gc.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Adrian Hunter
  20. * Artem Bityutskiy (Битюцкий Артём)
  21. */
  22. /*
  23. * This file implements garbage collection. The procedure for garbage collection
  24. * is different depending on whether a LEB as an index LEB (contains index
  25. * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  26. * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  27. * nodes to the journal, at which point the garbage-collected LEB is free to be
  28. * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  29. * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  30. * to be reused. Garbage collection will cause the number of dirty index nodes
  31. * to grow, however sufficient space is reserved for the index to ensure the
  32. * commit will never run out of space.
  33. *
  34. * Notes about dead watermark. At current UBIFS implementation we assume that
  35. * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  36. * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  37. * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  38. * Garbage Collector has to synchronize the GC head's write buffer before
  39. * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  40. * actually reclaim even very small pieces of dirty space by garbage collecting
  41. * enough dirty LEBs, but we do not bother doing this at this implementation.
  42. *
  43. * Notes about dark watermark. The results of GC work depends on how big are
  44. * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  45. * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  46. * have to waste large pieces of free space at the end of LEB B, because nodes
  47. * from LEB A would not fit. And the worst situation is when all nodes are of
  48. * maximum size. So dark watermark is the amount of free + dirty space in LEB
  49. * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  50. * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  51. * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
  52. * good, and GC takes extra care when moving them.
  53. */
  54. #include <linux/slab.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/list_sort.h>
  57. #include "ubifs.h"
  58. /*
  59. * GC may need to move more than one LEB to make progress. The below constants
  60. * define "soft" and "hard" limits on the number of LEBs the garbage collector
  61. * may move.
  62. */
  63. #define SOFT_LEBS_LIMIT 4
  64. #define HARD_LEBS_LIMIT 32
  65. /**
  66. * switch_gc_head - switch the garbage collection journal head.
  67. * @c: UBIFS file-system description object
  68. * @buf: buffer to write
  69. * @len: length of the buffer to write
  70. * @lnum: LEB number written is returned here
  71. * @offs: offset written is returned here
  72. *
  73. * This function switch the GC head to the next LEB which is reserved in
  74. * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  75. * and other negative error code in case of failures.
  76. */
  77. static int switch_gc_head(struct ubifs_info *c)
  78. {
  79. int err, gc_lnum = c->gc_lnum;
  80. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  81. ubifs_assert(gc_lnum != -1);
  82. dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  83. wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  84. c->leb_size - wbuf->offs - wbuf->used);
  85. err = ubifs_wbuf_sync_nolock(wbuf);
  86. if (err)
  87. return err;
  88. /*
  89. * The GC write-buffer was synchronized, we may safely unmap
  90. * 'c->gc_lnum'.
  91. */
  92. err = ubifs_leb_unmap(c, gc_lnum);
  93. if (err)
  94. return err;
  95. err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
  96. if (err)
  97. return err;
  98. c->gc_lnum = -1;
  99. err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
  100. return err;
  101. }
  102. /**
  103. * data_nodes_cmp - compare 2 data nodes.
  104. * @priv: UBIFS file-system description object
  105. * @a: first data node
  106. * @a: second data node
  107. *
  108. * This function compares data nodes @a and @b. Returns %1 if @a has greater
  109. * inode or block number, and %-1 otherwise.
  110. */
  111. int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
  112. {
  113. ino_t inuma, inumb;
  114. struct ubifs_info *c = priv;
  115. struct ubifs_scan_node *sa, *sb;
  116. cond_resched();
  117. if (a == b)
  118. return 0;
  119. sa = list_entry(a, struct ubifs_scan_node, list);
  120. sb = list_entry(b, struct ubifs_scan_node, list);
  121. ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
  122. ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
  123. ubifs_assert(sa->type == UBIFS_DATA_NODE);
  124. ubifs_assert(sb->type == UBIFS_DATA_NODE);
  125. inuma = key_inum(c, &sa->key);
  126. inumb = key_inum(c, &sb->key);
  127. if (inuma == inumb) {
  128. unsigned int blka = key_block(c, &sa->key);
  129. unsigned int blkb = key_block(c, &sb->key);
  130. if (blka <= blkb)
  131. return -1;
  132. } else if (inuma <= inumb)
  133. return -1;
  134. return 1;
  135. }
  136. /*
  137. * nondata_nodes_cmp - compare 2 non-data nodes.
