wmi.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. #include "trace.h"
  22. /**
  23. * WMI event receiving - theory of operations
  24. *
  25. * When firmware about to report WMI event, it fills memory area
  26. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  27. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  28. *
  29. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  30. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  31. * and handles events within the @wmi_event_worker. Every event get detached
  32. * from list, processed and deleted.
  33. *
  34. * Purpose for this mechanism is to release IRQ thread; otherwise,
  35. * if WMI event handling involves another WMI command flow, this 2-nd flow
  36. * won't be completed because of blocked IRQ thread.
  37. */
  38. /**
  39. * Addressing - theory of operations
  40. *
  41. * There are several buses present on the WIL6210 card.
  42. * Same memory areas are visible at different address on
  43. * the different busses. There are 3 main bus masters:
  44. * - MAC CPU (ucode)
  45. * - User CPU (firmware)
  46. * - AHB (host)
  47. *
  48. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  49. * AHB addresses starting from 0x880000
  50. *
  51. * Internally, firmware uses addresses that allows faster access but
  52. * are invisible from the host. To read from these addresses, alternative
  53. * AHB address must be used.
  54. *
  55. * Memory mapping
  56. * Linker address PCI/Host address
  57. * 0x880000 .. 0xa80000 2Mb BAR0
  58. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  59. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  60. */
  61. /**
  62. * @fw_mapping provides memory remapping table
  63. */
  64. static const struct {
  65. u32 from; /* linker address - from, inclusive */
  66. u32 to; /* linker address - to, exclusive */
  67. u32 host; /* PCI/Host address - BAR0 + 0x880000 */
  68. } fw_mapping[] = {
  69. {0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
  70. {0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
  71. {0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
  72. {0x880000, 0x88a000, 0x880000}, /* various RGF */
  73. {0x8c0000, 0x932000, 0x8c0000}, /* trivial mapping for upper area */
  74. /*
  75. * 920000..930000 ucode code RAM
  76. * 930000..932000 ucode data RAM
  77. */
  78. };
  79. /**
  80. * return AHB address for given firmware/ucode internal (linker) address
  81. * @x - internal address
  82. * If address have no valid AHB mapping, return 0
  83. */
  84. static u32 wmi_addr_remap(u32 x)
  85. {
  86. uint i;
  87. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  88. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  89. return x + fw_mapping[i].host - fw_mapping[i].from;
  90. }
  91. return 0;
  92. }
  93. /**
  94. * Check address validity for WMI buffer; remap if needed
  95. * @ptr - internal (linker) fw/ucode address
  96. *
  97. * Valid buffer should be DWORD aligned
  98. *
  99. * return address for accessing buffer from the host;
  100. * if buffer is not valid, return NULL.
  101. */
  102. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  103. {
  104. u32 off;
  105. u32 ptr = le32_to_cpu(ptr_);
  106. if (ptr % 4)
  107. return NULL;
  108. ptr = wmi_addr_remap(ptr);
  109. if (ptr < WIL6210_FW_HOST_OFF)
  110. return NULL;
  111. off = HOSTADDR(ptr);
  112. if (off > WIL6210_MEM_SIZE - 4)
  113. return NULL;
  114. return wil->csr + off;
  115. }
  116. /**
  117. * Check address validity
  118. */
  119. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  120. {
  121. u32 off;
  122. if (ptr % 4)
  123. return NULL;
  124. if (ptr < WIL6210_FW_HOST_OFF)
  125. return NULL;
  126. off = HOSTADDR(ptr);
  127. if (off > WIL6210_MEM_SIZE - 4)
  128. return NULL;
  129. return wil->csr + off;
  130. }
  131. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  132. struct wil6210_mbox_hdr *hdr)
  133. {
  134. void __iomem *src = wmi_buffer(wil, ptr);
  135. if (!src)
  136. return -EINVAL;
  137. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  138. return 0;
  139. }
  140. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  141. {
  142. struct {
  143. struct wil6210_mbox_hdr hdr;
  144. struct wil6210_mbox_hdr_wmi wmi;
  145. } __packed cmd = {
  146. .hdr = {
  147. .type = WIL_MBOX_HDR_TYPE_WMI,
  148. .flags = 0,
  149. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  150. },
  151. .wmi = {
  152. .id = cpu_to_le16(cmdid),
  153. .info1 = 0,
  154. },
  155. };
  156. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  157. struct wil6210_mbox_ring_desc d_head;
  158. u32 next_head;
  159. void __iomem *dst;
  160. void __iomem *head = wmi_addr(wil, r->head);
  161. uint retry;
  162. if (sizeof(cmd) + len > r->entry_size) {
  163. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  164. (int)(sizeof(cmd) + len), r->entry_size);
  165. return -ERANGE;
  166. }
  167. might_sleep();
  168. if (!test_bit(wil_status_fwready, &wil->status)) {
