xfs_log_recover.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_imap.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_log_priv.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_log_recover.h"
  45. #include "xfs_extfree_item.h"
  46. #include "xfs_trans_priv.h"
  47. #include "xfs_quota.h"
  48. #include "xfs_rw.h"
  49. #include "xfs_utils.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  53. xlog_recover_item_t *item);
  54. #if defined(DEBUG)
  55. STATIC void xlog_recover_check_summary(xlog_t *);
  56. STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
  57. #else
  58. #define xlog_recover_check_summary(log)
  59. #define xlog_recover_check_ail(mp, lip, gen)
  60. #endif
  61. /*
  62. * Sector aligned buffer routines for buffer create/read/write/access
  63. */
  64. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  65. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  66. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  67. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  68. xfs_buf_t *
  69. xlog_get_bp(
  70. xlog_t *log,
  71. int num_bblks)
  72. {
  73. ASSERT(num_bblks > 0);
  74. if (log->l_sectbb_log) {
  75. if (num_bblks > 1)
  76. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  77. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  78. }
  79. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  80. }
  81. void
  82. xlog_put_bp(
  83. xfs_buf_t *bp)
  84. {
  85. xfs_buf_free(bp);
  86. }
  87. /*
  88. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  89. */
  90. int
  91. xlog_bread(
  92. xlog_t *log,
  93. xfs_daddr_t blk_no,
  94. int nbblks,
  95. xfs_buf_t *bp)
  96. {
  97. int error;
  98. if (log->l_sectbb_log) {
  99. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  100. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  101. }
  102. ASSERT(nbblks > 0);
  103. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  104. ASSERT(bp);
  105. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  106. XFS_BUF_READ(bp);
  107. XFS_BUF_BUSY(bp);
  108. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  109. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  110. xfsbdstrat(log->l_mp, bp);
  111. if ((error = xfs_iowait(bp)))
  112. xfs_ioerror_alert("xlog_bread", log->l_mp,
  113. bp, XFS_BUF_ADDR(bp));
  114. return error;
  115. }
  116. /*
  117. * Write out the buffer at the given block for the given number of blocks.
  118. * The buffer is kept locked across the write and is returned locked.
  119. * This can only be used for synchronous log writes.
  120. */
  121. STATIC int
  122. xlog_bwrite(
  123. xlog_t *log,
  124. xfs_daddr_t blk_no,
  125. int nbblks,
  126. xfs_buf_t *bp)
  127. {
  128. int error;
  129. if (log->l_sectbb_log) {
  130. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  131. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  132. }
  133. ASSERT(nbblks > 0);
  134. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  135. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  136. XFS_BUF_ZEROFLAGS(bp);
  137. XFS_BUF_BUSY(bp);
  138. XFS_BUF_HOLD(bp);
  139. XFS_BUF_PSEMA(bp, PRIBIO);
  140. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  141. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  142. if ((error = xfs_bwrite(log->l_mp, bp)))
  143. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  144. bp, XFS_BUF_ADDR(bp));
  145. return error;
  146. }
  147. STATIC xfs_caddr_t
  148. xlog_align(
  149. xlog_t *log,
  150. xfs_daddr_t blk_no,
  151. int nbblks,
  152. xfs_buf_t *bp)
  153. {
  154. xfs_caddr_t ptr;
  155. if (!log->l_sectbb_log)
  156. return XFS_BUF_PTR(bp);
  157. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  158. ASSERT(XFS_BUF_SIZE(bp) >=
  159. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  160. return ptr;
  161. }
  162. #ifdef DEBUG
  163. /*
  164. * dump debug superblock and log record information
  165. */
  166. STATIC void
  167. xlog_header_check_dump(
  168. xfs_mount_t *mp,
  169. xlog_rec_header_t *head)
  170. {
  171. int b;
  172. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  173. for (b = 0; b < 16; b++)
  174. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  175. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  176. cmn_err(CE_DEBUG, " log : uuid = ");
  177. for (b = 0; b < 16; b++)
  178. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  179. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  180. }
  181. #else
  182. #define xlog_header_check_dump(mp, head)
  183. #endif
  184. /*
  185. * check log record header for recovery
  186. */
  187. STATIC int
  188. xlog_header_check_recover(
  189. xfs_mount_t *mp,
  190. xlog_rec_header_t *head)
  191. {
  192. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  193. /*
  194. * IRIX doesn't write the h_fmt field and leaves it zeroed
  195. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  196. * a dirty log created in IRIX.
  197. */
  198. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  199. xlog_warn(
  200. "XFS: dirty log written in incompatible format - can't recover");
  201. xlog_header_check_dump(mp, head);
  202. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  203. XFS_ERRLEVEL_HIGH, mp);
  204. return XFS_ERROR(EFSCORRUPTED);
  205. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  206. xlog_warn(
  207. "XFS: dirty log entry has mismatched uuid - can't recover");
  208. xlog_header_check_dump(mp, head);
  209. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  210. XFS_ERRLEVEL_HIGH, mp);
  211. return XFS_ERROR(EFSCORRUPTED);
  212. }
  213. return 0;
  214. }
  215. /*
  216. * read the head block of the log and check the header
  217. */
  218. STATIC int
  219. xlog_header_check_mount(
  220. xfs_mount_t *mp,
  221. xlog_rec_header_t *head)
  222. {
  223. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  224. if (uuid_is_nil(&head->h_fs_uuid)) {
  225. /*
  226. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  227. * h_fs_uuid is nil, we assume this log was last mounted
  228. * by IRIX and continue.
  229. */
  230. xlog_warn("XFS: nil uuid in log - IRIX style log");
  231. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  232. xlog_warn("XFS: log has mismatched uuid - can't recover");
  233. xlog_header_check_dump(mp, head);
  234. XFS_ERROR_REPORT("xlog_header_check_mount",
  235. XFS_ERRLEVEL_HIGH, mp);
  236. return XFS_ERROR(EFSCORRUPTED);
  237. }
  238. return 0;
  239. }
  240. STATIC void
  241. xlog_recover_iodone(
  242. struct xfs_buf *bp)
  243. {
  244. xfs_mount_t *mp;
  245. ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
  246. if (XFS_BUF_GETERROR(bp)) {
  247. /*
  248. * We're not going to bother about retrying
  249. * this during recovery. One strike!
  250. */
  251. mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
  252. xfs_ioerror_alert("xlog_recover_iodone",
  253. mp, bp, XFS_BUF_ADDR(bp));
  254. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  255. }
  256. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  257. XFS_BUF_CLR_IODONE_FUNC(bp);
  258. xfs_biodone(bp);
  259. }
  260. /*
  261. * This routine finds (to an approximation) the first block in the physical
  262. * log which contains the given cycle. It uses a binary search algorithm.
  263. * Note that the algorithm can not be perfect because the disk will not
  264. * necessarily be perfect.
  265. */
  266. STATIC int
  267. xlog_find_cycle_start(
  268. xlog_t *log,
  269. xfs_buf_t *bp,
  270. xfs_daddr_t first_blk,
  271. xfs_daddr_t *last_blk,
  272. uint cycle)
  273. {
  274. xfs_caddr_t offset;
  275. xfs_daddr_t mid_blk;
  276. uint mid_cycle;
  277. int error;
  278. mid_blk = BLK_AVG(first_blk, *last_blk);
  279. while (mid_blk != first_blk && mid_blk != *last_blk) {
  280. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  281. return error;
  282. offset = xlog_align(log, mid_blk, 1, bp);
  283. mid_cycle = xlog_get_cycle(offset);
  284. if (mid_cycle == cycle) {
  285. *last_blk = mid_blk;
  286. /* last_half_cycle == mid_cycle */
  287. } else {
  288. first_blk = mid_blk;
  289. /* first_half_cycle == mid_cycle */
  290. }
  291. mid_blk = BLK_AVG(first_blk, *last_blk);
  292. }
  293. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  294. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  295. return 0;
  296. }
  297. /*
  298. * Check that the range of blocks does not contain the cycle number
  299. * given. The scan needs to occur from front to back and the ptr into the
  300. * region must be updated since a later routine will need to perform another
  301. * test. If the region is completely good, we end up returning the same
  302. * last block number.
  303. *
  304. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  305. * since we don't ever expect logs to get this large.
  306. */
  307. STATIC int
  308. xlog_find_verify_cycle(
  309. xlog_t *log,
  310. xfs_daddr_t start_blk,
  311. int nbblks,
  312. uint stop_on_cycle_no,
  313. xfs_daddr_t *new_blk)
  314. {
  315. xfs_daddr_t i, j;
  316. uint cycle;
  317. xfs_buf_t *bp;
  318. xfs_daddr_t bufblks;
  319. xfs_caddr_t buf = NULL;
  320. int error = 0;
  321. bufblks = 1 << ffs(nbblks);
  322. while (!(bp = xlog_get_bp(log, bufblks))) {
  323. /* can't get enough memory to do everything in one big buffer */
  324. bufblks >>= 1;
  325. if (bufblks <= log->l_sectbb_log)
  326. return ENOMEM;
  327. }
  328. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  329. int bcount;
  330. bcount = min(bufblks, (start_blk + nbblks - i));
  331. if ((error = xlog_bread(log, i, bcount, bp)))
  332. goto out;
  333. buf = xlog_align(log, i, bcount, bp);
  334. for (j = 0; j < bcount; j++) {
  335. cycle = xlog_get_cycle(buf);
  336. if (cycle == stop_on_cycle_no) {
  337. *new_blk = i+j;
  338. goto out;
  339. }
  340. buf += BBSIZE;
  341. }
  342. }
  343. *new_blk = -1;
  344. out:
  345. xlog_put_bp(bp);
  346. return error;
  347. }
  348. /*
  349. * Potentially backup over partial log record write.
  350. *
  351. * In the typical case, last_blk is the number of the block directly after
  352. * a good log record. Therefore, we subtract one to get the block number
  353. * of the last block in the given buffer. extra_bblks contains the number
  354. * of blocks we would have read on a previous read. This happens when the
  355. * last log record is split over the end of the physical log.
  356. *
  357. * extra_bblks is the number of blocks potentially verified on a previous
  358. * call to this routine.
  359. */
  360. STATIC int
  361. xlog_find_verify_log_record(
  362. xlog_t *log,
  363. xfs_daddr_t start_blk,
  364. xfs_daddr_t *last_blk,
  365. int extra_bblks)
  366. {
  367. xfs_daddr_t i;
  368. xfs_buf_t *bp;
  369. xfs_caddr_t offset = NULL;
  370. xlog_rec_header_t *head = NULL;
  371. int error = 0;
  372. int smallmem = 0;
  373. int num_blks = *last_blk - start_blk;
  374. int xhdrs;
  375. ASSERT(start_blk != 0 || *last_blk != start_blk);
  376. if (!(bp = xlog_get_bp(log, num_blks))) {
  377. if (!(bp = xlog_get_bp(log, 1)))
  378. return ENOMEM;
  379. smallmem = 1;
  380. } else {
  381. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  382. goto out;
  383. offset = xlog_align(log, start_blk, num_blks, bp);
  384. offset += ((num_blks - 1) << BBSHIFT);
  385. }
  386. for (i = (*last_blk) - 1; i >= 0; i--) {
  387. if (i < start_blk) {
  388. /* valid log record not found */
  389. xlog_warn(
  390. "XFS: Log inconsistent (didn't find previous header)");
  391. ASSERT(0);
  392. error = XFS_ERROR(EIO);
  393. goto out;
  394. }
  395. if (smallmem) {
  396. if ((error = xlog_bread(log, i, 1, bp)))
  397. goto out;
  398. offset = xlog_align(log, i, 1, bp);
  399. }
  400. head = (xlog_rec_header_t *)offset;
  401. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  402. break;
  403. if (!smallmem)
  404. offset -= BBSIZE;
  405. }
  406. /*
  407. * We hit the beginning of the physical log & still no header. Return
  408. * to caller. If caller can handle a return of -1, then this routine
  409. * will be called again for the end of the physical log.
  410. */
  411. if (i == -1) {
  412. error = -1;
  413. goto out;
  414. }
  415. /*
  416. * We have the final block of the good log (the first block
  417. * of the log record _before_ the head. So we check the uuid.
  418. */
  419. if ((error = xlog_header_check_mount(log->l_mp, head)))
  420. goto out;
  421. /*
  422. * We may have found a log record header before we expected one.
  423. * last_blk will be the 1st block # with a given cycle #. We may end
  424. * up reading an entire log record. In this case, we don't want to
  425. * reset last_blk. Only when last_blk points in the middle of a log
  426. * record do we update last_blk.
  427. */
  428. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  429. uint h_size = be32_to_cpu(head->h_size);
  430. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  431. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  432. xhdrs++;
  433. } else {
  434. xhdrs = 1;
  435. }
  436. if (*last_blk - i + extra_bblks !=
  437. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  438. *last_blk = i;
  439. out:
  440. xlog_put_bp(bp);
  441. return error;
  442. }
  443. /*
  444. * Head is defined to be the point of the log where the next log write
  445. * write could go. This means that incomplete LR writes at the end are
  446. * eliminated when calculating the head. We aren't guaranteed that previous
  447. * LR have complete transactions. We only know that a cycle number of
  448. * current cycle number -1 won't be present in the log if we start writing
  449. * from our current block number.
  450. *
  451. * last_blk contains the block number of the first block with a given
  452. * cycle number.
  453. *
  454. * Return: zero if normal, non-zero if error.
  455. */
  456. STATIC int
  457. xlog_find_head(
  458. xlog_t *log,
  459. xfs_daddr_t *return_head_blk)
  460. {
  461. xfs_buf_t *bp;
  462. xfs_caddr_t offset;
  463. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  464. int num_scan_bblks;
  465. uint first_half_cycle, last_half_cycle;
  466. uint stop_on_cycle;
  467. int error, log_bbnum = log->l_logBBsize;
  468. /* Is the end of the log device zeroed? */
  469. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  470. *return_head_blk = first_blk;
  471. /* Is the whole lot zeroed? */
  472. if (!first_blk) {
  473. /* Linux XFS shouldn't generate totally zeroed logs -
  474. * mkfs etc write a dummy unmount record to a fresh
  475. * log so we can store the uuid in there
  476. */
  477. xlog_warn("XFS: totally zeroed log");
  478. }
  479. return 0;
  480. } else if (error) {
  481. xlog_warn("XFS: empty log check failed");
  482. return error;
  483. }
  484. first_blk = 0; /* get cycle # of 1st block */
  485. bp = xlog_get_bp(log, 1);
  486. if (!bp)
  487. return ENOMEM;
  488. if ((error = xlog_bread(log, 0, 1, bp)))
  489. goto bp_err;
  490. offset = xlog_align(log, 0, 1, bp);
  491. first_half_cycle = xlog_get_cycle(offset);
  492. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  493. if ((error = xlog_bread(log, last_blk, 1, bp)))
  494. goto bp_err;
  495. offset = xlog_align(log, last_blk, 1, bp);
  496. last_half_cycle = xlog_get_cycle(offset);
  497. ASSERT(last_half_cycle != 0);
  498. /*
  499. * If the 1st half cycle number is equal to the last half cycle number,
  500. * then the entire log is stamped with the same cycle number. In this
  501. * case, head_blk can't be set to zero (which makes sense). The below
  502. * math doesn't work out properly with head_blk equal to zero. Instead,
  503. * we set it to log_bbnum which is an invalid block number, but this
  504. * value makes the math correct. If head_blk doesn't changed through
  505. * all the tests below, *head_blk is set to zero at the very end rather
  506. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  507. * in a circular file.
  508. */
  509. if (first_half_cycle == last_half_cycle) {
  510. /*
  511. * In this case we believe that the entire log should have
  512. * cycle number last_half_cycle. We need to scan backwards
  513. * from the end verifying that there are no holes still
  514. * containing last_half_cycle - 1. If we find such a hole,
  515. * then the start of that hole will be the new head. The
  516. * simple case looks like
  517. * x | x ... | x - 1 | x
  518. * Another case that fits this picture would be
  519. * x | x + 1 | x ... | x
  520. * In this case the head really is somewhere at the end of the
  521. * log, as one of the latest writes at the beginning was
  522. * incomplete.
