sched.c 219 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #include "sched_autogroup.h"
  79. #define CREATE_TRACE_POINTS
  80. #include <trace/events/sched.h>
  81. /*
  82. * Convert user-nice values [ -20 ... 0 ... 19 ]
  83. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  84. * and back.
  85. */
  86. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  87. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  88. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  89. /*
  90. * 'User priority' is the nice value converted to something we
  91. * can work with better when scaling various scheduler parameters,
  92. * it's a [ 0 ... 39 ] range.
  93. */
  94. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  95. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  96. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  97. /*
  98. * Helpers for converting nanosecond timing to jiffy resolution
  99. */
  100. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  101. #define NICE_0_LOAD SCHED_LOAD_SCALE
  102. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  103. /*
  104. * These are the 'tuning knobs' of the scheduler:
  105. *
  106. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  107. * Timeslices get refilled after they expire.
  108. */
  109. #define DEF_TIMESLICE (100 * HZ / 1000)
  110. /*
  111. * single value that denotes runtime == period, ie unlimited time.
  112. */
  113. #define RUNTIME_INF ((u64)~0ULL)
  114. static inline int rt_policy(int policy)
  115. {
  116. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  117. return 1;
  118. return 0;
  119. }
  120. static inline int task_has_rt_policy(struct task_struct *p)
  121. {
  122. return rt_policy(p->policy);
  123. }
  124. /*
  125. * This is the priority-queue data structure of the RT scheduling class:
  126. */
  127. struct rt_prio_array {
  128. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  129. struct list_head queue[MAX_RT_PRIO];
  130. };
  131. struct rt_bandwidth {
  132. /* nests inside the rq lock: */
  133. raw_spinlock_t rt_runtime_lock;
  134. ktime_t rt_period;
  135. u64 rt_runtime;
  136. struct hrtimer rt_period_timer;
  137. };
  138. static struct rt_bandwidth def_rt_bandwidth;
  139. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  140. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  141. {
  142. struct rt_bandwidth *rt_b =
  143. container_of(timer, struct rt_bandwidth, rt_period_timer);
  144. ktime_t now;
  145. int overrun;
  146. int idle = 0;
  147. for (;;) {
  148. now = hrtimer_cb_get_time(timer);
  149. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  150. if (!overrun)
  151. break;
  152. idle = do_sched_rt_period_timer(rt_b, overrun);
  153. }
  154. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  155. }
  156. static
  157. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  158. {
  159. rt_b->rt_period = ns_to_ktime(period);
  160. rt_b->rt_runtime = runtime;
  161. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  162. hrtimer_init(&rt_b->rt_period_timer,
  163. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  164. rt_b->rt_period_timer.function = sched_rt_period_timer;
  165. }
  166. static inline int rt_bandwidth_enabled(void)
  167. {
  168. return sysctl_sched_rt_runtime >= 0;
  169. }
  170. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  171. {
  172. ktime_t now;
  173. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  174. return;
  175. if (hrtimer_active(&rt_b->rt_period_timer))
  176. return;
  177. raw_spin_lock(&rt_b->rt_runtime_lock);
  178. for (;;) {
  179. unsigned long delta;
  180. ktime_t soft, hard;
  181. if (hrtimer_active(&rt_b->rt_period_timer))
  182. break;
  183. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  184. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  185. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  186. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  187. delta = ktime_to_ns(ktime_sub(hard, soft));
  188. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  189. HRTIMER_MODE_ABS_PINNED, 0);
  190. }
  191. raw_spin_unlock(&rt_b->rt_runtime_lock);
  192. }
  193. #ifdef CONFIG_RT_GROUP_SCHED
  194. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  195. {
  196. hrtimer_cancel(&rt_b->rt_period_timer);
  197. }
  198. #endif
  199. /*
  200. * sched_domains_mutex serializes calls to init_sched_domains,
  201. * detach_destroy_domains and partition_sched_domains.
  202. */
  203. static DEFINE_MUTEX(sched_domains_mutex);
  204. #ifdef CONFIG_CGROUP_SCHED
  205. #include <linux/cgroup.h>
  206. struct cfs_rq;
  207. static LIST_HEAD(task_groups);
  208. /* task group related information */
  209. struct task_group {
  210. struct cgroup_subsys_state css;
  211. #ifdef CONFIG_FAIR_GROUP_SCHED
  212. /* schedulable entities of this group on each cpu */
  213. struct sched_entity **se;
  214. /* runqueue "owned" by this group on each cpu */
  215. struct cfs_rq **cfs_rq;
  216. unsigned long shares;
  217. atomic_t load_weight;
  218. #endif
  219. #ifdef CONFIG_RT_GROUP_SCHED
  220. struct sched_rt_entity **rt_se;
  221. struct rt_rq **rt_rq;
  222. struct rt_bandwidth rt_bandwidth;
  223. #endif
  224. struct rcu_head rcu;
  225. struct list_head list;
  226. struct task_group *parent;
  227. struct list_head siblings;
  228. struct list_head children;
  229. #ifdef CONFIG_SCHED_AUTOGROUP
  230. struct autogroup *autogroup;
  231. #endif
  232. };
  233. /* task_group_lock serializes the addition/removal of task groups */
  234. static DEFINE_SPINLOCK(task_group_lock);
  235. #ifdef CONFIG_FAIR_GROUP_SCHED
  236. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  237. /*
  238. * A weight of 0 or 1 can cause arithmetics problems.
  239. * A weight of a cfs_rq is the sum of weights of which entities
  240. * are queued on this cfs_rq, so a weight of a entity should not be
  241. * too large, so as the shares value of a task group.
  242. * (The default weight is 1024 - so there's no practical
  243. * limitation from this.)
  244. */
  245. #define MIN_SHARES 2
  246. #define MAX_SHARES (1UL << 18)
  247. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  248. #endif
  249. /* Default task group.
  250. * Every task in system belong to this group at bootup.
  251. */
  252. struct task_group root_task_group;
  253. #endif /* CONFIG_CGROUP_SCHED */
  254. /* CFS-related fields in a runqueue */
  255. struct cfs_rq {
  256. struct load_weight load;
  257. unsigned long nr_running;
  258. u64 exec_clock;
  259. u64 min_vruntime;
  260. struct rb_root tasks_timeline;
  261. struct rb_node *rb_leftmost;
  262. struct list_head tasks;
  263. struct list_head *balance_iterator;
  264. /*
  265. * 'curr' points to currently running entity on this cfs_rq.
  266. * It is set to NULL otherwise (i.e when none are currently running).
  267. */
  268. struct sched_entity *curr, *next, *last, *skip;
  269. unsigned int nr_spread_over;
  270. #ifdef CONFIG_FAIR_GROUP_SCHED
  271. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  272. /*
  273. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  274. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  275. * (like users, containers etc.)
  276. *
  277. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  278. * list is used during load balance.
  279. */
  280. int on_list;
  281. struct list_head leaf_cfs_rq_list;
  282. struct task_group *tg; /* group that "owns" this runqueue */
  283. #ifdef CONFIG_SMP
  284. /*
  285. * the part of load.weight contributed by tasks
  286. */
  287. unsigned long task_weight;
  288. /*
  289. * h_load = weight * f(tg)
  290. *
  291. * Where f(tg) is the recursive weight fraction assigned to
  292. * this group.
  293. */
  294. unsigned long h_load;
  295. /*
  296. * Maintaining per-cpu shares distribution for group scheduling
  297. *
  298. * load_stamp is the last time we updated the load average
  299. * load_last is the last time we updated the load average and saw load
  300. * load_unacc_exec_time is currently unaccounted execution time
  301. */
  302. u64 load_avg;
  303. u64 load_period;
  304. u64 load_stamp, load_last, load_unacc_exec_time;
  305. unsigned long load_contribution;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. struct rcu_head rcu;
  351. cpumask_var_t span;
  352. cpumask_var_t online;
  353. /*
  354. * The "RT overload" flag: it gets set if a CPU has more than
  355. * one runnable RT task.
  356. */
  357. cpumask_var_t rto_mask;
  358. atomic_t rto_count;
  359. struct cpupri cpupri;
  360. };
  361. /*
  362. * By default the system creates a single root-domain with all cpus as
  363. * members (mimicking the global state we have today).
  364. */
  365. static struct root_domain def_root_domain;
  366. #endif /* CONFIG_SMP */
  367. /*
  368. * This is the main, per-CPU runqueue data structure.
  369. *
  370. * Locking rule: those places that want to lock multiple runqueues
  371. * (such as the load balancing or the thread migration code), lock
  372. * acquire operations must be ordered by ascending &runqueue.
  373. */
  374. struct rq {
  375. /* runqueue lock: */
  376. raw_spinlock_t lock;
  377. /*
  378. * nr_running and cpu_load should be in the same cacheline because
  379. * remote CPUs use both these fields when doing load calculation.
  380. */
  381. unsigned long nr_running;
  382. #define CPU_LOAD_IDX_MAX 5
  383. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  384. unsigned long last_load_update_tick;
  385. #ifdef CONFIG_NO_HZ
  386. u64 nohz_stamp;
  387. unsigned char nohz_balance_kick;
  388. #endif
  389. unsigned int skip_clock_update;
  390. /* capture load from *all* tasks on this cpu: */
  391. struct load_weight load;
  392. unsigned long nr_load_updates;
  393. u64 nr_switches;
  394. struct cfs_rq cfs;
  395. struct rt_rq rt;
  396. #ifdef CONFIG_FAIR_GROUP_SCHED
  397. /* list of leaf cfs_rq on this cpu: */
  398. struct list_head leaf_cfs_rq_list;
  399. #endif
  400. #ifdef CONFIG_RT_GROUP_SCHED
  401. struct list_head leaf_rt_rq_list;
  402. #endif
  403. /*
  404. * This is part of a global counter where only the total sum
  405. * over all CPUs matters. A task can increase this counter on
  406. * one CPU and if it got migrated afterwards it may decrease
  407. * it on another CPU. Always updated under the runqueue lock:
  408. */
  409. unsigned long nr_uninterruptible;
  410. struct task_struct *curr, *idle, *stop;
  411. unsigned long next_balance;
  412. struct mm_struct *prev_mm;
  413. u64 clock;
  414. u64 clock_task;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  436. u64 prev_irq_time;
  437. #endif
  438. /* calc_load related fields */
  439. unsigned long calc_load_update;
  440. long calc_load_active;
  441. #ifdef CONFIG_SCHED_HRTICK
  442. #ifdef CONFIG_SMP
  443. int hrtick_csd_pending;
  444. struct call_single_data hrtick_csd;
  445. #endif
  446. struct hrtimer hrtick_timer;
  447. #endif
  448. #ifdef CONFIG_SCHEDSTATS
  449. /* latency stats */
  450. struct sched_info rq_sched_info;
  451. unsigned long long rq_cpu_time;
  452. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  453. /* sys_sched_yield() stats */
  454. unsigned int yld_count;
  455. /* schedule() stats */
  456. unsigned int sched_switch;
  457. unsigned int sched_count;
  458. unsigned int sched_goidle;
  459. /* try_to_wake_up() stats */
  460. unsigned int ttwu_count;
  461. unsigned int ttwu_local;
  462. #endif
  463. };
  464. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  465. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  466. static inline int cpu_of(struct rq *rq)
  467. {
  468. #ifdef CONFIG_SMP
  469. return rq->cpu;
  470. #else
  471. return 0;
  472. #endif
  473. }
  474. #define rcu_dereference_check_sched_domain(p) \
  475. rcu_dereference_check((p), \
  476. rcu_read_lock_held() || \
  477. lockdep_is_held(&sched_domains_mutex))
  478. /*
  479. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  480. * See detach_destroy_domains: synchronize_sched for details.
  481. *
  482. * The domain tree of any CPU may only be accessed from within
  483. * preempt-disabled sections.
  484. */
  485. #define for_each_domain(cpu, __sd) \
  486. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  487. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  488. #define this_rq() (&__get_cpu_var(runqueues))
  489. #define task_rq(p) cpu_rq(task_cpu(p))
  490. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  491. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  492. #ifdef CONFIG_CGROUP_SCHED
  493. /*
  494. * Return the group to which this tasks belongs.
  495. *
  496. * We use task_subsys_state_check() and extend the RCU verification
  497. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  498. * holds that lock for each task it moves into the cgroup. Therefore
  499. * by holding that lock, we pin the task to the current cgroup.
  500. */
  501. static inline struct task_group *task_group(struct task_struct *p)
  502. {
  503. struct task_group *tg;
  504. struct cgroup_subsys_state *css;
  505. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  506. lockdep_is_held(&task_rq(p)->lock));
  507. tg = container_of(css, struct task_group, css);
  508. return autogroup_task_group(p, tg);
  509. }
  510. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  511. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  512. {
  513. #ifdef CONFIG_FAIR_GROUP_SCHED
  514. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  515. p->se.parent = task_group(p)->se[cpu];
  516. #endif
  517. #ifdef CONFIG_RT_GROUP_SCHED
  518. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  519. p->rt.parent = task_group(p)->rt_se[cpu];
  520. #endif
  521. }
  522. #else /* CONFIG_CGROUP_SCHED */
  523. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  524. static inline struct task_group *task_group(struct task_struct *p)
  525. {
  526. return NULL;
  527. }
  528. #endif /* CONFIG_CGROUP_SCHED */
  529. static void update_rq_clock_task(struct rq *rq, s64 delta);
  530. static void update_rq_clock(struct rq *rq)
  531. {
  532. s64 delta;
  533. if (rq->skip_clock_update)
  534. return;
  535. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  536. rq->clock += delta;
  537. update_rq_clock_task(rq, delta);
  538. }
  539. /*
  540. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  541. */
  542. #ifdef CONFIG_SCHED_DEBUG
  543. # define const_debug __read_mostly
  544. #else
  545. # define const_debug static const
  546. #endif
  547. /**
  548. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  549. * @cpu: the processor in question.
  550. *
  551. * This interface allows printk to be called with the runqueue lock
  552. * held and know whether or not it is OK to wake up the klogd.
  553. */
  554. int runqueue_is_locked(int cpu)
  555. {
  556. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  557. }
  558. /*
  559. * Debugging: various feature bits
  560. */
  561. #define SCHED_FEAT(name, enabled) \
  562. __SCHED_FEAT_##name ,
  563. enum {
  564. #include "sched_features.h"
  565. };
  566. #undef SCHED_FEAT
  567. #define SCHED_FEAT(name, enabled) \
  568. (1UL << __SCHED_FEAT_##name) * enabled |
  569. const_debug unsigned int sysctl_sched_features =
  570. #include "sched_features.h"
  571. 0;
  572. #undef SCHED_FEAT
  573. #ifdef CONFIG_SCHED_DEBUG
  574. #define SCHED_FEAT(name, enabled) \
  575. #name ,
  576. static __read_mostly char *sched_feat_names[] = {
  577. #include "sched_features.h"
  578. NULL
  579. };
  580. #undef SCHED_FEAT
  581. static int sched_feat_show(struct seq_file *m, void *v)
  582. {
  583. int i;
  584. for (i = 0; sched_feat_names[i]; i++) {
  585. if (!(sysctl_sched_features & (1UL << i)))
  586. seq_puts(m, "NO_");
  587. seq_printf(m, "%s ", sched_feat_names[i]);
  588. }
  589. seq_puts(m, "\n");
  590. return 0;
  591. }
  592. static ssize_t
  593. sched_feat_write(struct file *filp, const char __user *ubuf,
  594. size_t cnt, loff_t *ppos)
  595. {
  596. char buf[64];
  597. char *cmp;
  598. int neg = 0;
  599. int i;
  600. if (cnt > 63)
  601. cnt = 63;
  602. if (copy_from_user(&buf, ubuf, cnt))
  603. return -EFAULT;
  604. buf[cnt] = 0;
  605. cmp = strstrip(buf);
  606. if (strncmp(cmp, "NO_", 3) == 0) {
  607. neg = 1;
  608. cmp += 3;
  609. }
  610. for (i = 0; sched_feat_names[i]; i++) {
  611. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  612. if (neg)
  613. sysctl_sched_features &= ~(1UL << i);
  614. else
  615. sysctl_sched_features |= (1UL << i);
  616. break;
  617. }
  618. }
  619. if (!sched_feat_names[i])
  620. return -EINVAL;
  621. *ppos += cnt;
  622. return cnt;
  623. }
  624. static int sched_feat_open(struct inode *inode, struct file *filp)
  625. {
  626. return single_open(filp, sched_feat_show, NULL);
  627. }
  628. static const struct file_operations sched_feat_fops = {
  629. .open = sched_feat_open,
  630. .write = sched_feat_write,
  631. .read = seq_read,
  632. .llseek = seq_lseek,
  633. .release = single_release,
  634. };
  635. static __init int sched_init_debug(void)
  636. {
  637. debugfs_create_file("sched_features", 0644, NULL, NULL,
  638. &sched_feat_fops);
  639. return 0;
  640. }
  641. late_initcall(sched_init_debug);
  642. #endif
  643. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  644. /*
  645. * Number of tasks to iterate in a single balance run.
  646. * Limited because this is done with IRQs disabled.
  647. */
  648. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  649. /*
  650. * period over which we average the RT time consumption, measured
  651. * in ms.
  652. *
  653. * default: 1s
  654. */
  655. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  656. /*
  657. * period over which we measure -rt task cpu usage in us.
  658. * default: 1s
  659. */
  660. unsigned int sysctl_sched_rt_period = 1000000;
  661. static __read_mostly int scheduler_running;
  662. /*
  663. * part of the period that we allow rt tasks to run in us.
  664. * default: 0.95s
  665. */
  666. int sysctl_sched_rt_runtime = 950000;
  667. static inline u64 global_rt_period(void)
  668. {
  669. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  670. }
  671. static inline u64 global_rt_runtime(void)
  672. {
  673. if (sysctl_sched_rt_runtime < 0)
  674. return RUNTIME_INF;
  675. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  676. }
  677. #ifndef prepare_arch_switch
  678. # define prepare_arch_switch(next) do { } while (0)
  679. #endif
  680. #ifndef finish_arch_switch
  681. # define finish_arch_switch(prev) do { } while (0)
  682. #endif
  683. static inline int task_current(struct rq *rq, struct task_struct *p)
  684. {
  685. return rq->curr == p;
  686. }
  687. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  688. static inline int task_running(struct rq *rq, struct task_struct *p)
  689. {
  690. return task_current(rq, p);
  691. }
  692. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  693. {
  694. }
  695. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  696. {
  697. #ifdef CONFIG_DEBUG_SPINLOCK
  698. /* this is a valid case when another task releases the spinlock */
  699. rq->lock.owner = current;
  700. #endif
  701. /*
  702. * If we are tracking spinlock dependencies then we have to
  703. * fix up the runqueue lock - which gets 'carried over' from
  704. * prev into current:
  705. */
  706. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  707. raw_spin_unlock_irq(&rq->lock);
  708. }
  709. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  710. static inline int task_running(struct rq *rq, struct task_struct *p)
  711. {
  712. #ifdef CONFIG_SMP
  713. return p->oncpu;
  714. #else
  715. return task_current(rq, p);
  716. #endif
  717. }
  718. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  719. {
  720. #ifdef CONFIG_SMP
  721. /*
  722. * We can optimise this out completely for !SMP, because the
  723. * SMP rebalancing from interrupt is the only thing that cares
  724. * here.
  725. */
  726. next->oncpu = 1;
  727. #endif
  728. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  729. raw_spin_unlock_irq(&rq->lock);
  730. #else
  731. raw_spin_unlock(&rq->lock);
  732. #endif
  733. }
  734. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * After ->oncpu is cleared, the task can be moved to a different CPU.
  739. * We must ensure this doesn't happen until the switch is completely
  740. * finished.
  741. */
  742. smp_wmb();
  743. prev->oncpu = 0;
  744. #endif
  745. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. local_irq_enable();
  747. #endif
  748. }
  749. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  750. /*
  751. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  752. * against ttwu().
  753. */
  754. static inline int task_is_waking(struct task_struct *p)
  755. {
  756. return unlikely(p->state == TASK_WAKING);
  757. }
  758. /*
  759. * __task_rq_lock - lock the runqueue a given task resides on.
  760. * Must be called interrupts disabled.
  761. */
  762. static inline struct rq *__task_rq_lock(struct task_struct *p)
  763. __acquires(rq->lock)
  764. {
  765. struct rq *rq;
  766. for (;;) {
  767. rq = task_rq(p);
  768. raw_spin_lock(&rq->lock);
  769. if (likely(rq == task_rq(p)))
  770. return rq;
  771. raw_spin_unlock(&rq->lock);
  772. }
  773. }
  774. /*
  775. * task_rq_lock - lock the runqueue a given task resides on and disable
  776. * interrupts. Note the ordering: we can safely lookup the task_rq without
  777. * explicitly disabling preemption.
  778. */
  779. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  780. __acquires(rq->lock)
  781. {
  782. struct rq *rq;
  783. for (;;) {
  784. local_irq_save(*flags);
  785. rq = task_rq(p);
  786. raw_spin_lock(&rq->lock);
  787. if (likely(rq == task_rq(p)))
  788. return rq;
  789. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  790. }
  791. }
  792. static void __task_rq_unlock(struct rq *rq)
  793. __releases(rq->lock)
  794. {
  795. raw_spin_unlock(&rq->lock);
  796. }
  797. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  798. __releases(rq->lock)
  799. {
  800. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  801. }
  802. /*
  803. * this_rq_lock - lock this runqueue and disable interrupts.
  804. */
  805. static struct rq *this_rq_lock(void)
  806. __acquires(rq->lock)
  807. {
  808. struct rq *rq;
  809. local_irq_disable();
  810. rq = this_rq();
  811. raw_spin_lock(&rq->lock);
  812. return rq;
  813. }
  814. #ifdef CONFIG_SCHED_HRTICK
  815. /*
  816. * Use HR-timers to deliver accurate preemption points.
  817. *
  818. * Its all a bit involved since we cannot program an hrt while holding the
  819. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  820. * reschedule event.
  821. *
  822. * When we get rescheduled we reprogram the hrtick_timer outside of the
  823. * rq->lock.
  824. */
  825. /*
  826. * Use hrtick when:
  827. * - enabled by features
  828. * - hrtimer is actually high res
  829. */
  830. static inline int hrtick_enabled(struct rq *rq)
  831. {
  832. if (!sched_feat(HRTICK))
  833. return 0;
  834. if (!cpu_active(cpu_of(rq)))
  835. return 0;
  836. return hrtimer_is_hres_active(&rq->hrtick_timer);
  837. }
  838. static void hrtick_clear(struct rq *rq)
  839. {
  840. if (hrtimer_active(&rq->hrtick_timer))
  841. hrtimer_cancel(&rq->hrtick_timer);
  842. }
  843. /*
  844. * High-resolution timer tick.
  845. * Runs from hardirq context with interrupts disabled.
  846. */
  847. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  848. {
  849. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  850. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  851. raw_spin_lock(&rq->lock);
  852. update_rq_clock(rq);
  853. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  854. raw_spin_unlock(&rq->lock);
  855. return HRTIMER_NORESTART;
  856. }
  857. #ifdef CONFIG_SMP
  858. /*
  859. * called from hardirq (IPI) context
  860. */
  861. static void __hrtick_start(void *arg)
  862. {
  863. struct rq *rq = arg;
  864. raw_spin_lock(&rq->lock);
  865. hrtimer_restart(&rq->hrtick_timer);
  866. rq->hrtick_csd_pending = 0;
  867. raw_spin_unlock(&rq->lock);
  868. }
  869. /*
  870. * Called to set the hrtick timer state.
  871. *
  872. * called with rq->lock held and irqs disabled
  873. */
  874. static void hrtick_start(struct rq *rq, u64 delay)
  875. {
  876. struct hrtimer *timer = &rq->hrtick_timer;
  877. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  878. hrtimer_set_expires(timer, time);
  879. if (rq == this_rq()) {
  880. hrtimer_restart(timer);
  881. } else if (!rq->hrtick_csd_pending) {
  882. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  883. rq->hrtick_csd_pending = 1;
  884. }
  885. }
  886. static int
  887. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  888. {
  889. int cpu = (int)(long)hcpu;
  890. switch (action) {
  891. case CPU_UP_CANCELED:
  892. case CPU_UP_CANCELED_FROZEN:
  893. case CPU_DOWN_PREPARE:
  894. case CPU_DOWN_PREPARE_FROZEN:
  895. case CPU_DEAD:
  896. case CPU_DEAD_FROZEN:
  897. hrtick_clear(cpu_rq(cpu));
  898. return NOTIFY_OK;
  899. }
  900. return NOTIFY_DONE;
  901. }
  902. static __init void init_hrtick(void)
  903. {
  904. hotcpu_notifier(hotplug_hrtick, 0);
  905. }
  906. #else
  907. /*
  908. * Called to set the hrtick timer state.
  909. *
  910. * called with rq->lock held and irqs disabled
  911. */
  912. static void hrtick_start(struct rq *rq, u64 delay)
  913. {
  914. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  915. HRTIMER_MODE_REL_PINNED, 0);
  916. }
  917. static inline void init_hrtick(void)
  918. {
  919. }
  920. #endif /* CONFIG_SMP */
  921. static void init_rq_hrtick(struct rq *rq)
  922. {
  923. #ifdef CONFIG_SMP
  924. rq->hrtick_csd_pending = 0;
  925. rq->hrtick_csd.flags = 0;
  926. rq->hrtick_csd.func = __hrtick_start;
  927. rq->hrtick_csd.info = rq;
  928. #endif
  929. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  930. rq->hrtick_timer.function = hrtick;
  931. }
  932. #else /* CONFIG_SCHED_HRTICK */
  933. static inline void hrtick_clear(struct rq *rq)
  934. {
  935. }
  936. static inline void init_rq_hrtick(struct rq *rq)
  937. {
  938. }
  939. static inline void init_hrtick(void)
  940. {
  941. }
  942. #endif /* CONFIG_SCHED_HRTICK */
  943. /*
  944. * resched_task - mark a task 'to be rescheduled now'.
  945. *
  946. * On UP this means the setting of the need_resched flag, on SMP it
  947. * might also involve a cross-CPU call to trigger the scheduler on
  948. * the target CPU.
  949. */
  950. #ifdef CONFIG_SMP
  951. #ifndef tsk_is_polling
  952. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  953. #endif
  954. static void resched_task(struct task_struct *p)
  955. {
  956. int cpu;
  957. assert_raw_spin_locked(&task_rq(p)->lock);
  958. if (test_tsk_need_resched(p))
  959. return;
  960. set_tsk_need_resched(p);
  961. cpu = task_cpu(p);
  962. if (cpu == smp_processor_id())
  963. return;
  964. /* NEED_RESCHED must be visible before we test polling */
  965. smp_mb();
  966. if (!tsk_is_polling(p))
  967. smp_send_reschedule(cpu);
  968. }
  969. static void resched_cpu(int cpu)
  970. {
  971. struct rq *rq = cpu_rq(cpu);
  972. unsigned long flags;
  973. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  974. return;
  975. resched_task(cpu_curr(cpu));
  976. raw_spin_unlock_irqrestore(&rq->lock, flags);
  977. }
  978. #ifdef CONFIG_NO_HZ
  979. /*
  980. * In the semi idle case, use the nearest busy cpu for migrating timers
  981. * from an idle cpu. This is good for power-savings.
  982. *
  983. * We don't do similar optimization for completely idle system, as
  984. * selecting an idle cpu will add more delays to the timers than intended
  985. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  986. */
  987. int get_nohz_timer_target(void)
  988. {
  989. int cpu = smp_processor_id();
  990. int i;
  991. struct sched_domain *sd;
  992. for_each_domain(cpu, sd) {
  993. for_each_cpu(i, sched_domain_span(sd))
  994. if (!idle_cpu(i))
  995. return i;
  996. }
  997. return cpu;
  998. }
  999. /*
  1000. * When add_timer_on() enqueues a timer into the timer wheel of an
  1001. * idle CPU then this timer might expire before the next timer event
  1002. * which is scheduled to wake up that CPU. In case of a completely
  1003. * idle system the next event might even be infinite time into the
  1004. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1005. * leaves the inner idle loop so the newly added timer is taken into
  1006. * account when the CPU goes back to idle and evaluates the timer
  1007. * wheel for the next timer event.
  1008. */
  1009. void wake_up_idle_cpu(int cpu)
  1010. {
  1011. struct rq *rq = cpu_rq(cpu);
  1012. if (cpu == smp_processor_id())
  1013. return;
  1014. /*
  1015. * This is safe, as this function is called with the timer
  1016. * wheel base lock of (cpu) held. When the CPU is on the way
  1017. * to idle and has not yet set rq->curr to idle then it will
  1018. * be serialized on the timer wheel base lock and take the new
  1019. * timer into account automatically.
  1020. */
  1021. if (rq->curr != rq->idle)
  1022. return;
  1023. /*
  1024. * We can set TIF_RESCHED on the idle task of the other CPU
  1025. * lockless. The worst case is that the other CPU runs the
  1026. * idle task through an additional NOOP schedule()
  1027. */
  1028. set_tsk_need_resched(rq->idle);
  1029. /* NEED_RESCHED must be visible before we test polling */
  1030. smp_mb();
  1031. if (!tsk_is_polling(rq->idle))
  1032. smp_send_reschedule(cpu);
  1033. }
  1034. #endif /* CONFIG_NO_HZ */
  1035. static u64 sched_avg_period(void)
  1036. {
  1037. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1038. }
  1039. static void sched_avg_update(struct rq *rq)
  1040. {
  1041. s64 period = sched_avg_period();
  1042. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1043. /*
  1044. * Inline assembly required to prevent the compiler
  1045. * optimising this loop into a divmod call.
  1046. * See __iter_div_u64_rem() for another example of this.
  1047. */
  1048. asm("" : "+rm" (rq->age_stamp));
  1049. rq->age_stamp += period;
  1050. rq->rt_avg /= 2;
  1051. }
  1052. }
  1053. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1054. {
  1055. rq->rt_avg += rt_delta;
  1056. sched_avg_update(rq);
  1057. }
  1058. #else /* !CONFIG_SMP */
  1059. static void resched_task(struct task_struct *p)
  1060. {
  1061. assert_raw_spin_locked(&task_rq(p)->lock);
  1062. set_tsk_need_resched(p);
  1063. }
  1064. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1065. {
  1066. }
  1067. static void sched_avg_update(struct rq *rq)
  1068. {
  1069. }
  1070. #endif /* CONFIG_SMP */
  1071. #if BITS_PER_LONG == 32
  1072. # define WMULT_CONST (~0UL)
  1073. #else
  1074. # define WMULT_CONST (1UL << 32)
  1075. #endif
  1076. #define WMULT_SHIFT 32
  1077. /*
  1078. * Shift right and round:
  1079. */
  1080. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1081. /*
  1082. * delta *= weight / lw
  1083. */
  1084. static unsigned long
  1085. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1086. struct load_weight *lw)
  1087. {
  1088. u64 tmp;
  1089. if (!lw->inv_weight) {
  1090. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1091. lw->inv_weight = 1;
  1092. else
  1093. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1094. / (lw->weight+1);
  1095. }
  1096. tmp = (u64)delta_exec * weight;
  1097. /*
  1098. * Check whether we'd overflow the 64-bit multiplication:
  1099. */
  1100. if (unlikely(tmp > WMULT_CONST))
  1101. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1102. WMULT_SHIFT/2);
  1103. else
  1104. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1105. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1106. }
  1107. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1108. {
  1109. lw->weight += inc;
  1110. lw->inv_weight = 0;
  1111. }
  1112. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1113. {
  1114. lw->weight -= dec;
  1115. lw->inv_weight = 0;
  1116. }
  1117. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1118. {
  1119. lw->weight = w;
  1120. lw->inv_weight = 0;
  1121. }
  1122. /*
  1123. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1124. * of tasks with abnormal "nice" values across CPUs the contribution that
  1125. * each task makes to its run queue's load is weighted according to its
  1126. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1127. * scaled version of the new time slice allocation that they receive on time
  1128. * slice expiry etc.