  169. wil_err(wil, "FW not ready\n");
  170. return -EAGAIN;
  171. }
  172. if (!head) {
  173. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  174. return -EINVAL;
  175. }
  176. /* read Tx head till it is not busy */
  177. for (retry = 5; retry > 0; retry--) {
  178. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  179. if (d_head.sync == 0)
  180. break;
  181. msleep(20);
  182. }
  183. if (d_head.sync != 0) {
  184. wil_err(wil, "WMI head busy\n");
  185. return -EBUSY;
  186. }
  187. /* next head */
  188. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  189. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  190. /* wait till FW finish with previous command */
  191. for (retry = 5; retry > 0; retry--) {
  192. r->tail = ioread32(wil->csr + HOST_MBOX +
  193. offsetof(struct wil6210_mbox_ctl, tx.tail));
  194. if (next_head != r->tail)
  195. break;
  196. msleep(20);
  197. }
  198. if (next_head == r->tail) {
  199. wil_err(wil, "WMI ring full\n");
  200. return -EBUSY;
  201. }
  202. dst = wmi_buffer(wil, d_head.addr);
  203. if (!dst) {
  204. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  205. le32_to_cpu(d_head.addr));
  206. return -EINVAL;
  207. }
  208. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  209. /* set command */
  210. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  211. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  212. sizeof(cmd), true);
  213. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  214. len, true);
  215. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  216. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  217. /* mark entry as full */
  218. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  219. offsetof(struct wil6210_mbox_ring_desc, sync));
  220. /* advance next ptr */
  221. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  222. offsetof(struct wil6210_mbox_ctl, tx.head));
  223. trace_wil6210_wmi_cmd(cmdid, buf, len);
  224. /* interrupt to FW */
  225. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  226. return 0;
  227. }
  228. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  229. {
  230. int rc;
  231. mutex_lock(&wil->wmi_mutex);
  232. rc = __wmi_send(wil, cmdid, buf, len);
  233. mutex_unlock(&wil->wmi_mutex);
  234. return rc;
  235. }
  236. /*=== Event handlers ===*/
  237. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  238. {
  239. struct net_device *ndev = wil_to_ndev(wil);
  240. struct wireless_dev *wdev = wil->wdev;
  241. struct wmi_ready_event *evt = d;
  242. wil->fw_version = le32_to_cpu(evt->sw_version);
  243. wil->n_mids = evt->numof_additional_mids;
  244. wil_dbg_wmi(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  245. evt->mac, wil->n_mids);
  246. if (!is_valid_ether_addr(ndev->dev_addr)) {
  247. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  248. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  249. }
  250. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  251. "%d", wil->fw_version);
  252. }
  253. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  254. int len)
  255. {
  256. wil_dbg_wmi(wil, "WMI: FW ready\n");
  257. set_bit(wil_status_fwready, &wil->status);
  258. /* reuse wmi_ready for the firmware ready indication */
  259. complete(&wil->wmi_ready);
  260. }
  261. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  262. {
  263. struct wmi_rx_mgmt_packet_event *data = d;
  264. struct wiphy *wiphy = wil_to_wiphy(wil);
  265. struct ieee80211_mgmt *rx_mgmt_frame =
  266. (struct ieee80211_mgmt *)data->payload;
  267. int ch_no = data->info.channel+1;
  268. u32 freq = ieee80211_channel_to_frequency(ch_no,
  269. IEEE80211_BAND_60GHZ);
  270. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  271. /* TODO convert LE to CPU */
  272. s32 signal = 0; /* TODO */
  273. __le16 fc = rx_mgmt_frame->frame_control;
  274. u32 d_len = le32_to_cpu(data->info.len);
  275. u16 d_status = le16_to_cpu(data->info.status);
  276. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d\n",
  277. data->info.channel, data->info.mcs, data->info.snr);
  278. wil_dbg_wmi(wil, "status 0x%04x len %d stype %04x\n", d_status, d_len,
  279. le16_to_cpu(data->info.stype));
  280. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  281. data->info.qid, data->info.mid, data->info.cid);
  282. if (!channel) {
  283. wil_err(wil, "Frame on unsupported channel\n");
  284. return;
  285. }
  286. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  287. struct cfg80211_bss *bss;
  288. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  289. d_len, signal, GFP_KERNEL);
  290. if (bss) {
  291. wil_dbg_wmi(wil, "Added BSS %pM\n",
  292. rx_mgmt_frame->bssid);
  293. cfg80211_put_bss(wiphy, bss);
  294. } else {
  295. wil_err(wil, "cfg80211_inform_bss() failed\n");
  296. }
  297. } else {
  298. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  299. (void *)rx_mgmt_frame, d_len, GFP_KERNEL);
  300. }
  301. }
  302. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  303. void *d, int len)