  523. * One more case is
  524. * x | x + 1 | x ... | x - 1 | x
  525. * This is really the combination of the above two cases, and
  526. * the head has to end up at the start of the x-1 hole at the
  527. * end of the log.
  528. *
  529. * In the 256k log case, we will read from the beginning to the
  530. * end of the log and search for cycle numbers equal to x-1.
  531. * We don't worry about the x+1 blocks that we encounter,
  532. * because we know that they cannot be the head since the log
  533. * started with x.
  534. */
  535. head_blk = log_bbnum;
  536. stop_on_cycle = last_half_cycle - 1;
  537. } else {
  538. /*
  539. * In this case we want to find the first block with cycle
  540. * number matching last_half_cycle. We expect the log to be
  541. * some variation on
  542. * x + 1 ... | x ...
  543. * The first block with cycle number x (last_half_cycle) will
  544. * be where the new head belongs. First we do a binary search
  545. * for the first occurrence of last_half_cycle. The binary
  546. * search may not be totally accurate, so then we scan back
  547. * from there looking for occurrences of last_half_cycle before
  548. * us. If that backwards scan wraps around the beginning of
  549. * the log, then we look for occurrences of last_half_cycle - 1
  550. * at the end of the log. The cases we're looking for look
  551. * like
  552. * x + 1 ... | x | x + 1 | x ...
  553. * ^ binary search stopped here
  554. * or
  555. * x + 1 ... | x ... | x - 1 | x
  556. * <---------> less than scan distance
  557. */
  558. stop_on_cycle = last_half_cycle;
  559. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  560. &head_blk, last_half_cycle)))
  561. goto bp_err;
  562. }
  563. /*
  564. * Now validate the answer. Scan back some number of maximum possible
  565. * blocks and make sure each one has the expected cycle number. The
  566. * maximum is determined by the total possible amount of buffering
  567. * in the in-core log. The following number can be made tighter if
  568. * we actually look at the block size of the filesystem.
  569. */
  570. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  571. if (head_blk >= num_scan_bblks) {
  572. /*
  573. * We are guaranteed that the entire check can be performed
  574. * in one buffer.
  575. */
  576. start_blk = head_blk - num_scan_bblks;
  577. if ((error = xlog_find_verify_cycle(log,
  578. start_blk, num_scan_bblks,
  579. stop_on_cycle, &new_blk)))
  580. goto bp_err;
  581. if (new_blk != -1)
  582. head_blk = new_blk;
  583. } else { /* need to read 2 parts of log */
  584. /*
  585. * We are going to scan backwards in the log in two parts.
  586. * First we scan the physical end of the log. In this part
  587. * of the log, we are looking for blocks with cycle number
  588. * last_half_cycle - 1.
  589. * If we find one, then we know that the log starts there, as
  590. * we've found a hole that didn't get written in going around
  591. * the end of the physical log. The simple case for this is
  592. * x + 1 ... | x ... | x - 1 | x
  593. * <---------> less than scan distance
  594. * If all of the blocks at the end of the log have cycle number
  595. * last_half_cycle, then we check the blocks at the start of
  596. * the log looking for occurrences of last_half_cycle. If we
  597. * find one, then our current estimate for the location of the
  598. * first occurrence of last_half_cycle is wrong and we move
  599. * back to the hole we've found. This case looks like
  600. * x + 1 ... | x | x + 1 | x ...
  601. * ^ binary search stopped here
  602. * Another case we need to handle that only occurs in 256k
  603. * logs is
  604. * x + 1 ... | x ... | x+1 | x ...
  605. * ^ binary search stops here
  606. * In a 256k log, the scan at the end of the log will see the
  607. * x + 1 blocks. We need to skip past those since that is
  608. * certainly not the head of the log. By searching for
  609. * last_half_cycle-1 we accomplish that.
  610. */
  611. start_blk = log_bbnum - num_scan_bblks + head_blk;
  612. ASSERT(head_blk <= INT_MAX &&
  613. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  614. if ((error = xlog_find_verify_cycle(log, start_blk,
  615. num_scan_bblks - (int)head_blk,
  616. (stop_on_cycle - 1), &new_blk)))
  617. goto bp_err;
  618. if (new_blk != -1) {
  619. head_blk = new_blk;
  620. goto bad_blk;
  621. }
  622. /*
  623. * Scan beginning of log now. The last part of the physical
  624. * log is good. This scan needs to verify that it doesn't find
  625. * the last_half_cycle.
  626. */
  627. start_blk = 0;
  628. ASSERT(head_blk <= INT_MAX);
  629. if ((error = xlog_find_verify_cycle(log,
  630. start_blk, (int)head_blk,
  631. stop_on_cycle, &new_blk)))
  632. goto bp_err;
  633. if (new_blk != -1)
  634. head_blk = new_blk;
  635. }
  636. bad_blk:
  637. /*
  638. * Now we need to make sure head_blk is not pointing to a block in
  639. * the middle of a log record.
  640. */
  641. num_scan_bblks = XLOG_REC_SHIFT(log);
  642. if (head_blk >= num_scan_bblks) {
  643. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  644. /* start ptr at last block ptr before head_blk */
  645. if ((error = xlog_find_verify_log_record(log, start_blk,
  646. &head_blk, 0)) == -1) {
  647. error = XFS_ERROR(EIO);
  648. goto bp_err;
  649. } else if (error)
  650. goto bp_err;
  651. } else {
  652. start_blk = 0;
  653. ASSERT(head_blk <= INT_MAX);
  654. if ((error = xlog_find_verify_log_record(log, start_blk,
  655. &head_blk, 0)) == -1) {
  656. /* We hit the beginning of the log during our search */
  657. start_blk = log_bbnum - num_scan_bblks + head_blk;
  658. new_blk = log_bbnum;
  659. ASSERT(start_blk <= INT_MAX &&
  660. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  661. ASSERT(head_blk <= INT_MAX);
  662. if ((error = xlog_find_verify_log_record(log,
  663. start_blk, &new_blk,
  664. (int)head_blk)) == -1) {
  665. error = XFS_ERROR(EIO);
  666. goto bp_err;
  667. } else if (error)
  668. goto bp_err;
  669. if (new_blk != log_bbnum)
  670. head_blk = new_blk;
  671. } else if (error)
  672. goto bp_err;
  673. }
  674. xlog_put_bp(bp);
  675. if (head_blk == log_bbnum)
  676. *return_head_blk = 0;
  677. else
  678. *return_head_blk = head_blk;
  679. /*
  680. * When returning here, we have a good block number. Bad block
  681. * means that during a previous crash, we didn't have a clean break
  682. * from cycle number N to cycle number N-1. In this case, we need
  683. * to find the first block with cycle number N-1.
  684. */
  685. return 0;
  686. bp_err:
  687. xlog_put_bp(bp);
  688. if (error)
  689. xlog_warn("XFS: failed to find log head");
  690. return error;
  691. }
  692. /*
  693. * Find the sync block number or the tail of the log.
  694. *
  695. * This will be the block number of the last record to have its
  696. * associated buffers synced to disk. Every log record header has
  697. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  698. * to get a sync block number. The only concern is to figure out which
  699. * log record header to believe.
  700. *
  701. * The following algorithm uses the log record header with the largest
  702. * lsn. The entire log record does not need to be valid. We only care
  703. * that the header is valid.
  704. *
  705. * We could speed up search by using current head_blk buffer, but it is not
  706. * available.
  707. */
  708. int
  709. xlog_find_tail(
  710. xlog_t *log,
  711. xfs_daddr_t *head_blk,
  712. xfs_daddr_t *tail_blk)
  713. {
  714. xlog_rec_header_t *rhead;
  715. xlog_op_header_t *op_head;
  716. xfs_caddr_t offset = NULL;
  717. xfs_buf_t *bp;
  718. int error, i, found;
  719. xfs_daddr_t umount_data_blk;
  720. xfs_daddr_t after_umount_blk;
  721. xfs_lsn_t tail_lsn;
  722. int hblks;
  723. found = 0;
  724. /*
  725. * Find previous log record
  726. */
  727. if ((error = xlog_find_head(log, head_blk)))
  728. return error;
  729. bp = xlog_get_bp(log, 1);
  730. if (!bp)
  731. return ENOMEM;
  732. if (*head_blk == 0) { /* special case */
  733. if ((error = xlog_bread(log, 0, 1, bp)))
  734. goto bread_err;
  735. offset = xlog_align(log, 0, 1, bp);
  736. if (xlog_get_cycle(offset) == 0) {
  737. *tail_blk = 0;
  738. /* leave all other log inited values alone */
  739. goto exit;
  740. }
  741. }
  742. /*
  743. * Search backwards looking for log record header block
  744. */
  745. ASSERT(*head_blk < INT_MAX);
  746. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  747. if ((error = xlog_bread(log, i, 1, bp)))
  748. goto bread_err;
  749. offset = xlog_align(log, i, 1, bp);
  750. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  751. found = 1;
  752. break;
  753. }
  754. }
  755. /*
  756. * If we haven't found the log record header block, start looking
  757. * again from the end of the physical log. XXXmiken: There should be
  758. * a check here to make sure we didn't search more than N blocks in
  759. * the previous code.
  760. */
  761. if (!found) {
  762. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  763. if ((error = xlog_bread(log, i, 1, bp)))
  764. goto bread_err;
  765. offset = xlog_align(log, i, 1, bp);
  766. if (XLOG_HEADER_MAGIC_NUM ==
  767. be32_to_cpu(*(__be32 *)offset)) {
  768. found = 2;
  769. break;
  770. }
  771. }
  772. }
  773. if (!found) {
  774. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  775. ASSERT(0);
  776. return XFS_ERROR(EIO);
  777. }
  778. /* find blk_no of tail of log */
  779. rhead = (xlog_rec_header_t *)offset;
  780. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  781. /*
  782. * Reset log values according to the state of the log when we
  783. * crashed. In the case where head_blk == 0, we bump curr_cycle
  784. * one because the next write starts a new cycle rather than
  785. * continuing the cycle of the last good log record. At this
  786. * point we have guaranteed that all partial log records have been
  787. * accounted for. Therefore, we know that the last good log record
  788. * written was complete and ended exactly on the end boundary
  789. * of the physical log.
  790. */
  791. log->l_prev_block = i;
  792. log->l_curr_block = (int)*head_blk;
  793. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  794. if (found == 2)
  795. log->l_curr_cycle++;
  796. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  797. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  798. log->l_grant_reserve_cycle = log->l_curr_cycle;
  799. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  800. log->l_grant_write_cycle = log->l_curr_cycle;
  801. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  802. /*
  803. * Look for unmount record. If we find it, then we know there
  804. * was a clean unmount. Since 'i' could be the last block in
  805. * the physical log, we convert to a log block before comparing
  806. * to the head_blk.
  807. *
  808. * Save the current tail lsn to use to pass to
  809. * xlog_clear_stale_blocks() below. We won't want to clear the
  810. * unmount record if there is one, so we pass the lsn of the
  811. * unmount record rather than the block after it.
  812. */
  813. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  814. int h_size = be32_to_cpu(rhead->h_size);
  815. int h_version = be32_to_cpu(rhead->h_version);
  816. if ((h_version & XLOG_VERSION_2) &&
  817. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  818. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  819. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  820. hblks++;
  821. } else {
  822. hblks = 1;
  823. }
  824. } else {
  825. hblks = 1;
  826. }
  827. after_umount_blk = (i + hblks + (int)
  828. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  829. tail_lsn = log->l_tail_lsn;
  830. if (*head_blk == after_umount_blk &&
  831. be32_to_cpu(rhead->h_num_logops) == 1) {
  832. umount_data_blk = (i + hblks) % log->l_logBBsize;
  833. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  834. goto bread_err;
  835. }
  836. offset = xlog_align(log, umount_data_blk, 1, bp);
  837. op_head = (xlog_op_header_t *)offset;
  838. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  839. /*
  840. * Set tail and last sync so that newly written
  841. * log records will point recovery to after the
  842. * current unmount record.
  843. */
  844. log->l_tail_lsn =
  845. xlog_assign_lsn(log->l_curr_cycle,
  846. after_umount_blk);
  847. log->l_last_sync_lsn =
  848. xlog_assign_lsn(log->l_curr_cycle,
  849. after_umount_blk);
  850. *tail_blk = after_umount_blk;
  851. /*
  852. * Note that the unmount was clean. If the unmount
  853. * was not clean, we need to know this to rebuild the
  854. * superblock counters from the perag headers if we
  855. * have a filesystem using non-persistent counters.
  856. */
  857. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  858. }
  859. }
  860. /*
  861. * Make sure that there are no blocks in front of the head
  862. * with the same cycle number as the head. This can happen
  863. * because we allow multiple outstanding log writes concurrently,
  864. * and the later writes might make it out before earlier ones.
  865. *
  866. * We use the lsn from before modifying it so that we'll never
  867. * overwrite the unmount record after a clean unmount.
  868. *
  869. * Do this only if we are going to recover the filesystem
  870. *
  871. * NOTE: This used to say "if (!readonly)"
  872. * However on Linux, we can & do recover a read-only filesystem.
  873. * We only skip recovery if NORECOVERY is specified on mount,
  874. * in which case we would not be here.
  875. *
  876. * But... if the -device- itself is readonly, just skip this.
  877. * We can't recover this device anyway, so it won't matter.
  878. */
  879. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  880. error = xlog_clear_stale_blocks(log, tail_lsn);
  881. }
  882. bread_err:
  883. exit:
  884. xlog_put_bp(bp);
  885. if (error)
  886. xlog_warn("XFS: failed to locate log tail");
  887. return error;
  888. }
  889. /*
  890. * Is the log zeroed at all?
  891. *
  892. * The last binary search should be changed to perform an X block read
  893. * once X becomes small enough. You can then search linearly through
  894. * the X blocks. This will cut down on the number of reads we need to do.
  895. *
  896. * If the log is partially zeroed, this routine will pass back the blkno
  897. * of the first block with cycle number 0. It won't have a complete LR
  898. * preceding it.
  899. *
  900. * Return:
  901. * 0 => the log is completely written to
  902. * -1 => use *blk_no as the first block of the log
  903. * >0 => error has occurred
  904. */
  905. STATIC int
  906. xlog_find_zeroed(
  907. xlog_t *log,
  908. xfs_daddr_t *blk_no)
  909. {
  910. xfs_buf_t *bp;
  911. xfs_caddr_t offset;
  912. uint first_cycle, last_cycle;
  913. xfs_daddr_t new_blk, last_blk, start_blk;
  914. xfs_daddr_t num_scan_bblks;
  915. int error, log_bbnum = log->l_logBBsize;
  916. *blk_no = 0;
  917. /* check totally zeroed log */
  918. bp = xlog_get_bp(log, 1);
  919. if (!bp)
  920. return ENOMEM;
  921. if ((error = xlog_bread(log, 0, 1, bp)))
  922. goto bp_err;
  923. offset = xlog_align(log, 0, 1, bp);
  924. first_cycle = xlog_get_cycle(offset);
  925. if (first_cycle == 0) { /* completely zeroed log */
  926. *blk_no = 0;
  927. xlog_put_bp(bp);
  928. return -1;
  929. }
  930. /* check partially zeroed log */
  931. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  932. goto bp_err;
  933. offset = xlog_align(log, log_bbnum-1, 1, bp);
  934. last_cycle = xlog_get_cycle(offset);
  935. if (last_cycle != 0) { /* log completely written to */
  936. xlog_put_bp(bp);
  937. return 0;
  938. } else if (first_cycle != 1) {
  939. /*
  940. * If the cycle of the last block is zero, the cycle of
  941. * the first block must be 1. If it's not, maybe we're
  942. * not looking at a log... Bail out.
