sock.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #include <linux/capability.h>
  92. #include <linux/errno.h>
  93. #include <linux/types.h>
  94. #include <linux/socket.h>
  95. #include <linux/in.h>
  96. #include <linux/kernel.h>
  97. #include <linux/module.h>
  98. #include <linux/proc_fs.h>
  99. #include <linux/seq_file.h>
  100. #include <linux/sched.h>
  101. #include <linux/timer.h>
  102. #include <linux/string.h>
  103. #include <linux/sockios.h>
  104. #include <linux/net.h>
  105. #include <linux/mm.h>
  106. #include <linux/slab.h>
  107. #include <linux/interrupt.h>
  108. #include <linux/poll.h>
  109. #include <linux/tcp.h>
  110. #include <linux/init.h>
  111. #include <linux/highmem.h>
  112. #include <linux/user_namespace.h>
  113. #include <linux/jump_label.h>
  114. #include <linux/memcontrol.h>
  115. #include <asm/uaccess.h>
  116. #include <asm/system.h>
  117. #include <linux/netdevice.h>
  118. #include <net/protocol.h>
  119. #include <linux/skbuff.h>
  120. #include <net/net_namespace.h>
  121. #include <net/request_sock.h>
  122. #include <net/sock.h>
  123. #include <linux/net_tstamp.h>
  124. #include <net/xfrm.h>
  125. #include <linux/ipsec.h>
  126. #include <net/cls_cgroup.h>
  127. #include <net/netprio_cgroup.h>
  128. #include <linux/filter.h>
  129. #include <trace/events/sock.h>
  130. #ifdef CONFIG_INET
  131. #include <net/tcp.h>
  132. #endif
  133. static DEFINE_MUTEX(proto_list_mutex);
  134. static LIST_HEAD(proto_list);
  135. #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
  136. int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
  137. {
  138. struct proto *proto;
  139. int ret = 0;
  140. mutex_lock(&proto_list_mutex);
  141. list_for_each_entry(proto, &proto_list, node) {
  142. if (proto->init_cgroup) {
  143. ret = proto->init_cgroup(cgrp, ss);
  144. if (ret)
  145. goto out;
  146. }
  147. }
  148. mutex_unlock(&proto_list_mutex);
  149. return ret;
  150. out:
  151. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  152. if (proto->destroy_cgroup)
  153. proto->destroy_cgroup(cgrp, ss);
  154. mutex_unlock(&proto_list_mutex);
  155. return ret;
  156. }
  157. void mem_cgroup_sockets_destroy(struct cgroup *cgrp, struct cgroup_subsys *ss)
  158. {
  159. struct proto *proto;
  160. mutex_lock(&proto_list_mutex);
  161. list_for_each_entry_reverse(proto, &proto_list, node)
  162. if (proto->destroy_cgroup)
  163. proto->destroy_cgroup(cgrp, ss);
  164. mutex_unlock(&proto_list_mutex);
  165. }
  166. #endif
  167. /*
  168. * Each address family might have different locking rules, so we have
  169. * one slock key per address family:
  170. */
  171. static struct lock_class_key af_family_keys[AF_MAX];
  172. static struct lock_class_key af_family_slock_keys[AF_MAX];
  173. struct jump_label_key memcg_socket_limit_enabled;
  174. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  175. /*
  176. * Make lock validator output more readable. (we pre-construct these
  177. * strings build-time, so that runtime initialization of socket
  178. * locks is fast):
  179. */
  180. static const char *const af_family_key_strings[AF_MAX+1] = {
  181. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  182. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  183. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  184. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  185. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  186. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  187. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  188. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  189. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  190. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  191. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  192. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  193. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  194. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  195. };
  196. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  197. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  198. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  199. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  200. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  201. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  202. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  203. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  204. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  205. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  206. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  207. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  208. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  209. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  210. "slock-AF_NFC" , "slock-AF_MAX"
  211. };
  212. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  213. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  214. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  215. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  216. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  217. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  218. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  219. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  220. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  221. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  222. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  223. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  224. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  225. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  226. "clock-AF_NFC" , "clock-AF_MAX"
  227. };
  228. /*
  229. * sk_callback_lock locking rules are per-address-family,
  230. * so split the lock classes by using a per-AF key:
  231. */
  232. static struct lock_class_key af_callback_keys[AF_MAX];
  233. /* Take into consideration the size of the struct sk_buff overhead in the
  234. * determination of these values, since that is non-constant across
  235. * platforms. This makes socket queueing behavior and performance
  236. * not depend upon such differences.
  237. */
  238. #define _SK_MEM_PACKETS 256
  239. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  240. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  241. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  242. /* Run time adjustable parameters. */
  243. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  244. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  245. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  246. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  247. /* Maximal space eaten by iovec or ancillary data plus some space */
  248. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  249. EXPORT_SYMBOL(sysctl_optmem_max);
  250. #if defined(CONFIG_CGROUPS)
  251. #if !defined(CONFIG_NET_CLS_CGROUP)
  252. int net_cls_subsys_id = -1;
  253. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  254. #endif
  255. #if !defined(CONFIG_NETPRIO_CGROUP)
  256. int net_prio_subsys_id = -1;
  257. EXPORT_SYMBOL_GPL(net_prio_subsys_id);
  258. #endif
  259. #endif
  260. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  261. {
  262. struct timeval tv;
  263. if (optlen < sizeof(tv))
  264. return -EINVAL;
  265. if (copy_from_user(&tv, optval, sizeof(tv)))
  266. return -EFAULT;
  267. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  268. return -EDOM;
  269. if (tv.tv_sec < 0) {
  270. static int warned __read_mostly;
  271. *timeo_p = 0;
  272. if (warned < 10 && net_ratelimit()) {
  273. warned++;
  274. printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
  275. "tries to set negative timeout\n",
  276. current->comm, task_pid_nr(current));
  277. }
  278. return 0;
  279. }
  280. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  281. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  282. return 0;
  283. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  284. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  285. return 0;
  286. }
  287. static void sock_warn_obsolete_bsdism(const char *name)
  288. {
  289. static int warned;
  290. static char warncomm[TASK_COMM_LEN];
  291. if (strcmp(warncomm, current->comm) && warned < 5) {
  292. strcpy(warncomm, current->comm);
  293. printk(KERN_WARNING "process `%s' is using obsolete "
  294. "%s SO_BSDCOMPAT\n", warncomm, name);
  295. warned++;
  296. }
  297. }
  298. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  299. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  300. {
  301. if (sk->sk_flags & flags) {
  302. sk->sk_flags &= ~flags;
  303. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  304. net_disable_timestamp();
  305. }
  306. }
  307. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  308. {
  309. int err;
  310. int skb_len;
  311. unsigned long flags;
  312. struct sk_buff_head *list = &sk->sk_receive_queue;
  313. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  314. atomic_inc(&sk->sk_drops);
  315. trace_sock_rcvqueue_full(sk, skb);
  316. return -ENOMEM;
  317. }
  318. err = sk_filter(sk, skb);
  319. if (err)
  320. return err;
  321. if (!sk_rmem_schedule(sk, skb->truesize)) {
  322. atomic_inc(&sk->sk_drops);
  323. return -ENOBUFS;
  324. }
  325. skb->dev = NULL;
  326. skb_set_owner_r(skb, sk);
  327. /* Cache the SKB length before we tack it onto the receive
  328. * queue. Once it is added it no longer belongs to us and
  329. * may be freed by other threads of control pulling packets
  330. * from the queue.
  331. */
  332. skb_len = skb->len;
  333. /* we escape from rcu protected region, make sure we dont leak
  334. * a norefcounted dst
  335. */
  336. skb_dst_force(skb);
  337. spin_lock_irqsave(&list->lock, flags);
  338. skb->dropcount = atomic_read(&sk->sk_drops);
  339. __skb_queue_tail(list, skb);
  340. spin_unlock_irqrestore(&list->lock, flags);
  341. if (!sock_flag(sk, SOCK_DEAD))
  342. sk->sk_data_ready(sk, skb_len);
  343. return 0;
  344. }
  345. EXPORT_SYMBOL(sock_queue_rcv_skb);
  346. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  347. {
  348. int rc = NET_RX_SUCCESS;
  349. if (sk_filter(sk, skb))
  350. goto discard_and_relse;
  351. skb->dev = NULL;
  352. if (sk_rcvqueues_full(sk, skb)) {
  353. atomic_inc(&sk->sk_drops);
  354. goto discard_and_relse;
  355. }
  356. if (nested)
  357. bh_lock_sock_nested(sk);
  358. else
  359. bh_lock_sock(sk);
  360. if (!sock_owned_by_user(sk)) {
  361. /*
  362. * trylock + unlock semantics:
  363. */
  364. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  365. rc = sk_backlog_rcv(sk, skb);
  366. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  367. } else if (sk_add_backlog(sk, skb)) {
  368. bh_unlock_sock(sk);
  369. atomic_inc(&sk->sk_drops);
  370. goto discard_and_relse;
  371. }
  372. bh_unlock_sock(sk);
  373. out:
  374. sock_put(sk);
  375. return rc;
  376. discard_and_relse:
  377. kfree_skb(skb);
  378. goto out;
  379. }
  380. EXPORT_SYMBOL(sk_receive_skb);
  381. void sk_reset_txq(struct sock *sk)
  382. {
  383. sk_tx_queue_clear(sk);
  384. }
  385. EXPORT_SYMBOL(sk_reset_txq);
  386. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  387. {
  388. struct dst_entry *dst = __sk_dst_get(sk);
  389. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  390. sk_tx_queue_clear(sk);
  391. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  392. dst_release(dst);
  393. return NULL;
  394. }
  395. return dst;
  396. }
  397. EXPORT_SYMBOL(__sk_dst_check);
  398. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  399. {
  400. struct dst_entry *dst = sk_dst_get(sk);
  401. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  402. sk_dst_reset(sk);
  403. dst_release(dst);
  404. return NULL;
  405. }
  406. return dst;
  407. }
  408. EXPORT_SYMBOL(sk_dst_check);
  409. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  410. {
  411. int ret = -ENOPROTOOPT;
  412. #ifdef CONFIG_NETDEVICES
  413. struct net *net = sock_net(sk);
  414. char devname[IFNAMSIZ];
  415. int index;
  416. /* Sorry... */
  417. ret = -EPERM;
  418. if (!capable(CAP_NET_RAW))
  419. goto out;
  420. ret = -EINVAL;
  421. if (optlen < 0)
  422. goto out;
  423. /* Bind this socket to a particular device like "eth0",
  424. * as specified in the passed interface name. If the
  425. * name is "" or the option length is zero the socket
  426. * is not bound.