  1129. */
  1130. #define WEIGHT_IDLEPRIO 3
  1131. #define WMULT_IDLEPRIO 1431655765
  1132. /*
  1133. * Nice levels are multiplicative, with a gentle 10% change for every
  1134. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1135. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1136. * that remained on nice 0.
  1137. *
  1138. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1139. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1140. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1141. * If a task goes up by ~10% and another task goes down by ~10% then
  1142. * the relative distance between them is ~25%.)
  1143. */
  1144. static const int prio_to_weight[40] = {
  1145. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1146. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1147. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1148. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1149. /* 0 */ 1024, 820, 655, 526, 423,
  1150. /* 5 */ 335, 272, 215, 172, 137,
  1151. /* 10 */ 110, 87, 70, 56, 45,
  1152. /* 15 */ 36, 29, 23, 18, 15,
  1153. };
  1154. /*
  1155. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1156. *
  1157. * In cases where the weight does not change often, we can use the
  1158. * precalculated inverse to speed up arithmetics by turning divisions
  1159. * into multiplications:
  1160. */
  1161. static const u32 prio_to_wmult[40] = {
  1162. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1163. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1164. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1165. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1166. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1167. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1168. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1169. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1170. };
  1171. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1172. enum cpuacct_stat_index {
  1173. CPUACCT_STAT_USER, /* ... user mode */
  1174. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1175. CPUACCT_STAT_NSTATS,
  1176. };
  1177. #ifdef CONFIG_CGROUP_CPUACCT
  1178. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1179. static void cpuacct_update_stats(struct task_struct *tsk,
  1180. enum cpuacct_stat_index idx, cputime_t val);
  1181. #else
  1182. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1183. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1184. enum cpuacct_stat_index idx, cputime_t val) {}
  1185. #endif
  1186. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1187. {
  1188. update_load_add(&rq->load, load);
  1189. }
  1190. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1191. {
  1192. update_load_sub(&rq->load, load);
  1193. }
  1194. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1195. typedef int (*tg_visitor)(struct task_group *, void *);
  1196. /*
  1197. * Iterate the full tree, calling @down when first entering a node and @up when
  1198. * leaving it for the final time.
  1199. */
  1200. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1201. {
  1202. struct task_group *parent, *child;
  1203. int ret;
  1204. rcu_read_lock();
  1205. parent = &root_task_group;
  1206. down:
  1207. ret = (*down)(parent, data);
  1208. if (ret)
  1209. goto out_unlock;
  1210. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1211. parent = child;
  1212. goto down;
  1213. up:
  1214. continue;
  1215. }
  1216. ret = (*up)(parent, data);
  1217. if (ret)
  1218. goto out_unlock;
  1219. child = parent;
  1220. parent = parent->parent;
  1221. if (parent)
  1222. goto up;
  1223. out_unlock:
  1224. rcu_read_unlock();
  1225. return ret;
  1226. }
  1227. static int tg_nop(struct task_group *tg, void *data)
  1228. {
  1229. return 0;
  1230. }
  1231. #endif
  1232. #ifdef CONFIG_SMP
  1233. /* Used instead of source_load when we know the type == 0 */
  1234. static unsigned long weighted_cpuload(const int cpu)
  1235. {
  1236. return cpu_rq(cpu)->load.weight;
  1237. }
  1238. /*
  1239. * Return a low guess at the load of a migration-source cpu weighted
  1240. * according to the scheduling class and "nice" value.
  1241. *
  1242. * We want to under-estimate the load of migration sources, to
  1243. * balance conservatively.
  1244. */
  1245. static unsigned long source_load(int cpu, int type)
  1246. {
  1247. struct rq *rq = cpu_rq(cpu);
  1248. unsigned long total = weighted_cpuload(cpu);
  1249. if (type == 0 || !sched_feat(LB_BIAS))
  1250. return total;
  1251. return min(rq->cpu_load[type-1], total);
  1252. }
  1253. /*
  1254. * Return a high guess at the load of a migration-target cpu weighted
  1255. * according to the scheduling class and "nice" value.
  1256. */
  1257. static unsigned long target_load(int cpu, int type)
  1258. {
  1259. struct rq *rq = cpu_rq(cpu);
  1260. unsigned long total = weighted_cpuload(cpu);
  1261. if (type == 0 || !sched_feat(LB_BIAS))
  1262. return total;
  1263. return max(rq->cpu_load[type-1], total);
  1264. }
  1265. static unsigned long power_of(int cpu)
  1266. {
  1267. return cpu_rq(cpu)->cpu_power;
  1268. }
  1269. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1270. static unsigned long cpu_avg_load_per_task(int cpu)
  1271. {
  1272. struct rq *rq = cpu_rq(cpu);
  1273. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1274. if (nr_running)
  1275. rq->avg_load_per_task = rq->load.weight / nr_running;
  1276. else
  1277. rq->avg_load_per_task = 0;
  1278. return rq->avg_load_per_task;
  1279. }
  1280. #ifdef CONFIG_FAIR_GROUP_SCHED
  1281. /*
  1282. * Compute the cpu's hierarchical load factor for each task group.
  1283. * This needs to be done in a top-down fashion because the load of a child
  1284. * group is a fraction of its parents load.
  1285. */
  1286. static int tg_load_down(struct task_group *tg, void *data)
  1287. {
  1288. unsigned long load;
  1289. long cpu = (long)data;
  1290. if (!tg->parent) {
  1291. load = cpu_rq(cpu)->load.weight;
  1292. } else {
  1293. load = tg->parent->cfs_rq[cpu]->h_load;
  1294. load *= tg->se[cpu]->load.weight;
  1295. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1296. }
  1297. tg->cfs_rq[cpu]->h_load = load;
  1298. return 0;
  1299. }
  1300. static void update_h_load(long cpu)
  1301. {
  1302. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1303. }
  1304. #endif
  1305. #ifdef CONFIG_PREEMPT
  1306. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1307. /*
  1308. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1309. * way at the expense of forcing extra atomic operations in all
  1310. * invocations. This assures that the double_lock is acquired using the
  1311. * same underlying policy as the spinlock_t on this architecture, which
  1312. * reduces latency compared to the unfair variant below. However, it
  1313. * also adds more overhead and therefore may reduce throughput.
  1314. */
  1315. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1316. __releases(this_rq->lock)
  1317. __acquires(busiest->lock)
  1318. __acquires(this_rq->lock)
  1319. {
  1320. raw_spin_unlock(&this_rq->lock);
  1321. double_rq_lock(this_rq, busiest);
  1322. return 1;
  1323. }
  1324. #else
  1325. /*
  1326. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1327. * latency by eliminating extra atomic operations when the locks are
  1328. * already in proper order on entry. This favors lower cpu-ids and will
  1329. * grant the double lock to lower cpus over higher ids under contention,
  1330. * regardless of entry order into the function.
  1331. */
  1332. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1333. __releases(this_rq->lock)
  1334. __acquires(busiest->lock)
  1335. __acquires(this_rq->lock)
  1336. {
  1337. int ret = 0;
  1338. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1339. if (busiest < this_rq) {
  1340. raw_spin_unlock(&this_rq->lock);
  1341. raw_spin_lock(&busiest->lock);
  1342. raw_spin_lock_nested(&this_rq->lock,
  1343. SINGLE_DEPTH_NESTING);
  1344. ret = 1;
  1345. } else
  1346. raw_spin_lock_nested(&busiest->lock,
  1347. SINGLE_DEPTH_NESTING);
  1348. }
  1349. return ret;
  1350. }
  1351. #endif /* CONFIG_PREEMPT */
  1352. /*
  1353. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1354. */
  1355. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1356. {
  1357. if (unlikely(!irqs_disabled())) {
  1358. /* printk() doesn't work good under rq->lock */
  1359. raw_spin_unlock(&this_rq->lock);
  1360. BUG_ON(1);
  1361. }
  1362. return _double_lock_balance(this_rq, busiest);
  1363. }
  1364. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1365. __releases(busiest->lock)
  1366. {
  1367. raw_spin_unlock(&busiest->lock);
  1368. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1369. }
  1370. /*
  1371. * double_rq_lock - safely lock two runqueues
  1372. *
  1373. * Note this does not disable interrupts like task_rq_lock,
  1374. * you need to do so manually before calling.
  1375. */
  1376. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1377. __acquires(rq1->lock)
  1378. __acquires(rq2->lock)
  1379. {
  1380. BUG_ON(!irqs_disabled());
  1381. if (rq1 == rq2) {
  1382. raw_spin_lock(&rq1->lock);
  1383. __acquire(rq2->lock); /* Fake it out ;) */
  1384. } else {
  1385. if (rq1 < rq2) {
  1386. raw_spin_lock(&rq1->lock);
  1387. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1388. } else {
  1389. raw_spin_lock(&rq2->lock);
  1390. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1391. }
  1392. }
  1393. }
  1394. /*
  1395. * double_rq_unlock - safely unlock two runqueues
  1396. *
  1397. * Note this does not restore interrupts like task_rq_unlock,
  1398. * you need to do so manually after calling.
  1399. */
  1400. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1401. __releases(rq1->lock)
  1402. __releases(rq2->lock)
  1403. {
  1404. raw_spin_unlock(&rq1->lock);
  1405. if (rq1 != rq2)
  1406. raw_spin_unlock(&rq2->lock);
  1407. else
  1408. __release(rq2->lock);
  1409. }
  1410. #else /* CONFIG_SMP */
  1411. /*
  1412. * double_rq_lock - safely lock two runqueues
  1413. *
  1414. * Note this does not disable interrupts like task_rq_lock,
  1415. * you need to do so manually before calling.
  1416. */
  1417. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1418. __acquires(rq1->lock)
  1419. __acquires(rq2->lock)
  1420. {
  1421. BUG_ON(!irqs_disabled());
  1422. BUG_ON(rq1 != rq2);
  1423. raw_spin_lock(&rq1->lock);
  1424. __acquire(rq2->lock); /* Fake it out ;) */
  1425. }
  1426. /*
  1427. * double_rq_unlock - safely unlock two runqueues
  1428. *
  1429. * Note this does not restore interrupts like task_rq_unlock,
  1430. * you need to do so manually after calling.
  1431. */
  1432. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1433. __releases(rq1->lock)
  1434. __releases(rq2->lock)
  1435. {
  1436. BUG_ON(rq1 != rq2);
  1437. raw_spin_unlock(&rq1->lock);
  1438. __release(rq2->lock);
  1439. }
  1440. #endif
  1441. static void calc_load_account_idle(struct rq *this_rq);
  1442. static void update_sysctl(void);
  1443. static int get_update_sysctl_factor(void);
  1444. static void update_cpu_load(struct rq *this_rq);
  1445. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1446. {
  1447. set_task_rq(p, cpu);
  1448. #ifdef CONFIG_SMP
  1449. /*
  1450. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1451. * successfuly executed on another CPU. We must ensure that updates of
  1452. * per-task data have been completed by this moment.
  1453. */
  1454. smp_wmb();
  1455. task_thread_info(p)->cpu = cpu;
  1456. #endif
  1457. }
  1458. static const struct sched_class rt_sched_class;
  1459. #define sched_class_highest (&stop_sched_class)
  1460. #define for_each_class(class) \
  1461. for (class = sched_class_highest; class; class = class->next)
  1462. #include "sched_stats.h"
  1463. static void inc_nr_running(struct rq *rq)
  1464. {
  1465. rq->nr_running++;
  1466. }
  1467. static void dec_nr_running(struct rq *rq)
  1468. {
  1469. rq->nr_running--;
  1470. }
  1471. static void set_load_weight(struct task_struct *p)
  1472. {
  1473. /*
  1474. * SCHED_IDLE tasks get minimal weight:
  1475. */
  1476. if (p->policy == SCHED_IDLE) {
  1477. p->se.load.weight = WEIGHT_IDLEPRIO;
  1478. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1479. return;
  1480. }
  1481. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1482. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1483. }
  1484. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1485. {
  1486. update_rq_clock(rq);
  1487. sched_info_queued(p);
  1488. p->sched_class->enqueue_task(rq, p, flags);
  1489. p->se.on_rq = 1;
  1490. }
  1491. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1492. {
  1493. update_rq_clock(rq);
  1494. sched_info_dequeued(p);
  1495. p->sched_class->dequeue_task(rq, p, flags);
  1496. p->se.on_rq = 0;
  1497. }
  1498. /*
  1499. * activate_task - move a task to the runqueue.
  1500. */
  1501. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1502. {
  1503. if (task_contributes_to_load(p))
  1504. rq->nr_uninterruptible--;
  1505. enqueue_task(rq, p, flags);
  1506. inc_nr_running(rq);
  1507. }
  1508. /*
  1509. * deactivate_task - remove a task from the runqueue.
  1510. */
  1511. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1512. {
  1513. if (task_contributes_to_load(p))
  1514. rq->nr_uninterruptible++;
  1515. dequeue_task(rq, p, flags);
  1516. dec_nr_running(rq);
  1517. }
  1518. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1519. /*
  1520. * There are no locks covering percpu hardirq/softirq time.
  1521. * They are only modified in account_system_vtime, on corresponding CPU
  1522. * with interrupts disabled. So, writes are safe.
  1523. * They are read and saved off onto struct rq in update_rq_clock().
  1524. * This may result in other CPU reading this CPU's irq time and can
  1525. * race with irq/account_system_vtime on this CPU. We would either get old
  1526. * or new value with a side effect of accounting a slice of irq time to wrong
  1527. * task when irq is in progress while we read rq->clock. That is a worthy
  1528. * compromise in place of having locks on each irq in account_system_time.
  1529. */
  1530. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1531. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1532. static DEFINE_PER_CPU(u64, irq_start_time);
  1533. static int sched_clock_irqtime;
  1534. void enable_sched_clock_irqtime(void)
  1535. {
  1536. sched_clock_irqtime = 1;
  1537. }
  1538. void disable_sched_clock_irqtime(void)
  1539. {
  1540. sched_clock_irqtime = 0;
  1541. }
  1542. #ifndef CONFIG_64BIT
  1543. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1544. static inline void irq_time_write_begin(void)
  1545. {
  1546. __this_cpu_inc(irq_time_seq.sequence);
  1547. smp_wmb();
  1548. }
  1549. static inline void irq_time_write_end(void)
  1550. {
  1551. smp_wmb();
  1552. __this_cpu_inc(irq_time_seq.sequence);
  1553. }
  1554. static inline u64 irq_time_read(int cpu)
  1555. {
  1556. u64 irq_time;
  1557. unsigned seq;
  1558. do {
  1559. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1560. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1561. per_cpu(cpu_hardirq_time, cpu);
  1562. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1563. return irq_time;
  1564. }
  1565. #else /* CONFIG_64BIT */
  1566. static inline void irq_time_write_begin(void)
  1567. {
  1568. }
  1569. static inline void irq_time_write_end(void)
  1570. {
  1571. }
  1572. static inline u64 irq_time_read(int cpu)
  1573. {
  1574. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1575. }
  1576. #endif /* CONFIG_64BIT */
  1577. /*
  1578. * Called before incrementing preempt_count on {soft,}irq_enter
  1579. * and before decrementing preempt_count on {soft,}irq_exit.
  1580. */
  1581. void account_system_vtime(struct task_struct *curr)
  1582. {
  1583. unsigned long flags;
  1584. s64 delta;
  1585. int cpu;
  1586. if (!sched_clock_irqtime)
  1587. return;
  1588. local_irq_save(flags);
  1589. cpu = smp_processor_id();
  1590. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1591. __this_cpu_add(irq_start_time, delta);
  1592. irq_time_write_begin();
  1593. /*
  1594. * We do not account for softirq time from ksoftirqd here.
  1595. * We want to continue accounting softirq time to ksoftirqd thread
  1596. * in that case, so as not to confuse scheduler with a special task
  1597. * that do not consume any time, but still wants to run.
  1598. */
  1599. if (hardirq_count())
  1600. __this_cpu_add(cpu_hardirq_time, delta);
  1601. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1602. __this_cpu_add(cpu_softirq_time, delta);
  1603. irq_time_write_end();
  1604. local_irq_restore(flags);
  1605. }
  1606. EXPORT_SYMBOL_GPL(account_system_vtime);
  1607. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1608. {
  1609. s64 irq_delta;
  1610. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1611. /*
  1612. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1613. * this case when a previous update_rq_clock() happened inside a
  1614. * {soft,}irq region.
  1615. *
  1616. * When this happens, we stop ->clock_task and only update the
  1617. * prev_irq_time stamp to account for the part that fit, so that a next
  1618. * update will consume the rest. This ensures ->clock_task is
  1619. * monotonic.
  1620. *
  1621. * It does however cause some slight miss-attribution of {soft,}irq
  1622. * time, a more accurate solution would be to update the irq_time using
  1623. * the current rq->clock timestamp, except that would require using
  1624. * atomic ops.
  1625. */
  1626. if (irq_delta > delta)
  1627. irq_delta = delta;
  1628. rq->prev_irq_time += irq_delta;
  1629. delta -= irq_delta;
  1630. rq->clock_task += delta;
  1631. if (irq_delta && sched_feat(NONIRQ_POWER))
  1632. sched_rt_avg_update(rq, irq_delta);
  1633. }
  1634. static int irqtime_account_hi_update(void)
  1635. {
  1636. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1637. unsigned long flags;
  1638. u64 latest_ns;
  1639. int ret = 0;
  1640. local_irq_save(flags);
  1641. latest_ns = this_cpu_read(cpu_hardirq_time);
  1642. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1643. ret = 1;
  1644. local_irq_restore(flags);
  1645. return ret;
  1646. }
  1647. static int irqtime_account_si_update(void)
  1648. {
  1649. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1650. unsigned long flags;
  1651. u64 latest_ns;
  1652. int ret = 0;
  1653. local_irq_save(flags);
  1654. latest_ns = this_cpu_read(cpu_softirq_time);
  1655. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1656. ret = 1;
  1657. local_irq_restore(flags);
  1658. return ret;
  1659. }
  1660. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1661. #define sched_clock_irqtime (0)
  1662. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1663. {
  1664. rq->clock_task += delta;
  1665. }
  1666. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1667. #include "sched_idletask.c"
  1668. #include "sched_fair.c"
  1669. #include "sched_rt.c"
  1670. #include "sched_autogroup.c"
  1671. #include "sched_stoptask.c"
  1672. #ifdef CONFIG_SCHED_DEBUG
  1673. # include "sched_debug.c"
  1674. #endif
  1675. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1676. {
  1677. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1678. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1679. if (stop) {
  1680. /*
  1681. * Make it appear like a SCHED_FIFO task, its something
  1682. * userspace knows about and won't get confused about.
  1683. *
  1684. * Also, it will make PI more or less work without too
  1685. * much confusion -- but then, stop work should not
  1686. * rely on PI working anyway.
  1687. */
  1688. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1689. stop->sched_class = &stop_sched_class;
  1690. }
  1691. cpu_rq(cpu)->stop = stop;
  1692. if (old_stop) {
  1693. /*
  1694. * Reset it back to a normal scheduling class so that
  1695. * it can die in pieces.
  1696. */
  1697. old_stop->sched_class = &rt_sched_class;
  1698. }
  1699. }
  1700. /*
  1701. * __normal_prio - return the priority that is based on the static prio
  1702. */
  1703. static inline int __normal_prio(struct task_struct *p)
  1704. {
  1705. return p->static_prio;
  1706. }
  1707. /*
  1708. * Calculate the expected normal priority: i.e. priority
  1709. * without taking RT-inheritance into account. Might be
  1710. * boosted by interactivity modifiers. Changes upon fork,
  1711. * setprio syscalls, and whenever the interactivity
  1712. * estimator recalculates.
  1713. */
  1714. static inline int normal_prio(struct task_struct *p)
  1715. {
  1716. int prio;
  1717. if (task_has_rt_policy(p))
  1718. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1719. else
  1720. prio = __normal_prio(p);
  1721. return prio;
  1722. }
  1723. /*
  1724. * Calculate the current priority, i.e. the priority
  1725. * taken into account by the scheduler. This value might
  1726. * be boosted by RT tasks, or might be boosted by
  1727. * interactivity modifiers. Will be RT if the task got
  1728. * RT-boosted. If not then it returns p->normal_prio.
  1729. */
  1730. static int effective_prio(struct task_struct *p)
  1731. {
  1732. p->normal_prio = normal_prio(p);
  1733. /*
  1734. * If we are RT tasks or we were boosted to RT priority,
  1735. * keep the priority unchanged. Otherwise, update priority
  1736. * to the normal priority:
  1737. */
  1738. if (!rt_prio(p->prio))
  1739. return p->normal_prio;
  1740. return p->prio;
  1741. }
  1742. /**
  1743. * task_curr - is this task currently executing on a CPU?
  1744. * @p: the task in question.
  1745. */
  1746. inline int task_curr(const struct task_struct *p)
  1747. {
  1748. return cpu_curr(task_cpu(p)) == p;
  1749. }
  1750. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1751. const struct sched_class *prev_class,
  1752. int oldprio)
  1753. {
  1754. if (prev_class != p->sched_class) {
  1755. if (prev_class->switched_from)
  1756. prev_class->switched_from(rq, p);
  1757. p->sched_class->switched_to(rq, p);
  1758. } else if (oldprio != p->prio)
  1759. p->sched_class->prio_changed(rq, p, oldprio);
  1760. }
  1761. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1762. {
  1763. const struct sched_class *class;
  1764. if (p->sched_class == rq->curr->sched_class) {
  1765. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1766. } else {
  1767. for_each_class(class) {
  1768. if (class == rq->curr->sched_class)
  1769. break;
  1770. if (class == p->sched_class) {
  1771. resched_task(rq->curr);
  1772. break;
  1773. }
  1774. }
  1775. }
  1776. /*
  1777. * A queue event has occurred, and we're going to schedule. In
  1778. * this case, we can save a useless back to back clock update.
  1779. */
  1780. if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
  1781. rq->skip_clock_update = 1;
  1782. }
  1783. #ifdef CONFIG_SMP
  1784. /*
  1785. * Is this task likely cache-hot:
  1786. */
  1787. static int
  1788. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1789. {
  1790. s64 delta;
  1791. if (p->sched_class != &fair_sched_class)
  1792. return 0;
  1793. if (unlikely(p->policy == SCHED_IDLE))
  1794. return 0;
  1795. /*
  1796. * Buddy candidates are cache hot:
  1797. */
  1798. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1799. (&p->se == cfs_rq_of(&p->se)->next ||
  1800. &p->se == cfs_rq_of(&p->se)->last))
  1801. return 1;
  1802. if (sysctl_sched_migration_cost == -1)
  1803. return 1;
  1804. if (sysctl_sched_migration_cost == 0)
  1805. return 0;
  1806. delta = now - p->se.exec_start;
  1807. return delta < (s64)sysctl_sched_migration_cost;
  1808. }
  1809. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1810. {
  1811. #ifdef CONFIG_SCHED_DEBUG
  1812. /*
  1813. * We should never call set_task_cpu() on a blocked task,
  1814. * ttwu() will sort out the placement.
  1815. */
  1816. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1817. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1818. #endif
  1819. trace_sched_migrate_task(p, new_cpu);
  1820. if (task_cpu(p) != new_cpu) {
  1821. p->se.nr_migrations++;
  1822. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1823. }
  1824. __set_task_cpu(p, new_cpu);
  1825. }
  1826. struct migration_arg {
  1827. struct task_struct *task;
  1828. int dest_cpu;
  1829. };
  1830. static int migration_cpu_stop(void *data);
  1831. /*
  1832. * The task's runqueue lock must be held.
  1833. * Returns true if you have to wait for migration thread.
  1834. */
  1835. static bool migrate_task(struct task_struct *p, struct rq *rq)
  1836. {
  1837. /*
  1838. * If the task is not on a runqueue (and not running), then
  1839. * the next wake-up will properly place the task.
  1840. */
  1841. return p->se.on_rq || task_running(rq, p);
  1842. }
  1843. /*
  1844. * wait_task_inactive - wait for a thread to unschedule.
  1845. *
  1846. * If @match_state is nonzero, it's the @p->state value just checked and
  1847. * not expected to change. If it changes, i.e. @p might have woken up,
  1848. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1849. * we return a positive number (its total switch count). If a second call
  1850. * a short while later returns the same number, the caller can be sure that
  1851. * @p has remained unscheduled the whole time.
  1852. *
  1853. * The caller must ensure that the task *will* unschedule sometime soon,
  1854. * else this function might spin for a *long* time. This function can't
  1855. * be called with interrupts off, or it may introduce deadlock with
  1856. * smp_call_function() if an IPI is sent by the same process we are
  1857. * waiting to become inactive.
  1858. */
  1859. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1860. {
  1861. unsigned long flags;
  1862. int running, on_rq;
  1863. unsigned long ncsw;
  1864. struct rq *rq;
  1865. for (;;) {
  1866. /*
  1867. * We do the initial early heuristics without holding
  1868. * any task-queue locks at all. We'll only try to get
  1869. * the runqueue lock when things look like they will
  1870. * work out!
  1871. */
  1872. rq = task_rq(p);
  1873. /*
  1874. * If the task is actively running on another CPU
  1875. * still, just relax and busy-wait without holding
  1876. * any locks.
  1877. *
  1878. * NOTE! Since we don't hold any locks, it's not
  1879. * even sure that "rq" stays as the right runqueue!
  1880. * But we don't care, since "task_running()" will
  1881. * return false if the runqueue has changed and p
  1882. * is actually now running somewhere else!
  1883. */
  1884. while (task_running(rq, p)) {
  1885. if (match_state && unlikely(p->state != match_state))
  1886. return 0;
  1887. cpu_relax();
  1888. }
  1889. /*
  1890. * Ok, time to look more closely! We need the rq
  1891. * lock now, to be *sure*. If we're wrong, we'll
  1892. * just go back and repeat.
  1893. */
  1894. rq = task_rq_lock(p, &flags);
  1895. trace_sched_wait_task(p);
  1896. running = task_running(rq, p);
  1897. on_rq = p->se.on_rq;
  1898. ncsw = 0;
  1899. if (!match_state || p->state == match_state)
  1900. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1901. task_rq_unlock(rq, &flags);
  1902. /*
  1903. * If it changed from the expected state, bail out now.
  1904. */
  1905. if (unlikely(!ncsw))
  1906. break;
  1907. /*
  1908. * Was it really running after all now that we
  1909. * checked with the proper locks actually held?
  1910. *
  1911. * Oops. Go back and try again..
  1912. */
  1913. if (unlikely(running)) {
  1914. cpu_relax();
  1915. continue;
  1916. }
  1917. /*
  1918. * It's not enough that it's not actively running,
  1919. * it must be off the runqueue _entirely_, and not
  1920. * preempted!
  1921. *
  1922. * So if it was still runnable (but just not actively
  1923. * running right now), it's preempted, and we should
  1924. * yield - it could be a while.
  1925. */
  1926. if (unlikely(on_rq)) {
  1927. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1928. set_current_state(TASK_UNINTERRUPTIBLE);
  1929. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1930. continue;
  1931. }
  1932. /*
  1933. * Ahh, all good. It wasn't running, and it wasn't
  1934. * runnable, which means that it will never become
  1935. * running in the future either. We're all done!
  1936. */
  1937. break;
  1938. }
  1939. return ncsw;
  1940. }
  1941. /***
  1942. * kick_process - kick a running thread to enter/exit the kernel
  1943. * @p: the to-be-kicked thread
  1944. *
  1945. * Cause a process which is running on another CPU to enter
  1946. * kernel-mode, without any delay. (to get signals handled.)
  1947. *
  1948. * NOTE: this function doesn't have to take the runqueue lock,
  1949. * because all it wants to ensure is that the remote task enters
  1950. * the kernel. If the IPI races and the task has been migrated
  1951. * to another CPU then no harm is done and the purpose has been
  1952. * achieved as well.
  1953. */
  1954. void kick_process(struct task_struct *p)
  1955. {
  1956. int cpu;
  1957. preempt_disable();
  1958. cpu = task_cpu(p);
  1959. if ((cpu != smp_processor_id()) && task_curr(p))
  1960. smp_send_reschedule(cpu);
  1961. preempt_enable();
  1962. }
  1963. EXPORT_SYMBOL_GPL(kick_process);
  1964. #endif /* CONFIG_SMP */
  1965. #ifdef CONFIG_SMP
  1966. /*
  1967. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1968. */
  1969. static int select_fallback_rq(int cpu, struct task_struct *p)
  1970. {
  1971. int dest_cpu;
  1972. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1973. /* Look for allowed, online CPU in same node. */
  1974. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1975. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1976. return dest_cpu;
  1977. /* Any allowed, online CPU? */
  1978. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1979. if (dest_cpu < nr_cpu_ids)
  1980. return dest_cpu;
  1981. /* No more Mr. Nice Guy. */
  1982. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1983. /*
  1984. * Don't tell them about moving exiting tasks or
  1985. * kernel threads (both mm NULL), since they never
  1986. * leave kernel.
  1987. */
  1988. if (p->mm && printk_ratelimit()) {
  1989. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  1990. task_pid_nr(p), p->comm, cpu);
  1991. }
  1992. return dest_cpu;
  1993. }
  1994. /*
  1995. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1996. */
  1997. static inline
  1998. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1999. {
  2000. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  2001. /*
  2002. * In order not to call set_task_cpu() on a blocking task we need
  2003. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2004. * cpu.
  2005. *
  2006. * Since this is common to all placement strategies, this lives here.
  2007. *
  2008. * [ this allows ->select_task() to simply return task_cpu(p) and
  2009. * not worry about this generic constraint ]
  2010. */
  2011. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2012. !cpu_online(cpu)))
  2013. cpu = select_fallback_rq(task_cpu(p), p);
  2014. return cpu;
  2015. }
  2016. static void update_avg(u64 *avg, u64 sample)
  2017. {
  2018. s64 diff = sample - *avg;
  2019. *avg += diff >> 3;
  2020. }
  2021. #endif
  2022. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  2023. bool is_sync, bool is_migrate, bool is_local,
  2024. unsigned long en_flags)
  2025. {
  2026. schedstat_inc(p, se.statistics.nr_wakeups);
  2027. if (is_sync)
  2028. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2029. if (is_migrate)
  2030. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2031. if (is_local)
  2032. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2033. else
  2034. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2035. activate_task(rq, p, en_flags);
  2036. }
  2037. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  2038. int wake_flags, bool success)
  2039. {
  2040. trace_sched_wakeup(p, success);
  2041. check_preempt_curr(rq, p, wake_flags);
  2042. p->state = TASK_RUNNING;
  2043. #ifdef CONFIG_SMP
  2044. if (p->sched_class->task_woken)
  2045. p->sched_class->task_woken(rq, p);
  2046. if (unlikely(rq->idle_stamp)) {
  2047. u64 delta = rq->clock - rq->idle_stamp;
  2048. u64 max = 2*sysctl_sched_migration_cost;
  2049. if (delta > max)
  2050. rq->avg_idle = max;
  2051. else
  2052. update_avg(&rq->avg_idle, delta);
  2053. rq->idle_stamp = 0;
  2054. }
  2055. #endif
  2056. /* if a worker is waking up, notify workqueue */
  2057. if ((p->flags & PF_WQ_WORKER) && success)
  2058. wq_worker_waking_up(p, cpu_of(rq));
  2059. }
  2060. /**
  2061. * try_to_wake_up - wake up a thread
  2062. * @p: the thread to be awakened
  2063. * @state: the mask of task states that can be woken
  2064. * @wake_flags: wake modifier flags (WF_*)
  2065. *
  2066. * Put it on the run-queue if it's not already there. The "current"
  2067. * thread is always on the run-queue (except when the actual
  2068. * re-schedule is in progress), and as such you're allowed to do
  2069. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2070. * runnable without the overhead of this.
  2071. *
  2072. * Returns %true if @p was woken up, %false if it was already running
  2073. * or @state didn't match @p's state.