  943. */
  944. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  945. return XFS_ERROR(EINVAL);
  946. }
  947. /* we have a partially zeroed log */
  948. last_blk = log_bbnum-1;
  949. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  950. goto bp_err;
  951. /*
  952. * Validate the answer. Because there is no way to guarantee that
  953. * the entire log is made up of log records which are the same size,
  954. * we scan over the defined maximum blocks. At this point, the maximum
  955. * is not chosen to mean anything special. XXXmiken
  956. */
  957. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  958. ASSERT(num_scan_bblks <= INT_MAX);
  959. if (last_blk < num_scan_bblks)
  960. num_scan_bblks = last_blk;
  961. start_blk = last_blk - num_scan_bblks;
  962. /*
  963. * We search for any instances of cycle number 0 that occur before
  964. * our current estimate of the head. What we're trying to detect is
  965. * 1 ... | 0 | 1 | 0...
  966. * ^ binary search ends here
  967. */
  968. if ((error = xlog_find_verify_cycle(log, start_blk,
  969. (int)num_scan_bblks, 0, &new_blk)))
  970. goto bp_err;
  971. if (new_blk != -1)
  972. last_blk = new_blk;
  973. /*
  974. * Potentially backup over partial log record write. We don't need
  975. * to search the end of the log because we know it is zero.
  976. */
  977. if ((error = xlog_find_verify_log_record(log, start_blk,
  978. &last_blk, 0)) == -1) {
  979. error = XFS_ERROR(EIO);
  980. goto bp_err;
  981. } else if (error)
  982. goto bp_err;
  983. *blk_no = last_blk;
  984. bp_err:
  985. xlog_put_bp(bp);
  986. if (error)
  987. return error;
  988. return -1;
  989. }
  990. /*
  991. * These are simple subroutines used by xlog_clear_stale_blocks() below
  992. * to initialize a buffer full of empty log record headers and write
  993. * them into the log.
  994. */
  995. STATIC void
  996. xlog_add_record(
  997. xlog_t *log,
  998. xfs_caddr_t buf,
  999. int cycle,
  1000. int block,
  1001. int tail_cycle,
  1002. int tail_block)
  1003. {
  1004. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1005. memset(buf, 0, BBSIZE);
  1006. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1007. recp->h_cycle = cpu_to_be32(cycle);
  1008. recp->h_version = cpu_to_be32(
  1009. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1010. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1011. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1012. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1013. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1014. }
  1015. STATIC int
  1016. xlog_write_log_records(
  1017. xlog_t *log,
  1018. int cycle,
  1019. int start_block,
  1020. int blocks,
  1021. int tail_cycle,
  1022. int tail_block)
  1023. {
  1024. xfs_caddr_t offset;
  1025. xfs_buf_t *bp;
  1026. int balign, ealign;
  1027. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1028. int end_block = start_block + blocks;
  1029. int bufblks;
  1030. int error = 0;
  1031. int i, j = 0;
  1032. bufblks = 1 << ffs(blocks);
  1033. while (!(bp = xlog_get_bp(log, bufblks))) {
  1034. bufblks >>= 1;
  1035. if (bufblks <= log->l_sectbb_log)
  1036. return ENOMEM;
  1037. }
  1038. /* We may need to do a read at the start to fill in part of
  1039. * the buffer in the starting sector not covered by the first
  1040. * write below.
  1041. */
  1042. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1043. if (balign != start_block) {
  1044. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1045. xlog_put_bp(bp);
  1046. return error;
  1047. }
  1048. j = start_block - balign;
  1049. }
  1050. for (i = start_block; i < end_block; i += bufblks) {
  1051. int bcount, endcount;
  1052. bcount = min(bufblks, end_block - start_block);
  1053. endcount = bcount - j;
  1054. /* We may need to do a read at the end to fill in part of
  1055. * the buffer in the final sector not covered by the write.
  1056. * If this is the same sector as the above read, skip it.
  1057. */
  1058. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1059. if (j == 0 && (start_block + endcount > ealign)) {
  1060. offset = XFS_BUF_PTR(bp);
  1061. balign = BBTOB(ealign - start_block);
  1062. XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
  1063. if ((error = xlog_bread(log, ealign, sectbb, bp)))
  1064. break;
  1065. XFS_BUF_SET_PTR(bp, offset, bufblks);
  1066. }
  1067. offset = xlog_align(log, start_block, endcount, bp);
  1068. for (; j < endcount; j++) {
  1069. xlog_add_record(log, offset, cycle, i+j,
  1070. tail_cycle, tail_block);
  1071. offset += BBSIZE;
  1072. }
  1073. error = xlog_bwrite(log, start_block, endcount, bp);
  1074. if (error)
  1075. break;
  1076. start_block += endcount;
  1077. j = 0;
  1078. }
  1079. xlog_put_bp(bp);
  1080. return error;
  1081. }
  1082. /*
  1083. * This routine is called to blow away any incomplete log writes out
  1084. * in front of the log head. We do this so that we won't become confused
  1085. * if we come up, write only a little bit more, and then crash again.
  1086. * If we leave the partial log records out there, this situation could
  1087. * cause us to think those partial writes are valid blocks since they
  1088. * have the current cycle number. We get rid of them by overwriting them
  1089. * with empty log records with the old cycle number rather than the
  1090. * current one.
  1091. *
  1092. * The tail lsn is passed in rather than taken from
  1093. * the log so that we will not write over the unmount record after a
  1094. * clean unmount in a 512 block log. Doing so would leave the log without
  1095. * any valid log records in it until a new one was written. If we crashed
  1096. * during that time we would not be able to recover.
  1097. */
  1098. STATIC int
  1099. xlog_clear_stale_blocks(
  1100. xlog_t *log,
  1101. xfs_lsn_t tail_lsn)
  1102. {
  1103. int tail_cycle, head_cycle;
  1104. int tail_block, head_block;
  1105. int tail_distance, max_distance;
  1106. int distance;
  1107. int error;
  1108. tail_cycle = CYCLE_LSN(tail_lsn);
  1109. tail_block = BLOCK_LSN(tail_lsn);
  1110. head_cycle = log->l_curr_cycle;
  1111. head_block = log->l_curr_block;
  1112. /*
  1113. * Figure out the distance between the new head of the log
  1114. * and the tail. We want to write over any blocks beyond the
  1115. * head that we may have written just before the crash, but
  1116. * we don't want to overwrite the tail of the log.
  1117. */
  1118. if (head_cycle == tail_cycle) {
  1119. /*
  1120. * The tail is behind the head in the physical log,
  1121. * so the distance from the head to the tail is the
  1122. * distance from the head to the end of the log plus
  1123. * the distance from the beginning of the log to the
  1124. * tail.
  1125. */
  1126. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1127. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1128. XFS_ERRLEVEL_LOW, log->l_mp);
  1129. return XFS_ERROR(EFSCORRUPTED);
  1130. }
  1131. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1132. } else {
  1133. /*
  1134. * The head is behind the tail in the physical log,
  1135. * so the distance from the head to the tail is just
  1136. * the tail block minus the head block.
  1137. */
  1138. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1139. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1140. XFS_ERRLEVEL_LOW, log->l_mp);
  1141. return XFS_ERROR(EFSCORRUPTED);
  1142. }
  1143. tail_distance = tail_block - head_block;
  1144. }
  1145. /*
  1146. * If the head is right up against the tail, we can't clear
  1147. * anything.
  1148. */
  1149. if (tail_distance <= 0) {
  1150. ASSERT(tail_distance == 0);
  1151. return 0;
  1152. }
  1153. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1154. /*
  1155. * Take the smaller of the maximum amount of outstanding I/O
  1156. * we could have and the distance to the tail to clear out.
  1157. * We take the smaller so that we don't overwrite the tail and
  1158. * we don't waste all day writing from the head to the tail
  1159. * for no reason.
  1160. */
  1161. max_distance = MIN(max_distance, tail_distance);
  1162. if ((head_block + max_distance) <= log->l_logBBsize) {
  1163. /*
  1164. * We can stomp all the blocks we need to without
  1165. * wrapping around the end of the log. Just do it
  1166. * in a single write. Use the cycle number of the
  1167. * current cycle minus one so that the log will look like:
  1168. * n ... | n - 1 ...
  1169. */
  1170. error = xlog_write_log_records(log, (head_cycle - 1),
  1171. head_block, max_distance, tail_cycle,
  1172. tail_block);
  1173. if (error)
  1174. return error;
  1175. } else {
  1176. /*
  1177. * We need to wrap around the end of the physical log in
  1178. * order to clear all the blocks. Do it in two separate
  1179. * I/Os. The first write should be from the head to the
  1180. * end of the physical log, and it should use the current
  1181. * cycle number minus one just like above.
  1182. */
  1183. distance = log->l_logBBsize - head_block;
  1184. error = xlog_write_log_records(log, (head_cycle - 1),
  1185. head_block, distance, tail_cycle,
  1186. tail_block);
  1187. if (error)
  1188. return error;
  1189. /*
  1190. * Now write the blocks at the start of the physical log.
  1191. * This writes the remainder of the blocks we want to clear.
  1192. * It uses the current cycle number since we're now on the
  1193. * same cycle as the head so that we get:
  1194. * n ... n ... | n - 1 ...
  1195. * ^^^^^ blocks we're writing
  1196. */
  1197. distance = max_distance - (log->l_logBBsize - head_block);
  1198. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1199. tail_cycle, tail_block);
  1200. if (error)
  1201. return error;
  1202. }
  1203. return 0;
  1204. }
  1205. /******************************************************************************
  1206. *
  1207. * Log recover routines
  1208. *
  1209. ******************************************************************************
  1210. */
  1211. STATIC xlog_recover_t *
  1212. xlog_recover_find_tid(
  1213. xlog_recover_t *q,
  1214. xlog_tid_t tid)
  1215. {
  1216. xlog_recover_t *p = q;
  1217. while (p != NULL) {
  1218. if (p->r_log_tid == tid)
  1219. break;
  1220. p = p->r_next;
  1221. }
  1222. return p;
  1223. }
  1224. STATIC void
  1225. xlog_recover_put_hashq(
  1226. xlog_recover_t **q,
  1227. xlog_recover_t *trans)
  1228. {
  1229. trans->r_next = *q;
  1230. *q = trans;
  1231. }
  1232. STATIC void
  1233. xlog_recover_add_item(
  1234. xlog_recover_item_t **itemq)
  1235. {
  1236. xlog_recover_item_t *item;
  1237. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1238. xlog_recover_insert_item_backq(itemq, item);
  1239. }
  1240. STATIC int
  1241. xlog_recover_add_to_cont_trans(
  1242. xlog_recover_t *trans,
  1243. xfs_caddr_t dp,
  1244. int len)
  1245. {
  1246. xlog_recover_item_t *item;
  1247. xfs_caddr_t ptr, old_ptr;
  1248. int old_len;
  1249. item = trans->r_itemq;
  1250. if (item == NULL) {
  1251. /* finish copying rest of trans header */
  1252. xlog_recover_add_item(&trans->r_itemq);
  1253. ptr = (xfs_caddr_t) &trans->r_theader +
  1254. sizeof(xfs_trans_header_t) - len;
  1255. memcpy(ptr, dp, len); /* d, s, l */
  1256. return 0;
  1257. }
  1258. item = item->ri_prev;
  1259. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1260. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1261. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1262. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1263. item->ri_buf[item->ri_cnt-1].i_len += len;
  1264. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1265. return 0;
  1266. }
  1267. /*
  1268. * The next region to add is the start of a new region. It could be
  1269. * a whole region or it could be the first part of a new region. Because
  1270. * of this, the assumption here is that the type and size fields of all
  1271. * format structures fit into the first 32 bits of the structure.
  1272. *
  1273. * This works because all regions must be 32 bit aligned. Therefore, we
  1274. * either have both fields or we have neither field. In the case we have
  1275. * neither field, the data part of the region is zero length. We only have
  1276. * a log_op_header and can throw away the header since a new one will appear
  1277. * later. If we have at least 4 bytes, then we can determine how many regions
  1278. * will appear in the current log item.
  1279. */
  1280. STATIC int
  1281. xlog_recover_add_to_trans(
  1282. xlog_recover_t *trans,
  1283. xfs_caddr_t dp,
  1284. int len)
  1285. {
  1286. xfs_inode_log_format_t *in_f; /* any will do */
  1287. xlog_recover_item_t *item;
  1288. xfs_caddr_t ptr;
  1289. if (!len)
  1290. return 0;
  1291. item = trans->r_itemq;
  1292. if (item == NULL) {
  1293. ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
  1294. if (len == sizeof(xfs_trans_header_t))
  1295. xlog_recover_add_item(&trans->r_itemq);
  1296. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1297. return 0;
  1298. }
  1299. ptr = kmem_alloc(len, KM_SLEEP);
  1300. memcpy(ptr, dp, len);
  1301. in_f = (xfs_inode_log_format_t *)ptr;
  1302. if (item->ri_prev->ri_total != 0 &&
  1303. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1304. xlog_recover_add_item(&trans->r_itemq);
  1305. }
  1306. item = trans->r_itemq;
  1307. item = item->ri_prev;
  1308. if (item->ri_total == 0) { /* first region to be added */
  1309. item->ri_total = in_f->ilf_size;
  1310. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1311. item->ri_buf = kmem_zalloc((item->ri_total *
  1312. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1313. }
  1314. ASSERT(item->ri_total > item->ri_cnt);
  1315. /* Description region is ri_buf[0] */
  1316. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1317. item->ri_buf[item->ri_cnt].i_len = len;
  1318. item->ri_cnt++;
  1319. return 0;
  1320. }
  1321. STATIC void
  1322. xlog_recover_new_tid(
  1323. xlog_recover_t **q,
  1324. xlog_tid_t tid,
  1325. xfs_lsn_t lsn)
  1326. {
  1327. xlog_recover_t *trans;
  1328. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1329. trans->r_log_tid = tid;
  1330. trans->r_lsn = lsn;
  1331. xlog_recover_put_hashq(q, trans);
  1332. }
  1333. STATIC int
  1334. xlog_recover_unlink_tid(
  1335. xlog_recover_t **q,
  1336. xlog_recover_t *trans)
  1337. {
  1338. xlog_recover_t *tp;
  1339. int found = 0;
  1340. ASSERT(trans != NULL);
  1341. if (trans == *q) {
  1342. *q = (*q)->r_next;
  1343. } else {
  1344. tp = *q;
  1345. while (tp) {
  1346. if (tp->r_next == trans) {
  1347. found = 1;
  1348. break;
  1349. }
  1350. tp = tp->r_next;
  1351. }
  1352. if (!found) {
  1353. xlog_warn(
  1354. "XFS: xlog_recover_unlink_tid: trans not found");
  1355. ASSERT(0);
  1356. return XFS_ERROR(EIO);
  1357. }
  1358. tp->r_next = tp->r_next->r_next;
  1359. }
  1360. return 0;
  1361. }
  1362. STATIC void
  1363. xlog_recover_insert_item_backq(
  1364. xlog_recover_item_t **q,
  1365. xlog_recover_item_t *item)
  1366. {
  1367. if (*q == NULL) {
  1368. item->ri_prev = item->ri_next = item;
  1369. *q = item;
  1370. } else {
  1371. item->ri_next = *q;
  1372. item->ri_prev = (*q)->ri_prev;
  1373. (*q)->ri_prev = item;
  1374. item->ri_prev->ri_next = item;
  1375. }
  1376. }
  1377. STATIC void
  1378. xlog_recover_insert_item_frontq(
  1379. xlog_recover_item_t **q,
  1380. xlog_recover_item_t *item)
  1381. {
  1382. xlog_recover_insert_item_backq(q, item);
  1383. *q = item;
  1384. }
  1385. STATIC int
  1386. xlog_recover_reorder_trans(
  1387. xlog_recover_t *trans)
  1388. {
  1389. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1390. xfs_buf_log_format_t *buf_f;
  1391. ushort flags = 0;
  1392. first_item = itemq = trans->r_itemq;
  1393. trans->r_itemq = NULL;
  1394. do {
  1395. itemq_next = itemq->ri_next;
  1396. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1397. switch (ITEM_TYPE(itemq)) {
  1398. case XFS_LI_BUF:
  1399. flags = buf_f->blf_flags;
  1400. if (!(flags & XFS_BLI_CANCEL)) {
  1401. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1402. itemq);
  1403. break;
  1404. }
  1405. case XFS_LI_INODE:
  1406. case XFS_LI_DQUOT:
  1407. case XFS_LI_QUOTAOFF:
  1408. case XFS_LI_EFD:
  1409. case XFS_LI_EFI:
  1410. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1411. break;
  1412. default:
  1413. xlog_warn(
  1414. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1415. ASSERT(0);
  1416. return XFS_ERROR(EIO);
  1417. }
  1418. itemq = itemq_next;
  1419. } while (first_item != itemq);
  1420. return 0;
  1421. }
  1422. /*
  1423. * Build up the table of buf cancel records so that we don't replay
  1424. * cancelled data in the second pass. For buffer records that are
  1425. * not cancel records, there is nothing to do here so we just return.