  427. */
  428. if (optlen > IFNAMSIZ - 1)
  429. optlen = IFNAMSIZ - 1;
  430. memset(devname, 0, sizeof(devname));
  431. ret = -EFAULT;
  432. if (copy_from_user(devname, optval, optlen))
  433. goto out;
  434. index = 0;
  435. if (devname[0] != '\0') {
  436. struct net_device *dev;
  437. rcu_read_lock();
  438. dev = dev_get_by_name_rcu(net, devname);
  439. if (dev)
  440. index = dev->ifindex;
  441. rcu_read_unlock();
  442. ret = -ENODEV;
  443. if (!dev)
  444. goto out;
  445. }
  446. lock_sock(sk);
  447. sk->sk_bound_dev_if = index;
  448. sk_dst_reset(sk);
  449. release_sock(sk);
  450. ret = 0;
  451. out:
  452. #endif
  453. return ret;
  454. }
  455. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  456. {
  457. if (valbool)
  458. sock_set_flag(sk, bit);
  459. else
  460. sock_reset_flag(sk, bit);
  461. }
  462. /*
  463. * This is meant for all protocols to use and covers goings on
  464. * at the socket level. Everything here is generic.
  465. */
  466. int sock_setsockopt(struct socket *sock, int level, int optname,
  467. char __user *optval, unsigned int optlen)
  468. {
  469. struct sock *sk = sock->sk;
  470. int val;
  471. int valbool;
  472. struct linger ling;
  473. int ret = 0;
  474. /*
  475. * Options without arguments
  476. */
  477. if (optname == SO_BINDTODEVICE)
  478. return sock_bindtodevice(sk, optval, optlen);
  479. if (optlen < sizeof(int))
  480. return -EINVAL;
  481. if (get_user(val, (int __user *)optval))
  482. return -EFAULT;
  483. valbool = val ? 1 : 0;
  484. lock_sock(sk);
  485. switch (optname) {
  486. case SO_DEBUG:
  487. if (val && !capable(CAP_NET_ADMIN))
  488. ret = -EACCES;
  489. else
  490. sock_valbool_flag(sk, SOCK_DBG, valbool);
  491. break;
  492. case SO_REUSEADDR:
  493. sk->sk_reuse = valbool;
  494. break;
  495. case SO_TYPE:
  496. case SO_PROTOCOL:
  497. case SO_DOMAIN:
  498. case SO_ERROR:
  499. ret = -ENOPROTOOPT;
  500. break;
  501. case SO_DONTROUTE:
  502. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  503. break;
  504. case SO_BROADCAST:
  505. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  506. break;
  507. case SO_SNDBUF:
  508. /* Don't error on this BSD doesn't and if you think
  509. about it this is right. Otherwise apps have to
  510. play 'guess the biggest size' games. RCVBUF/SNDBUF
  511. are treated in BSD as hints */
  512. if (val > sysctl_wmem_max)
  513. val = sysctl_wmem_max;
  514. set_sndbuf:
  515. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  516. if ((val * 2) < SOCK_MIN_SNDBUF)
  517. sk->sk_sndbuf = SOCK_MIN_SNDBUF;
  518. else
  519. sk->sk_sndbuf = val * 2;
  520. /*
  521. * Wake up sending tasks if we
  522. * upped the value.
  523. */
  524. sk->sk_write_space(sk);
  525. break;
  526. case SO_SNDBUFFORCE:
  527. if (!capable(CAP_NET_ADMIN)) {
  528. ret = -EPERM;
  529. break;
  530. }
  531. goto set_sndbuf;
  532. case SO_RCVBUF:
  533. /* Don't error on this BSD doesn't and if you think
  534. about it this is right. Otherwise apps have to
  535. play 'guess the biggest size' games. RCVBUF/SNDBUF
  536. are treated in BSD as hints */
  537. if (val > sysctl_rmem_max)
  538. val = sysctl_rmem_max;
  539. set_rcvbuf:
  540. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  541. /*
  542. * We double it on the way in to account for
  543. * "struct sk_buff" etc. overhead. Applications
  544. * assume that the SO_RCVBUF setting they make will
  545. * allow that much actual data to be received on that
  546. * socket.
  547. *
  548. * Applications are unaware that "struct sk_buff" and
  549. * other overheads allocate from the receive buffer
  550. * during socket buffer allocation.
  551. *
  552. * And after considering the possible alternatives,
  553. * returning the value we actually used in getsockopt
  554. * is the most desirable behavior.
  555. */
  556. if ((val * 2) < SOCK_MIN_RCVBUF)
  557. sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
  558. else
  559. sk->sk_rcvbuf = val * 2;
  560. break;
  561. case SO_RCVBUFFORCE:
  562. if (!capable(CAP_NET_ADMIN)) {
  563. ret = -EPERM;
  564. break;
  565. }
  566. goto set_rcvbuf;
  567. case SO_KEEPALIVE:
  568. #ifdef CONFIG_INET
  569. if (sk->sk_protocol == IPPROTO_TCP)
  570. tcp_set_keepalive(sk, valbool);
  571. #endif
  572. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  573. break;
  574. case SO_OOBINLINE:
  575. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  576. break;
  577. case SO_NO_CHECK:
  578. sk->sk_no_check = valbool;
  579. break;
  580. case SO_PRIORITY:
  581. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  582. sk->sk_priority = val;
  583. else
  584. ret = -EPERM;
  585. break;
  586. case SO_LINGER:
  587. if (optlen < sizeof(ling)) {
  588. ret = -EINVAL; /* 1003.1g */
  589. break;
  590. }
  591. if (copy_from_user(&ling, optval, sizeof(ling))) {
  592. ret = -EFAULT;
  593. break;
  594. }
  595. if (!ling.l_onoff)
  596. sock_reset_flag(sk, SOCK_LINGER);
  597. else {
  598. #if (BITS_PER_LONG == 32)
  599. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  600. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  601. else
  602. #endif
  603. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  604. sock_set_flag(sk, SOCK_LINGER);
  605. }
  606. break;
  607. case SO_BSDCOMPAT:
  608. sock_warn_obsolete_bsdism("setsockopt");
  609. break;
  610. case SO_PASSCRED:
  611. if (valbool)
  612. set_bit(SOCK_PASSCRED, &sock->flags);
  613. else
  614. clear_bit(SOCK_PASSCRED, &sock->flags);
  615. break;
  616. case SO_TIMESTAMP:
  617. case SO_TIMESTAMPNS:
  618. if (valbool) {
  619. if (optname == SO_TIMESTAMP)
  620. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  621. else
  622. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  623. sock_set_flag(sk, SOCK_RCVTSTAMP);
  624. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  625. } else {
  626. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  627. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  628. }
  629. break;
  630. case SO_TIMESTAMPING:
  631. if (val & ~SOF_TIMESTAMPING_MASK) {
  632. ret = -EINVAL;
  633. break;
  634. }
  635. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  636. val & SOF_TIMESTAMPING_TX_HARDWARE);
  637. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  638. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  639. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  640. val & SOF_TIMESTAMPING_RX_HARDWARE);
  641. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  642. sock_enable_timestamp(sk,
  643. SOCK_TIMESTAMPING_RX_SOFTWARE);
  644. else
  645. sock_disable_timestamp(sk,
  646. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  647. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  648. val & SOF_TIMESTAMPING_SOFTWARE);
  649. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  650. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  651. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  652. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  653. break;
  654. case SO_RCVLOWAT:
  655. if (val < 0)
  656. val = INT_MAX;
  657. sk->sk_rcvlowat = val ? : 1;
  658. break;
  659. case SO_RCVTIMEO:
  660. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  661. break;
  662. case SO_SNDTIMEO:
  663. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  664. break;
  665. case SO_ATTACH_FILTER:
  666. ret = -EINVAL;
  667. if (optlen == sizeof(struct sock_fprog)) {
  668. struct sock_fprog fprog;
  669. ret = -EFAULT;
  670. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  671. break;
  672. ret = sk_attach_filter(&fprog, sk);
  673. }
  674. break;
  675. case SO_DETACH_FILTER:
  676. ret = sk_detach_filter(sk);
  677. break;
  678. case SO_PASSSEC:
  679. if (valbool)
  680. set_bit(SOCK_PASSSEC, &sock->flags);
  681. else
  682. clear_bit(SOCK_PASSSEC, &sock->flags);
  683. break;
  684. case SO_MARK:
  685. if (!capable(CAP_NET_ADMIN))
  686. ret = -EPERM;
  687. else
  688. sk->sk_mark = val;
  689. break;
  690. /* We implement the SO_SNDLOWAT etc to
  691. not be settable (1003.1g 5.3) */
  692. case SO_RXQ_OVFL:
  693. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  694. break;
  695. case SO_WIFI_STATUS:
  696. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  697. break;
  698. case SO_PEEK_OFF:
  699. if (sock->ops->set_peek_off)
  700. sock->ops->set_peek_off(sk, val);
  701. else
  702. ret = -EOPNOTSUPP;
  703. break;
  704. case SO_NOFCS:
  705. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  706. break;
  707. default:
  708. ret = -ENOPROTOOPT;
  709. break;
  710. }
  711. release_sock(sk);
  712. return ret;
  713. }
  714. EXPORT_SYMBOL(sock_setsockopt);
  715. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  716. struct ucred *ucred)
  717. {
  718. ucred->pid = pid_vnr(pid);
  719. ucred->uid = ucred->gid = -1;
  720. if (cred) {
  721. struct user_namespace *current_ns = current_user_ns();
  722. ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
  723. ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
  724. }
  725. }
  726. EXPORT_SYMBOL_GPL(cred_to_ucred);
  727. int sock_getsockopt(struct socket *sock, int level, int optname,
  728. char __user *optval, int __user *optlen)
  729. {
  730. struct sock *sk = sock->sk;
  731. union {
  732. int val;
  733. struct linger ling;
  734. struct timeval tm;
  735. } v;
  736. int lv = sizeof(int);
  737. int len;
  738. if (get_user(len, optlen))
  739. return -EFAULT;
  740. if (len < 0)
  741. return -EINVAL;
  742. memset(&v, 0, sizeof(v));
  743. switch (optname) {
  744. case SO_DEBUG:
  745. v.val = sock_flag(sk, SOCK_DBG);
  746. break;
  747. case SO_DONTROUTE:
  748. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  749. break;
  750. case SO_BROADCAST:
  751. v.val = !!sock_flag(sk, SOCK_BROADCAST);
  752. break;
  753. case SO_SNDBUF:
  754. v.val = sk->sk_sndbuf;
  755. break;
  756. case SO_RCVBUF:
  757. v.val = sk->sk_rcvbuf;
  758. break;
  759. case SO_REUSEADDR:
  760. v.val = sk->sk_reuse;
  761. break;
  762. case SO_KEEPALIVE:
  763. v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
  764. break;
  765. case SO_TYPE:
  766. v.val = sk->sk_type;
  767. break;
  768. case SO_PROTOCOL:
  769. v.val = sk->sk_protocol;
  770. break;
  771. case SO_DOMAIN:
  772. v.val = sk->sk_family;
  773. break;
  774. case SO_ERROR:
  775. v.val = -sock_error(sk);
  776. if (v.val == 0)
  777. v.val = xchg(&sk->sk_err_soft, 0);
  778. break;
  779. case SO_OOBINLINE:
  780. v.val = !!sock_flag(sk, SOCK_URGINLINE);
  781. break;
  782. case SO_NO_CHECK:
  783. v.val = sk->sk_no_check;
  784. break;
  785. case SO_PRIORITY:
  786. v.val = sk->sk_priority;
  787. break;
  788. case SO_LINGER:
  789. lv = sizeof(v.ling);
  790. v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
  791. v.ling.l_linger = sk->sk_lingertime / HZ;
  792. break;
  793. case SO_BSDCOMPAT:
  794. sock_warn_obsolete_bsdism("getsockopt");
  795. break;
  796. case SO_TIMESTAMP:
  797. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  798. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  799. break;
  800. case SO_TIMESTAMPNS:
  801. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  802. break;
  803. case SO_TIMESTAMPING:
  804. v.val = 0;
  805. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  806. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  807. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  808. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  809. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  810. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  811. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  812. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  813. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  814. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  815. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  816. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  817. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  818. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  819. break;
  820. case SO_RCVTIMEO:
  821. lv = sizeof(struct timeval);
  822. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  823. v.tm.tv_sec = 0;
  824. v.tm.tv_usec = 0;
  825. } else {
  826. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  827. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  828. }
  829. break;
  830. case SO_SNDTIMEO:
  831. lv = sizeof(struct timeval);
  832. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  833. v.tm.tv_sec = 0;
  834. v.tm.tv_usec = 0;
  835. } else {
  836. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  837. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  838. }
  839. break;
  840. case SO_RCVLOWAT:
  841. v.val = sk->sk_rcvlowat;
  842. break;
  843. case SO_SNDLOWAT:
  844. v.val = 1;
  845. break;
  846. case SO_PASSCRED:
  847. v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
  848. break;
  849. case SO_PEERCRED:
  850. {
  851. struct ucred peercred;
  852. if (len > sizeof(peercred))
  853. len = sizeof(peercred);
  854. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  855. if (copy_to_user(optval, &peercred, len))
  856. return -EFAULT;
  857. goto lenout;
  858. }
  859. case SO_PEERNAME:
  860. {
  861. char address[128];
  862. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  863. return -ENOTCONN;
  864. if (lv < len)
  865. return -EINVAL;
  866. if (copy_to_user(optval, address, len))
  867. return -EFAULT;
  868. goto lenout;
  869. }
  870. /* Dubious BSD thing... Probably nobody even uses it, but
  871. * the UNIX standard wants it for whatever reason... -DaveM
  872. */
  873. case SO_ACCEPTCONN:
  874. v.val = sk->sk_state == TCP_LISTEN;
  875. break;
  876. case SO_PASSSEC:
  877. v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
  878. break;
  879. case SO_PEERSEC:
  880. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  881. case SO_MARK:
  882. v.val = sk->sk_mark;
  883. break;
  884. case SO_RXQ_OVFL:
  885. v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
  886. break;
  887. case SO_WIFI_STATUS:
  888. v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
  889. break;
  890. case SO_PEEK_OFF:
  891. if (!sock->ops->set_peek_off)
  892. return -EOPNOTSUPP;
  893. v.val = sk->sk_peek_off;
  894. break;
  895. default:
  896. return -ENOPROTOOPT;
  897. }
  898. if (len > lv)
  899. len = lv;
  900. if (copy_to_user(optval, &v, len))
  901. return -EFAULT;
  902. lenout:
  903. if (put_user(len, optlen))
  904. return -EFAULT;
  905. return 0;
  906. }
  907. /*
  908. * Initialize an sk_lock.
  909. *
  910. * (We also register the sk_lock with the lock validator.)
  911. */
  912. static inline void sock_lock_init(struct sock *sk)
  913. {
  914. sock_lock_init_class_and_name(sk,
  915. af_family_slock_key_strings[sk->sk_family],
  916. af_family_slock_keys + sk->sk_family,
  917. af_family_key_strings[sk->sk_family],
  918. af_family_keys + sk->sk_family);
  919. }
  920. /*
  921. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  922. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  923. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  924. */
  925. static void sock_copy(struct sock *nsk, const struct sock *osk)
  926. {
  927. #ifdef CONFIG_SECURITY_NETWORK
  928. void *sptr = nsk->sk_security;
  929. #endif
  930. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  931. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  932. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  933. #ifdef CONFIG_SECURITY_NETWORK
  934. nsk->sk_security = sptr;
  935. security_sk_clone(osk, nsk);
  936. #endif
  937. }
  938. /*
  939. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  940. * un-modified. Special care is taken when initializing object to zero.
