cfi_cmdset_0002.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304
  1. /*
  2. * Common Flash Interface support:
  3. * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
  4. *
  5. * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
  6. * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
  7. * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
  8. *
  9. * 2_by_8 routines added by Simon Munton
  10. *
  11. * 4_by_16 work by Carolyn J. Smith
  12. *
  13. * XIP support hooks by Vitaly Wool (based on code for Intel flash
  14. * by Nicolas Pitre)
  15. *
  16. * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
  17. *
  18. * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
  19. *
  20. * This code is GPL
  21. */
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/kernel.h>
  25. #include <linux/sched.h>
  26. #include <linux/init.h>
  27. #include <asm/io.h>
  28. #include <asm/byteorder.h>
  29. #include <linux/errno.h>
  30. #include <linux/slab.h>
  31. #include <linux/delay.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/reboot.h>
  34. #include <linux/mtd/map.h>
  35. #include <linux/mtd/mtd.h>
  36. #include <linux/mtd/cfi.h>
  37. #include <linux/mtd/xip.h>
  38. #define AMD_BOOTLOC_BUG
  39. #define FORCE_WORD_WRITE 0
  40. #define MAX_WORD_RETRIES 3
  41. #define SST49LF004B 0x0060
  42. #define SST49LF040B 0x0050
  43. #define SST49LF008A 0x005a
  44. #define AT49BV6416 0x00d6
  45. static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  46. static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  47. static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
  48. static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
  49. static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
  50. static void cfi_amdstd_sync (struct mtd_info *);
  51. static int cfi_amdstd_suspend (struct mtd_info *);
  52. static void cfi_amdstd_resume (struct mtd_info *);
  53. static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
  54. static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
  55. static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  56. size_t *retlen, const u_char *buf);
  57. static void cfi_amdstd_destroy(struct mtd_info *);
  58. struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
  59. static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
  60. static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
  61. static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
  62. #include "fwh_lock.h"
  63. static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  64. static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
  65. static struct mtd_chip_driver cfi_amdstd_chipdrv = {
  66. .probe = NULL, /* Not usable directly */
  67. .destroy = cfi_amdstd_destroy,
  68. .name = "cfi_cmdset_0002",
  69. .module = THIS_MODULE
  70. };
  71. /* #define DEBUG_CFI_FEATURES */
  72. #ifdef DEBUG_CFI_FEATURES
  73. static void cfi_tell_features(struct cfi_pri_amdstd *extp)
  74. {
  75. const char* erase_suspend[3] = {
  76. "Not supported", "Read only", "Read/write"
  77. };
  78. const char* top_bottom[6] = {
  79. "No WP", "8x8KiB sectors at top & bottom, no WP",
  80. "Bottom boot", "Top boot",
  81. "Uniform, Bottom WP", "Uniform, Top WP"
  82. };
  83. printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
  84. printk(" Address sensitive unlock: %s\n",
  85. (extp->SiliconRevision & 1) ? "Not required" : "Required");
  86. if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
  87. printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
  88. else
  89. printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
  90. if (extp->BlkProt == 0)
  91. printk(" Block protection: Not supported\n");
  92. else
  93. printk(" Block protection: %d sectors per group\n", extp->BlkProt);
  94. printk(" Temporary block unprotect: %s\n",
  95. extp->TmpBlkUnprotect ? "Supported" : "Not supported");
  96. printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
  97. printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
  98. printk(" Burst mode: %s\n",
  99. extp->BurstMode ? "Supported" : "Not supported");
  100. if (extp->PageMode == 0)
  101. printk(" Page mode: Not supported\n");
  102. else
  103. printk(" Page mode: %d word page\n", extp->PageMode << 2);
  104. printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
  105. extp->VppMin >> 4, extp->VppMin & 0xf);
  106. printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
  107. extp->VppMax >> 4, extp->VppMax & 0xf);
  108. if (extp->TopBottom < ARRAY_SIZE(top_bottom))
  109. printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
  110. else
  111. printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
  112. }
  113. #endif
  114. #ifdef AMD_BOOTLOC_BUG
  115. /* Wheee. Bring me the head of someone at AMD. */
  116. static void fixup_amd_bootblock(struct mtd_info *mtd)
  117. {
  118. struct map_info *map = mtd->priv;
  119. struct cfi_private *cfi = map->fldrv_priv;
  120. struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
  121. __u8 major = extp->MajorVersion;
  122. __u8 minor = extp->MinorVersion;
  123. if (((major << 8) | minor) < 0x3131) {
  124. /* CFI version 1.0 => don't trust bootloc */
  125. pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
  126. map->name, cfi->mfr, cfi->id);
  127. /* AFAICS all 29LV400 with a bottom boot block have a device ID
  128. * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
  129. * These were badly detected as they have the 0x80 bit set
  130. * so treat them as a special case.
  131. */
  132. if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
  133. /* Macronix added CFI to their 2nd generation
  134. * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
  135. * Fujitsu, Spansion, EON, ESI and older Macronix)
  136. * has CFI.
  137. *
  138. * Therefore also check the manufacturer.
  139. * This reduces the risk of false detection due to
  140. * the 8-bit device ID.
  141. */
  142. (cfi->mfr == CFI_MFR_MACRONIX)) {
  143. pr_debug("%s: Macronix MX29LV400C with bottom boot block"
  144. " detected\n", map->name);
  145. extp->TopBottom = 2; /* bottom boot */
  146. } else
  147. if (cfi->id & 0x80) {
  148. printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
  149. extp->TopBottom = 3; /* top boot */
  150. } else {
  151. extp->TopBottom = 2; /* bottom boot */
  152. }
  153. pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
  154. " deduced %s from Device ID\n", map->name, major, minor,
  155. extp->TopBottom == 2 ? "bottom" : "top");
  156. }
  157. }
  158. #endif
  159. static void fixup_use_write_buffers(struct mtd_info *mtd)
  160. {
  161. struct map_info *map = mtd->priv;
  162. struct cfi_private *cfi = map->fldrv_priv;
  163. if (cfi->cfiq->BufWriteTimeoutTyp) {
  164. pr_debug("Using buffer write method\n" );
  165. mtd->_write = cfi_amdstd_write_buffers;
  166. }
  167. }
  168. /* Atmel chips don't use the same PRI format as AMD chips */
  169. static void fixup_convert_atmel_pri(struct mtd_info *mtd)
  170. {
  171. struct map_info *map = mtd->priv;
  172. struct cfi_private *cfi = map->fldrv_priv;
  173. struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
  174. struct cfi_pri_atmel atmel_pri;
  175. memcpy(&atmel_pri, extp, sizeof(atmel_pri));
  176. memset((char *)extp + 5, 0, sizeof(*extp) - 5);
  177. if (atmel_pri.Features & 0x02)
  178. extp->EraseSuspend = 2;
  179. /* Some chips got it backwards... */
  180. if (cfi->id == AT49BV6416) {
  181. if (atmel_pri.BottomBoot)
  182. extp->TopBottom = 3;
  183. else
  184. extp->TopBottom = 2;
  185. } else {
  186. if (atmel_pri.BottomBoot)
  187. extp->TopBottom = 2;
  188. else
  189. extp->TopBottom = 3;
  190. }
  191. /* burst write mode not supported */
  192. cfi->cfiq->BufWriteTimeoutTyp = 0;
  193. cfi->cfiq->BufWriteTimeoutMax = 0;
  194. }
  195. static void fixup_use_secsi(struct mtd_info *mtd)
  196. {
  197. /* Setup for chips with a secsi area */
  198. mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
  199. mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
  200. }
  201. static void fixup_use_erase_chip(struct mtd_info *mtd)
  202. {
  203. struct map_info *map = mtd->priv;
  204. struct cfi_private *cfi = map->fldrv_priv;
  205. if ((cfi->cfiq->NumEraseRegions == 1) &&
  206. ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
  207. mtd->_erase = cfi_amdstd_erase_chip;
  208. }
  209. }
  210. /*
  211. * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
  212. * locked by default.
  213. */
  214. static void fixup_use_atmel_lock(struct mtd_info *mtd)
  215. {
  216. mtd->_lock = cfi_atmel_lock;
  217. mtd->_unlock = cfi_atmel_unlock;
  218. mtd->flags |= MTD_POWERUP_LOCK;
  219. }
  220. static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
  221. {
  222. struct map_info *map = mtd->priv;
  223. struct cfi_private *cfi = map->fldrv_priv;
  224. /*
  225. * These flashes report two separate eraseblock regions based on the
  226. * sector_erase-size and block_erase-size, although they both operate on the
  227. * same memory. This is not allowed according to CFI, so we just pick the
  228. * sector_erase-size.