  304. {
  305. if (wil->scan_request) {
  306. struct wmi_scan_complete_event *data = d;
  307. bool aborted = (data->status != 0);
  308. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  309. cfg80211_scan_done(wil->scan_request, aborted);
  310. wil->scan_request = NULL;
  311. } else {
  312. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  313. }
  314. }
  315. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  316. {
  317. struct net_device *ndev = wil_to_ndev(wil);
  318. struct wireless_dev *wdev = wil->wdev;
  319. struct wmi_connect_event *evt = d;
  320. int ch; /* channel number */
  321. struct station_info sinfo;
  322. u8 *assoc_req_ie, *assoc_resp_ie;
  323. size_t assoc_req_ielen, assoc_resp_ielen;
  324. /* capinfo(u16) + listen_interval(u16) + IEs */
  325. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  326. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  327. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  328. if (len < sizeof(*evt)) {
  329. wil_err(wil, "Connect event too short : %d bytes\n", len);
  330. return;
  331. }
  332. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  333. evt->assoc_resp_len) {
  334. wil_err(wil,
  335. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  336. len, (int)sizeof(*evt), evt->beacon_ie_len,
  337. evt->assoc_req_len, evt->assoc_resp_len);
  338. return;
  339. }
  340. ch = evt->channel + 1;
  341. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  342. evt->bssid, ch, evt->cid);
  343. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  344. evt->assoc_info, len - sizeof(*evt), true);
  345. /* figure out IE's */
  346. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  347. assoc_req_ie_offset];
  348. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  349. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  350. assoc_req_ie = NULL;
  351. assoc_req_ielen = 0;
  352. }
  353. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  354. evt->assoc_req_len +
  355. assoc_resp_ie_offset];
  356. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  357. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  358. assoc_resp_ie = NULL;
  359. assoc_resp_ielen = 0;
  360. }
  361. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  362. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  363. if (wdev->sme_state != CFG80211_SME_CONNECTING) {
  364. wil_err(wil, "Not in connecting state\n");
  365. return;
  366. }
  367. del_timer_sync(&wil->connect_timer);
  368. cfg80211_connect_result(ndev, evt->bssid,
  369. assoc_req_ie, assoc_req_ielen,
  370. assoc_resp_ie, assoc_resp_ielen,
  371. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  372. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  373. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  374. memset(&sinfo, 0, sizeof(sinfo));
  375. sinfo.generation = wil->sinfo_gen++;
  376. if (assoc_req_ie) {
  377. sinfo.assoc_req_ies = assoc_req_ie;
  378. sinfo.assoc_req_ies_len = assoc_req_ielen;
  379. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  380. }
  381. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  382. }
  383. set_bit(wil_status_fwconnected, &wil->status);
  384. /* FIXME FW can transmit only ucast frames to peer */
  385. /* FIXME real ring_id instead of hard coded 0 */
  386. memcpy(wil->dst_addr[0], evt->bssid, ETH_ALEN);
  387. wil->pending_connect_cid = evt->cid;
  388. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  389. }
  390. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  391. void *d, int len)
  392. {
  393. struct wmi_disconnect_event *evt = d;
  394. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  395. evt->bssid,
  396. evt->protocol_reason_status, evt->disconnect_reason);
  397. wil->sinfo_gen++;
  398. wil6210_disconnect(wil, evt->bssid);
  399. }
  400. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  401. {
  402. struct wmi_notify_req_done_event *evt = d;
  403. if (len < sizeof(*evt)) {
  404. wil_err(wil, "Short NOTIFY event\n");
  405. return;
  406. }
  407. wil->stats.tsf = le64_to_cpu(evt->tsf);
  408. wil->stats.snr = le32_to_cpu(evt->snr_val);
  409. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  410. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  411. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  412. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  413. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  414. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  415. "BF status 0x%08x SNR 0x%08x\n"
  416. "Tx Tpt %d goodput %d Rx goodput %d\n"
  417. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  418. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  419. wil->stats.snr, le32_to_cpu(evt->tx_tpt),
  420. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  421. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  422. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  423. }
  424. /*
  425. * Firmware reports EAPOL frame using WME event.
