. niu_enable_interrupts(np, 0);
  3807. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  3808. niu_enable_rx_mac(np, 0);
  3809. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  3810. niu_disable_ipp(np);
  3811. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  3812. niu_stop_tx_channels(np);
  3813. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  3814. niu_stop_rx_channels(np);
  3815. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  3816. niu_reset_tx_channels(np);
  3817. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  3818. niu_reset_rx_channels(np);
  3819. }
  3820. static int niu_request_irq(struct niu *np)
  3821. {
  3822. int i, j, err;
  3823. err = 0;
  3824. for (i = 0; i < np->num_ldg; i++) {
  3825. struct niu_ldg *lp = &np->ldg[i];
  3826. err = request_irq(lp->irq, niu_interrupt,
  3827. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  3828. np->dev->name, lp);
  3829. if (err)
  3830. goto out_free_irqs;
  3831. }
  3832. return 0;
  3833. out_free_irqs:
  3834. for (j = 0; j < i; j++) {
  3835. struct niu_ldg *lp = &np->ldg[j];
  3836. free_irq(lp->irq, lp);
  3837. }
  3838. return err;
  3839. }
  3840. static void niu_free_irq(struct niu *np)
  3841. {
  3842. int i;
  3843. for (i = 0; i < np->num_ldg; i++) {
  3844. struct niu_ldg *lp = &np->ldg[i];
  3845. free_irq(lp->irq, lp);
  3846. }
  3847. }
  3848. static void niu_enable_napi(struct niu *np)
  3849. {
  3850. int i;
  3851. for (i = 0; i < np->num_ldg; i++)
  3852. napi_enable(&np->ldg[i].napi);
  3853. }
  3854. static void niu_disable_napi(struct niu *np)
  3855. {
  3856. int i;
  3857. for (i = 0; i < np->num_ldg; i++)
  3858. napi_disable(&np->ldg[i].napi);
  3859. }
  3860. static int niu_open(struct net_device *dev)
  3861. {
  3862. struct niu *np = netdev_priv(dev);
  3863. int err;
  3864. netif_carrier_off(dev);
  3865. err = niu_alloc_channels(np);
  3866. if (err)
  3867. goto out_err;
  3868. err = niu_enable_interrupts(np, 0);
  3869. if (err)
  3870. goto out_free_channels;
  3871. err = niu_request_irq(np);
  3872. if (err)
  3873. goto out_free_channels;
  3874. niu_enable_napi(np);
  3875. spin_lock_irq(&np->lock);
  3876. err = niu_init_hw(np);
  3877. if (!err) {
  3878. init_timer(&np->timer);
  3879. np->timer.expires = jiffies + HZ;
  3880. np->timer.data = (unsigned long) np;
  3881. np->timer.function = niu_timer;
  3882. err = niu_enable_interrupts(np, 1);
  3883. if (err)
  3884. niu_stop_hw(np);
  3885. }
  3886. spin_unlock_irq(&np->lock);
  3887. if (err) {
  3888. niu_disable_napi(np);
  3889. goto out_free_irq;
  3890. }
  3891. netif_start_queue(dev);
  3892. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  3893. netif_carrier_on(dev);
  3894. add_timer(&np->timer);
  3895. return 0;
  3896. out_free_irq:
  3897. niu_free_irq(np);
  3898. out_free_channels:
  3899. niu_free_channels(np);
  3900. out_err:
  3901. return err;
  3902. }
  3903. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  3904. {
  3905. cancel_work_sync(&np->reset_task);
  3906. niu_disable_napi(np);
  3907. netif_stop_queue(dev);
  3908. del_timer_sync(&np->timer);
  3909. spin_lock_irq(&np->lock);
  3910. niu_stop_hw(np);
  3911. spin_unlock_irq(&np->lock);
  3912. }
  3913. static int niu_close(struct net_device *dev)
  3914. {
  3915. struct niu *np = netdev_priv(dev);
  3916. niu_full_shutdown(np, dev);
  3917. niu_free_irq(np);
  3918. niu_free_channels(np);
  3919. return 0;
  3920. }
  3921. static void niu_sync_xmac_stats(struct niu *np)
  3922. {
  3923. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3924. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  3925. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  3926. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  3927. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  3928. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  3929. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  3930. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  3931. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  3932. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  3933. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  3934. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  3935. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  3936. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  3937. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  3938. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  3939. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  3940. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  3941. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  3942. }
  3943. static void niu_sync_bmac_stats(struct niu *np)
  3944. {
  3945. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3946. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  3947. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  3948. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  3949. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  3950. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  3951. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  3952. }
  3953. static void niu_sync_mac_stats(struct niu *np)
  3954. {
  3955. if (np->flags & NIU_FLAGS_XMAC)
  3956. niu_sync_xmac_stats(np);
  3957. else
  3958. niu_sync_bmac_stats(np);
  3959. }
  3960. static void niu_get_rx_stats(struct niu *np)
  3961. {
  3962. unsigned long pkts, dropped, errors, bytes;
  3963. int i;
  3964. pkts = dropped = errors = bytes = 0;
  3965. for (i = 0; i < np->num_rx_rings; i++) {
  3966. struct rx_ring_info *rp = &np->rx_rings[i];
  3967. pkts += rp->rx_packets;
  3968. bytes += rp->rx_bytes;
  3969. dropped += rp->rx_dropped;
  3970. errors += rp->rx_errors;
  3971. }
  3972. np->net_stats.rx_packets = pkts;
  3973. np->net_stats.rx_bytes = bytes;
  3974. np->net_stats.rx_dropped = dropped;
  3975. np->net_stats.rx_errors = errors;
  3976. }
  3977. static void niu_get_tx_stats(struct niu *np)
  3978. {
  3979. unsigned long pkts, errors, bytes;
  3980. int i;
  3981. pkts = errors = bytes = 0;
  3982. for (i = 0; i < np->num_tx_rings; i++) {
  3983. struct tx_ring_info *rp = &np->tx_rings[i];
  3984. pkts += rp->tx_packets;
  3985. bytes += rp->tx_bytes;
  3986. errors += rp->tx_errors;
  3987. }
  3988. np->net_stats.tx_packets = pkts;
  3989. np->net_stats.tx_bytes = bytes;
  3990. np->net_stats.tx_errors = errors;
  3991. }
  3992. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  3993. {
  3994. struct niu *np = netdev_priv(dev);
  3995. niu_get_rx_stats(np);
  3996. niu_get_tx_stats(np);
  3997. return &np->net_stats;
  3998. }
  3999. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  4000. {
  4001. int i;
  4002. for (i = 0; i < 16; i++)
  4003. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  4004. }
  4005. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  4006. {
  4007. int i;
  4008. for (i = 0; i < 16; i++)
  4009. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  4010. }
  4011. static void niu_load_hash(struct niu *np, u16 *hash)
  4012. {
  4013. if (np->flags & NIU_FLAGS_XMAC)
  4014. niu_load_hash_xmac(np, hash);
  4015. else
  4016. niu_load_hash_bmac(np, hash);
  4017. }
  4018. static void niu_set_rx_mode(struct net_device *dev)
  4019. {
  4020. struct niu *np = netdev_priv(dev);
  4021. int i, alt_cnt, err;
  4022. struct dev_addr_list *addr;
  4023. unsigned long flags;
  4024. u16 hash[16] = { 0, };
  4025. spin_lock_irqsave(&np->lock, flags);
  4026. niu_enable_rx_mac(np, 0);
  4027. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  4028. if (dev->flags & IFF_PROMISC)
  4029. np->flags |= NIU_FLAGS_PROMISC;
  4030. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  4031. np->flags |= NIU_FLAGS_MCAST;
  4032. alt_cnt = dev->uc_count;
  4033. if (alt_cnt > niu_num_alt_addr(np)) {
  4034. alt_cnt = 0;
  4035. np->flags |= NIU_FLAGS_PROMISC;
  4036. }
  4037. if (alt_cnt) {
  4038. int index = 0;
  4039. for (addr = dev->uc_list; addr; addr = addr->next) {
  4040. err = niu_set_alt_mac(np, index,
  4041. addr->da_addr);
  4042. if (err)
  4043. printk(KERN_WARNING PFX "%s: Error %d "
  4044. "adding alt mac %d\n",
  4045. dev->name, err, index);
  4046. err = niu_enable_alt_mac(np, index, 1);
  4047. if (err)
  4048. printk(KERN_WARNING PFX "%s: Error %d "
  4049. "enabling alt mac %d\n",
  4050. dev->name, err, index);
  4051. index++;
  4052. }
  4053. } else {
  4054. for (i = 0; i < niu_num_alt_addr(np); i++) {
  4055. err = niu_enable_alt_mac(np, i, 0);
  4056. if (err)
  4057. printk(KERN_WARNING PFX "%s: Error %d "
  4058. "disabling alt mac %d\n",
  4059. dev->name, err, i);
  4060. }
  4061. }
  4062. if (dev->flags & IFF_ALLMULTI) {
  4063. for (i = 0; i < 16; i++)
  4064. hash[i] = 0xffff;
  4065. } else if (dev->mc_count > 0) {
  4066. for (addr = dev->mc_list; addr; addr = addr->next) {
  4067. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  4068. crc >>= 24;
  4069. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  4070. }
  4071. }
  4072. if (np->flags & NIU_FLAGS_MCAST)
  4073. niu_load_hash(np, hash);
  4074. niu_enable_rx_mac(np, 1);
  4075. spin_unlock_irqrestore(&np->lock, flags);
  4076. }
  4077. static int niu_set_mac_addr(struct net_device *dev, void *p)
  4078. {
  4079. struct niu *np = netdev_priv(dev);
  4080. struct sockaddr *addr = p;
  4081. unsigned long flags;
  4082. if (!is_valid_ether_addr(addr->sa_data))
  4083. return -EINVAL;
  4084. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  4085. if (!netif_running(dev))
  4086. return 0;
  4087. spin_lock_irqsave(&np->lock, flags);
  4088. niu_enable_rx_mac(np, 0);
  4089. niu_set_primary_mac(np, dev->dev_addr);
  4090. niu_enable_rx_mac(np, 1);
  4091. spin_unlock_irqrestore(&np->lock, flags);
  4092. return 0;
  4093. }
  4094. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4095. {
  4096. return -EOPNOTSUPP;
  4097. }
  4098. static void niu_netif_stop(struct niu *np)
  4099. {
  4100. np->dev->trans_start = jiffies; /* prevent tx timeout */
  4101. niu_disable_napi(np);
  4102. netif_tx_disable(np->dev);
  4103. }
  4104. static void niu_netif_start(struct niu *np)
  4105. {
  4106. /* NOTE: unconditional netif_wake_queue is only appropriate
  4107. * so long as all callers are assured to have free tx slots
  4108. * (such as after niu_init_hw).
  4109. */
  4110. netif_wake_queue(np->dev);
  4111. niu_enable_napi(np);
  4112. niu_enable_interrupts(np, 1);
  4113. }
  4114. static void niu_reset_task(struct work_struct *work)
  4115. {
  4116. struct niu *np = container_of(work, struct niu, reset_task);
  4117. unsigned long flags;
  4118. int err;
  4119. spin_lock_irqsave(&np->lock, flags);
  4120. if (!netif_running(np->dev)) {
  4121. spin_unlock_irqrestore(&np->lock, flags);
  4122. return;
  4123. }
  4124. spin_unlock_irqrestore(&np->lock, flags);
  4125. del_timer_sync(&np->timer);
  4126. niu_netif_stop(np);
  4127. spin_lock_irqsave(&np->lock, flags);
  4128. niu_stop_hw(np);
  4129. err = niu_init_hw(np);
  4130. if (!err) {
  4131. np->timer.expires = jiffies + HZ;
  4132. add_timer(&np->timer);
  4133. niu_netif_start(np);
  4134. }
  4135. spin_unlock_irqrestore(&np->lock, flags);
  4136. }
  4137. static void niu_tx_timeout(struct net_device *dev)
  4138. {
  4139. struct niu *np = netdev_priv(dev);
  4140. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  4141. dev->name);
  4142. schedule_work(&np->reset_task);
  4143. }
  4144. static void niu_set_txd(struct tx_ring_info *rp, int index,
  4145. u64 mapping, u64 len, u64 mark,
  4146. u64 n_frags)
  4147. {
  4148. __le64 *desc = &rp->descr[index];
  4149. *desc = cpu_to_le64(mark |
  4150. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  4151. (len << TX_DESC_TR_LEN_SHIFT) |
  4152. (mapping & TX_DESC_SAD));
  4153. }
  4154. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  4155. u64 pad_bytes, u64 len)
  4156. {
  4157. u16 eth_proto, eth_proto_inner;
  4158. u64 csum_bits, l3off, ihl, ret;
  4159. u8 ip_proto;
  4160. int ipv6;
  4161. eth_proto = be16_to_cpu(ehdr->h_proto);
  4162. eth_proto_inner = eth_proto;
  4163. if (eth_proto == ETH_P_8021Q) {
  4164. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  4165. __be16 val = vp->h_vlan_encapsulated_proto;
  4166. eth_proto_inner = be16_to_cpu(val);
  4167. }
  4168. ipv6 = ihl = 0;
  4169. switch (skb->protocol) {
  4170. case __constant_htons(ETH_P_IP):
  4171. ip_proto = ip_hdr(skb)->protocol;
  4172. ihl = ip_hdr(skb)->ihl;
  4173. break;
  4174. case __constant_htons(ETH_P_IPV6):
  4175. ip_proto = ipv6_hdr(skb)->nexthdr;
  4176. ihl = (40 >> 2);
  4177. ipv6 = 1;
  4178. break;
  4179. default:
  4180. ip_proto = ihl = 0;
  4181. break;
  4182. }
  4183. csum_bits = TXHDR_CSUM_NONE;
  4184. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  4185. u64 start, stuff;
  4186. csum_bits = (ip_proto == IPPROTO_TCP ?