  1426. *
  1427. * If we get a cancel record which is already in the table, this indicates
  1428. * that the buffer was cancelled multiple times. In order to ensure
  1429. * that during pass 2 we keep the record in the table until we reach its
  1430. * last occurrence in the log, we keep a reference count in the cancel
  1431. * record in the table to tell us how many times we expect to see this
  1432. * record during the second pass.
  1433. */
  1434. STATIC void
  1435. xlog_recover_do_buffer_pass1(
  1436. xlog_t *log,
  1437. xfs_buf_log_format_t *buf_f)
  1438. {
  1439. xfs_buf_cancel_t *bcp;
  1440. xfs_buf_cancel_t *nextp;
  1441. xfs_buf_cancel_t *prevp;
  1442. xfs_buf_cancel_t **bucket;
  1443. xfs_daddr_t blkno = 0;
  1444. uint len = 0;
  1445. ushort flags = 0;
  1446. switch (buf_f->blf_type) {
  1447. case XFS_LI_BUF:
  1448. blkno = buf_f->blf_blkno;
  1449. len = buf_f->blf_len;
  1450. flags = buf_f->blf_flags;
  1451. break;
  1452. }
  1453. /*
  1454. * If this isn't a cancel buffer item, then just return.
  1455. */
  1456. if (!(flags & XFS_BLI_CANCEL))
  1457. return;
  1458. /*
  1459. * Insert an xfs_buf_cancel record into the hash table of
  1460. * them. If there is already an identical record, bump
  1461. * its reference count.
  1462. */
  1463. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1464. XLOG_BC_TABLE_SIZE];
  1465. /*
  1466. * If the hash bucket is empty then just insert a new record into
  1467. * the bucket.
  1468. */
  1469. if (*bucket == NULL) {
  1470. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1471. KM_SLEEP);
  1472. bcp->bc_blkno = blkno;
  1473. bcp->bc_len = len;
  1474. bcp->bc_refcount = 1;
  1475. bcp->bc_next = NULL;
  1476. *bucket = bcp;
  1477. return;
  1478. }
  1479. /*
  1480. * The hash bucket is not empty, so search for duplicates of our
  1481. * record. If we find one them just bump its refcount. If not
  1482. * then add us at the end of the list.
  1483. */
  1484. prevp = NULL;
  1485. nextp = *bucket;
  1486. while (nextp != NULL) {
  1487. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1488. nextp->bc_refcount++;
  1489. return;
  1490. }
  1491. prevp = nextp;
  1492. nextp = nextp->bc_next;
  1493. }
  1494. ASSERT(prevp != NULL);
  1495. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1496. KM_SLEEP);
  1497. bcp->bc_blkno = blkno;
  1498. bcp->bc_len = len;
  1499. bcp->bc_refcount = 1;
  1500. bcp->bc_next = NULL;
  1501. prevp->bc_next = bcp;
  1502. }
  1503. /*
  1504. * Check to see whether the buffer being recovered has a corresponding
  1505. * entry in the buffer cancel record table. If it does then return 1
  1506. * so that it will be cancelled, otherwise return 0. If the buffer is
  1507. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1508. * the refcount on the entry in the table and remove it from the table
  1509. * if this is the last reference.
  1510. *
  1511. * We remove the cancel record from the table when we encounter its
  1512. * last occurrence in the log so that if the same buffer is re-used
  1513. * again after its last cancellation we actually replay the changes
  1514. * made at that point.
  1515. */
  1516. STATIC int
  1517. xlog_check_buffer_cancelled(
  1518. xlog_t *log,
  1519. xfs_daddr_t blkno,
  1520. uint len,
  1521. ushort flags)
  1522. {
  1523. xfs_buf_cancel_t *bcp;
  1524. xfs_buf_cancel_t *prevp;
  1525. xfs_buf_cancel_t **bucket;
  1526. if (log->l_buf_cancel_table == NULL) {
  1527. /*
  1528. * There is nothing in the table built in pass one,
  1529. * so this buffer must not be cancelled.
  1530. */
  1531. ASSERT(!(flags & XFS_BLI_CANCEL));
  1532. return 0;
  1533. }
  1534. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1535. XLOG_BC_TABLE_SIZE];
  1536. bcp = *bucket;
  1537. if (bcp == NULL) {
  1538. /*
  1539. * There is no corresponding entry in the table built
  1540. * in pass one, so this buffer has not been cancelled.
  1541. */
  1542. ASSERT(!(flags & XFS_BLI_CANCEL));
  1543. return 0;
  1544. }
  1545. /*
  1546. * Search for an entry in the buffer cancel table that
  1547. * matches our buffer.
  1548. */
  1549. prevp = NULL;
  1550. while (bcp != NULL) {
  1551. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1552. /*
  1553. * We've go a match, so return 1 so that the
  1554. * recovery of this buffer is cancelled.
  1555. * If this buffer is actually a buffer cancel
  1556. * log item, then decrement the refcount on the
  1557. * one in the table and remove it if this is the
  1558. * last reference.
  1559. */
  1560. if (flags & XFS_BLI_CANCEL) {
  1561. bcp->bc_refcount--;
  1562. if (bcp->bc_refcount == 0) {
  1563. if (prevp == NULL) {
  1564. *bucket = bcp->bc_next;
  1565. } else {
  1566. prevp->bc_next = bcp->bc_next;
  1567. }
  1568. kmem_free(bcp,
  1569. sizeof(xfs_buf_cancel_t));
  1570. }
  1571. }
  1572. return 1;
  1573. }
  1574. prevp = bcp;
  1575. bcp = bcp->bc_next;
  1576. }
  1577. /*
  1578. * We didn't find a corresponding entry in the table, so
  1579. * return 0 so that the buffer is NOT cancelled.
  1580. */
  1581. ASSERT(!(flags & XFS_BLI_CANCEL));
  1582. return 0;
  1583. }
  1584. STATIC int
  1585. xlog_recover_do_buffer_pass2(
  1586. xlog_t *log,
  1587. xfs_buf_log_format_t *buf_f)
  1588. {
  1589. xfs_daddr_t blkno = 0;
  1590. ushort flags = 0;
  1591. uint len = 0;
  1592. switch (buf_f->blf_type) {
  1593. case XFS_LI_BUF:
  1594. blkno = buf_f->blf_blkno;
  1595. flags = buf_f->blf_flags;
  1596. len = buf_f->blf_len;
  1597. break;
  1598. }
  1599. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1600. }
  1601. /*
  1602. * Perform recovery for a buffer full of inodes. In these buffers,
  1603. * the only data which should be recovered is that which corresponds
  1604. * to the di_next_unlinked pointers in the on disk inode structures.
  1605. * The rest of the data for the inodes is always logged through the
  1606. * inodes themselves rather than the inode buffer and is recovered
  1607. * in xlog_recover_do_inode_trans().
  1608. *
  1609. * The only time when buffers full of inodes are fully recovered is
  1610. * when the buffer is full of newly allocated inodes. In this case
  1611. * the buffer will not be marked as an inode buffer and so will be
  1612. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1613. */
  1614. STATIC int
  1615. xlog_recover_do_inode_buffer(
  1616. xfs_mount_t *mp,
  1617. xlog_recover_item_t *item,
  1618. xfs_buf_t *bp,
  1619. xfs_buf_log_format_t *buf_f)
  1620. {
  1621. int i;
  1622. int item_index;
  1623. int bit;
  1624. int nbits;
  1625. int reg_buf_offset;
  1626. int reg_buf_bytes;
  1627. int next_unlinked_offset;
  1628. int inodes_per_buf;
  1629. xfs_agino_t *logged_nextp;
  1630. xfs_agino_t *buffer_nextp;
  1631. unsigned int *data_map = NULL;
  1632. unsigned int map_size = 0;
  1633. switch (buf_f->blf_type) {
  1634. case XFS_LI_BUF:
  1635. data_map = buf_f->blf_data_map;
  1636. map_size = buf_f->blf_map_size;
  1637. break;
  1638. }
  1639. /*
  1640. * Set the variables corresponding to the current region to
  1641. * 0 so that we'll initialize them on the first pass through
  1642. * the loop.
  1643. */
  1644. reg_buf_offset = 0;
  1645. reg_buf_bytes = 0;
  1646. bit = 0;
  1647. nbits = 0;
  1648. item_index = 0;
  1649. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1650. for (i = 0; i < inodes_per_buf; i++) {
  1651. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1652. offsetof(xfs_dinode_t, di_next_unlinked);
  1653. while (next_unlinked_offset >=
  1654. (reg_buf_offset + reg_buf_bytes)) {
  1655. /*
  1656. * The next di_next_unlinked field is beyond
  1657. * the current logged region. Find the next
  1658. * logged region that contains or is beyond
  1659. * the current di_next_unlinked field.
  1660. */
  1661. bit += nbits;
  1662. bit = xfs_next_bit(data_map, map_size, bit);
  1663. /*
  1664. * If there are no more logged regions in the
  1665. * buffer, then we're done.
  1666. */
  1667. if (bit == -1) {
  1668. return 0;
  1669. }
  1670. nbits = xfs_contig_bits(data_map, map_size,
  1671. bit);
  1672. ASSERT(nbits > 0);
  1673. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1674. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1675. item_index++;
  1676. }
  1677. /*
  1678. * If the current logged region starts after the current
  1679. * di_next_unlinked field, then move on to the next
  1680. * di_next_unlinked field.
  1681. */
  1682. if (next_unlinked_offset < reg_buf_offset) {
  1683. continue;
  1684. }
  1685. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1686. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1687. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1688. /*
  1689. * The current logged region contains a copy of the
  1690. * current di_next_unlinked field. Extract its value
  1691. * and copy it to the buffer copy.
  1692. */
  1693. logged_nextp = (xfs_agino_t *)
  1694. ((char *)(item->ri_buf[item_index].i_addr) +
  1695. (next_unlinked_offset - reg_buf_offset));
  1696. if (unlikely(*logged_nextp == 0)) {
  1697. xfs_fs_cmn_err(CE_ALERT, mp,
  1698. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1699. item, bp);
  1700. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1701. XFS_ERRLEVEL_LOW, mp);
  1702. return XFS_ERROR(EFSCORRUPTED);
  1703. }
  1704. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1705. next_unlinked_offset);
  1706. *buffer_nextp = *logged_nextp;
  1707. }
  1708. return 0;
  1709. }
  1710. /*
  1711. * Perform a 'normal' buffer recovery. Each logged region of the
  1712. * buffer should be copied over the corresponding region in the
  1713. * given buffer. The bitmap in the buf log format structure indicates
  1714. * where to place the logged data.
  1715. */
  1716. /*ARGSUSED*/
  1717. STATIC void
  1718. xlog_recover_do_reg_buffer(
  1719. xlog_recover_item_t *item,
  1720. xfs_buf_t *bp,
  1721. xfs_buf_log_format_t *buf_f)
  1722. {
  1723. int i;
  1724. int bit;
  1725. int nbits;
  1726. unsigned int *data_map = NULL;
  1727. unsigned int map_size = 0;
  1728. int error;
  1729. switch (buf_f->blf_type) {
  1730. case XFS_LI_BUF:
  1731. data_map = buf_f->blf_data_map;
  1732. map_size = buf_f->blf_map_size;
  1733. break;
  1734. }
  1735. bit = 0;
  1736. i = 1; /* 0 is the buf format structure */
  1737. while (1) {
  1738. bit = xfs_next_bit(data_map, map_size, bit);
  1739. if (bit == -1)
  1740. break;
  1741. nbits = xfs_contig_bits(data_map, map_size, bit);
  1742. ASSERT(nbits > 0);
  1743. ASSERT(item->ri_buf[i].i_addr != NULL);
  1744. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1745. ASSERT(XFS_BUF_COUNT(bp) >=
  1746. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1747. /*
  1748. * Do a sanity check if this is a dquot buffer. Just checking
  1749. * the first dquot in the buffer should do. XXXThis is
  1750. * probably a good thing to do for other buf types also.
  1751. */
  1752. error = 0;
  1753. if (buf_f->blf_flags &
  1754. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1755. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1756. item->ri_buf[i].i_addr,
  1757. -1, 0, XFS_QMOPT_DOWARN,
  1758. "dquot_buf_recover");
  1759. }
  1760. if (!error)
  1761. memcpy(xfs_buf_offset(bp,
  1762. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1763. item->ri_buf[i].i_addr, /* source */
  1764. nbits<<XFS_BLI_SHIFT); /* length */
  1765. i++;
  1766. bit += nbits;
  1767. }
  1768. /* Shouldn't be any more regions */
  1769. ASSERT(i == item->ri_total);
  1770. }
  1771. /*
  1772. * Do some primitive error checking on ondisk dquot data structures.
  1773. */
  1774. int
  1775. xfs_qm_dqcheck(
  1776. xfs_disk_dquot_t *ddq,
  1777. xfs_dqid_t id,
  1778. uint type, /* used only when IO_dorepair is true */
  1779. uint flags,
  1780. char *str)
  1781. {
  1782. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1783. int errs = 0;
  1784. /*
  1785. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1786. * 1. If we crash while deleting the quotainode(s), and those blks got
  1787. * used for user data. This is because we take the path of regular
  1788. * file deletion; however, the size field of quotainodes is never
  1789. * updated, so all the tricks that we play in itruncate_finish
  1790. * don't quite matter.
  1791. *
  1792. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1793. * But the allocation will be replayed so we'll end up with an
  1794. * uninitialized quota block.
  1795. *
  1796. * This is all fine; things are still consistent, and we haven't lost
  1797. * any quota information. Just don't complain about bad dquot blks.
  1798. */
  1799. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1800. if (flags & XFS_QMOPT_DOWARN)
  1801. cmn_err(CE_ALERT,
  1802. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1803. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1804. errs++;
  1805. }
  1806. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1807. if (flags & XFS_QMOPT_DOWARN)
  1808. cmn_err(CE_ALERT,
  1809. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1810. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1811. errs++;
  1812. }
  1813. if (ddq->d_flags != XFS_DQ_USER &&
  1814. ddq->d_flags != XFS_DQ_PROJ &&
  1815. ddq->d_flags != XFS_DQ_GROUP) {
  1816. if (flags & XFS_QMOPT_DOWARN)
  1817. cmn_err(CE_ALERT,
  1818. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1819. str, id, ddq->d_flags);
  1820. errs++;
  1821. }
  1822. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1823. if (flags & XFS_QMOPT_DOWARN)
  1824. cmn_err(CE_ALERT,
  1825. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1826. "0x%x expected, found id 0x%x",
  1827. str, ddq, id, be32_to_cpu(ddq->d_id));
  1828. errs++;
  1829. }
  1830. if (!errs && ddq->d_id) {
  1831. if (ddq->d_blk_softlimit &&
  1832. be64_to_cpu(ddq->d_bcount) >=
  1833. be64_to_cpu(ddq->d_blk_softlimit)) {
  1834. if (!ddq->d_btimer) {
  1835. if (flags & XFS_QMOPT_DOWARN)
  1836. cmn_err(CE_ALERT,
  1837. "%s : Dquot ID 0x%x (0x%p) "
  1838. "BLK TIMER NOT STARTED",
  1839. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1840. errs++;
  1841. }
  1842. }
  1843. if (ddq->d_ino_softlimit &&
  1844. be64_to_cpu(ddq->d_icount) >=
  1845. be64_to_cpu(ddq->d_ino_softlimit)) {
  1846. if (!ddq->d_itimer) {
  1847. if (flags & XFS_QMOPT_DOWARN)
  1848. cmn_err(CE_ALERT,
  1849. "%s : Dquot ID 0x%x (0x%p) "
  1850. "INODE TIMER NOT STARTED",
  1851. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1852. errs++;
  1853. }
  1854. }
  1855. if (ddq->d_rtb_softlimit &&
  1856. be64_to_cpu(ddq->d_rtbcount) >=
  1857. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1858. if (!ddq->d_rtbtimer) {
  1859. if (flags & XFS_QMOPT_DOWARN)
  1860. cmn_err(CE_ALERT,
  1861. "%s : Dquot ID 0x%x (0x%p) "
  1862. "RTBLK TIMER NOT STARTED",
  1863. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1864. errs++;
  1865. }
  1866. }
  1867. }
  1868. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1869. return errs;
  1870. if (flags & XFS_QMOPT_DOWARN)
  1871. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1872. /*
  1873. * Typically, a repair is only requested by quotacheck.