  941. */
  942. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  943. {
  944. if (offsetof(struct sock, sk_node.next) != 0)
  945. memset(sk, 0, offsetof(struct sock, sk_node.next));
  946. memset(&sk->sk_node.pprev, 0,
  947. size - offsetof(struct sock, sk_node.pprev));
  948. }
  949. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  950. {
  951. unsigned long nulls1, nulls2;
  952. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  953. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  954. if (nulls1 > nulls2)
  955. swap(nulls1, nulls2);
  956. if (nulls1 != 0)
  957. memset((char *)sk, 0, nulls1);
  958. memset((char *)sk + nulls1 + sizeof(void *), 0,
  959. nulls2 - nulls1 - sizeof(void *));
  960. memset((char *)sk + nulls2 + sizeof(void *), 0,
  961. size - nulls2 - sizeof(void *));
  962. }
  963. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  964. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  965. int family)
  966. {
  967. struct sock *sk;
  968. struct kmem_cache *slab;
  969. slab = prot->slab;
  970. if (slab != NULL) {
  971. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  972. if (!sk)
  973. return sk;
  974. if (priority & __GFP_ZERO) {
  975. if (prot->clear_sk)
  976. prot->clear_sk(sk, prot->obj_size);
  977. else
  978. sk_prot_clear_nulls(sk, prot->obj_size);
  979. }
  980. } else
  981. sk = kmalloc(prot->obj_size, priority);
  982. if (sk != NULL) {
  983. kmemcheck_annotate_bitfield(sk, flags);
  984. if (security_sk_alloc(sk, family, priority))
  985. goto out_free;
  986. if (!try_module_get(prot->owner))
  987. goto out_free_sec;
  988. sk_tx_queue_clear(sk);
  989. }
  990. return sk;
  991. out_free_sec:
  992. security_sk_free(sk);
  993. out_free:
  994. if (slab != NULL)
  995. kmem_cache_free(slab, sk);
  996. else
  997. kfree(sk);
  998. return NULL;
  999. }
  1000. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1001. {
  1002. struct kmem_cache *slab;
  1003. struct module *owner;
  1004. owner = prot->owner;
  1005. slab = prot->slab;
  1006. security_sk_free(sk);
  1007. if (slab != NULL)
  1008. kmem_cache_free(slab, sk);
  1009. else
  1010. kfree(sk);
  1011. module_put(owner);
  1012. }
  1013. #ifdef CONFIG_CGROUPS
  1014. void sock_update_classid(struct sock *sk)
  1015. {
  1016. u32 classid;
  1017. rcu_read_lock(); /* doing current task, which cannot vanish. */
  1018. classid = task_cls_classid(current);
  1019. rcu_read_unlock();
  1020. if (classid && classid != sk->sk_classid)
  1021. sk->sk_classid = classid;
  1022. }
  1023. EXPORT_SYMBOL(sock_update_classid);
  1024. void sock_update_netprioidx(struct sock *sk)
  1025. {
  1026. if (in_interrupt())
  1027. return;
  1028. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1029. }
  1030. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1031. #endif
  1032. /**
  1033. * sk_alloc - All socket objects are allocated here
  1034. * @net: the applicable net namespace
  1035. * @family: protocol family
  1036. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1037. * @prot: struct proto associated with this new sock instance
  1038. */
  1039. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1040. struct proto *prot)
  1041. {
  1042. struct sock *sk;
  1043. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1044. if (sk) {
  1045. sk->sk_family = family;
  1046. /*
  1047. * See comment in struct sock definition to understand
  1048. * why we need sk_prot_creator -acme
  1049. */
  1050. sk->sk_prot = sk->sk_prot_creator = prot;
  1051. sock_lock_init(sk);
  1052. sock_net_set(sk, get_net(net));
  1053. atomic_set(&sk->sk_wmem_alloc, 1);
  1054. sock_update_classid(sk);
  1055. sock_update_netprioidx(sk);
  1056. }
  1057. return sk;
  1058. }
  1059. EXPORT_SYMBOL(sk_alloc);
  1060. static void __sk_free(struct sock *sk)
  1061. {
  1062. struct sk_filter *filter;
  1063. if (sk->sk_destruct)
  1064. sk->sk_destruct(sk);
  1065. filter = rcu_dereference_check(sk->sk_filter,
  1066. atomic_read(&sk->sk_wmem_alloc) == 0);
  1067. if (filter) {
  1068. sk_filter_uncharge(sk, filter);
  1069. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1070. }
  1071. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1072. if (atomic_read(&sk->sk_omem_alloc))
  1073. printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
  1074. __func__, atomic_read(&sk->sk_omem_alloc));
  1075. if (sk->sk_peer_cred)
  1076. put_cred(sk->sk_peer_cred);
  1077. put_pid(sk->sk_peer_pid);
  1078. put_net(sock_net(sk));
  1079. sk_prot_free(sk->sk_prot_creator, sk);
  1080. }
  1081. void sk_free(struct sock *sk)
  1082. {
  1083. /*
  1084. * We subtract one from sk_wmem_alloc and can know if
  1085. * some packets are still in some tx queue.
  1086. * If not null, sock_wfree() will call __sk_free(sk) later
  1087. */
  1088. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1089. __sk_free(sk);
  1090. }
  1091. EXPORT_SYMBOL(sk_free);
  1092. /*
  1093. * Last sock_put should drop reference to sk->sk_net. It has already
  1094. * been dropped in sk_change_net. Taking reference to stopping namespace
  1095. * is not an option.
  1096. * Take reference to a socket to remove it from hash _alive_ and after that
  1097. * destroy it in the context of init_net.
  1098. */
  1099. void sk_release_kernel(struct sock *sk)
  1100. {
  1101. if (sk == NULL || sk->sk_socket == NULL)
  1102. return;
  1103. sock_hold(sk);
  1104. sock_release(sk->sk_socket);
  1105. release_net(sock_net(sk));
  1106. sock_net_set(sk, get_net(&init_net));
  1107. sock_put(sk);
  1108. }
  1109. EXPORT_SYMBOL(sk_release_kernel);
  1110. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1111. {
  1112. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1113. sock_update_memcg(newsk);
  1114. }
  1115. /**
  1116. * sk_clone_lock - clone a socket, and lock its clone
  1117. * @sk: the socket to clone
  1118. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1119. *
  1120. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1121. */
  1122. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1123. {
  1124. struct sock *newsk;
  1125. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1126. if (newsk != NULL) {
  1127. struct sk_filter *filter;
  1128. sock_copy(newsk, sk);
  1129. /* SANITY */
  1130. get_net(sock_net(newsk));
  1131. sk_node_init(&newsk->sk_node);
  1132. sock_lock_init(newsk);
  1133. bh_lock_sock(newsk);
  1134. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1135. newsk->sk_backlog.len = 0;
  1136. atomic_set(&newsk->sk_rmem_alloc, 0);
  1137. /*
  1138. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1139. */
  1140. atomic_set(&newsk->sk_wmem_alloc, 1);
  1141. atomic_set(&newsk->sk_omem_alloc, 0);
  1142. skb_queue_head_init(&newsk->sk_receive_queue);
  1143. skb_queue_head_init(&newsk->sk_write_queue);
  1144. #ifdef CONFIG_NET_DMA
  1145. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1146. #endif
  1147. spin_lock_init(&newsk->sk_dst_lock);
  1148. rwlock_init(&newsk->sk_callback_lock);
  1149. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1150. af_callback_keys + newsk->sk_family,
  1151. af_family_clock_key_strings[newsk->sk_family]);
  1152. newsk->sk_dst_cache = NULL;
  1153. newsk->sk_wmem_queued = 0;
  1154. newsk->sk_forward_alloc = 0;
  1155. newsk->sk_send_head = NULL;
  1156. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1157. sock_reset_flag(newsk, SOCK_DONE);
  1158. skb_queue_head_init(&newsk->sk_error_queue);
  1159. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1160. if (filter != NULL)
  1161. sk_filter_charge(newsk, filter);
  1162. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1163. /* It is still raw copy of parent, so invalidate
  1164. * destructor and make plain sk_free() */
  1165. newsk->sk_destruct = NULL;
  1166. bh_unlock_sock(newsk);
  1167. sk_free(newsk);
  1168. newsk = NULL;
  1169. goto out;
  1170. }
  1171. newsk->sk_err = 0;
  1172. newsk->sk_priority = 0;
  1173. /*
  1174. * Before updating sk_refcnt, we must commit prior changes to memory
  1175. * (Documentation/RCU/rculist_nulls.txt for details)
  1176. */
  1177. smp_wmb();
  1178. atomic_set(&newsk->sk_refcnt, 2);
  1179. /*
  1180. * Increment the counter in the same struct proto as the master
  1181. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1182. * is the same as sk->sk_prot->socks, as this field was copied
  1183. * with memcpy).
  1184. *
  1185. * This _changes_ the previous behaviour, where
  1186. * tcp_create_openreq_child always was incrementing the
  1187. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1188. * to be taken into account in all callers. -acme
  1189. */
  1190. sk_refcnt_debug_inc(newsk);
  1191. sk_set_socket(newsk, NULL);
  1192. newsk->sk_wq = NULL;
  1193. sk_update_clone(sk, newsk);
  1194. if (newsk->sk_prot->sockets_allocated)
  1195. sk_sockets_allocated_inc(newsk);
  1196. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1197. net_enable_timestamp();
  1198. }
  1199. out:
  1200. return newsk;
  1201. }
  1202. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1203. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1204. {
  1205. __sk_dst_set(sk, dst);
  1206. sk->sk_route_caps = dst->dev->features;
  1207. if (sk->sk_route_caps & NETIF_F_GSO)
  1208. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1209. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1210. if (sk_can_gso(sk)) {
  1211. if (dst->header_len) {
  1212. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1213. } else {
  1214. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1215. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1216. }
  1217. }
  1218. }
  1219. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1220. void __init sk_init(void)
  1221. {
  1222. if (totalram_pages <= 4096) {
  1223. sysctl_wmem_max = 32767;
  1224. sysctl_rmem_max = 32767;
  1225. sysctl_wmem_default = 32767;
  1226. sysctl_rmem_default = 32767;
  1227. } else if (totalram_pages >= 131072) {
  1228. sysctl_wmem_max = 131071;
  1229. sysctl_rmem_max = 131071;
  1230. }
  1231. }
  1232. /*
  1233. * Simple resource managers for sockets.
  1234. */
  1235. /*
  1236. * Write buffer destructor automatically called from kfree_skb.