  4187. TXHDR_CSUM_TCP :
  4188. (ip_proto == IPPROTO_UDP ?
  4189. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  4190. start = skb_transport_offset(skb) -
  4191. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4192. stuff = start + skb->csum_offset;
  4193. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  4194. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  4195. }
  4196. l3off = skb_network_offset(skb) -
  4197. (pad_bytes + sizeof(struct tx_pkt_hdr));
  4198. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  4199. (len << TXHDR_LEN_SHIFT) |
  4200. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  4201. (ihl << TXHDR_IHL_SHIFT) |
  4202. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  4203. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  4204. (ipv6 ? TXHDR_IP_VER : 0) |
  4205. csum_bits);
  4206. return ret;
  4207. }
  4208. static struct tx_ring_info *tx_ring_select(struct niu *np, struct sk_buff *skb)
  4209. {
  4210. return &np->tx_rings[0];
  4211. }
  4212. static int niu_start_xmit(struct sk_buff *skb, struct net_device *dev)
  4213. {
  4214. struct niu *np = netdev_priv(dev);
  4215. unsigned long align, headroom;
  4216. struct tx_ring_info *rp;
  4217. struct tx_pkt_hdr *tp;
  4218. unsigned int len, nfg;
  4219. struct ethhdr *ehdr;
  4220. int prod, i, tlen;
  4221. u64 mapping, mrk;
  4222. rp = tx_ring_select(np, skb);
  4223. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  4224. netif_stop_queue(dev);
  4225. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  4226. "queue awake!\n", dev->name);
  4227. rp->tx_errors++;
  4228. return NETDEV_TX_BUSY;
  4229. }
  4230. if (skb->len < ETH_ZLEN) {
  4231. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  4232. if (skb_pad(skb, pad_bytes))
  4233. goto out;
  4234. skb_put(skb, pad_bytes);
  4235. }
  4236. len = sizeof(struct tx_pkt_hdr) + 15;
  4237. if (skb_headroom(skb) < len) {
  4238. struct sk_buff *skb_new;
  4239. skb_new = skb_realloc_headroom(skb, len);
  4240. if (!skb_new) {
  4241. rp->tx_errors++;
  4242. goto out_drop;
  4243. }
  4244. kfree_skb(skb);
  4245. skb = skb_new;
  4246. }
  4247. align = ((unsigned long) skb->data & (16 - 1));
  4248. headroom = align + sizeof(struct tx_pkt_hdr);
  4249. ehdr = (struct ethhdr *) skb->data;
  4250. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  4251. len = skb->len - sizeof(struct tx_pkt_hdr);
  4252. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  4253. tp->resv = 0;
  4254. len = skb_headlen(skb);
  4255. mapping = np->ops->map_single(np->device, skb->data,
  4256. len, DMA_TO_DEVICE);
  4257. prod = rp->prod;
  4258. rp->tx_buffs[prod].skb = skb;
  4259. rp->tx_buffs[prod].mapping = mapping;
  4260. mrk = TX_DESC_SOP;
  4261. if (++rp->mark_counter == rp->mark_freq) {
  4262. rp->mark_counter = 0;
  4263. mrk |= TX_DESC_MARK;
  4264. rp->mark_pending++;
  4265. }
  4266. tlen = len;
  4267. nfg = skb_shinfo(skb)->nr_frags;
  4268. while (tlen > 0) {
  4269. tlen -= MAX_TX_DESC_LEN;
  4270. nfg++;
  4271. }
  4272. while (len > 0) {
  4273. unsigned int this_len = len;
  4274. if (this_len > MAX_TX_DESC_LEN)
  4275. this_len = MAX_TX_DESC_LEN;
  4276. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  4277. mrk = nfg = 0;
  4278. prod = NEXT_TX(rp, prod);
  4279. mapping += this_len;
  4280. len -= this_len;
  4281. }
  4282. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  4283. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  4284. len = frag->size;
  4285. mapping = np->ops->map_page(np->device, frag->page,
  4286. frag->page_offset, len,
  4287. DMA_TO_DEVICE);
  4288. rp->tx_buffs[prod].skb = NULL;
  4289. rp->tx_buffs[prod].mapping = mapping;
  4290. niu_set_txd(rp, prod, mapping, len, 0, 0);
  4291. prod = NEXT_TX(rp, prod);
  4292. }
  4293. if (prod < rp->prod)
  4294. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  4295. rp->prod = prod;
  4296. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  4297. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  4298. netif_stop_queue(dev);
  4299. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  4300. netif_wake_queue(dev);
  4301. }
  4302. dev->trans_start = jiffies;
  4303. out:
  4304. return NETDEV_TX_OK;
  4305. out_drop:
  4306. rp->tx_errors++;
  4307. kfree_skb(skb);
  4308. goto out;
  4309. }
  4310. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  4311. {
  4312. struct niu *np = netdev_priv(dev);
  4313. int err, orig_jumbo, new_jumbo;
  4314. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  4315. return -EINVAL;
  4316. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  4317. new_jumbo = (new_mtu > ETH_DATA_LEN);
  4318. dev->mtu = new_mtu;
  4319. if (!netif_running(dev) ||
  4320. (orig_jumbo == new_jumbo))
  4321. return 0;
  4322. niu_full_shutdown(np, dev);
  4323. niu_free_channels(np);
  4324. niu_enable_napi(np);
  4325. err = niu_alloc_channels(np);
  4326. if (err)
  4327. return err;
  4328. spin_lock_irq(&np->lock);
  4329. err = niu_init_hw(np);
  4330. if (!err) {
  4331. init_timer(&np->timer);
  4332. np->timer.expires = jiffies + HZ;
  4333. np->timer.data = (unsigned long) np;
  4334. np->timer.function = niu_timer;
  4335. err = niu_enable_interrupts(np, 1);
  4336. if (err)
  4337. niu_stop_hw(np);
  4338. }
  4339. spin_unlock_irq(&np->lock);
  4340. if (!err) {
  4341. netif_start_queue(dev);
  4342. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  4343. netif_carrier_on(dev);
  4344. add_timer(&np->timer);
  4345. }
  4346. return err;
  4347. }
  4348. static void niu_get_drvinfo(struct net_device *dev,
  4349. struct ethtool_drvinfo *info)
  4350. {
  4351. struct niu *np = netdev_priv(dev);
  4352. struct niu_vpd *vpd = &np->vpd;
  4353. strcpy(info->driver, DRV_MODULE_NAME);
  4354. strcpy(info->version, DRV_MODULE_VERSION);
  4355. sprintf(info->fw_version, "%d.%d",
  4356. vpd->fcode_major, vpd->fcode_minor);
  4357. if (np->parent->plat_type != PLAT_TYPE_NIU)
  4358. strcpy(info->bus_info, pci_name(np->pdev));
  4359. }
  4360. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4361. {
  4362. struct niu *np = netdev_priv(dev);
  4363. struct niu_link_config *lp;
  4364. lp = &np->link_config;
  4365. memset(cmd, 0, sizeof(*cmd));
  4366. cmd->phy_address = np->phy_addr;
  4367. cmd->supported = lp->supported;
  4368. cmd->advertising = lp->advertising;
  4369. cmd->autoneg = lp->autoneg;
  4370. cmd->speed = lp->active_speed;
  4371. cmd->duplex = lp->active_duplex;
  4372. return 0;
  4373. }
  4374. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4375. {
  4376. return -EINVAL;
  4377. }
  4378. static u32 niu_get_msglevel(struct net_device *dev)
  4379. {
  4380. struct niu *np = netdev_priv(dev);
  4381. return np->msg_enable;
  4382. }
  4383. static void niu_set_msglevel(struct net_device *dev, u32 value)
  4384. {
  4385. struct niu *np = netdev_priv(dev);
  4386. np->msg_enable = value;
  4387. }
  4388. static int niu_get_eeprom_len(struct net_device *dev)
  4389. {
  4390. struct niu *np = netdev_priv(dev);
  4391. return np->eeprom_len;
  4392. }
  4393. static int niu_get_eeprom(struct net_device *dev,
  4394. struct ethtool_eeprom *eeprom, u8 *data)
  4395. {
  4396. struct niu *np = netdev_priv(dev);
  4397. u32 offset, len, val;
  4398. offset = eeprom->offset;
  4399. len = eeprom->len;
  4400. if (offset + len < offset)
  4401. return -EINVAL;
  4402. if (offset >= np->eeprom_len)
  4403. return -EINVAL;
  4404. if (offset + len > np->eeprom_len)
  4405. len = eeprom->len = np->eeprom_len - offset;
  4406. if (offset & 3) {
  4407. u32 b_offset, b_count;
  4408. b_offset = offset & 3;
  4409. b_count = 4 - b_offset;
  4410. if (b_count > len)
  4411. b_count = len;
  4412. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  4413. memcpy(data, ((char *)&val) + b_offset, b_count);
  4414. data += b_count;
  4415. len -= b_count;
  4416. offset += b_count;
  4417. }
  4418. while (len >= 4) {
  4419. val = nr64(ESPC_NCR(offset / 4));
  4420. memcpy(data, &val, 4);
  4421. data += 4;
  4422. len -= 4;
  4423. offset += 4;
  4424. }
  4425. if (len) {
  4426. val = nr64(ESPC_NCR(offset / 4));
  4427. memcpy(data, &val, len);
  4428. }
  4429. return 0;
  4430. }
  4431. static const struct {
  4432. const char string[ETH_GSTRING_LEN];
  4433. } niu_xmac_stat_keys[] = {
  4434. { "tx_frames" },
  4435. { "tx_bytes" },
  4436. { "tx_fifo_errors" },
  4437. { "tx_overflow_errors" },
  4438. { "tx_max_pkt_size_errors" },
  4439. { "tx_underflow_errors" },
  4440. { "rx_local_faults" },
  4441. { "rx_remote_faults" },
  4442. { "rx_link_faults" },
  4443. { "rx_align_errors" },
  4444. { "rx_frags" },
  4445. { "rx_mcasts" },
  4446. { "rx_bcasts" },
  4447. { "rx_hist_cnt1" },
  4448. { "rx_hist_cnt2" },
  4449. { "rx_hist_cnt3" },
  4450. { "rx_hist_cnt4" },
  4451. { "rx_hist_cnt5" },
  4452. { "rx_hist_cnt6" },
  4453. { "rx_hist_cnt7" },
  4454. { "rx_octets" },
  4455. { "rx_code_violations" },
  4456. { "rx_len_errors" },
  4457. { "rx_crc_errors" },
  4458. { "rx_underflows" },
  4459. { "rx_overflows" },
  4460. { "pause_off_state" },
  4461. { "pause_on_state" },
  4462. { "pause_received" },
  4463. };
  4464. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  4465. static const struct {
  4466. const char string[ETH_GSTRING_LEN];
  4467. } niu_bmac_stat_keys[] = {
  4468. { "tx_underflow_errors" },
  4469. { "tx_max_pkt_size_errors" },
  4470. { "tx_bytes" },
  4471. { "tx_frames" },
  4472. { "rx_overflows" },
  4473. { "rx_frames" },
  4474. { "rx_align_errors" },
  4475. { "rx_crc_errors" },
  4476. { "rx_len_errors" },
  4477. { "pause_off_state" },
  4478. { "pause_on_state" },
  4479. { "pause_received" },
  4480. };
  4481. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  4482. static const struct {
  4483. const char string[ETH_GSTRING_LEN];
  4484. } niu_rxchan_stat_keys[] = {
  4485. { "rx_channel" },
  4486. { "rx_packets" },
  4487. { "rx_bytes" },
  4488. { "rx_dropped" },
  4489. { "rx_errors" },
  4490. };
  4491. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  4492. static const struct {
  4493. const char string[ETH_GSTRING_LEN];
  4494. } niu_txchan_stat_keys[] = {
  4495. { "tx_channel" },
  4496. { "tx_packets" },
  4497. { "tx_bytes" },
  4498. { "tx_errors" },
  4499. };
  4500. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  4501. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  4502. {
  4503. struct niu *np = netdev_priv(dev);
  4504. int i;
  4505. if (stringset != ETH_SS_STATS)
  4506. return;
  4507. if (np->flags & NIU_FLAGS_XMAC) {
  4508. memcpy(data, niu_xmac_stat_keys,
  4509. sizeof(niu_xmac_stat_keys));
  4510. data += sizeof(niu_xmac_stat_keys);
  4511. } else {
  4512. memcpy(data, niu_bmac_stat_keys,
  4513. sizeof(niu_bmac_stat_keys));
  4514. data += sizeof(niu_bmac_stat_keys);
  4515. }
  4516. for (i = 0; i < np->num_rx_rings; i++) {
  4517. memcpy(data, niu_rxchan_stat_keys,
  4518. sizeof(niu_rxchan_stat_keys));
  4519. data += sizeof(niu_rxchan_stat_keys);
  4520. }
  4521. for (i = 0; i < np->num_tx_rings; i++) {
  4522. memcpy(data, niu_txchan_stat_keys,
  4523. sizeof(niu_txchan_stat_keys));
  4524. data += sizeof(niu_txchan_stat_keys);
  4525. }
  4526. }
  4527. static int niu_get_stats_count(struct net_device *dev)
  4528. {
  4529. struct niu *np = netdev_priv(dev);
  4530. return ((np->flags & NIU_FLAGS_XMAC ?