  426. * Reconstruct Ethernet frame and deliver it via normal Rx
  427. */
  428. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  429. void *d, int len)
  430. {
  431. struct net_device *ndev = wil_to_ndev(wil);
  432. struct wmi_eapol_rx_event *evt = d;
  433. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  434. int sz = eapol_len + ETH_HLEN;
  435. struct sk_buff *skb;
  436. struct ethhdr *eth;
  437. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  438. evt->src_mac);
  439. if (eapol_len > 196) { /* TODO: revisit size limit */
  440. wil_err(wil, "EAPOL too large\n");
  441. return;
  442. }
  443. skb = alloc_skb(sz, GFP_KERNEL);
  444. if (!skb) {
  445. wil_err(wil, "Failed to allocate skb\n");
  446. return;
  447. }
  448. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  449. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  450. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  451. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  452. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  453. skb->protocol = eth_type_trans(skb, ndev);
  454. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  455. ndev->stats.rx_packets++;
  456. ndev->stats.rx_bytes += skb->len;
  457. } else {
  458. ndev->stats.rx_dropped++;
  459. }
  460. }
  461. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  462. {
  463. struct net_device *ndev = wil_to_ndev(wil);
  464. struct wmi_data_port_open_event *evt = d;
  465. wil_dbg_wmi(wil, "Link UP for CID %d\n", evt->cid);
  466. netif_carrier_on(ndev);
  467. }
  468. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  469. {
  470. struct net_device *ndev = wil_to_ndev(wil);
  471. struct wmi_wbe_link_down_event *evt = d;
  472. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  473. evt->cid, le32_to_cpu(evt->reason));
  474. netif_carrier_off(ndev);
  475. }
  476. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  477. int len)
  478. {
  479. struct wmi_vring_ba_status_event *evt = d;
  480. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  481. evt->ringid, evt->status ? "N/A" : "OK", evt->agg_wsize,
  482. __le16_to_cpu(evt->ba_timeout));
  483. }
  484. static const struct {
  485. int eventid;
  486. void (*handler)(struct wil6210_priv *wil, int eventid,
  487. void *data, int data_len);
  488. } wmi_evt_handlers[] = {
  489. {WMI_READY_EVENTID, wmi_evt_ready},
  490. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  491. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  492. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  493. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  494. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  495. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  496. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  497. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  498. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  499. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  500. };
  501. /*
  502. * Run in IRQ context
  503. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  504. * that will be eventually handled by the @wmi_event_worker in the thread
  505. * context of thread "wil6210_wmi"
  506. */
  507. void wmi_recv_cmd(struct wil6210_priv *wil)
  508. {
  509. struct wil6210_mbox_ring_desc d_tail;
  510. struct wil6210_mbox_hdr hdr;
  511. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  512. struct pending_wmi_event *evt;
  513. u8 *cmd;
  514. void __iomem *src;
  515. ulong flags;
  516. if (!test_bit(wil_status_reset_done, &wil->status)) {
  517. wil_err(wil, "Reset not completed\n");
  518. return;
  519. }
  520. for (;;) {
  521. u16 len;
  522. r->head = ioread32(wil->csr + HOST_MBOX +
  523. offsetof(struct wil6210_mbox_ctl, rx.head));
  524. if (r->tail == r->head)
  525. return;
  526. /* read cmd from tail */
  527. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  528. sizeof(struct wil6210_mbox_ring_desc));
  529. if (d_tail.sync == 0) {
  530. wil_err(wil, "Mbox evt not owned by FW?\n");
  531. return;
  532. }
  533. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  534. wil_err(wil, "Mbox evt at 0x%08x?\n",
  535. le32_to_cpu(d_tail.addr));
  536. return;
  537. }
  538. len = le16_to_cpu(hdr.len);
  539. src = wmi_buffer(wil, d_tail.addr) +
  540. sizeof(struct wil6210_mbox_hdr);
  541. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  542. event.wmi) + len, 4),