  1237. */
  1238. void sock_wfree(struct sk_buff *skb)
  1239. {
  1240. struct sock *sk = skb->sk;
  1241. unsigned int len = skb->truesize;
  1242. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1243. /*
  1244. * Keep a reference on sk_wmem_alloc, this will be released
  1245. * after sk_write_space() call
  1246. */
  1247. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1248. sk->sk_write_space(sk);
  1249. len = 1;
  1250. }
  1251. /*
  1252. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1253. * could not do because of in-flight packets
  1254. */
  1255. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1256. __sk_free(sk);
  1257. }
  1258. EXPORT_SYMBOL(sock_wfree);
  1259. /*
  1260. * Read buffer destructor automatically called from kfree_skb.
  1261. */
  1262. void sock_rfree(struct sk_buff *skb)
  1263. {
  1264. struct sock *sk = skb->sk;
  1265. unsigned int len = skb->truesize;
  1266. atomic_sub(len, &sk->sk_rmem_alloc);
  1267. sk_mem_uncharge(sk, len);
  1268. }
  1269. EXPORT_SYMBOL(sock_rfree);
  1270. int sock_i_uid(struct sock *sk)
  1271. {
  1272. int uid;
  1273. read_lock_bh(&sk->sk_callback_lock);
  1274. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1275. read_unlock_bh(&sk->sk_callback_lock);
  1276. return uid;
  1277. }
  1278. EXPORT_SYMBOL(sock_i_uid);
  1279. unsigned long sock_i_ino(struct sock *sk)
  1280. {
  1281. unsigned long ino;
  1282. read_lock_bh(&sk->sk_callback_lock);
  1283. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1284. read_unlock_bh(&sk->sk_callback_lock);
  1285. return ino;
  1286. }
  1287. EXPORT_SYMBOL(sock_i_ino);
  1288. /*
  1289. * Allocate a skb from the socket's send buffer.
  1290. */
  1291. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1292. gfp_t priority)
  1293. {
  1294. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1295. struct sk_buff *skb = alloc_skb(size, priority);
  1296. if (skb) {
  1297. skb_set_owner_w(skb, sk);
  1298. return skb;
  1299. }
  1300. }
  1301. return NULL;
  1302. }
  1303. EXPORT_SYMBOL(sock_wmalloc);
  1304. /*
  1305. * Allocate a skb from the socket's receive buffer.
  1306. */
  1307. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1308. gfp_t priority)
  1309. {
  1310. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1311. struct sk_buff *skb = alloc_skb(size, priority);
  1312. if (skb) {
  1313. skb_set_owner_r(skb, sk);
  1314. return skb;
  1315. }
  1316. }
  1317. return NULL;
  1318. }
  1319. /*
  1320. * Allocate a memory block from the socket's option memory buffer.
  1321. */
  1322. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1323. {
  1324. if ((unsigned)size <= sysctl_optmem_max &&
  1325. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1326. void *mem;
  1327. /* First do the add, to avoid the race if kmalloc
  1328. * might sleep.
  1329. */
  1330. atomic_add(size, &sk->sk_omem_alloc);
  1331. mem = kmalloc(size, priority);
  1332. if (mem)
  1333. return mem;
  1334. atomic_sub(size, &sk->sk_omem_alloc);
  1335. }
  1336. return NULL;
  1337. }
  1338. EXPORT_SYMBOL(sock_kmalloc);
  1339. /*
  1340. * Free an option memory block.
  1341. */
  1342. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1343. {
  1344. kfree(mem);
  1345. atomic_sub(size, &sk->sk_omem_alloc);
  1346. }
  1347. EXPORT_SYMBOL(sock_kfree_s);
  1348. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1349. I think, these locks should be removed for datagram sockets.
  1350. */
  1351. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1352. {
  1353. DEFINE_WAIT(wait);
  1354. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1355. for (;;) {
  1356. if (!timeo)
  1357. break;
  1358. if (signal_pending(current))
  1359. break;
  1360. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1361. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1362. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1363. break;
  1364. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1365. break;
  1366. if (sk->sk_err)
  1367. break;
  1368. timeo = schedule_timeout(timeo);
  1369. }
  1370. finish_wait(sk_sleep(sk), &wait);
  1371. return timeo;
  1372. }
  1373. /*
  1374. * Generic send/receive buffer handlers
  1375. */
  1376. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1377. unsigned long data_len, int noblock,
  1378. int *errcode)
  1379. {
  1380. struct sk_buff *skb;
  1381. gfp_t gfp_mask;
  1382. long timeo;
  1383. int err;
  1384. gfp_mask = sk->sk_allocation;
  1385. if (gfp_mask & __GFP_WAIT)
  1386. gfp_mask |= __GFP_REPEAT;
  1387. timeo = sock_sndtimeo(sk, noblock);
  1388. while (1) {
  1389. err = sock_error(sk);
  1390. if (err != 0)
  1391. goto failure;
  1392. err = -EPIPE;
  1393. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1394. goto failure;
  1395. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1396. skb = alloc_skb(header_len, gfp_mask);
  1397. if (skb) {
  1398. int npages;
  1399. int i;
  1400. /* No pages, we're done... */
  1401. if (!data_len)
  1402. break;
  1403. npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1404. skb->truesize += data_len;
  1405. skb_shinfo(skb)->nr_frags = npages;
  1406. for (i = 0; i < npages; i++) {
  1407. struct page *page;
  1408. page = alloc_pages(sk->sk_allocation, 0);
  1409. if (!page) {
  1410. err = -ENOBUFS;
  1411. skb_shinfo(skb)->nr_frags = i;
  1412. kfree_skb(skb);
  1413. goto failure;
  1414. }
  1415. __skb_fill_page_desc(skb, i,
  1416. page, 0,
  1417. (data_len >= PAGE_SIZE ?
  1418. PAGE_SIZE :
  1419. data_len));
  1420. data_len -= PAGE_SIZE;
  1421. }
  1422. /* Full success... */
  1423. break;
  1424. }
  1425. err = -ENOBUFS;
  1426. goto failure;
  1427. }
  1428. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1429. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1430. err = -EAGAIN;
  1431. if (!timeo)
  1432. goto failure;
  1433. if (signal_pending(current))
  1434. goto interrupted;
  1435. timeo = sock_wait_for_wmem(sk, timeo);
  1436. }
  1437. skb_set_owner_w(skb, sk);
  1438. return skb;
  1439. interrupted:
  1440. err = sock_intr_errno(timeo);
  1441. failure:
  1442. *errcode = err;
  1443. return NULL;
  1444. }
  1445. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1446. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1447. int noblock, int *errcode)
  1448. {
  1449. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1450. }
  1451. EXPORT_SYMBOL(sock_alloc_send_skb);
  1452. static void __lock_sock(struct sock *sk)
  1453. __releases(&sk->sk_lock.slock)
  1454. __acquires(&sk->sk_lock.slock)
  1455. {
  1456. DEFINE_WAIT(wait);
  1457. for (;;) {
  1458. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1459. TASK_UNINTERRUPTIBLE);
  1460. spin_unlock_bh(&sk->sk_lock.slock);
  1461. schedule();
  1462. spin_lock_bh(&sk->sk_lock.slock);
  1463. if (!sock_owned_by_user(sk))
  1464. break;
  1465. }
  1466. finish_wait(&sk->sk_lock.wq, &wait);
  1467. }
  1468. static void __release_sock(struct sock *sk)
  1469. __releases(&sk->sk_lock.slock)
  1470. __acquires(&sk->sk_lock.slock)
  1471. {
  1472. struct sk_buff *skb = sk->sk_backlog.head;
  1473. do {
  1474. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1475. bh_unlock_sock(sk);
  1476. do {
  1477. struct sk_buff *next = skb->next;
  1478. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1479. skb->next = NULL;
  1480. sk_backlog_rcv(sk, skb);
  1481. /*
  1482. * We are in process context here with softirqs
  1483. * disabled, use cond_resched_softirq() to preempt.
  1484. * This is safe to do because we've taken the backlog
  1485. * queue private:
  1486. */
  1487. cond_resched_softirq();
  1488. skb = next;
  1489. } while (skb != NULL);
  1490. bh_lock_sock(sk);
  1491. } while ((skb = sk->sk_backlog.head) != NULL);
  1492. /*
  1493. * Doing the zeroing here guarantee we can not loop forever
  1494. * while a wild producer attempts to flood us.
  1495. */
  1496. sk->sk_backlog.len = 0;
  1497. }
  1498. /**
  1499. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1500. * @sk: sock to wait on
  1501. * @timeo: for how long
  1502. *
  1503. * Now socket state including sk->sk_err is changed only under lock,
  1504. * hence we may omit checks after joining wait queue.
  1505. * We check receive queue before schedule() only as optimization;
  1506. * it is very likely that release_sock() added new data.