  4531. NUM_XMAC_STAT_KEYS :
  4532. NUM_BMAC_STAT_KEYS) +
  4533. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  4534. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  4535. }
  4536. static void niu_get_ethtool_stats(struct net_device *dev,
  4537. struct ethtool_stats *stats, u64 *data)
  4538. {
  4539. struct niu *np = netdev_priv(dev);
  4540. int i;
  4541. niu_sync_mac_stats(np);
  4542. if (np->flags & NIU_FLAGS_XMAC) {
  4543. memcpy(data, &np->mac_stats.xmac,
  4544. sizeof(struct niu_xmac_stats));
  4545. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  4546. } else {
  4547. memcpy(data, &np->mac_stats.bmac,
  4548. sizeof(struct niu_bmac_stats));
  4549. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  4550. }
  4551. for (i = 0; i < np->num_rx_rings; i++) {
  4552. struct rx_ring_info *rp = &np->rx_rings[i];
  4553. data[0] = rp->rx_channel;
  4554. data[1] = rp->rx_packets;
  4555. data[2] = rp->rx_bytes;
  4556. data[3] = rp->rx_dropped;
  4557. data[4] = rp->rx_errors;
  4558. data += 5;
  4559. }
  4560. for (i = 0; i < np->num_tx_rings; i++) {
  4561. struct tx_ring_info *rp = &np->tx_rings[i];
  4562. data[0] = rp->tx_channel;
  4563. data[1] = rp->tx_packets;
  4564. data[2] = rp->tx_bytes;
  4565. data[3] = rp->tx_errors;
  4566. data += 4;
  4567. }
  4568. }
  4569. static u64 niu_led_state_save(struct niu *np)
  4570. {
  4571. if (np->flags & NIU_FLAGS_XMAC)
  4572. return nr64_mac(XMAC_CONFIG);
  4573. else
  4574. return nr64_mac(BMAC_XIF_CONFIG);
  4575. }
  4576. static void niu_led_state_restore(struct niu *np, u64 val)
  4577. {
  4578. if (np->flags & NIU_FLAGS_XMAC)
  4579. nw64_mac(XMAC_CONFIG, val);
  4580. else
  4581. nw64_mac(BMAC_XIF_CONFIG, val);
  4582. }
  4583. static void niu_force_led(struct niu *np, int on)
  4584. {
  4585. u64 val, reg, bit;
  4586. if (np->flags & NIU_FLAGS_XMAC) {
  4587. reg = XMAC_CONFIG;
  4588. bit = XMAC_CONFIG_FORCE_LED_ON;
  4589. } else {
  4590. reg = BMAC_XIF_CONFIG;
  4591. bit = BMAC_XIF_CONFIG_LINK_LED;
  4592. }
  4593. val = nr64_mac(reg);
  4594. if (on)
  4595. val |= bit;
  4596. else
  4597. val &= ~bit;
  4598. nw64_mac(reg, val);
  4599. }
  4600. static int niu_phys_id(struct net_device *dev, u32 data)
  4601. {
  4602. struct niu *np = netdev_priv(dev);
  4603. u64 orig_led_state;
  4604. int i;
  4605. if (!netif_running(dev))
  4606. return -EAGAIN;
  4607. if (data == 0)
  4608. data = 2;
  4609. orig_led_state = niu_led_state_save(np);
  4610. for (i = 0; i < (data * 2); i++) {
  4611. int on = ((i % 2) == 0);
  4612. niu_force_led(np, on);
  4613. if (msleep_interruptible(500))
  4614. break;
  4615. }
  4616. niu_led_state_restore(np, orig_led_state);
  4617. return 0;
  4618. }
  4619. static const struct ethtool_ops niu_ethtool_ops = {
  4620. .get_drvinfo = niu_get_drvinfo,
  4621. .get_link = ethtool_op_get_link,
  4622. .get_msglevel = niu_get_msglevel,
  4623. .set_msglevel = niu_set_msglevel,
  4624. .get_eeprom_len = niu_get_eeprom_len,
  4625. .get_eeprom = niu_get_eeprom,
  4626. .get_settings = niu_get_settings,
  4627. .set_settings = niu_set_settings,
  4628. .get_strings = niu_get_strings,
  4629. .get_stats_count = niu_get_stats_count,
  4630. .get_ethtool_stats = niu_get_ethtool_stats,
  4631. .phys_id = niu_phys_id,
  4632. };
  4633. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  4634. int ldg, int ldn)
  4635. {
  4636. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  4637. return -EINVAL;
  4638. if (ldn < 0 || ldn > LDN_MAX)
  4639. return -EINVAL;
  4640. parent->ldg_map[ldn] = ldg;
  4641. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  4642. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  4643. * the firmware, and we're not supposed to change them.
  4644. * Validate the mapping, because if it's wrong we probably
  4645. * won't get any interrupts and that's painful to debug.
  4646. */
  4647. if (nr64(LDG_NUM(ldn)) != ldg) {
  4648. dev_err(np->device, PFX "Port %u, mis-matched "
  4649. "LDG assignment "
  4650. "for ldn %d, should be %d is %llu\n",
  4651. np->port, ldn, ldg,
  4652. (unsigned long long) nr64(LDG_NUM(ldn)));
  4653. return -EINVAL;
  4654. }
  4655. } else
  4656. nw64(LDG_NUM(ldn), ldg);
  4657. return 0;
  4658. }
  4659. static int niu_set_ldg_timer_res(struct niu *np, int res)
  4660. {
  4661. if (res < 0 || res > LDG_TIMER_RES_VAL)
  4662. return -EINVAL;
  4663. nw64(LDG_TIMER_RES, res);
  4664. return 0;
  4665. }
  4666. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  4667. {
  4668. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  4669. (func < 0 || func > 3) ||
  4670. (vector < 0 || vector > 0x1f))
  4671. return -EINVAL;
  4672. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  4673. return 0;
  4674. }
  4675. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  4676. {
  4677. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  4678. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  4679. int limit;
  4680. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  4681. return -EINVAL;
  4682. frame = frame_base;
  4683. nw64(ESPC_PIO_STAT, frame);
  4684. limit = 64;
  4685. do {
  4686. udelay(5);
  4687. frame = nr64(ESPC_PIO_STAT);
  4688. if (frame & ESPC_PIO_STAT_READ_END)
  4689. break;
  4690. } while (limit--);
  4691. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4692. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4693. (unsigned long long) frame);
  4694. return -ENODEV;
  4695. }
  4696. frame = frame_base;
  4697. nw64(ESPC_PIO_STAT, frame);
  4698. limit = 64;
  4699. do {
  4700. udelay(5);
  4701. frame = nr64(ESPC_PIO_STAT);
  4702. if (frame & ESPC_PIO_STAT_READ_END)
  4703. break;
  4704. } while (limit--);
  4705. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  4706. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  4707. (unsigned long long) frame);
  4708. return -ENODEV;
  4709. }
  4710. frame = nr64(ESPC_PIO_STAT);
  4711. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  4712. }
  4713. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  4714. {
  4715. int err = niu_pci_eeprom_read(np, off);
  4716. u16 val;
  4717. if (err < 0)
  4718. return err;
  4719. val = (err << 8);
  4720. err = niu_pci_eeprom_read(np, off + 1);
  4721. if (err < 0)
  4722. return err;
  4723. val |= (err & 0xff);
  4724. return val;
  4725. }
  4726. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  4727. {
  4728. int err = niu_pci_eeprom_read(np, off);
  4729. u16 val;
  4730. if (err < 0)
  4731. return err;
  4732. val = (err & 0xff);
  4733. err = niu_pci_eeprom_read(np, off + 1);
  4734. if (err < 0)
  4735. return err;
  4736. val |= (err & 0xff) << 8;
  4737. return val;
  4738. }
  4739. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  4740. u32 off,
  4741. char *namebuf,
  4742. int namebuf_len)
  4743. {
  4744. int i;
  4745. for (i = 0; i < namebuf_len; i++) {
  4746. int err = niu_pci_eeprom_read(np, off + i);
  4747. if (err < 0)
  4748. return err;
  4749. *namebuf++ = err;
  4750. if (!err)
  4751. break;
  4752. }
  4753. if (i >= namebuf_len)
  4754. return -EINVAL;
  4755. return i + 1;
  4756. }
  4757. static void __devinit niu_vpd_parse_version(struct niu *np)
  4758. {
  4759. struct niu_vpd *vpd = &np->vpd;
  4760. int len = strlen(vpd->version) + 1;
  4761. const char *s = vpd->version;
  4762. int i;
  4763. for (i = 0; i < len - 5; i++) {
  4764. if (!strncmp(s + i, "FCode ", 5))
  4765. break;
  4766. }
  4767. if (i >= len - 5)
  4768. return;
  4769. s += i + 5;
  4770. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  4771. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  4772. vpd->fcode_major, vpd->fcode_minor);
  4773. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  4774. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  4775. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  4776. np->flags |= NIU_FLAGS_VPD_VALID;
  4777. }
  4778. /* ESPC_PIO_EN_ENABLE must be set */
  4779. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  4780. u32 start, u32 end)
  4781. {
  4782. unsigned int found_mask = 0;
  4783. #define FOUND_MASK_MODEL 0x00000001
  4784. #define FOUND_MASK_BMODEL 0x00000002
  4785. #define FOUND_MASK_VERS 0x00000004
  4786. #define FOUND_MASK_MAC 0x00000008
  4787. #define FOUND_MASK_NMAC 0x00000010
  4788. #define FOUND_MASK_PHY 0x00000020
  4789. #define FOUND_MASK_ALL 0x0000003f
  4790. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  4791. start, end);
  4792. while (start < end) {
  4793. int len, err, instance, type, prop_len;
  4794. char namebuf[64];
  4795. u8 *prop_buf;
  4796. int max_len;
  4797. if (found_mask == FOUND_MASK_ALL) {
  4798. niu_vpd_parse_version(np);
  4799. return 1;
  4800. }
  4801. err = niu_pci_eeprom_read(np, start + 2);
  4802. if (err < 0)
  4803. return err;
  4804. len = err;
  4805. start += 3;
  4806. instance = niu_pci_eeprom_read(np, start);
  4807. type = niu_pci_eeprom_read(np, start + 3);
  4808. prop_len = niu_pci_eeprom_read(np, start + 4);
  4809. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  4810. if (err < 0)
  4811. return err;
  4812. prop_buf = NULL;
  4813. max_len = 0;
  4814. if (!strcmp(namebuf, "model")) {
  4815. prop_buf = np->vpd.model;
  4816. max_len = NIU_VPD_MODEL_MAX;
  4817. found_mask |= FOUND_MASK_MODEL;
  4818. } else if (!strcmp(namebuf, "board-model")) {
  4819. prop_buf = np->vpd.board_model;
  4820. max_len = NIU_VPD_BD_MODEL_MAX;
  4821. found_mask |= FOUND_MASK_BMODEL;
  4822. } else if (!strcmp(namebuf, "version")) {
  4823. prop_buf = np->vpd.version;
  4824. max_len = NIU_VPD_VERSION_MAX;
  4825. found_mask |= FOUND_MASK_VERS;
  4826. } else if (!strcmp(namebuf, "local-mac-address")) {
  4827. prop_buf = np->vpd.local_mac;
  4828. max_len = ETH_ALEN;
  4829. found_mask |= FOUND_MASK_MAC;
  4830. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  4831. prop_buf = &np->vpd.mac_num;
  4832. max_len = 1;
  4833. found_mask |= FOUND_MASK_NMAC;
  4834. } else if (!strcmp(namebuf, "phy-type")) {
  4835. prop_buf = np->vpd.phy_type;
  4836. max_len = NIU_VPD_PHY_TYPE_MAX;
  4837. found_mask |= FOUND_MASK_PHY;
  4838. }
  4839. if (max_len && prop_len > max_len) {
  4840. dev_err(np->device, PFX "Property '%s' length (%d) is "
  4841. "too long.\n", namebuf, prop_len);
  4842. return -EINVAL;
  4843. }
  4844. if (prop_buf) {
  4845. u32 off = start + 5 + err;
  4846. int i;