  543. GFP_KERNEL);
  544. if (!evt)
  545. return;
  546. evt->event.hdr = hdr;
  547. cmd = (void *)&evt->event.wmi;
  548. wil_memcpy_fromio_32(cmd, src, len);
  549. /* mark entry as empty */
  550. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  551. offsetof(struct wil6210_mbox_ring_desc, sync));
  552. /* indicate */
  553. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  554. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  555. hdr.flags);
  556. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  557. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  558. u16 id = le16_to_cpu(evt->event.wmi.id);
  559. wil_dbg_wmi(wil, "WMI event 0x%04x\n", id);
  560. trace_wil6210_wmi_event(id, &evt->event.wmi, len);
  561. }
  562. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  563. &evt->event.hdr, sizeof(hdr) + len, true);
  564. /* advance tail */
  565. r->tail = r->base + ((r->tail - r->base +
  566. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  567. iowrite32(r->tail, wil->csr + HOST_MBOX +
  568. offsetof(struct wil6210_mbox_ctl, rx.tail));
  569. /* add to the pending list */
  570. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  571. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  572. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  573. {
  574. int q = queue_work(wil->wmi_wq,
  575. &wil->wmi_event_worker);
  576. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  577. }
  578. }
  579. }
  580. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  581. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  582. {
  583. int rc;
  584. int remain;
  585. mutex_lock(&wil->wmi_mutex);
  586. rc = __wmi_send(wil, cmdid, buf, len);
  587. if (rc)
  588. goto out;
  589. wil->reply_id = reply_id;
  590. wil->reply_buf = reply;
  591. wil->reply_size = reply_size;
  592. remain = wait_for_completion_timeout(&wil->wmi_ready,
  593. msecs_to_jiffies(to_msec));
  594. if (0 == remain) {
  595. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  596. cmdid, reply_id, to_msec);
  597. rc = -ETIME;
  598. } else {
  599. wil_dbg_wmi(wil,
  600. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  601. cmdid, reply_id,
  602. to_msec - jiffies_to_msecs(remain));
  603. }
  604. wil->reply_id = 0;
  605. wil->reply_buf = NULL;
  606. wil->reply_size = 0;
  607. out:
  608. mutex_unlock(&wil->wmi_mutex);
  609. return rc;
  610. }
  611. int wmi_echo(struct wil6210_priv *wil)
  612. {
  613. struct wmi_echo_cmd cmd = {
  614. .value = cpu_to_le32(0x12345678),
  615. };
  616. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  617. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  618. }
  619. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  620. {
  621. struct wmi_set_mac_address_cmd cmd;
  622. memcpy(cmd.mac, addr, ETH_ALEN);
  623. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  624. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  625. }
  626. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  627. {
  628. int rc;
  629. struct wmi_pcp_start_cmd cmd = {
  630. .bcon_interval = cpu_to_le16(bi),
  631. .network_type = wmi_nettype,
  632. .disable_sec_offload = 1,
  633. .channel = chan,
  634. };
  635. struct {
  636. struct wil6210_mbox_hdr_wmi wmi;
  637. struct wmi_pcp_started_event evt;
  638. } __packed reply;
  639. if (!wil->secure_pcp)
  640. cmd.disable_sec = 1;
  641. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  642. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 100);
  643. if (rc)
  644. return rc;
  645. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  646. rc = -EINVAL;
  647. return rc;
  648. }
  649. int wmi_pcp_stop(struct wil6210_priv *wil)
  650. {
  651. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  652. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  653. }
  654. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  655. {
  656. struct wmi_set_ssid_cmd cmd = {
  657. .ssid_len = cpu_to_le32(ssid_len),
  658. };
  659. if (ssid_len > sizeof(cmd.ssid))
  660. return -EINVAL;
  661. memcpy(cmd.ssid, ssid, ssid_len);
  662. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  663. }
  664. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  665. {
  666. int rc;
  667. struct {
  668. struct wil6210_mbox_hdr_wmi wmi;
  669. struct wmi_set_ssid_cmd cmd;
  670. } __packed reply;