  229. */
  230. cfi->cfiq->NumEraseRegions = 1;
  231. }
  232. static void fixup_sst39vf(struct mtd_info *mtd)
  233. {
  234. struct map_info *map = mtd->priv;
  235. struct cfi_private *cfi = map->fldrv_priv;
  236. fixup_old_sst_eraseregion(mtd);
  237. cfi->addr_unlock1 = 0x5555;
  238. cfi->addr_unlock2 = 0x2AAA;
  239. }
  240. static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
  241. {
  242. struct map_info *map = mtd->priv;
  243. struct cfi_private *cfi = map->fldrv_priv;
  244. fixup_old_sst_eraseregion(mtd);
  245. cfi->addr_unlock1 = 0x555;
  246. cfi->addr_unlock2 = 0x2AA;
  247. cfi->sector_erase_cmd = CMD(0x50);
  248. }
  249. static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
  250. {
  251. struct map_info *map = mtd->priv;
  252. struct cfi_private *cfi = map->fldrv_priv;
  253. fixup_sst39vf_rev_b(mtd);
  254. /*
  255. * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
  256. * it should report a size of 8KBytes (0x0020*256).
  257. */
  258. cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
  259. pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
  260. }
  261. static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
  262. {
  263. struct map_info *map = mtd->priv;
  264. struct cfi_private *cfi = map->fldrv_priv;
  265. if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
  266. cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
  267. pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
  268. }
  269. }
  270. static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
  271. {
  272. struct map_info *map = mtd->priv;
  273. struct cfi_private *cfi = map->fldrv_priv;
  274. if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
  275. cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
  276. pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
  277. }
  278. }
  279. /* Used to fix CFI-Tables of chips without Extended Query Tables */
  280. static struct cfi_fixup cfi_nopri_fixup_table[] = {
  281. { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
  282. { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
  283. { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
  284. { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
  285. { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
  286. { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
  287. { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
  288. { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
  289. { 0, 0, NULL }
  290. };
  291. static struct cfi_fixup cfi_fixup_table[] = {
  292. { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
  293. #ifdef AMD_BOOTLOC_BUG
  294. { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
  295. { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
  296. { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
  297. #endif
  298. { CFI_MFR_AMD, 0x0050, fixup_use_secsi },
  299. { CFI_MFR_AMD, 0x0053, fixup_use_secsi },
  300. { CFI_MFR_AMD, 0x0055, fixup_use_secsi },
  301. { CFI_MFR_AMD, 0x0056, fixup_use_secsi },
  302. { CFI_MFR_AMD, 0x005C, fixup_use_secsi },
  303. { CFI_MFR_AMD, 0x005F, fixup_use_secsi },
  304. { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
  305. { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
  306. { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
  307. { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
  308. { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
  309. { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
  310. { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
  311. { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
  312. #if !FORCE_WORD_WRITE
  313. { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
  314. #endif
  315. { 0, 0, NULL }
  316. };
  317. static struct cfi_fixup jedec_fixup_table[] = {
  318. { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
  319. { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
  320. { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
  321. { 0, 0, NULL }
  322. };
  323. static struct cfi_fixup fixup_table[] = {
  324. /* The CFI vendor ids and the JEDEC vendor IDs appear
  325. * to be common. It is like the devices id's are as
  326. * well. This table is to pick all cases where
  327. * we know that is the case.
  328. */
  329. { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
  330. { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
  331. { 0, 0, NULL }
  332. };
  333. static void cfi_fixup_major_minor(struct cfi_private *cfi,
  334. struct cfi_pri_amdstd *extp)
  335. {
  336. if (cfi->mfr == CFI_MFR_SAMSUNG) {
  337. if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
  338. (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
  339. /*
  340. * Samsung K8P2815UQB and K8D6x16UxM chips
  341. * report major=0 / minor=0.
  342. * K8D3x16UxC chips report major=3 / minor=3.
  343. */
  344. printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
  345. " Extended Query version to 1.%c\n",
  346. extp->MinorVersion);
  347. extp->MajorVersion = '1';
  348. }
  349. }
  350. /*
  351. * SST 38VF640x chips report major=0xFF / minor=0xFF.
  352. */
  353. if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
  354. extp->MajorVersion = '1';
  355. extp->MinorVersion = '0';
  356. }
  357. }
  358. struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
  359. {
  360. struct cfi_private *cfi = map->fldrv_priv;
  361. struct mtd_info *mtd;
  362. int i;
  363. mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
  364. if (!mtd) {
  365. printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
  366. return NULL;
  367. }
  368. mtd->priv = map;
  369. mtd->type = MTD_NORFLASH;
  370. /* Fill in the default mtd operations */
  371. mtd->_erase = cfi_amdstd_erase_varsize;
  372. mtd->_write = cfi_amdstd_write_words;
  373. mtd->_read = cfi_amdstd_read;
  374. mtd->_sync = cfi_amdstd_sync;
  375. mtd->_suspend = cfi_amdstd_suspend;
  376. mtd->_resume = cfi_amdstd_resume;
  377. mtd->flags = MTD_CAP_NORFLASH;
  378. mtd->name = map->name;
  379. mtd->writesize = 1;
  380. mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
  381. pr_debug("MTD %s(): write buffer size %d\n", __func__,
  382. mtd->writebufsize);
  383. mtd->_panic_write = cfi_amdstd_panic_write;
  384. mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
  385. if (cfi->cfi_mode==CFI_MODE_CFI){
  386. unsigned char bootloc;
  387. __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
  388. struct cfi_pri_amdstd *extp;
  389. extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
  390. if (extp) {
  391. /*
  392. * It's a real CFI chip, not one for which the probe
  393. * routine faked a CFI structure.
  394. */
  395. cfi_fixup_major_minor(cfi, extp);
  396. /*
  397. * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
  398. * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
  399. * http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
  400. * http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
  401. * http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
  402. */
  403. if (extp->MajorVersion != '1' ||
  404. (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
  405. printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
  406. "version %c.%c (%#02x/%#02x).\n",
  407. extp->MajorVersion, extp->MinorVersion,
  408. extp->MajorVersion, extp->MinorVersion);
  409. kfree(extp);
  410. kfree(mtd);
  411. return NULL;
  412. }
  413. printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
  414. extp->MajorVersion, extp->MinorVersion);
  415. /* Install our own private info structure */
  416. cfi->cmdset_priv = extp;
  417. /* Apply cfi device specific fixups */
  418. cfi_fixup(mtd, cfi_fixup_table);
  419. #ifdef DEBUG_CFI_FEATURES
  420. /* Tell the user about it in lots of lovely detail */
  421. cfi_tell_features(extp);
  422. #endif
  423. bootloc = extp->TopBottom;
  424. if ((bootloc < 2) || (bootloc > 5)) {
  425. printk(KERN_WARNING "%s: CFI contains unrecognised boot "
  426. "bank location (%d). Assuming bottom.\n",
  427. map->name, bootloc);
  428. bootloc = 2;
  429. }
  430. if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
  431. printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
  432. for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
  433. int j = (cfi->cfiq->NumEraseRegions-1)-i;
  434. __u32 swap;
  435. swap = cfi->cfiq->EraseRegionInfo[i];
  436. cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
  437. cfi->cfiq->EraseRegionInfo[j] = swap;
  438. }
  439. }
  440. /* Set the default CFI lock/unlock addresses */
  441. cfi->addr_unlock1 = 0x555;
  442. cfi->addr_unlock2 = 0x2aa;
  443. }
  444. cfi_fixup(mtd, cfi_nopri_fixup_table);
  445. if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
  446. kfree(mtd);
  447. return NULL;
  448. }
  449. } /* CFI mode */
  450. else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
  451. /* Apply jedec specific fixups */
  452. cfi_fixup(mtd, jedec_fixup_table);
  453. }
  454. /* Apply generic fixups */
  455. cfi_fixup(mtd, fixup_table);
  456. for (i=0; i< cfi->numchips; i++) {
  457. cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
  458. cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
  459. cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
  460. cfi->chips[i].ref_point_counter = 0;
  461. init_waitqueue_head(&(cfi->chips[i].wq));
  462. }
  463. map->fldrv = &cfi_amdstd_chipdrv;
  464. return cfi_amdstd_setup(mtd);
  465. }
  466. struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
  467. struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
  468. EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
  469. EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
  470. EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
  471. static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
  472. {
  473. struct map_info *map = mtd->priv;
  474. struct cfi_private *cfi = map->fldrv_priv;
  475. unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
  476. unsigned long offset = 0;
  477. int i,j;
  478. printk(KERN_NOTICE "number of %s chips: %d\n",
  479. (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
  480. /* Select the correct geometry setup */
  481. mtd->size = devsize * cfi->numchips;
  482. mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
  483. mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
  484. * mtd->numeraseregions, GFP_KERNEL);
  485. if (!mtd->eraseregions) {
  486. printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
  487. goto setup_err;
  488. }
  489. for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
  490. unsigned long ernum, ersize;
  491. ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
  492. ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
  493. if (mtd->erasesize < ersize) {
  494. mtd->erasesize = ersize;
  495. }
  496. for (j=0; j<cfi->numchips; j++) {
  497. mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
  498. mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
  499. mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
  500. }
  501. offset += (ersize * ernum);
  502. }
  503. if (offset != devsize) {
  504. /* Argh */
  505. printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
  506. goto setup_err;
  507. }
  508. __module_get(THIS_MODULE);
  509. register_reboot_notifier(&mtd->reboot_notifier);
  510. return mtd;
  511. setup_err:
  512. kfree(mtd->eraseregions);
  513. kfree(mtd);
  514. kfree(cfi->cmdset_priv);
  515. kfree(cfi->cfiq);
  516. return NULL;
  517. }
  518. /*
  519. * Return true if the chip is ready.