  4847. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  4848. "len[%d]\n", namebuf, prop_len);
  4849. for (i = 0; i < prop_len; i++)
  4850. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  4851. }
  4852. start += len;
  4853. }
  4854. return 0;
  4855. }
  4856. /* ESPC_PIO_EN_ENABLE must be set */
  4857. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  4858. {
  4859. u32 offset;
  4860. int err;
  4861. err = niu_pci_eeprom_read16_swp(np, start + 1);
  4862. if (err < 0)
  4863. return;
  4864. offset = err + 3;
  4865. while (start + offset < ESPC_EEPROM_SIZE) {
  4866. u32 here = start + offset;
  4867. u32 end;
  4868. err = niu_pci_eeprom_read(np, here);
  4869. if (err != 0x90)
  4870. return;
  4871. err = niu_pci_eeprom_read16_swp(np, here + 1);
  4872. if (err < 0)
  4873. return;
  4874. here = start + offset + 3;
  4875. end = start + offset + err;
  4876. offset += err;
  4877. err = niu_pci_vpd_scan_props(np, here, end);
  4878. if (err < 0 || err == 1)
  4879. return;
  4880. }
  4881. }
  4882. /* ESPC_PIO_EN_ENABLE must be set */
  4883. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  4884. {
  4885. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  4886. int err;
  4887. while (start < end) {
  4888. ret = start;
  4889. /* ROM header signature? */
  4890. err = niu_pci_eeprom_read16(np, start + 0);
  4891. if (err != 0x55aa)
  4892. return 0;
  4893. /* Apply offset to PCI data structure. */
  4894. err = niu_pci_eeprom_read16(np, start + 23);
  4895. if (err < 0)
  4896. return 0;
  4897. start += err;
  4898. /* Check for "PCIR" signature. */
  4899. err = niu_pci_eeprom_read16(np, start + 0);
  4900. if (err != 0x5043)
  4901. return 0;
  4902. err = niu_pci_eeprom_read16(np, start + 2);
  4903. if (err != 0x4952)
  4904. return 0;
  4905. /* Check for OBP image type. */
  4906. err = niu_pci_eeprom_read(np, start + 20);
  4907. if (err < 0)
  4908. return 0;
  4909. if (err != 0x01) {
  4910. err = niu_pci_eeprom_read(np, ret + 2);
  4911. if (err < 0)
  4912. return 0;
  4913. start = ret + (err * 512);
  4914. continue;
  4915. }
  4916. err = niu_pci_eeprom_read16_swp(np, start + 8);
  4917. if (err < 0)
  4918. return err;
  4919. ret += err;
  4920. err = niu_pci_eeprom_read(np, ret + 0);
  4921. if (err != 0x82)
  4922. return 0;
  4923. return ret;
  4924. }
  4925. return 0;
  4926. }
  4927. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  4928. const char *phy_prop)
  4929. {
  4930. if (!strcmp(phy_prop, "mif")) {
  4931. /* 1G copper, MII */
  4932. np->flags &= ~(NIU_FLAGS_FIBER |
  4933. NIU_FLAGS_10G);
  4934. np->mac_xcvr = MAC_XCVR_MII;
  4935. } else if (!strcmp(phy_prop, "xgf")) {
  4936. /* 10G fiber, XPCS */
  4937. np->flags |= (NIU_FLAGS_10G |
  4938. NIU_FLAGS_FIBER);
  4939. np->mac_xcvr = MAC_XCVR_XPCS;
  4940. } else if (!strcmp(phy_prop, "pcs")) {
  4941. /* 1G fiber, PCS */
  4942. np->flags &= ~NIU_FLAGS_10G;
  4943. np->flags |= NIU_FLAGS_FIBER;
  4944. np->mac_xcvr = MAC_XCVR_PCS;
  4945. } else if (!strcmp(phy_prop, "xgc")) {
  4946. /* 10G copper, XPCS */
  4947. np->flags |= NIU_FLAGS_10G;
  4948. np->flags &= ~NIU_FLAGS_FIBER;
  4949. np->mac_xcvr = MAC_XCVR_XPCS;
  4950. } else {
  4951. return -EINVAL;
  4952. }
  4953. return 0;
  4954. }
  4955. static void __devinit niu_pci_vpd_validate(struct niu *np)
  4956. {
  4957. struct net_device *dev = np->dev;
  4958. struct niu_vpd *vpd = &np->vpd;
  4959. u8 val8;
  4960. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  4961. dev_err(np->device, PFX "VPD MAC invalid, "
  4962. "falling back to SPROM.\n");
  4963. np->flags &= ~NIU_FLAGS_VPD_VALID;
  4964. return;
  4965. }
  4966. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  4967. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  4968. np->vpd.phy_type);
  4969. dev_err(np->device, PFX "Falling back to SPROM.\n");
  4970. np->flags &= ~NIU_FLAGS_VPD_VALID;
  4971. return;
  4972. }
  4973. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  4974. val8 = dev->perm_addr[5];
  4975. dev->perm_addr[5] += np->port;
  4976. if (dev->perm_addr[5] < val8)
  4977. dev->perm_addr[4]++;
  4978. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  4979. }
  4980. static int __devinit niu_pci_probe_sprom(struct niu *np)
  4981. {
  4982. struct net_device *dev = np->dev;
  4983. int len, i;
  4984. u64 val, sum;
  4985. u8 val8;
  4986. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  4987. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  4988. len = val / 4;
  4989. np->eeprom_len = len;
  4990. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  4991. sum = 0;
  4992. for (i = 0; i < len; i++) {
  4993. val = nr64(ESPC_NCR(i));
  4994. sum += (val >> 0) & 0xff;
  4995. sum += (val >> 8) & 0xff;
  4996. sum += (val >> 16) & 0xff;
  4997. sum += (val >> 24) & 0xff;
  4998. }
  4999. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  5000. if ((sum & 0xff) != 0xab) {
  5001. dev_err(np->device, PFX "Bad SPROM checksum "
  5002. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  5003. return -EINVAL;
  5004. }
  5005. val = nr64(ESPC_PHY_TYPE);
  5006. switch (np->port) {
  5007. case 0:
  5008. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  5009. ESPC_PHY_TYPE_PORT0_SHIFT;
  5010. break;
  5011. case 1:
  5012. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  5013. ESPC_PHY_TYPE_PORT1_SHIFT;
  5014. break;
  5015. case 2:
  5016. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  5017. ESPC_PHY_TYPE_PORT2_SHIFT;
  5018. break;
  5019. case 3:
  5020. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  5021. ESPC_PHY_TYPE_PORT3_SHIFT;
  5022. break;
  5023. default:
  5024. dev_err(np->device, PFX "Bogus port number %u\n",
  5025. np->port);
  5026. return -EINVAL;
  5027. }
  5028. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  5029. switch (val8) {
  5030. case ESPC_PHY_TYPE_1G_COPPER:
  5031. /* 1G copper, MII */
  5032. np->flags &= ~(NIU_FLAGS_FIBER |
  5033. NIU_FLAGS_10G);
  5034. np->mac_xcvr = MAC_XCVR_MII;
  5035. break;
  5036. case ESPC_PHY_TYPE_1G_FIBER:
  5037. /* 1G fiber, PCS */
  5038. np->flags &= ~NIU_FLAGS_10G;
  5039. np->flags |= NIU_FLAGS_FIBER;
  5040. np->mac_xcvr = MAC_XCVR_PCS;
  5041. break;
  5042. case ESPC_PHY_TYPE_10G_COPPER:
  5043. /* 10G copper, XPCS */
  5044. np->flags |= NIU_FLAGS_10G;
  5045. np->flags &= ~NIU_FLAGS_FIBER;
  5046. np->mac_xcvr = MAC_XCVR_XPCS;
  5047. break;
  5048. case ESPC_PHY_TYPE_10G_FIBER:
  5049. /* 10G fiber, XPCS */
  5050. np->flags |= (NIU_FLAGS_10G |
  5051. NIU_FLAGS_FIBER);
  5052. np->mac_xcvr = MAC_XCVR_XPCS;
  5053. break;
  5054. default:
  5055. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  5056. return -EINVAL;
  5057. }
  5058. val = nr64(ESPC_MAC_ADDR0);
  5059. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  5060. (unsigned long long) val);
  5061. dev->perm_addr[0] = (val >> 0) & 0xff;
  5062. dev->perm_addr[1] = (val >> 8) & 0xff;
  5063. dev->perm_addr[2] = (val >> 16) & 0xff;
  5064. dev->perm_addr[3] = (val >> 24) & 0xff;
  5065. val = nr64(ESPC_MAC_ADDR1);
  5066. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  5067. (unsigned long long) val);
  5068. dev->perm_addr[4] = (val >> 0) & 0xff;
  5069. dev->perm_addr[5] = (val >> 8) & 0xff;
  5070. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5071. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  5072. dev_err(np->device, PFX "[ \n");
  5073. for (i = 0; i < 6; i++)
  5074. printk("%02x ", dev->perm_addr[i]);
  5075. printk("]\n");
  5076. return -EINVAL;
  5077. }
  5078. val8 = dev->perm_addr[5];
  5079. dev->perm_addr[5] += np->port;
  5080. if (dev->perm_addr[5] < val8)
  5081. dev->perm_addr[4]++;
  5082. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5083. val = nr64(ESPC_MOD_STR_LEN);
  5084. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  5085. (unsigned long long) val);
  5086. if (val >= 8 * 4)
  5087. return -EINVAL;
  5088. for (i = 0; i < val; i += 4) {
  5089. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  5090. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  5091. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  5092. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  5093. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  5094. }
  5095. np->vpd.model[val] = '\0';
  5096. val = nr64(ESPC_BD_MOD_STR_LEN);
  5097. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  5098. (unsigned long long) val);
  5099. if (val >= 4 * 4)
  5100. return -EINVAL;
  5101. for (i = 0; i < val; i += 4) {
  5102. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  5103. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  5104. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  5105. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  5106. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  5107. }
  5108. np->vpd.board_model[val] = '\0';
  5109. np->vpd.mac_num =
  5110. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  5111. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  5112. np->vpd.mac_num);
  5113. return 0;
  5114. }
  5115. static int __devinit niu_get_and_validate_port(struct niu *np)
  5116. {
  5117. struct niu_parent *parent = np->parent;
  5118. if (np->port <= 1)
  5119. np->flags |= NIU_FLAGS_XMAC;
  5120. if (!parent->num_ports) {
  5121. if (parent->plat_type == PLAT_TYPE_NIU) {
  5122. parent->num_ports = 2;
  5123. } else {
  5124. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  5125. ESPC_NUM_PORTS_MACS_VAL;
  5126. if (!parent->num_ports)
  5127. parent->num_ports = 4;
  5128. }
  5129. }
  5130. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  5131. np->port, parent->num_ports);
  5132. if (np->port >= parent->num_ports)
  5133. return -ENODEV;
  5134. return 0;
  5135. }
  5136. static int __devinit phy_record(struct niu_parent *parent,
  5137. struct phy_probe_info *p,
  5138. int dev_id_1, int dev_id_2, u8 phy_port,
  5139. int type)
  5140. {
  5141. u32 id = (dev_id_1 << 16) | dev_id_2;
  5142. u8 idx;
  5143. if (dev_id_1 < 0 || dev_id_2 < 0)
  5144. return 0;
  5145. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  5146. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704)
  5147. return 0;
  5148. } else {
  5149. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  5150. return 0;
  5151. }
  5152. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  5153. parent->index, id,
  5154. (type == PHY_TYPE_PMA_PMD ?