  671. int len; /* reply.cmd.ssid_len in CPU order */
  672. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  673. &reply, sizeof(reply), 20);
  674. if (rc)
  675. return rc;
  676. len = le32_to_cpu(reply.cmd.ssid_len);
  677. if (len > sizeof(reply.cmd.ssid))
  678. return -EINVAL;
  679. *ssid_len = len;
  680. memcpy(ssid, reply.cmd.ssid, len);
  681. return 0;
  682. }
  683. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  684. {
  685. struct wmi_set_pcp_channel_cmd cmd = {
  686. .channel = channel - 1,
  687. };
  688. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  689. }
  690. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  691. {
  692. int rc;
  693. struct {
  694. struct wil6210_mbox_hdr_wmi wmi;
  695. struct wmi_set_pcp_channel_cmd cmd;
  696. } __packed reply;
  697. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  698. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  699. if (rc)
  700. return rc;
  701. if (reply.cmd.channel > 3)
  702. return -EINVAL;
  703. *channel = reply.cmd.channel + 1;
  704. return 0;
  705. }
  706. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  707. {
  708. struct wmi_p2p_cfg_cmd cmd = {
  709. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  710. .channel = channel - 1,
  711. };
  712. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  713. }
  714. int wmi_tx_eapol(struct wil6210_priv *wil, struct sk_buff *skb)
  715. {
  716. struct wmi_eapol_tx_cmd *cmd;
  717. struct ethhdr *eth;
  718. u16 eapol_len = skb->len - ETH_HLEN;
  719. void *eapol = skb->data + ETH_HLEN;
  720. uint i;
  721. int rc;
  722. skb_set_mac_header(skb, 0);
  723. eth = eth_hdr(skb);
  724. wil_dbg_wmi(wil, "EAPOL %d bytes to %pM\n", eapol_len, eth->h_dest);
  725. for (i = 0; i < ARRAY_SIZE(wil->vring_tx); i++) {
  726. if (memcmp(wil->dst_addr[i], eth->h_dest, ETH_ALEN) == 0)
  727. goto found_dest;
  728. }
  729. return -EINVAL;
  730. found_dest:
  731. /* find out eapol data & len */
  732. cmd = kzalloc(sizeof(*cmd) + eapol_len, GFP_KERNEL);
  733. if (!cmd)
  734. return -EINVAL;
  735. memcpy(cmd->dst_mac, eth->h_dest, ETH_ALEN);
  736. cmd->eapol_len = cpu_to_le16(eapol_len);
  737. memcpy(cmd->eapol, eapol, eapol_len);
  738. rc = wmi_send(wil, WMI_EAPOL_TX_CMDID, cmd, sizeof(*cmd) + eapol_len);
  739. kfree(cmd);
  740. return rc;
  741. }
  742. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  743. const void *mac_addr)
  744. {
  745. struct wmi_delete_cipher_key_cmd cmd = {
  746. .key_index = key_index,
  747. };
  748. if (mac_addr)
  749. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  750. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  751. }
  752. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  753. const void *mac_addr, int key_len, const void *key)
  754. {
  755. struct wmi_add_cipher_key_cmd cmd = {
  756. .key_index = key_index,
  757. .key_usage = WMI_KEY_USE_PAIRWISE,
  758. .key_len = key_len,
  759. };
  760. if (!key || (key_len > sizeof(cmd.key)))
  761. return -EINVAL;
  762. memcpy(cmd.key, key, key_len);
  763. if (mac_addr)
  764. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  765. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  766. }
  767. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  768. {
  769. int rc;
  770. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  771. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  772. if (!cmd)
  773. return -ENOMEM;
  774. cmd->mgmt_frm_type = type;
  775. /* BUG: FW API define ieLen as u8. Will fix FW */
  776. cmd->ie_len = cpu_to_le16(ie_len);
  777. memcpy(cmd->ie_info, ie, ie_len);
  778. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  779. kfree(cmd);
  780. return rc;
  781. }
  782. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  783. {
  784. struct wireless_dev *wdev = wil->wdev;
  785. struct net_device *ndev = wil_to_ndev(wil);
  786. struct wmi_cfg_rx_chain_cmd cmd = {
  787. .action = WMI_RX_CHAIN_ADD,
  788. .rx_sw_ring = {
  789. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  790. .ring_mem_base = cpu_to_le64(vring->pa),
  791. .ring_size = cpu_to_le16(vring->size),
  792. },
  793. .mid = 0, /* TODO - what is it? */
  794. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  795. };
  796. struct {
  797. struct wil6210_mbox_hdr_wmi wmi;
  798. struct wmi_cfg_rx_chain_done_event evt;
  799. } __packed evt;
  800. int rc;