  2074. */
  2075. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2076. int wake_flags)
  2077. {
  2078. int cpu, orig_cpu, this_cpu, success = 0;
  2079. unsigned long flags;
  2080. unsigned long en_flags = ENQUEUE_WAKEUP;
  2081. struct rq *rq;
  2082. this_cpu = get_cpu();
  2083. smp_wmb();
  2084. rq = task_rq_lock(p, &flags);
  2085. if (!(p->state & state))
  2086. goto out;
  2087. if (p->se.on_rq)
  2088. goto out_running;
  2089. cpu = task_cpu(p);
  2090. orig_cpu = cpu;
  2091. #ifdef CONFIG_SMP
  2092. if (unlikely(task_running(rq, p)))
  2093. goto out_activate;
  2094. /*
  2095. * In order to handle concurrent wakeups and release the rq->lock
  2096. * we put the task in TASK_WAKING state.
  2097. *
  2098. * First fix up the nr_uninterruptible count:
  2099. */
  2100. if (task_contributes_to_load(p)) {
  2101. if (likely(cpu_online(orig_cpu)))
  2102. rq->nr_uninterruptible--;
  2103. else
  2104. this_rq()->nr_uninterruptible--;
  2105. }
  2106. p->state = TASK_WAKING;
  2107. if (p->sched_class->task_waking) {
  2108. p->sched_class->task_waking(rq, p);
  2109. en_flags |= ENQUEUE_WAKING;
  2110. }
  2111. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2112. if (cpu != orig_cpu)
  2113. set_task_cpu(p, cpu);
  2114. __task_rq_unlock(rq);
  2115. rq = cpu_rq(cpu);
  2116. raw_spin_lock(&rq->lock);
  2117. /*
  2118. * We migrated the task without holding either rq->lock, however
  2119. * since the task is not on the task list itself, nobody else
  2120. * will try and migrate the task, hence the rq should match the
  2121. * cpu we just moved it to.
  2122. */
  2123. WARN_ON(task_cpu(p) != cpu);
  2124. WARN_ON(p->state != TASK_WAKING);
  2125. #ifdef CONFIG_SCHEDSTATS
  2126. schedstat_inc(rq, ttwu_count);
  2127. if (cpu == this_cpu)
  2128. schedstat_inc(rq, ttwu_local);
  2129. else {
  2130. struct sched_domain *sd;
  2131. for_each_domain(this_cpu, sd) {
  2132. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2133. schedstat_inc(sd, ttwu_wake_remote);
  2134. break;
  2135. }
  2136. }
  2137. }
  2138. #endif /* CONFIG_SCHEDSTATS */
  2139. out_activate:
  2140. #endif /* CONFIG_SMP */
  2141. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2142. cpu == this_cpu, en_flags);
  2143. success = 1;
  2144. out_running:
  2145. ttwu_post_activation(p, rq, wake_flags, success);
  2146. out:
  2147. task_rq_unlock(rq, &flags);
  2148. put_cpu();
  2149. return success;
  2150. }
  2151. /**
  2152. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2153. * @p: the thread to be awakened
  2154. *
  2155. * Put @p on the run-queue if it's not already there. The caller must
  2156. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2157. * the current task. this_rq() stays locked over invocation.
  2158. */
  2159. static void try_to_wake_up_local(struct task_struct *p)
  2160. {
  2161. struct rq *rq = task_rq(p);
  2162. bool success = false;
  2163. BUG_ON(rq != this_rq());
  2164. BUG_ON(p == current);
  2165. lockdep_assert_held(&rq->lock);
  2166. if (!(p->state & TASK_NORMAL))
  2167. return;
  2168. if (!p->se.on_rq) {
  2169. if (likely(!task_running(rq, p))) {
  2170. schedstat_inc(rq, ttwu_count);
  2171. schedstat_inc(rq, ttwu_local);
  2172. }
  2173. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2174. success = true;
  2175. }
  2176. ttwu_post_activation(p, rq, 0, success);
  2177. }
  2178. /**
  2179. * wake_up_process - Wake up a specific process
  2180. * @p: The process to be woken up.
  2181. *
  2182. * Attempt to wake up the nominated process and move it to the set of runnable
  2183. * processes. Returns 1 if the process was woken up, 0 if it was already
  2184. * running.
  2185. *
  2186. * It may be assumed that this function implies a write memory barrier before
  2187. * changing the task state if and only if any tasks are woken up.
  2188. */
  2189. int wake_up_process(struct task_struct *p)
  2190. {
  2191. return try_to_wake_up(p, TASK_ALL, 0);
  2192. }
  2193. EXPORT_SYMBOL(wake_up_process);
  2194. int wake_up_state(struct task_struct *p, unsigned int state)
  2195. {
  2196. return try_to_wake_up(p, state, 0);
  2197. }
  2198. /*
  2199. * Perform scheduler related setup for a newly forked process p.
  2200. * p is forked by current.
  2201. *
  2202. * __sched_fork() is basic setup used by init_idle() too:
  2203. */
  2204. static void __sched_fork(struct task_struct *p)
  2205. {
  2206. p->se.exec_start = 0;
  2207. p->se.sum_exec_runtime = 0;
  2208. p->se.prev_sum_exec_runtime = 0;
  2209. p->se.nr_migrations = 0;
  2210. p->se.vruntime = 0;
  2211. #ifdef CONFIG_SCHEDSTATS
  2212. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2213. #endif
  2214. INIT_LIST_HEAD(&p->rt.run_list);
  2215. p->se.on_rq = 0;
  2216. INIT_LIST_HEAD(&p->se.group_node);
  2217. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2218. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2219. #endif
  2220. }
  2221. /*
  2222. * fork()/clone()-time setup:
  2223. */
  2224. void sched_fork(struct task_struct *p, int clone_flags)
  2225. {
  2226. int cpu = get_cpu();
  2227. __sched_fork(p);
  2228. /*
  2229. * We mark the process as running here. This guarantees that
  2230. * nobody will actually run it, and a signal or other external
  2231. * event cannot wake it up and insert it on the runqueue either.
  2232. */
  2233. p->state = TASK_RUNNING;
  2234. /*
  2235. * Revert to default priority/policy on fork if requested.
  2236. */
  2237. if (unlikely(p->sched_reset_on_fork)) {
  2238. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2239. p->policy = SCHED_NORMAL;
  2240. p->normal_prio = p->static_prio;
  2241. }
  2242. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2243. p->static_prio = NICE_TO_PRIO(0);
  2244. p->normal_prio = p->static_prio;
  2245. set_load_weight(p);
  2246. }
  2247. /*
  2248. * We don't need the reset flag anymore after the fork. It has
  2249. * fulfilled its duty:
  2250. */
  2251. p->sched_reset_on_fork = 0;
  2252. }
  2253. /*
  2254. * Make sure we do not leak PI boosting priority to the child.
  2255. */
  2256. p->prio = current->normal_prio;
  2257. if (!rt_prio(p->prio))
  2258. p->sched_class = &fair_sched_class;
  2259. if (p->sched_class->task_fork)
  2260. p->sched_class->task_fork(p);
  2261. /*
  2262. * The child is not yet in the pid-hash so no cgroup attach races,
  2263. * and the cgroup is pinned to this child due to cgroup_fork()
  2264. * is ran before sched_fork().
  2265. *
  2266. * Silence PROVE_RCU.
  2267. */
  2268. rcu_read_lock();
  2269. set_task_cpu(p, cpu);
  2270. rcu_read_unlock();
  2271. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2272. if (likely(sched_info_on()))
  2273. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2274. #endif
  2275. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2276. p->oncpu = 0;
  2277. #endif
  2278. #ifdef CONFIG_PREEMPT
  2279. /* Want to start with kernel preemption disabled. */
  2280. task_thread_info(p)->preempt_count = 1;
  2281. #endif
  2282. #ifdef CONFIG_SMP
  2283. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2284. #endif
  2285. put_cpu();
  2286. }
  2287. /*
  2288. * wake_up_new_task - wake up a newly created task for the first time.
  2289. *
  2290. * This function will do some initial scheduler statistics housekeeping
  2291. * that must be done for every newly created context, then puts the task
  2292. * on the runqueue and wakes it.
  2293. */
  2294. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2295. {
  2296. unsigned long flags;
  2297. struct rq *rq;
  2298. int cpu __maybe_unused = get_cpu();
  2299. #ifdef CONFIG_SMP
  2300. rq = task_rq_lock(p, &flags);
  2301. p->state = TASK_WAKING;
  2302. /*
  2303. * Fork balancing, do it here and not earlier because:
  2304. * - cpus_allowed can change in the fork path
  2305. * - any previously selected cpu might disappear through hotplug
  2306. *
  2307. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2308. * without people poking at ->cpus_allowed.
  2309. */
  2310. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2311. set_task_cpu(p, cpu);
  2312. p->state = TASK_RUNNING;
  2313. task_rq_unlock(rq, &flags);
  2314. #endif
  2315. rq = task_rq_lock(p, &flags);
  2316. activate_task(rq, p, 0);
  2317. trace_sched_wakeup_new(p, 1);
  2318. check_preempt_curr(rq, p, WF_FORK);
  2319. #ifdef CONFIG_SMP
  2320. if (p->sched_class->task_woken)
  2321. p->sched_class->task_woken(rq, p);
  2322. #endif
  2323. task_rq_unlock(rq, &flags);
  2324. put_cpu();
  2325. }
  2326. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2327. /**
  2328. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2329. * @notifier: notifier struct to register
  2330. */
  2331. void preempt_notifier_register(struct preempt_notifier *notifier)
  2332. {
  2333. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2334. }
  2335. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2336. /**
  2337. * preempt_notifier_unregister - no longer interested in preemption notifications
  2338. * @notifier: notifier struct to unregister
  2339. *
  2340. * This is safe to call from within a preemption notifier.
  2341. */
  2342. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2343. {
  2344. hlist_del(&notifier->link);
  2345. }
  2346. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2347. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2348. {
  2349. struct preempt_notifier *notifier;
  2350. struct hlist_node *node;
  2351. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2352. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2353. }
  2354. static void
  2355. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2356. struct task_struct *next)
  2357. {
  2358. struct preempt_notifier *notifier;
  2359. struct hlist_node *node;
  2360. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2361. notifier->ops->sched_out(notifier, next);
  2362. }
  2363. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2364. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2365. {
  2366. }
  2367. static void
  2368. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2369. struct task_struct *next)
  2370. {
  2371. }
  2372. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2373. /**
  2374. * prepare_task_switch - prepare to switch tasks
  2375. * @rq: the runqueue preparing to switch
  2376. * @prev: the current task that is being switched out
  2377. * @next: the task we are going to switch to.
  2378. *
  2379. * This is called with the rq lock held and interrupts off. It must
  2380. * be paired with a subsequent finish_task_switch after the context
  2381. * switch.
  2382. *
  2383. * prepare_task_switch sets up locking and calls architecture specific
  2384. * hooks.
  2385. */
  2386. static inline void
  2387. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2388. struct task_struct *next)
  2389. {
  2390. sched_info_switch(prev, next);
  2391. perf_event_task_sched_out(prev, next);
  2392. fire_sched_out_preempt_notifiers(prev, next);
  2393. prepare_lock_switch(rq, next);
  2394. prepare_arch_switch(next);
  2395. trace_sched_switch(prev, next);
  2396. }
  2397. /**
  2398. * finish_task_switch - clean up after a task-switch
  2399. * @rq: runqueue associated with task-switch
  2400. * @prev: the thread we just switched away from.
  2401. *
  2402. * finish_task_switch must be called after the context switch, paired
  2403. * with a prepare_task_switch call before the context switch.
  2404. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2405. * and do any other architecture-specific cleanup actions.
  2406. *
  2407. * Note that we may have delayed dropping an mm in context_switch(). If
  2408. * so, we finish that here outside of the runqueue lock. (Doing it
  2409. * with the lock held can cause deadlocks; see schedule() for
  2410. * details.)
  2411. */
  2412. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2413. __releases(rq->lock)
  2414. {
  2415. struct mm_struct *mm = rq->prev_mm;
  2416. long prev_state;
  2417. rq->prev_mm = NULL;
  2418. /*
  2419. * A task struct has one reference for the use as "current".
  2420. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2421. * schedule one last time. The schedule call will never return, and
  2422. * the scheduled task must drop that reference.
  2423. * The test for TASK_DEAD must occur while the runqueue locks are
  2424. * still held, otherwise prev could be scheduled on another cpu, die
  2425. * there before we look at prev->state, and then the reference would
  2426. * be dropped twice.
  2427. * Manfred Spraul <manfred@colorfullife.com>
  2428. */
  2429. prev_state = prev->state;
  2430. finish_arch_switch(prev);
  2431. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2432. local_irq_disable();
  2433. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2434. perf_event_task_sched_in(current);
  2435. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2436. local_irq_enable();
  2437. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2438. finish_lock_switch(rq, prev);
  2439. fire_sched_in_preempt_notifiers(current);
  2440. if (mm)
  2441. mmdrop(mm);
  2442. if (unlikely(prev_state == TASK_DEAD)) {
  2443. /*
  2444. * Remove function-return probe instances associated with this
  2445. * task and put them back on the free list.
  2446. */
  2447. kprobe_flush_task(prev);
  2448. put_task_struct(prev);
  2449. }
  2450. }
  2451. #ifdef CONFIG_SMP
  2452. /* assumes rq->lock is held */
  2453. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2454. {
  2455. if (prev->sched_class->pre_schedule)
  2456. prev->sched_class->pre_schedule(rq, prev);
  2457. }
  2458. /* rq->lock is NOT held, but preemption is disabled */
  2459. static inline void post_schedule(struct rq *rq)
  2460. {
  2461. if (rq->post_schedule) {
  2462. unsigned long flags;
  2463. raw_spin_lock_irqsave(&rq->lock, flags);
  2464. if (rq->curr->sched_class->post_schedule)
  2465. rq->curr->sched_class->post_schedule(rq);
  2466. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2467. rq->post_schedule = 0;
  2468. }
  2469. }
  2470. #else
  2471. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2472. {
  2473. }
  2474. static inline void post_schedule(struct rq *rq)
  2475. {
  2476. }
  2477. #endif
  2478. /**
  2479. * schedule_tail - first thing a freshly forked thread must call.
  2480. * @prev: the thread we just switched away from.
  2481. */
  2482. asmlinkage void schedule_tail(struct task_struct *prev)
  2483. __releases(rq->lock)
  2484. {
  2485. struct rq *rq = this_rq();
  2486. finish_task_switch(rq, prev);
  2487. /*
  2488. * FIXME: do we need to worry about rq being invalidated by the
  2489. * task_switch?
  2490. */
  2491. post_schedule(rq);
  2492. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2493. /* In this case, finish_task_switch does not reenable preemption */
  2494. preempt_enable();
  2495. #endif
  2496. if (current->set_child_tid)
  2497. put_user(task_pid_vnr(current), current->set_child_tid);
  2498. }
  2499. /*
  2500. * context_switch - switch to the new MM and the new
  2501. * thread's register state.
  2502. */
  2503. static inline void
  2504. context_switch(struct rq *rq, struct task_struct *prev,
  2505. struct task_struct *next)
  2506. {
  2507. struct mm_struct *mm, *oldmm;
  2508. prepare_task_switch(rq, prev, next);
  2509. mm = next->mm;
  2510. oldmm = prev->active_mm;
  2511. /*
  2512. * For paravirt, this is coupled with an exit in switch_to to
  2513. * combine the page table reload and the switch backend into
  2514. * one hypercall.
  2515. */
  2516. arch_start_context_switch(prev);
  2517. if (!mm) {
  2518. next->active_mm = oldmm;
  2519. atomic_inc(&oldmm->mm_count);
  2520. enter_lazy_tlb(oldmm, next);
  2521. } else
  2522. switch_mm(oldmm, mm, next);
  2523. if (!prev->mm) {
  2524. prev->active_mm = NULL;
  2525. rq->prev_mm = oldmm;
  2526. }
  2527. /*
  2528. * Since the runqueue lock will be released by the next
  2529. * task (which is an invalid locking op but in the case
  2530. * of the scheduler it's an obvious special-case), so we
  2531. * do an early lockdep release here:
  2532. */
  2533. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2534. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2535. #endif
  2536. /* Here we just switch the register state and the stack. */
  2537. switch_to(prev, next, prev);
  2538. barrier();
  2539. /*
  2540. * this_rq must be evaluated again because prev may have moved
  2541. * CPUs since it called schedule(), thus the 'rq' on its stack
  2542. * frame will be invalid.
  2543. */
  2544. finish_task_switch(this_rq(), prev);
  2545. }
  2546. /*
  2547. * nr_running, nr_uninterruptible and nr_context_switches:
  2548. *
  2549. * externally visible scheduler statistics: current number of runnable
  2550. * threads, current number of uninterruptible-sleeping threads, total
  2551. * number of context switches performed since bootup.
  2552. */
  2553. unsigned long nr_running(void)
  2554. {
  2555. unsigned long i, sum = 0;
  2556. for_each_online_cpu(i)
  2557. sum += cpu_rq(i)->nr_running;
  2558. return sum;
  2559. }
  2560. unsigned long nr_uninterruptible(void)
  2561. {
  2562. unsigned long i, sum = 0;
  2563. for_each_possible_cpu(i)
  2564. sum += cpu_rq(i)->nr_uninterruptible;
  2565. /*
  2566. * Since we read the counters lockless, it might be slightly
  2567. * inaccurate. Do not allow it to go below zero though:
  2568. */
  2569. if (unlikely((long)sum < 0))
  2570. sum = 0;
  2571. return sum;
  2572. }
  2573. unsigned long long nr_context_switches(void)
  2574. {
  2575. int i;
  2576. unsigned long long sum = 0;
  2577. for_each_possible_cpu(i)
  2578. sum += cpu_rq(i)->nr_switches;
  2579. return sum;
  2580. }
  2581. unsigned long nr_iowait(void)
  2582. {
  2583. unsigned long i, sum = 0;
  2584. for_each_possible_cpu(i)
  2585. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2586. return sum;
  2587. }
  2588. unsigned long nr_iowait_cpu(int cpu)
  2589. {
  2590. struct rq *this = cpu_rq(cpu);
  2591. return atomic_read(&this->nr_iowait);
  2592. }
  2593. unsigned long this_cpu_load(void)
  2594. {
  2595. struct rq *this = this_rq();
  2596. return this->cpu_load[0];
  2597. }
  2598. /* Variables and functions for calc_load */
  2599. static atomic_long_t calc_load_tasks;
  2600. static unsigned long calc_load_update;
  2601. unsigned long avenrun[3];
  2602. EXPORT_SYMBOL(avenrun);
  2603. static long calc_load_fold_active(struct rq *this_rq)
  2604. {
  2605. long nr_active, delta = 0;
  2606. nr_active = this_rq->nr_running;
  2607. nr_active += (long) this_rq->nr_uninterruptible;
  2608. if (nr_active != this_rq->calc_load_active) {
  2609. delta = nr_active - this_rq->calc_load_active;
  2610. this_rq->calc_load_active = nr_active;
  2611. }
  2612. return delta;
  2613. }
  2614. static unsigned long
  2615. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2616. {
  2617. load *= exp;
  2618. load += active * (FIXED_1 - exp);
  2619. load += 1UL << (FSHIFT - 1);
  2620. return load >> FSHIFT;
  2621. }
  2622. #ifdef CONFIG_NO_HZ
  2623. /*
  2624. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2625. *
  2626. * When making the ILB scale, we should try to pull this in as well.
  2627. */
  2628. static atomic_long_t calc_load_tasks_idle;
  2629. static void calc_load_account_idle(struct rq *this_rq)
  2630. {
  2631. long delta;
  2632. delta = calc_load_fold_active(this_rq);
  2633. if (delta)
  2634. atomic_long_add(delta, &calc_load_tasks_idle);
  2635. }
  2636. static long calc_load_fold_idle(void)
  2637. {
  2638. long delta = 0;
  2639. /*
  2640. * Its got a race, we don't care...
  2641. */
  2642. if (atomic_long_read(&calc_load_tasks_idle))
  2643. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2644. return delta;
  2645. }
  2646. /**
  2647. * fixed_power_int - compute: x^n, in O(log n) time
  2648. *
  2649. * @x: base of the power
  2650. * @frac_bits: fractional bits of @x
  2651. * @n: power to raise @x to.
  2652. *
  2653. * By exploiting the relation between the definition of the natural power
  2654. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2655. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2656. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2657. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2658. * of course trivially computable in O(log_2 n), the length of our binary
  2659. * vector.
  2660. */
  2661. static unsigned long
  2662. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2663. {
  2664. unsigned long result = 1UL << frac_bits;
  2665. if (n) for (;;) {
  2666. if (n & 1) {
  2667. result *= x;
  2668. result += 1UL << (frac_bits - 1);
  2669. result >>= frac_bits;
  2670. }
  2671. n >>= 1;
  2672. if (!n)
  2673. break;
  2674. x *= x;
  2675. x += 1UL << (frac_bits - 1);
  2676. x >>= frac_bits;
  2677. }
  2678. return result;
  2679. }
  2680. /*
  2681. * a1 = a0 * e + a * (1 - e)
  2682. *
  2683. * a2 = a1 * e + a * (1 - e)
  2684. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2685. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2686. *
  2687. * a3 = a2 * e + a * (1 - e)
  2688. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2689. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2690. *
  2691. * ...
  2692. *
  2693. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2694. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2695. * = a0 * e^n + a * (1 - e^n)
  2696. *
  2697. * [1] application of the geometric series:
  2698. *
  2699. * n 1 - x^(n+1)
  2700. * S_n := \Sum x^i = -------------
  2701. * i=0 1 - x
  2702. */
  2703. static unsigned long
  2704. calc_load_n(unsigned long load, unsigned long exp,
  2705. unsigned long active, unsigned int n)
  2706. {
  2707. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2708. }
  2709. /*
  2710. * NO_HZ can leave us missing all per-cpu ticks calling
  2711. * calc_load_account_active(), but since an idle CPU folds its delta into
  2712. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2713. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2714. *
  2715. * Once we've updated the global active value, we need to apply the exponential
  2716. * weights adjusted to the number of cycles missed.
  2717. */
  2718. static void calc_global_nohz(unsigned long ticks)
  2719. {
  2720. long delta, active, n;
  2721. if (time_before(jiffies, calc_load_update))
  2722. return;
  2723. /*
  2724. * If we crossed a calc_load_update boundary, make sure to fold
  2725. * any pending idle changes, the respective CPUs might have
  2726. * missed the tick driven calc_load_account_active() update
  2727. * due to NO_HZ.
  2728. */
  2729. delta = calc_load_fold_idle();
  2730. if (delta)
  2731. atomic_long_add(delta, &calc_load_tasks);
  2732. /*
  2733. * If we were idle for multiple load cycles, apply them.
  2734. */
  2735. if (ticks >= LOAD_FREQ) {
  2736. n = ticks / LOAD_FREQ;
  2737. active = atomic_long_read(&calc_load_tasks);
  2738. active = active > 0 ? active * FIXED_1 : 0;
  2739. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2740. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2741. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2742. calc_load_update += n * LOAD_FREQ;
  2743. }
  2744. /*
  2745. * Its possible the remainder of the above division also crosses
  2746. * a LOAD_FREQ period, the regular check in calc_global_load()
  2747. * which comes after this will take care of that.
  2748. *
  2749. * Consider us being 11 ticks before a cycle completion, and us
  2750. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2751. * age us 4 cycles, and the test in calc_global_load() will
  2752. * pick up the final one.
  2753. */
  2754. }
  2755. #else
  2756. static void calc_load_account_idle(struct rq *this_rq)
  2757. {
  2758. }
  2759. static inline long calc_load_fold_idle(void)
  2760. {
  2761. return 0;
  2762. }
  2763. static void calc_global_nohz(unsigned long ticks)
  2764. {
  2765. }
  2766. #endif
  2767. /**
  2768. * get_avenrun - get the load average array
  2769. * @loads: pointer to dest load array
  2770. * @offset: offset to add
  2771. * @shift: shift count to shift the result left
  2772. *
  2773. * These values are estimates at best, so no need for locking.
  2774. */
  2775. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2776. {
  2777. loads[0] = (avenrun[0] + offset) << shift;
  2778. loads[1] = (avenrun[1] + offset) << shift;
  2779. loads[2] = (avenrun[2] + offset) << shift;
  2780. }
  2781. /*
  2782. * calc_load - update the avenrun load estimates 10 ticks after the
  2783. * CPUs have updated calc_load_tasks.
  2784. */
  2785. void calc_global_load(unsigned long ticks)
  2786. {
  2787. long active;
  2788. calc_global_nohz(ticks);
  2789. if (time_before(jiffies, calc_load_update + 10))
  2790. return;
  2791. active = atomic_long_read(&calc_load_tasks);
  2792. active = active > 0 ? active * FIXED_1 : 0;
  2793. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2794. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2795. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2796. calc_load_update += LOAD_FREQ;
  2797. }
  2798. /*
  2799. * Called from update_cpu_load() to periodically update this CPU's
  2800. * active count.
  2801. */
  2802. static void calc_load_account_active(struct rq *this_rq)
  2803. {
  2804. long delta;
  2805. if (time_before(jiffies, this_rq->calc_load_update))
  2806. return;
  2807. delta = calc_load_fold_active(this_rq);
  2808. delta += calc_load_fold_idle();
  2809. if (delta)
  2810. atomic_long_add(delta, &calc_load_tasks);
  2811. this_rq->calc_load_update += LOAD_FREQ;
  2812. }
  2813. /*
  2814. * The exact cpuload at various idx values, calculated at every tick would be
  2815. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2816. *
  2817. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2818. * on nth tick when cpu may be busy, then we have:
  2819. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2820. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2821. *
  2822. * decay_load_missed() below does efficient calculation of
  2823. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2824. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2825. *
  2826. * The calculation is approximated on a 128 point scale.
  2827. * degrade_zero_ticks is the number of ticks after which load at any
  2828. * particular idx is approximated to be zero.
  2829. * degrade_factor is a precomputed table, a row for each load idx.
  2830. * Each column corresponds to degradation factor for a power of two ticks,
  2831. * based on 128 point scale.
  2832. * Example:
  2833. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2834. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2835. *
  2836. * With this power of 2 load factors, we can degrade the load n times
  2837. * by looking at 1 bits in n and doing as many mult/shift instead of
  2838. * n mult/shifts needed by the exact degradation.
  2839. */
  2840. #define DEGRADE_SHIFT 7
  2841. static const unsigned char
  2842. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2843. static const unsigned char
  2844. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2845. {0, 0, 0, 0, 0, 0, 0, 0},
  2846. {64, 32, 8, 0, 0, 0, 0, 0},
  2847. {96, 72, 40, 12, 1, 0, 0},
  2848. {112, 98, 75, 43, 15, 1, 0},
  2849. {120, 112, 98, 76, 45, 16, 2} };
  2850. /*
  2851. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2852. * would be when CPU is idle and so we just decay the old load without
  2853. * adding any new load.
  2854. */
  2855. static unsigned long
  2856. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2857. {
  2858. int j = 0;
  2859. if (!missed_updates)
  2860. return load;
  2861. if (missed_updates >= degrade_zero_ticks[idx])
  2862. return 0;
  2863. if (idx == 1)
  2864. return load >> missed_updates;
  2865. while (missed_updates) {
  2866. if (missed_updates % 2)
  2867. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2868. missed_updates >>= 1;
  2869. j++;
  2870. }
  2871. return load;
  2872. }
  2873. /*
  2874. * Update rq->cpu_load[] statistics. This function is usually called every
  2875. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2876. * every tick. We fix it up based on jiffies.
  2877. */
  2878. static void update_cpu_load(struct rq *this_rq)
  2879. {
  2880. unsigned long this_load = this_rq->load.weight;
  2881. unsigned long curr_jiffies = jiffies;
  2882. unsigned long pending_updates;
  2883. int i, scale;
  2884. this_rq->nr_load_updates++;
  2885. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2886. if (curr_jiffies == this_rq->last_load_update_tick)
  2887. return;
  2888. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2889. this_rq->last_load_update_tick = curr_jiffies;
  2890. /* Update our load: */
  2891. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2892. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2893. unsigned long old_load, new_load;
  2894. /* scale is effectively 1 << i now, and >> i divides by scale */
  2895. old_load = this_rq->cpu_load[i];
  2896. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2897. new_load = this_load;
  2898. /*
  2899. * Round up the averaging division if load is increasing. This
  2900. * prevents us from getting stuck on 9 if the load is 10, for
  2901. * example.
  2902. */
  2903. if (new_load > old_load)
  2904. new_load += scale - 1;
  2905. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2906. }
  2907. sched_avg_update(this_rq);
  2908. }
  2909. static void update_cpu_load_active(struct rq *this_rq)
  2910. {
  2911. update_cpu_load(this_rq);
  2912. calc_load_account_active(this_rq);
  2913. }
  2914. #ifdef CONFIG_SMP
  2915. /*
  2916. * sched_exec - execve() is a valuable balancing opportunity, because at
  2917. * this point the task has the smallest effective memory and cache footprint.
  2918. */
  2919. void sched_exec(void)
  2920. {
  2921. struct task_struct *p = current;
  2922. unsigned long flags;
  2923. struct rq *rq;
  2924. int dest_cpu;
  2925. rq = task_rq_lock(p, &flags);
  2926. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2927. if (dest_cpu == smp_processor_id())
  2928. goto unlock;
  2929. /*
  2930. * select_task_rq() can race against ->cpus_allowed
  2931. */
  2932. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2933. likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
  2934. struct migration_arg arg = { p, dest_cpu };
  2935. task_rq_unlock(rq, &flags);
  2936. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2937. return;
  2938. }
  2939. unlock:
  2940. task_rq_unlock(rq, &flags);
  2941. }
  2942. #endif
  2943. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2944. EXPORT_PER_CPU_SYMBOL(kstat);
  2945. /*
  2946. * Return any ns on the sched_clock that have not yet been accounted in
  2947. * @p in case that task is currently running.
  2948. *
  2949. * Called with task_rq_lock() held on @rq.
  2950. */
  2951. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2952. {
  2953. u64 ns = 0;
  2954. if (task_current(rq, p)) {
  2955. update_rq_clock(rq);
  2956. ns = rq->clock_task - p->se.exec_start;
  2957. if ((s64)ns < 0)
  2958. ns = 0;
  2959. }
  2960. return ns;
  2961. }
  2962. unsigned long long task_delta_exec(struct task_struct *p)
  2963. {
  2964. unsigned long flags;
  2965. struct rq *rq;
  2966. u64 ns = 0;
  2967. rq = task_rq_lock(p, &flags);
  2968. ns = do_task_delta_exec(p, rq);
  2969. task_rq_unlock(rq, &flags);
  2970. return ns;
  2971. }
  2972. /*
  2973. * Return accounted runtime for the task.
  2974. * In case the task is currently running, return the runtime plus current's
  2975. * pending runtime that have not been accounted yet.
  2976. */
  2977. unsigned long long task_sched_runtime(struct task_struct *p)
  2978. {
  2979. unsigned long flags;
  2980. struct rq *rq;
  2981. u64 ns = 0;
  2982. rq = task_rq_lock(p, &flags);
  2983. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2984. task_rq_unlock(rq, &flags);
  2985. return ns;
  2986. }
  2987. /*
  2988. * Return sum_exec_runtime for the thread group.
  2989. * In case the task is currently running, return the sum plus current's
  2990. * pending runtime that have not been accounted yet.
  2991. *
  2992. * Note that the thread group might have other running tasks as well,
  2993. * so the return value not includes other pending runtime that other
  2994. * running tasks might have.
  2995. */
  2996. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2997. {
  2998. struct task_cputime totals;
  2999. unsigned long flags;
  3000. struct rq *rq;
  3001. u64 ns;
  3002. rq = task_rq_lock(p, &flags);
  3003. thread_group_cputime(p, &totals);
  3004. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3005. task_rq_unlock(rq, &flags);
  3006. return ns;
  3007. }
  3008. /*
  3009. * Account user cpu time to a process.