  5155. "PMA/PMD" :
  5156. (type == PHY_TYPE_PCS ?
  5157. "PCS" : "MII")),
  5158. phy_port);
  5159. if (p->cur[type] >= NIU_MAX_PORTS) {
  5160. printk(KERN_ERR PFX "Too many PHY ports.\n");
  5161. return -EINVAL;
  5162. }
  5163. idx = p->cur[type];
  5164. p->phy_id[type][idx] = id;
  5165. p->phy_port[type][idx] = phy_port;
  5166. p->cur[type] = idx + 1;
  5167. return 0;
  5168. }
  5169. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  5170. {
  5171. int i;
  5172. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  5173. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  5174. return 1;
  5175. }
  5176. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  5177. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  5178. return 1;
  5179. }
  5180. return 0;
  5181. }
  5182. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  5183. {
  5184. int port, cnt;
  5185. cnt = 0;
  5186. *lowest = 32;
  5187. for (port = 8; port < 32; port++) {
  5188. if (port_has_10g(p, port)) {
  5189. if (!cnt)
  5190. *lowest = port;
  5191. cnt++;
  5192. }
  5193. }
  5194. return cnt;
  5195. }
  5196. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  5197. {
  5198. *lowest = 32;
  5199. if (p->cur[PHY_TYPE_MII])
  5200. *lowest = p->phy_port[PHY_TYPE_MII][0];
  5201. return p->cur[PHY_TYPE_MII];
  5202. }
  5203. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  5204. {
  5205. int num_ports = parent->num_ports;
  5206. int i;
  5207. for (i = 0; i < num_ports; i++) {
  5208. parent->rxchan_per_port[i] = (16 / num_ports);
  5209. parent->txchan_per_port[i] = (16 / num_ports);
  5210. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5211. "[%u TX chans]\n",
  5212. parent->index, i,
  5213. parent->rxchan_per_port[i],
  5214. parent->txchan_per_port[i]);
  5215. }
  5216. }
  5217. static void __devinit niu_divide_channels(struct niu_parent *parent,
  5218. int num_10g, int num_1g)
  5219. {
  5220. int num_ports = parent->num_ports;
  5221. int rx_chans_per_10g, rx_chans_per_1g;
  5222. int tx_chans_per_10g, tx_chans_per_1g;
  5223. int i, tot_rx, tot_tx;
  5224. if (!num_10g || !num_1g) {
  5225. rx_chans_per_10g = rx_chans_per_1g =
  5226. (NIU_NUM_RXCHAN / num_ports);
  5227. tx_chans_per_10g = tx_chans_per_1g =
  5228. (NIU_NUM_TXCHAN / num_ports);
  5229. } else {
  5230. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  5231. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  5232. (rx_chans_per_1g * num_1g)) /
  5233. num_10g;
  5234. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  5235. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  5236. (tx_chans_per_1g * num_1g)) /
  5237. num_10g;
  5238. }
  5239. tot_rx = tot_tx = 0;
  5240. for (i = 0; i < num_ports; i++) {
  5241. int type = phy_decode(parent->port_phy, i);
  5242. if (type == PORT_TYPE_10G) {
  5243. parent->rxchan_per_port[i] = rx_chans_per_10g;
  5244. parent->txchan_per_port[i] = tx_chans_per_10g;
  5245. } else {
  5246. parent->rxchan_per_port[i] = rx_chans_per_1g;
  5247. parent->txchan_per_port[i] = tx_chans_per_1g;
  5248. }
  5249. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  5250. "[%u TX chans]\n",
  5251. parent->index, i,
  5252. parent->rxchan_per_port[i],
  5253. parent->txchan_per_port[i]);
  5254. tot_rx += parent->rxchan_per_port[i];
  5255. tot_tx += parent->txchan_per_port[i];
  5256. }
  5257. if (tot_rx > NIU_NUM_RXCHAN) {
  5258. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  5259. "resetting to one per port.\n",
  5260. parent->index, tot_rx);
  5261. for (i = 0; i < num_ports; i++)
  5262. parent->rxchan_per_port[i] = 1;
  5263. }
  5264. if (tot_tx > NIU_NUM_TXCHAN) {
  5265. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  5266. "resetting to one per port.\n",
  5267. parent->index, tot_tx);
  5268. for (i = 0; i < num_ports; i++)
  5269. parent->txchan_per_port[i] = 1;
  5270. }
  5271. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  5272. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  5273. "RX[%d] TX[%d]\n",
  5274. parent->index, tot_rx, tot_tx);
  5275. }
  5276. }
  5277. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  5278. int num_10g, int num_1g)
  5279. {
  5280. int i, num_ports = parent->num_ports;
  5281. int rdc_group, rdc_groups_per_port;
  5282. int rdc_channel_base;
  5283. rdc_group = 0;
  5284. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  5285. rdc_channel_base = 0;
  5286. for (i = 0; i < num_ports; i++) {
  5287. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  5288. int grp, num_channels = parent->rxchan_per_port[i];
  5289. int this_channel_offset;
  5290. tp->first_table_num = rdc_group;
  5291. tp->num_tables = rdc_groups_per_port;
  5292. this_channel_offset = 0;
  5293. for (grp = 0; grp < tp->num_tables; grp++) {
  5294. struct rdc_table *rt = &tp->tables[grp];
  5295. int slot;
  5296. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  5297. parent->index, i, tp->first_table_num + grp);
  5298. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  5299. rt->rxdma_channel[slot] =
  5300. rdc_channel_base + this_channel_offset;
  5301. printk("%d ", rt->rxdma_channel[slot]);
  5302. if (++this_channel_offset == num_channels)
  5303. this_channel_offset = 0;
  5304. }
  5305. printk("]\n");
  5306. }
  5307. parent->rdc_default[i] = rdc_channel_base;
  5308. rdc_channel_base += num_channels;
  5309. rdc_group += rdc_groups_per_port;
  5310. }
  5311. }
  5312. static int __devinit fill_phy_probe_info(struct niu *np,
  5313. struct niu_parent *parent,
  5314. struct phy_probe_info *info)
  5315. {
  5316. unsigned long flags;
  5317. int port, err;
  5318. memset(info, 0, sizeof(*info));
  5319. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  5320. niu_lock_parent(np, flags);
  5321. err = 0;
  5322. for (port = 8; port < 32; port++) {
  5323. int dev_id_1, dev_id_2;
  5324. dev_id_1 = mdio_read(np, port,
  5325. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  5326. dev_id_2 = mdio_read(np, port,
  5327. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  5328. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5329. PHY_TYPE_PMA_PMD);
  5330. if (err)
  5331. break;
  5332. dev_id_1 = mdio_read(np, port,
  5333. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  5334. dev_id_2 = mdio_read(np, port,
  5335. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  5336. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5337. PHY_TYPE_PCS);
  5338. if (err)
  5339. break;
  5340. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  5341. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  5342. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  5343. PHY_TYPE_MII);
  5344. if (err)
  5345. break;
  5346. }
  5347. niu_unlock_parent(np, flags);
  5348. return err;
  5349. }
  5350. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  5351. {
  5352. struct phy_probe_info *info = &parent->phy_probe_info;
  5353. int lowest_10g, lowest_1g;
  5354. int num_10g, num_1g;
  5355. u32 val;
  5356. int err;
  5357. err = fill_phy_probe_info(np, parent, info);
  5358. if (err)
  5359. return err;
  5360. num_10g = count_10g_ports(info, &lowest_10g);
  5361. num_1g = count_1g_ports(info, &lowest_1g);
  5362. switch ((num_10g << 4) | num_1g) {
  5363. case 0x24:
  5364. if (lowest_1g == 10)
  5365. parent->plat_type = PLAT_TYPE_VF_P0;
  5366. else if (lowest_1g == 26)
  5367. parent->plat_type = PLAT_TYPE_VF_P1;
  5368. else
  5369. goto unknown_vg_1g_port;
  5370. /* fallthru */
  5371. case 0x22:
  5372. val = (phy_encode(PORT_TYPE_10G, 0) |
  5373. phy_encode(PORT_TYPE_10G, 1) |
  5374. phy_encode(PORT_TYPE_1G, 2) |
  5375. phy_encode(PORT_TYPE_1G, 3));
  5376. break;
  5377. case 0x20:
  5378. val = (phy_encode(PORT_TYPE_10G, 0) |
  5379. phy_encode(PORT_TYPE_10G, 1));
  5380. break;
  5381. case 0x10:
  5382. val = phy_encode(PORT_TYPE_10G, np->port);
  5383. break;
  5384. case 0x14:
  5385. if (lowest_1g == 10)
  5386. parent->plat_type = PLAT_TYPE_VF_P0;
  5387. else if (lowest_1g == 26)
  5388. parent->plat_type = PLAT_TYPE_VF_P1;
  5389. else
  5390. goto unknown_vg_1g_port;
  5391. /* fallthru */
  5392. case 0x13:
  5393. if ((lowest_10g & 0x7) == 0)
  5394. val = (phy_encode(PORT_TYPE_10G, 0) |
  5395. phy_encode(PORT_TYPE_1G, 1) |
  5396. phy_encode(PORT_TYPE_1G, 2) |
  5397. phy_encode(PORT_TYPE_1G, 3));
  5398. else
  5399. val = (phy_encode(PORT_TYPE_1G, 0) |
  5400. phy_encode(PORT_TYPE_10G, 1) |
  5401. phy_encode(PORT_TYPE_1G, 2) |
  5402. phy_encode(PORT_TYPE_1G, 3));
  5403. break;
  5404. case 0x04:
  5405. if (lowest_1g == 10)
  5406. parent->plat_type = PLAT_TYPE_VF_P0;
  5407. else if (lowest_1g == 26)
  5408. parent->plat_type = PLAT_TYPE_VF_P1;
  5409. else
  5410. goto unknown_vg_1g_port;
  5411. val = (phy_encode(PORT_TYPE_1G, 0) |
  5412. phy_encode(PORT_TYPE_1G, 1) |
  5413. phy_encode(PORT_TYPE_1G, 2) |
  5414. phy_encode(PORT_TYPE_1G, 3));
  5415. break;
  5416. default:
  5417. printk(KERN_ERR PFX "Unsupported port config "
  5418. "10G[%d] 1G[%d]\n",
  5419. num_10g, num_1g);
  5420. return -EINVAL;
  5421. }
  5422. parent->port_phy = val;
  5423. if (parent->plat_type == PLAT_TYPE_NIU)
  5424. niu_n2_divide_channels(parent);
  5425. else
  5426. niu_divide_channels(parent, num_10g, num_1g);
  5427. niu_divide_rdc_groups(parent, num_10g, num_1g);
  5428. return 0;
  5429. unknown_vg_1g_port:
  5430. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  5431. lowest_1g);
  5432. return -EINVAL;
  5433. }
  5434. static int __devinit niu_probe_ports(struct niu *np)
  5435. {
  5436. struct niu_parent *parent = np->parent;
  5437. int err, i;
  5438. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  5439. parent->port_phy);
  5440. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  5441. err = walk_phys(np, parent);
  5442. if (err)
  5443. return err;
  5444. niu_set_ldg_timer_res(np, 2);
  5445. for (i = 0; i <= LDN_MAX; i++)
  5446. niu_ldn_irq_enable(np, i, 0);
  5447. }
  5448. if (parent->port_phy == PORT_PHY_INVALID)
  5449. return -EINVAL;
  5450. return 0;
  5451. }
  5452. static int __devinit niu_classifier_swstate_init(struct niu *np)
  5453. {
  5454. struct niu_classifier *cp = &np->clas;
  5455. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  5456. np->parent->tcam_num_entries);
  5457. cp->tcam_index = (u16) np->port;
  5458. cp->h1_init = 0xffffffff;
  5459. cp->h2_init = 0xffff;
  5460. return fflp_early_init(np);
  5461. }
  5462. static void __devinit niu_link_config_init(struct niu *np)
  5463. {
  5464. struct niu_link_config *lp = &np->link_config;
  5465. lp->advertising = (ADVERTISED_10baseT_Half |
  5466. ADVERTISED_10baseT_Full |
  5467. ADVERTISED_100baseT_Half |
  5468. ADVERTISED_100baseT_Full |
  5469. ADVERTISED_1000baseT_Half |
  5470. ADVERTISED_1000baseT_Full |
  5471. ADVERTISED_10000baseT_Full |
  5472. ADVERTISED_Autoneg);
  5473. lp->speed = lp->active_speed = SPEED_INVALID;
  5474. lp->duplex = lp->active_duplex = DUPLEX_INVALID;
  5475. #if 0