  138. * @priv: UBIFS file-system description object
  139. * @a: first node
  140. * @a: second node
  141. *
  142. * This function compares nodes @a and @b. It makes sure that inode nodes go
  143. * first and sorted by length in descending order. Directory entry nodes go
  144. * after inode nodes and are sorted in ascending hash valuer order.
  145. */
  146. int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
  147. {
  148. ino_t inuma, inumb;
  149. struct ubifs_info *c = priv;
  150. struct ubifs_scan_node *sa, *sb;
  151. cond_resched();
  152. if (a == b)
  153. return 0;
  154. sa = list_entry(a, struct ubifs_scan_node, list);
  155. sb = list_entry(b, struct ubifs_scan_node, list);
  156. ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
  157. key_type(c, &sb->key) != UBIFS_DATA_KEY);
  158. ubifs_assert(sa->type != UBIFS_DATA_NODE &&
  159. sb->type != UBIFS_DATA_NODE);
  160. /* Inodes go before directory entries */
  161. if (sa->type == UBIFS_INO_NODE) {
  162. if (sb->type == UBIFS_INO_NODE)
  163. return sb->len - sa->len;
  164. return -1;
  165. }
  166. if (sb->type == UBIFS_INO_NODE)
  167. return 1;
  168. ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
  169. key_type(c, &sa->key) == UBIFS_XENT_KEY);
  170. ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
  171. key_type(c, &sb->key) == UBIFS_XENT_KEY);
  172. ubifs_assert(sa->type == UBIFS_DENT_NODE ||
  173. sa->type == UBIFS_XENT_NODE);
  174. ubifs_assert(sb->type == UBIFS_DENT_NODE ||
  175. sb->type == UBIFS_XENT_NODE);
  176. inuma = key_inum(c, &sa->key);
  177. inumb = key_inum(c, &sb->key);
  178. if (inuma == inumb) {
  179. uint32_t hasha = key_hash(c, &sa->key);
  180. uint32_t hashb = key_hash(c, &sb->key);
  181. if (hasha <= hashb)
  182. return -1;
  183. } else if (inuma <= inumb)
  184. return -1;
  185. return 1;
  186. }
  187. /**
  188. * sort_nodes - sort nodes for GC.
  189. * @c: UBIFS file-system description object
  190. * @sleb: describes nodes to sort and contains the result on exit
  191. * @nondata: contains non-data nodes on exit
  192. * @min: minimum node size is returned here
  193. *
  194. * This function sorts the list of inodes to garbage collect. First of all, it
  195. * kills obsolete nodes and separates data and non-data nodes to the
  196. * @sleb->nodes and @nondata lists correspondingly.
  197. *
  198. * Data nodes are then sorted in block number order - this is important for
  199. * bulk-read; data nodes with lower inode number go before data nodes with
  200. * higher inode number, and data nodes with lower block number go before data
  201. * nodes with higher block number;
  202. *
  203. * Non-data nodes are sorted as follows.
  204. * o First go inode nodes - they are sorted in descending length order.
  205. * o Then go directory entry nodes - they are sorted in hash order, which
  206. * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
  207. * inode number go before direntry nodes with higher parent inode number,
  208. * and direntry nodes with lower name hash values go before direntry nodes
  209. * with higher name hash values.
  210. *
  211. * This function returns zero in case of success and a negative error code in
  212. * case of failure.
  213. */
  214. static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  215. struct list_head *nondata, int *min)
  216. {
  217. int err;
  218. struct ubifs_scan_node *snod, *tmp;
  219. *min = INT_MAX;
  220. /* Separate data nodes and non-data nodes */
  221. list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
  222. ubifs_assert(snod->type == UBIFS_INO_NODE ||
  223. snod->type == UBIFS_DATA_NODE ||
  224. snod->type == UBIFS_DENT_NODE ||
  225. snod->type == UBIFS_XENT_NODE ||
  226. snod->type == UBIFS_TRUN_NODE);
  227. if (snod->type != UBIFS_INO_NODE &&
  228. snod->type != UBIFS_DATA_NODE &&
  229. snod->type != UBIFS_DENT_NODE &&
  230. snod->type != UBIFS_XENT_NODE) {
  231. /* Probably truncation node, zap it */
  232. list_del(&snod->list);
  233. kfree(snod);
  234. continue;
  235. }
  236. ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
  237. key_type(c, &snod->key) == UBIFS_INO_KEY ||
  238. key_type(c, &snod->key) == UBIFS_DENT_KEY ||
  239. key_type(c, &snod->key) == UBIFS_XENT_KEY);
  240. err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
  241. snod->offs, 0);
  242. if (err < 0)
  243. return err;
  244. if (!err) {
  245. /* The node is obsolete, remove it from the list */
  246. list_del(&snod->list);
  247. kfree(snod);
  248. continue;
  249. }
  250. if (snod->len < *min)
  251. *min = snod->len;
  252. if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
  253. list_move_tail(&snod->list, nondata);
  254. }
  255. /* Sort data and non-data nodes */
  256. list_sort(c, &sleb->nodes, &data_nodes_cmp);
  257. list_sort(c, nondata, &nondata_nodes_cmp);
  258. err = dbg_check_data_nodes_order(c, &sleb->nodes);
  259. if (err)
  260. return err;
  261. err = dbg_check_nondata_nodes_order(c, nondata);
  262. if (err)
  263. return err;
  264. return 0;
  265. }
  266. /**
  267. * move_node - move a node.
