cpufreq_ondemand.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/smp.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/ctype.h>
  18. #include <linux/cpufreq.h>
  19. #include <linux/sysctl.h>
  20. #include <linux/types.h>
  21. #include <linux/fs.h>
  22. #include <linux/sysfs.h>
  23. #include <linux/sched.h>
  24. #include <linux/kmod.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/kernel_stat.h>
  28. #include <linux/percpu.h>
  29. #include <linux/mutex.h>
  30. /*
  31. * dbs is used in this file as a shortform for demandbased switching
  32. * It helps to keep variable names smaller, simpler
  33. */
  34. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  35. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  36. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  37. /*
  38. * The polling frequency of this governor depends on the capability of
  39. * the processor. Default polling frequency is 1000 times the transition
  40. * latency of the processor. The governor will work on any processor with
  41. * transition latency <= 10mS, using appropriate sampling
  42. * rate.
  43. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  44. * this governor will not work.
  45. * All times here are in uS.
  46. */
  47. static unsigned int def_sampling_rate;
  48. #define MIN_SAMPLING_RATE_RATIO (2)
  49. /* for correct statistics, we need at least 10 ticks between each measure */
  50. #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  51. #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  52. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  53. #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
  54. #define DEF_SAMPLING_DOWN_FACTOR (1)
  55. #define MAX_SAMPLING_DOWN_FACTOR (10)
  56. #define TRANSITION_LATENCY_LIMIT (10 * 1000)
  57. static void do_dbs_timer(void *data);
  58. struct cpu_dbs_info_s {
  59. struct cpufreq_policy *cur_policy;
  60. unsigned int prev_cpu_idle_up;
  61. unsigned int prev_cpu_idle_down;
  62. unsigned int enable;
  63. };
  64. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  65. static unsigned int dbs_enable; /* number of CPUs using this policy */
  66. static DEFINE_MUTEX (dbs_mutex);
  67. static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
  68. static struct workqueue_struct *dbs_workq;
  69. struct dbs_tuners {
  70. unsigned int sampling_rate;
  71. unsigned int sampling_down_factor;
  72. unsigned int up_threshold;
  73. unsigned int ignore_nice;
  74. };
  75. static struct dbs_tuners dbs_tuners_ins = {
  76. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  77. .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
  78. .ignore_nice = 0,
  79. };
  80. static inline unsigned int get_cpu_idle_time(unsigned int cpu)
  81. {
  82. return kstat_cpu(cpu).cpustat.idle +
  83. kstat_cpu(cpu).cpustat.iowait +
  84. ( dbs_tuners_ins.ignore_nice ?
  85. kstat_cpu(cpu).cpustat.nice :
  86. 0);
  87. }
  88. /************************** sysfs interface ************************/
  89. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  90. {
  91. return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
  92. }
  93. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  94. {
  95. return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
  96. }
  97. #define define_one_ro(_name) \
  98. static struct freq_attr _name = \
  99. __ATTR(_name, 0444, show_##_name, NULL)
  100. define_one_ro(sampling_rate_max);
  101. define_one_ro(sampling_rate_min);
  102. /* cpufreq_ondemand Governor Tunables */
  103. #define show_one(file_name, object) \
  104. static ssize_t show_##file_name \
  105. (struct cpufreq_policy *unused, char *buf) \
  106. { \
  107. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  108. }
  109. show_one(sampling_rate, sampling_rate);
  110. show_one(sampling_down_factor, sampling_down_factor);
  111. show_one(up_threshold, up_threshold);
  112. show_one(ignore_nice_load, ignore_nice);