  1874. */
  1875. ASSERT(id != -1);
  1876. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1877. memset(d, 0, sizeof(xfs_dqblk_t));
  1878. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1879. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1880. d->dd_diskdq.d_flags = type;
  1881. d->dd_diskdq.d_id = cpu_to_be32(id);
  1882. return errs;
  1883. }
  1884. /*
  1885. * Perform a dquot buffer recovery.
  1886. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1887. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1888. * Else, treat it as a regular buffer and do recovery.
  1889. */
  1890. STATIC void
  1891. xlog_recover_do_dquot_buffer(
  1892. xfs_mount_t *mp,
  1893. xlog_t *log,
  1894. xlog_recover_item_t *item,
  1895. xfs_buf_t *bp,
  1896. xfs_buf_log_format_t *buf_f)
  1897. {
  1898. uint type;
  1899. /*
  1900. * Filesystems are required to send in quota flags at mount time.
  1901. */
  1902. if (mp->m_qflags == 0) {
  1903. return;
  1904. }
  1905. type = 0;
  1906. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1907. type |= XFS_DQ_USER;
  1908. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1909. type |= XFS_DQ_PROJ;
  1910. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1911. type |= XFS_DQ_GROUP;
  1912. /*
  1913. * This type of quotas was turned off, so ignore this buffer
  1914. */
  1915. if (log->l_quotaoffs_flag & type)
  1916. return;
  1917. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1918. }
  1919. /*
  1920. * This routine replays a modification made to a buffer at runtime.
  1921. * There are actually two types of buffer, regular and inode, which
  1922. * are handled differently. Inode buffers are handled differently
  1923. * in that we only recover a specific set of data from them, namely
  1924. * the inode di_next_unlinked fields. This is because all other inode
  1925. * data is actually logged via inode records and any data we replay
  1926. * here which overlaps that may be stale.
  1927. *
  1928. * When meta-data buffers are freed at run time we log a buffer item
  1929. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1930. * of the buffer in the log should not be replayed at recovery time.
  1931. * This is so that if the blocks covered by the buffer are reused for
  1932. * file data before we crash we don't end up replaying old, freed
  1933. * meta-data into a user's file.
  1934. *
  1935. * To handle the cancellation of buffer log items, we make two passes
  1936. * over the log during recovery. During the first we build a table of
  1937. * those buffers which have been cancelled, and during the second we
  1938. * only replay those buffers which do not have corresponding cancel
  1939. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1940. * for more details on the implementation of the table of cancel records.
  1941. */
  1942. STATIC int
  1943. xlog_recover_do_buffer_trans(
  1944. xlog_t *log,
  1945. xlog_recover_item_t *item,
  1946. int pass)
  1947. {
  1948. xfs_buf_log_format_t *buf_f;
  1949. xfs_mount_t *mp;
  1950. xfs_buf_t *bp;
  1951. int error;
  1952. int cancel;
  1953. xfs_daddr_t blkno;
  1954. int len;
  1955. ushort flags;
  1956. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1957. if (pass == XLOG_RECOVER_PASS1) {
  1958. /*
  1959. * In this pass we're only looking for buf items
  1960. * with the XFS_BLI_CANCEL bit set.
  1961. */
  1962. xlog_recover_do_buffer_pass1(log, buf_f);
  1963. return 0;
  1964. } else {
  1965. /*
  1966. * In this pass we want to recover all the buffers
  1967. * which have not been cancelled and are not
  1968. * cancellation buffers themselves. The routine
  1969. * we call here will tell us whether or not to
  1970. * continue with the replay of this buffer.
  1971. */
  1972. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1973. if (cancel) {
  1974. return 0;
  1975. }
  1976. }
  1977. switch (buf_f->blf_type) {
  1978. case XFS_LI_BUF:
  1979. blkno = buf_f->blf_blkno;
  1980. len = buf_f->blf_len;
  1981. flags = buf_f->blf_flags;
  1982. break;
  1983. default:
  1984. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1985. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1986. buf_f->blf_type, log->l_mp->m_logname ?
  1987. log->l_mp->m_logname : "internal");
  1988. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1989. XFS_ERRLEVEL_LOW, log->l_mp);
  1990. return XFS_ERROR(EFSCORRUPTED);
  1991. }
  1992. mp = log->l_mp;
  1993. if (flags & XFS_BLI_INODE_BUF) {
  1994. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  1995. XFS_BUF_LOCK);
  1996. } else {
  1997. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  1998. }
  1999. if (XFS_BUF_ISERROR(bp)) {
  2000. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2001. bp, blkno);
  2002. error = XFS_BUF_GETERROR(bp);
  2003. xfs_buf_relse(bp);
  2004. return error;
  2005. }
  2006. error = 0;
  2007. if (flags & XFS_BLI_INODE_BUF) {
  2008. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2009. } else if (flags &
  2010. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2011. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2012. } else {
  2013. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2014. }
  2015. if (error)
  2016. return XFS_ERROR(error);
  2017. /*
  2018. * Perform delayed write on the buffer. Asynchronous writes will be
  2019. * slower when taking into account all the buffers to be flushed.
  2020. *
  2021. * Also make sure that only inode buffers with good sizes stay in
  2022. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2023. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2024. * buffers in the log can be a different size if the log was generated
  2025. * by an older kernel using unclustered inode buffers or a newer kernel
  2026. * running with a different inode cluster size. Regardless, if the
  2027. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2028. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2029. * the buffer out of the buffer cache so that the buffer won't
  2030. * overlap with future reads of those inodes.
  2031. */
  2032. if (XFS_DINODE_MAGIC ==
  2033. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2034. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2035. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2036. XFS_BUF_STALE(bp);
  2037. error = xfs_bwrite(mp, bp);
  2038. } else {
  2039. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2040. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2041. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2042. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2043. xfs_bdwrite(mp, bp);
  2044. }
  2045. return (error);
  2046. }
  2047. STATIC int
  2048. xlog_recover_do_inode_trans(
  2049. xlog_t *log,
  2050. xlog_recover_item_t *item,
  2051. int pass)
  2052. {
  2053. xfs_inode_log_format_t *in_f;
  2054. xfs_mount_t *mp;
  2055. xfs_buf_t *bp;
  2056. xfs_imap_t imap;
  2057. xfs_dinode_t *dip;
  2058. xfs_ino_t ino;
  2059. int len;
  2060. xfs_caddr_t src;
  2061. xfs_caddr_t dest;
  2062. int error;
  2063. int attr_index;
  2064. uint fields;
  2065. xfs_icdinode_t *dicp;
  2066. int need_free = 0;
  2067. if (pass == XLOG_RECOVER_PASS1) {
  2068. return 0;
  2069. }
  2070. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2071. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2072. } else {
  2073. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2074. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2075. need_free = 1;
  2076. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2077. if (error)
  2078. goto error;
  2079. }
  2080. ino = in_f->ilf_ino;
  2081. mp = log->l_mp;
  2082. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2083. imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
  2084. imap.im_len = in_f->ilf_len;
  2085. imap.im_boffset = in_f->ilf_boffset;
  2086. } else {
  2087. /*
  2088. * It's an old inode format record. We don't know where
  2089. * its cluster is located on disk, and we can't allow
  2090. * xfs_imap() to figure it out because the inode btrees
  2091. * are not ready to be used. Therefore do not pass the
  2092. * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
  2093. * us only the single block in which the inode lives
  2094. * rather than its cluster, so we must make sure to
  2095. * invalidate the buffer when we write it out below.
  2096. */
  2097. imap.im_blkno = 0;
  2098. xfs_imap(log->l_mp, NULL, ino, &imap, 0);
  2099. }
  2100. /*
  2101. * Inode buffers can be freed, look out for it,
  2102. * and do not replay the inode.
  2103. */
  2104. if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
  2105. error = 0;
  2106. goto error;
  2107. }
  2108. bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
  2109. XFS_BUF_LOCK);
  2110. if (XFS_BUF_ISERROR(bp)) {
  2111. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2112. bp, imap.im_blkno);
  2113. error = XFS_BUF_GETERROR(bp);
  2114. xfs_buf_relse(bp);
  2115. goto error;
  2116. }
  2117. error = 0;
  2118. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2119. dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  2120. /*
  2121. * Make sure the place we're flushing out to really looks
  2122. * like an inode!
  2123. */
  2124. if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
  2125. xfs_buf_relse(bp);
  2126. xfs_fs_cmn_err(CE_ALERT, mp,
  2127. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2128. dip, bp, ino);
  2129. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2130. XFS_ERRLEVEL_LOW, mp);
  2131. error = EFSCORRUPTED;
  2132. goto error;
  2133. }
  2134. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2135. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2136. xfs_buf_relse(bp);
  2137. xfs_fs_cmn_err(CE_ALERT, mp,
  2138. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2139. item, ino);
  2140. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2141. XFS_ERRLEVEL_LOW, mp);
  2142. error = EFSCORRUPTED;
  2143. goto error;
  2144. }
  2145. /* Skip replay when the on disk inode is newer than the log one */
  2146. if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
  2147. /*
  2148. * Deal with the wrap case, DI_MAX_FLUSH is less
  2149. * than smaller numbers
  2150. */
  2151. if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
  2152. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2153. /* do nothing */
  2154. } else {
  2155. xfs_buf_relse(bp);
  2156. error = 0;
  2157. goto error;
  2158. }
  2159. }
  2160. /* Take the opportunity to reset the flush iteration count */
  2161. dicp->di_flushiter = 0;
  2162. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2163. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2164. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2165. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2166. XFS_ERRLEVEL_LOW, mp, dicp);
  2167. xfs_buf_relse(bp);
  2168. xfs_fs_cmn_err(CE_ALERT, mp,
  2169. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2170. item, dip, bp, ino);
  2171. error = EFSCORRUPTED;
  2172. goto error;
  2173. }
  2174. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2175. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2176. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2177. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2178. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2179. XFS_ERRLEVEL_LOW, mp, dicp);
  2180. xfs_buf_relse(bp);
  2181. xfs_fs_cmn_err(CE_ALERT, mp,
  2182. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2183. item, dip, bp, ino);
  2184. error = EFSCORRUPTED;
  2185. goto error;
  2186. }
  2187. }
  2188. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2189. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2190. XFS_ERRLEVEL_LOW, mp, dicp);
  2191. xfs_buf_relse(bp);
  2192. xfs_fs_cmn_err(CE_ALERT, mp,
  2193. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2194. item, dip, bp, ino,
  2195. dicp->di_nextents + dicp->di_anextents,
  2196. dicp->di_nblocks);
  2197. error = EFSCORRUPTED;
  2198. goto error;
  2199. }
  2200. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2201. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2202. XFS_ERRLEVEL_LOW, mp, dicp);
  2203. xfs_buf_relse(bp);
  2204. xfs_fs_cmn_err(CE_ALERT, mp,
  2205. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2206. item, dip, bp, ino, dicp->di_forkoff);
  2207. error = EFSCORRUPTED;
  2208. goto error;
  2209. }
  2210. if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
  2211. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2212. XFS_ERRLEVEL_LOW, mp, dicp);
  2213. xfs_buf_relse(bp);
  2214. xfs_fs_cmn_err(CE_ALERT, mp,
  2215. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2216. item->ri_buf[1].i_len, item);
  2217. error = EFSCORRUPTED;
  2218. goto error;
  2219. }
  2220. /* The core is in in-core format */
  2221. xfs_dinode_to_disk(&dip->di_core,
  2222. (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2223. /* the rest is in on-disk format */
  2224. if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
  2225. memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
  2226. item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
  2227. item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
  2228. }
  2229. fields = in_f->ilf_fields;
  2230. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2231. case XFS_ILOG_DEV:
  2232. dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
  2233. break;
  2234. case XFS_ILOG_UUID:
  2235. dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
  2236. break;
  2237. }
  2238. if (in_f->ilf_size == 2)
  2239. goto write_inode_buffer;
  2240. len = item->ri_buf[2].i_len;
  2241. src = item->ri_buf[2].i_addr;
  2242. ASSERT(in_f->ilf_size <= 4);
  2243. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2244. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2245. (len == in_f->ilf_dsize));
  2246. switch (fields & XFS_ILOG_DFORK) {
  2247. case XFS_ILOG_DDATA:
  2248. case XFS_ILOG_DEXT:
  2249. memcpy(&dip->di_u, src, len);
  2250. break;
  2251. case XFS_ILOG_DBROOT:
  2252. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2253. &(dip->di_u.di_bmbt),
  2254. XFS_DFORK_DSIZE(dip, mp));
  2255. break;
  2256. default:
  2257. /*
  2258. * There are no data fork flags set.
  2259. */
  2260. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2261. break;
  2262. }
  2263. /*
  2264. * If we logged any attribute data, recover it. There may or
  2265. * may not have been any other non-core data logged in this
  2266. * transaction.
  2267. */
  2268. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2269. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2270. attr_index = 3;
  2271. } else {
  2272. attr_index = 2;
  2273. }
  2274. len = item->ri_buf[attr_index].i_len;
  2275. src = item->ri_buf[attr_index].i_addr;
  2276. ASSERT(len == in_f->ilf_asize);
  2277. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2278. case XFS_ILOG_ADATA:
  2279. case XFS_ILOG_AEXT:
  2280. dest = XFS_DFORK_APTR(dip);
  2281. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2282. memcpy(dest, src, len);
  2283. break;
  2284. case XFS_ILOG_ABROOT:
  2285. dest = XFS_DFORK_APTR(dip);
  2286. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2287. (xfs_bmdr_block_t*)dest,
  2288. XFS_DFORK_ASIZE(dip, mp));
  2289. break;
  2290. default:
  2291. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2292. ASSERT(0);
  2293. xfs_buf_relse(bp);
  2294. error = EIO;
  2295. goto error;
  2296. }
  2297. }
  2298. write_inode_buffer:
  2299. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2300. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2301. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2302. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2303. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2304. xfs_bdwrite(mp, bp);
  2305. } else {
  2306. XFS_BUF_STALE(bp);
  2307. error = xfs_bwrite(mp, bp);
  2308. }
  2309. error:
  2310. if (need_free)
  2311. kmem_free(in_f, sizeof(*in_f));
  2312. return XFS_ERROR(error);
  2313. }
  2314. /*
  2315. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2316. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2317. * of that type.
  2318. */
  2319. STATIC int
  2320. xlog_recover_do_quotaoff_trans(
  2321. xlog_t *log,
  2322. xlog_recover_item_t *item,
  2323. int pass)
  2324. {
  2325. xfs_qoff_logformat_t *qoff_f;
  2326. if (pass == XLOG_RECOVER_PASS2) {
  2327. return (0);
  2328. }
  2329. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2330. ASSERT(qoff_f);
  2331. /*
  2332. * The logitem format's flag tells us if this was user quotaoff,
  2333. * group/project quotaoff or both.