  3010. * @p: the process that the cpu time gets accounted to
  3011. * @cputime: the cpu time spent in user space since the last update
  3012. * @cputime_scaled: cputime scaled by cpu frequency
  3013. */
  3014. void account_user_time(struct task_struct *p, cputime_t cputime,
  3015. cputime_t cputime_scaled)
  3016. {
  3017. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3018. cputime64_t tmp;
  3019. /* Add user time to process. */
  3020. p->utime = cputime_add(p->utime, cputime);
  3021. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3022. account_group_user_time(p, cputime);
  3023. /* Add user time to cpustat. */
  3024. tmp = cputime_to_cputime64(cputime);
  3025. if (TASK_NICE(p) > 0)
  3026. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3027. else
  3028. cpustat->user = cputime64_add(cpustat->user, tmp);
  3029. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3030. /* Account for user time used */
  3031. acct_update_integrals(p);
  3032. }
  3033. /*
  3034. * Account guest cpu time to a process.
  3035. * @p: the process that the cpu time gets accounted to
  3036. * @cputime: the cpu time spent in virtual machine since the last update
  3037. * @cputime_scaled: cputime scaled by cpu frequency
  3038. */
  3039. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3040. cputime_t cputime_scaled)
  3041. {
  3042. cputime64_t tmp;
  3043. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3044. tmp = cputime_to_cputime64(cputime);
  3045. /* Add guest time to process. */
  3046. p->utime = cputime_add(p->utime, cputime);
  3047. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3048. account_group_user_time(p, cputime);
  3049. p->gtime = cputime_add(p->gtime, cputime);
  3050. /* Add guest time to cpustat. */
  3051. if (TASK_NICE(p) > 0) {
  3052. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3053. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3054. } else {
  3055. cpustat->user = cputime64_add(cpustat->user, tmp);
  3056. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3057. }
  3058. }
  3059. /*
  3060. * Account system cpu time to a process and desired cpustat field
  3061. * @p: the process that the cpu time gets accounted to
  3062. * @cputime: the cpu time spent in kernel space since the last update
  3063. * @cputime_scaled: cputime scaled by cpu frequency
  3064. * @target_cputime64: pointer to cpustat field that has to be updated
  3065. */
  3066. static inline
  3067. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3068. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3069. {
  3070. cputime64_t tmp = cputime_to_cputime64(cputime);
  3071. /* Add system time to process. */
  3072. p->stime = cputime_add(p->stime, cputime);
  3073. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3074. account_group_system_time(p, cputime);
  3075. /* Add system time to cpustat. */
  3076. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3077. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3078. /* Account for system time used */
  3079. acct_update_integrals(p);
  3080. }
  3081. /*
  3082. * Account system cpu time to a process.
  3083. * @p: the process that the cpu time gets accounted to
  3084. * @hardirq_offset: the offset to subtract from hardirq_count()
  3085. * @cputime: the cpu time spent in kernel space since the last update
  3086. * @cputime_scaled: cputime scaled by cpu frequency
  3087. */
  3088. void account_system_time(struct task_struct *p, int hardirq_offset,
  3089. cputime_t cputime, cputime_t cputime_scaled)
  3090. {
  3091. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3092. cputime64_t *target_cputime64;
  3093. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3094. account_guest_time(p, cputime, cputime_scaled);
  3095. return;
  3096. }
  3097. if (hardirq_count() - hardirq_offset)
  3098. target_cputime64 = &cpustat->irq;
  3099. else if (in_serving_softirq())
  3100. target_cputime64 = &cpustat->softirq;
  3101. else
  3102. target_cputime64 = &cpustat->system;
  3103. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3104. }
  3105. /*
  3106. * Account for involuntary wait time.
  3107. * @cputime: the cpu time spent in involuntary wait
  3108. */
  3109. void account_steal_time(cputime_t cputime)
  3110. {
  3111. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3112. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3113. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3114. }
  3115. /*
  3116. * Account for idle time.
  3117. * @cputime: the cpu time spent in idle wait
  3118. */
  3119. void account_idle_time(cputime_t cputime)
  3120. {
  3121. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3122. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3123. struct rq *rq = this_rq();
  3124. if (atomic_read(&rq->nr_iowait) > 0)
  3125. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3126. else
  3127. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3128. }
  3129. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3130. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3131. /*
  3132. * Account a tick to a process and cpustat
  3133. * @p: the process that the cpu time gets accounted to
  3134. * @user_tick: is the tick from userspace
  3135. * @rq: the pointer to rq
  3136. *
  3137. * Tick demultiplexing follows the order
  3138. * - pending hardirq update
  3139. * - pending softirq update
  3140. * - user_time
  3141. * - idle_time
  3142. * - system time
  3143. * - check for guest_time
  3144. * - else account as system_time
  3145. *
  3146. * Check for hardirq is done both for system and user time as there is
  3147. * no timer going off while we are on hardirq and hence we may never get an
  3148. * opportunity to update it solely in system time.
  3149. * p->stime and friends are only updated on system time and not on irq
  3150. * softirq as those do not count in task exec_runtime any more.
  3151. */
  3152. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3153. struct rq *rq)
  3154. {
  3155. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3156. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3157. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3158. if (irqtime_account_hi_update()) {
  3159. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3160. } else if (irqtime_account_si_update()) {
  3161. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3162. } else if (this_cpu_ksoftirqd() == p) {
  3163. /*
  3164. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3165. * So, we have to handle it separately here.
  3166. * Also, p->stime needs to be updated for ksoftirqd.
  3167. */
  3168. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3169. &cpustat->softirq);
  3170. } else if (user_tick) {
  3171. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3172. } else if (p == rq->idle) {
  3173. account_idle_time(cputime_one_jiffy);
  3174. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3175. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3176. } else {
  3177. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3178. &cpustat->system);
  3179. }
  3180. }
  3181. static void irqtime_account_idle_ticks(int ticks)
  3182. {
  3183. int i;
  3184. struct rq *rq = this_rq();
  3185. for (i = 0; i < ticks; i++)
  3186. irqtime_account_process_tick(current, 0, rq);
  3187. }
  3188. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3189. static void irqtime_account_idle_ticks(int ticks) {}
  3190. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3191. struct rq *rq) {}
  3192. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3193. /*
  3194. * Account a single tick of cpu time.
  3195. * @p: the process that the cpu time gets accounted to
  3196. * @user_tick: indicates if the tick is a user or a system tick
  3197. */
  3198. void account_process_tick(struct task_struct *p, int user_tick)
  3199. {
  3200. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3201. struct rq *rq = this_rq();
  3202. if (sched_clock_irqtime) {
  3203. irqtime_account_process_tick(p, user_tick, rq);
  3204. return;
  3205. }
  3206. if (user_tick)
  3207. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3208. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3209. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3210. one_jiffy_scaled);
  3211. else
  3212. account_idle_time(cputime_one_jiffy);
  3213. }
  3214. /*
  3215. * Account multiple ticks of steal time.
  3216. * @p: the process from which the cpu time has been stolen
  3217. * @ticks: number of stolen ticks
  3218. */
  3219. void account_steal_ticks(unsigned long ticks)
  3220. {
  3221. account_steal_time(jiffies_to_cputime(ticks));
  3222. }
  3223. /*
  3224. * Account multiple ticks of idle time.
  3225. * @ticks: number of stolen ticks
  3226. */
  3227. void account_idle_ticks(unsigned long ticks)
  3228. {
  3229. if (sched_clock_irqtime) {
  3230. irqtime_account_idle_ticks(ticks);
  3231. return;
  3232. }
  3233. account_idle_time(jiffies_to_cputime(ticks));
  3234. }
  3235. #endif
  3236. /*
  3237. * Use precise platform statistics if available:
  3238. */
  3239. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3240. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3241. {
  3242. *ut = p->utime;
  3243. *st = p->stime;
  3244. }
  3245. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3246. {
  3247. struct task_cputime cputime;
  3248. thread_group_cputime(p, &cputime);
  3249. *ut = cputime.utime;
  3250. *st = cputime.stime;
  3251. }
  3252. #else
  3253. #ifndef nsecs_to_cputime
  3254. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3255. #endif
  3256. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3257. {
  3258. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3259. /*
  3260. * Use CFS's precise accounting:
  3261. */
  3262. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3263. if (total) {
  3264. u64 temp = rtime;
  3265. temp *= utime;
  3266. do_div(temp, total);
  3267. utime = (cputime_t)temp;
  3268. } else
  3269. utime = rtime;
  3270. /*
  3271. * Compare with previous values, to keep monotonicity:
  3272. */
  3273. p->prev_utime = max(p->prev_utime, utime);
  3274. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3275. *ut = p->prev_utime;
  3276. *st = p->prev_stime;
  3277. }
  3278. /*
  3279. * Must be called with siglock held.
  3280. */
  3281. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3282. {
  3283. struct signal_struct *sig = p->signal;
  3284. struct task_cputime cputime;
  3285. cputime_t rtime, utime, total;
  3286. thread_group_cputime(p, &cputime);
  3287. total = cputime_add(cputime.utime, cputime.stime);
  3288. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3289. if (total) {
  3290. u64 temp = rtime;
  3291. temp *= cputime.utime;
  3292. do_div(temp, total);
  3293. utime = (cputime_t)temp;
  3294. } else
  3295. utime = rtime;
  3296. sig->prev_utime = max(sig->prev_utime, utime);
  3297. sig->prev_stime = max(sig->prev_stime,
  3298. cputime_sub(rtime, sig->prev_utime));
  3299. *ut = sig->prev_utime;
  3300. *st = sig->prev_stime;
  3301. }
  3302. #endif
  3303. /*
  3304. * This function gets called by the timer code, with HZ frequency.
  3305. * We call it with interrupts disabled.
  3306. *
  3307. * It also gets called by the fork code, when changing the parent's
  3308. * timeslices.
  3309. */
  3310. void scheduler_tick(void)
  3311. {
  3312. int cpu = smp_processor_id();
  3313. struct rq *rq = cpu_rq(cpu);
  3314. struct task_struct *curr = rq->curr;
  3315. sched_clock_tick();
  3316. raw_spin_lock(&rq->lock);
  3317. update_rq_clock(rq);
  3318. update_cpu_load_active(rq);
  3319. curr->sched_class->task_tick(rq, curr, 0);
  3320. raw_spin_unlock(&rq->lock);
  3321. perf_event_task_tick();
  3322. #ifdef CONFIG_SMP
  3323. rq->idle_at_tick = idle_cpu(cpu);
  3324. trigger_load_balance(rq, cpu);
  3325. #endif
  3326. }
  3327. notrace unsigned long get_parent_ip(unsigned long addr)
  3328. {
  3329. if (in_lock_functions(addr)) {
  3330. addr = CALLER_ADDR2;
  3331. if (in_lock_functions(addr))
  3332. addr = CALLER_ADDR3;
  3333. }
  3334. return addr;
  3335. }
  3336. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3337. defined(CONFIG_PREEMPT_TRACER))
  3338. void __kprobes add_preempt_count(int val)
  3339. {
  3340. #ifdef CONFIG_DEBUG_PREEMPT
  3341. /*
  3342. * Underflow?
  3343. */
  3344. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3345. return;
  3346. #endif
  3347. preempt_count() += val;
  3348. #ifdef CONFIG_DEBUG_PREEMPT
  3349. /*
  3350. * Spinlock count overflowing soon?
  3351. */
  3352. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3353. PREEMPT_MASK - 10);
  3354. #endif
  3355. if (preempt_count() == val)
  3356. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3357. }
  3358. EXPORT_SYMBOL(add_preempt_count);
  3359. void __kprobes sub_preempt_count(int val)
  3360. {
  3361. #ifdef CONFIG_DEBUG_PREEMPT
  3362. /*
  3363. * Underflow?
  3364. */
  3365. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3366. return;
  3367. /*
  3368. * Is the spinlock portion underflowing?
  3369. */
  3370. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3371. !(preempt_count() & PREEMPT_MASK)))
  3372. return;
  3373. #endif
  3374. if (preempt_count() == val)
  3375. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3376. preempt_count() -= val;
  3377. }
  3378. EXPORT_SYMBOL(sub_preempt_count);
  3379. #endif
  3380. /*
  3381. * Print scheduling while atomic bug:
  3382. */
  3383. static noinline void __schedule_bug(struct task_struct *prev)
  3384. {
  3385. struct pt_regs *regs = get_irq_regs();
  3386. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3387. prev->comm, prev->pid, preempt_count());
  3388. debug_show_held_locks(prev);
  3389. print_modules();
  3390. if (irqs_disabled())
  3391. print_irqtrace_events(prev);
  3392. if (regs)
  3393. show_regs(regs);
  3394. else
  3395. dump_stack();
  3396. }
  3397. /*
  3398. * Various schedule()-time debugging checks and statistics:
  3399. */
  3400. static inline void schedule_debug(struct task_struct *prev)
  3401. {
  3402. /*
  3403. * Test if we are atomic. Since do_exit() needs to call into
  3404. * schedule() atomically, we ignore that path for now.
  3405. * Otherwise, whine if we are scheduling when we should not be.
  3406. */
  3407. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3408. __schedule_bug(prev);
  3409. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3410. schedstat_inc(this_rq(), sched_count);
  3411. #ifdef CONFIG_SCHEDSTATS
  3412. if (unlikely(prev->lock_depth >= 0)) {
  3413. schedstat_inc(this_rq(), rq_sched_info.bkl_count);
  3414. schedstat_inc(prev, sched_info.bkl_count);
  3415. }
  3416. #endif
  3417. }
  3418. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3419. {
  3420. if (prev->se.on_rq)
  3421. update_rq_clock(rq);
  3422. prev->sched_class->put_prev_task(rq, prev);
  3423. }
  3424. /*
  3425. * Pick up the highest-prio task:
  3426. */
  3427. static inline struct task_struct *
  3428. pick_next_task(struct rq *rq)
  3429. {
  3430. const struct sched_class *class;
  3431. struct task_struct *p;
  3432. /*
  3433. * Optimization: we know that if all tasks are in
  3434. * the fair class we can call that function directly:
  3435. */
  3436. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3437. p = fair_sched_class.pick_next_task(rq);
  3438. if (likely(p))
  3439. return p;
  3440. }
  3441. for_each_class(class) {
  3442. p = class->pick_next_task(rq);
  3443. if (p)
  3444. return p;
  3445. }
  3446. BUG(); /* the idle class will always have a runnable task */
  3447. }
  3448. /*
  3449. * schedule() is the main scheduler function.
  3450. */
  3451. asmlinkage void __sched schedule(void)
  3452. {
  3453. struct task_struct *prev, *next;
  3454. unsigned long *switch_count;
  3455. struct rq *rq;
  3456. int cpu;
  3457. need_resched:
  3458. preempt_disable();
  3459. cpu = smp_processor_id();
  3460. rq = cpu_rq(cpu);
  3461. rcu_note_context_switch(cpu);
  3462. prev = rq->curr;
  3463. schedule_debug(prev);
  3464. if (sched_feat(HRTICK))
  3465. hrtick_clear(rq);
  3466. raw_spin_lock_irq(&rq->lock);
  3467. switch_count = &prev->nivcsw;
  3468. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3469. if (unlikely(signal_pending_state(prev->state, prev))) {
  3470. prev->state = TASK_RUNNING;
  3471. } else {
  3472. /*
  3473. * If a worker is going to sleep, notify and
  3474. * ask workqueue whether it wants to wake up a
  3475. * task to maintain concurrency. If so, wake
  3476. * up the task.
  3477. */
  3478. if (prev->flags & PF_WQ_WORKER) {
  3479. struct task_struct *to_wakeup;
  3480. to_wakeup = wq_worker_sleeping(prev, cpu);
  3481. if (to_wakeup)
  3482. try_to_wake_up_local(to_wakeup);
  3483. }
  3484. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3485. }
  3486. switch_count = &prev->nvcsw;
  3487. }
  3488. /*
  3489. * If we are going to sleep and we have plugged IO queued, make
  3490. * sure to submit it to avoid deadlocks.
  3491. */
  3492. if (prev->state != TASK_RUNNING && blk_needs_flush_plug(prev)) {
  3493. raw_spin_unlock(&rq->lock);
  3494. blk_flush_plug(prev);
  3495. raw_spin_lock(&rq->lock);
  3496. }
  3497. pre_schedule(rq, prev);
  3498. if (unlikely(!rq->nr_running))
  3499. idle_balance(cpu, rq);
  3500. put_prev_task(rq, prev);
  3501. next = pick_next_task(rq);
  3502. clear_tsk_need_resched(prev);
  3503. rq->skip_clock_update = 0;
  3504. if (likely(prev != next)) {
  3505. rq->nr_switches++;
  3506. rq->curr = next;
  3507. ++*switch_count;
  3508. context_switch(rq, prev, next); /* unlocks the rq */
  3509. /*
  3510. * The context switch have flipped the stack from under us
  3511. * and restored the local variables which were saved when
  3512. * this task called schedule() in the past. prev == current
  3513. * is still correct, but it can be moved to another cpu/rq.
  3514. */
  3515. cpu = smp_processor_id();
  3516. rq = cpu_rq(cpu);
  3517. } else
  3518. raw_spin_unlock_irq(&rq->lock);
  3519. post_schedule(rq);
  3520. preempt_enable_no_resched();
  3521. if (need_resched())
  3522. goto need_resched;
  3523. }
  3524. EXPORT_SYMBOL(schedule);
  3525. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3526. /*
  3527. * Look out! "owner" is an entirely speculative pointer
  3528. * access and not reliable.
  3529. */
  3530. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3531. {
  3532. unsigned int cpu;
  3533. struct rq *rq;
  3534. if (!sched_feat(OWNER_SPIN))
  3535. return 0;
  3536. #ifdef CONFIG_DEBUG_PAGEALLOC
  3537. /*
  3538. * Need to access the cpu field knowing that
  3539. * DEBUG_PAGEALLOC could have unmapped it if
  3540. * the mutex owner just released it and exited.
  3541. */
  3542. if (probe_kernel_address(&owner->cpu, cpu))
  3543. return 0;
  3544. #else
  3545. cpu = owner->cpu;
  3546. #endif
  3547. /*
  3548. * Even if the access succeeded (likely case),
  3549. * the cpu field may no longer be valid.
  3550. */
  3551. if (cpu >= nr_cpumask_bits)
  3552. return 0;
  3553. /*
  3554. * We need to validate that we can do a
  3555. * get_cpu() and that we have the percpu area.
  3556. */
  3557. if (!cpu_online(cpu))
  3558. return 0;
  3559. rq = cpu_rq(cpu);
  3560. for (;;) {
  3561. /*
  3562. * Owner changed, break to re-assess state.
  3563. */
  3564. if (lock->owner != owner) {
  3565. /*
  3566. * If the lock has switched to a different owner,
  3567. * we likely have heavy contention. Return 0 to quit
  3568. * optimistic spinning and not contend further:
  3569. */
  3570. if (lock->owner)
  3571. return 0;
  3572. break;
  3573. }
  3574. /*
  3575. * Is that owner really running on that cpu?
  3576. */
  3577. if (task_thread_info(rq->curr) != owner || need_resched())
  3578. return 0;
  3579. arch_mutex_cpu_relax();
  3580. }
  3581. return 1;
  3582. }
  3583. #endif
  3584. #ifdef CONFIG_PREEMPT
  3585. /*
  3586. * this is the entry point to schedule() from in-kernel preemption
  3587. * off of preempt_enable. Kernel preemptions off return from interrupt
  3588. * occur there and call schedule directly.
  3589. */
  3590. asmlinkage void __sched notrace preempt_schedule(void)
  3591. {
  3592. struct thread_info *ti = current_thread_info();
  3593. /*
  3594. * If there is a non-zero preempt_count or interrupts are disabled,
  3595. * we do not want to preempt the current task. Just return..
  3596. */
  3597. if (likely(ti->preempt_count || irqs_disabled()))
  3598. return;
  3599. do {
  3600. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3601. schedule();
  3602. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3603. /*
  3604. * Check again in case we missed a preemption opportunity
  3605. * between schedule and now.
  3606. */
  3607. barrier();
  3608. } while (need_resched());
  3609. }
  3610. EXPORT_SYMBOL(preempt_schedule);
  3611. /*
  3612. * this is the entry point to schedule() from kernel preemption
  3613. * off of irq context.
  3614. * Note, that this is called and return with irqs disabled. This will
  3615. * protect us against recursive calling from irq.
  3616. */
  3617. asmlinkage void __sched preempt_schedule_irq(void)
  3618. {
  3619. struct thread_info *ti = current_thread_info();
  3620. /* Catch callers which need to be fixed */
  3621. BUG_ON(ti->preempt_count || !irqs_disabled());
  3622. do {
  3623. add_preempt_count(PREEMPT_ACTIVE);
  3624. local_irq_enable();
  3625. schedule();
  3626. local_irq_disable();
  3627. sub_preempt_count(PREEMPT_ACTIVE);
  3628. /*
  3629. * Check again in case we missed a preemption opportunity
  3630. * between schedule and now.
  3631. */
  3632. barrier();
  3633. } while (need_resched());
  3634. }
  3635. #endif /* CONFIG_PREEMPT */
  3636. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3637. void *key)
  3638. {
  3639. return try_to_wake_up(curr->private, mode, wake_flags);
  3640. }
  3641. EXPORT_SYMBOL(default_wake_function);
  3642. /*
  3643. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3644. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3645. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3646. *
  3647. * There are circumstances in which we can try to wake a task which has already
  3648. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3649. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3650. */
  3651. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3652. int nr_exclusive, int wake_flags, void *key)
  3653. {
  3654. wait_queue_t *curr, *next;
  3655. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3656. unsigned flags = curr->flags;
  3657. if (curr->func(curr, mode, wake_flags, key) &&
  3658. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3659. break;
  3660. }
  3661. }
  3662. /**
  3663. * __wake_up - wake up threads blocked on a waitqueue.
  3664. * @q: the waitqueue
  3665. * @mode: which threads
  3666. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3667. * @key: is directly passed to the wakeup function
  3668. *
  3669. * It may be assumed that this function implies a write memory barrier before
  3670. * changing the task state if and only if any tasks are woken up.
  3671. */
  3672. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3673. int nr_exclusive, void *key)
  3674. {
  3675. unsigned long flags;
  3676. spin_lock_irqsave(&q->lock, flags);
  3677. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3678. spin_unlock_irqrestore(&q->lock, flags);
  3679. }
  3680. EXPORT_SYMBOL(__wake_up);
  3681. /*
  3682. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3683. */
  3684. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3685. {
  3686. __wake_up_common(q, mode, 1, 0, NULL);
  3687. }
  3688. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3689. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3690. {
  3691. __wake_up_common(q, mode, 1, 0, key);
  3692. }
  3693. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3694. /**
  3695. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3696. * @q: the waitqueue
  3697. * @mode: which threads
  3698. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3699. * @key: opaque value to be passed to wakeup targets
  3700. *
  3701. * The sync wakeup differs that the waker knows that it will schedule
  3702. * away soon, so while the target thread will be woken up, it will not
  3703. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3704. * with each other. This can prevent needless bouncing between CPUs.
  3705. *
  3706. * On UP it can prevent extra preemption.
  3707. *
  3708. * It may be assumed that this function implies a write memory barrier before
  3709. * changing the task state if and only if any tasks are woken up.
  3710. */
  3711. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3712. int nr_exclusive, void *key)
  3713. {
  3714. unsigned long flags;
  3715. int wake_flags = WF_SYNC;
  3716. if (unlikely(!q))
  3717. return;
  3718. if (unlikely(!nr_exclusive))
  3719. wake_flags = 0;
  3720. spin_lock_irqsave(&q->lock, flags);
  3721. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3722. spin_unlock_irqrestore(&q->lock, flags);
  3723. }
  3724. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3725. /*
  3726. * __wake_up_sync - see __wake_up_sync_key()
  3727. */
  3728. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3729. {
  3730. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3731. }
  3732. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3733. /**
  3734. * complete: - signals a single thread waiting on this completion
  3735. * @x: holds the state of this particular completion
  3736. *
  3737. * This will wake up a single thread waiting on this completion. Threads will be
  3738. * awakened in the same order in which they were queued.
  3739. *
  3740. * See also complete_all(), wait_for_completion() and related routines.
  3741. *
  3742. * It may be assumed that this function implies a write memory barrier before
  3743. * changing the task state if and only if any tasks are woken up.
  3744. */
  3745. void complete(struct completion *x)
  3746. {
  3747. unsigned long flags;
  3748. spin_lock_irqsave(&x->wait.lock, flags);
  3749. x->done++;
  3750. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3751. spin_unlock_irqrestore(&x->wait.lock, flags);
  3752. }
  3753. EXPORT_SYMBOL(complete);
  3754. /**
  3755. * complete_all: - signals all threads waiting on this completion
  3756. * @x: holds the state of this particular completion
  3757. *
  3758. * This will wake up all threads waiting on this particular completion event.
  3759. *
  3760. * It may be assumed that this function implies a write memory barrier before
  3761. * changing the task state if and only if any tasks are woken up.
  3762. */
  3763. void complete_all(struct completion *x)
  3764. {
  3765. unsigned long flags;
  3766. spin_lock_irqsave(&x->wait.lock, flags);
  3767. x->done += UINT_MAX/2;
  3768. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3769. spin_unlock_irqrestore(&x->wait.lock, flags);
  3770. }
  3771. EXPORT_SYMBOL(complete_all);
  3772. static inline long __sched
  3773. do_wait_for_common(struct completion *x, long timeout, int state)
  3774. {
  3775. if (!x->done) {
  3776. DECLARE_WAITQUEUE(wait, current);
  3777. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3778. do {
  3779. if (signal_pending_state(state, current)) {
  3780. timeout = -ERESTARTSYS;
  3781. break;
  3782. }
  3783. __set_current_state(state);
  3784. spin_unlock_irq(&x->wait.lock);
  3785. timeout = schedule_timeout(timeout);
  3786. spin_lock_irq(&x->wait.lock);
  3787. } while (!x->done && timeout);
  3788. __remove_wait_queue(&x->wait, &wait);
  3789. if (!x->done)
  3790. return timeout;
  3791. }
  3792. x->done--;
  3793. return timeout ?: 1;
  3794. }
  3795. static long __sched
  3796. wait_for_common(struct completion *x, long timeout, int state)
  3797. {
  3798. might_sleep();
  3799. spin_lock_irq(&x->wait.lock);
  3800. timeout = do_wait_for_common(x, timeout, state);
  3801. spin_unlock_irq(&x->wait.lock);
  3802. return timeout;
  3803. }
  3804. /**
  3805. * wait_for_completion: - waits for completion of a task
  3806. * @x: holds the state of this particular completion
  3807. *
  3808. * This waits to be signaled for completion of a specific task. It is NOT
  3809. * interruptible and there is no timeout.
  3810. *
  3811. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3812. * and interrupt capability. Also see complete().
  3813. */
  3814. void __sched wait_for_completion(struct completion *x)
  3815. {
  3816. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3817. }
  3818. EXPORT_SYMBOL(wait_for_completion);
  3819. /**
  3820. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3821. * @x: holds the state of this particular completion
  3822. * @timeout: timeout value in jiffies
  3823. *
  3824. * This waits for either a completion of a specific task to be signaled or for a
  3825. * specified timeout to expire. The timeout is in jiffies. It is not
  3826. * interruptible.
  3827. */
  3828. unsigned long __sched
  3829. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3830. {
  3831. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3832. }
  3833. EXPORT_SYMBOL(wait_for_completion_timeout);
  3834. /**
  3835. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3836. * @x: holds the state of this particular completion
  3837. *
  3838. * This waits for completion of a specific task to be signaled. It is
  3839. * interruptible.
  3840. */
  3841. int __sched wait_for_completion_interruptible(struct completion *x)
  3842. {
  3843. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3844. if (t == -ERESTARTSYS)
  3845. return t;
  3846. return 0;
  3847. }
  3848. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3849. /**
  3850. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3851. * @x: holds the state of this particular completion
  3852. * @timeout: timeout value in jiffies
  3853. *
  3854. * This waits for either a completion of a specific task to be signaled or for a
  3855. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3856. */
  3857. long __sched
  3858. wait_for_completion_interruptible_timeout(struct completion *x,
  3859. unsigned long timeout)
  3860. {
  3861. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3862. }
  3863. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3864. /**
  3865. * wait_for_completion_killable: - waits for completion of a task (killable)
  3866. * @x: holds the state of this particular completion
  3867. *
  3868. * This waits to be signaled for completion of a specific task. It can be
  3869. * interrupted by a kill signal.
  3870. */
  3871. int __sched wait_for_completion_killable(struct completion *x)
  3872. {
  3873. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3874. if (t == -ERESTARTSYS)
  3875. return t;
  3876. return 0;
  3877. }
  3878. EXPORT_SYMBOL(wait_for_completion_killable);
  3879. /**
  3880. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3881. * @x: holds the state of this particular completion
  3882. * @timeout: timeout value in jiffies
  3883. *
  3884. * This waits for either a completion of a specific task to be
  3885. * signaled or for a specified timeout to expire. It can be
  3886. * interrupted by a kill signal. The timeout is in jiffies.
  3887. */
  3888. long __sched
  3889. wait_for_completion_killable_timeout(struct completion *x,
  3890. unsigned long timeout)
  3891. {
  3892. return wait_for_common(x, timeout, TASK_KILLABLE);
  3893. }
  3894. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3895. /**
  3896. * try_wait_for_completion - try to decrement a completion without blocking
  3897. * @x: completion structure
  3898. *
  3899. * Returns: 0 if a decrement cannot be done without blocking
  3900. * 1 if a decrement succeeded.
  3901. *
  3902. * If a completion is being used as a counting completion,
  3903. * attempt to decrement the counter without blocking. This
  3904. * enables us to avoid waiting if the resource the completion
  3905. * is protecting is not available.
  3906. */
  3907. bool try_wait_for_completion(struct completion *x)
  3908. {
  3909. unsigned long flags;
  3910. int ret = 1;
  3911. spin_lock_irqsave(&x->wait.lock, flags);
  3912. if (!x->done)
  3913. ret = 0;
  3914. else
  3915. x->done--;
  3916. spin_unlock_irqrestore(&x->wait.lock, flags);
  3917. return ret;
  3918. }
  3919. EXPORT_SYMBOL(try_wait_for_completion);
  3920. /**
  3921. * completion_done - Test to see if a completion has any waiters
  3922. * @x: completion structure
  3923. *
  3924. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3925. * 1 if there are no waiters.
  3926. *
  3927. */
  3928. bool completion_done(struct completion *x)
  3929. {
  3930. unsigned long flags;
  3931. int ret = 1;
  3932. spin_lock_irqsave(&x->wait.lock, flags);
  3933. if (!x->done)
  3934. ret = 0;
  3935. spin_unlock_irqrestore(&x->wait.lock, flags);
  3936. return ret;
  3937. }
  3938. EXPORT_SYMBOL(completion_done);
  3939. static long __sched
  3940. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3941. {
  3942. unsigned long flags;
  3943. wait_queue_t wait;
  3944. init_waitqueue_entry(&wait, current);
  3945. __set_current_state(state);
  3946. spin_lock_irqsave(&q->lock, flags);
  3947. __add_wait_queue(q, &wait);
  3948. spin_unlock(&q->lock);
  3949. timeout = schedule_timeout(timeout);
  3950. spin_lock_irq(&q->lock);
  3951. __remove_wait_queue(q, &wait);
  3952. spin_unlock_irqrestore(&q->lock, flags);
  3953. return timeout;
  3954. }
  3955. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3956. {
  3957. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3958. }
  3959. EXPORT_SYMBOL(interruptible_sleep_on);
  3960. long __sched
  3961. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3962. {
  3963. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3964. }
  3965. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3966. void __sched sleep_on(wait_queue_head_t *q)
  3967. {
  3968. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3969. }
  3970. EXPORT_SYMBOL(sleep_on);
  3971. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3972. {
  3973. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3974. }
  3975. EXPORT_SYMBOL(sleep_on_timeout);
  3976. #ifdef CONFIG_RT_MUTEXES
  3977. /*
  3978. * rt_mutex_setprio - set the current priority of a task
  3979. * @p: task
  3980. * @prio: prio value (kernel-internal form)
  3981. *
  3982. * This function changes the 'effective' priority of a task. It does
  3983. * not touch ->normal_prio like __setscheduler().