  1507. */
  1508. int sk_wait_data(struct sock *sk, long *timeo)
  1509. {
  1510. int rc;
  1511. DEFINE_WAIT(wait);
  1512. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1513. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1514. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1515. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1516. finish_wait(sk_sleep(sk), &wait);
  1517. return rc;
  1518. }
  1519. EXPORT_SYMBOL(sk_wait_data);
  1520. /**
  1521. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1522. * @sk: socket
  1523. * @size: memory size to allocate
  1524. * @kind: allocation type
  1525. *
  1526. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1527. * rmem allocation. This function assumes that protocols which have
  1528. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1529. */
  1530. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1531. {
  1532. struct proto *prot = sk->sk_prot;
  1533. int amt = sk_mem_pages(size);
  1534. long allocated;
  1535. int parent_status = UNDER_LIMIT;
  1536. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1537. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1538. /* Under limit. */
  1539. if (parent_status == UNDER_LIMIT &&
  1540. allocated <= sk_prot_mem_limits(sk, 0)) {
  1541. sk_leave_memory_pressure(sk);
  1542. return 1;
  1543. }
  1544. /* Under pressure. (we or our parents) */
  1545. if ((parent_status > SOFT_LIMIT) ||
  1546. allocated > sk_prot_mem_limits(sk, 1))
  1547. sk_enter_memory_pressure(sk);
  1548. /* Over hard limit (we or our parents) */
  1549. if ((parent_status == OVER_LIMIT) ||
  1550. (allocated > sk_prot_mem_limits(sk, 2)))
  1551. goto suppress_allocation;
  1552. /* guarantee minimum buffer size under pressure */
  1553. if (kind == SK_MEM_RECV) {
  1554. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1555. return 1;
  1556. } else { /* SK_MEM_SEND */
  1557. if (sk->sk_type == SOCK_STREAM) {
  1558. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1559. return 1;
  1560. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1561. prot->sysctl_wmem[0])
  1562. return 1;
  1563. }
  1564. if (sk_has_memory_pressure(sk)) {
  1565. int alloc;
  1566. if (!sk_under_memory_pressure(sk))
  1567. return 1;
  1568. alloc = sk_sockets_allocated_read_positive(sk);
  1569. if (sk_prot_mem_limits(sk, 2) > alloc *
  1570. sk_mem_pages(sk->sk_wmem_queued +
  1571. atomic_read(&sk->sk_rmem_alloc) +
  1572. sk->sk_forward_alloc))
  1573. return 1;
  1574. }
  1575. suppress_allocation:
  1576. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1577. sk_stream_moderate_sndbuf(sk);
  1578. /* Fail only if socket is _under_ its sndbuf.
  1579. * In this case we cannot block, so that we have to fail.
  1580. */
  1581. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1582. return 1;
  1583. }
  1584. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1585. /* Alas. Undo changes. */
  1586. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1587. sk_memory_allocated_sub(sk, amt);
  1588. return 0;
  1589. }
  1590. EXPORT_SYMBOL(__sk_mem_schedule);
  1591. /**
  1592. * __sk_reclaim - reclaim memory_allocated
  1593. * @sk: socket
  1594. */
  1595. void __sk_mem_reclaim(struct sock *sk)
  1596. {
  1597. sk_memory_allocated_sub(sk,
  1598. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1599. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1600. if (sk_under_memory_pressure(sk) &&
  1601. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1602. sk_leave_memory_pressure(sk);
  1603. }
  1604. EXPORT_SYMBOL(__sk_mem_reclaim);
  1605. /*
  1606. * Set of default routines for initialising struct proto_ops when
  1607. * the protocol does not support a particular function. In certain
  1608. * cases where it makes no sense for a protocol to have a "do nothing"
  1609. * function, some default processing is provided.
  1610. */
  1611. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1612. {
  1613. return -EOPNOTSUPP;
  1614. }
  1615. EXPORT_SYMBOL(sock_no_bind);
  1616. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1617. int len, int flags)
  1618. {
  1619. return -EOPNOTSUPP;
  1620. }
  1621. EXPORT_SYMBOL(sock_no_connect);
  1622. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1623. {
  1624. return -EOPNOTSUPP;
  1625. }
  1626. EXPORT_SYMBOL(sock_no_socketpair);
  1627. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1628. {
  1629. return -EOPNOTSUPP;
  1630. }
  1631. EXPORT_SYMBOL(sock_no_accept);
  1632. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1633. int *len, int peer)
  1634. {
  1635. return -EOPNOTSUPP;
  1636. }
  1637. EXPORT_SYMBOL(sock_no_getname);
  1638. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1639. {
  1640. return 0;
  1641. }
  1642. EXPORT_SYMBOL(sock_no_poll);
  1643. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1644. {
  1645. return -EOPNOTSUPP;
  1646. }
  1647. EXPORT_SYMBOL(sock_no_ioctl);
  1648. int sock_no_listen(struct socket *sock, int backlog)
  1649. {
  1650. return -EOPNOTSUPP;
  1651. }
  1652. EXPORT_SYMBOL(sock_no_listen);
  1653. int sock_no_shutdown(struct socket *sock, int how)
  1654. {
  1655. return -EOPNOTSUPP;
  1656. }
  1657. EXPORT_SYMBOL(sock_no_shutdown);
  1658. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1659. char __user *optval, unsigned int optlen)
  1660. {
  1661. return -EOPNOTSUPP;
  1662. }
  1663. EXPORT_SYMBOL(sock_no_setsockopt);
  1664. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1665. char __user *optval, int __user *optlen)
  1666. {
  1667. return -EOPNOTSUPP;
  1668. }
  1669. EXPORT_SYMBOL(sock_no_getsockopt);
  1670. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1671. size_t len)
  1672. {
  1673. return -EOPNOTSUPP;
  1674. }
  1675. EXPORT_SYMBOL(sock_no_sendmsg);
  1676. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1677. size_t len, int flags)
  1678. {
  1679. return -EOPNOTSUPP;
  1680. }
  1681. EXPORT_SYMBOL(sock_no_recvmsg);
  1682. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1683. {
  1684. /* Mirror missing mmap method error code */
  1685. return -ENODEV;
  1686. }
  1687. EXPORT_SYMBOL(sock_no_mmap);
  1688. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1689. {
  1690. ssize_t res;
  1691. struct msghdr msg = {.msg_flags = flags};
  1692. struct kvec iov;
  1693. char *kaddr = kmap(page);
  1694. iov.iov_base = kaddr + offset;
  1695. iov.iov_len = size;
  1696. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1697. kunmap(page);
  1698. return res;
  1699. }
  1700. EXPORT_SYMBOL(sock_no_sendpage);
  1701. /*
  1702. * Default Socket Callbacks
  1703. */
  1704. static void sock_def_wakeup(struct sock *sk)
  1705. {
  1706. struct socket_wq *wq;
  1707. rcu_read_lock();
  1708. wq = rcu_dereference(sk->sk_wq);
  1709. if (wq_has_sleeper(wq))
  1710. wake_up_interruptible_all(&wq->wait);
  1711. rcu_read_unlock();
  1712. }
  1713. static void sock_def_error_report(struct sock *sk)
  1714. {
  1715. struct socket_wq *wq;
  1716. rcu_read_lock();
  1717. wq = rcu_dereference(sk->sk_wq);
  1718. if (wq_has_sleeper(wq))
  1719. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1720. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1721. rcu_read_unlock();
  1722. }
  1723. static void sock_def_readable(struct sock *sk, int len)
  1724. {
  1725. struct socket_wq *wq;
  1726. rcu_read_lock();
  1727. wq = rcu_dereference(sk->sk_wq);
  1728. if (wq_has_sleeper(wq))
  1729. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1730. POLLRDNORM | POLLRDBAND);
  1731. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1732. rcu_read_unlock();
  1733. }
  1734. static void sock_def_write_space(struct sock *sk)
  1735. {
  1736. struct socket_wq *wq;
  1737. rcu_read_lock();
  1738. /* Do not wake up a writer until he can make "significant"
  1739. * progress. --DaveM
  1740. */
  1741. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1742. wq = rcu_dereference(sk->sk_wq);
  1743. if (wq_has_sleeper(wq))
  1744. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1745. POLLWRNORM | POLLWRBAND);
  1746. /* Should agree with poll, otherwise some programs break */
  1747. if (sock_writeable(sk))
  1748. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1749. }
  1750. rcu_read_unlock();
  1751. }
  1752. static void sock_def_destruct(struct sock *sk)
  1753. {
  1754. kfree(sk->sk_protinfo);
  1755. }
  1756. void sk_send_sigurg(struct sock *sk)
  1757. {
  1758. if (sk->sk_socket && sk->sk_socket->file)
  1759. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1760. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1761. }
  1762. EXPORT_SYMBOL(sk_send_sigurg);
  1763. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1764. unsigned long expires)
  1765. {
  1766. if (!mod_timer(timer, expires))
  1767. sock_hold(sk);
  1768. }