  2334. */
  2335. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2336. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2337. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2338. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2339. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2340. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2341. return (0);
  2342. }
  2343. /*
  2344. * Recover a dquot record
  2345. */
  2346. STATIC int
  2347. xlog_recover_do_dquot_trans(
  2348. xlog_t *log,
  2349. xlog_recover_item_t *item,
  2350. int pass)
  2351. {
  2352. xfs_mount_t *mp;
  2353. xfs_buf_t *bp;
  2354. struct xfs_disk_dquot *ddq, *recddq;
  2355. int error;
  2356. xfs_dq_logformat_t *dq_f;
  2357. uint type;
  2358. if (pass == XLOG_RECOVER_PASS1) {
  2359. return 0;
  2360. }
  2361. mp = log->l_mp;
  2362. /*
  2363. * Filesystems are required to send in quota flags at mount time.
  2364. */
  2365. if (mp->m_qflags == 0)
  2366. return (0);
  2367. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2368. ASSERT(recddq);
  2369. /*
  2370. * This type of quotas was turned off, so ignore this record.
  2371. */
  2372. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2373. ASSERT(type);
  2374. if (log->l_quotaoffs_flag & type)
  2375. return (0);
  2376. /*
  2377. * At this point we know that quota was _not_ turned off.
  2378. * Since the mount flags are not indicating to us otherwise, this
  2379. * must mean that quota is on, and the dquot needs to be replayed.
  2380. * Remember that we may not have fully recovered the superblock yet,
  2381. * so we can't do the usual trick of looking at the SB quota bits.
  2382. *
  2383. * The other possibility, of course, is that the quota subsystem was
  2384. * removed since the last mount - ENOSYS.
  2385. */
  2386. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2387. ASSERT(dq_f);
  2388. if ((error = xfs_qm_dqcheck(recddq,
  2389. dq_f->qlf_id,
  2390. 0, XFS_QMOPT_DOWARN,
  2391. "xlog_recover_do_dquot_trans (log copy)"))) {
  2392. return XFS_ERROR(EIO);
  2393. }
  2394. ASSERT(dq_f->qlf_len == 1);
  2395. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2396. dq_f->qlf_blkno,
  2397. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2398. 0, &bp);
  2399. if (error) {
  2400. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2401. bp, dq_f->qlf_blkno);
  2402. return error;
  2403. }
  2404. ASSERT(bp);
  2405. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2406. /*
  2407. * At least the magic num portion should be on disk because this
  2408. * was among a chunk of dquots created earlier, and we did some
  2409. * minimal initialization then.
  2410. */
  2411. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2412. "xlog_recover_do_dquot_trans")) {
  2413. xfs_buf_relse(bp);
  2414. return XFS_ERROR(EIO);
  2415. }
  2416. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2417. ASSERT(dq_f->qlf_size == 2);
  2418. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2419. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2420. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2421. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2422. xfs_bdwrite(mp, bp);
  2423. return (0);
  2424. }
  2425. /*
  2426. * This routine is called to create an in-core extent free intent
  2427. * item from the efi format structure which was logged on disk.
  2428. * It allocates an in-core efi, copies the extents from the format
  2429. * structure into it, and adds the efi to the AIL with the given
  2430. * LSN.
  2431. */
  2432. STATIC int
  2433. xlog_recover_do_efi_trans(
  2434. xlog_t *log,
  2435. xlog_recover_item_t *item,
  2436. xfs_lsn_t lsn,
  2437. int pass)
  2438. {
  2439. int error;
  2440. xfs_mount_t *mp;
  2441. xfs_efi_log_item_t *efip;
  2442. xfs_efi_log_format_t *efi_formatp;
  2443. if (pass == XLOG_RECOVER_PASS1) {
  2444. return 0;
  2445. }
  2446. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2447. mp = log->l_mp;
  2448. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2449. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2450. &(efip->efi_format)))) {
  2451. xfs_efi_item_free(efip);
  2452. return error;
  2453. }
  2454. efip->efi_next_extent = efi_formatp->efi_nextents;
  2455. efip->efi_flags |= XFS_EFI_COMMITTED;
  2456. spin_lock(&mp->m_ail_lock);
  2457. /*
  2458. * xfs_trans_update_ail() drops the AIL lock.
  2459. */
  2460. xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
  2461. return 0;
  2462. }
  2463. /*
  2464. * This routine is called when an efd format structure is found in
  2465. * a committed transaction in the log. It's purpose is to cancel
  2466. * the corresponding efi if it was still in the log. To do this
  2467. * it searches the AIL for the efi with an id equal to that in the
  2468. * efd format structure. If we find it, we remove the efi from the
  2469. * AIL and free it.
  2470. */
  2471. STATIC void
  2472. xlog_recover_do_efd_trans(
  2473. xlog_t *log,
  2474. xlog_recover_item_t *item,
  2475. int pass)
  2476. {
  2477. xfs_mount_t *mp;
  2478. xfs_efd_log_format_t *efd_formatp;
  2479. xfs_efi_log_item_t *efip = NULL;
  2480. xfs_log_item_t *lip;
  2481. int gen;
  2482. __uint64_t efi_id;
  2483. if (pass == XLOG_RECOVER_PASS1) {
  2484. return;
  2485. }
  2486. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2487. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2488. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2489. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2490. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2491. efi_id = efd_formatp->efd_efi_id;
  2492. /*
  2493. * Search for the efi with the id in the efd format structure
  2494. * in the AIL.
  2495. */
  2496. mp = log->l_mp;
  2497. spin_lock(&mp->m_ail_lock);
  2498. lip = xfs_trans_first_ail(mp, &gen);
  2499. while (lip != NULL) {
  2500. if (lip->li_type == XFS_LI_EFI) {
  2501. efip = (xfs_efi_log_item_t *)lip;
  2502. if (efip->efi_format.efi_id == efi_id) {
  2503. /*
  2504. * xfs_trans_delete_ail() drops the
  2505. * AIL lock.
  2506. */
  2507. xfs_trans_delete_ail(mp, lip);
  2508. xfs_efi_item_free(efip);
  2509. return;
  2510. }
  2511. }
  2512. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2513. }
  2514. spin_unlock(&mp->m_ail_lock);
  2515. }
  2516. /*
  2517. * Perform the transaction
  2518. *
  2519. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2520. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2521. */
  2522. STATIC int
  2523. xlog_recover_do_trans(
  2524. xlog_t *log,
  2525. xlog_recover_t *trans,
  2526. int pass)
  2527. {
  2528. int error = 0;
  2529. xlog_recover_item_t *item, *first_item;
  2530. if ((error = xlog_recover_reorder_trans(trans)))
  2531. return error;
  2532. first_item = item = trans->r_itemq;
  2533. do {
  2534. /*
  2535. * we don't need to worry about the block number being
  2536. * truncated in > 1 TB buffers because in user-land,
  2537. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2538. * the blknos will get through the user-mode buffer
  2539. * cache properly. The only bad case is o32 kernels
  2540. * where xfs_daddr_t is 32-bits but mount will warn us
  2541. * off a > 1 TB filesystem before we get here.
  2542. */
  2543. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2544. if ((error = xlog_recover_do_buffer_trans(log, item,
  2545. pass)))
  2546. break;
  2547. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2548. if ((error = xlog_recover_do_inode_trans(log, item,
  2549. pass)))
  2550. break;
  2551. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2552. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2553. pass)))
  2554. break;
  2555. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2556. xlog_recover_do_efd_trans(log, item, pass);
  2557. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2558. if ((error = xlog_recover_do_dquot_trans(log, item,
  2559. pass)))
  2560. break;
  2561. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2562. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2563. pass)))
  2564. break;
  2565. } else {
  2566. xlog_warn("XFS: xlog_recover_do_trans");
  2567. ASSERT(0);
  2568. error = XFS_ERROR(EIO);
  2569. break;
  2570. }
  2571. item = item->ri_next;
  2572. } while (first_item != item);
  2573. return error;
  2574. }
  2575. /*
  2576. * Free up any resources allocated by the transaction
  2577. *
  2578. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2579. */
  2580. STATIC void
  2581. xlog_recover_free_trans(
  2582. xlog_recover_t *trans)
  2583. {
  2584. xlog_recover_item_t *first_item, *item, *free_item;
  2585. int i;
  2586. item = first_item = trans->r_itemq;
  2587. do {
  2588. free_item = item;
  2589. item = item->ri_next;
  2590. /* Free the regions in the item. */
  2591. for (i = 0; i < free_item->ri_cnt; i++) {
  2592. kmem_free(free_item->ri_buf[i].i_addr,
  2593. free_item->ri_buf[i].i_len);
  2594. }
  2595. /* Free the item itself */
  2596. kmem_free(free_item->ri_buf,
  2597. (free_item->ri_total * sizeof(xfs_log_iovec_t)));
  2598. kmem_free(free_item, sizeof(xlog_recover_item_t));
  2599. } while (first_item != item);
  2600. /* Free the transaction recover structure */
  2601. kmem_free(trans, sizeof(xlog_recover_t));
  2602. }
  2603. STATIC int
  2604. xlog_recover_commit_trans(
  2605. xlog_t *log,
  2606. xlog_recover_t **q,
  2607. xlog_recover_t *trans,
  2608. int pass)
  2609. {
  2610. int error;
  2611. if ((error = xlog_recover_unlink_tid(q, trans)))
  2612. return error;
  2613. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2614. return error;
  2615. xlog_recover_free_trans(trans); /* no error */
  2616. return 0;
  2617. }
  2618. STATIC int
  2619. xlog_recover_unmount_trans(
  2620. xlog_recover_t *trans)
  2621. {
  2622. /* Do nothing now */
  2623. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2624. return 0;
  2625. }
  2626. /*
  2627. * There are two valid states of the r_state field. 0 indicates that the
  2628. * transaction structure is in a normal state. We have either seen the
  2629. * start of the transaction or the last operation we added was not a partial
  2630. * operation. If the last operation we added to the transaction was a
  2631. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2632. *
  2633. * NOTE: skip LRs with 0 data length.
  2634. */
  2635. STATIC int
  2636. xlog_recover_process_data(
  2637. xlog_t *log,
  2638. xlog_recover_t *rhash[],
  2639. xlog_rec_header_t *rhead,
  2640. xfs_caddr_t dp,
  2641. int pass)
  2642. {
  2643. xfs_caddr_t lp;
  2644. int num_logops;
  2645. xlog_op_header_t *ohead;
  2646. xlog_recover_t *trans;
  2647. xlog_tid_t tid;
  2648. int error;
  2649. unsigned long hash;
  2650. uint flags;
  2651. lp = dp + be32_to_cpu(rhead->h_len);
  2652. num_logops = be32_to_cpu(rhead->h_num_logops);
  2653. /* check the log format matches our own - else we can't recover */
  2654. if (xlog_header_check_recover(log->l_mp, rhead))
  2655. return (XFS_ERROR(EIO));
  2656. while ((dp < lp) && num_logops) {
  2657. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2658. ohead = (xlog_op_header_t *)dp;
  2659. dp += sizeof(xlog_op_header_t);
  2660. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2661. ohead->oh_clientid != XFS_LOG) {
  2662. xlog_warn(
  2663. "XFS: xlog_recover_process_data: bad clientid");
  2664. ASSERT(0);
  2665. return (XFS_ERROR(EIO));
  2666. }
  2667. tid = be32_to_cpu(ohead->oh_tid);
  2668. hash = XLOG_RHASH(tid);
  2669. trans = xlog_recover_find_tid(rhash[hash], tid);
  2670. if (trans == NULL) { /* not found; add new tid */
  2671. if (ohead->oh_flags & XLOG_START_TRANS)
  2672. xlog_recover_new_tid(&rhash[hash], tid,
  2673. be64_to_cpu(rhead->h_lsn));
  2674. } else {
  2675. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2676. xlog_warn(
  2677. "XFS: xlog_recover_process_data: bad length");
  2678. WARN_ON(1);
  2679. return (XFS_ERROR(EIO));
  2680. }
  2681. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2682. if (flags & XLOG_WAS_CONT_TRANS)
  2683. flags &= ~XLOG_CONTINUE_TRANS;
  2684. switch (flags) {
  2685. case XLOG_COMMIT_TRANS:
  2686. error = xlog_recover_commit_trans(log,
  2687. &rhash[hash], trans, pass);
  2688. break;
  2689. case XLOG_UNMOUNT_TRANS:
  2690. error = xlog_recover_unmount_trans(trans);
  2691. break;
  2692. case XLOG_WAS_CONT_TRANS:
  2693. error = xlog_recover_add_to_cont_trans(trans,
  2694. dp, be32_to_cpu(ohead->oh_len));
  2695. break;
  2696. case XLOG_START_TRANS:
  2697. xlog_warn(
  2698. "XFS: xlog_recover_process_data: bad transaction");
  2699. ASSERT(0);
  2700. error = XFS_ERROR(EIO);
  2701. break;
  2702. case 0:
  2703. case XLOG_CONTINUE_TRANS:
  2704. error = xlog_recover_add_to_trans(trans,
  2705. dp, be32_to_cpu(ohead->oh_len));
  2706. break;
  2707. default:
  2708. xlog_warn(
  2709. "XFS: xlog_recover_process_data: bad flag");
  2710. ASSERT(0);
  2711. error = XFS_ERROR(EIO);
  2712. break;
  2713. }
  2714. if (error)
  2715. return error;
  2716. }
  2717. dp += be32_to_cpu(ohead->oh_len);
  2718. num_logops--;
  2719. }
  2720. return 0;
  2721. }
  2722. /*
  2723. * Process an extent free intent item that was recovered from
  2724. * the log. We need to free the extents that it describes.
  2725. */
  2726. STATIC int
  2727. xlog_recover_process_efi(
  2728. xfs_mount_t *mp,
  2729. xfs_efi_log_item_t *efip)
  2730. {
  2731. xfs_efd_log_item_t *efdp;
  2732. xfs_trans_t *tp;
  2733. int i;
  2734. int error = 0;
  2735. xfs_extent_t *extp;
  2736. xfs_fsblock_t startblock_fsb;
  2737. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2738. /*
  2739. * First check the validity of the extents described by the
  2740. * EFI. If any are bad, then assume that all are bad and
  2741. * just toss the EFI.
  2742. */
  2743. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2744. extp = &(efip->efi_format.efi_extents[i]);
  2745. startblock_fsb = XFS_BB_TO_FSB(mp,
  2746. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2747. if ((startblock_fsb == 0) ||
  2748. (extp->ext_len == 0) ||
  2749. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2750. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2751. /*
  2752. * This will pull the EFI from the AIL and
  2753. * free the memory associated with it.
  2754. */
  2755. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2756. return XFS_ERROR(EIO);
  2757. }
  2758. }
  2759. tp = xfs_trans_alloc(mp, 0);
  2760. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2761. if (error) {
  2762. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2763. return error;
  2764. }
  2765. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2766. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2767. extp = &(efip->efi_format.efi_extents[i]);
  2768. xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2769. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2770. extp->ext_len);
  2771. }
  2772. efip->efi_flags |= XFS_EFI_RECOVERED;
  2773. xfs_trans_commit(tp, 0);
  2774. return error;
  2775. }
  2776. /*
  2777. * Verify that once we've encountered something other than an EFI
  2778. * in the AIL that there are no more EFIs in the AIL.
  2779. */
  2780. #if defined(DEBUG)
  2781. STATIC void
  2782. xlog_recover_check_ail(
  2783. xfs_mount_t *mp,
  2784. xfs_log_item_t *lip,
  2785. int gen)
  2786. {
  2787. int orig_gen = gen;
  2788. do {
  2789. ASSERT(lip->li_type != XFS_LI_EFI);
  2790. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2791. /*
  2792. * The check will be bogus if we restart from the
  2793. * beginning of the AIL, so ASSERT that we don't.
  2794. * We never should since we're holding the AIL lock
  2795. * the entire time.
  2796. */
  2797. ASSERT(gen == orig_gen);
  2798. } while (lip != NULL);
  2799. }
  2800. #endif /* DEBUG */
  2801. /*
  2802. * When this is called, all of the EFIs which did not have
  2803. * corresponding EFDs should be in the AIL. What we do now
  2804. * is free the extents associated with each one.
  2805. *
  2806. * Since we process the EFIs in normal transactions, they
  2807. * will be removed at some point after the commit. This prevents
  2808. * us from just walking down the list processing each one.