  3984. *
  3985. * Used by the rt_mutex code to implement priority inheritance logic.
  3986. */
  3987. void rt_mutex_setprio(struct task_struct *p, int prio)
  3988. {
  3989. unsigned long flags;
  3990. int oldprio, on_rq, running;
  3991. struct rq *rq;
  3992. const struct sched_class *prev_class;
  3993. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3994. rq = task_rq_lock(p, &flags);
  3995. trace_sched_pi_setprio(p, prio);
  3996. oldprio = p->prio;
  3997. prev_class = p->sched_class;
  3998. on_rq = p->se.on_rq;
  3999. running = task_current(rq, p);
  4000. if (on_rq)
  4001. dequeue_task(rq, p, 0);
  4002. if (running)
  4003. p->sched_class->put_prev_task(rq, p);
  4004. if (rt_prio(prio))
  4005. p->sched_class = &rt_sched_class;
  4006. else
  4007. p->sched_class = &fair_sched_class;
  4008. p->prio = prio;
  4009. if (running)
  4010. p->sched_class->set_curr_task(rq);
  4011. if (on_rq)
  4012. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4013. check_class_changed(rq, p, prev_class, oldprio);
  4014. task_rq_unlock(rq, &flags);
  4015. }
  4016. #endif
  4017. void set_user_nice(struct task_struct *p, long nice)
  4018. {
  4019. int old_prio, delta, on_rq;
  4020. unsigned long flags;
  4021. struct rq *rq;
  4022. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4023. return;
  4024. /*
  4025. * We have to be careful, if called from sys_setpriority(),
  4026. * the task might be in the middle of scheduling on another CPU.
  4027. */
  4028. rq = task_rq_lock(p, &flags);
  4029. /*
  4030. * The RT priorities are set via sched_setscheduler(), but we still
  4031. * allow the 'normal' nice value to be set - but as expected
  4032. * it wont have any effect on scheduling until the task is
  4033. * SCHED_FIFO/SCHED_RR:
  4034. */
  4035. if (task_has_rt_policy(p)) {
  4036. p->static_prio = NICE_TO_PRIO(nice);
  4037. goto out_unlock;
  4038. }
  4039. on_rq = p->se.on_rq;
  4040. if (on_rq)
  4041. dequeue_task(rq, p, 0);
  4042. p->static_prio = NICE_TO_PRIO(nice);
  4043. set_load_weight(p);
  4044. old_prio = p->prio;
  4045. p->prio = effective_prio(p);
  4046. delta = p->prio - old_prio;
  4047. if (on_rq) {
  4048. enqueue_task(rq, p, 0);
  4049. /*
  4050. * If the task increased its priority or is running and
  4051. * lowered its priority, then reschedule its CPU:
  4052. */
  4053. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4054. resched_task(rq->curr);
  4055. }
  4056. out_unlock:
  4057. task_rq_unlock(rq, &flags);
  4058. }
  4059. EXPORT_SYMBOL(set_user_nice);
  4060. /*
  4061. * can_nice - check if a task can reduce its nice value
  4062. * @p: task
  4063. * @nice: nice value
  4064. */
  4065. int can_nice(const struct task_struct *p, const int nice)
  4066. {
  4067. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4068. int nice_rlim = 20 - nice;
  4069. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4070. capable(CAP_SYS_NICE));
  4071. }
  4072. #ifdef __ARCH_WANT_SYS_NICE
  4073. /*
  4074. * sys_nice - change the priority of the current process.
  4075. * @increment: priority increment
  4076. *
  4077. * sys_setpriority is a more generic, but much slower function that
  4078. * does similar things.
  4079. */
  4080. SYSCALL_DEFINE1(nice, int, increment)
  4081. {
  4082. long nice, retval;
  4083. /*
  4084. * Setpriority might change our priority at the same moment.
  4085. * We don't have to worry. Conceptually one call occurs first
  4086. * and we have a single winner.
  4087. */
  4088. if (increment < -40)
  4089. increment = -40;
  4090. if (increment > 40)
  4091. increment = 40;
  4092. nice = TASK_NICE(current) + increment;
  4093. if (nice < -20)
  4094. nice = -20;
  4095. if (nice > 19)
  4096. nice = 19;
  4097. if (increment < 0 && !can_nice(current, nice))
  4098. return -EPERM;
  4099. retval = security_task_setnice(current, nice);
  4100. if (retval)
  4101. return retval;
  4102. set_user_nice(current, nice);
  4103. return 0;
  4104. }
  4105. #endif
  4106. /**
  4107. * task_prio - return the priority value of a given task.
  4108. * @p: the task in question.
  4109. *
  4110. * This is the priority value as seen by users in /proc.
  4111. * RT tasks are offset by -200. Normal tasks are centered
  4112. * around 0, value goes from -16 to +15.
  4113. */
  4114. int task_prio(const struct task_struct *p)
  4115. {
  4116. return p->prio - MAX_RT_PRIO;
  4117. }
  4118. /**
  4119. * task_nice - return the nice value of a given task.
  4120. * @p: the task in question.
  4121. */
  4122. int task_nice(const struct task_struct *p)
  4123. {
  4124. return TASK_NICE(p);
  4125. }
  4126. EXPORT_SYMBOL(task_nice);
  4127. /**
  4128. * idle_cpu - is a given cpu idle currently?
  4129. * @cpu: the processor in question.
  4130. */
  4131. int idle_cpu(int cpu)
  4132. {
  4133. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4134. }
  4135. /**
  4136. * idle_task - return the idle task for a given cpu.
  4137. * @cpu: the processor in question.
  4138. */
  4139. struct task_struct *idle_task(int cpu)
  4140. {
  4141. return cpu_rq(cpu)->idle;
  4142. }
  4143. /**
  4144. * find_process_by_pid - find a process with a matching PID value.
  4145. * @pid: the pid in question.
  4146. */
  4147. static struct task_struct *find_process_by_pid(pid_t pid)
  4148. {
  4149. return pid ? find_task_by_vpid(pid) : current;
  4150. }
  4151. /* Actually do priority change: must hold rq lock. */
  4152. static void
  4153. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4154. {
  4155. BUG_ON(p->se.on_rq);
  4156. p->policy = policy;
  4157. p->rt_priority = prio;
  4158. p->normal_prio = normal_prio(p);
  4159. /* we are holding p->pi_lock already */
  4160. p->prio = rt_mutex_getprio(p);
  4161. if (rt_prio(p->prio))
  4162. p->sched_class = &rt_sched_class;
  4163. else
  4164. p->sched_class = &fair_sched_class;
  4165. set_load_weight(p);
  4166. }
  4167. /*
  4168. * check the target process has a UID that matches the current process's
  4169. */
  4170. static bool check_same_owner(struct task_struct *p)
  4171. {
  4172. const struct cred *cred = current_cred(), *pcred;
  4173. bool match;
  4174. rcu_read_lock();
  4175. pcred = __task_cred(p);
  4176. if (cred->user->user_ns == pcred->user->user_ns)
  4177. match = (cred->euid == pcred->euid ||
  4178. cred->euid == pcred->uid);
  4179. else
  4180. match = false;
  4181. rcu_read_unlock();
  4182. return match;
  4183. }
  4184. static int __sched_setscheduler(struct task_struct *p, int policy,
  4185. const struct sched_param *param, bool user)
  4186. {
  4187. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4188. unsigned long flags;
  4189. const struct sched_class *prev_class;
  4190. struct rq *rq;
  4191. int reset_on_fork;
  4192. /* may grab non-irq protected spin_locks */
  4193. BUG_ON(in_interrupt());
  4194. recheck:
  4195. /* double check policy once rq lock held */
  4196. if (policy < 0) {
  4197. reset_on_fork = p->sched_reset_on_fork;
  4198. policy = oldpolicy = p->policy;
  4199. } else {
  4200. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4201. policy &= ~SCHED_RESET_ON_FORK;
  4202. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4203. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4204. policy != SCHED_IDLE)
  4205. return -EINVAL;
  4206. }
  4207. /*
  4208. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4209. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4210. * SCHED_BATCH and SCHED_IDLE is 0.
  4211. */
  4212. if (param->sched_priority < 0 ||
  4213. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4214. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4215. return -EINVAL;
  4216. if (rt_policy(policy) != (param->sched_priority != 0))
  4217. return -EINVAL;
  4218. /*
  4219. * Allow unprivileged RT tasks to decrease priority:
  4220. */
  4221. if (user && !capable(CAP_SYS_NICE)) {
  4222. if (rt_policy(policy)) {
  4223. unsigned long rlim_rtprio =
  4224. task_rlimit(p, RLIMIT_RTPRIO);
  4225. /* can't set/change the rt policy */
  4226. if (policy != p->policy && !rlim_rtprio)
  4227. return -EPERM;
  4228. /* can't increase priority */
  4229. if (param->sched_priority > p->rt_priority &&
  4230. param->sched_priority > rlim_rtprio)
  4231. return -EPERM;
  4232. }
  4233. /*
  4234. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4235. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4236. */
  4237. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4238. if (!can_nice(p, TASK_NICE(p)))
  4239. return -EPERM;
  4240. }
  4241. /* can't change other user's priorities */
  4242. if (!check_same_owner(p))
  4243. return -EPERM;
  4244. /* Normal users shall not reset the sched_reset_on_fork flag */
  4245. if (p->sched_reset_on_fork && !reset_on_fork)
  4246. return -EPERM;
  4247. }
  4248. if (user) {
  4249. retval = security_task_setscheduler(p);
  4250. if (retval)
  4251. return retval;
  4252. }
  4253. /*
  4254. * make sure no PI-waiters arrive (or leave) while we are
  4255. * changing the priority of the task:
  4256. */
  4257. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4258. /*
  4259. * To be able to change p->policy safely, the appropriate
  4260. * runqueue lock must be held.
  4261. */
  4262. rq = __task_rq_lock(p);
  4263. /*
  4264. * Changing the policy of the stop threads its a very bad idea
  4265. */
  4266. if (p == rq->stop) {
  4267. __task_rq_unlock(rq);
  4268. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4269. return -EINVAL;
  4270. }
  4271. /*
  4272. * If not changing anything there's no need to proceed further:
  4273. */
  4274. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4275. param->sched_priority == p->rt_priority))) {
  4276. __task_rq_unlock(rq);
  4277. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4278. return 0;
  4279. }
  4280. #ifdef CONFIG_RT_GROUP_SCHED
  4281. if (user) {
  4282. /*
  4283. * Do not allow realtime tasks into groups that have no runtime
  4284. * assigned.
  4285. */
  4286. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4287. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4288. !task_group_is_autogroup(task_group(p))) {
  4289. __task_rq_unlock(rq);
  4290. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4291. return -EPERM;
  4292. }
  4293. }
  4294. #endif
  4295. /* recheck policy now with rq lock held */
  4296. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4297. policy = oldpolicy = -1;
  4298. __task_rq_unlock(rq);
  4299. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4300. goto recheck;
  4301. }
  4302. on_rq = p->se.on_rq;
  4303. running = task_current(rq, p);
  4304. if (on_rq)
  4305. deactivate_task(rq, p, 0);
  4306. if (running)
  4307. p->sched_class->put_prev_task(rq, p);
  4308. p->sched_reset_on_fork = reset_on_fork;
  4309. oldprio = p->prio;
  4310. prev_class = p->sched_class;
  4311. __setscheduler(rq, p, policy, param->sched_priority);
  4312. if (running)
  4313. p->sched_class->set_curr_task(rq);
  4314. if (on_rq)
  4315. activate_task(rq, p, 0);
  4316. check_class_changed(rq, p, prev_class, oldprio);
  4317. __task_rq_unlock(rq);
  4318. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4319. rt_mutex_adjust_pi(p);
  4320. return 0;
  4321. }
  4322. /**
  4323. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4324. * @p: the task in question.
  4325. * @policy: new policy.
  4326. * @param: structure containing the new RT priority.
  4327. *
  4328. * NOTE that the task may be already dead.
  4329. */
  4330. int sched_setscheduler(struct task_struct *p, int policy,
  4331. const struct sched_param *param)
  4332. {
  4333. return __sched_setscheduler(p, policy, param, true);
  4334. }
  4335. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4336. /**
  4337. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4338. * @p: the task in question.
  4339. * @policy: new policy.
  4340. * @param: structure containing the new RT priority.
  4341. *
  4342. * Just like sched_setscheduler, only don't bother checking if the
  4343. * current context has permission. For example, this is needed in
  4344. * stop_machine(): we create temporary high priority worker threads,
  4345. * but our caller might not have that capability.
  4346. */
  4347. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4348. const struct sched_param *param)
  4349. {
  4350. return __sched_setscheduler(p, policy, param, false);
  4351. }
  4352. static int
  4353. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4354. {
  4355. struct sched_param lparam;
  4356. struct task_struct *p;
  4357. int retval;
  4358. if (!param || pid < 0)
  4359. return -EINVAL;
  4360. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4361. return -EFAULT;
  4362. rcu_read_lock();
  4363. retval = -ESRCH;
  4364. p = find_process_by_pid(pid);
  4365. if (p != NULL)
  4366. retval = sched_setscheduler(p, policy, &lparam);
  4367. rcu_read_unlock();
  4368. return retval;
  4369. }
  4370. /**
  4371. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4372. * @pid: the pid in question.
  4373. * @policy: new policy.
  4374. * @param: structure containing the new RT priority.
  4375. */
  4376. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4377. struct sched_param __user *, param)
  4378. {
  4379. /* negative values for policy are not valid */
  4380. if (policy < 0)
  4381. return -EINVAL;
  4382. return do_sched_setscheduler(pid, policy, param);
  4383. }
  4384. /**
  4385. * sys_sched_setparam - set/change the RT priority of a thread
  4386. * @pid: the pid in question.
  4387. * @param: structure containing the new RT priority.
  4388. */
  4389. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4390. {
  4391. return do_sched_setscheduler(pid, -1, param);
  4392. }
  4393. /**
  4394. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4395. * @pid: the pid in question.
  4396. */
  4397. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4398. {
  4399. struct task_struct *p;
  4400. int retval;
  4401. if (pid < 0)
  4402. return -EINVAL;
  4403. retval = -ESRCH;
  4404. rcu_read_lock();
  4405. p = find_process_by_pid(pid);
  4406. if (p) {
  4407. retval = security_task_getscheduler(p);
  4408. if (!retval)
  4409. retval = p->policy
  4410. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4411. }
  4412. rcu_read_unlock();
  4413. return retval;
  4414. }
  4415. /**
  4416. * sys_sched_getparam - get the RT priority of a thread
  4417. * @pid: the pid in question.
  4418. * @param: structure containing the RT priority.
  4419. */
  4420. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4421. {
  4422. struct sched_param lp;
  4423. struct task_struct *p;
  4424. int retval;
  4425. if (!param || pid < 0)
  4426. return -EINVAL;
  4427. rcu_read_lock();
  4428. p = find_process_by_pid(pid);
  4429. retval = -ESRCH;
  4430. if (!p)
  4431. goto out_unlock;
  4432. retval = security_task_getscheduler(p);
  4433. if (retval)
  4434. goto out_unlock;
  4435. lp.sched_priority = p->rt_priority;
  4436. rcu_read_unlock();
  4437. /*
  4438. * This one might sleep, we cannot do it with a spinlock held ...
  4439. */
  4440. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4441. return retval;
  4442. out_unlock:
  4443. rcu_read_unlock();
  4444. return retval;
  4445. }
  4446. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4447. {
  4448. cpumask_var_t cpus_allowed, new_mask;
  4449. struct task_struct *p;
  4450. int retval;
  4451. get_online_cpus();
  4452. rcu_read_lock();
  4453. p = find_process_by_pid(pid);
  4454. if (!p) {
  4455. rcu_read_unlock();
  4456. put_online_cpus();
  4457. return -ESRCH;
  4458. }
  4459. /* Prevent p going away */
  4460. get_task_struct(p);
  4461. rcu_read_unlock();
  4462. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4463. retval = -ENOMEM;
  4464. goto out_put_task;
  4465. }
  4466. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4467. retval = -ENOMEM;
  4468. goto out_free_cpus_allowed;
  4469. }
  4470. retval = -EPERM;
  4471. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4472. goto out_unlock;
  4473. retval = security_task_setscheduler(p);
  4474. if (retval)
  4475. goto out_unlock;
  4476. cpuset_cpus_allowed(p, cpus_allowed);
  4477. cpumask_and(new_mask, in_mask, cpus_allowed);
  4478. again:
  4479. retval = set_cpus_allowed_ptr(p, new_mask);
  4480. if (!retval) {
  4481. cpuset_cpus_allowed(p, cpus_allowed);
  4482. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4483. /*
  4484. * We must have raced with a concurrent cpuset
  4485. * update. Just reset the cpus_allowed to the
  4486. * cpuset's cpus_allowed
  4487. */
  4488. cpumask_copy(new_mask, cpus_allowed);
  4489. goto again;
  4490. }
  4491. }
  4492. out_unlock:
  4493. free_cpumask_var(new_mask);
  4494. out_free_cpus_allowed:
  4495. free_cpumask_var(cpus_allowed);
  4496. out_put_task:
  4497. put_task_struct(p);
  4498. put_online_cpus();
  4499. return retval;
  4500. }
  4501. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4502. struct cpumask *new_mask)
  4503. {
  4504. if (len < cpumask_size())
  4505. cpumask_clear(new_mask);
  4506. else if (len > cpumask_size())
  4507. len = cpumask_size();
  4508. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4509. }
  4510. /**
  4511. * sys_sched_setaffinity - set the cpu affinity of a process
  4512. * @pid: pid of the process
  4513. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4514. * @user_mask_ptr: user-space pointer to the new cpu mask
  4515. */
  4516. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4517. unsigned long __user *, user_mask_ptr)
  4518. {
  4519. cpumask_var_t new_mask;
  4520. int retval;
  4521. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4522. return -ENOMEM;
  4523. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4524. if (retval == 0)
  4525. retval = sched_setaffinity(pid, new_mask);
  4526. free_cpumask_var(new_mask);
  4527. return retval;
  4528. }
  4529. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4530. {
  4531. struct task_struct *p;
  4532. unsigned long flags;
  4533. struct rq *rq;
  4534. int retval;
  4535. get_online_cpus();
  4536. rcu_read_lock();
  4537. retval = -ESRCH;
  4538. p = find_process_by_pid(pid);
  4539. if (!p)
  4540. goto out_unlock;
  4541. retval = security_task_getscheduler(p);
  4542. if (retval)
  4543. goto out_unlock;
  4544. rq = task_rq_lock(p, &flags);
  4545. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4546. task_rq_unlock(rq, &flags);
  4547. out_unlock:
  4548. rcu_read_unlock();
  4549. put_online_cpus();
  4550. return retval;
  4551. }
  4552. /**
  4553. * sys_sched_getaffinity - get the cpu affinity of a process
  4554. * @pid: pid of the process
  4555. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4556. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4557. */
  4558. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4559. unsigned long __user *, user_mask_ptr)
  4560. {
  4561. int ret;
  4562. cpumask_var_t mask;
  4563. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4564. return -EINVAL;
  4565. if (len & (sizeof(unsigned long)-1))
  4566. return -EINVAL;
  4567. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4568. return -ENOMEM;
  4569. ret = sched_getaffinity(pid, mask);
  4570. if (ret == 0) {
  4571. size_t retlen = min_t(size_t, len, cpumask_size());
  4572. if (copy_to_user(user_mask_ptr, mask, retlen))
  4573. ret = -EFAULT;
  4574. else
  4575. ret = retlen;
  4576. }
  4577. free_cpumask_var(mask);
  4578. return ret;
  4579. }
  4580. /**
  4581. * sys_sched_yield - yield the current processor to other threads.
  4582. *
  4583. * This function yields the current CPU to other tasks. If there are no
  4584. * other threads running on this CPU then this function will return.
  4585. */
  4586. SYSCALL_DEFINE0(sched_yield)
  4587. {
  4588. struct rq *rq = this_rq_lock();
  4589. schedstat_inc(rq, yld_count);
  4590. current->sched_class->yield_task(rq);
  4591. /*
  4592. * Since we are going to call schedule() anyway, there's
  4593. * no need to preempt or enable interrupts:
  4594. */
  4595. __release(rq->lock);
  4596. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4597. do_raw_spin_unlock(&rq->lock);
  4598. preempt_enable_no_resched();
  4599. schedule();
  4600. return 0;
  4601. }
  4602. static inline int should_resched(void)
  4603. {
  4604. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4605. }
  4606. static void __cond_resched(void)
  4607. {
  4608. add_preempt_count(PREEMPT_ACTIVE);
  4609. schedule();
  4610. sub_preempt_count(PREEMPT_ACTIVE);
  4611. }
  4612. int __sched _cond_resched(void)
  4613. {
  4614. if (should_resched()) {
  4615. __cond_resched();
  4616. return 1;
  4617. }
  4618. return 0;
  4619. }
  4620. EXPORT_SYMBOL(_cond_resched);
  4621. /*
  4622. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4623. * call schedule, and on return reacquire the lock.
  4624. *
  4625. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4626. * operations here to prevent schedule() from being called twice (once via
  4627. * spin_unlock(), once by hand).
  4628. */
  4629. int __cond_resched_lock(spinlock_t *lock)
  4630. {
  4631. int resched = should_resched();
  4632. int ret = 0;
  4633. lockdep_assert_held(lock);
  4634. if (spin_needbreak(lock) || resched) {
  4635. spin_unlock(lock);
  4636. if (resched)
  4637. __cond_resched();
  4638. else
  4639. cpu_relax();
  4640. ret = 1;
  4641. spin_lock(lock);
  4642. }
  4643. return ret;
  4644. }
  4645. EXPORT_SYMBOL(__cond_resched_lock);
  4646. int __sched __cond_resched_softirq(void)
  4647. {
  4648. BUG_ON(!in_softirq());
  4649. if (should_resched()) {
  4650. local_bh_enable();
  4651. __cond_resched();
  4652. local_bh_disable();
  4653. return 1;
  4654. }
  4655. return 0;
  4656. }
  4657. EXPORT_SYMBOL(__cond_resched_softirq);
  4658. /**
  4659. * yield - yield the current processor to other threads.
  4660. *
  4661. * This is a shortcut for kernel-space yielding - it marks the
  4662. * thread runnable and calls sys_sched_yield().
  4663. */
  4664. void __sched yield(void)
  4665. {
  4666. set_current_state(TASK_RUNNING);
  4667. sys_sched_yield();
  4668. }
  4669. EXPORT_SYMBOL(yield);
  4670. /**
  4671. * yield_to - yield the current processor to another thread in
  4672. * your thread group, or accelerate that thread toward the
  4673. * processor it's on.
  4674. * @p: target task
  4675. * @preempt: whether task preemption is allowed or not
  4676. *
  4677. * It's the caller's job to ensure that the target task struct
  4678. * can't go away on us before we can do any checks.
  4679. *
  4680. * Returns true if we indeed boosted the target task.
  4681. */
  4682. bool __sched yield_to(struct task_struct *p, bool preempt)
  4683. {
  4684. struct task_struct *curr = current;
  4685. struct rq *rq, *p_rq;
  4686. unsigned long flags;
  4687. bool yielded = 0;
  4688. local_irq_save(flags);
  4689. rq = this_rq();
  4690. again:
  4691. p_rq = task_rq(p);
  4692. double_rq_lock(rq, p_rq);
  4693. while (task_rq(p) != p_rq) {
  4694. double_rq_unlock(rq, p_rq);
  4695. goto again;
  4696. }
  4697. if (!curr->sched_class->yield_to_task)
  4698. goto out;
  4699. if (curr->sched_class != p->sched_class)
  4700. goto out;
  4701. if (task_running(p_rq, p) || p->state)
  4702. goto out;
  4703. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4704. if (yielded) {
  4705. schedstat_inc(rq, yld_count);
  4706. /*
  4707. * Make p's CPU reschedule; pick_next_entity takes care of
  4708. * fairness.
  4709. */
  4710. if (preempt && rq != p_rq)
  4711. resched_task(p_rq->curr);
  4712. }
  4713. out:
  4714. double_rq_unlock(rq, p_rq);
  4715. local_irq_restore(flags);
  4716. if (yielded)
  4717. schedule();
  4718. return yielded;
  4719. }
  4720. EXPORT_SYMBOL_GPL(yield_to);
  4721. /*
  4722. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4723. * that process accounting knows that this is a task in IO wait state.
  4724. */
  4725. void __sched io_schedule(void)
  4726. {
  4727. struct rq *rq = raw_rq();
  4728. delayacct_blkio_start();
  4729. atomic_inc(&rq->nr_iowait);
  4730. blk_flush_plug(current);
  4731. current->in_iowait = 1;
  4732. schedule();
  4733. current->in_iowait = 0;
  4734. atomic_dec(&rq->nr_iowait);
  4735. delayacct_blkio_end();
  4736. }
  4737. EXPORT_SYMBOL(io_schedule);
  4738. long __sched io_schedule_timeout(long timeout)
  4739. {
  4740. struct rq *rq = raw_rq();
  4741. long ret;
  4742. delayacct_blkio_start();
  4743. atomic_inc(&rq->nr_iowait);
  4744. blk_flush_plug(current);
  4745. current->in_iowait = 1;
  4746. ret = schedule_timeout(timeout);
  4747. current->in_iowait = 0;
  4748. atomic_dec(&rq->nr_iowait);
  4749. delayacct_blkio_end();
  4750. return ret;
  4751. }
  4752. /**
  4753. * sys_sched_get_priority_max - return maximum RT priority.
  4754. * @policy: scheduling class.
  4755. *
  4756. * this syscall returns the maximum rt_priority that can be used
  4757. * by a given scheduling class.
  4758. */
  4759. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4760. {
  4761. int ret = -EINVAL;
  4762. switch (policy) {
  4763. case SCHED_FIFO:
  4764. case SCHED_RR:
  4765. ret = MAX_USER_RT_PRIO-1;
  4766. break;
  4767. case SCHED_NORMAL:
  4768. case SCHED_BATCH:
  4769. case SCHED_IDLE:
  4770. ret = 0;
  4771. break;
  4772. }
  4773. return ret;
  4774. }
  4775. /**
  4776. * sys_sched_get_priority_min - return minimum RT priority.
  4777. * @policy: scheduling class.
  4778. *
  4779. * this syscall returns the minimum rt_priority that can be used
  4780. * by a given scheduling class.
  4781. */
  4782. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4783. {
  4784. int ret = -EINVAL;
  4785. switch (policy) {
  4786. case SCHED_FIFO:
  4787. case SCHED_RR:
  4788. ret = 1;
  4789. break;
  4790. case SCHED_NORMAL:
  4791. case SCHED_BATCH:
  4792. case SCHED_IDLE:
  4793. ret = 0;
  4794. }
  4795. return ret;
  4796. }
  4797. /**
  4798. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4799. * @pid: pid of the process.
  4800. * @interval: userspace pointer to the timeslice value.
  4801. *
  4802. * this syscall writes the default timeslice value of a given process
  4803. * into the user-space timespec buffer. A value of '0' means infinity.
  4804. */
  4805. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4806. struct timespec __user *, interval)
  4807. {
  4808. struct task_struct *p;
  4809. unsigned int time_slice;
  4810. unsigned long flags;
  4811. struct rq *rq;
  4812. int retval;
  4813. struct timespec t;
  4814. if (pid < 0)
  4815. return -EINVAL;
  4816. retval = -ESRCH;
  4817. rcu_read_lock();
  4818. p = find_process_by_pid(pid);
  4819. if (!p)
  4820. goto out_unlock;
  4821. retval = security_task_getscheduler(p);
  4822. if (retval)
  4823. goto out_unlock;
  4824. rq = task_rq_lock(p, &flags);
  4825. time_slice = p->sched_class->get_rr_interval(rq, p);
  4826. task_rq_unlock(rq, &flags);
  4827. rcu_read_unlock();
  4828. jiffies_to_timespec(time_slice, &t);
  4829. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4830. return retval;
  4831. out_unlock:
  4832. rcu_read_unlock();
  4833. return retval;
  4834. }
  4835. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4836. void sched_show_task(struct task_struct *p)
  4837. {
  4838. unsigned long free = 0;
  4839. unsigned state;
  4840. state = p->state ? __ffs(p->state) + 1 : 0;
  4841. printk(KERN_INFO "%-15.15s %c", p->comm,
  4842. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4843. #if BITS_PER_LONG == 32
  4844. if (state == TASK_RUNNING)
  4845. printk(KERN_CONT " running ");
  4846. else
  4847. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4848. #else
  4849. if (state == TASK_RUNNING)
  4850. printk(KERN_CONT " running task ");
  4851. else
  4852. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4853. #endif
  4854. #ifdef CONFIG_DEBUG_STACK_USAGE
  4855. free = stack_not_used(p);
  4856. #endif
  4857. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4858. task_pid_nr(p), task_pid_nr(p->real_parent),
  4859. (unsigned long)task_thread_info(p)->flags);
  4860. show_stack(p, NULL);
  4861. }
  4862. void show_state_filter(unsigned long state_filter)
  4863. {
  4864. struct task_struct *g, *p;
  4865. #if BITS_PER_LONG == 32
  4866. printk(KERN_INFO
  4867. " task PC stack pid father\n");
  4868. #else
  4869. printk(KERN_INFO
  4870. " task PC stack pid father\n");
  4871. #endif
  4872. read_lock(&tasklist_lock);
  4873. do_each_thread(g, p) {
  4874. /*
  4875. * reset the NMI-timeout, listing all files on a slow
  4876. * console might take a lot of time:
  4877. */
  4878. touch_nmi_watchdog();
  4879. if (!state_filter || (p->state & state_filter))
  4880. sched_show_task(p);
  4881. } while_each_thread(g, p);
  4882. touch_all_softlockup_watchdogs();
  4883. #ifdef CONFIG_SCHED_DEBUG
  4884. sysrq_sched_debug_show();
  4885. #endif
  4886. read_unlock(&tasklist_lock);
  4887. /*
  4888. * Only show locks if all tasks are dumped:
  4889. */
  4890. if (!state_filter)
  4891. debug_show_all_locks();
  4892. }
  4893. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4894. {
  4895. idle->sched_class = &idle_sched_class;
  4896. }
  4897. /**
  4898. * init_idle - set up an idle thread for a given CPU
  4899. * @idle: task in question
  4900. * @cpu: cpu the idle task belongs to
  4901. *
  4902. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4903. * flag, to make booting more robust.
  4904. */
  4905. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4906. {
  4907. struct rq *rq = cpu_rq(cpu);
  4908. unsigned long flags;
  4909. raw_spin_lock_irqsave(&rq->lock, flags);
  4910. __sched_fork(idle);
  4911. idle->state = TASK_RUNNING;
  4912. idle->se.exec_start = sched_clock();
  4913. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4914. /*
  4915. * We're having a chicken and egg problem, even though we are
  4916. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4917. * lockdep check in task_group() will fail.
  4918. *
  4919. * Similar case to sched_fork(). / Alternatively we could
  4920. * use task_rq_lock() here and obtain the other rq->lock.