  268. * @c: UBIFS file-system description object
  269. * @sleb: describes the LEB to move nodes from
  270. * @snod: the mode to move
  271. * @wbuf: write-buffer to move node to
  272. *
  273. * This function moves node @snod to @wbuf, changes TNC correspondingly, and
  274. * destroys @snod. Returns zero in case of success and a negative error code in
  275. * case of failure.
  276. */
  277. static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
  278. struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
  279. {
  280. int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
  281. cond_resched();
  282. err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
  283. if (err)
  284. return err;
  285. err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
  286. snod->offs, new_lnum, new_offs,
  287. snod->len);
  288. list_del(&snod->list);
  289. kfree(snod);
  290. return err;
  291. }
  292. /**
  293. * move_nodes - move nodes.
  294. * @c: UBIFS file-system description object
  295. * @sleb: describes the LEB to move nodes from
  296. *
  297. * This function moves valid nodes from data LEB described by @sleb to the GC
  298. * journal head. This function returns zero in case of success, %-EAGAIN if
  299. * commit is required, and other negative error codes in case of other
  300. * failures.
  301. */
  302. static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
  303. {
  304. int err, min;
  305. LIST_HEAD(nondata);
  306. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  307. if (wbuf->lnum == -1) {
  308. /*
  309. * The GC journal head is not set, because it is the first GC
  310. * invocation since mount.
  311. */
  312. err = switch_gc_head(c);
  313. if (err)
  314. return err;
  315. }
  316. err = sort_nodes(c, sleb, &nondata, &min);
  317. if (err)
  318. goto out;
  319. /* Write nodes to their new location. Use the first-fit strategy */
  320. while (1) {
  321. int avail;
  322. struct ubifs_scan_node *snod, *tmp;
  323. /* Move data nodes */
  324. list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
  325. avail = c->leb_size - wbuf->offs - wbuf->used;
  326. if (snod->len > avail)
  327. /*
  328. * Do not skip data nodes in order to optimize
  329. * bulk-read.
  330. */
  331. break;
  332. err = move_node(c, sleb, snod, wbuf);
  333. if (err)
  334. goto out;
  335. }
  336. /* Move non-data nodes */
  337. list_for_each_entry_safe(snod, tmp, &nondata, list) {
  338. avail = c->leb_size - wbuf->offs - wbuf->used;
  339. if (avail < min)
  340. break;
  341. if (snod->len > avail) {
  342. /*
  343. * Keep going only if this is an inode with
  344. * some data. Otherwise stop and switch the GC
  345. * head. IOW, we assume that data-less inode
  346. * nodes and direntry nodes are roughly of the
  347. * same size.
  348. */
  349. if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
  350. snod->len == UBIFS_INO_NODE_SZ)
  351. break;
  352. continue;
  353. }
  354. err = move_node(c, sleb, snod, wbuf);
  355. if (err)
  356. goto out;
  357. }
  358. if (list_empty(&sleb->nodes) && list_empty(&nondata))
  359. break;
  360. /*
  361. * Waste the rest of the space in the LEB and switch to the
  362. * next LEB.
  363. */
  364. err = switch_gc_head(c);
  365. if (err)
  366. goto out;
  367. }
  368. return 0;
  369. out:
  370. list_splice_tail(&nondata, &sleb->nodes);
  371. return err;
  372. }
  373. /**
  374. * gc_sync_wbufs - sync write-buffers for GC.