  520. *
  521. * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
  522. * non-suspended sector) and is indicated by no toggle bits toggling.
  523. *
  524. * Note that anything more complicated than checking if no bits are toggling
  525. * (including checking DQ5 for an error status) is tricky to get working
  526. * correctly and is therefore not done (particularly with interleaved chips
  527. * as each chip must be checked independently of the others).
  528. */
  529. static int __xipram chip_ready(struct map_info *map, unsigned long addr)
  530. {
  531. map_word d, t;
  532. d = map_read(map, addr);
  533. t = map_read(map, addr);
  534. return map_word_equal(map, d, t);
  535. }
  536. /*
  537. * Return true if the chip is ready and has the correct value.
  538. *
  539. * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
  540. * non-suspended sector) and it is indicated by no bits toggling.
  541. *
  542. * Error are indicated by toggling bits or bits held with the wrong value,
  543. * or with bits toggling.
  544. *
  545. * Note that anything more complicated than checking if no bits are toggling
  546. * (including checking DQ5 for an error status) is tricky to get working
  547. * correctly and is therefore not done (particularly with interleaved chips
  548. * as each chip must be checked independently of the others).
  549. *
  550. */
  551. static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
  552. {
  553. map_word oldd, curd;
  554. oldd = map_read(map, addr);
  555. curd = map_read(map, addr);
  556. return map_word_equal(map, oldd, curd) &&
  557. map_word_equal(map, curd, expected);
  558. }
  559. static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
  560. {
  561. DECLARE_WAITQUEUE(wait, current);
  562. struct cfi_private *cfi = map->fldrv_priv;
  563. unsigned long timeo;
  564. struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
  565. resettime:
  566. timeo = jiffies + HZ;
  567. retry:
  568. switch (chip->state) {
  569. case FL_STATUS:
  570. for (;;) {
  571. if (chip_ready(map, adr))
  572. break;
  573. if (time_after(jiffies, timeo)) {
  574. printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
  575. return -EIO;
  576. }
  577. mutex_unlock(&chip->mutex);
  578. cfi_udelay(1);
  579. mutex_lock(&chip->mutex);
  580. /* Someone else might have been playing with it. */
  581. goto retry;
  582. }
  583. case FL_READY:
  584. case FL_CFI_QUERY:
  585. case FL_JEDEC_QUERY:
  586. return 0;
  587. case FL_ERASING:
  588. if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
  589. !(mode == FL_READY || mode == FL_POINT ||
  590. (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
  591. goto sleep;
  592. /* We could check to see if we're trying to access the sector
  593. * that is currently being erased. However, no user will try
  594. * anything like that so we just wait for the timeout. */
  595. /* Erase suspend */
  596. /* It's harmless to issue the Erase-Suspend and Erase-Resume
  597. * commands when the erase algorithm isn't in progress. */
  598. map_write(map, CMD(0xB0), chip->in_progress_block_addr);
  599. chip->oldstate = FL_ERASING;
  600. chip->state = FL_ERASE_SUSPENDING;
  601. chip->erase_suspended = 1;
  602. for (;;) {
  603. if (chip_ready(map, adr))
  604. break;
  605. if (time_after(jiffies, timeo)) {
  606. /* Should have suspended the erase by now.
  607. * Send an Erase-Resume command as either
  608. * there was an error (so leave the erase
  609. * routine to recover from it) or we trying to
  610. * use the erase-in-progress sector. */
  611. put_chip(map, chip, adr);
  612. printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
  613. return -EIO;
  614. }
  615. mutex_unlock(&chip->mutex);
  616. cfi_udelay(1);
  617. mutex_lock(&chip->mutex);
  618. /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
  619. So we can just loop here. */
  620. }
  621. chip->state = FL_READY;
  622. return 0;
  623. case FL_XIP_WHILE_ERASING:
  624. if (mode != FL_READY && mode != FL_POINT &&
  625. (!cfip || !(cfip->EraseSuspend&2)))
  626. goto sleep;
  627. chip->oldstate = chip->state;
  628. chip->state = FL_READY;
  629. return 0;
  630. case FL_SHUTDOWN:
  631. /* The machine is rebooting */
  632. return -EIO;
  633. case FL_POINT:
  634. /* Only if there's no operation suspended... */
  635. if (mode == FL_READY && chip->oldstate == FL_READY)
  636. return 0;
  637. default:
  638. sleep:
  639. set_current_state(TASK_UNINTERRUPTIBLE);
  640. add_wait_queue(&chip->wq, &wait);
  641. mutex_unlock(&chip->mutex);
  642. schedule();
  643. remove_wait_queue(&chip->wq, &wait);
  644. mutex_lock(&chip->mutex);
  645. goto resettime;
  646. }
  647. }
  648. static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
  649. {
  650. struct cfi_private *cfi = map->fldrv_priv;
  651. switch(chip->oldstate) {
  652. case FL_ERASING:
  653. map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
  654. chip->oldstate = FL_READY;
  655. chip->state = FL_ERASING;
  656. break;
  657. case FL_XIP_WHILE_ERASING:
  658. chip->state = chip->oldstate;
  659. chip->oldstate = FL_READY;
  660. break;
  661. case FL_READY:
  662. case FL_STATUS:
  663. /* We should really make set_vpp() count, rather than doing this */
  664. DISABLE_VPP(map);
  665. break;
  666. default:
  667. printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
  668. }
  669. wake_up(&chip->wq);
  670. }
  671. #ifdef CONFIG_MTD_XIP
  672. /*
  673. * No interrupt what so ever can be serviced while the flash isn't in array
  674. * mode. This is ensured by the xip_disable() and xip_enable() functions
  675. * enclosing any code path where the flash is known not to be in array mode.
  676. * And within a XIP disabled code path, only functions marked with __xipram
  677. * may be called and nothing else (it's a good thing to inspect generated
  678. * assembly to make sure inline functions were actually inlined and that gcc
  679. * didn't emit calls to its own support functions). Also configuring MTD CFI
  680. * support to a single buswidth and a single interleave is also recommended.
  681. */
  682. static void xip_disable(struct map_info *map, struct flchip *chip,
  683. unsigned long adr)
  684. {
  685. /* TODO: chips with no XIP use should ignore and return */
  686. (void) map_read(map, adr); /* ensure mmu mapping is up to date */
  687. local_irq_disable();
  688. }
  689. static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
  690. unsigned long adr)
  691. {
  692. struct cfi_private *cfi = map->fldrv_priv;
  693. if (chip->state != FL_POINT && chip->state != FL_READY) {
  694. map_write(map, CMD(0xf0), adr);
  695. chip->state = FL_READY;
  696. }
  697. (void) map_read(map, adr);
  698. xip_iprefetch();
  699. local_irq_enable();
  700. }
  701. /*
  702. * When a delay is required for the flash operation to complete, the
  703. * xip_udelay() function is polling for both the given timeout and pending
  704. * (but still masked) hardware interrupts. Whenever there is an interrupt
  705. * pending then the flash erase operation is suspended, array mode restored
  706. * and interrupts unmasked. Task scheduling might also happen at that
  707. * point. The CPU eventually returns from the interrupt or the call to
  708. * schedule() and the suspended flash operation is resumed for the remaining
  709. * of the delay period.
  710. *
  711. * Warning: this function _will_ fool interrupt latency tracing tools.
  712. */
  713. static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
  714. unsigned long adr, int usec)
  715. {
  716. struct cfi_private *cfi = map->fldrv_priv;
  717. struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
  718. map_word status, OK = CMD(0x80);
  719. unsigned long suspended, start = xip_currtime();
  720. flstate_t oldstate;
  721. do {
  722. cpu_relax();
  723. if (xip_irqpending() && extp &&
  724. ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
  725. (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
  726. /*
  727. * Let's suspend the erase operation when supported.
  728. * Note that we currently don't try to suspend
  729. * interleaved chips if there is already another
  730. * operation suspended (imagine what happens
  731. * when one chip was already done with the current
  732. * operation while another chip suspended it, then
  733. * we resume the whole thing at once). Yes, it
  734. * can happen!