  113. static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
  114. const char *buf, size_t count)
  115. {
  116. unsigned int input;
  117. int ret;
  118. ret = sscanf (buf, "%u", &input);
  119. if (ret != 1 )
  120. return -EINVAL;
  121. if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  122. return -EINVAL;
  123. mutex_lock(&dbs_mutex);
  124. dbs_tuners_ins.sampling_down_factor = input;
  125. mutex_unlock(&dbs_mutex);
  126. return count;
  127. }
  128. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  129. const char *buf, size_t count)
  130. {
  131. unsigned int input;
  132. int ret;
  133. ret = sscanf (buf, "%u", &input);
  134. mutex_lock(&dbs_mutex);
  135. if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
  136. mutex_unlock(&dbs_mutex);
  137. return -EINVAL;
  138. }
  139. dbs_tuners_ins.sampling_rate = input;
  140. mutex_unlock(&dbs_mutex);
  141. return count;
  142. }
  143. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  144. const char *buf, size_t count)
  145. {
  146. unsigned int input;
  147. int ret;
  148. ret = sscanf (buf, "%u", &input);
  149. mutex_lock(&dbs_mutex);
  150. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  151. input < MIN_FREQUENCY_UP_THRESHOLD) {
  152. mutex_unlock(&dbs_mutex);
  153. return -EINVAL;
  154. }
  155. dbs_tuners_ins.up_threshold = input;
  156. mutex_unlock(&dbs_mutex);
  157. return count;
  158. }
  159. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  160. const char *buf, size_t count)
  161. {
  162. unsigned int input;
  163. int ret;
  164. unsigned int j;
  165. ret = sscanf (buf, "%u", &input);
  166. if ( ret != 1 )
  167. return -EINVAL;
  168. if ( input > 1 )
  169. input = 1;
  170. mutex_lock(&dbs_mutex);
  171. if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
  172. mutex_unlock(&dbs_mutex);
  173. return count;
  174. }
  175. dbs_tuners_ins.ignore_nice = input;
  176. /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
  177. for_each_online_cpu(j) {
  178. struct cpu_dbs_info_s *j_dbs_info;
  179. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  180. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  181. j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
  182. }
  183. mutex_unlock(&dbs_mutex);
  184. return count;
  185. }
  186. #define define_one_rw(_name) \
  187. static struct freq_attr _name = \
  188. __ATTR(_name, 0644, show_##_name, store_##_name)
  189. define_one_rw(sampling_rate);
  190. define_one_rw(sampling_down_factor);
  191. define_one_rw(up_threshold);
  192. define_one_rw(ignore_nice_load);
  193. static struct attribute * dbs_attributes[] = {
  194. &sampling_rate_max.attr,
  195. &sampling_rate_min.attr,
  196. &sampling_rate.attr,
  197. &sampling_down_factor.attr,
  198. &up_threshold.attr,
  199. &ignore_nice_load.attr,
  200. NULL
  201. };
  202. static struct attribute_group dbs_attr_group = {
  203. .attrs = dbs_attributes,
  204. .name = "ondemand",
  205. };
  206. /************************** sysfs end ************************/
  207. static void dbs_check_cpu(int cpu)
  208. {
  209. unsigned int idle_ticks, up_idle_ticks, total_ticks;
  210. unsigned int freq_next;
  211. unsigned int freq_down_sampling_rate;
  212. static int down_skip[NR_CPUS];
  213. struct cpu_dbs_info_s *this_dbs_info;
  214. struct cpufreq_policy *policy;
  215. unsigned int j;
  216. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  217. if (!this_dbs_info->enable)
  218. return;
  219. policy = this_dbs_info->cur_policy;
  220. /*
  221. * Every sampling_rate, we check, if current idle time is less
  222. * than 20% (default), then we try to increase frequency
  223. * Every sampling_rate*sampling_down_factor, we look for a the lowest
  224. * frequency which can sustain the load while keeping idle time over
  225. * 30%. If such a frequency exist, we try to decrease to this frequency.
  226. *
  227. * Any frequency increase takes it to the maximum frequency.