  4921. *
  4922. * Silence PROVE_RCU
  4923. */
  4924. rcu_read_lock();
  4925. __set_task_cpu(idle, cpu);
  4926. rcu_read_unlock();
  4927. rq->curr = rq->idle = idle;
  4928. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4929. idle->oncpu = 1;
  4930. #endif
  4931. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4932. /* Set the preempt count _outside_ the spinlocks! */
  4933. #if defined(CONFIG_PREEMPT)
  4934. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4935. #else
  4936. task_thread_info(idle)->preempt_count = 0;
  4937. #endif
  4938. /*
  4939. * The idle tasks have their own, simple scheduling class:
  4940. */
  4941. idle->sched_class = &idle_sched_class;
  4942. ftrace_graph_init_idle_task(idle, cpu);
  4943. }
  4944. /*
  4945. * In a system that switches off the HZ timer nohz_cpu_mask
  4946. * indicates which cpus entered this state. This is used
  4947. * in the rcu update to wait only for active cpus. For system
  4948. * which do not switch off the HZ timer nohz_cpu_mask should
  4949. * always be CPU_BITS_NONE.
  4950. */
  4951. cpumask_var_t nohz_cpu_mask;
  4952. /*
  4953. * Increase the granularity value when there are more CPUs,
  4954. * because with more CPUs the 'effective latency' as visible
  4955. * to users decreases. But the relationship is not linear,
  4956. * so pick a second-best guess by going with the log2 of the
  4957. * number of CPUs.
  4958. *
  4959. * This idea comes from the SD scheduler of Con Kolivas:
  4960. */
  4961. static int get_update_sysctl_factor(void)
  4962. {
  4963. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4964. unsigned int factor;
  4965. switch (sysctl_sched_tunable_scaling) {
  4966. case SCHED_TUNABLESCALING_NONE:
  4967. factor = 1;
  4968. break;
  4969. case SCHED_TUNABLESCALING_LINEAR:
  4970. factor = cpus;
  4971. break;
  4972. case SCHED_TUNABLESCALING_LOG:
  4973. default:
  4974. factor = 1 + ilog2(cpus);
  4975. break;
  4976. }
  4977. return factor;
  4978. }
  4979. static void update_sysctl(void)
  4980. {
  4981. unsigned int factor = get_update_sysctl_factor();
  4982. #define SET_SYSCTL(name) \
  4983. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4984. SET_SYSCTL(sched_min_granularity);
  4985. SET_SYSCTL(sched_latency);
  4986. SET_SYSCTL(sched_wakeup_granularity);
  4987. #undef SET_SYSCTL
  4988. }
  4989. static inline void sched_init_granularity(void)
  4990. {
  4991. update_sysctl();
  4992. }
  4993. #ifdef CONFIG_SMP
  4994. /*
  4995. * This is how migration works:
  4996. *
  4997. * 1) we invoke migration_cpu_stop() on the target CPU using
  4998. * stop_one_cpu().
  4999. * 2) stopper starts to run (implicitly forcing the migrated thread
  5000. * off the CPU)
  5001. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5002. * 4) if it's in the wrong runqueue then the migration thread removes
  5003. * it and puts it into the right queue.
  5004. * 5) stopper completes and stop_one_cpu() returns and the migration
  5005. * is done.
  5006. */
  5007. /*
  5008. * Change a given task's CPU affinity. Migrate the thread to a
  5009. * proper CPU and schedule it away if the CPU it's executing on
  5010. * is removed from the allowed bitmask.
  5011. *
  5012. * NOTE: the caller must have a valid reference to the task, the
  5013. * task must not exit() & deallocate itself prematurely. The
  5014. * call is not atomic; no spinlocks may be held.
  5015. */
  5016. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5017. {
  5018. unsigned long flags;
  5019. struct rq *rq;
  5020. unsigned int dest_cpu;
  5021. int ret = 0;
  5022. /*
  5023. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  5024. * drop the rq->lock and still rely on ->cpus_allowed.
  5025. */
  5026. again:
  5027. while (task_is_waking(p))
  5028. cpu_relax();
  5029. rq = task_rq_lock(p, &flags);
  5030. if (task_is_waking(p)) {
  5031. task_rq_unlock(rq, &flags);
  5032. goto again;
  5033. }
  5034. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5035. ret = -EINVAL;
  5036. goto out;
  5037. }
  5038. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5039. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5040. ret = -EINVAL;
  5041. goto out;
  5042. }
  5043. if (p->sched_class->set_cpus_allowed)
  5044. p->sched_class->set_cpus_allowed(p, new_mask);
  5045. else {
  5046. cpumask_copy(&p->cpus_allowed, new_mask);
  5047. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5048. }
  5049. /* Can the task run on the task's current CPU? If so, we're done */
  5050. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5051. goto out;
  5052. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5053. if (migrate_task(p, rq)) {
  5054. struct migration_arg arg = { p, dest_cpu };
  5055. /* Need help from migration thread: drop lock and wait. */
  5056. task_rq_unlock(rq, &flags);
  5057. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5058. tlb_migrate_finish(p->mm);
  5059. return 0;
  5060. }
  5061. out:
  5062. task_rq_unlock(rq, &flags);
  5063. return ret;
  5064. }
  5065. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5066. /*
  5067. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5068. * this because either it can't run here any more (set_cpus_allowed()
  5069. * away from this CPU, or CPU going down), or because we're
  5070. * attempting to rebalance this task on exec (sched_exec).
  5071. *
  5072. * So we race with normal scheduler movements, but that's OK, as long
  5073. * as the task is no longer on this CPU.
  5074. *
  5075. * Returns non-zero if task was successfully migrated.
  5076. */
  5077. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5078. {
  5079. struct rq *rq_dest, *rq_src;
  5080. int ret = 0;
  5081. if (unlikely(!cpu_active(dest_cpu)))
  5082. return ret;
  5083. rq_src = cpu_rq(src_cpu);
  5084. rq_dest = cpu_rq(dest_cpu);
  5085. double_rq_lock(rq_src, rq_dest);
  5086. /* Already moved. */
  5087. if (task_cpu(p) != src_cpu)
  5088. goto done;
  5089. /* Affinity changed (again). */
  5090. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5091. goto fail;
  5092. /*
  5093. * If we're not on a rq, the next wake-up will ensure we're
  5094. * placed properly.
  5095. */
  5096. if (p->se.on_rq) {
  5097. deactivate_task(rq_src, p, 0);
  5098. set_task_cpu(p, dest_cpu);
  5099. activate_task(rq_dest, p, 0);
  5100. check_preempt_curr(rq_dest, p, 0);
  5101. }
  5102. done:
  5103. ret = 1;
  5104. fail:
  5105. double_rq_unlock(rq_src, rq_dest);
  5106. return ret;
  5107. }
  5108. /*
  5109. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5110. * and performs thread migration by bumping thread off CPU then
  5111. * 'pushing' onto another runqueue.
  5112. */
  5113. static int migration_cpu_stop(void *data)
  5114. {
  5115. struct migration_arg *arg = data;
  5116. /*
  5117. * The original target cpu might have gone down and we might
  5118. * be on another cpu but it doesn't matter.
  5119. */
  5120. local_irq_disable();
  5121. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5122. local_irq_enable();
  5123. return 0;
  5124. }
  5125. #ifdef CONFIG_HOTPLUG_CPU
  5126. /*
  5127. * Ensures that the idle task is using init_mm right before its cpu goes
  5128. * offline.
  5129. */
  5130. void idle_task_exit(void)
  5131. {
  5132. struct mm_struct *mm = current->active_mm;
  5133. BUG_ON(cpu_online(smp_processor_id()));
  5134. if (mm != &init_mm)
  5135. switch_mm(mm, &init_mm, current);
  5136. mmdrop(mm);
  5137. }
  5138. /*
  5139. * While a dead CPU has no uninterruptible tasks queued at this point,
  5140. * it might still have a nonzero ->nr_uninterruptible counter, because
  5141. * for performance reasons the counter is not stricly tracking tasks to
  5142. * their home CPUs. So we just add the counter to another CPU's counter,
  5143. * to keep the global sum constant after CPU-down:
  5144. */
  5145. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5146. {
  5147. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5148. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5149. rq_src->nr_uninterruptible = 0;
  5150. }
  5151. /*
  5152. * remove the tasks which were accounted by rq from calc_load_tasks.
  5153. */
  5154. static void calc_global_load_remove(struct rq *rq)
  5155. {
  5156. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5157. rq->calc_load_active = 0;
  5158. }
  5159. /*
  5160. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5161. * try_to_wake_up()->select_task_rq().
  5162. *
  5163. * Called with rq->lock held even though we'er in stop_machine() and
  5164. * there's no concurrency possible, we hold the required locks anyway
  5165. * because of lock validation efforts.
  5166. */
  5167. static void migrate_tasks(unsigned int dead_cpu)
  5168. {
  5169. struct rq *rq = cpu_rq(dead_cpu);
  5170. struct task_struct *next, *stop = rq->stop;
  5171. int dest_cpu;
  5172. /*
  5173. * Fudge the rq selection such that the below task selection loop
  5174. * doesn't get stuck on the currently eligible stop task.
  5175. *
  5176. * We're currently inside stop_machine() and the rq is either stuck
  5177. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5178. * either way we should never end up calling schedule() until we're
  5179. * done here.
  5180. */
  5181. rq->stop = NULL;
  5182. for ( ; ; ) {
  5183. /*
  5184. * There's this thread running, bail when that's the only
  5185. * remaining thread.
  5186. */
  5187. if (rq->nr_running == 1)
  5188. break;
  5189. next = pick_next_task(rq);
  5190. BUG_ON(!next);
  5191. next->sched_class->put_prev_task(rq, next);
  5192. /* Find suitable destination for @next, with force if needed. */
  5193. dest_cpu = select_fallback_rq(dead_cpu, next);
  5194. raw_spin_unlock(&rq->lock);
  5195. __migrate_task(next, dead_cpu, dest_cpu);
  5196. raw_spin_lock(&rq->lock);
  5197. }
  5198. rq->stop = stop;
  5199. }
  5200. #endif /* CONFIG_HOTPLUG_CPU */
  5201. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5202. static struct ctl_table sd_ctl_dir[] = {
  5203. {
  5204. .procname = "sched_domain",
  5205. .mode = 0555,
  5206. },
  5207. {}
  5208. };
  5209. static struct ctl_table sd_ctl_root[] = {
  5210. {
  5211. .procname = "kernel",
  5212. .mode = 0555,
  5213. .child = sd_ctl_dir,
  5214. },
  5215. {}
  5216. };
  5217. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5218. {
  5219. struct ctl_table *entry =
  5220. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5221. return entry;
  5222. }
  5223. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5224. {
  5225. struct ctl_table *entry;
  5226. /*
  5227. * In the intermediate directories, both the child directory and
  5228. * procname are dynamically allocated and could fail but the mode
  5229. * will always be set. In the lowest directory the names are
  5230. * static strings and all have proc handlers.
  5231. */
  5232. for (entry = *tablep; entry->mode; entry++) {
  5233. if (entry->child)
  5234. sd_free_ctl_entry(&entry->child);
  5235. if (entry->proc_handler == NULL)
  5236. kfree(entry->procname);
  5237. }
  5238. kfree(*tablep);
  5239. *tablep = NULL;
  5240. }
  5241. static void
  5242. set_table_entry(struct ctl_table *entry,
  5243. const char *procname, void *data, int maxlen,
  5244. mode_t mode, proc_handler *proc_handler)
  5245. {
  5246. entry->procname = procname;
  5247. entry->data = data;
  5248. entry->maxlen = maxlen;
  5249. entry->mode = mode;
  5250. entry->proc_handler = proc_handler;
  5251. }
  5252. static struct ctl_table *
  5253. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5254. {
  5255. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5256. if (table == NULL)
  5257. return NULL;
  5258. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5259. sizeof(long), 0644, proc_doulongvec_minmax);
  5260. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5261. sizeof(long), 0644, proc_doulongvec_minmax);
  5262. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5263. sizeof(int), 0644, proc_dointvec_minmax);
  5264. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5265. sizeof(int), 0644, proc_dointvec_minmax);
  5266. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5267. sizeof(int), 0644, proc_dointvec_minmax);
  5268. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5269. sizeof(int), 0644, proc_dointvec_minmax);
  5270. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5271. sizeof(int), 0644, proc_dointvec_minmax);
  5272. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5273. sizeof(int), 0644, proc_dointvec_minmax);
  5274. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5275. sizeof(int), 0644, proc_dointvec_minmax);
  5276. set_table_entry(&table[9], "cache_nice_tries",
  5277. &sd->cache_nice_tries,
  5278. sizeof(int), 0644, proc_dointvec_minmax);
  5279. set_table_entry(&table[10], "flags", &sd->flags,
  5280. sizeof(int), 0644, proc_dointvec_minmax);
  5281. set_table_entry(&table[11], "name", sd->name,
  5282. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5283. /* &table[12] is terminator */
  5284. return table;
  5285. }
  5286. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5287. {
  5288. struct ctl_table *entry, *table;
  5289. struct sched_domain *sd;
  5290. int domain_num = 0, i;
  5291. char buf[32];
  5292. for_each_domain(cpu, sd)
  5293. domain_num++;
  5294. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5295. if (table == NULL)
  5296. return NULL;
  5297. i = 0;
  5298. for_each_domain(cpu, sd) {
  5299. snprintf(buf, 32, "domain%d", i);
  5300. entry->procname = kstrdup(buf, GFP_KERNEL);
  5301. entry->mode = 0555;
  5302. entry->child = sd_alloc_ctl_domain_table(sd);
  5303. entry++;
  5304. i++;
  5305. }
  5306. return table;
  5307. }
  5308. static struct ctl_table_header *sd_sysctl_header;
  5309. static void register_sched_domain_sysctl(void)
  5310. {
  5311. int i, cpu_num = num_possible_cpus();
  5312. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5313. char buf[32];
  5314. WARN_ON(sd_ctl_dir[0].child);
  5315. sd_ctl_dir[0].child = entry;
  5316. if (entry == NULL)
  5317. return;
  5318. for_each_possible_cpu(i) {
  5319. snprintf(buf, 32, "cpu%d", i);
  5320. entry->procname = kstrdup(buf, GFP_KERNEL);
  5321. entry->mode = 0555;
  5322. entry->child = sd_alloc_ctl_cpu_table(i);
  5323. entry++;
  5324. }
  5325. WARN_ON(sd_sysctl_header);
  5326. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5327. }
  5328. /* may be called multiple times per register */
  5329. static void unregister_sched_domain_sysctl(void)
  5330. {
  5331. if (sd_sysctl_header)
  5332. unregister_sysctl_table(sd_sysctl_header);
  5333. sd_sysctl_header = NULL;
  5334. if (sd_ctl_dir[0].child)
  5335. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5336. }
  5337. #else
  5338. static void register_sched_domain_sysctl(void)
  5339. {
  5340. }
  5341. static void unregister_sched_domain_sysctl(void)
  5342. {
  5343. }
  5344. #endif
  5345. static void set_rq_online(struct rq *rq)
  5346. {
  5347. if (!rq->online) {
  5348. const struct sched_class *class;
  5349. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5350. rq->online = 1;
  5351. for_each_class(class) {
  5352. if (class->rq_online)
  5353. class->rq_online(rq);
  5354. }
  5355. }
  5356. }
  5357. static void set_rq_offline(struct rq *rq)
  5358. {
  5359. if (rq->online) {
  5360. const struct sched_class *class;
  5361. for_each_class(class) {
  5362. if (class->rq_offline)
  5363. class->rq_offline(rq);
  5364. }
  5365. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5366. rq->online = 0;
  5367. }
  5368. }
  5369. /*
  5370. * migration_call - callback that gets triggered when a CPU is added.
  5371. * Here we can start up the necessary migration thread for the new CPU.
  5372. */
  5373. static int __cpuinit
  5374. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5375. {
  5376. int cpu = (long)hcpu;
  5377. unsigned long flags;
  5378. struct rq *rq = cpu_rq(cpu);
  5379. switch (action & ~CPU_TASKS_FROZEN) {
  5380. case CPU_UP_PREPARE:
  5381. rq->calc_load_update = calc_load_update;
  5382. break;
  5383. case CPU_ONLINE:
  5384. /* Update our root-domain */
  5385. raw_spin_lock_irqsave(&rq->lock, flags);
  5386. if (rq->rd) {
  5387. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5388. set_rq_online(rq);
  5389. }
  5390. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5391. break;
  5392. #ifdef CONFIG_HOTPLUG_CPU
  5393. case CPU_DYING:
  5394. /* Update our root-domain */
  5395. raw_spin_lock_irqsave(&rq->lock, flags);
  5396. if (rq->rd) {
  5397. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5398. set_rq_offline(rq);
  5399. }
  5400. migrate_tasks(cpu);
  5401. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5402. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5403. migrate_nr_uninterruptible(rq);
  5404. calc_global_load_remove(rq);
  5405. break;
  5406. #endif
  5407. }
  5408. update_max_interval();
  5409. return NOTIFY_OK;
  5410. }
  5411. /*
  5412. * Register at high priority so that task migration (migrate_all_tasks)
  5413. * happens before everything else. This has to be lower priority than
  5414. * the notifier in the perf_event subsystem, though.
  5415. */
  5416. static struct notifier_block __cpuinitdata migration_notifier = {
  5417. .notifier_call = migration_call,
  5418. .priority = CPU_PRI_MIGRATION,
  5419. };
  5420. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5421. unsigned long action, void *hcpu)
  5422. {
  5423. switch (action & ~CPU_TASKS_FROZEN) {
  5424. case CPU_ONLINE:
  5425. case CPU_DOWN_FAILED:
  5426. set_cpu_active((long)hcpu, true);
  5427. return NOTIFY_OK;
  5428. default:
  5429. return NOTIFY_DONE;
  5430. }
  5431. }
  5432. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5433. unsigned long action, void *hcpu)
  5434. {
  5435. switch (action & ~CPU_TASKS_FROZEN) {
  5436. case CPU_DOWN_PREPARE:
  5437. set_cpu_active((long)hcpu, false);
  5438. return NOTIFY_OK;
  5439. default:
  5440. return NOTIFY_DONE;
  5441. }
  5442. }
  5443. static int __init migration_init(void)
  5444. {
  5445. void *cpu = (void *)(long)smp_processor_id();
  5446. int err;
  5447. /* Initialize migration for the boot CPU */
  5448. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5449. BUG_ON(err == NOTIFY_BAD);
  5450. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5451. register_cpu_notifier(&migration_notifier);
  5452. /* Register cpu active notifiers */
  5453. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5454. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5455. return 0;
  5456. }
  5457. early_initcall(migration_init);
  5458. #endif
  5459. #ifdef CONFIG_SMP
  5460. #ifdef CONFIG_SCHED_DEBUG
  5461. static __read_mostly int sched_domain_debug_enabled;
  5462. static int __init sched_domain_debug_setup(char *str)
  5463. {
  5464. sched_domain_debug_enabled = 1;
  5465. return 0;
  5466. }
  5467. early_param("sched_debug", sched_domain_debug_setup);
  5468. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5469. struct cpumask *groupmask)
  5470. {
  5471. struct sched_group *group = sd->groups;
  5472. char str[256];
  5473. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5474. cpumask_clear(groupmask);
  5475. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5476. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5477. printk("does not load-balance\n");
  5478. if (sd->parent)
  5479. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5480. " has parent");
  5481. return -1;
  5482. }
  5483. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5484. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5485. printk(KERN_ERR "ERROR: domain->span does not contain "
  5486. "CPU%d\n", cpu);
  5487. }
  5488. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5489. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5490. " CPU%d\n", cpu);
  5491. }
  5492. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5493. do {
  5494. if (!group) {
  5495. printk("\n");
  5496. printk(KERN_ERR "ERROR: group is NULL\n");
  5497. break;
  5498. }
  5499. if (!group->cpu_power) {
  5500. printk(KERN_CONT "\n");
  5501. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5502. "set\n");
  5503. break;
  5504. }
  5505. if (!cpumask_weight(sched_group_cpus(group))) {
  5506. printk(KERN_CONT "\n");
  5507. printk(KERN_ERR "ERROR: empty group\n");
  5508. break;
  5509. }
  5510. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5511. printk(KERN_CONT "\n");
  5512. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5513. break;
  5514. }
  5515. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5516. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5517. printk(KERN_CONT " %s", str);
  5518. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5519. printk(KERN_CONT " (cpu_power = %d)",
  5520. group->cpu_power);
  5521. }
  5522. group = group->next;
  5523. } while (group != sd->groups);
  5524. printk(KERN_CONT "\n");
  5525. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5526. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5527. if (sd->parent &&
  5528. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5529. printk(KERN_ERR "ERROR: parent span is not a superset "
  5530. "of domain->span\n");
  5531. return 0;
  5532. }
  5533. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5534. {
  5535. cpumask_var_t groupmask;
  5536. int level = 0;
  5537. if (!sched_domain_debug_enabled)
  5538. return;
  5539. if (!sd) {
  5540. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5541. return;
  5542. }
  5543. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5544. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5545. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5546. return;
  5547. }
  5548. for (;;) {
  5549. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5550. break;
  5551. level++;
  5552. sd = sd->parent;
  5553. if (!sd)
  5554. break;
  5555. }
  5556. free_cpumask_var(groupmask);
  5557. }
  5558. #else /* !CONFIG_SCHED_DEBUG */
  5559. # define sched_domain_debug(sd, cpu) do { } while (0)
  5560. #endif /* CONFIG_SCHED_DEBUG */
  5561. static int sd_degenerate(struct sched_domain *sd)
  5562. {
  5563. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5564. return 1;
  5565. /* Following flags need at least 2 groups */
  5566. if (sd->flags & (SD_LOAD_BALANCE |
  5567. SD_BALANCE_NEWIDLE |
  5568. SD_BALANCE_FORK |
  5569. SD_BALANCE_EXEC |
  5570. SD_SHARE_CPUPOWER |
  5571. SD_SHARE_PKG_RESOURCES)) {
  5572. if (sd->groups != sd->groups->next)
  5573. return 0;
  5574. }
  5575. /* Following flags don't use groups */
  5576. if (sd->flags & (SD_WAKE_AFFINE))
  5577. return 0;
  5578. return 1;
  5579. }
  5580. static int
  5581. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5582. {
  5583. unsigned long cflags = sd->flags, pflags = parent->flags;
  5584. if (sd_degenerate(parent))
  5585. return 1;
  5586. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5587. return 0;
  5588. /* Flags needing groups don't count if only 1 group in parent */
  5589. if (parent->groups == parent->groups->next) {
  5590. pflags &= ~(SD_LOAD_BALANCE |
  5591. SD_BALANCE_NEWIDLE |
  5592. SD_BALANCE_FORK |
  5593. SD_BALANCE_EXEC |
  5594. SD_SHARE_CPUPOWER |
  5595. SD_SHARE_PKG_RESOURCES);
  5596. if (nr_node_ids == 1)
  5597. pflags &= ~SD_SERIALIZE;
  5598. }
  5599. if (~cflags & pflags)
  5600. return 0;
  5601. return 1;
  5602. }
  5603. static void free_rootdomain(struct rcu_head *rcu)
  5604. {
  5605. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5606. cpupri_cleanup(&rd->cpupri);
  5607. free_cpumask_var(rd->rto_mask);
  5608. free_cpumask_var(rd->online);
  5609. free_cpumask_var(rd->span);
  5610. kfree(rd);
  5611. }
  5612. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5613. {
  5614. struct root_domain *old_rd = NULL;
  5615. unsigned long flags;
  5616. raw_spin_lock_irqsave(&rq->lock, flags);
  5617. if (rq->rd) {
  5618. old_rd = rq->rd;
  5619. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5620. set_rq_offline(rq);
  5621. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5622. /*
  5623. * If we dont want to free the old_rt yet then
  5624. * set old_rd to NULL to skip the freeing later
  5625. * in this function:
  5626. */
  5627. if (!atomic_dec_and_test(&old_rd->refcount))
  5628. old_rd = NULL;
  5629. }
  5630. atomic_inc(&rd->refcount);
  5631. rq->rd = rd;
  5632. cpumask_set_cpu(rq->cpu, rd->span);
  5633. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5634. set_rq_online(rq);
  5635. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5636. if (old_rd)
  5637. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5638. }
  5639. static int init_rootdomain(struct root_domain *rd)
  5640. {
  5641. memset(rd, 0, sizeof(*rd));
  5642. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5643. goto out;
  5644. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5645. goto free_span;
  5646. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5647. goto free_online;
  5648. if (cpupri_init(&rd->cpupri) != 0)
  5649. goto free_rto_mask;
  5650. return 0;
  5651. free_rto_mask:
  5652. free_cpumask_var(rd->rto_mask);
  5653. free_online:
  5654. free_cpumask_var(rd->online);
  5655. free_span:
  5656. free_cpumask_var(rd->span);
  5657. out:
  5658. return -ENOMEM;
  5659. }
  5660. static void init_defrootdomain(void)
  5661. {
  5662. init_rootdomain(&def_root_domain);
  5663. atomic_set(&def_root_domain.refcount, 1);
  5664. }
  5665. static struct root_domain *alloc_rootdomain(void)
  5666. {
  5667. struct root_domain *rd;
  5668. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5669. if (!rd)
  5670. return NULL;
  5671. if (init_rootdomain(rd) != 0) {
  5672. kfree(rd);
  5673. return NULL;
  5674. }
  5675. return rd;
  5676. }
  5677. static void free_sched_domain(struct rcu_head *rcu)
  5678. {
  5679. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5680. if (atomic_dec_and_test(&sd->groups->ref))
  5681. kfree(sd->groups);
  5682. kfree(sd);
  5683. }
  5684. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5685. {
  5686. call_rcu(&sd->rcu, free_sched_domain);
  5687. }
  5688. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5689. {
  5690. for (; sd; sd = sd->parent)
  5691. destroy_sched_domain(sd, cpu);
  5692. }
  5693. /*
  5694. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5695. * hold the hotplug lock.
  5696. */
  5697. static void
  5698. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5699. {
  5700. struct rq *rq = cpu_rq(cpu);
  5701. struct sched_domain *tmp;
  5702. /* Remove the sched domains which do not contribute to scheduling. */
  5703. for (tmp = sd; tmp; ) {
  5704. struct sched_domain *parent = tmp->parent;
  5705. if (!parent)
  5706. break;
  5707. if (sd_parent_degenerate(tmp, parent)) {
  5708. tmp->parent = parent->parent;
  5709. if (parent->parent)
  5710. parent->parent->child = tmp;
  5711. destroy_sched_domain(parent, cpu);
  5712. } else
  5713. tmp = tmp->parent;
  5714. }
  5715. if (sd && sd_degenerate(sd)) {
  5716. tmp = sd;
  5717. sd = sd->parent;
  5718. destroy_sched_domain(tmp, cpu);
  5719. if (sd)
  5720. sd->child = NULL;
  5721. }
  5722. /* sched_domain_debug(sd, cpu); */
  5723. rq_attach_root(rq, rd);
  5724. tmp = rq->sd;
  5725. rcu_assign_pointer(rq->sd, sd);
  5726. destroy_sched_domains(tmp, cpu);
  5727. }
  5728. /* cpus with isolated domains */
  5729. static cpumask_var_t cpu_isolated_map;
  5730. /* Setup the mask of cpus configured for isolated domains */
  5731. static int __init isolated_cpu_setup(char *str)
  5732. {
  5733. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5734. cpulist_parse(str, cpu_isolated_map);
  5735. return 1;
  5736. }
  5737. __setup("isolcpus=", isolated_cpu_setup);
  5738. #define SD_NODES_PER_DOMAIN 16
  5739. #ifdef CONFIG_NUMA
  5740. /**
  5741. * find_next_best_node - find the next node to include in a sched_domain
  5742. * @node: node whose sched_domain we're building
  5743. * @used_nodes: nodes already in the sched_domain
  5744. *
  5745. * Find the next node to include in a given scheduling domain. Simply
  5746. * finds the closest node not already in the @used_nodes map.
  5747. *
  5748. * Should use nodemask_t.
  5749. */
  5750. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5751. {
  5752. int i, n, val, min_val, best_node = 0;
  5753. min_val = INT_MAX;
  5754. for (i = 0; i < nr_node_ids; i++) {
  5755. /* Start at @node */
  5756. n = (node + i) % nr_node_ids;
  5757. if (!nr_cpus_node(n))
  5758. continue;
  5759. /* Skip already used nodes */
  5760. if (node_isset(n, *used_nodes))
  5761. continue;
  5762. /* Simple min distance search */
  5763. val = node_distance(node, n);
  5764. if (val < min_val) {
  5765. min_val = val;
  5766. best_node = n;
  5767. }
  5768. }
  5769. node_set(best_node, *used_nodes);
  5770. return best_node;
  5771. }
  5772. /**
  5773. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5774. * @node: node whose cpumask we're constructing
  5775. * @span: resulting cpumask
  5776. *
  5777. * Given a node, construct a good cpumask for its sched_domain to span. It
  5778. * should be one that prevents unnecessary balancing, but also spreads tasks
  5779. * out optimally.
  5780. */
  5781. static void sched_domain_node_span(int node, struct cpumask *span)
  5782. {
  5783. nodemask_t used_nodes;
  5784. int i;
  5785. cpumask_clear(span);
  5786. nodes_clear(used_nodes);
  5787. cpumask_or(span, span, cpumask_of_node(node));
  5788. node_set(node, used_nodes);
  5789. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5790. int next_node = find_next_best_node(node, &used_nodes);
  5791. cpumask_or(span, span, cpumask_of_node(next_node));
  5792. }
  5793. }
  5794. #endif /* CONFIG_NUMA */
  5795. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5796. /*
  5797. * The cpus mask in sched_group and sched_domain hangs off the end.
  5798. *
  5799. * ( See the the comments in include/linux/sched.h:struct sched_group
  5800. * and struct sched_domain. )
  5801. */
  5802. struct static_sched_group {
  5803. struct sched_group sg;
  5804. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5805. };
  5806. struct static_sched_domain {
  5807. struct sched_domain sd;
  5808. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5809. };
  5810. struct sd_data {
  5811. struct sched_domain **__percpu sd;
  5812. struct sched_group **__percpu sg;
  5813. };
  5814. struct s_data {
  5815. cpumask_var_t nodemask;
  5816. cpumask_var_t send_covered;
  5817. struct sched_domain ** __percpu sd;
  5818. struct sd_data sdd[SD_LV_MAX];
  5819. struct root_domain *rd;
  5820. };
  5821. enum s_alloc {
  5822. sa_rootdomain,
  5823. sa_sd,
  5824. sa_sd_storage,
  5825. sa_send_covered,
  5826. sa_nodemask,
  5827. sa_none,
  5828. };
  5829. /*
  5830. * Assumes the sched_domain tree is fully constructed
  5831. */
  5832. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5833. {
  5834. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5835. struct sched_domain *child = sd->child;
  5836. if (child)
  5837. cpu = cpumask_first(sched_domain_span(child));
  5838. if (sg)
  5839. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5840. return cpu;
  5841. }
  5842. /*
  5843. * build_sched_groups takes the cpumask we wish to span, and a pointer
  5844. * to a function which identifies what group(along with sched group) a CPU
  5845. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5846. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5847. *
  5848. * build_sched_groups will build a circular linked list of the groups
  5849. * covered by the given span, and will set each group's ->cpumask correctly,
  5850. * and ->cpu_power to 0.
  5851. */
  5852. static void
  5853. build_sched_groups(struct sched_domain *sd, struct cpumask *covered)
  5854. {
  5855. struct sched_group *first = NULL, *last = NULL;
  5856. struct sd_data *sdd = sd->private;
  5857. const struct cpumask *span = sched_domain_span(sd);
  5858. int i;
  5859. cpumask_clear(covered);
  5860. for_each_cpu(i, span) {
  5861. struct sched_group *sg;
  5862. int group = get_group(i, sdd, &sg);
  5863. int j;
  5864. if (cpumask_test_cpu(i, covered))
  5865. continue;
  5866. cpumask_clear(sched_group_cpus(sg));
  5867. sg->cpu_power = 0;
  5868. for_each_cpu(j, span) {
  5869. if (get_group(j, sdd, NULL) != group)
  5870. continue;
  5871. cpumask_set_cpu(j, covered);
  5872. cpumask_set_cpu(j, sched_group_cpus(sg));
  5873. }
  5874. if (!first)
  5875. first = sg;
  5876. if (last)
  5877. last->next = sg;
  5878. last = sg;
  5879. }
  5880. last->next = first;
  5881. }
  5882. /*
  5883. * Initialize sched groups cpu_power.