  2809. * We'll use a flag in the EFI to skip those that we've already
  2810. * processed and use the AIL iteration mechanism's generation
  2811. * count to try to speed this up at least a bit.
  2812. *
  2813. * When we start, we know that the EFIs are the only things in
  2814. * the AIL. As we process them, however, other items are added
  2815. * to the AIL. Since everything added to the AIL must come after
  2816. * everything already in the AIL, we stop processing as soon as
  2817. * we see something other than an EFI in the AIL.
  2818. */
  2819. STATIC int
  2820. xlog_recover_process_efis(
  2821. xlog_t *log)
  2822. {
  2823. xfs_log_item_t *lip;
  2824. xfs_efi_log_item_t *efip;
  2825. int gen;
  2826. xfs_mount_t *mp;
  2827. int error = 0;
  2828. mp = log->l_mp;
  2829. spin_lock(&mp->m_ail_lock);
  2830. lip = xfs_trans_first_ail(mp, &gen);
  2831. while (lip != NULL) {
  2832. /*
  2833. * We're done when we see something other than an EFI.
  2834. */
  2835. if (lip->li_type != XFS_LI_EFI) {
  2836. xlog_recover_check_ail(mp, lip, gen);
  2837. break;
  2838. }
  2839. /*
  2840. * Skip EFIs that we've already processed.
  2841. */
  2842. efip = (xfs_efi_log_item_t *)lip;
  2843. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2844. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2845. continue;
  2846. }
  2847. spin_unlock(&mp->m_ail_lock);
  2848. error = xlog_recover_process_efi(mp, efip);
  2849. if (error)
  2850. return error;
  2851. spin_lock(&mp->m_ail_lock);
  2852. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2853. }
  2854. spin_unlock(&mp->m_ail_lock);
  2855. return error;
  2856. }
  2857. /*
  2858. * This routine performs a transaction to null out a bad inode pointer
  2859. * in an agi unlinked inode hash bucket.
  2860. */
  2861. STATIC void
  2862. xlog_recover_clear_agi_bucket(
  2863. xfs_mount_t *mp,
  2864. xfs_agnumber_t agno,
  2865. int bucket)
  2866. {
  2867. xfs_trans_t *tp;
  2868. xfs_agi_t *agi;
  2869. xfs_buf_t *agibp;
  2870. int offset;
  2871. int error;
  2872. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2873. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
  2874. if (!error)
  2875. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
  2876. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2877. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  2878. if (error) {
  2879. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2880. return;
  2881. }
  2882. agi = XFS_BUF_TO_AGI(agibp);
  2883. if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
  2884. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2885. return;
  2886. }
  2887. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2888. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2889. (sizeof(xfs_agino_t) * bucket);
  2890. xfs_trans_log_buf(tp, agibp, offset,
  2891. (offset + sizeof(xfs_agino_t) - 1));
  2892. (void) xfs_trans_commit(tp, 0);
  2893. }
  2894. /*
  2895. * xlog_iunlink_recover
  2896. *
  2897. * This is called during recovery to process any inodes which
  2898. * we unlinked but not freed when the system crashed. These
  2899. * inodes will be on the lists in the AGI blocks. What we do
  2900. * here is scan all the AGIs and fully truncate and free any
  2901. * inodes found on the lists. Each inode is removed from the
  2902. * lists when it has been fully truncated and is freed. The
  2903. * freeing of the inode and its removal from the list must be
  2904. * atomic.
  2905. */
  2906. void
  2907. xlog_recover_process_iunlinks(
  2908. xlog_t *log)
  2909. {
  2910. xfs_mount_t *mp;
  2911. xfs_agnumber_t agno;
  2912. xfs_agi_t *agi;
  2913. xfs_buf_t *agibp;
  2914. xfs_buf_t *ibp;
  2915. xfs_dinode_t *dip;
  2916. xfs_inode_t *ip;
  2917. xfs_agino_t agino;
  2918. xfs_ino_t ino;
  2919. int bucket;
  2920. int error;
  2921. uint mp_dmevmask;
  2922. mp = log->l_mp;
  2923. /*
  2924. * Prevent any DMAPI event from being sent while in this function.
  2925. */
  2926. mp_dmevmask = mp->m_dmevmask;
  2927. mp->m_dmevmask = 0;
  2928. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2929. /*
  2930. * Find the agi for this ag.
  2931. */
  2932. agibp = xfs_buf_read(mp->m_ddev_targp,
  2933. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2934. XFS_FSS_TO_BB(mp, 1), 0);
  2935. if (XFS_BUF_ISERROR(agibp)) {
  2936. xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
  2937. log->l_mp, agibp,
  2938. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
  2939. }
  2940. agi = XFS_BUF_TO_AGI(agibp);
  2941. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
  2942. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2943. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2944. while (agino != NULLAGINO) {
  2945. /*
  2946. * Release the agi buffer so that it can
  2947. * be acquired in the normal course of the
  2948. * transaction to truncate and free the inode.
  2949. */
  2950. xfs_buf_relse(agibp);
  2951. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2952. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2953. ASSERT(error || (ip != NULL));
  2954. if (!error) {
  2955. /*
  2956. * Get the on disk inode to find the
  2957. * next inode in the bucket.
  2958. */
  2959. error = xfs_itobp(mp, NULL, ip, &dip,
  2960. &ibp, 0, 0,
  2961. XFS_BUF_LOCK);
  2962. ASSERT(error || (dip != NULL));
  2963. }
  2964. if (!error) {
  2965. ASSERT(ip->i_d.di_nlink == 0);
  2966. /* setup for the next pass */
  2967. agino = be32_to_cpu(
  2968. dip->di_next_unlinked);
  2969. xfs_buf_relse(ibp);
  2970. /*
  2971. * Prevent any DMAPI event from
  2972. * being sent when the
  2973. * reference on the inode is
  2974. * dropped.
  2975. */
  2976. ip->i_d.di_dmevmask = 0;
  2977. /*
  2978. * If this is a new inode, handle
  2979. * it specially. Otherwise,
  2980. * just drop our reference to the
  2981. * inode. If there are no
  2982. * other references, this will
  2983. * send the inode to
  2984. * xfs_inactive() which will
  2985. * truncate the file and free
  2986. * the inode.
  2987. */
  2988. if (ip->i_d.di_mode == 0)
  2989. xfs_iput_new(ip, 0);
  2990. else
  2991. IRELE(ip);
  2992. } else {
  2993. /*
  2994. * We can't read in the inode
  2995. * this bucket points to, or
  2996. * this inode is messed up. Just
  2997. * ditch this bucket of inodes. We
  2998. * will lose some inodes and space,
  2999. * but at least we won't hang. Call
  3000. * xlog_recover_clear_agi_bucket()
  3001. * to perform a transaction to clear
  3002. * the inode pointer in the bucket.
  3003. */
  3004. xlog_recover_clear_agi_bucket(mp, agno,
  3005. bucket);
  3006. agino = NULLAGINO;
  3007. }
  3008. /*
  3009. * Reacquire the agibuffer and continue around
  3010. * the loop.
  3011. */
  3012. agibp = xfs_buf_read(mp->m_ddev_targp,
  3013. XFS_AG_DADDR(mp, agno,
  3014. XFS_AGI_DADDR(mp)),
  3015. XFS_FSS_TO_BB(mp, 1), 0);
  3016. if (XFS_BUF_ISERROR(agibp)) {
  3017. xfs_ioerror_alert(
  3018. "xlog_recover_process_iunlinks(#2)",
  3019. log->l_mp, agibp,
  3020. XFS_AG_DADDR(mp, agno,
  3021. XFS_AGI_DADDR(mp)));
  3022. }
  3023. agi = XFS_BUF_TO_AGI(agibp);
  3024. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
  3025. agi->agi_magicnum));
  3026. }
  3027. }
  3028. /*
  3029. * Release the buffer for the current agi so we can
  3030. * go on to the next one.
  3031. */
  3032. xfs_buf_relse(agibp);
  3033. }
  3034. mp->m_dmevmask = mp_dmevmask;
  3035. }
  3036. #ifdef DEBUG
  3037. STATIC void
  3038. xlog_pack_data_checksum(
  3039. xlog_t *log,
  3040. xlog_in_core_t *iclog,
  3041. int size)
  3042. {
  3043. int i;
  3044. __be32 *up;
  3045. uint chksum = 0;
  3046. up = (__be32 *)iclog->ic_datap;
  3047. /* divide length by 4 to get # words */
  3048. for (i = 0; i < (size >> 2); i++) {
  3049. chksum ^= be32_to_cpu(*up);
  3050. up++;
  3051. }
  3052. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3053. }
  3054. #else
  3055. #define xlog_pack_data_checksum(log, iclog, size)
  3056. #endif
  3057. /*
  3058. * Stamp cycle number in every block
  3059. */
  3060. void
  3061. xlog_pack_data(
  3062. xlog_t *log,
  3063. xlog_in_core_t *iclog,
  3064. int roundoff)
  3065. {
  3066. int i, j, k;
  3067. int size = iclog->ic_offset + roundoff;
  3068. __be32 cycle_lsn;
  3069. xfs_caddr_t dp;
  3070. xlog_in_core_2_t *xhdr;
  3071. xlog_pack_data_checksum(log, iclog, size);
  3072. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3073. dp = iclog->ic_datap;
  3074. for (i = 0; i < BTOBB(size) &&
  3075. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3076. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3077. *(__be32 *)dp = cycle_lsn;
  3078. dp += BBSIZE;
  3079. }
  3080. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3081. xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
  3082. for ( ; i < BTOBB(size); i++) {
  3083. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3084. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3085. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3086. *(__be32 *)dp = cycle_lsn;
  3087. dp += BBSIZE;
  3088. }
  3089. for (i = 1; i < log->l_iclog_heads; i++) {
  3090. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3091. }
  3092. }
  3093. }
  3094. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3095. STATIC void
  3096. xlog_unpack_data_checksum(
  3097. xlog_rec_header_t *rhead,
  3098. xfs_caddr_t dp,
  3099. xlog_t *log)
  3100. {
  3101. __be32 *up = (__be32 *)dp;
  3102. uint chksum = 0;
  3103. int i;
  3104. /* divide length by 4 to get # words */
  3105. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3106. chksum ^= be32_to_cpu(*up);
  3107. up++;
  3108. }
  3109. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3110. if (rhead->h_chksum ||
  3111. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3112. cmn_err(CE_DEBUG,
  3113. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3114. be32_to_cpu(rhead->h_chksum), chksum);
  3115. cmn_err(CE_DEBUG,
  3116. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3117. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3118. cmn_err(CE_DEBUG,
  3119. "XFS: LogR this is a LogV2 filesystem\n");
  3120. }
  3121. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3122. }
  3123. }
  3124. }
  3125. #else
  3126. #define xlog_unpack_data_checksum(rhead, dp, log)
  3127. #endif
  3128. STATIC void
  3129. xlog_unpack_data(
  3130. xlog_rec_header_t *rhead,
  3131. xfs_caddr_t dp,
  3132. xlog_t *log)
  3133. {
  3134. int i, j, k;
  3135. xlog_in_core_2_t *xhdr;
  3136. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3137. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3138. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3139. dp += BBSIZE;
  3140. }
  3141. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3142. xhdr = (xlog_in_core_2_t *)rhead;
  3143. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3144. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3145. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3146. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3147. dp += BBSIZE;
  3148. }
  3149. }
  3150. xlog_unpack_data_checksum(rhead, dp, log);
  3151. }
  3152. STATIC int
  3153. xlog_valid_rec_header(
  3154. xlog_t *log,
  3155. xlog_rec_header_t *rhead,
  3156. xfs_daddr_t blkno)
  3157. {
  3158. int hlen;
  3159. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3160. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3161. XFS_ERRLEVEL_LOW, log->l_mp);
  3162. return XFS_ERROR(EFSCORRUPTED);
  3163. }
  3164. if (unlikely(
  3165. (!rhead->h_version ||
  3166. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3167. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3168. __func__, be32_to_cpu(rhead->h_version));
  3169. return XFS_ERROR(EIO);
  3170. }
  3171. /* LR body must have data or it wouldn't have been written */
  3172. hlen = be32_to_cpu(rhead->h_len);
  3173. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3174. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3175. XFS_ERRLEVEL_LOW, log->l_mp);
  3176. return XFS_ERROR(EFSCORRUPTED);
  3177. }
  3178. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3179. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3180. XFS_ERRLEVEL_LOW, log->l_mp);
  3181. return XFS_ERROR(EFSCORRUPTED);
  3182. }
  3183. return 0;
  3184. }
  3185. /*
  3186. * Read the log from tail to head and process the log records found.
  3187. * Handle the two cases where the tail and head are in the same cycle
  3188. * and where the active portion of the log wraps around the end of
  3189. * the physical log separately. The pass parameter is passed through
  3190. * to the routines called to process the data and is not looked at
  3191. * here.
  3192. */
  3193. STATIC int
  3194. xlog_do_recovery_pass(
  3195. xlog_t *log,
  3196. xfs_daddr_t head_blk,
  3197. xfs_daddr_t tail_blk,
  3198. int pass)
  3199. {
  3200. xlog_rec_header_t *rhead;
  3201. xfs_daddr_t blk_no;
  3202. xfs_caddr_t bufaddr, offset;
  3203. xfs_buf_t *hbp, *dbp;
  3204. int error = 0, h_size;
  3205. int bblks, split_bblks;
  3206. int hblks, split_hblks, wrapped_hblks;
  3207. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3208. ASSERT(head_blk != tail_blk);
  3209. /*
  3210. * Read the header of the tail block and get the iclog buffer size from
  3211. * h_size. Use this to tell how many sectors make up the log header.
  3212. */
  3213. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3214. /*
  3215. * When using variable length iclogs, read first sector of
  3216. * iclog header and extract the header size from it. Get a
  3217. * new hbp that is the correct size.
  3218. */
  3219. hbp = xlog_get_bp(log, 1);
  3220. if (!hbp)
  3221. return ENOMEM;
  3222. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3223. goto bread_err1;
  3224. offset = xlog_align(log, tail_blk, 1, hbp);
  3225. rhead = (xlog_rec_header_t *)offset;
  3226. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3227. if (error)
  3228. goto bread_err1;
  3229. h_size = be32_to_cpu(rhead->h_size);
  3230. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3231. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3232. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3233. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3234. hblks++;
  3235. xlog_put_bp(hbp);
  3236. hbp = xlog_get_bp(log, hblks);
  3237. } else {
  3238. hblks = 1;
  3239. }
  3240. } else {
  3241. ASSERT(log->l_sectbb_log == 0);
  3242. hblks = 1;
  3243. hbp = xlog_get_bp(log, 1);
  3244. h_size = XLOG_BIG_RECORD_BSIZE;
  3245. }
  3246. if (!hbp)
  3247. return ENOMEM;
  3248. dbp = xlog_get_bp(log, BTOBB(h_size));
  3249. if (!dbp) {
  3250. xlog_put_bp(hbp);
  3251. return ENOMEM;
  3252. }
  3253. memset(rhash, 0, sizeof(rhash));
  3254. if (tail_blk <= head_blk) {
  3255. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3256. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3257. goto bread_err2;
  3258. offset = xlog_align(log, blk_no, hblks, hbp);
  3259. rhead = (xlog_rec_header_t *)offset;
  3260. error = xlog_valid_rec_header(log, rhead, blk_no);
  3261. if (error)
  3262. goto bread_err2;
  3263. /* blocks in data section */
  3264. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3265. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3266. if (error)
  3267. goto bread_err2;
  3268. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3269. xlog_unpack_data(rhead, offset, log);
  3270. if ((error = xlog_recover_process_data(log,
  3271. rhash, rhead, offset, pass)))
  3272. goto bread_err2;
  3273. blk_no += bblks + hblks;
  3274. }
  3275. } else {
  3276. /*
  3277. * Perform recovery around the end of the physical log.
  3278. * When the head is not on the same cycle number as the tail,
  3279. * we can't do a sequential recovery as above.