  1769. EXPORT_SYMBOL(sk_reset_timer);
  1770. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1771. {
  1772. if (timer_pending(timer) && del_timer(timer))
  1773. __sock_put(sk);
  1774. }
  1775. EXPORT_SYMBOL(sk_stop_timer);
  1776. void sock_init_data(struct socket *sock, struct sock *sk)
  1777. {
  1778. skb_queue_head_init(&sk->sk_receive_queue);
  1779. skb_queue_head_init(&sk->sk_write_queue);
  1780. skb_queue_head_init(&sk->sk_error_queue);
  1781. #ifdef CONFIG_NET_DMA
  1782. skb_queue_head_init(&sk->sk_async_wait_queue);
  1783. #endif
  1784. sk->sk_send_head = NULL;
  1785. init_timer(&sk->sk_timer);
  1786. sk->sk_allocation = GFP_KERNEL;
  1787. sk->sk_rcvbuf = sysctl_rmem_default;
  1788. sk->sk_sndbuf = sysctl_wmem_default;
  1789. sk->sk_state = TCP_CLOSE;
  1790. sk_set_socket(sk, sock);
  1791. sock_set_flag(sk, SOCK_ZAPPED);
  1792. if (sock) {
  1793. sk->sk_type = sock->type;
  1794. sk->sk_wq = sock->wq;
  1795. sock->sk = sk;
  1796. } else
  1797. sk->sk_wq = NULL;
  1798. spin_lock_init(&sk->sk_dst_lock);
  1799. rwlock_init(&sk->sk_callback_lock);
  1800. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1801. af_callback_keys + sk->sk_family,
  1802. af_family_clock_key_strings[sk->sk_family]);
  1803. sk->sk_state_change = sock_def_wakeup;
  1804. sk->sk_data_ready = sock_def_readable;
  1805. sk->sk_write_space = sock_def_write_space;
  1806. sk->sk_error_report = sock_def_error_report;
  1807. sk->sk_destruct = sock_def_destruct;
  1808. sk->sk_sndmsg_page = NULL;
  1809. sk->sk_sndmsg_off = 0;
  1810. sk->sk_peek_off = -1;
  1811. sk->sk_peer_pid = NULL;
  1812. sk->sk_peer_cred = NULL;
  1813. sk->sk_write_pending = 0;
  1814. sk->sk_rcvlowat = 1;
  1815. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1816. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1817. sk->sk_stamp = ktime_set(-1L, 0);
  1818. /*
  1819. * Before updating sk_refcnt, we must commit prior changes to memory
  1820. * (Documentation/RCU/rculist_nulls.txt for details)
  1821. */
  1822. smp_wmb();
  1823. atomic_set(&sk->sk_refcnt, 1);
  1824. atomic_set(&sk->sk_drops, 0);
  1825. }
  1826. EXPORT_SYMBOL(sock_init_data);
  1827. void lock_sock_nested(struct sock *sk, int subclass)
  1828. {
  1829. might_sleep();
  1830. spin_lock_bh(&sk->sk_lock.slock);
  1831. if (sk->sk_lock.owned)
  1832. __lock_sock(sk);
  1833. sk->sk_lock.owned = 1;
  1834. spin_unlock(&sk->sk_lock.slock);
  1835. /*
  1836. * The sk_lock has mutex_lock() semantics here:
  1837. */
  1838. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1839. local_bh_enable();
  1840. }
  1841. EXPORT_SYMBOL(lock_sock_nested);
  1842. void release_sock(struct sock *sk)
  1843. {
  1844. /*
  1845. * The sk_lock has mutex_unlock() semantics:
  1846. */
  1847. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1848. spin_lock_bh(&sk->sk_lock.slock);
  1849. if (sk->sk_backlog.tail)
  1850. __release_sock(sk);
  1851. sk->sk_lock.owned = 0;
  1852. if (waitqueue_active(&sk->sk_lock.wq))
  1853. wake_up(&sk->sk_lock.wq);
  1854. spin_unlock_bh(&sk->sk_lock.slock);
  1855. }
  1856. EXPORT_SYMBOL(release_sock);
  1857. /**
  1858. * lock_sock_fast - fast version of lock_sock
  1859. * @sk: socket
  1860. *
  1861. * This version should be used for very small section, where process wont block
  1862. * return false if fast path is taken
  1863. * sk_lock.slock locked, owned = 0, BH disabled
  1864. * return true if slow path is taken
  1865. * sk_lock.slock unlocked, owned = 1, BH enabled
  1866. */
  1867. bool lock_sock_fast(struct sock *sk)
  1868. {
  1869. might_sleep();
  1870. spin_lock_bh(&sk->sk_lock.slock);
  1871. if (!sk->sk_lock.owned)
  1872. /*
  1873. * Note : We must disable BH
  1874. */
  1875. return false;
  1876. __lock_sock(sk);
  1877. sk->sk_lock.owned = 1;
  1878. spin_unlock(&sk->sk_lock.slock);
  1879. /*
  1880. * The sk_lock has mutex_lock() semantics here:
  1881. */
  1882. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1883. local_bh_enable();
  1884. return true;
  1885. }
  1886. EXPORT_SYMBOL(lock_sock_fast);
  1887. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1888. {
  1889. struct timeval tv;
  1890. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1891. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1892. tv = ktime_to_timeval(sk->sk_stamp);
  1893. if (tv.tv_sec == -1)
  1894. return -ENOENT;
  1895. if (tv.tv_sec == 0) {
  1896. sk->sk_stamp = ktime_get_real();
  1897. tv = ktime_to_timeval(sk->sk_stamp);
  1898. }
  1899. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1900. }
  1901. EXPORT_SYMBOL(sock_get_timestamp);
  1902. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1903. {
  1904. struct timespec ts;
  1905. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1906. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1907. ts = ktime_to_timespec(sk->sk_stamp);
  1908. if (ts.tv_sec == -1)
  1909. return -ENOENT;
  1910. if (ts.tv_sec == 0) {
  1911. sk->sk_stamp = ktime_get_real();
  1912. ts = ktime_to_timespec(sk->sk_stamp);
  1913. }
  1914. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1915. }
  1916. EXPORT_SYMBOL(sock_get_timestampns);
  1917. void sock_enable_timestamp(struct sock *sk, int flag)
  1918. {
  1919. if (!sock_flag(sk, flag)) {
  1920. unsigned long previous_flags = sk->sk_flags;
  1921. sock_set_flag(sk, flag);
  1922. /*
  1923. * we just set one of the two flags which require net
  1924. * time stamping, but time stamping might have been on
  1925. * already because of the other one
  1926. */
  1927. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  1928. net_enable_timestamp();
  1929. }
  1930. }
  1931. /*
  1932. * Get a socket option on an socket.
  1933. *
  1934. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1935. * asynchronous errors should be reported by getsockopt. We assume
  1936. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1937. */
  1938. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1939. char __user *optval, int __user *optlen)
  1940. {
  1941. struct sock *sk = sock->sk;
  1942. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1943. }
  1944. EXPORT_SYMBOL(sock_common_getsockopt);
  1945. #ifdef CONFIG_COMPAT
  1946. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  1947. char __user *optval, int __user *optlen)
  1948. {
  1949. struct sock *sk = sock->sk;
  1950. if (sk->sk_prot->compat_getsockopt != NULL)
  1951. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  1952. optval, optlen);
  1953. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1954. }
  1955. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  1956. #endif
  1957. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  1958. struct msghdr *msg, size_t size, int flags)
  1959. {
  1960. struct sock *sk = sock->sk;
  1961. int addr_len = 0;
  1962. int err;
  1963. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  1964. flags & ~MSG_DONTWAIT, &addr_len);
  1965. if (err >= 0)
  1966. msg->msg_namelen = addr_len;
  1967. return err;
  1968. }
  1969. EXPORT_SYMBOL(sock_common_recvmsg);
  1970. /*
  1971. * Set socket options on an inet socket.
  1972. */
  1973. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  1974. char __user *optval, unsigned int optlen)
  1975. {
  1976. struct sock *sk = sock->sk;
  1977. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1978. }
  1979. EXPORT_SYMBOL(sock_common_setsockopt);
  1980. #ifdef CONFIG_COMPAT
  1981. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  1982. char __user *optval, unsigned int optlen)
  1983. {
  1984. struct sock *sk = sock->sk;
  1985. if (sk->sk_prot->compat_setsockopt != NULL)
  1986. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  1987. optval, optlen);
  1988. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  1989. }
  1990. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  1991. #endif
  1992. void sk_common_release(struct sock *sk)
  1993. {
  1994. if (sk->sk_prot->destroy)
  1995. sk->sk_prot->destroy(sk);
  1996. /*
  1997. * Observation: when sock_common_release is called, processes have
  1998. * no access to socket. But net still has.
  1999. * Step one, detach it from networking:
  2000. *
  2001. * A. Remove from hash tables.
  2002. */
  2003. sk->sk_prot->unhash(sk);
  2004. /*
  2005. * In this point socket cannot receive new packets, but it is possible
  2006. * that some packets are in flight because some CPU runs receiver and
  2007. * did hash table lookup before we unhashed socket. They will achieve
  2008. * receive queue and will be purged by socket destructor.
  2009. *
  2010. * Also we still have packets pending on receive queue and probably,
  2011. * our own packets waiting in device queues. sock_destroy will drain
  2012. * receive queue, but transmitted packets will delay socket destruction
  2013. * until the last reference will be released.