  5884. *
  5885. * cpu_power indicates the capacity of sched group, which is used while
  5886. * distributing the load between different sched groups in a sched domain.
  5887. * Typically cpu_power for all the groups in a sched domain will be same unless
  5888. * there are asymmetries in the topology. If there are asymmetries, group
  5889. * having more cpu_power will pickup more load compared to the group having
  5890. * less cpu_power.
  5891. */
  5892. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5893. {
  5894. WARN_ON(!sd || !sd->groups);
  5895. if (cpu != group_first_cpu(sd->groups))
  5896. return;
  5897. sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
  5898. update_group_power(sd, cpu);
  5899. }
  5900. /*
  5901. * Initializers for schedule domains
  5902. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5903. */
  5904. #ifdef CONFIG_SCHED_DEBUG
  5905. # define SD_INIT_NAME(sd, type) sd->name = #type
  5906. #else
  5907. # define SD_INIT_NAME(sd, type) do { } while (0)
  5908. #endif
  5909. #define SD_INIT_FUNC(type) \
  5910. static noinline struct sched_domain *sd_init_##type(struct s_data *d, int cpu) \
  5911. { \
  5912. struct sched_domain *sd = *per_cpu_ptr(d->sdd[SD_LV_##type].sd, cpu); \
  5913. *sd = SD_##type##_INIT; \
  5914. sd->level = SD_LV_##type; \
  5915. SD_INIT_NAME(sd, type); \
  5916. sd->private = &d->sdd[SD_LV_##type]; \
  5917. return sd; \
  5918. }
  5919. SD_INIT_FUNC(CPU)
  5920. #ifdef CONFIG_NUMA
  5921. SD_INIT_FUNC(ALLNODES)
  5922. SD_INIT_FUNC(NODE)
  5923. #endif
  5924. #ifdef CONFIG_SCHED_SMT
  5925. SD_INIT_FUNC(SIBLING)
  5926. #endif
  5927. #ifdef CONFIG_SCHED_MC
  5928. SD_INIT_FUNC(MC)
  5929. #endif
  5930. #ifdef CONFIG_SCHED_BOOK
  5931. SD_INIT_FUNC(BOOK)
  5932. #endif
  5933. static int default_relax_domain_level = -1;
  5934. static int __init setup_relax_domain_level(char *str)
  5935. {
  5936. unsigned long val;
  5937. val = simple_strtoul(str, NULL, 0);
  5938. if (val < SD_LV_MAX)
  5939. default_relax_domain_level = val;
  5940. return 1;
  5941. }
  5942. __setup("relax_domain_level=", setup_relax_domain_level);
  5943. static void set_domain_attribute(struct sched_domain *sd,
  5944. struct sched_domain_attr *attr)
  5945. {
  5946. int request;
  5947. if (!attr || attr->relax_domain_level < 0) {
  5948. if (default_relax_domain_level < 0)
  5949. return;
  5950. else
  5951. request = default_relax_domain_level;
  5952. } else
  5953. request = attr->relax_domain_level;
  5954. if (request < sd->level) {
  5955. /* turn off idle balance on this domain */
  5956. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5957. } else {
  5958. /* turn on idle balance on this domain */
  5959. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5960. }
  5961. }
  5962. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5963. const struct cpumask *cpu_map)
  5964. {
  5965. int i, j;
  5966. switch (what) {
  5967. case sa_rootdomain:
  5968. if (!atomic_read(&d->rd->refcount))
  5969. free_rootdomain(&d->rd->rcu); /* fall through */
  5970. case sa_sd:
  5971. free_percpu(d->sd); /* fall through */
  5972. case sa_sd_storage:
  5973. for (i = 0; i < SD_LV_MAX; i++) {
  5974. for_each_cpu(j, cpu_map) {
  5975. kfree(*per_cpu_ptr(d->sdd[i].sd, j));
  5976. kfree(*per_cpu_ptr(d->sdd[i].sg, j));
  5977. }
  5978. free_percpu(d->sdd[i].sd);
  5979. free_percpu(d->sdd[i].sg);
  5980. } /* fall through */
  5981. case sa_send_covered:
  5982. free_cpumask_var(d->send_covered); /* fall through */
  5983. case sa_nodemask:
  5984. free_cpumask_var(d->nodemask); /* fall through */
  5985. case sa_none:
  5986. break;
  5987. }
  5988. }
  5989. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5990. const struct cpumask *cpu_map)
  5991. {
  5992. int i, j;
  5993. memset(d, 0, sizeof(*d));
  5994. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5995. return sa_none;
  5996. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5997. return sa_nodemask;
  5998. for (i = 0; i < SD_LV_MAX; i++) {
  5999. d->sdd[i].sd = alloc_percpu(struct sched_domain *);
  6000. if (!d->sdd[i].sd)
  6001. return sa_sd_storage;
  6002. d->sdd[i].sg = alloc_percpu(struct sched_group *);
  6003. if (!d->sdd[i].sg)
  6004. return sa_sd_storage;
  6005. for_each_cpu(j, cpu_map) {
  6006. struct sched_domain *sd;
  6007. struct sched_group *sg;
  6008. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6009. GFP_KERNEL, cpu_to_node(j));
  6010. if (!sd)
  6011. return sa_sd_storage;
  6012. *per_cpu_ptr(d->sdd[i].sd, j) = sd;
  6013. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6014. GFP_KERNEL, cpu_to_node(j));
  6015. if (!sg)
  6016. return sa_sd_storage;
  6017. *per_cpu_ptr(d->sdd[i].sg, j) = sg;
  6018. }
  6019. }
  6020. d->sd = alloc_percpu(struct sched_domain *);
  6021. if (!d->sd)
  6022. return sa_sd_storage;
  6023. d->rd = alloc_rootdomain();
  6024. if (!d->rd)
  6025. return sa_sd;
  6026. return sa_rootdomain;
  6027. }
  6028. /*
  6029. * NULL the sd_data elements we've used to build the sched_domain and
  6030. * sched_group structure so that the subsequent __free_domain_allocs()
  6031. * will not free the data we're using.
  6032. */
  6033. static void claim_allocations(int cpu, struct sched_domain *sd)
  6034. {
  6035. struct sd_data *sdd = sd->private;
  6036. struct sched_group *sg = sd->groups;
  6037. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6038. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6039. if (cpu == cpumask_first(sched_group_cpus(sg))) {
  6040. WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
  6041. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6042. }
  6043. }
  6044. static struct sched_domain *__build_allnodes_sched_domain(struct s_data *d,
  6045. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6046. struct sched_domain *parent, int i)
  6047. {
  6048. struct sched_domain *sd = NULL;
  6049. #ifdef CONFIG_NUMA
  6050. sd = sd_init_ALLNODES(d, i);
  6051. set_domain_attribute(sd, attr);
  6052. cpumask_copy(sched_domain_span(sd), cpu_map);
  6053. sd->parent = parent;
  6054. if (parent)
  6055. parent->child = sd;
  6056. #endif
  6057. return sd;
  6058. }
  6059. static struct sched_domain *__build_node_sched_domain(struct s_data *d,
  6060. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6061. struct sched_domain *parent, int i)
  6062. {
  6063. struct sched_domain *sd = NULL;
  6064. #ifdef CONFIG_NUMA
  6065. sd = sd_init_NODE(d, i);
  6066. set_domain_attribute(sd, attr);
  6067. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  6068. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  6069. sd->parent = parent;
  6070. if (parent)
  6071. parent->child = sd;
  6072. #endif
  6073. return sd;
  6074. }
  6075. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  6076. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6077. struct sched_domain *parent, int i)
  6078. {
  6079. struct sched_domain *sd;
  6080. sd = sd_init_CPU(d, i);
  6081. set_domain_attribute(sd, attr);
  6082. cpumask_copy(sched_domain_span(sd), d->nodemask);
  6083. sd->parent = parent;
  6084. if (parent)
  6085. parent->child = sd;
  6086. return sd;
  6087. }
  6088. static struct sched_domain *__build_book_sched_domain(struct s_data *d,
  6089. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6090. struct sched_domain *parent, int i)
  6091. {
  6092. struct sched_domain *sd = parent;
  6093. #ifdef CONFIG_SCHED_BOOK
  6094. sd = sd_init_BOOK(d, i);
  6095. set_domain_attribute(sd, attr);
  6096. cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
  6097. sd->parent = parent;
  6098. parent->child = sd;
  6099. #endif
  6100. return sd;
  6101. }
  6102. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  6103. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6104. struct sched_domain *parent, int i)
  6105. {
  6106. struct sched_domain *sd = parent;
  6107. #ifdef CONFIG_SCHED_MC
  6108. sd = sd_init_MC(d, i);
  6109. set_domain_attribute(sd, attr);
  6110. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  6111. sd->parent = parent;
  6112. parent->child = sd;
  6113. #endif
  6114. return sd;
  6115. }
  6116. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  6117. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  6118. struct sched_domain *parent, int i)
  6119. {
  6120. struct sched_domain *sd = parent;
  6121. #ifdef CONFIG_SCHED_SMT
  6122. sd = sd_init_SIBLING(d, i);
  6123. set_domain_attribute(sd, attr);
  6124. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  6125. sd->parent = parent;
  6126. parent->child = sd;
  6127. #endif
  6128. return sd;
  6129. }
  6130. /*
  6131. * Build sched domains for a given set of cpus and attach the sched domains
  6132. * to the individual cpus
  6133. */
  6134. static int build_sched_domains(const struct cpumask *cpu_map,
  6135. struct sched_domain_attr *attr)
  6136. {
  6137. enum s_alloc alloc_state = sa_none;
  6138. struct sched_domain *sd;
  6139. struct s_data d;
  6140. int i, ret = -ENOMEM;
  6141. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6142. if (alloc_state != sa_rootdomain)
  6143. goto error;
  6144. /* Set up domains for cpus specified by the cpu_map. */
  6145. for_each_cpu(i, cpu_map) {
  6146. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6147. cpu_map);
  6148. sd = NULL;
  6149. sd = __build_allnodes_sched_domain(&d, cpu_map, attr, sd, i);
  6150. sd = __build_node_sched_domain(&d, cpu_map, attr, sd, i);
  6151. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6152. sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
  6153. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6154. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6155. *per_cpu_ptr(d.sd, i) = sd;
  6156. }
  6157. /* Build the groups for the domains */
  6158. for_each_cpu(i, cpu_map) {
  6159. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6160. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6161. get_group(i, sd->private, &sd->groups);
  6162. atomic_inc(&sd->groups->ref);
  6163. if (i != cpumask_first(sched_domain_span(sd)))
  6164. continue;
  6165. build_sched_groups(sd, d.send_covered);
  6166. }
  6167. }
  6168. /* Calculate CPU power for physical packages and nodes */
  6169. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6170. if (!cpumask_test_cpu(i, cpu_map))
  6171. continue;
  6172. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6173. claim_allocations(i, sd);
  6174. init_sched_groups_power(i, sd);
  6175. }
  6176. }
  6177. /* Attach the domains */
  6178. rcu_read_lock();
  6179. for_each_cpu(i, cpu_map) {
  6180. sd = *per_cpu_ptr(d.sd, i);
  6181. cpu_attach_domain(sd, d.rd, i);
  6182. }
  6183. rcu_read_unlock();
  6184. ret = 0;
  6185. error:
  6186. __free_domain_allocs(&d, alloc_state, cpu_map);
  6187. return ret;
  6188. }
  6189. static cpumask_var_t *doms_cur; /* current sched domains */
  6190. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6191. static struct sched_domain_attr *dattr_cur;
  6192. /* attribues of custom domains in 'doms_cur' */
  6193. /*
  6194. * Special case: If a kmalloc of a doms_cur partition (array of
  6195. * cpumask) fails, then fallback to a single sched domain,
  6196. * as determined by the single cpumask fallback_doms.
  6197. */
  6198. static cpumask_var_t fallback_doms;
  6199. /*
  6200. * arch_update_cpu_topology lets virtualized architectures update the
  6201. * cpu core maps. It is supposed to return 1 if the topology changed
  6202. * or 0 if it stayed the same.
  6203. */
  6204. int __attribute__((weak)) arch_update_cpu_topology(void)
  6205. {
  6206. return 0;
  6207. }
  6208. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6209. {
  6210. int i;
  6211. cpumask_var_t *doms;
  6212. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6213. if (!doms)
  6214. return NULL;
  6215. for (i = 0; i < ndoms; i++) {
  6216. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6217. free_sched_domains(doms, i);
  6218. return NULL;
  6219. }
  6220. }
  6221. return doms;
  6222. }
  6223. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6224. {
  6225. unsigned int i;
  6226. for (i = 0; i < ndoms; i++)
  6227. free_cpumask_var(doms[i]);
  6228. kfree(doms);
  6229. }
  6230. /*
  6231. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6232. * For now this just excludes isolated cpus, but could be used to
  6233. * exclude other special cases in the future.
  6234. */
  6235. static int init_sched_domains(const struct cpumask *cpu_map)
  6236. {
  6237. int err;
  6238. arch_update_cpu_topology();
  6239. ndoms_cur = 1;
  6240. doms_cur = alloc_sched_domains(ndoms_cur);
  6241. if (!doms_cur)
  6242. doms_cur = &fallback_doms;
  6243. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6244. dattr_cur = NULL;
  6245. err = build_sched_domains(doms_cur[0], NULL);
  6246. register_sched_domain_sysctl();
  6247. return err;
  6248. }
  6249. /*
  6250. * Detach sched domains from a group of cpus specified in cpu_map
  6251. * These cpus will now be attached to the NULL domain
  6252. */
  6253. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6254. {
  6255. int i;
  6256. rcu_read_lock();
  6257. for_each_cpu(i, cpu_map)
  6258. cpu_attach_domain(NULL, &def_root_domain, i);
  6259. rcu_read_unlock();
  6260. }
  6261. /* handle null as "default" */
  6262. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6263. struct sched_domain_attr *new, int idx_new)
  6264. {
  6265. struct sched_domain_attr tmp;
  6266. /* fast path */
  6267. if (!new && !cur)
  6268. return 1;
  6269. tmp = SD_ATTR_INIT;
  6270. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6271. new ? (new + idx_new) : &tmp,
  6272. sizeof(struct sched_domain_attr));
  6273. }
  6274. /*
  6275. * Partition sched domains as specified by the 'ndoms_new'
  6276. * cpumasks in the array doms_new[] of cpumasks. This compares
  6277. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6278. * It destroys each deleted domain and builds each new domain.
  6279. *
  6280. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6281. * The masks don't intersect (don't overlap.) We should setup one
  6282. * sched domain for each mask. CPUs not in any of the cpumasks will
  6283. * not be load balanced. If the same cpumask appears both in the
  6284. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6285. * it as it is.
  6286. *
  6287. * The passed in 'doms_new' should be allocated using
  6288. * alloc_sched_domains. This routine takes ownership of it and will
  6289. * free_sched_domains it when done with it. If the caller failed the
  6290. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6291. * and partition_sched_domains() will fallback to the single partition
  6292. * 'fallback_doms', it also forces the domains to be rebuilt.
  6293. *
  6294. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6295. * ndoms_new == 0 is a special case for destroying existing domains,
  6296. * and it will not create the default domain.
  6297. *
  6298. * Call with hotplug lock held
  6299. */
  6300. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6301. struct sched_domain_attr *dattr_new)
  6302. {
  6303. int i, j, n;
  6304. int new_topology;
  6305. mutex_lock(&sched_domains_mutex);
  6306. /* always unregister in case we don't destroy any domains */
  6307. unregister_sched_domain_sysctl();
  6308. /* Let architecture update cpu core mappings. */
  6309. new_topology = arch_update_cpu_topology();
  6310. n = doms_new ? ndoms_new : 0;
  6311. /* Destroy deleted domains */
  6312. for (i = 0; i < ndoms_cur; i++) {
  6313. for (j = 0; j < n && !new_topology; j++) {
  6314. if (cpumask_equal(doms_cur[i], doms_new[j])
  6315. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6316. goto match1;
  6317. }
  6318. /* no match - a current sched domain not in new doms_new[] */
  6319. detach_destroy_domains(doms_cur[i]);
  6320. match1:
  6321. ;
  6322. }
  6323. if (doms_new == NULL) {
  6324. ndoms_cur = 0;
  6325. doms_new = &fallback_doms;
  6326. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6327. WARN_ON_ONCE(dattr_new);
  6328. }
  6329. /* Build new domains */
  6330. for (i = 0; i < ndoms_new; i++) {
  6331. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6332. if (cpumask_equal(doms_new[i], doms_cur[j])
  6333. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6334. goto match2;
  6335. }
  6336. /* no match - add a new doms_new */
  6337. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6338. match2:
  6339. ;
  6340. }
  6341. /* Remember the new sched domains */
  6342. if (doms_cur != &fallback_doms)
  6343. free_sched_domains(doms_cur, ndoms_cur);
  6344. kfree(dattr_cur); /* kfree(NULL) is safe */
  6345. doms_cur = doms_new;
  6346. dattr_cur = dattr_new;
  6347. ndoms_cur = ndoms_new;
  6348. register_sched_domain_sysctl();
  6349. mutex_unlock(&sched_domains_mutex);
  6350. }
  6351. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6352. static void reinit_sched_domains(void)
  6353. {
  6354. get_online_cpus();
  6355. /* Destroy domains first to force the rebuild */
  6356. partition_sched_domains(0, NULL, NULL);
  6357. rebuild_sched_domains();
  6358. put_online_cpus();
  6359. }
  6360. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6361. {
  6362. unsigned int level = 0;
  6363. if (sscanf(buf, "%u", &level) != 1)
  6364. return -EINVAL;
  6365. /*
  6366. * level is always be positive so don't check for
  6367. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6368. * What happens on 0 or 1 byte write,
  6369. * need to check for count as well?
  6370. */
  6371. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6372. return -EINVAL;
  6373. if (smt)
  6374. sched_smt_power_savings = level;
  6375. else
  6376. sched_mc_power_savings = level;
  6377. reinit_sched_domains();
  6378. return count;
  6379. }
  6380. #ifdef CONFIG_SCHED_MC
  6381. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6382. struct sysdev_class_attribute *attr,
  6383. char *page)
  6384. {
  6385. return sprintf(page, "%u\n", sched_mc_power_savings);
  6386. }
  6387. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6388. struct sysdev_class_attribute *attr,
  6389. const char *buf, size_t count)
  6390. {
  6391. return sched_power_savings_store(buf, count, 0);
  6392. }
  6393. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6394. sched_mc_power_savings_show,
  6395. sched_mc_power_savings_store);
  6396. #endif
  6397. #ifdef CONFIG_SCHED_SMT
  6398. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6399. struct sysdev_class_attribute *attr,
  6400. char *page)
  6401. {
  6402. return sprintf(page, "%u\n", sched_smt_power_savings);
  6403. }
  6404. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6405. struct sysdev_class_attribute *attr,
  6406. const char *buf, size_t count)
  6407. {
  6408. return sched_power_savings_store(buf, count, 1);
  6409. }
  6410. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6411. sched_smt_power_savings_show,
  6412. sched_smt_power_savings_store);
  6413. #endif
  6414. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6415. {
  6416. int err = 0;
  6417. #ifdef CONFIG_SCHED_SMT
  6418. if (smt_capable())
  6419. err = sysfs_create_file(&cls->kset.kobj,
  6420. &attr_sched_smt_power_savings.attr);
  6421. #endif
  6422. #ifdef CONFIG_SCHED_MC
  6423. if (!err && mc_capable())
  6424. err = sysfs_create_file(&cls->kset.kobj,
  6425. &attr_sched_mc_power_savings.attr);
  6426. #endif
  6427. return err;
  6428. }
  6429. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6430. /*
  6431. * Update cpusets according to cpu_active mask. If cpusets are
  6432. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6433. * around partition_sched_domains().
  6434. */
  6435. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6436. void *hcpu)
  6437. {
  6438. switch (action & ~CPU_TASKS_FROZEN) {
  6439. case CPU_ONLINE:
  6440. case CPU_DOWN_FAILED:
  6441. cpuset_update_active_cpus();
  6442. return NOTIFY_OK;
  6443. default:
  6444. return NOTIFY_DONE;
  6445. }
  6446. }
  6447. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6448. void *hcpu)
  6449. {
  6450. switch (action & ~CPU_TASKS_FROZEN) {
  6451. case CPU_DOWN_PREPARE:
  6452. cpuset_update_active_cpus();
  6453. return NOTIFY_OK;
  6454. default:
  6455. return NOTIFY_DONE;
  6456. }
  6457. }
  6458. static int update_runtime(struct notifier_block *nfb,
  6459. unsigned long action, void *hcpu)
  6460. {
  6461. int cpu = (int)(long)hcpu;
  6462. switch (action) {
  6463. case CPU_DOWN_PREPARE:
  6464. case CPU_DOWN_PREPARE_FROZEN:
  6465. disable_runtime(cpu_rq(cpu));
  6466. return NOTIFY_OK;
  6467. case CPU_DOWN_FAILED:
  6468. case CPU_DOWN_FAILED_FROZEN:
  6469. case CPU_ONLINE:
  6470. case CPU_ONLINE_FROZEN:
  6471. enable_runtime(cpu_rq(cpu));
  6472. return NOTIFY_OK;
  6473. default:
  6474. return NOTIFY_DONE;
  6475. }
  6476. }
  6477. void __init sched_init_smp(void)
  6478. {
  6479. cpumask_var_t non_isolated_cpus;
  6480. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6481. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6482. get_online_cpus();
  6483. mutex_lock(&sched_domains_mutex);
  6484. init_sched_domains(cpu_active_mask);
  6485. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6486. if (cpumask_empty(non_isolated_cpus))
  6487. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6488. mutex_unlock(&sched_domains_mutex);
  6489. put_online_cpus();
  6490. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6491. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6492. /* RT runtime code needs to handle some hotplug events */
  6493. hotcpu_notifier(update_runtime, 0);
  6494. init_hrtick();
  6495. /* Move init over to a non-isolated CPU */
  6496. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6497. BUG();
  6498. sched_init_granularity();
  6499. free_cpumask_var(non_isolated_cpus);
  6500. init_sched_rt_class();
  6501. }
  6502. #else
  6503. void __init sched_init_smp(void)
  6504. {
  6505. sched_init_granularity();
  6506. }
  6507. #endif /* CONFIG_SMP */
  6508. const_debug unsigned int sysctl_timer_migration = 1;
  6509. int in_sched_functions(unsigned long addr)
  6510. {
  6511. return in_lock_functions(addr) ||
  6512. (addr >= (unsigned long)__sched_text_start
  6513. && addr < (unsigned long)__sched_text_end);
  6514. }
  6515. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6516. {
  6517. cfs_rq->tasks_timeline = RB_ROOT;
  6518. INIT_LIST_HEAD(&cfs_rq->tasks);
  6519. #ifdef CONFIG_FAIR_GROUP_SCHED
  6520. cfs_rq->rq = rq;
  6521. /* allow initial update_cfs_load() to truncate */
  6522. #ifdef CONFIG_SMP
  6523. cfs_rq->load_stamp = 1;
  6524. #endif
  6525. #endif
  6526. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6527. }
  6528. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6529. {
  6530. struct rt_prio_array *array;
  6531. int i;
  6532. array = &rt_rq->active;
  6533. for (i = 0; i < MAX_RT_PRIO; i++) {
  6534. INIT_LIST_HEAD(array->queue + i);
  6535. __clear_bit(i, array->bitmap);
  6536. }
  6537. /* delimiter for bitsearch: */
  6538. __set_bit(MAX_RT_PRIO, array->bitmap);
  6539. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6540. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6541. #ifdef CONFIG_SMP
  6542. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6543. #endif
  6544. #endif
  6545. #ifdef CONFIG_SMP
  6546. rt_rq->rt_nr_migratory = 0;
  6547. rt_rq->overloaded = 0;
  6548. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6549. #endif
  6550. rt_rq->rt_time = 0;
  6551. rt_rq->rt_throttled = 0;
  6552. rt_rq->rt_runtime = 0;
  6553. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6554. #ifdef CONFIG_RT_GROUP_SCHED
  6555. rt_rq->rt_nr_boosted = 0;
  6556. rt_rq->rq = rq;
  6557. #endif
  6558. }
  6559. #ifdef CONFIG_FAIR_GROUP_SCHED
  6560. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6561. struct sched_entity *se, int cpu,
  6562. struct sched_entity *parent)
  6563. {
  6564. struct rq *rq = cpu_rq(cpu);
  6565. tg->cfs_rq[cpu] = cfs_rq;
  6566. init_cfs_rq(cfs_rq, rq);
  6567. cfs_rq->tg = tg;
  6568. tg->se[cpu] = se;
  6569. /* se could be NULL for root_task_group */
  6570. if (!se)
  6571. return;
  6572. if (!parent)
  6573. se->cfs_rq = &rq->cfs;
  6574. else
  6575. se->cfs_rq = parent->my_q;
  6576. se->my_q = cfs_rq;
  6577. update_load_set(&se->load, 0);
  6578. se->parent = parent;
  6579. }
  6580. #endif
  6581. #ifdef CONFIG_RT_GROUP_SCHED
  6582. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6583. struct sched_rt_entity *rt_se, int cpu,
  6584. struct sched_rt_entity *parent)
  6585. {
  6586. struct rq *rq = cpu_rq(cpu);
  6587. tg->rt_rq[cpu] = rt_rq;
  6588. init_rt_rq(rt_rq, rq);
  6589. rt_rq->tg = tg;
  6590. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6591. tg->rt_se[cpu] = rt_se;
  6592. if (!rt_se)
  6593. return;
  6594. if (!parent)
  6595. rt_se->rt_rq = &rq->rt;
  6596. else
  6597. rt_se->rt_rq = parent->my_q;
  6598. rt_se->my_q = rt_rq;
  6599. rt_se->parent = parent;
  6600. INIT_LIST_HEAD(&rt_se->run_list);
  6601. }
  6602. #endif
  6603. void __init sched_init(void)
  6604. {
  6605. int i, j;
  6606. unsigned long alloc_size = 0, ptr;
  6607. #ifdef CONFIG_FAIR_GROUP_SCHED
  6608. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6609. #endif
  6610. #ifdef CONFIG_RT_GROUP_SCHED
  6611. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6612. #endif
  6613. #ifdef CONFIG_CPUMASK_OFFSTACK
  6614. alloc_size += num_possible_cpus() * cpumask_size();
  6615. #endif
  6616. if (alloc_size) {
  6617. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6618. #ifdef CONFIG_FAIR_GROUP_SCHED
  6619. root_task_group.se = (struct sched_entity **)ptr;
  6620. ptr += nr_cpu_ids * sizeof(void **);
  6621. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6622. ptr += nr_cpu_ids * sizeof(void **);
  6623. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6624. #ifdef CONFIG_RT_GROUP_SCHED
  6625. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6626. ptr += nr_cpu_ids * sizeof(void **);
  6627. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6628. ptr += nr_cpu_ids * sizeof(void **);
  6629. #endif /* CONFIG_RT_GROUP_SCHED */
  6630. #ifdef CONFIG_CPUMASK_OFFSTACK
  6631. for_each_possible_cpu(i) {
  6632. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6633. ptr += cpumask_size();
  6634. }
  6635. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6636. }
  6637. #ifdef CONFIG_SMP
  6638. init_defrootdomain();
  6639. #endif
  6640. init_rt_bandwidth(&def_rt_bandwidth,
  6641. global_rt_period(), global_rt_runtime());
  6642. #ifdef CONFIG_RT_GROUP_SCHED
  6643. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6644. global_rt_period(), global_rt_runtime());
  6645. #endif /* CONFIG_RT_GROUP_SCHED */
  6646. #ifdef CONFIG_CGROUP_SCHED
  6647. list_add(&root_task_group.list, &task_groups);
  6648. INIT_LIST_HEAD(&root_task_group.children);
  6649. autogroup_init(&init_task);
  6650. #endif /* CONFIG_CGROUP_SCHED */
  6651. for_each_possible_cpu(i) {
  6652. struct rq *rq;
  6653. rq = cpu_rq(i);
  6654. raw_spin_lock_init(&rq->lock);
  6655. rq->nr_running = 0;
  6656. rq->calc_load_active = 0;
  6657. rq->calc_load_update = jiffies + LOAD_FREQ;
  6658. init_cfs_rq(&rq->cfs, rq);
  6659. init_rt_rq(&rq->rt, rq);
  6660. #ifdef CONFIG_FAIR_GROUP_SCHED
  6661. root_task_group.shares = root_task_group_load;
  6662. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6663. /*
  6664. * How much cpu bandwidth does root_task_group get?
  6665. *
  6666. * In case of task-groups formed thr' the cgroup filesystem, it
  6667. * gets 100% of the cpu resources in the system. This overall
  6668. * system cpu resource is divided among the tasks of
  6669. * root_task_group and its child task-groups in a fair manner,
  6670. * based on each entity's (task or task-group's) weight
  6671. * (se->load.weight).
  6672. *
  6673. * In other words, if root_task_group has 10 tasks of weight
  6674. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6675. * then A0's share of the cpu resource is:
  6676. *
  6677. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6678. *
  6679. * We achieve this by letting root_task_group's tasks sit
  6680. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6681. */
  6682. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6683. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6684. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6685. #ifdef CONFIG_RT_GROUP_SCHED
  6686. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6687. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6688. #endif
  6689. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6690. rq->cpu_load[j] = 0;
  6691. rq->last_load_update_tick = jiffies;
  6692. #ifdef CONFIG_SMP
  6693. rq->sd = NULL;
  6694. rq->rd = NULL;
  6695. rq->cpu_power = SCHED_LOAD_SCALE;
  6696. rq->post_schedule = 0;
  6697. rq->active_balance = 0;
  6698. rq->next_balance = jiffies;
  6699. rq->push_cpu = 0;
  6700. rq->cpu = i;
  6701. rq->online = 0;
  6702. rq->idle_stamp = 0;
  6703. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6704. rq_attach_root(rq, &def_root_domain);
  6705. #ifdef CONFIG_NO_HZ
  6706. rq->nohz_balance_kick = 0;
  6707. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6708. #endif
  6709. #endif
  6710. init_rq_hrtick(rq);
  6711. atomic_set(&rq->nr_iowait, 0);
  6712. }
  6713. set_load_weight(&init_task);
  6714. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6715. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6716. #endif
  6717. #ifdef CONFIG_SMP
  6718. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6719. #endif
  6720. #ifdef CONFIG_RT_MUTEXES
  6721. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6722. #endif
  6723. /*
  6724. * The boot idle thread does lazy MMU switching as well:
  6725. */
  6726. atomic_inc(&init_mm.mm_count);
  6727. enter_lazy_tlb(&init_mm, current);
  6728. /*
  6729. * Make us the idle thread. Technically, schedule() should not be
  6730. * called from this thread, however somewhere below it might be,
  6731. * but because we are the idle thread, we just pick up running again
  6732. * when this runqueue becomes "idle".