  5476. lp->loopback_mode = LOOPBACK_MAC;
  5477. lp->active_speed = SPEED_10000;
  5478. lp->active_duplex = DUPLEX_FULL;
  5479. #else
  5480. lp->loopback_mode = LOOPBACK_DISABLED;
  5481. #endif
  5482. }
  5483. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  5484. {
  5485. switch (np->port) {
  5486. case 0:
  5487. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  5488. np->ipp_off = 0x00000;
  5489. np->pcs_off = 0x04000;
  5490. np->xpcs_off = 0x02000;
  5491. break;
  5492. case 1:
  5493. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  5494. np->ipp_off = 0x08000;
  5495. np->pcs_off = 0x0a000;
  5496. np->xpcs_off = 0x08000;
  5497. break;
  5498. case 2:
  5499. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  5500. np->ipp_off = 0x04000;
  5501. np->pcs_off = 0x0e000;
  5502. np->xpcs_off = ~0UL;
  5503. break;
  5504. case 3:
  5505. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  5506. np->ipp_off = 0x0c000;
  5507. np->pcs_off = 0x12000;
  5508. np->xpcs_off = ~0UL;
  5509. break;
  5510. default:
  5511. dev_err(np->device, PFX "Port %u is invalid, cannot "
  5512. "compute MAC block offset.\n", np->port);
  5513. return -EINVAL;
  5514. }
  5515. return 0;
  5516. }
  5517. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  5518. {
  5519. struct msix_entry msi_vec[NIU_NUM_LDG];
  5520. struct niu_parent *parent = np->parent;
  5521. struct pci_dev *pdev = np->pdev;
  5522. int i, num_irqs, err;
  5523. u8 first_ldg;
  5524. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  5525. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  5526. ldg_num_map[i] = first_ldg + i;
  5527. num_irqs = (parent->rxchan_per_port[np->port] +
  5528. parent->txchan_per_port[np->port] +
  5529. (np->port == 0 ? 3 : 1));
  5530. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  5531. retry:
  5532. for (i = 0; i < num_irqs; i++) {
  5533. msi_vec[i].vector = 0;
  5534. msi_vec[i].entry = i;
  5535. }
  5536. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  5537. if (err < 0) {
  5538. np->flags &= ~NIU_FLAGS_MSIX;
  5539. return;
  5540. }
  5541. if (err > 0) {
  5542. num_irqs = err;
  5543. goto retry;
  5544. }
  5545. np->flags |= NIU_FLAGS_MSIX;
  5546. for (i = 0; i < num_irqs; i++)
  5547. np->ldg[i].irq = msi_vec[i].vector;
  5548. np->num_ldg = num_irqs;
  5549. }
  5550. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  5551. {
  5552. #ifdef CONFIG_SPARC64
  5553. struct of_device *op = np->op;
  5554. const u32 *int_prop;
  5555. int i;
  5556. int_prop = of_get_property(op->node, "interrupts", NULL);
  5557. if (!int_prop)
  5558. return -ENODEV;
  5559. for (i = 0; i < op->num_irqs; i++) {
  5560. ldg_num_map[i] = int_prop[i];
  5561. np->ldg[i].irq = op->irqs[i];
  5562. }
  5563. np->num_ldg = op->num_irqs;
  5564. return 0;
  5565. #else
  5566. return -EINVAL;
  5567. #endif
  5568. }
  5569. static int __devinit niu_ldg_init(struct niu *np)
  5570. {
  5571. struct niu_parent *parent = np->parent;
  5572. u8 ldg_num_map[NIU_NUM_LDG];
  5573. int first_chan, num_chan;
  5574. int i, err, ldg_rotor;
  5575. u8 port;
  5576. np->num_ldg = 1;
  5577. np->ldg[0].irq = np->dev->irq;
  5578. if (parent->plat_type == PLAT_TYPE_NIU) {
  5579. err = niu_n2_irq_init(np, ldg_num_map);
  5580. if (err)
  5581. return err;
  5582. } else
  5583. niu_try_msix(np, ldg_num_map);
  5584. port = np->port;
  5585. for (i = 0; i < np->num_ldg; i++) {
  5586. struct niu_ldg *lp = &np->ldg[i];
  5587. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  5588. lp->np = np;
  5589. lp->ldg_num = ldg_num_map[i];
  5590. lp->timer = 2; /* XXX */
  5591. /* On N2 NIU the firmware has setup the SID mappings so they go
  5592. * to the correct values that will route the LDG to the proper
  5593. * interrupt in the NCU interrupt table.
  5594. */
  5595. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  5596. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  5597. if (err)
  5598. return err;
  5599. }
  5600. }
  5601. /* We adopt the LDG assignment ordering used by the N2 NIU
  5602. * 'interrupt' properties because that simplifies a lot of
  5603. * things. This ordering is:
  5604. *
  5605. * MAC
  5606. * MIF (if port zero)
  5607. * SYSERR (if port zero)
  5608. * RX channels
  5609. * TX channels
  5610. */
  5611. ldg_rotor = 0;
  5612. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  5613. LDN_MAC(port));
  5614. if (err)
  5615. return err;
  5616. ldg_rotor++;
  5617. if (ldg_rotor == np->num_ldg)
  5618. ldg_rotor = 0;
  5619. if (port == 0) {
  5620. err = niu_ldg_assign_ldn(np, parent,
  5621. ldg_num_map[ldg_rotor],
  5622. LDN_MIF);
  5623. if (err)
  5624. return err;
  5625. ldg_rotor++;
  5626. if (ldg_rotor == np->num_ldg)
  5627. ldg_rotor = 0;
  5628. err = niu_ldg_assign_ldn(np, parent,
  5629. ldg_num_map[ldg_rotor],
  5630. LDN_DEVICE_ERROR);
  5631. if (err)
  5632. return err;
  5633. ldg_rotor++;
  5634. if (ldg_rotor == np->num_ldg)
  5635. ldg_rotor = 0;
  5636. }
  5637. first_chan = 0;
  5638. for (i = 0; i < port; i++)
  5639. first_chan += parent->rxchan_per_port[port];
  5640. num_chan = parent->rxchan_per_port[port];
  5641. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5642. err = niu_ldg_assign_ldn(np, parent,
  5643. ldg_num_map[ldg_rotor],
  5644. LDN_RXDMA(i));
  5645. if (err)
  5646. return err;
  5647. ldg_rotor++;
  5648. if (ldg_rotor == np->num_ldg)
  5649. ldg_rotor = 0;
  5650. }
  5651. first_chan = 0;
  5652. for (i = 0; i < port; i++)
  5653. first_chan += parent->txchan_per_port[port];
  5654. num_chan = parent->txchan_per_port[port];
  5655. for (i = first_chan; i < (first_chan + num_chan); i++) {
  5656. err = niu_ldg_assign_ldn(np, parent,
  5657. ldg_num_map[ldg_rotor],
  5658. LDN_TXDMA(i));
  5659. if (err)
  5660. return err;
  5661. ldg_rotor++;
  5662. if (ldg_rotor == np->num_ldg)
  5663. ldg_rotor = 0;
  5664. }
  5665. return 0;
  5666. }
  5667. static void __devexit niu_ldg_free(struct niu *np)
  5668. {
  5669. if (np->flags & NIU_FLAGS_MSIX)
  5670. pci_disable_msix(np->pdev);
  5671. }
  5672. static int __devinit niu_get_of_props(struct niu *np)
  5673. {
  5674. #ifdef CONFIG_SPARC64
  5675. struct net_device *dev = np->dev;
  5676. struct device_node *dp;
  5677. const char *phy_type;
  5678. const u8 *mac_addr;
  5679. int prop_len;
  5680. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5681. dp = np->op->node;
  5682. else
  5683. dp = pci_device_to_OF_node(np->pdev);
  5684. phy_type = of_get_property(dp, "phy-type", &prop_len);
  5685. if (!phy_type) {
  5686. dev_err(np->device, PFX "%s: OF node lacks "
  5687. "phy-type property\n",
  5688. dp->full_name);
  5689. return -EINVAL;
  5690. }
  5691. if (!strcmp(phy_type, "none"))
  5692. return -ENODEV;
  5693. strcpy(np->vpd.phy_type, phy_type);
  5694. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  5695. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  5696. dp->full_name, np->vpd.phy_type);
  5697. return -EINVAL;
  5698. }
  5699. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  5700. if (!mac_addr) {
  5701. dev_err(np->device, PFX "%s: OF node lacks "
  5702. "local-mac-address property\n",
  5703. dp->full_name);
  5704. return -EINVAL;
  5705. }
  5706. if (prop_len != dev->addr_len) {
  5707. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  5708. "is wrong.\n",
  5709. dp->full_name, prop_len);
  5710. }
  5711. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  5712. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  5713. int i;
  5714. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  5715. dp->full_name);
  5716. dev_err(np->device, PFX "%s: [ \n",
  5717. dp->full_name);
  5718. for (i = 0; i < 6; i++)
  5719. printk("%02x ", dev->perm_addr[i]);
  5720. printk("]\n");
  5721. return -EINVAL;
  5722. }
  5723. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  5724. return 0;
  5725. #else
  5726. return -EINVAL;
  5727. #endif
  5728. }
  5729. static int __devinit niu_get_invariants(struct niu *np)
  5730. {
  5731. int err, have_props;
  5732. u32 offset;
  5733. err = niu_get_of_props(np);
  5734. if (err == -ENODEV)
  5735. return err;
  5736. have_props = !err;
  5737. err = niu_get_and_validate_port(np);
  5738. if (err)
  5739. return err;
  5740. err = niu_init_mac_ipp_pcs_base(np);
  5741. if (err)
  5742. return err;
  5743. if (!have_props) {
  5744. if (np->parent->plat_type == PLAT_TYPE_NIU)
  5745. return -EINVAL;
  5746. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  5747. offset = niu_pci_vpd_offset(np);
  5748. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  5749. offset);
  5750. if (offset)
  5751. niu_pci_vpd_fetch(np, offset);
  5752. nw64(ESPC_PIO_EN, 0);
  5753. if (np->flags & NIU_FLAGS_VPD_VALID)
  5754. niu_pci_vpd_validate(np);
  5755. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  5756. err = niu_pci_probe_sprom(np);
  5757. if (err)
  5758. return err;
  5759. }
  5760. }
  5761. err = niu_probe_ports(np);
  5762. if (err)
  5763. return err;
  5764. niu_ldg_init(np);
  5765. niu_classifier_swstate_init(np);
  5766. niu_link_config_init(np);
  5767. err = niu_determine_phy_disposition(np);
  5768. if (!err)
  5769. err = niu_init_link(np);
  5770. return err;
  5771. }
  5772. static LIST_HEAD(niu_parent_list);
  5773. static DEFINE_MUTEX(niu_parent_lock);
  5774. static int niu_parent_index;
  5775. static ssize_t show_port_phy(struct device *dev,
  5776. struct device_attribute *attr, char *buf)
  5777. {
  5778. struct platform_device *plat_dev = to_platform_device(dev);
  5779. struct niu_parent *p = plat_dev->dev.platform_data;
  5780. u32 port_phy = p->port_phy;
  5781. char *orig_buf = buf;
  5782. int i;
  5783. if (port_phy == PORT_PHY_UNKNOWN ||
  5784. port_phy == PORT_PHY_INVALID)
  5785. return 0;
  5786. for (i = 0; i < p->num_ports; i++) {
  5787. const char *type_str;
  5788. int type;
  5789. type = phy_decode(port_phy, i);
  5790. if (type == PORT_TYPE_10G)
  5791. type_str = "10G";
  5792. else
  5793. type_str = "1G";
  5794. buf += sprintf(buf,
  5795. (i == 0) ? "%s" : " %s",
  5796. type_str);
  5797. }
  5798. buf += sprintf(buf, "\n");
  5799. return buf - orig_buf;
  5800. }
  5801. static ssize_t show_plat_type(struct device *dev,
  5802. struct device_attribute *attr, char *buf)
  5803. {
  5804. struct platform_device *plat_dev = to_platform_device(dev);
  5805. struct niu_parent *p = plat_dev->dev.platform_data;
  5806. const char *type_str;
  5807. switch (p->plat_type) {
  5808. case PLAT_TYPE_ATLAS:
  5809. type_str = "atlas";
  5810. break;
  5811. case PLAT_TYPE_NIU:
  5812. type_str = "niu";
  5813. break;
  5814. case PLAT_TYPE_VF_P0:
  5815. type_str = "vf_p0";
  5816. break;
  5817. case PLAT_TYPE_VF_P1:
  5818. type_str = "vf_p1";
  5819. break;
  5820. default:
  5821. type_str = "unknown";
  5822. break;
  5823. }
  5824. return sprintf(buf, "%s\n", type_str);
  5825. }
  5826. static ssize_t __show_chan_per_port(struct device *dev,