  2014. */
  2015. sock_orphan(sk);
  2016. xfrm_sk_free_policy(sk);
  2017. sk_refcnt_debug_release(sk);
  2018. sock_put(sk);
  2019. }
  2020. EXPORT_SYMBOL(sk_common_release);
  2021. #ifdef CONFIG_PROC_FS
  2022. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2023. struct prot_inuse {
  2024. int val[PROTO_INUSE_NR];
  2025. };
  2026. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2027. #ifdef CONFIG_NET_NS
  2028. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2029. {
  2030. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2031. }
  2032. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2033. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2034. {
  2035. int cpu, idx = prot->inuse_idx;
  2036. int res = 0;
  2037. for_each_possible_cpu(cpu)
  2038. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2039. return res >= 0 ? res : 0;
  2040. }
  2041. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2042. static int __net_init sock_inuse_init_net(struct net *net)
  2043. {
  2044. net->core.inuse = alloc_percpu(struct prot_inuse);
  2045. return net->core.inuse ? 0 : -ENOMEM;
  2046. }
  2047. static void __net_exit sock_inuse_exit_net(struct net *net)
  2048. {
  2049. free_percpu(net->core.inuse);
  2050. }
  2051. static struct pernet_operations net_inuse_ops = {
  2052. .init = sock_inuse_init_net,
  2053. .exit = sock_inuse_exit_net,
  2054. };
  2055. static __init int net_inuse_init(void)
  2056. {
  2057. if (register_pernet_subsys(&net_inuse_ops))
  2058. panic("Cannot initialize net inuse counters");
  2059. return 0;
  2060. }
  2061. core_initcall(net_inuse_init);
  2062. #else
  2063. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2064. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2065. {
  2066. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2067. }
  2068. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2069. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2070. {
  2071. int cpu, idx = prot->inuse_idx;
  2072. int res = 0;
  2073. for_each_possible_cpu(cpu)
  2074. res += per_cpu(prot_inuse, cpu).val[idx];
  2075. return res >= 0 ? res : 0;
  2076. }
  2077. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2078. #endif
  2079. static void assign_proto_idx(struct proto *prot)
  2080. {
  2081. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2082. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2083. printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
  2084. return;
  2085. }
  2086. set_bit(prot->inuse_idx, proto_inuse_idx);
  2087. }
  2088. static void release_proto_idx(struct proto *prot)
  2089. {
  2090. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2091. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2092. }
  2093. #else
  2094. static inline void assign_proto_idx(struct proto *prot)
  2095. {
  2096. }
  2097. static inline void release_proto_idx(struct proto *prot)
  2098. {
  2099. }
  2100. #endif
  2101. int proto_register(struct proto *prot, int alloc_slab)
  2102. {
  2103. if (alloc_slab) {
  2104. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2105. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2106. NULL);
  2107. if (prot->slab == NULL) {
  2108. printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
  2109. prot->name);
  2110. goto out;
  2111. }
  2112. if (prot->rsk_prot != NULL) {
  2113. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2114. if (prot->rsk_prot->slab_name == NULL)
  2115. goto out_free_sock_slab;
  2116. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2117. prot->rsk_prot->obj_size, 0,
  2118. SLAB_HWCACHE_ALIGN, NULL);
  2119. if (prot->rsk_prot->slab == NULL) {
  2120. printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
  2121. prot->name);
  2122. goto out_free_request_sock_slab_name;
  2123. }
  2124. }
  2125. if (prot->twsk_prot != NULL) {
  2126. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2127. if (prot->twsk_prot->twsk_slab_name == NULL)
  2128. goto out_free_request_sock_slab;
  2129. prot->twsk_prot->twsk_slab =
  2130. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2131. prot->twsk_prot->twsk_obj_size,
  2132. 0,
  2133. SLAB_HWCACHE_ALIGN |
  2134. prot->slab_flags,
  2135. NULL);
  2136. if (prot->twsk_prot->twsk_slab == NULL)
  2137. goto out_free_timewait_sock_slab_name;
  2138. }
  2139. }
  2140. mutex_lock(&proto_list_mutex);
  2141. list_add(&prot->node, &proto_list);
  2142. assign_proto_idx(prot);
  2143. mutex_unlock(&proto_list_mutex);
  2144. return 0;
  2145. out_free_timewait_sock_slab_name:
  2146. kfree(prot->twsk_prot->twsk_slab_name);
  2147. out_free_request_sock_slab:
  2148. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2149. kmem_cache_destroy(prot->rsk_prot->slab);
  2150. prot->rsk_prot->slab = NULL;
  2151. }
  2152. out_free_request_sock_slab_name:
  2153. if (prot->rsk_prot)
  2154. kfree(prot->rsk_prot->slab_name);
  2155. out_free_sock_slab:
  2156. kmem_cache_destroy(prot->slab);
  2157. prot->slab = NULL;
  2158. out:
  2159. return -ENOBUFS;
  2160. }
  2161. EXPORT_SYMBOL(proto_register);
  2162. void proto_unregister(struct proto *prot)
  2163. {
  2164. mutex_lock(&proto_list_mutex);
  2165. release_proto_idx(prot);
  2166. list_del(&prot->node);
  2167. mutex_unlock(&proto_list_mutex);
  2168. if (prot->slab != NULL) {
  2169. kmem_cache_destroy(prot->slab);
  2170. prot->slab = NULL;
  2171. }
  2172. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2173. kmem_cache_destroy(prot->rsk_prot->slab);
  2174. kfree(prot->rsk_prot->slab_name);
  2175. prot->rsk_prot->slab = NULL;
  2176. }
  2177. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2178. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2179. kfree(prot->twsk_prot->twsk_slab_name);
  2180. prot->twsk_prot->twsk_slab = NULL;
  2181. }
  2182. }
  2183. EXPORT_SYMBOL(proto_unregister);
  2184. #ifdef CONFIG_PROC_FS
  2185. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2186. __acquires(proto_list_mutex)
  2187. {
  2188. mutex_lock(&proto_list_mutex);
  2189. return seq_list_start_head(&proto_list, *pos);
  2190. }
  2191. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2192. {
  2193. return seq_list_next(v, &proto_list, pos);
  2194. }
  2195. static void proto_seq_stop(struct seq_file *seq, void *v)
  2196. __releases(proto_list_mutex)
  2197. {
  2198. mutex_unlock(&proto_list_mutex);
  2199. }
  2200. static char proto_method_implemented(const void *method)
  2201. {
  2202. return method == NULL ? 'n' : 'y';
  2203. }
  2204. static long sock_prot_memory_allocated(struct proto *proto)
  2205. {
  2206. return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
  2207. }
  2208. static char *sock_prot_memory_pressure(struct proto *proto)
  2209. {
  2210. return proto->memory_pressure != NULL ?
  2211. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2212. }
  2213. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2214. {
  2215. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2216. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2217. proto->name,
  2218. proto->obj_size,
  2219. sock_prot_inuse_get(seq_file_net(seq), proto),
  2220. sock_prot_memory_allocated(proto),
  2221. sock_prot_memory_pressure(proto),
  2222. proto->max_header,
  2223. proto->slab == NULL ? "no" : "yes",
  2224. module_name(proto->owner),
  2225. proto_method_implemented(proto->close),
  2226. proto_method_implemented(proto->connect),
  2227. proto_method_implemented(proto->disconnect),
  2228. proto_method_implemented(proto->accept),
  2229. proto_method_implemented(proto->ioctl),
  2230. proto_method_implemented(proto->init),
  2231. proto_method_implemented(proto->destroy),
  2232. proto_method_implemented(proto->shutdown),
  2233. proto_method_implemented(proto->setsockopt),
  2234. proto_method_implemented(proto->getsockopt),
  2235. proto_method_implemented(proto->sendmsg),
  2236. proto_method_implemented(proto->recvmsg),
  2237. proto_method_implemented(proto->sendpage),
  2238. proto_method_implemented(proto->bind),
  2239. proto_method_implemented(proto->backlog_rcv),
  2240. proto_method_implemented(proto->hash),
  2241. proto_method_implemented(proto->unhash),
  2242. proto_method_implemented(proto->get_port),
  2243. proto_method_implemented(proto->enter_memory_pressure));
  2244. }
  2245. static int proto_seq_show(struct seq_file *seq, void *v)
  2246. {
  2247. if (v == &proto_list)
  2248. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2249. "protocol",
  2250. "size",
  2251. "sockets",
  2252. "memory",
  2253. "press",
  2254. "maxhdr",
  2255. "slab",
  2256. "module",
  2257. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2258. else
  2259. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2260. return 0;
  2261. }
  2262. static const struct seq_operations proto_seq_ops = {
  2263. .start = proto_seq_start,
  2264. .next = proto_seq_next,
  2265. .stop = proto_seq_stop,
  2266. .show = proto_seq_show,
  2267. };
  2268. static int proto_seq_open(struct inode *inode, struct file *file)
  2269. {
  2270. return seq_open_net(inode, file, &proto_seq_ops,
  2271. sizeof(struct seq_net_private));
  2272. }
  2273. static const struct file_operations proto_seq_fops = {
  2274. .owner = THIS_MODULE,
  2275. .open = proto_seq_open,
  2276. .read = seq_read,
  2277. .llseek = seq_lseek,
  2278. .release = seq_release_net,
  2279. };
  2280. static __net_init int proto_init_net(struct net *net)
  2281. {
  2282. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2283. return -ENOMEM;
  2284. return 0;
  2285. }
  2286. static __net_exit void proto_exit_net(struct net *net)
  2287. {
  2288. proc_net_remove(net, "protocols");
  2289. }
  2290. static __net_initdata struct pernet_operations proto_net_ops = {
  2291. .init = proto_init_net,
  2292. .exit = proto_exit_net,
  2293. };
  2294. static int __init proto_init(void)
  2295. {
  2296. return register_pernet_subsys(&proto_net_ops);
  2297. }
  2298. subsys_initcall(proto_init);
  2299. #endif /* PROC_FS */