  3280. */
  3281. blk_no = tail_blk;
  3282. while (blk_no < log->l_logBBsize) {
  3283. /*
  3284. * Check for header wrapping around physical end-of-log
  3285. */
  3286. offset = NULL;
  3287. split_hblks = 0;
  3288. wrapped_hblks = 0;
  3289. if (blk_no + hblks <= log->l_logBBsize) {
  3290. /* Read header in one read */
  3291. error = xlog_bread(log, blk_no, hblks, hbp);
  3292. if (error)
  3293. goto bread_err2;
  3294. offset = xlog_align(log, blk_no, hblks, hbp);
  3295. } else {
  3296. /* This LR is split across physical log end */
  3297. if (blk_no != log->l_logBBsize) {
  3298. /* some data before physical log end */
  3299. ASSERT(blk_no <= INT_MAX);
  3300. split_hblks = log->l_logBBsize - (int)blk_no;
  3301. ASSERT(split_hblks > 0);
  3302. if ((error = xlog_bread(log, blk_no,
  3303. split_hblks, hbp)))
  3304. goto bread_err2;
  3305. offset = xlog_align(log, blk_no,
  3306. split_hblks, hbp);
  3307. }
  3308. /*
  3309. * Note: this black magic still works with
  3310. * large sector sizes (non-512) only because:
  3311. * - we increased the buffer size originally
  3312. * by 1 sector giving us enough extra space
  3313. * for the second read;
  3314. * - the log start is guaranteed to be sector
  3315. * aligned;
  3316. * - we read the log end (LR header start)
  3317. * _first_, then the log start (LR header end)
  3318. * - order is important.
  3319. */
  3320. bufaddr = XFS_BUF_PTR(hbp);
  3321. XFS_BUF_SET_PTR(hbp,
  3322. bufaddr + BBTOB(split_hblks),
  3323. BBTOB(hblks - split_hblks));
  3324. wrapped_hblks = hblks - split_hblks;
  3325. error = xlog_bread(log, 0, wrapped_hblks, hbp);
  3326. if (error)
  3327. goto bread_err2;
  3328. XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
  3329. if (!offset)
  3330. offset = xlog_align(log, 0,
  3331. wrapped_hblks, hbp);
  3332. }
  3333. rhead = (xlog_rec_header_t *)offset;
  3334. error = xlog_valid_rec_header(log, rhead,
  3335. split_hblks ? blk_no : 0);
  3336. if (error)
  3337. goto bread_err2;
  3338. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3339. blk_no += hblks;
  3340. /* Read in data for log record */
  3341. if (blk_no + bblks <= log->l_logBBsize) {
  3342. error = xlog_bread(log, blk_no, bblks, dbp);
  3343. if (error)
  3344. goto bread_err2;
  3345. offset = xlog_align(log, blk_no, bblks, dbp);
  3346. } else {
  3347. /* This log record is split across the
  3348. * physical end of log */
  3349. offset = NULL;
  3350. split_bblks = 0;
  3351. if (blk_no != log->l_logBBsize) {
  3352. /* some data is before the physical
  3353. * end of log */
  3354. ASSERT(!wrapped_hblks);
  3355. ASSERT(blk_no <= INT_MAX);
  3356. split_bblks =
  3357. log->l_logBBsize - (int)blk_no;
  3358. ASSERT(split_bblks > 0);
  3359. if ((error = xlog_bread(log, blk_no,
  3360. split_bblks, dbp)))
  3361. goto bread_err2;
  3362. offset = xlog_align(log, blk_no,
  3363. split_bblks, dbp);
  3364. }
  3365. /*
  3366. * Note: this black magic still works with
  3367. * large sector sizes (non-512) only because:
  3368. * - we increased the buffer size originally
  3369. * by 1 sector giving us enough extra space
  3370. * for the second read;
  3371. * - the log start is guaranteed to be sector
  3372. * aligned;
  3373. * - we read the log end (LR header start)
  3374. * _first_, then the log start (LR header end)
  3375. * - order is important.
  3376. */
  3377. bufaddr = XFS_BUF_PTR(dbp);
  3378. XFS_BUF_SET_PTR(dbp,
  3379. bufaddr + BBTOB(split_bblks),
  3380. BBTOB(bblks - split_bblks));
  3381. if ((error = xlog_bread(log, wrapped_hblks,
  3382. bblks - split_bblks, dbp)))
  3383. goto bread_err2;
  3384. XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
  3385. if (!offset)
  3386. offset = xlog_align(log, wrapped_hblks,
  3387. bblks - split_bblks, dbp);
  3388. }
  3389. xlog_unpack_data(rhead, offset, log);
  3390. if ((error = xlog_recover_process_data(log, rhash,
  3391. rhead, offset, pass)))
  3392. goto bread_err2;
  3393. blk_no += bblks;
  3394. }
  3395. ASSERT(blk_no >= log->l_logBBsize);
  3396. blk_no -= log->l_logBBsize;
  3397. /* read first part of physical log */
  3398. while (blk_no < head_blk) {
  3399. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3400. goto bread_err2;
  3401. offset = xlog_align(log, blk_no, hblks, hbp);
  3402. rhead = (xlog_rec_header_t *)offset;
  3403. error = xlog_valid_rec_header(log, rhead, blk_no);
  3404. if (error)
  3405. goto bread_err2;
  3406. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3407. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3408. goto bread_err2;
  3409. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3410. xlog_unpack_data(rhead, offset, log);
  3411. if ((error = xlog_recover_process_data(log, rhash,
  3412. rhead, offset, pass)))
  3413. goto bread_err2;
  3414. blk_no += bblks + hblks;
  3415. }
  3416. }
  3417. bread_err2:
  3418. xlog_put_bp(dbp);
  3419. bread_err1:
  3420. xlog_put_bp(hbp);
  3421. return error;
  3422. }
  3423. /*
  3424. * Do the recovery of the log. We actually do this in two phases.
  3425. * The two passes are necessary in order to implement the function
  3426. * of cancelling a record written into the log. The first pass
  3427. * determines those things which have been cancelled, and the
  3428. * second pass replays log items normally except for those which
  3429. * have been cancelled. The handling of the replay and cancellations
  3430. * takes place in the log item type specific routines.
  3431. *
  3432. * The table of items which have cancel records in the log is allocated
  3433. * and freed at this level, since only here do we know when all of
  3434. * the log recovery has been completed.
  3435. */
  3436. STATIC int
  3437. xlog_do_log_recovery(
  3438. xlog_t *log,
  3439. xfs_daddr_t head_blk,
  3440. xfs_daddr_t tail_blk)
  3441. {
  3442. int error;
  3443. ASSERT(head_blk != tail_blk);
  3444. /*
  3445. * First do a pass to find all of the cancelled buf log items.
  3446. * Store them in the buf_cancel_table for use in the second pass.
  3447. */
  3448. log->l_buf_cancel_table =
  3449. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3450. sizeof(xfs_buf_cancel_t*),
  3451. KM_SLEEP);
  3452. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3453. XLOG_RECOVER_PASS1);
  3454. if (error != 0) {
  3455. kmem_free(log->l_buf_cancel_table,
  3456. XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
  3457. log->l_buf_cancel_table = NULL;
  3458. return error;
  3459. }
  3460. /*
  3461. * Then do a second pass to actually recover the items in the log.
  3462. * When it is complete free the table of buf cancel items.
  3463. */
  3464. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3465. XLOG_RECOVER_PASS2);
  3466. #ifdef DEBUG
  3467. if (!error) {
  3468. int i;
  3469. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3470. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3471. }
  3472. #endif /* DEBUG */
  3473. kmem_free(log->l_buf_cancel_table,
  3474. XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
  3475. log->l_buf_cancel_table = NULL;
  3476. return error;
  3477. }
  3478. /*
  3479. * Do the actual recovery
  3480. */
  3481. STATIC int
  3482. xlog_do_recover(
  3483. xlog_t *log,
  3484. xfs_daddr_t head_blk,
  3485. xfs_daddr_t tail_blk)
  3486. {
  3487. int error;
  3488. xfs_buf_t *bp;
  3489. xfs_sb_t *sbp;
  3490. /*
  3491. * First replay the images in the log.
  3492. */
  3493. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3494. if (error) {
  3495. return error;
  3496. }
  3497. XFS_bflush(log->l_mp->m_ddev_targp);
  3498. /*
  3499. * If IO errors happened during recovery, bail out.
  3500. */
  3501. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3502. return (EIO);
  3503. }
  3504. /*
  3505. * We now update the tail_lsn since much of the recovery has completed
  3506. * and there may be space available to use. If there were no extent
  3507. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3508. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3509. * lsn of the last known good LR on disk. If there are extent frees
  3510. * or iunlinks they will have some entries in the AIL; so we look at
  3511. * the AIL to determine how to set the tail_lsn.
  3512. */
  3513. xlog_assign_tail_lsn(log->l_mp);
  3514. /*
  3515. * Now that we've finished replaying all buffer and inode
  3516. * updates, re-read in the superblock.
  3517. */
  3518. bp = xfs_getsb(log->l_mp, 0);
  3519. XFS_BUF_UNDONE(bp);
  3520. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3521. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3522. XFS_BUF_READ(bp);
  3523. XFS_BUF_UNASYNC(bp);
  3524. xfsbdstrat(log->l_mp, bp);
  3525. if ((error = xfs_iowait(bp))) {
  3526. xfs_ioerror_alert("xlog_do_recover",
  3527. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3528. ASSERT(0);
  3529. xfs_buf_relse(bp);
  3530. return error;
  3531. }
  3532. /* Convert superblock from on-disk format */
  3533. sbp = &log->l_mp->m_sb;
  3534. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3535. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3536. ASSERT(xfs_sb_good_version(sbp));
  3537. xfs_buf_relse(bp);
  3538. /* We've re-read the superblock so re-initialize per-cpu counters */
  3539. xfs_icsb_reinit_counters(log->l_mp);
  3540. xlog_recover_check_summary(log);
  3541. /* Normal transactions can now occur */
  3542. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3543. return 0;
  3544. }
  3545. /*
  3546. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3547. *
  3548. * Return error or zero.
  3549. */
  3550. int
  3551. xlog_recover(
  3552. xlog_t *log)
  3553. {
  3554. xfs_daddr_t head_blk, tail_blk;
  3555. int error;
  3556. /* find the tail of the log */
  3557. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3558. return error;
  3559. if (tail_blk != head_blk) {
  3560. /* There used to be a comment here:
  3561. *
  3562. * disallow recovery on read-only mounts. note -- mount
  3563. * checks for ENOSPC and turns it into an intelligent
  3564. * error message.
  3565. * ...but this is no longer true. Now, unless you specify
  3566. * NORECOVERY (in which case this function would never be
  3567. * called), we just go ahead and recover. We do this all
  3568. * under the vfs layer, so we can get away with it unless
  3569. * the device itself is read-only, in which case we fail.
  3570. */
  3571. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3572. return error;
  3573. }
  3574. cmn_err(CE_NOTE,
  3575. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3576. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3577. log->l_mp->m_logname : "internal");
  3578. error = xlog_do_recover(log, head_blk, tail_blk);
  3579. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3580. }
  3581. return error;
  3582. }
  3583. /*
  3584. * In the first part of recovery we replay inodes and buffers and build
  3585. * up the list of extent free items which need to be processed. Here
  3586. * we process the extent free items and clean up the on disk unlinked
  3587. * inode lists. This is separated from the first part of recovery so
  3588. * that the root and real-time bitmap inodes can be read in from disk in
  3589. * between the two stages. This is necessary so that we can free space
  3590. * in the real-time portion of the file system.
  3591. */
  3592. int
  3593. xlog_recover_finish(
  3594. xlog_t *log,
  3595. int mfsi_flags)
  3596. {
  3597. /*
  3598. * Now we're ready to do the transactions needed for the
  3599. * rest of recovery. Start with completing all the extent
  3600. * free intent records and then process the unlinked inode
  3601. * lists. At this point, we essentially run in normal mode
  3602. * except that we're still performing recovery actions
  3603. * rather than accepting new requests.
  3604. */
  3605. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3606. int error;
  3607. error = xlog_recover_process_efis(log);
  3608. if (error) {
  3609. cmn_err(CE_ALERT,
  3610. "Failed to recover EFIs on filesystem: %s",
  3611. log->l_mp->m_fsname);
  3612. return error;
  3613. }
  3614. /*
  3615. * Sync the log to get all the EFIs out of the AIL.
  3616. * This isn't absolutely necessary, but it helps in
  3617. * case the unlink transactions would have problems
  3618. * pushing the EFIs out of the way.
  3619. */
  3620. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3621. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3622. if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
  3623. xlog_recover_process_iunlinks(log);
  3624. }
  3625. xlog_recover_check_summary(log);
  3626. cmn_err(CE_NOTE,
  3627. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3628. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3629. log->l_mp->m_logname : "internal");
  3630. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3631. } else {
  3632. cmn_err(CE_DEBUG,
  3633. "!Ending clean XFS mount for filesystem: %s\n",
  3634. log->l_mp->m_fsname);
  3635. }
  3636. return 0;
  3637. }
  3638. #if defined(DEBUG)
  3639. /*
  3640. * Read all of the agf and agi counters and check that they
  3641. * are consistent with the superblock counters.
  3642. */
  3643. void
  3644. xlog_recover_check_summary(
  3645. xlog_t *log)
  3646. {
  3647. xfs_mount_t *mp;
  3648. xfs_agf_t *agfp;
  3649. xfs_agi_t *agip;
  3650. xfs_buf_t *agfbp;
  3651. xfs_buf_t *agibp;
  3652. xfs_daddr_t agfdaddr;
  3653. xfs_daddr_t agidaddr;
  3654. xfs_buf_t *sbbp;
  3655. #ifdef XFS_LOUD_RECOVERY
  3656. xfs_sb_t *sbp;
  3657. #endif
  3658. xfs_agnumber_t agno;
  3659. __uint64_t freeblks;
  3660. __uint64_t itotal;
  3661. __uint64_t ifree;
  3662. mp = log->l_mp;
  3663. freeblks = 0LL;
  3664. itotal = 0LL;
  3665. ifree = 0LL;
  3666. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3667. agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
  3668. agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
  3669. XFS_FSS_TO_BB(mp, 1), 0);
  3670. if (XFS_BUF_ISERROR(agfbp)) {
  3671. xfs_ioerror_alert("xlog_recover_check_summary(agf)",
  3672. mp, agfbp, agfdaddr);
  3673. }
  3674. agfp = XFS_BUF_TO_AGF(agfbp);
  3675. ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
  3676. ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
  3677. ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
  3678. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3679. be32_to_cpu(agfp->agf_flcount);
  3680. xfs_buf_relse(agfbp);
  3681. agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  3682. agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
  3683. XFS_FSS_TO_BB(mp, 1), 0);
  3684. if (XFS_BUF_ISERROR(agibp)) {
  3685. xfs_ioerror_alert("xlog_recover_check_summary(agi)",
  3686. mp, agibp, agidaddr);
  3687. }
  3688. agip = XFS_BUF_TO_AGI(agibp);
  3689. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
  3690. ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
  3691. ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
  3692. itotal += be32_to_cpu(agip->agi_count);
  3693. ifree += be32_to_cpu(agip->agi_freecount);
  3694. xfs_buf_relse(agibp);
  3695. }
  3696. sbbp = xfs_getsb(mp, 0);
  3697. #ifdef XFS_LOUD_RECOVERY
  3698. sbp = &mp->m_sb;
  3699. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3700. cmn_err(CE_NOTE,
  3701. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3702. sbp->sb_icount, itotal);
  3703. cmn_err(CE_NOTE,
  3704. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3705. sbp->sb_ifree, ifree);
  3706. cmn_err(CE_NOTE,
  3707. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3708. sbp->sb_fdblocks, freeblks);
  3709. #if 0
  3710. /*
  3711. * This is turned off until I account for the allocation
  3712. * btree blocks which live in free space.
  3713. */
  3714. ASSERT(sbp->sb_icount == itotal);
  3715. ASSERT(sbp->sb_ifree == ifree);
  3716. ASSERT(sbp->sb_fdblocks == freeblks);
  3717. #endif
  3718. #endif
  3719. xfs_buf_relse(sbbp);
  3720. }
  3721. #endif /* DEBUG */