  735. */
  736. map_write(map, CMD(0xb0), adr);
  737. usec -= xip_elapsed_since(start);
  738. suspended = xip_currtime();
  739. do {
  740. if (xip_elapsed_since(suspended) > 100000) {
  741. /*
  742. * The chip doesn't want to suspend
  743. * after waiting for 100 msecs.
  744. * This is a critical error but there
  745. * is not much we can do here.
  746. */
  747. return;
  748. }
  749. status = map_read(map, adr);
  750. } while (!map_word_andequal(map, status, OK, OK));
  751. /* Suspend succeeded */
  752. oldstate = chip->state;
  753. if (!map_word_bitsset(map, status, CMD(0x40)))
  754. break;
  755. chip->state = FL_XIP_WHILE_ERASING;
  756. chip->erase_suspended = 1;
  757. map_write(map, CMD(0xf0), adr);
  758. (void) map_read(map, adr);
  759. xip_iprefetch();
  760. local_irq_enable();
  761. mutex_unlock(&chip->mutex);
  762. xip_iprefetch();
  763. cond_resched();
  764. /*
  765. * We're back. However someone else might have
  766. * decided to go write to the chip if we are in
  767. * a suspended erase state. If so let's wait
  768. * until it's done.
  769. */
  770. mutex_lock(&chip->mutex);
  771. while (chip->state != FL_XIP_WHILE_ERASING) {
  772. DECLARE_WAITQUEUE(wait, current);
  773. set_current_state(TASK_UNINTERRUPTIBLE);
  774. add_wait_queue(&chip->wq, &wait);
  775. mutex_unlock(&chip->mutex);
  776. schedule();
  777. remove_wait_queue(&chip->wq, &wait);
  778. mutex_lock(&chip->mutex);
  779. }
  780. /* Disallow XIP again */
  781. local_irq_disable();
  782. /* Resume the write or erase operation */
  783. map_write(map, cfi->sector_erase_cmd, adr);
  784. chip->state = oldstate;
  785. start = xip_currtime();
  786. } else if (usec >= 1000000/HZ) {
  787. /*
  788. * Try to save on CPU power when waiting delay
  789. * is at least a system timer tick period.
  790. * No need to be extremely accurate here.
  791. */
  792. xip_cpu_idle();
  793. }
  794. status = map_read(map, adr);
  795. } while (!map_word_andequal(map, status, OK, OK)
  796. && xip_elapsed_since(start) < usec);
  797. }
  798. #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
  799. /*
  800. * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
  801. * the flash is actively programming or erasing since we have to poll for
  802. * the operation to complete anyway. We can't do that in a generic way with
  803. * a XIP setup so do it before the actual flash operation in this case
  804. * and stub it out from INVALIDATE_CACHE_UDELAY.
  805. */
  806. #define XIP_INVAL_CACHED_RANGE(map, from, size) \
  807. INVALIDATE_CACHED_RANGE(map, from, size)
  808. #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
  809. UDELAY(map, chip, adr, usec)
  810. /*
  811. * Extra notes:
  812. *
  813. * Activating this XIP support changes the way the code works a bit. For
  814. * example the code to suspend the current process when concurrent access
  815. * happens is never executed because xip_udelay() will always return with the
  816. * same chip state as it was entered with. This is why there is no care for
  817. * the presence of add_wait_queue() or schedule() calls from within a couple
  818. * xip_disable()'d areas of code, like in do_erase_oneblock for example.
  819. * The queueing and scheduling are always happening within xip_udelay().
  820. *
  821. * Similarly, get_chip() and put_chip() just happen to always be executed
  822. * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
  823. * is in array mode, therefore never executing many cases therein and not
  824. * causing any problem with XIP.
  825. */
  826. #else
  827. #define xip_disable(map, chip, adr)
  828. #define xip_enable(map, chip, adr)
  829. #define XIP_INVAL_CACHED_RANGE(x...)
  830. #define UDELAY(map, chip, adr, usec) \
  831. do { \
  832. mutex_unlock(&chip->mutex); \
  833. cfi_udelay(usec); \
  834. mutex_lock(&chip->mutex); \
  835. } while (0)
  836. #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
  837. do { \
  838. mutex_unlock(&chip->mutex); \
  839. INVALIDATE_CACHED_RANGE(map, adr, len); \
  840. cfi_udelay(usec); \
  841. mutex_lock(&chip->mutex); \
  842. } while (0)
  843. #endif
  844. static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
  845. {
  846. unsigned long cmd_addr;
  847. struct cfi_private *cfi = map->fldrv_priv;
  848. int ret;
  849. adr += chip->start;
  850. /* Ensure cmd read/writes are aligned. */
  851. cmd_addr = adr & ~(map_bankwidth(map)-1);
  852. mutex_lock(&chip->mutex);
  853. ret = get_chip(map, chip, cmd_addr, FL_READY);
  854. if (ret) {
  855. mutex_unlock(&chip->mutex);
  856. return ret;
  857. }
  858. if (chip->state != FL_POINT && chip->state != FL_READY) {
  859. map_write(map, CMD(0xf0), cmd_addr);
  860. chip->state = FL_READY;
  861. }
  862. map_copy_from(map, buf, adr, len);
  863. put_chip(map, chip, cmd_addr);
  864. mutex_unlock(&chip->mutex);
  865. return 0;
  866. }
  867. static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
  868. {
  869. struct map_info *map = mtd->priv;
  870. struct cfi_private *cfi = map->fldrv_priv;
  871. unsigned long ofs;
  872. int chipnum;
  873. int ret = 0;
  874. /* ofs: offset within the first chip that the first read should start */
  875. chipnum = (from >> cfi->chipshift);
  876. ofs = from - (chipnum << cfi->chipshift);
  877. *retlen = 0;
  878. while (len) {
  879. unsigned long thislen;
  880. if (chipnum >= cfi->numchips)
  881. break;
  882. if ((len + ofs -1) >> cfi->chipshift)
  883. thislen = (1<<cfi->chipshift) - ofs;
  884. else
  885. thislen = len;
  886. ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
  887. if (ret)
  888. break;
  889. *retlen += thislen;
  890. len -= thislen;
  891. buf += thislen;
  892. ofs = 0;
  893. chipnum++;
  894. }
  895. return ret;
  896. }
  897. static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
  898. {
  899. DECLARE_WAITQUEUE(wait, current);
  900. unsigned long timeo = jiffies + HZ;
  901. struct cfi_private *cfi = map->fldrv_priv;
  902. retry:
  903. mutex_lock(&chip->mutex);
  904. if (chip->state != FL_READY){
  905. set_current_state(TASK_UNINTERRUPTIBLE);
  906. add_wait_queue(&chip->wq, &wait);
  907. mutex_unlock(&chip->mutex);
  908. schedule();
  909. remove_wait_queue(&chip->wq, &wait);
  910. timeo = jiffies + HZ;
  911. goto retry;
  912. }
  913. adr += chip->start;
  914. chip->state = FL_READY;
  915. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  916. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  917. cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  918. map_copy_from(map, buf, adr, len);
  919. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  920. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  921. cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  922. cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  923. wake_up(&chip->wq);
  924. mutex_unlock(&chip->mutex);
  925. return 0;
  926. }
  927. static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
  928. {
  929. struct map_info *map = mtd->priv;
  930. struct cfi_private *cfi = map->fldrv_priv;
  931. unsigned long ofs;
  932. int chipnum;
  933. int ret = 0;
  934. /* ofs: offset within the first chip that the first read should start */
  935. /* 8 secsi bytes per chip */
  936. chipnum=from>>3;
  937. ofs=from & 7;
  938. *retlen = 0;
  939. while (len) {
  940. unsigned long thislen;
  941. if (chipnum >= cfi->numchips)
  942. break;
  943. if ((len + ofs -1) >> 3)
  944. thislen = (1<<3) - ofs;
  945. else
  946. thislen = len;
  947. ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
  948. if (ret)
  949. break;
  950. *retlen += thislen;
  951. len -= thislen;
  952. buf += thislen;
  953. ofs = 0;
  954. chipnum++;
  955. }
  956. return ret;
  957. }
  958. static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
  959. {
  960. struct cfi_private *cfi = map->fldrv_priv;
  961. unsigned long timeo = jiffies + HZ;
  962. /*
  963. * We use a 1ms + 1 jiffies generic timeout for writes (most devices
  964. * have a max write time of a few hundreds usec). However, we should
  965. * use the maximum timeout value given by the chip at probe time
  966. * instead. Unfortunately, struct flchip does have a field for
  967. * maximum timeout, only for typical which can be far too short
  968. * depending of the conditions. The ' + 1' is to avoid having a
  969. * timeout of 0 jiffies if HZ is smaller than 1000.