  6733. */
  6734. init_idle(current, smp_processor_id());
  6735. calc_load_update = jiffies + LOAD_FREQ;
  6736. /*
  6737. * During early bootup we pretend to be a normal task:
  6738. */
  6739. current->sched_class = &fair_sched_class;
  6740. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6741. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6742. #ifdef CONFIG_SMP
  6743. #ifdef CONFIG_NO_HZ
  6744. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6745. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6746. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6747. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6748. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6749. #endif
  6750. /* May be allocated at isolcpus cmdline parse time */
  6751. if (cpu_isolated_map == NULL)
  6752. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6753. #endif /* SMP */
  6754. scheduler_running = 1;
  6755. }
  6756. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6757. static inline int preempt_count_equals(int preempt_offset)
  6758. {
  6759. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6760. return (nested == preempt_offset);
  6761. }
  6762. void __might_sleep(const char *file, int line, int preempt_offset)
  6763. {
  6764. #ifdef in_atomic
  6765. static unsigned long prev_jiffy; /* ratelimiting */
  6766. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6767. system_state != SYSTEM_RUNNING || oops_in_progress)
  6768. return;
  6769. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6770. return;
  6771. prev_jiffy = jiffies;
  6772. printk(KERN_ERR
  6773. "BUG: sleeping function called from invalid context at %s:%d\n",
  6774. file, line);
  6775. printk(KERN_ERR
  6776. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6777. in_atomic(), irqs_disabled(),
  6778. current->pid, current->comm);
  6779. debug_show_held_locks(current);
  6780. if (irqs_disabled())
  6781. print_irqtrace_events(current);
  6782. dump_stack();
  6783. #endif
  6784. }
  6785. EXPORT_SYMBOL(__might_sleep);
  6786. #endif
  6787. #ifdef CONFIG_MAGIC_SYSRQ
  6788. static void normalize_task(struct rq *rq, struct task_struct *p)
  6789. {
  6790. const struct sched_class *prev_class = p->sched_class;
  6791. int old_prio = p->prio;
  6792. int on_rq;
  6793. on_rq = p->se.on_rq;
  6794. if (on_rq)
  6795. deactivate_task(rq, p, 0);
  6796. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6797. if (on_rq) {
  6798. activate_task(rq, p, 0);
  6799. resched_task(rq->curr);
  6800. }
  6801. check_class_changed(rq, p, prev_class, old_prio);
  6802. }
  6803. void normalize_rt_tasks(void)
  6804. {
  6805. struct task_struct *g, *p;
  6806. unsigned long flags;
  6807. struct rq *rq;
  6808. read_lock_irqsave(&tasklist_lock, flags);
  6809. do_each_thread(g, p) {
  6810. /*
  6811. * Only normalize user tasks:
  6812. */
  6813. if (!p->mm)
  6814. continue;
  6815. p->se.exec_start = 0;
  6816. #ifdef CONFIG_SCHEDSTATS
  6817. p->se.statistics.wait_start = 0;
  6818. p->se.statistics.sleep_start = 0;
  6819. p->se.statistics.block_start = 0;
  6820. #endif
  6821. if (!rt_task(p)) {
  6822. /*
  6823. * Renice negative nice level userspace
  6824. * tasks back to 0:
  6825. */
  6826. if (TASK_NICE(p) < 0 && p->mm)
  6827. set_user_nice(p, 0);
  6828. continue;
  6829. }
  6830. raw_spin_lock(&p->pi_lock);
  6831. rq = __task_rq_lock(p);
  6832. normalize_task(rq, p);
  6833. __task_rq_unlock(rq);
  6834. raw_spin_unlock(&p->pi_lock);
  6835. } while_each_thread(g, p);
  6836. read_unlock_irqrestore(&tasklist_lock, flags);
  6837. }
  6838. #endif /* CONFIG_MAGIC_SYSRQ */
  6839. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6840. /*
  6841. * These functions are only useful for the IA64 MCA handling, or kdb.
  6842. *
  6843. * They can only be called when the whole system has been
  6844. * stopped - every CPU needs to be quiescent, and no scheduling
  6845. * activity can take place. Using them for anything else would
  6846. * be a serious bug, and as a result, they aren't even visible
  6847. * under any other configuration.
  6848. */
  6849. /**
  6850. * curr_task - return the current task for a given cpu.
  6851. * @cpu: the processor in question.
  6852. *
  6853. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6854. */
  6855. struct task_struct *curr_task(int cpu)
  6856. {
  6857. return cpu_curr(cpu);
  6858. }
  6859. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6860. #ifdef CONFIG_IA64
  6861. /**
  6862. * set_curr_task - set the current task for a given cpu.
  6863. * @cpu: the processor in question.
  6864. * @p: the task pointer to set.
  6865. *
  6866. * Description: This function must only be used when non-maskable interrupts
  6867. * are serviced on a separate stack. It allows the architecture to switch the
  6868. * notion of the current task on a cpu in a non-blocking manner. This function
  6869. * must be called with all CPU's synchronized, and interrupts disabled, the
  6870. * and caller must save the original value of the current task (see
  6871. * curr_task() above) and restore that value before reenabling interrupts and
  6872. * re-starting the system.
  6873. *
  6874. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6875. */
  6876. void set_curr_task(int cpu, struct task_struct *p)
  6877. {
  6878. cpu_curr(cpu) = p;
  6879. }
  6880. #endif
  6881. #ifdef CONFIG_FAIR_GROUP_SCHED
  6882. static void free_fair_sched_group(struct task_group *tg)
  6883. {
  6884. int i;
  6885. for_each_possible_cpu(i) {
  6886. if (tg->cfs_rq)
  6887. kfree(tg->cfs_rq[i]);
  6888. if (tg->se)
  6889. kfree(tg->se[i]);
  6890. }
  6891. kfree(tg->cfs_rq);
  6892. kfree(tg->se);
  6893. }
  6894. static
  6895. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6896. {
  6897. struct cfs_rq *cfs_rq;
  6898. struct sched_entity *se;
  6899. int i;
  6900. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6901. if (!tg->cfs_rq)
  6902. goto err;
  6903. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6904. if (!tg->se)
  6905. goto err;
  6906. tg->shares = NICE_0_LOAD;
  6907. for_each_possible_cpu(i) {
  6908. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6909. GFP_KERNEL, cpu_to_node(i));
  6910. if (!cfs_rq)
  6911. goto err;
  6912. se = kzalloc_node(sizeof(struct sched_entity),
  6913. GFP_KERNEL, cpu_to_node(i));
  6914. if (!se)
  6915. goto err_free_rq;
  6916. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  6917. }
  6918. return 1;
  6919. err_free_rq:
  6920. kfree(cfs_rq);
  6921. err:
  6922. return 0;
  6923. }
  6924. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6925. {
  6926. struct rq *rq = cpu_rq(cpu);
  6927. unsigned long flags;
  6928. /*
  6929. * Only empty task groups can be destroyed; so we can speculatively
  6930. * check on_list without danger of it being re-added.
  6931. */
  6932. if (!tg->cfs_rq[cpu]->on_list)
  6933. return;
  6934. raw_spin_lock_irqsave(&rq->lock, flags);
  6935. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  6936. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6937. }
  6938. #else /* !CONFG_FAIR_GROUP_SCHED */
  6939. static inline void free_fair_sched_group(struct task_group *tg)
  6940. {
  6941. }
  6942. static inline
  6943. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6944. {
  6945. return 1;
  6946. }
  6947. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6948. {
  6949. }
  6950. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6951. #ifdef CONFIG_RT_GROUP_SCHED
  6952. static void free_rt_sched_group(struct task_group *tg)
  6953. {
  6954. int i;
  6955. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6956. for_each_possible_cpu(i) {
  6957. if (tg->rt_rq)
  6958. kfree(tg->rt_rq[i]);
  6959. if (tg->rt_se)
  6960. kfree(tg->rt_se[i]);
  6961. }
  6962. kfree(tg->rt_rq);
  6963. kfree(tg->rt_se);
  6964. }
  6965. static
  6966. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6967. {
  6968. struct rt_rq *rt_rq;
  6969. struct sched_rt_entity *rt_se;
  6970. struct rq *rq;
  6971. int i;
  6972. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6973. if (!tg->rt_rq)
  6974. goto err;
  6975. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6976. if (!tg->rt_se)
  6977. goto err;
  6978. init_rt_bandwidth(&tg->rt_bandwidth,
  6979. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6980. for_each_possible_cpu(i) {
  6981. rq = cpu_rq(i);
  6982. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6983. GFP_KERNEL, cpu_to_node(i));
  6984. if (!rt_rq)
  6985. goto err;
  6986. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6987. GFP_KERNEL, cpu_to_node(i));
  6988. if (!rt_se)
  6989. goto err_free_rq;
  6990. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  6991. }
  6992. return 1;
  6993. err_free_rq:
  6994. kfree(rt_rq);
  6995. err:
  6996. return 0;
  6997. }
  6998. #else /* !CONFIG_RT_GROUP_SCHED */
  6999. static inline void free_rt_sched_group(struct task_group *tg)
  7000. {
  7001. }
  7002. static inline
  7003. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7004. {
  7005. return 1;
  7006. }
  7007. #endif /* CONFIG_RT_GROUP_SCHED */
  7008. #ifdef CONFIG_CGROUP_SCHED
  7009. static void free_sched_group(struct task_group *tg)
  7010. {
  7011. free_fair_sched_group(tg);
  7012. free_rt_sched_group(tg);
  7013. autogroup_free(tg);
  7014. kfree(tg);
  7015. }
  7016. /* allocate runqueue etc for a new task group */
  7017. struct task_group *sched_create_group(struct task_group *parent)
  7018. {
  7019. struct task_group *tg;
  7020. unsigned long flags;
  7021. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7022. if (!tg)
  7023. return ERR_PTR(-ENOMEM);
  7024. if (!alloc_fair_sched_group(tg, parent))
  7025. goto err;
  7026. if (!alloc_rt_sched_group(tg, parent))
  7027. goto err;
  7028. spin_lock_irqsave(&task_group_lock, flags);
  7029. list_add_rcu(&tg->list, &task_groups);
  7030. WARN_ON(!parent); /* root should already exist */
  7031. tg->parent = parent;
  7032. INIT_LIST_HEAD(&tg->children);
  7033. list_add_rcu(&tg->siblings, &parent->children);
  7034. spin_unlock_irqrestore(&task_group_lock, flags);
  7035. return tg;
  7036. err:
  7037. free_sched_group(tg);
  7038. return ERR_PTR(-ENOMEM);
  7039. }
  7040. /* rcu callback to free various structures associated with a task group */
  7041. static void free_sched_group_rcu(struct rcu_head *rhp)
  7042. {
  7043. /* now it should be safe to free those cfs_rqs */
  7044. free_sched_group(container_of(rhp, struct task_group, rcu));
  7045. }
  7046. /* Destroy runqueue etc associated with a task group */
  7047. void sched_destroy_group(struct task_group *tg)
  7048. {
  7049. unsigned long flags;
  7050. int i;
  7051. /* end participation in shares distribution */
  7052. for_each_possible_cpu(i)
  7053. unregister_fair_sched_group(tg, i);
  7054. spin_lock_irqsave(&task_group_lock, flags);
  7055. list_del_rcu(&tg->list);
  7056. list_del_rcu(&tg->siblings);
  7057. spin_unlock_irqrestore(&task_group_lock, flags);
  7058. /* wait for possible concurrent references to cfs_rqs complete */
  7059. call_rcu(&tg->rcu, free_sched_group_rcu);
  7060. }
  7061. /* change task's runqueue when it moves between groups.
  7062. * The caller of this function should have put the task in its new group
  7063. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7064. * reflect its new group.
  7065. */
  7066. void sched_move_task(struct task_struct *tsk)
  7067. {
  7068. int on_rq, running;
  7069. unsigned long flags;
  7070. struct rq *rq;
  7071. rq = task_rq_lock(tsk, &flags);
  7072. running = task_current(rq, tsk);
  7073. on_rq = tsk->se.on_rq;
  7074. if (on_rq)
  7075. dequeue_task(rq, tsk, 0);
  7076. if (unlikely(running))
  7077. tsk->sched_class->put_prev_task(rq, tsk);
  7078. #ifdef CONFIG_FAIR_GROUP_SCHED
  7079. if (tsk->sched_class->task_move_group)
  7080. tsk->sched_class->task_move_group(tsk, on_rq);
  7081. else
  7082. #endif
  7083. set_task_rq(tsk, task_cpu(tsk));
  7084. if (unlikely(running))
  7085. tsk->sched_class->set_curr_task(rq);
  7086. if (on_rq)
  7087. enqueue_task(rq, tsk, 0);
  7088. task_rq_unlock(rq, &flags);
  7089. }
  7090. #endif /* CONFIG_CGROUP_SCHED */
  7091. #ifdef CONFIG_FAIR_GROUP_SCHED
  7092. static DEFINE_MUTEX(shares_mutex);
  7093. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7094. {
  7095. int i;
  7096. unsigned long flags;
  7097. /*
  7098. * We can't change the weight of the root cgroup.
  7099. */
  7100. if (!tg->se[0])
  7101. return -EINVAL;
  7102. if (shares < MIN_SHARES)
  7103. shares = MIN_SHARES;
  7104. else if (shares > MAX_SHARES)
  7105. shares = MAX_SHARES;
  7106. mutex_lock(&shares_mutex);
  7107. if (tg->shares == shares)
  7108. goto done;
  7109. tg->shares = shares;
  7110. for_each_possible_cpu(i) {
  7111. struct rq *rq = cpu_rq(i);
  7112. struct sched_entity *se;
  7113. se = tg->se[i];
  7114. /* Propagate contribution to hierarchy */
  7115. raw_spin_lock_irqsave(&rq->lock, flags);
  7116. for_each_sched_entity(se)
  7117. update_cfs_shares(group_cfs_rq(se));
  7118. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7119. }
  7120. done:
  7121. mutex_unlock(&shares_mutex);
  7122. return 0;
  7123. }
  7124. unsigned long sched_group_shares(struct task_group *tg)
  7125. {
  7126. return tg->shares;
  7127. }
  7128. #endif
  7129. #ifdef CONFIG_RT_GROUP_SCHED
  7130. /*
  7131. * Ensure that the real time constraints are schedulable.
  7132. */
  7133. static DEFINE_MUTEX(rt_constraints_mutex);
  7134. static unsigned long to_ratio(u64 period, u64 runtime)
  7135. {
  7136. if (runtime == RUNTIME_INF)
  7137. return 1ULL << 20;
  7138. return div64_u64(runtime << 20, period);
  7139. }
  7140. /* Must be called with tasklist_lock held */
  7141. static inline int tg_has_rt_tasks(struct task_group *tg)
  7142. {
  7143. struct task_struct *g, *p;
  7144. do_each_thread(g, p) {
  7145. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7146. return 1;
  7147. } while_each_thread(g, p);
  7148. return 0;
  7149. }
  7150. struct rt_schedulable_data {
  7151. struct task_group *tg;
  7152. u64 rt_period;
  7153. u64 rt_runtime;
  7154. };
  7155. static int tg_schedulable(struct task_group *tg, void *data)
  7156. {
  7157. struct rt_schedulable_data *d = data;
  7158. struct task_group *child;
  7159. unsigned long total, sum = 0;
  7160. u64 period, runtime;
  7161. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7162. runtime = tg->rt_bandwidth.rt_runtime;
  7163. if (tg == d->tg) {
  7164. period = d->rt_period;
  7165. runtime = d->rt_runtime;
  7166. }
  7167. /*
  7168. * Cannot have more runtime than the period.
  7169. */
  7170. if (runtime > period && runtime != RUNTIME_INF)
  7171. return -EINVAL;
  7172. /*
  7173. * Ensure we don't starve existing RT tasks.
  7174. */
  7175. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7176. return -EBUSY;
  7177. total = to_ratio(period, runtime);
  7178. /*
  7179. * Nobody can have more than the global setting allows.
  7180. */
  7181. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7182. return -EINVAL;
  7183. /*
  7184. * The sum of our children's runtime should not exceed our own.
  7185. */
  7186. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7187. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7188. runtime = child->rt_bandwidth.rt_runtime;
  7189. if (child == d->tg) {
  7190. period = d->rt_period;
  7191. runtime = d->rt_runtime;
  7192. }
  7193. sum += to_ratio(period, runtime);
  7194. }
  7195. if (sum > total)
  7196. return -EINVAL;
  7197. return 0;
  7198. }
  7199. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7200. {
  7201. struct rt_schedulable_data data = {
  7202. .tg = tg,
  7203. .rt_period = period,
  7204. .rt_runtime = runtime,
  7205. };
  7206. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7207. }
  7208. static int tg_set_bandwidth(struct task_group *tg,
  7209. u64 rt_period, u64 rt_runtime)
  7210. {
  7211. int i, err = 0;
  7212. mutex_lock(&rt_constraints_mutex);
  7213. read_lock(&tasklist_lock);
  7214. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7215. if (err)
  7216. goto unlock;
  7217. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7218. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7219. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7220. for_each_possible_cpu(i) {
  7221. struct rt_rq *rt_rq = tg->rt_rq[i];
  7222. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7223. rt_rq->rt_runtime = rt_runtime;
  7224. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7225. }
  7226. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7227. unlock:
  7228. read_unlock(&tasklist_lock);
  7229. mutex_unlock(&rt_constraints_mutex);
  7230. return err;
  7231. }
  7232. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7233. {
  7234. u64 rt_runtime, rt_period;
  7235. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7236. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7237. if (rt_runtime_us < 0)
  7238. rt_runtime = RUNTIME_INF;
  7239. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7240. }
  7241. long sched_group_rt_runtime(struct task_group *tg)
  7242. {
  7243. u64 rt_runtime_us;
  7244. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7245. return -1;
  7246. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7247. do_div(rt_runtime_us, NSEC_PER_USEC);
  7248. return rt_runtime_us;
  7249. }
  7250. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7251. {
  7252. u64 rt_runtime, rt_period;
  7253. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7254. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7255. if (rt_period == 0)
  7256. return -EINVAL;
  7257. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7258. }
  7259. long sched_group_rt_period(struct task_group *tg)
  7260. {
  7261. u64 rt_period_us;
  7262. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7263. do_div(rt_period_us, NSEC_PER_USEC);
  7264. return rt_period_us;
  7265. }
  7266. static int sched_rt_global_constraints(void)
  7267. {
  7268. u64 runtime, period;
  7269. int ret = 0;
  7270. if (sysctl_sched_rt_period <= 0)
  7271. return -EINVAL;
  7272. runtime = global_rt_runtime();
  7273. period = global_rt_period();
  7274. /*
  7275. * Sanity check on the sysctl variables.
  7276. */
  7277. if (runtime > period && runtime != RUNTIME_INF)
  7278. return -EINVAL;
  7279. mutex_lock(&rt_constraints_mutex);
  7280. read_lock(&tasklist_lock);
  7281. ret = __rt_schedulable(NULL, 0, 0);
  7282. read_unlock(&tasklist_lock);
  7283. mutex_unlock(&rt_constraints_mutex);
  7284. return ret;
  7285. }
  7286. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7287. {
  7288. /* Don't accept realtime tasks when there is no way for them to run */
  7289. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7290. return 0;
  7291. return 1;
  7292. }
  7293. #else /* !CONFIG_RT_GROUP_SCHED */
  7294. static int sched_rt_global_constraints(void)
  7295. {
  7296. unsigned long flags;
  7297. int i;
  7298. if (sysctl_sched_rt_period <= 0)
  7299. return -EINVAL;
  7300. /*
  7301. * There's always some RT tasks in the root group
  7302. * -- migration, kstopmachine etc..
  7303. */
  7304. if (sysctl_sched_rt_runtime == 0)
  7305. return -EBUSY;
  7306. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7307. for_each_possible_cpu(i) {
  7308. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7309. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7310. rt_rq->rt_runtime = global_rt_runtime();
  7311. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7312. }
  7313. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7314. return 0;
  7315. }
  7316. #endif /* CONFIG_RT_GROUP_SCHED */
  7317. int sched_rt_handler(struct ctl_table *table, int write,
  7318. void __user *buffer, size_t *lenp,
  7319. loff_t *ppos)
  7320. {
  7321. int ret;
  7322. int old_period, old_runtime;
  7323. static DEFINE_MUTEX(mutex);
  7324. mutex_lock(&mutex);
  7325. old_period = sysctl_sched_rt_period;
  7326. old_runtime = sysctl_sched_rt_runtime;
  7327. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7328. if (!ret && write) {
  7329. ret = sched_rt_global_constraints();
  7330. if (ret) {
  7331. sysctl_sched_rt_period = old_period;
  7332. sysctl_sched_rt_runtime = old_runtime;
  7333. } else {
  7334. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7335. def_rt_bandwidth.rt_period =
  7336. ns_to_ktime(global_rt_period());
  7337. }
  7338. }
  7339. mutex_unlock(&mutex);
  7340. return ret;
  7341. }
  7342. #ifdef CONFIG_CGROUP_SCHED
  7343. /* return corresponding task_group object of a cgroup */
  7344. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7345. {
  7346. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7347. struct task_group, css);
  7348. }
  7349. static struct cgroup_subsys_state *
  7350. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7351. {
  7352. struct task_group *tg, *parent;
  7353. if (!cgrp->parent) {
  7354. /* This is early initialization for the top cgroup */
  7355. return &root_task_group.css;
  7356. }
  7357. parent = cgroup_tg(cgrp->parent);
  7358. tg = sched_create_group(parent);
  7359. if (IS_ERR(tg))
  7360. return ERR_PTR(-ENOMEM);
  7361. return &tg->css;
  7362. }
  7363. static void
  7364. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7365. {
  7366. struct task_group *tg = cgroup_tg(cgrp);
  7367. sched_destroy_group(tg);
  7368. }
  7369. static int
  7370. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7371. {
  7372. #ifdef CONFIG_RT_GROUP_SCHED
  7373. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7374. return -EINVAL;
  7375. #else
  7376. /* We don't support RT-tasks being in separate groups */
  7377. if (tsk->sched_class != &fair_sched_class)
  7378. return -EINVAL;
  7379. #endif
  7380. return 0;
  7381. }
  7382. static int
  7383. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7384. struct task_struct *tsk, bool threadgroup)
  7385. {
  7386. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7387. if (retval)
  7388. return retval;
  7389. if (threadgroup) {
  7390. struct task_struct *c;
  7391. rcu_read_lock();
  7392. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7393. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7394. if (retval) {
  7395. rcu_read_unlock();
  7396. return retval;
  7397. }
  7398. }
  7399. rcu_read_unlock();
  7400. }
  7401. return 0;
  7402. }
  7403. static void
  7404. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7405. struct cgroup *old_cont, struct task_struct *tsk,
  7406. bool threadgroup)
  7407. {
  7408. sched_move_task(tsk);
  7409. if (threadgroup) {
  7410. struct task_struct *c;
  7411. rcu_read_lock();
  7412. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7413. sched_move_task(c);
  7414. }
  7415. rcu_read_unlock();
  7416. }
  7417. }
  7418. static void
  7419. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7420. struct cgroup *old_cgrp, struct task_struct *task)
  7421. {
  7422. /*
  7423. * cgroup_exit() is called in the copy_process() failure path.
  7424. * Ignore this case since the task hasn't ran yet, this avoids
  7425. * trying to poke a half freed task state from generic code.
  7426. */
  7427. if (!(task->flags & PF_EXITING))
  7428. return;
  7429. sched_move_task(task);
  7430. }
  7431. #ifdef CONFIG_FAIR_GROUP_SCHED
  7432. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7433. u64 shareval)
  7434. {
  7435. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7436. }
  7437. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7438. {
  7439. struct task_group *tg = cgroup_tg(cgrp);
  7440. return (u64) tg->shares;
  7441. }
  7442. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7443. #ifdef CONFIG_RT_GROUP_SCHED
  7444. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7445. s64 val)
  7446. {
  7447. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7448. }
  7449. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7450. {
  7451. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7452. }
  7453. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7454. u64 rt_period_us)
  7455. {
  7456. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7457. }
  7458. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7459. {
  7460. return sched_group_rt_period(cgroup_tg(cgrp));
  7461. }
  7462. #endif /* CONFIG_RT_GROUP_SCHED */
  7463. static struct cftype cpu_files[] = {
  7464. #ifdef CONFIG_FAIR_GROUP_SCHED
  7465. {
  7466. .name = "shares",
  7467. .read_u64 = cpu_shares_read_u64,
  7468. .write_u64 = cpu_shares_write_u64,
  7469. },
  7470. #endif
  7471. #ifdef CONFIG_RT_GROUP_SCHED
  7472. {
  7473. .name = "rt_runtime_us",
  7474. .read_s64 = cpu_rt_runtime_read,
  7475. .write_s64 = cpu_rt_runtime_write,
  7476. },
  7477. {
  7478. .name = "rt_period_us",
  7479. .read_u64 = cpu_rt_period_read_uint,
  7480. .write_u64 = cpu_rt_period_write_uint,
  7481. },
  7482. #endif
  7483. };
  7484. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7485. {
  7486. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7487. }
  7488. struct cgroup_subsys cpu_cgroup_subsys = {
  7489. .name = "cpu",
  7490. .create = cpu_cgroup_create,
  7491. .destroy = cpu_cgroup_destroy,
  7492. .can_attach = cpu_cgroup_can_attach,
  7493. .attach = cpu_cgroup_attach,
  7494. .exit = cpu_cgroup_exit,
  7495. .populate = cpu_cgroup_populate,
  7496. .subsys_id = cpu_cgroup_subsys_id,
  7497. .early_init = 1,
  7498. };
  7499. #endif /* CONFIG_CGROUP_SCHED */
  7500. #ifdef CONFIG_CGROUP_CPUACCT
  7501. /*
  7502. * CPU accounting code for task groups.
  7503. *
  7504. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7505. * (balbir@in.ibm.com).
  7506. */
  7507. /* track cpu usage of a group of tasks and its child groups */
  7508. struct cpuacct {
  7509. struct cgroup_subsys_state css;
  7510. /* cpuusage holds pointer to a u64-type object on every cpu */
  7511. u64 __percpu *cpuusage;
  7512. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7513. struct cpuacct *parent;
  7514. };
  7515. struct cgroup_subsys cpuacct_subsys;
  7516. /* return cpu accounting group corresponding to this container */
  7517. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7518. {
  7519. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7520. struct cpuacct, css);
  7521. }
  7522. /* return cpu accounting group to which this task belongs */
  7523. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7524. {
  7525. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7526. struct cpuacct, css);
  7527. }
  7528. /* create a new cpu accounting group */
  7529. static struct cgroup_subsys_state *cpuacct_create(
  7530. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7531. {
  7532. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7533. int i;
  7534. if (!ca)
  7535. goto out;
  7536. ca->cpuusage = alloc_percpu(u64);
  7537. if (!ca->cpuusage)
  7538. goto out_free_ca;
  7539. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7540. if (percpu_counter_init(&ca->cpustat[i], 0))
  7541. goto out_free_counters;
  7542. if (cgrp->parent)
  7543. ca->parent = cgroup_ca(cgrp->parent);
  7544. return &ca->css;
  7545. out_free_counters:
  7546. while (--i >= 0)
  7547. percpu_counter_destroy(&ca->cpustat[i]);
  7548. free_percpu(ca->cpuusage);
  7549. out_free_ca:
  7550. kfree(ca);
  7551. out:
  7552. return ERR_PTR(-ENOMEM);
  7553. }
  7554. /* destroy an existing cpu accounting group */
  7555. static void
  7556. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7557. {
  7558. struct cpuacct *ca = cgroup_ca(cgrp);
  7559. int i;
  7560. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7561. percpu_counter_destroy(&ca->cpustat[i]);
  7562. free_percpu(ca->cpuusage);
  7563. kfree(ca);
  7564. }
  7565. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7566. {
  7567. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7568. u64 data;
  7569. #ifndef CONFIG_64BIT
  7570. /*
  7571. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7572. */
  7573. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7574. data = *cpuusage;
  7575. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7576. #else
  7577. data = *cpuusage;
  7578. #endif
  7579. return data;
  7580. }
  7581. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7582. {
  7583. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7584. #ifndef CONFIG_64BIT
  7585. /*
  7586. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7587. */
  7588. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7589. *cpuusage = val;
  7590. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7591. #else
  7592. *cpuusage = val;
  7593. #endif
  7594. }
  7595. /* return total cpu usage (in nanoseconds) of a group */
  7596. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7597. {
  7598. struct cpuacct *ca = cgroup_ca(cgrp);
  7599. u64 totalcpuusage = 0;
  7600. int i;
  7601. for_each_present_cpu(i)
  7602. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7603. return totalcpuusage;
  7604. }
  7605. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7606. u64 reset)
  7607. {
  7608. struct cpuacct *ca = cgroup_ca(cgrp);
  7609. int err = 0;
  7610. int i;
  7611. if (reset) {
  7612. err = -EINVAL;
  7613. goto out;
  7614. }
  7615. for_each_present_cpu(i)
  7616. cpuacct_cpuusage_write(ca, i, 0);
  7617. out:
  7618. return err;
  7619. }
  7620. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7621. struct seq_file *m)
  7622. {
  7623. struct cpuacct *ca = cgroup_ca(cgroup);
  7624. u64 percpu;
  7625. int i;
  7626. for_each_present_cpu(i) {
  7627. percpu = cpuacct_cpuusage_read(ca, i);
  7628. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7629. }
  7630. seq_printf(m, "\n");
  7631. return 0;
  7632. }
  7633. static const char *cpuacct_stat_desc[] = {
  7634. [CPUACCT_STAT_USER] = "user",
  7635. [CPUACCT_STAT_SYSTEM] = "system",
  7636. };
  7637. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7638. struct cgroup_map_cb *cb)
  7639. {
  7640. struct cpuacct *ca = cgroup_ca(cgrp);
  7641. int i;
  7642. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7643. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7644. val = cputime64_to_clock_t(val);
  7645. cb->fill(cb, cpuacct_stat_desc[i], val);
  7646. }
  7647. return 0;
  7648. }
  7649. static struct cftype files[] = {
  7650. {
  7651. .name = "usage",
  7652. .read_u64 = cpuusage_read,
  7653. .write_u64 = cpuusage_write,
  7654. },
  7655. {
  7656. .name = "usage_percpu",
  7657. .read_seq_string = cpuacct_percpu_seq_read,
  7658. },
  7659. {
  7660. .name = "stat",
  7661. .read_map = cpuacct_stats_show,
  7662. },
  7663. };
  7664. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7665. {
  7666. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7667. }
  7668. /*
  7669. * charge this task's execution time to its accounting group.
  7670. *
  7671. * called with rq->lock held.
  7672. */
  7673. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7674. {
  7675. struct cpuacct *ca;
  7676. int cpu;
  7677. if (unlikely(!cpuacct_subsys.active))
  7678. return;
  7679. cpu = task_cpu(tsk);
  7680. rcu_read_lock();
  7681. ca = task_ca(tsk);
  7682. for (; ca; ca = ca->parent) {
  7683. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7684. *cpuusage += cputime;
  7685. }
  7686. rcu_read_unlock();
  7687. }
  7688. /*
  7689. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7690. * in cputime_t units. As a result, cpuacct_update_stats calls
  7691. * percpu_counter_add with values large enough to always overflow the
  7692. * per cpu batch limit causing bad SMP scalability.
  7693. *
  7694. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7695. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7696. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7697. */
  7698. #ifdef CONFIG_SMP
  7699. #define CPUACCT_BATCH \
  7700. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7701. #else
  7702. #define CPUACCT_BATCH 0
  7703. #endif
  7704. /*
  7705. * Charge the system/user time to the task's accounting group.
  7706. */
  7707. static void cpuacct_update_stats(struct task_struct *tsk,
  7708. enum cpuacct_stat_index idx, cputime_t val)
  7709. {
  7710. struct cpuacct *ca;
  7711. int batch = CPUACCT_BATCH;
  7712. if (unlikely(!cpuacct_subsys.active))
  7713. return;
  7714. rcu_read_lock();
  7715. ca = task_ca(tsk);
  7716. do {
  7717. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7718. ca = ca->parent;
  7719. } while (ca);
  7720. rcu_read_unlock();
  7721. }
  7722. struct cgroup_subsys cpuacct_subsys = {
  7723. .name = "cpuacct",
  7724. .create = cpuacct_create,
  7725. .destroy = cpuacct_destroy,
  7726. .populate = cpuacct_populate,
  7727. .subsys_id = cpuacct_subsys_id,
  7728. };
  7729. #endif /* CONFIG_CGROUP_CPUACCT */