  801. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  802. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  803. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  804. if (ch)
  805. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  806. cmd.sniffer_cfg.phy_info_mode =
  807. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  808. cmd.sniffer_cfg.phy_support =
  809. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  810. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  811. }
  812. /* typical time for secure PCP is 840ms */
  813. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  814. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  815. if (rc)
  816. return rc;
  817. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  818. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  819. le32_to_cpu(evt.evt.status), vring->hwtail);
  820. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  821. rc = -EINVAL;
  822. return rc;
  823. }
  824. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  825. {
  826. int rc;
  827. struct wmi_temp_sense_cmd cmd = {
  828. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  829. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  830. };
  831. struct {
  832. struct wil6210_mbox_hdr_wmi wmi;
  833. struct wmi_temp_sense_done_event evt;
  834. } __packed reply;
  835. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  836. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  837. if (rc)
  838. return rc;
  839. if (t_m)
  840. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  841. if (t_r)
  842. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  843. return 0;
  844. }
  845. void wmi_event_flush(struct wil6210_priv *wil)
  846. {
  847. struct pending_wmi_event *evt, *t;
  848. wil_dbg_wmi(wil, "%s()\n", __func__);
  849. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  850. list_del(&evt->list);
  851. kfree(evt);
  852. }
  853. }
  854. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  855. void *d, int len)
  856. {
  857. uint i;
  858. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  859. if (wmi_evt_handlers[i].eventid == id) {
  860. wmi_evt_handlers[i].handler(wil, id, d, len);
  861. return true;
  862. }
  863. }
  864. return false;
  865. }
  866. static void wmi_event_handle(struct wil6210_priv *wil,
  867. struct wil6210_mbox_hdr *hdr)
  868. {
  869. u16 len = le16_to_cpu(hdr->len);
  870. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  871. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  872. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  873. void *evt_data = (void *)(&wmi[1]);
  874. u16 id = le16_to_cpu(wmi->id);
  875. /* check if someone waits for this event */
  876. if (wil->reply_id && wil->reply_id == id) {
  877. if (wil->reply_buf) {
  878. memcpy(wil->reply_buf, wmi,
  879. min(len, wil->reply_size));
  880. } else {
  881. wmi_evt_call_handler(wil, id, evt_data,
  882. len - sizeof(*wmi));
  883. }
  884. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  885. complete(&wil->wmi_ready);
  886. return;
  887. }
  888. /* unsolicited event */
  889. /* search for handler */
  890. if (!wmi_evt_call_handler(wil, id, evt_data,
  891. len - sizeof(*wmi))) {
  892. wil_err(wil, "Unhandled event 0x%04x\n", id);
  893. }
  894. } else {
  895. wil_err(wil, "Unknown event type\n");
  896. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  897. hdr, sizeof(*hdr) + len, true);
  898. }
  899. }
  900. /*
  901. * Retrieve next WMI event from the pending list
  902. */
  903. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  904. {
  905. ulong flags;
  906. struct list_head *ret = NULL;
  907. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  908. if (!list_empty(&wil->pending_wmi_ev)) {
  909. ret = wil->pending_wmi_ev.next;
  910. list_del(ret);
  911. }
  912. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  913. return ret;
  914. }
  915. /*
  916. * Handler for the WMI events
  917. */
  918. void wmi_event_worker(struct work_struct *work)
  919. {
  920. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  921. wmi_event_worker);
  922. struct pending_wmi_event *evt;
  923. struct list_head *lh;
  924. while ((lh = next_wmi_ev(wil)) != NULL) {
  925. evt = list_entry(lh, struct pending_wmi_event, list);
  926. wmi_event_handle(wil, &evt->event.hdr);
  927. kfree(evt);
  928. }
  929. }