  970. */
  971. unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
  972. int ret = 0;
  973. map_word oldd;
  974. int retry_cnt = 0;
  975. adr += chip->start;
  976. mutex_lock(&chip->mutex);
  977. ret = get_chip(map, chip, adr, FL_WRITING);
  978. if (ret) {
  979. mutex_unlock(&chip->mutex);
  980. return ret;
  981. }
  982. pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
  983. __func__, adr, datum.x[0] );
  984. /*
  985. * Check for a NOP for the case when the datum to write is already
  986. * present - it saves time and works around buggy chips that corrupt
  987. * data at other locations when 0xff is written to a location that
  988. * already contains 0xff.
  989. */
  990. oldd = map_read(map, adr);
  991. if (map_word_equal(map, oldd, datum)) {
  992. pr_debug("MTD %s(): NOP\n",
  993. __func__);
  994. goto op_done;
  995. }
  996. XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
  997. ENABLE_VPP(map);
  998. xip_disable(map, chip, adr);
  999. retry:
  1000. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1001. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1002. cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1003. map_write(map, datum, adr);
  1004. chip->state = FL_WRITING;
  1005. INVALIDATE_CACHE_UDELAY(map, chip,
  1006. adr, map_bankwidth(map),
  1007. chip->word_write_time);
  1008. /* See comment above for timeout value. */
  1009. timeo = jiffies + uWriteTimeout;
  1010. for (;;) {
  1011. if (chip->state != FL_WRITING) {
  1012. /* Someone's suspended the write. Sleep */
  1013. DECLARE_WAITQUEUE(wait, current);
  1014. set_current_state(TASK_UNINTERRUPTIBLE);
  1015. add_wait_queue(&chip->wq, &wait);
  1016. mutex_unlock(&chip->mutex);
  1017. schedule();
  1018. remove_wait_queue(&chip->wq, &wait);
  1019. timeo = jiffies + (HZ / 2); /* FIXME */
  1020. mutex_lock(&chip->mutex);
  1021. continue;
  1022. }
  1023. if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
  1024. xip_enable(map, chip, adr);
  1025. printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
  1026. xip_disable(map, chip, adr);
  1027. break;
  1028. }
  1029. if (chip_ready(map, adr))
  1030. break;
  1031. /* Latency issues. Drop the lock, wait a while and retry */
  1032. UDELAY(map, chip, adr, 1);
  1033. }
  1034. /* Did we succeed? */
  1035. if (!chip_good(map, adr, datum)) {
  1036. /* reset on all failures. */
  1037. map_write( map, CMD(0xF0), chip->start );
  1038. /* FIXME - should have reset delay before continuing */
  1039. if (++retry_cnt <= MAX_WORD_RETRIES)
  1040. goto retry;
  1041. ret = -EIO;
  1042. }
  1043. xip_enable(map, chip, adr);
  1044. op_done:
  1045. chip->state = FL_READY;
  1046. put_chip(map, chip, adr);
  1047. mutex_unlock(&chip->mutex);
  1048. return ret;
  1049. }
  1050. static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
  1051. size_t *retlen, const u_char *buf)
  1052. {
  1053. struct map_info *map = mtd->priv;
  1054. struct cfi_private *cfi = map->fldrv_priv;
  1055. int ret = 0;
  1056. int chipnum;
  1057. unsigned long ofs, chipstart;
  1058. DECLARE_WAITQUEUE(wait, current);
  1059. *retlen = 0;
  1060. if (!len)
  1061. return 0;
  1062. chipnum = to >> cfi->chipshift;
  1063. ofs = to - (chipnum << cfi->chipshift);
  1064. chipstart = cfi->chips[chipnum].start;
  1065. /* If it's not bus-aligned, do the first byte write */
  1066. if (ofs & (map_bankwidth(map)-1)) {
  1067. unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
  1068. int i = ofs - bus_ofs;
  1069. int n = 0;
  1070. map_word tmp_buf;
  1071. retry:
  1072. mutex_lock(&cfi->chips[chipnum].mutex);
  1073. if (cfi->chips[chipnum].state != FL_READY) {
  1074. set_current_state(TASK_UNINTERRUPTIBLE);
  1075. add_wait_queue(&cfi->chips[chipnum].wq, &wait);
  1076. mutex_unlock(&cfi->chips[chipnum].mutex);
  1077. schedule();
  1078. remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
  1079. goto retry;
  1080. }
  1081. /* Load 'tmp_buf' with old contents of flash */
  1082. tmp_buf = map_read(map, bus_ofs+chipstart);
  1083. mutex_unlock(&cfi->chips[chipnum].mutex);
  1084. /* Number of bytes to copy from buffer */
  1085. n = min_t(int, len, map_bankwidth(map)-i);
  1086. tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
  1087. ret = do_write_oneword(map, &cfi->chips[chipnum],
  1088. bus_ofs, tmp_buf);
  1089. if (ret)
  1090. return ret;
  1091. ofs += n;
  1092. buf += n;
  1093. (*retlen) += n;
  1094. len -= n;
  1095. if (ofs >> cfi->chipshift) {
  1096. chipnum ++;
  1097. ofs = 0;
  1098. if (chipnum == cfi->numchips)
  1099. return 0;
  1100. }
  1101. }
  1102. /* We are now aligned, write as much as possible */
  1103. while(len >= map_bankwidth(map)) {
  1104. map_word datum;
  1105. datum = map_word_load(map, buf);
  1106. ret = do_write_oneword(map, &cfi->chips[chipnum],
  1107. ofs, datum);
  1108. if (ret)
  1109. return ret;
  1110. ofs += map_bankwidth(map);
  1111. buf += map_bankwidth(map);
  1112. (*retlen) += map_bankwidth(map);
  1113. len -= map_bankwidth(map);
  1114. if (ofs >> cfi->chipshift) {
  1115. chipnum ++;
  1116. ofs = 0;
  1117. if (chipnum == cfi->numchips)
  1118. return 0;
  1119. chipstart = cfi->chips[chipnum].start;
  1120. }
  1121. }
  1122. /* Write the trailing bytes if any */
  1123. if (len & (map_bankwidth(map)-1)) {
  1124. map_word tmp_buf;
  1125. retry1:
  1126. mutex_lock(&cfi->chips[chipnum].mutex);
  1127. if (cfi->chips[chipnum].state != FL_READY) {
  1128. set_current_state(TASK_UNINTERRUPTIBLE);
  1129. add_wait_queue(&cfi->chips[chipnum].wq, &wait);
  1130. mutex_unlock(&cfi->chips[chipnum].mutex);
  1131. schedule();
  1132. remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
  1133. goto retry1;
  1134. }
  1135. tmp_buf = map_read(map, ofs + chipstart);
  1136. mutex_unlock(&cfi->chips[chipnum].mutex);
  1137. tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
  1138. ret = do_write_oneword(map, &cfi->chips[chipnum],
  1139. ofs, tmp_buf);
  1140. if (ret)
  1141. return ret;
  1142. (*retlen) += len;
  1143. }
  1144. return 0;
  1145. }
  1146. /*
  1147. * FIXME: interleaved mode not tested, and probably not supported!