  228. * Frequency reduction happens at minimum steps of
  229. * 5% (default) of current frequency
  230. */
  231. /* Check for frequency increase */
  232. idle_ticks = UINT_MAX;
  233. for_each_cpu_mask(j, policy->cpus) {
  234. unsigned int tmp_idle_ticks, total_idle_ticks;
  235. struct cpu_dbs_info_s *j_dbs_info;
  236. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  237. total_idle_ticks = get_cpu_idle_time(j);
  238. tmp_idle_ticks = total_idle_ticks -
  239. j_dbs_info->prev_cpu_idle_up;
  240. j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
  241. if (tmp_idle_ticks < idle_ticks)
  242. idle_ticks = tmp_idle_ticks;
  243. }
  244. /* Scale idle ticks by 100 and compare with up and down ticks */
  245. idle_ticks *= 100;
  246. up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
  247. usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  248. if (idle_ticks < up_idle_ticks) {
  249. down_skip[cpu] = 0;
  250. for_each_cpu_mask(j, policy->cpus) {
  251. struct cpu_dbs_info_s *j_dbs_info;
  252. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  253. j_dbs_info->prev_cpu_idle_down =
  254. j_dbs_info->prev_cpu_idle_up;
  255. }
  256. /* if we are already at full speed then break out early */
  257. if (policy->cur == policy->max)
  258. return;
  259. __cpufreq_driver_target(policy, policy->max,
  260. CPUFREQ_RELATION_H);
  261. return;
  262. }
  263. /* Check for frequency decrease */
  264. down_skip[cpu]++;
  265. if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
  266. return;
  267. idle_ticks = UINT_MAX;
  268. for_each_cpu_mask(j, policy->cpus) {
  269. unsigned int tmp_idle_ticks, total_idle_ticks;
  270. struct cpu_dbs_info_s *j_dbs_info;
  271. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  272. /* Check for frequency decrease */
  273. total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
  274. tmp_idle_ticks = total_idle_ticks -
  275. j_dbs_info->prev_cpu_idle_down;
  276. j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
  277. if (tmp_idle_ticks < idle_ticks)
  278. idle_ticks = tmp_idle_ticks;
  279. }
  280. down_skip[cpu] = 0;
  281. /* if we cannot reduce the frequency anymore, break out early */
  282. if (policy->cur == policy->min)
  283. return;
  284. /* Compute how many ticks there are between two measurements */
  285. freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
  286. dbs_tuners_ins.sampling_down_factor;
  287. total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
  288. /*
  289. * The optimal frequency is the frequency that is the lowest that
  290. * can support the current CPU usage without triggering the up
  291. * policy. To be safe, we focus 10 points under the threshold.
  292. */
  293. freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
  294. freq_next = (freq_next * policy->cur) /
  295. (dbs_tuners_ins.up_threshold - 10);
  296. if (freq_next < policy->min)
  297. freq_next = policy->min;
  298. if (freq_next <= ((policy->cur * 95) / 100))
  299. __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
  300. }
  301. static void do_dbs_timer(void *data)
  302. {
  303. int i;
  304. mutex_lock(&dbs_mutex);
  305. for_each_online_cpu(i)
  306. dbs_check_cpu(i);
  307. queue_delayed_work(dbs_workq, &dbs_work,
  308. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  309. mutex_unlock(&dbs_mutex);
  310. }
  311. static inline void dbs_timer_init(void)
  312. {
  313. INIT_WORK(&dbs_work, do_dbs_timer, NULL);
  314. if (!dbs_workq)
  315. dbs_workq = create_singlethread_workqueue("ondemand");
  316. if (!dbs_workq) {
  317. printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
  318. return;
  319. }
  320. queue_delayed_work(dbs_workq, &dbs_work,
  321. usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
  322. return;
  323. }