  5827. struct device_attribute *attr, char *buf,
  5828. int rx)
  5829. {
  5830. struct platform_device *plat_dev = to_platform_device(dev);
  5831. struct niu_parent *p = plat_dev->dev.platform_data;
  5832. char *orig_buf = buf;
  5833. u8 *arr;
  5834. int i;
  5835. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  5836. for (i = 0; i < p->num_ports; i++) {
  5837. buf += sprintf(buf,
  5838. (i == 0) ? "%d" : " %d",
  5839. arr[i]);
  5840. }
  5841. buf += sprintf(buf, "\n");
  5842. return buf - orig_buf;
  5843. }
  5844. static ssize_t show_rxchan_per_port(struct device *dev,
  5845. struct device_attribute *attr, char *buf)
  5846. {
  5847. return __show_chan_per_port(dev, attr, buf, 1);
  5848. }
  5849. static ssize_t show_txchan_per_port(struct device *dev,
  5850. struct device_attribute *attr, char *buf)
  5851. {
  5852. return __show_chan_per_port(dev, attr, buf, 1);
  5853. }
  5854. static ssize_t show_num_ports(struct device *dev,
  5855. struct device_attribute *attr, char *buf)
  5856. {
  5857. struct platform_device *plat_dev = to_platform_device(dev);
  5858. struct niu_parent *p = plat_dev->dev.platform_data;
  5859. return sprintf(buf, "%d\n", p->num_ports);
  5860. }
  5861. static struct device_attribute niu_parent_attributes[] = {
  5862. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  5863. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  5864. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  5865. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  5866. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  5867. {}
  5868. };
  5869. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  5870. union niu_parent_id *id,
  5871. u8 ptype)
  5872. {
  5873. struct platform_device *plat_dev;
  5874. struct niu_parent *p;
  5875. int i;
  5876. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  5877. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  5878. NULL, 0);
  5879. if (!plat_dev)
  5880. return NULL;
  5881. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  5882. int err = device_create_file(&plat_dev->dev,
  5883. &niu_parent_attributes[i]);
  5884. if (err)
  5885. goto fail_unregister;
  5886. }
  5887. p = kzalloc(sizeof(*p), GFP_KERNEL);
  5888. if (!p)
  5889. goto fail_unregister;
  5890. p->index = niu_parent_index++;
  5891. plat_dev->dev.platform_data = p;
  5892. p->plat_dev = plat_dev;
  5893. memcpy(&p->id, id, sizeof(*id));
  5894. p->plat_type = ptype;
  5895. INIT_LIST_HEAD(&p->list);
  5896. atomic_set(&p->refcnt, 0);
  5897. list_add(&p->list, &niu_parent_list);
  5898. spin_lock_init(&p->lock);
  5899. p->rxdma_clock_divider = 7500;
  5900. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  5901. if (p->plat_type == PLAT_TYPE_NIU)
  5902. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  5903. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  5904. int index = i - CLASS_CODE_USER_PROG1;
  5905. p->tcam_key[index] = TCAM_KEY_TSEL;
  5906. p->flow_key[index] = (FLOW_KEY_IPSA |
  5907. FLOW_KEY_IPDA |
  5908. FLOW_KEY_PROTO |
  5909. (FLOW_KEY_L4_BYTE12 <<
  5910. FLOW_KEY_L4_0_SHIFT) |
  5911. (FLOW_KEY_L4_BYTE12 <<
  5912. FLOW_KEY_L4_1_SHIFT));
  5913. }
  5914. for (i = 0; i < LDN_MAX + 1; i++)
  5915. p->ldg_map[i] = LDG_INVALID;
  5916. return p;
  5917. fail_unregister:
  5918. platform_device_unregister(plat_dev);
  5919. return NULL;
  5920. }
  5921. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  5922. union niu_parent_id *id,
  5923. u8 ptype)
  5924. {
  5925. struct niu_parent *p, *tmp;
  5926. int port = np->port;
  5927. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  5928. ptype, port);
  5929. mutex_lock(&niu_parent_lock);
  5930. p = NULL;
  5931. list_for_each_entry(tmp, &niu_parent_list, list) {
  5932. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  5933. p = tmp;
  5934. break;
  5935. }
  5936. }
  5937. if (!p)
  5938. p = niu_new_parent(np, id, ptype);
  5939. if (p) {
  5940. char port_name[6];
  5941. int err;
  5942. sprintf(port_name, "port%d", port);
  5943. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  5944. &np->device->kobj,
  5945. port_name);
  5946. if (!err) {
  5947. p->ports[port] = np;
  5948. atomic_inc(&p->refcnt);
  5949. }
  5950. }
  5951. mutex_unlock(&niu_parent_lock);
  5952. return p;
  5953. }
  5954. static void niu_put_parent(struct niu *np)
  5955. {
  5956. struct niu_parent *p = np->parent;
  5957. u8 port = np->port;
  5958. char port_name[6];
  5959. BUG_ON(!p || p->ports[port] != np);
  5960. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  5961. sprintf(port_name, "port%d", port);
  5962. mutex_lock(&niu_parent_lock);
  5963. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  5964. p->ports[port] = NULL;
  5965. np->parent = NULL;
  5966. if (atomic_dec_and_test(&p->refcnt)) {
  5967. list_del(&p->list);
  5968. platform_device_unregister(p->plat_dev);
  5969. }
  5970. mutex_unlock(&niu_parent_lock);
  5971. }
  5972. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  5973. u64 *handle, gfp_t flag)
  5974. {
  5975. dma_addr_t dh;
  5976. void *ret;
  5977. ret = dma_alloc_coherent(dev, size, &dh, flag);
  5978. if (ret)
  5979. *handle = dh;
  5980. return ret;
  5981. }
  5982. static void niu_pci_free_coherent(struct device *dev, size_t size,
  5983. void *cpu_addr, u64 handle)
  5984. {
  5985. dma_free_coherent(dev, size, cpu_addr, handle);
  5986. }
  5987. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  5988. unsigned long offset, size_t size,
  5989. enum dma_data_direction direction)
  5990. {
  5991. return dma_map_page(dev, page, offset, size, direction);
  5992. }
  5993. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  5994. size_t size, enum dma_data_direction direction)
  5995. {
  5996. return dma_unmap_page(dev, dma_address, size, direction);
  5997. }
  5998. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  5999. size_t size,
  6000. enum dma_data_direction direction)
  6001. {
  6002. return dma_map_single(dev, cpu_addr, size, direction);
  6003. }
  6004. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  6005. size_t size,
  6006. enum dma_data_direction direction)
  6007. {
  6008. dma_unmap_single(dev, dma_address, size, direction);
  6009. }
  6010. static const struct niu_ops niu_pci_ops = {
  6011. .alloc_coherent = niu_pci_alloc_coherent,
  6012. .free_coherent = niu_pci_free_coherent,
  6013. .map_page = niu_pci_map_page,
  6014. .unmap_page = niu_pci_unmap_page,
  6015. .map_single = niu_pci_map_single,
  6016. .unmap_single = niu_pci_unmap_single,
  6017. };
  6018. static void __devinit niu_driver_version(void)
  6019. {
  6020. static int niu_version_printed;
  6021. if (niu_version_printed++ == 0)
  6022. pr_info("%s", version);
  6023. }
  6024. static struct net_device * __devinit niu_alloc_and_init(
  6025. struct device *gen_dev, struct pci_dev *pdev,
  6026. struct of_device *op, const struct niu_ops *ops,
  6027. u8 port)
  6028. {
  6029. struct net_device *dev = alloc_etherdev(sizeof(struct niu));
  6030. struct niu *np;
  6031. if (!dev) {
  6032. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  6033. return NULL;
  6034. }
  6035. SET_NETDEV_DEV(dev, gen_dev);
  6036. np = netdev_priv(dev);
  6037. np->dev = dev;
  6038. np->pdev = pdev;
  6039. np->op = op;
  6040. np->device = gen_dev;
  6041. np->ops = ops;
  6042. np->msg_enable = niu_debug;
  6043. spin_lock_init(&np->lock);
  6044. INIT_WORK(&np->reset_task, niu_reset_task);
  6045. np->port = port;
  6046. return dev;
  6047. }
  6048. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  6049. {
  6050. dev->open = niu_open;
  6051. dev->stop = niu_close;
  6052. dev->get_stats = niu_get_stats;
  6053. dev->set_multicast_list = niu_set_rx_mode;
  6054. dev->set_mac_address = niu_set_mac_addr;
  6055. dev->do_ioctl = niu_ioctl;
  6056. dev->tx_timeout = niu_tx_timeout;
  6057. dev->hard_start_xmit = niu_start_xmit;
  6058. dev->ethtool_ops = &niu_ethtool_ops;
  6059. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  6060. dev->change_mtu = niu_change_mtu;
  6061. }
  6062. static void __devinit niu_device_announce(struct niu *np)
  6063. {
  6064. struct net_device *dev = np->dev;
  6065. int i;
  6066. pr_info("%s: NIU Ethernet ", dev->name);
  6067. for (i = 0; i < 6; i++)
  6068. printk("%2.2x%c", dev->dev_addr[i],
  6069. i == 5 ? '\n' : ':');
  6070. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  6071. dev->name,
  6072. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  6073. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  6074. (np->flags & NIU_FLAGS_FIBER ? "FIBER" : "COPPER"),
  6075. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  6076. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  6077. np->vpd.phy_type);
  6078. }
  6079. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  6080. const struct pci_device_id *ent)
  6081. {
  6082. unsigned long niureg_base, niureg_len;
  6083. union niu_parent_id parent_id;
  6084. struct net_device *dev;
  6085. struct niu *np;
  6086. int err, pos;
  6087. u64 dma_mask;
  6088. u16 val16;
  6089. niu_driver_version();
  6090. err = pci_enable_device(pdev);
  6091. if (err) {
  6092. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  6093. "aborting.\n");
  6094. return err;
  6095. }
  6096. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  6097. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  6098. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  6099. "base addresses, aborting.\n");
  6100. err = -ENODEV;
  6101. goto err_out_disable_pdev;
  6102. }
  6103. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  6104. if (err) {
  6105. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  6106. "aborting.\n");
  6107. goto err_out_disable_pdev;
  6108. }
  6109. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  6110. if (pos <= 0) {
  6111. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  6112. "aborting.\n");
  6113. goto err_out_free_res;
  6114. }
  6115. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  6116. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  6117. if (!dev) {
  6118. err = -ENOMEM;
  6119. goto err_out_free_res;
  6120. }
  6121. np = netdev_priv(dev);
  6122. memset(&parent_id, 0, sizeof(parent_id));
  6123. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  6124. parent_id.pci.bus = pdev->bus->number;
  6125. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  6126. np->parent = niu_get_parent(np, &parent_id,
  6127. PLAT_TYPE_ATLAS);
  6128. if (!np->parent) {
  6129. err = -ENOMEM;
  6130. goto err_out_free_dev;
  6131. }
  6132. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  6133. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  6134. val16 |= (PCI_EXP_DEVCTL_CERE |
  6135. PCI_EXP_DEVCTL_NFERE |
  6136. PCI_EXP_DEVCTL_FERE |
  6137. PCI_EXP_DEVCTL_URRE |
  6138. PCI_EXP_DEVCTL_RELAX_EN);
  6139. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  6140. dma_mask = DMA_44BIT_MASK;
  6141. err = pci_set_dma_mask(pdev, dma_mask);