  1148. */
  1149. static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
  1150. unsigned long adr, const u_char *buf,
  1151. int len)
  1152. {
  1153. struct cfi_private *cfi = map->fldrv_priv;
  1154. unsigned long timeo = jiffies + HZ;
  1155. /* see comments in do_write_oneword() regarding uWriteTimeo. */
  1156. unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
  1157. int ret = -EIO;
  1158. unsigned long cmd_adr;
  1159. int z, words;
  1160. map_word datum;
  1161. adr += chip->start;
  1162. cmd_adr = adr;
  1163. mutex_lock(&chip->mutex);
  1164. ret = get_chip(map, chip, adr, FL_WRITING);
  1165. if (ret) {
  1166. mutex_unlock(&chip->mutex);
  1167. return ret;
  1168. }
  1169. datum = map_word_load(map, buf);
  1170. pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
  1171. __func__, adr, datum.x[0] );
  1172. XIP_INVAL_CACHED_RANGE(map, adr, len);
  1173. ENABLE_VPP(map);
  1174. xip_disable(map, chip, cmd_adr);
  1175. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1176. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1177. /* Write Buffer Load */
  1178. map_write(map, CMD(0x25), cmd_adr);
  1179. chip->state = FL_WRITING_TO_BUFFER;
  1180. /* Write length of data to come */
  1181. words = len / map_bankwidth(map);
  1182. map_write(map, CMD(words - 1), cmd_adr);
  1183. /* Write data */
  1184. z = 0;
  1185. while(z < words * map_bankwidth(map)) {
  1186. datum = map_word_load(map, buf);
  1187. map_write(map, datum, adr + z);
  1188. z += map_bankwidth(map);
  1189. buf += map_bankwidth(map);
  1190. }
  1191. z -= map_bankwidth(map);
  1192. adr += z;
  1193. /* Write Buffer Program Confirm: GO GO GO */
  1194. map_write(map, CMD(0x29), cmd_adr);
  1195. chip->state = FL_WRITING;
  1196. INVALIDATE_CACHE_UDELAY(map, chip,
  1197. adr, map_bankwidth(map),
  1198. chip->word_write_time);
  1199. timeo = jiffies + uWriteTimeout;
  1200. for (;;) {
  1201. if (chip->state != FL_WRITING) {
  1202. /* Someone's suspended the write. Sleep */
  1203. DECLARE_WAITQUEUE(wait, current);
  1204. set_current_state(TASK_UNINTERRUPTIBLE);
  1205. add_wait_queue(&chip->wq, &wait);
  1206. mutex_unlock(&chip->mutex);
  1207. schedule();
  1208. remove_wait_queue(&chip->wq, &wait);
  1209. timeo = jiffies + (HZ / 2); /* FIXME */
  1210. mutex_lock(&chip->mutex);
  1211. continue;
  1212. }
  1213. if (time_after(jiffies, timeo) && !chip_ready(map, adr))
  1214. break;
  1215. if (chip_ready(map, adr)) {
  1216. xip_enable(map, chip, adr);
  1217. goto op_done;
  1218. }
  1219. /* Latency issues. Drop the lock, wait a while and retry */
  1220. UDELAY(map, chip, adr, 1);
  1221. }
  1222. /* reset on all failures. */
  1223. map_write( map, CMD(0xF0), chip->start );
  1224. xip_enable(map, chip, adr);
  1225. /* FIXME - should have reset delay before continuing */
  1226. printk(KERN_WARNING "MTD %s(): software timeout\n",
  1227. __func__ );
  1228. ret = -EIO;
  1229. op_done:
  1230. chip->state = FL_READY;
  1231. put_chip(map, chip, adr);
  1232. mutex_unlock(&chip->mutex);
  1233. return ret;
  1234. }
  1235. static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
  1236. size_t *retlen, const u_char *buf)
  1237. {
  1238. struct map_info *map = mtd->priv;
  1239. struct cfi_private *cfi = map->fldrv_priv;
  1240. int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
  1241. int ret = 0;
  1242. int chipnum;
  1243. unsigned long ofs;
  1244. *retlen = 0;
  1245. if (!len)
  1246. return 0;
  1247. chipnum = to >> cfi->chipshift;
  1248. ofs = to - (chipnum << cfi->chipshift);
  1249. /* If it's not bus-aligned, do the first word write */
  1250. if (ofs & (map_bankwidth(map)-1)) {
  1251. size_t local_len = (-ofs)&(map_bankwidth(map)-1);
  1252. if (local_len > len)
  1253. local_len = len;
  1254. ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
  1255. local_len, retlen, buf);
  1256. if (ret)
  1257. return ret;
  1258. ofs += local_len;
  1259. buf += local_len;
  1260. len -= local_len;
  1261. if (ofs >> cfi->chipshift) {
  1262. chipnum ++;
  1263. ofs = 0;
  1264. if (chipnum == cfi->numchips)
  1265. return 0;
  1266. }
  1267. }
  1268. /* Write buffer is worth it only if more than one word to write... */
  1269. while (len >= map_bankwidth(map) * 2) {
  1270. /* We must not cross write block boundaries */
  1271. int size = wbufsize - (ofs & (wbufsize-1));
  1272. if (size > len)
  1273. size = len;
  1274. if (size % map_bankwidth(map))
  1275. size -= size % map_bankwidth(map);
  1276. ret = do_write_buffer(map, &cfi->chips[chipnum],
  1277. ofs, buf, size);
  1278. if (ret)
  1279. return ret;
  1280. ofs += size;
  1281. buf += size;
  1282. (*retlen) += size;
  1283. len -= size;
  1284. if (ofs >> cfi->chipshift) {
  1285. chipnum ++;
  1286. ofs = 0;
  1287. if (chipnum == cfi->numchips)
  1288. return 0;
  1289. }
  1290. }
  1291. if (len) {
  1292. size_t retlen_dregs = 0;
  1293. ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
  1294. len, &retlen_dregs, buf);
  1295. *retlen += retlen_dregs;
  1296. return ret;
  1297. }
  1298. return 0;
  1299. }
  1300. /*
  1301. * Wait for the flash chip to become ready to write data
  1302. *
  1303. * This is only called during the panic_write() path. When panic_write()
  1304. * is called, the kernel is in the process of a panic, and will soon be
  1305. * dead. Therefore we don't take any locks, and attempt to get access
  1306. * to the chip as soon as possible.
  1307. */
  1308. static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
  1309. unsigned long adr)
  1310. {
  1311. struct cfi_private *cfi = map->fldrv_priv;
  1312. int retries = 10;
  1313. int i;
  1314. /*
  1315. * If the driver thinks the chip is idle, and no toggle bits
  1316. * are changing, then the chip is actually idle for sure.
  1317. */
  1318. if (chip->state == FL_READY && chip_ready(map, adr))
  1319. return 0;
  1320. /*
  1321. * Try several times to reset the chip and then wait for it
  1322. * to become idle. The upper limit of a few milliseconds of
  1323. * delay isn't a big problem: the kernel is dying anyway. It
  1324. * is more important to save the messages.
  1325. */
  1326. while (retries > 0) {
  1327. const unsigned long timeo = (HZ / 1000) + 1;
  1328. /* send the reset command */
  1329. map_write(map, CMD(0xF0), chip->start);
  1330. /* wait for the chip to become ready */
  1331. for (i = 0; i < jiffies_to_usecs(timeo); i++) {
  1332. if (chip_ready(map, adr))
  1333. return 0;
  1334. udelay(1);
  1335. }
  1336. }
  1337. /* the chip never became ready */
  1338. return -EBUSY;
  1339. }
  1340. /*
  1341. * Write out one word of data to a single flash chip during a kernel panic
  1342. *
  1343. * This is only called during the panic_write() path. When panic_write()
  1344. * is called, the kernel is in the process of a panic, and will soon be
  1345. * dead. Therefore we don't take any locks, and attempt to get access
  1346. * to the chip as soon as possible.
  1347. *
  1348. * The implementation of this routine is intentionally similar to
  1349. * do_write_oneword(), in order to ease code maintenance.
  1350. */
  1351. static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
  1352. unsigned long adr, map_word datum)
  1353. {
  1354. const unsigned long uWriteTimeout = (HZ / 1000) + 1;
  1355. struct cfi_private *cfi = map->fldrv_priv;
  1356. int retry_cnt = 0;
  1357. map_word oldd;
  1358. int ret = 0;
  1359. int i;
  1360. adr += chip->start;
  1361. ret = cfi_amdstd_panic_wait(map, chip, adr);
  1362. if (ret)
  1363. return ret;
  1364. pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
  1365. __func__, adr, datum.x[0]);
  1366. /*
  1367. * Check for a NOP for the case when the datum to write is already
  1368. * present - it saves time and works around buggy chips that corrupt
  1369. * data at other locations when 0xff is written to a location that
  1370. * already contains 0xff.
  1371. */
  1372. oldd = map_read(map, adr);
  1373. if (map_word_equal(map, oldd, datum)) {
  1374. pr_debug("MTD %s(): NOP\n", __func__);
  1375. goto op_done;
  1376. }
  1377. ENABLE_VPP(map);
  1378. retry:
  1379. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1380. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1381. cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1382. map_write(map, datum, adr);
  1383. for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
  1384. if (chip_ready(map, adr))
  1385. break;
  1386. udelay(1);
  1387. }
  1388. if (!chip_good(map, adr, datum)) {
  1389. /* reset on all failures. */
  1390. map_write(map, CMD(0xF0), chip->start);
  1391. /* FIXME - should have reset delay before continuing */
  1392. if (++retry_cnt <= MAX_WORD_RETRIES)
  1393. goto retry;
  1394. ret = -EIO;
  1395. }
  1396. op_done:
  1397. DISABLE_VPP(map);
  1398. return ret;
  1399. }
  1400. /*
  1401. * Write out some data during a kernel panic
  1402. *
  1403. * This is used by the mtdoops driver to save the dying messages from a
  1404. * kernel which has panic'd.
  1405. *
  1406. * This routine ignores all of the locking used throughout the rest of the
  1407. * driver, in order to ensure that the data gets written out no matter what
  1408. * state this driver (and the flash chip itself) was in when the kernel crashed.
  1409. *
  1410. * The implementation of this routine is intentionally similar to
  1411. * cfi_amdstd_write_words(), in order to ease code maintenance.