  324. static inline void dbs_timer_exit(void)
  325. {
  326. if (dbs_workq)
  327. cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
  328. }
  329. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  330. unsigned int event)
  331. {
  332. unsigned int cpu = policy->cpu;
  333. struct cpu_dbs_info_s *this_dbs_info;
  334. unsigned int j;
  335. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  336. switch (event) {
  337. case CPUFREQ_GOV_START:
  338. if ((!cpu_online(cpu)) ||
  339. (!policy->cur))
  340. return -EINVAL;
  341. if (policy->cpuinfo.transition_latency >
  342. (TRANSITION_LATENCY_LIMIT * 1000)) {
  343. printk(KERN_WARNING "ondemand governor failed to load "
  344. "due to too long transition latency\n");
  345. return -EINVAL;
  346. }
  347. if (this_dbs_info->enable) /* Already enabled */
  348. break;
  349. mutex_lock(&dbs_mutex);
  350. for_each_cpu_mask(j, policy->cpus) {
  351. struct cpu_dbs_info_s *j_dbs_info;
  352. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  353. j_dbs_info->cur_policy = policy;
  354. j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
  355. j_dbs_info->prev_cpu_idle_down
  356. = j_dbs_info->prev_cpu_idle_up;
  357. }
  358. this_dbs_info->enable = 1;
  359. sysfs_create_group(&policy->kobj, &dbs_attr_group);
  360. dbs_enable++;
  361. /*
  362. * Start the timerschedule work, when this governor
  363. * is used for first time
  364. */
  365. if (dbs_enable == 1) {
  366. unsigned int latency;
  367. /* policy latency is in nS. Convert it to uS first */
  368. latency = policy->cpuinfo.transition_latency / 1000;
  369. if (latency == 0)
  370. latency = 1;
  371. def_sampling_rate = latency *
  372. DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
  373. if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
  374. def_sampling_rate = MIN_STAT_SAMPLING_RATE;
  375. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  376. dbs_timer_init();
  377. }
  378. mutex_unlock(&dbs_mutex);
  379. break;
  380. case CPUFREQ_GOV_STOP:
  381. mutex_lock(&dbs_mutex);
  382. this_dbs_info->enable = 0;
  383. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  384. dbs_enable--;
  385. /*
  386. * Stop the timerschedule work, when this governor
  387. * is used for first time
  388. */
  389. if (dbs_enable == 0)
  390. dbs_timer_exit();
  391. mutex_unlock(&dbs_mutex);
  392. break;
  393. case CPUFREQ_GOV_LIMITS:
  394. mutex_lock(&dbs_mutex);
  395. if (policy->max < this_dbs_info->cur_policy->cur)
  396. __cpufreq_driver_target(
  397. this_dbs_info->cur_policy,
  398. policy->max, CPUFREQ_RELATION_H);
  399. else if (policy->min > this_dbs_info->cur_policy->cur)
  400. __cpufreq_driver_target(
  401. this_dbs_info->cur_policy,
  402. policy->min, CPUFREQ_RELATION_L);
  403. mutex_unlock(&dbs_mutex);
  404. break;
  405. }
  406. return 0;
  407. }
  408. static struct cpufreq_governor cpufreq_gov_dbs = {
  409. .name = "ondemand",
  410. .governor = cpufreq_governor_dbs,
  411. .owner = THIS_MODULE,
  412. };
  413. static int __init cpufreq_gov_dbs_init(void)
  414. {
  415. return cpufreq_register_governor(&cpufreq_gov_dbs);
  416. }
  417. static void __exit cpufreq_gov_dbs_exit(void)
  418. {
  419. /* Make sure that the scheduled work is indeed not running.
  420. Assumes the timer has been cancelled first. */
  421. if (dbs_workq) {
  422. flush_workqueue(dbs_workq);
  423. destroy_workqueue(dbs_workq);
  424. }
  425. cpufreq_unregister_governor(&cpufreq_gov_dbs);
  426. }
  427. MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  428. MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  429. "Low Latency Frequency Transition capable processors");
  430. MODULE_LICENSE ("GPL");
  431. module_init(cpufreq_gov_dbs_init);
  432. module_exit(cpufreq_gov_dbs_exit);