  6142. if (!err) {
  6143. dev->features |= NETIF_F_HIGHDMA;
  6144. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  6145. if (err) {
  6146. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  6147. "DMA for consistent allocations, "
  6148. "aborting.\n");
  6149. goto err_out_release_parent;
  6150. }
  6151. }
  6152. if (err || dma_mask == DMA_32BIT_MASK) {
  6153. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  6154. if (err) {
  6155. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  6156. "aborting.\n");
  6157. goto err_out_release_parent;
  6158. }
  6159. }
  6160. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6161. niureg_base = pci_resource_start(pdev, 0);
  6162. niureg_len = pci_resource_len(pdev, 0);
  6163. np->regs = ioremap_nocache(niureg_base, niureg_len);
  6164. if (!np->regs) {
  6165. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  6166. "aborting.\n");
  6167. err = -ENOMEM;
  6168. goto err_out_release_parent;
  6169. }
  6170. pci_set_master(pdev);
  6171. pci_save_state(pdev);
  6172. dev->irq = pdev->irq;
  6173. niu_assign_netdev_ops(dev);
  6174. err = niu_get_invariants(np);
  6175. if (err) {
  6176. if (err != -ENODEV)
  6177. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  6178. "of chip, aborting.\n");
  6179. goto err_out_iounmap;
  6180. }
  6181. err = register_netdev(dev);
  6182. if (err) {
  6183. dev_err(&pdev->dev, PFX "Cannot register net device, "
  6184. "aborting.\n");
  6185. goto err_out_iounmap;
  6186. }
  6187. pci_set_drvdata(pdev, dev);
  6188. niu_device_announce(np);
  6189. return 0;
  6190. err_out_iounmap:
  6191. if (np->regs) {
  6192. iounmap(np->regs);
  6193. np->regs = NULL;
  6194. }
  6195. err_out_release_parent:
  6196. niu_put_parent(np);
  6197. err_out_free_dev:
  6198. free_netdev(dev);
  6199. err_out_free_res:
  6200. pci_release_regions(pdev);
  6201. err_out_disable_pdev:
  6202. pci_disable_device(pdev);
  6203. pci_set_drvdata(pdev, NULL);
  6204. return err;
  6205. }
  6206. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  6207. {
  6208. struct net_device *dev = pci_get_drvdata(pdev);
  6209. if (dev) {
  6210. struct niu *np = netdev_priv(dev);
  6211. unregister_netdev(dev);
  6212. if (np->regs) {
  6213. iounmap(np->regs);
  6214. np->regs = NULL;
  6215. }
  6216. niu_ldg_free(np);
  6217. niu_put_parent(np);
  6218. free_netdev(dev);
  6219. pci_release_regions(pdev);
  6220. pci_disable_device(pdev);
  6221. pci_set_drvdata(pdev, NULL);
  6222. }
  6223. }
  6224. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  6225. {
  6226. struct net_device *dev = pci_get_drvdata(pdev);
  6227. struct niu *np = netdev_priv(dev);
  6228. unsigned long flags;
  6229. if (!netif_running(dev))
  6230. return 0;
  6231. flush_scheduled_work();
  6232. niu_netif_stop(np);
  6233. del_timer_sync(&np->timer);
  6234. spin_lock_irqsave(&np->lock, flags);
  6235. niu_enable_interrupts(np, 0);
  6236. spin_unlock_irqrestore(&np->lock, flags);
  6237. netif_device_detach(dev);
  6238. spin_lock_irqsave(&np->lock, flags);
  6239. niu_stop_hw(np);
  6240. spin_unlock_irqrestore(&np->lock, flags);
  6241. pci_save_state(pdev);
  6242. return 0;
  6243. }
  6244. static int niu_resume(struct pci_dev *pdev)
  6245. {
  6246. struct net_device *dev = pci_get_drvdata(pdev);
  6247. struct niu *np = netdev_priv(dev);
  6248. unsigned long flags;
  6249. int err;
  6250. if (!netif_running(dev))
  6251. return 0;
  6252. pci_restore_state(pdev);
  6253. netif_device_attach(dev);
  6254. spin_lock_irqsave(&np->lock, flags);
  6255. err = niu_init_hw(np);
  6256. if (!err) {
  6257. np->timer.expires = jiffies + HZ;
  6258. add_timer(&np->timer);
  6259. niu_netif_start(np);
  6260. }
  6261. spin_unlock_irqrestore(&np->lock, flags);
  6262. return err;
  6263. }
  6264. static struct pci_driver niu_pci_driver = {
  6265. .name = DRV_MODULE_NAME,
  6266. .id_table = niu_pci_tbl,
  6267. .probe = niu_pci_init_one,
  6268. .remove = __devexit_p(niu_pci_remove_one),
  6269. .suspend = niu_suspend,
  6270. .resume = niu_resume,
  6271. };
  6272. #ifdef CONFIG_SPARC64
  6273. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  6274. u64 *dma_addr, gfp_t flag)
  6275. {
  6276. unsigned long order = get_order(size);
  6277. unsigned long page = __get_free_pages(flag, order);
  6278. if (page == 0UL)
  6279. return NULL;
  6280. memset((char *)page, 0, PAGE_SIZE << order);
  6281. *dma_addr = __pa(page);
  6282. return (void *) page;
  6283. }
  6284. static void niu_phys_free_coherent(struct device *dev, size_t size,
  6285. void *cpu_addr, u64 handle)
  6286. {
  6287. unsigned long order = get_order(size);
  6288. free_pages((unsigned long) cpu_addr, order);
  6289. }
  6290. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  6291. unsigned long offset, size_t size,
  6292. enum dma_data_direction direction)
  6293. {
  6294. return page_to_phys(page) + offset;
  6295. }
  6296. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  6297. size_t size, enum dma_data_direction direction)
  6298. {
  6299. /* Nothing to do. */
  6300. }
  6301. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  6302. size_t size,
  6303. enum dma_data_direction direction)
  6304. {
  6305. return __pa(cpu_addr);
  6306. }
  6307. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  6308. size_t size,
  6309. enum dma_data_direction direction)
  6310. {
  6311. /* Nothing to do. */
  6312. }
  6313. static const struct niu_ops niu_phys_ops = {
  6314. .alloc_coherent = niu_phys_alloc_coherent,
  6315. .free_coherent = niu_phys_free_coherent,
  6316. .map_page = niu_phys_map_page,
  6317. .unmap_page = niu_phys_unmap_page,
  6318. .map_single = niu_phys_map_single,
  6319. .unmap_single = niu_phys_unmap_single,
  6320. };
  6321. static unsigned long res_size(struct resource *r)
  6322. {
  6323. return r->end - r->start + 1UL;
  6324. }
  6325. static int __devinit niu_of_probe(struct of_device *op,
  6326. const struct of_device_id *match)
  6327. {
  6328. union niu_parent_id parent_id;
  6329. struct net_device *dev;
  6330. struct niu *np;
  6331. const u32 *reg;
  6332. int err;
  6333. niu_driver_version();
  6334. reg = of_get_property(op->node, "reg", NULL);
  6335. if (!reg) {
  6336. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  6337. op->node->full_name);
  6338. return -ENODEV;
  6339. }
  6340. dev = niu_alloc_and_init(&op->dev, NULL, op,
  6341. &niu_phys_ops, reg[0] & 0x1);
  6342. if (!dev) {
  6343. err = -ENOMEM;
  6344. goto err_out;
  6345. }
  6346. np = netdev_priv(dev);
  6347. memset(&parent_id, 0, sizeof(parent_id));
  6348. parent_id.of = of_get_parent(op->node);
  6349. np->parent = niu_get_parent(np, &parent_id,
  6350. PLAT_TYPE_NIU);
  6351. if (!np->parent) {
  6352. err = -ENOMEM;
  6353. goto err_out_free_dev;
  6354. }
  6355. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  6356. np->regs = of_ioremap(&op->resource[1], 0,
  6357. res_size(&op->resource[1]),
  6358. "niu regs");
  6359. if (!np->regs) {
  6360. dev_err(&op->dev, PFX "Cannot map device registers, "
  6361. "aborting.\n");
  6362. err = -ENOMEM;
  6363. goto err_out_release_parent;
  6364. }
  6365. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  6366. res_size(&op->resource[2]),
  6367. "niu vregs-1");
  6368. if (!np->vir_regs_1) {
  6369. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  6370. "aborting.\n");
  6371. err = -ENOMEM;
  6372. goto err_out_iounmap;
  6373. }
  6374. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  6375. res_size(&op->resource[3]),
  6376. "niu vregs-2");
  6377. if (!np->vir_regs_2) {
  6378. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  6379. "aborting.\n");
  6380. err = -ENOMEM;
  6381. goto err_out_iounmap;
  6382. }
  6383. niu_assign_netdev_ops(dev);
  6384. err = niu_get_invariants(np);
  6385. if (err) {
  6386. if (err != -ENODEV)
  6387. dev_err(&op->dev, PFX "Problem fetching invariants "
  6388. "of chip, aborting.\n");
  6389. goto err_out_iounmap;
  6390. }
  6391. err = register_netdev(dev);
  6392. if (err) {
  6393. dev_err(&op->dev, PFX "Cannot register net device, "
  6394. "aborting.\n");
  6395. goto err_out_iounmap;
  6396. }
  6397. dev_set_drvdata(&op->dev, dev);
  6398. niu_device_announce(np);
  6399. return 0;
  6400. err_out_iounmap:
  6401. if (np->vir_regs_1) {
  6402. of_iounmap(&op->resource[2], np->vir_regs_1,
  6403. res_size(&op->resource[2]));
  6404. np->vir_regs_1 = NULL;
  6405. }
  6406. if (np->vir_regs_2) {
  6407. of_iounmap(&op->resource[3], np->vir_regs_2,
  6408. res_size(&op->resource[3]));
  6409. np->vir_regs_2 = NULL;
  6410. }
  6411. if (np->regs) {
  6412. of_iounmap(&op->resource[1], np->regs,
  6413. res_size(&op->resource[1]));
  6414. np->regs = NULL;
  6415. }
  6416. err_out_release_parent:
  6417. niu_put_parent(np);
  6418. err_out_free_dev:
  6419. free_netdev(dev);
  6420. err_out:
  6421. return err;
  6422. }
  6423. static int __devexit niu_of_remove(struct of_device *op)
  6424. {
  6425. struct net_device *dev = dev_get_drvdata(&op->dev);
  6426. if (dev) {
  6427. struct niu *np = netdev_priv(dev);
  6428. unregister_netdev(dev);
  6429. if (np->vir_regs_1) {
  6430. of_iounmap(&op->resource[2], np->vir_regs_1,
  6431. res_size(&op->resource[2]));
  6432. np->vir_regs_1 = NULL;
  6433. }
  6434. if (np->vir_regs_2) {
  6435. of_iounmap(&op->resource[3], np->vir_regs_2,
  6436. res_size(&op->resource[3]));
  6437. np->vir_regs_2 = NULL;
  6438. }
  6439. if (np->regs) {
  6440. of_iounmap(&op->resource[1], np->regs,
  6441. res_size(&op->resource[1]));
  6442. np->regs = NULL;
  6443. }
  6444. niu_ldg_free(np);
  6445. niu_put_parent(np);
  6446. free_netdev(dev);
  6447. dev_set_drvdata(&op->dev, NULL);
  6448. }
  6449. return 0;
  6450. }
  6451. static struct of_device_id niu_match[] = {
  6452. {
  6453. .name = "network",
  6454. .compatible = "SUNW,niusl",
  6455. },
  6456. {},
  6457. };
  6458. MODULE_DEVICE_TABLE(of, niu_match);
  6459. static struct of_platform_driver niu_of_driver = {
  6460. .name = "niu",
  6461. .match_table = niu_match,
  6462. .probe = niu_of_probe,
  6463. .remove = __devexit_p(niu_of_remove),
  6464. };
  6465. #endif /* CONFIG_SPARC64 */
  6466. static int __init niu_init(void)
  6467. {
  6468. int err = 0;
  6469. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  6470. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  6471. #ifdef CONFIG_SPARC64
  6472. err = of_register_driver(&niu_of_driver, &of_bus_type);
  6473. #endif
  6474. if (!err) {
  6475. err = pci_register_driver(&niu_pci_driver);
  6476. #ifdef CONFIG_SPARC64
  6477. if (err)
  6478. of_unregister_driver(&niu_of_driver);
  6479. #endif
  6480. }
  6481. return err;
  6482. }
  6483. static void __exit niu_exit(void)
  6484. {
  6485. pci_unregister_driver(&niu_pci_driver);
  6486. #ifdef CONFIG_SPARC64
  6487. of_unregister_driver(&niu_of_driver);
  6488. #endif
  6489. }
  6490. module_init(niu_init);
  6491. module_exit(niu_exit);