  1412. */
  1413. static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  1414. size_t *retlen, const u_char *buf)
  1415. {
  1416. struct map_info *map = mtd->priv;
  1417. struct cfi_private *cfi = map->fldrv_priv;
  1418. unsigned long ofs, chipstart;
  1419. int ret = 0;
  1420. int chipnum;
  1421. *retlen = 0;
  1422. if (!len)
  1423. return 0;
  1424. chipnum = to >> cfi->chipshift;
  1425. ofs = to - (chipnum << cfi->chipshift);
  1426. chipstart = cfi->chips[chipnum].start;
  1427. /* If it's not bus aligned, do the first byte write */
  1428. if (ofs & (map_bankwidth(map) - 1)) {
  1429. unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
  1430. int i = ofs - bus_ofs;
  1431. int n = 0;
  1432. map_word tmp_buf;
  1433. ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
  1434. if (ret)
  1435. return ret;
  1436. /* Load 'tmp_buf' with old contents of flash */
  1437. tmp_buf = map_read(map, bus_ofs + chipstart);
  1438. /* Number of bytes to copy from buffer */
  1439. n = min_t(int, len, map_bankwidth(map) - i);
  1440. tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
  1441. ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
  1442. bus_ofs, tmp_buf);
  1443. if (ret)
  1444. return ret;
  1445. ofs += n;
  1446. buf += n;
  1447. (*retlen) += n;
  1448. len -= n;
  1449. if (ofs >> cfi->chipshift) {
  1450. chipnum++;
  1451. ofs = 0;
  1452. if (chipnum == cfi->numchips)
  1453. return 0;
  1454. }
  1455. }
  1456. /* We are now aligned, write as much as possible */
  1457. while (len >= map_bankwidth(map)) {
  1458. map_word datum;
  1459. datum = map_word_load(map, buf);
  1460. ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
  1461. ofs, datum);
  1462. if (ret)
  1463. return ret;
  1464. ofs += map_bankwidth(map);
  1465. buf += map_bankwidth(map);
  1466. (*retlen) += map_bankwidth(map);
  1467. len -= map_bankwidth(map);
  1468. if (ofs >> cfi->chipshift) {
  1469. chipnum++;
  1470. ofs = 0;
  1471. if (chipnum == cfi->numchips)
  1472. return 0;
  1473. chipstart = cfi->chips[chipnum].start;
  1474. }
  1475. }
  1476. /* Write the trailing bytes if any */
  1477. if (len & (map_bankwidth(map) - 1)) {
  1478. map_word tmp_buf;
  1479. ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
  1480. if (ret)
  1481. return ret;
  1482. tmp_buf = map_read(map, ofs + chipstart);
  1483. tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
  1484. ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
  1485. ofs, tmp_buf);
  1486. if (ret)
  1487. return ret;
  1488. (*retlen) += len;
  1489. }
  1490. return 0;
  1491. }
  1492. /*
  1493. * Handle devices with one erase region, that only implement
  1494. * the chip erase command.
  1495. */
  1496. static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
  1497. {
  1498. struct cfi_private *cfi = map->fldrv_priv;
  1499. unsigned long timeo = jiffies + HZ;
  1500. unsigned long int adr;
  1501. DECLARE_WAITQUEUE(wait, current);
  1502. int ret = 0;
  1503. adr = cfi->addr_unlock1;
  1504. mutex_lock(&chip->mutex);
  1505. ret = get_chip(map, chip, adr, FL_WRITING);
  1506. if (ret) {
  1507. mutex_unlock(&chip->mutex);
  1508. return ret;
  1509. }
  1510. pr_debug("MTD %s(): ERASE 0x%.8lx\n",
  1511. __func__, chip->start );
  1512. XIP_INVAL_CACHED_RANGE(map, adr, map->size);
  1513. ENABLE_VPP(map);
  1514. xip_disable(map, chip, adr);
  1515. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1516. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1517. cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1518. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1519. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1520. cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1521. chip->state = FL_ERASING;
  1522. chip->erase_suspended = 0;
  1523. chip->in_progress_block_addr = adr;
  1524. INVALIDATE_CACHE_UDELAY(map, chip,
  1525. adr, map->size,
  1526. chip->erase_time*500);
  1527. timeo = jiffies + (HZ*20);
  1528. for (;;) {
  1529. if (chip->state != FL_ERASING) {
  1530. /* Someone's suspended the erase. Sleep */
  1531. set_current_state(TASK_UNINTERRUPTIBLE);
  1532. add_wait_queue(&chip->wq, &wait);
  1533. mutex_unlock(&chip->mutex);
  1534. schedule();
  1535. remove_wait_queue(&chip->wq, &wait);
  1536. mutex_lock(&chip->mutex);
  1537. continue;
  1538. }
  1539. if (chip->erase_suspended) {
  1540. /* This erase was suspended and resumed.
  1541. Adjust the timeout */
  1542. timeo = jiffies + (HZ*20); /* FIXME */
  1543. chip->erase_suspended = 0;
  1544. }
  1545. if (chip_ready(map, adr))
  1546. break;
  1547. if (time_after(jiffies, timeo)) {
  1548. printk(KERN_WARNING "MTD %s(): software timeout\n",
  1549. __func__ );
  1550. break;
  1551. }
  1552. /* Latency issues. Drop the lock, wait a while and retry */
  1553. UDELAY(map, chip, adr, 1000000/HZ);
  1554. }
  1555. /* Did we succeed? */
  1556. if (!chip_good(map, adr, map_word_ff(map))) {
  1557. /* reset on all failures. */
  1558. map_write( map, CMD(0xF0), chip->start );
  1559. /* FIXME - should have reset delay before continuing */
  1560. ret = -EIO;
  1561. }
  1562. chip->state = FL_READY;
  1563. xip_enable(map, chip, adr);
  1564. put_chip(map, chip, adr);
  1565. mutex_unlock(&chip->mutex);
  1566. return ret;
  1567. }
  1568. static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
  1569. {
  1570. struct cfi_private *cfi = map->fldrv_priv;
  1571. unsigned long timeo = jiffies + HZ;
  1572. DECLARE_WAITQUEUE(wait, current);
  1573. int ret = 0;
  1574. adr += chip->start;
  1575. mutex_lock(&chip->mutex);
  1576. ret = get_chip(map, chip, adr, FL_ERASING);
  1577. if (ret) {
  1578. mutex_unlock(&chip->mutex);
  1579. return ret;
  1580. }
  1581. pr_debug("MTD %s(): ERASE 0x%.8lx\n",
  1582. __func__, adr );
  1583. XIP_INVAL_CACHED_RANGE(map, adr, len);
  1584. ENABLE_VPP(map);
  1585. xip_disable(map, chip, adr);
  1586. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1587. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1588. cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1589. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
  1590. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
  1591. map_write(map, cfi->sector_erase_cmd, adr);
  1592. chip->state = FL_ERASING;
  1593. chip->erase_suspended = 0;
  1594. chip->in_progress_block_addr = adr;
  1595. INVALIDATE_CACHE_UDELAY(map, chip,
  1596. adr, len,
  1597. chip->erase_time*500);
  1598. timeo = jiffies + (HZ*20);
  1599. for (;;) {
  1600. if (chip->state != FL_ERASING) {
  1601. /* Someone's suspended the erase. Sleep */
  1602. set_current_state(TASK_UNINTERRUPTIBLE);
  1603. add_wait_queue(&chip->wq, &wait);
  1604. mutex_unlock(&chip->mutex);
  1605. schedule();
  1606. remove_wait_queue(&chip->wq, &wait);
  1607. mutex_lock(&chip->mutex);
  1608. continue;
  1609. }
  1610. if (chip->erase_suspended) {
  1611. /* This erase was suspended and resumed.
  1612. Adjust the timeout */
  1613. timeo = jiffies + (HZ*20); /* FIXME */
  1614. chip->erase_suspended = 0;
  1615. }
  1616. if (chip_ready(map, adr)) {
  1617. xip_enable(map, chip, adr);
  1618. break;
  1619. }
  1620. if (time_after(jiffies, timeo)) {
  1621. xip_enable(map, chip, adr);
  1622. printk(KERN_WARNING "MTD %s(): software timeout\n",
  1623. __func__ );
  1624. break;
  1625. }
  1626. /* Latency issues. Drop the lock, wait a while and retry */
  1627. UDELAY(map, chip, adr, 1000000/HZ);
  1628. }
  1629. /* Did we succeed? */
  1630. if (!chip_good(map, adr, map_word_ff(map))) {
  1631. /* reset on all failures. */
  1632. map_write( map, CMD(0xF0), chip->start );
  1633. /* FIXME - should have reset delay before continuing */
  1634. ret = -EIO;
  1635. }
  1636. chip->state = FL_READY;
  1637. put_chip(map, chip, adr);
  1638. mutex_unlock(&chip->mutex);
  1639. return ret;
  1640. }
  1641. static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
  1642. {
  1643. unsigned long ofs, len;
  1644. int ret;
  1645. ofs = instr->addr;
  1646. len = instr->len;
  1647. ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
  1648. if (ret)
  1649. return ret;
  1650. instr->state = MTD_ERASE_DONE;
  1651. mtd_erase_callback(instr);
  1652. return 0;
  1653. }
  1654. static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
  1655. {
  1656. struct map_info *map = mtd->priv;
  1657. struct cfi_private *cfi = map->fldrv_priv;
  1658. int ret = 0;
  1659. if (instr->addr != 0)
  1660. return -EINVAL;
  1661. if (instr->len != mtd->size)
  1662. return -EINVAL;
  1663. ret = do_erase_chip(map, &cfi->chips[0]);
  1664. if (ret)
  1665. return ret;
  1666. instr->state = MTD_ERASE_DONE;
  1667. mtd_erase_callback(instr);
  1668. return 0;
  1669. }
  1670. static int do_atmel_lock(struct map_info *map, struct flchip *chip,
  1671. unsigned long adr, int len, void *thunk)
  1672. {
  1673. struct cfi_private *cfi = map->fldrv_priv;
  1674. int ret;
  1675. mutex_lock(&chip->mutex);
  1676. ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
  1677. if (ret)
  1678. goto out_unlock;
  1679. chip->state = FL_LOCKING;
  1680. pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
  1681. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
  1682. cfi->device_type, NULL);
  1683. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
  1684. cfi->device_type, NULL);
  1685. cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
  1686. cfi->device_type, NULL);
  1687. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
  1688. cfi->device_type, NULL);
  1689. cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
  1690. cfi->device_type, NULL);
  1691. map_write(map, CMD(0x40), chip->start + adr);
  1692. chip->state = FL_READY;
  1693. put_chip(map, chip, adr + chip->start);
  1694. ret = 0;
  1695. out_unlock:
  1696. mutex_unlock(&chip->mutex);
  1697. return ret;
  1698. }
  1699. static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
  1700. unsigned long adr, int len, void *thunk)
  1701. {
  1702. struct cfi_private *cfi = map->fldrv_priv;
  1703. int ret;
  1704. mutex_lock(&chip->mutex);
  1705. ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
  1706. if (ret)
  1707. goto out_unlock;
  1708. chip->state = FL_UNLOCKING;
  1709. pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
  1710. cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
  1711. cfi->device_type, NULL);
  1712. map_write(map, CMD(0x70), adr);
  1713. chip->state = FL_READY;
  1714. put_chip(map, chip, adr + chip->start);
  1715. ret = 0;
  1716. out_unlock:
  1717. mutex_unlock(&chip->mutex);
  1718. return ret;
  1719. }
  1720. static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  1721. {
  1722. return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
  1723. }
  1724. static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  1725. {
  1726. return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
  1727. }
  1728. static void cfi_amdstd_sync (struct mtd_info *mtd)
  1729. {
  1730. struct map_info *map = mtd->priv;
  1731. struct cfi_private *cfi = map->fldrv_priv;
  1732. int i;
  1733. struct flchip *chip;
  1734. int ret = 0;
  1735. DECLARE_WAITQUEUE(wait, current);
  1736. for (i=0; !ret && i<cfi->numchips; i++) {
  1737. chip = &cfi->chips[i];
  1738. retry:
  1739. mutex_lock(&chip->mutex);
  1740. switch(chip->state) {
  1741. case FL_READY:
  1742. case FL_STATUS:
  1743. case FL_CFI_QUERY:
  1744. case FL_JEDEC_QUERY:
  1745. chip->oldstate = chip->state;
  1746. chip->state = FL_SYNCING;
  1747. /* No need to wake_up() on this state change -
  1748. * as the whole point is that nobody can do anything
  1749. * with the chip now anyway.
  1750. */
  1751. case FL_SYNCING:
  1752. mutex_unlock(&chip->mutex);
  1753. break;
  1754. default:
  1755. /* Not an idle state */
  1756. set_current_state(TASK_UNINTERRUPTIBLE);
  1757. add_wait_queue(&chip->wq, &wait);
  1758. mutex_unlock(&chip->mutex);
  1759. schedule();
  1760. remove_wait_queue(&chip->wq, &wait);
  1761. goto retry;
  1762. }
  1763. }
  1764. /* Unlock the chips again */
  1765. for (i--; i >=0; i--) {
  1766. chip = &cfi->chips[i];
  1767. mutex_lock(&chip->mutex);
  1768. if (chip->state == FL_SYNCING) {
  1769. chip->state = chip->oldstate;
  1770. wake_up(&chip->wq);
  1771. }
  1772. mutex_unlock(&chip->mutex);
  1773. }
  1774. }
  1775. static int cfi_amdstd_suspend(struct mtd_info *mtd)
  1776. {
  1777. struct map_info *map = mtd->priv;
  1778. struct cfi_private *cfi = map->fldrv_priv;
  1779. int i;
  1780. struct flchip *chip;
  1781. int ret = 0;
  1782. for (i=0; !ret && i<cfi->numchips; i++) {
  1783. chip = &cfi->chips[i];
  1784. mutex_lock(&chip->mutex);
  1785. switch(chip->state) {
  1786. case FL_READY:
  1787. case FL_STATUS:
  1788. case FL_CFI_QUERY:
  1789. case FL_JEDEC_QUERY:
  1790. chip->oldstate = chip->state;
  1791. chip->state = FL_PM_SUSPENDED;
  1792. /* No need to wake_up() on this state change -
  1793. * as the whole point is that nobody can do anything
  1794. * with the chip now anyway.
  1795. */
  1796. case FL_PM_SUSPENDED:
  1797. break;
  1798. default:
  1799. ret = -EAGAIN;
  1800. break;
  1801. }
  1802. mutex_unlock(&chip->mutex);
  1803. }
  1804. /* Unlock the chips again */
  1805. if (ret) {
  1806. for (i--; i >=0; i--) {
  1807. chip = &cfi->chips[i];
  1808. mutex_lock(&chip->mutex);
  1809. if (chip->state == FL_PM_SUSPENDED) {
  1810. chip->state = chip->oldstate;
  1811. wake_up(&chip->wq);
  1812. }
  1813. mutex_unlock(&chip->mutex);
  1814. }
  1815. }
  1816. return ret;
  1817. }
  1818. static void cfi_amdstd_resume(struct mtd_info *mtd)
  1819. {
  1820. struct map_info *map = mtd->priv;
  1821. struct cfi_private *cfi = map->fldrv_priv;
  1822. int i;
  1823. struct flchip *chip;
  1824. for (i=0; i<cfi->numchips; i++) {
  1825. chip = &cfi->chips[i];
  1826. mutex_lock(&chip->mutex);
  1827. if (chip->state == FL_PM_SUSPENDED) {
  1828. chip->state = FL_READY;
  1829. map_write(map, CMD(0xF0), chip->start);
  1830. wake_up(&chip->wq);
  1831. }
  1832. else
  1833. printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
  1834. mutex_unlock(&chip->mutex);
  1835. }
  1836. }
  1837. /*
  1838. * Ensure that the flash device is put back into read array mode before
  1839. * unloading the driver or rebooting. On some systems, rebooting while
  1840. * the flash is in query/program/erase mode will prevent the CPU from
  1841. * fetching the bootloader code, requiring a hard reset or power cycle.
  1842. */
  1843. static int cfi_amdstd_reset(struct mtd_info *mtd)
  1844. {
  1845. struct map_info *map = mtd->priv;
  1846. struct cfi_private *cfi = map->fldrv_priv;
  1847. int i, ret;
  1848. struct flchip *chip;
  1849. for (i = 0; i < cfi->numchips; i++) {
  1850. chip = &cfi->chips[i];
  1851. mutex_lock(&chip->mutex);
  1852. ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
  1853. if (!ret) {
  1854. map_write(map, CMD(0xF0), chip->start);
  1855. chip->state = FL_SHUTDOWN;
  1856. put_chip(map, chip, chip->start);
  1857. }
  1858. mutex_unlock(&chip->mutex);
  1859. }
  1860. return 0;
  1861. }
  1862. static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
  1863. void *v)
  1864. {
  1865. struct mtd_info *mtd;
  1866. mtd = container_of(nb, struct mtd_info, reboot_notifier);
  1867. cfi_amdstd_reset(mtd);
  1868. return NOTIFY_DONE;
  1869. }
  1870. static void cfi_amdstd_destroy(struct mtd_info *mtd)
  1871. {
  1872. struct map_info *map = mtd->priv;
  1873. struct cfi_private *cfi = map->fldrv_priv;
  1874. cfi_amdstd_reset(mtd);
  1875. unregister_reboot_notifier(&mtd->reboot_notifier);
  1876. kfree(cfi->cmdset_priv);
  1877. kfree(cfi->cfiq);
  1878. kfree(cfi);
  1879. kfree(mtd->eraseregions);
  1880. }
  1881. MODULE_LICENSE("GPL");
  1882. MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
  1883. MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
  1884. MODULE_ALIAS("cfi_cmdset_0006");
  1885. MODULE_ALIAS("cfi_cmdset_0701");