  375. * @c: UBIFS file-system description object
  376. *
  377. * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
  378. * be in a write-buffer instead. That is, a node could be written to a
  379. * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
  380. * erased before the write-buffer is sync'd and then there is an unclean
  381. * unmount, then an existing node is lost. To avoid this, we sync all
  382. * write-buffers.
  383. *
  384. * This function returns %0 on success or a negative error code on failure.
  385. */
  386. static int gc_sync_wbufs(struct ubifs_info *c)
  387. {
  388. int err, i;
  389. for (i = 0; i < c->jhead_cnt; i++) {
  390. if (i == GCHD)
  391. continue;
  392. err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
  393. if (err)
  394. return err;
  395. }
  396. return 0;
  397. }
  398. /**
  399. * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
  400. * @c: UBIFS file-system description object
  401. * @lp: describes the LEB to garbage collect
  402. *
  403. * This function garbage-collects an LEB and returns one of the @LEB_FREED,
  404. * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
  405. * required, and other negative error codes in case of failures.
  406. */
  407. int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
  408. {
  409. struct ubifs_scan_leb *sleb;
  410. struct ubifs_scan_node *snod;
  411. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  412. int err = 0, lnum = lp->lnum;
  413. ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
  414. c->need_recovery);
  415. ubifs_assert(c->gc_lnum != lnum);
  416. ubifs_assert(wbuf->lnum != lnum);
  417. /*
  418. * We scan the entire LEB even though we only really need to scan up to
  419. * (c->leb_size - lp->free).
  420. */
  421. sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
  422. if (IS_ERR(sleb))
  423. return PTR_ERR(sleb);
  424. ubifs_assert(!list_empty(&sleb->nodes));
  425. snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
  426. if (snod->type == UBIFS_IDX_NODE) {
  427. struct ubifs_gced_idx_leb *idx_gc;
  428. dbg_gc("indexing LEB %d (free %d, dirty %d)",
  429. lnum, lp->free, lp->dirty);
  430. list_for_each_entry(snod, &sleb->nodes, list) {
  431. struct ubifs_idx_node *idx = snod->node;
  432. int level = le16_to_cpu(idx->level);
  433. ubifs_assert(snod->type == UBIFS_IDX_NODE);
  434. key_read(c, ubifs_idx_key(c, idx), &snod->key);
  435. err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
  436. snod->offs);
  437. if (err)
  438. goto out;
  439. }
  440. idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
  441. if (!idx_gc) {
  442. err = -ENOMEM;
  443. goto out;
  444. }
  445. idx_gc->lnum = lnum;
  446. idx_gc->unmap = 0;
  447. list_add(&idx_gc->list, &c->idx_gc);
  448. /*
  449. * Don't release the LEB until after the next commit, because
  450. * it may contain data which is needed for recovery. So
  451. * although we freed this LEB, it will become usable only after
  452. * the commit.
  453. */
  454. err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
  455. LPROPS_INDEX, 1);
  456. if (err)
  457. goto out;
  458. err = LEB_FREED_IDX;
  459. } else {
  460. dbg_gc("data LEB %d (free %d, dirty %d)",
  461. lnum, lp->free, lp->dirty);
  462. err = move_nodes(c, sleb);
  463. if (err)
  464. goto out_inc_seq;
  465. err = gc_sync_wbufs(c);
  466. if (err)
  467. goto out_inc_seq;
  468. err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
  469. if (err)
  470. goto out_inc_seq;
  471. /* Allow for races with TNC */
  472. c->gced_lnum = lnum;
  473. smp_wmb();
  474. c->gc_seq += 1;
  475. smp_wmb();
  476. if (c->gc_lnum == -1) {
  477. c->gc_lnum = lnum;
  478. err = LEB_RETAINED;
  479. } else {
  480. err = ubifs_wbuf_sync_nolock(wbuf);
  481. if (err)
  482. goto out;
  483. err = ubifs_leb_unmap(c, lnum);
  484. if (err)
  485. goto out;
  486. err = LEB_FREED;
  487. }
  488. }
  489. out:
  490. ubifs_scan_destroy(sleb);
  491. return err;
  492. out_inc_seq:
  493. /* We may have moved at least some nodes so allow for races with TNC */
  494. c->gced_lnum = lnum;
  495. smp_wmb();
  496. c->gc_seq += 1;
  497. smp_wmb();
  498. goto out;
  499. }
  500. /**
  501. * ubifs_garbage_collect - UBIFS garbage collector.
  502. * @c: UBIFS file-system description object
  503. * @anyway: do GC even if there are free LEBs
  504. *
  505. * This function does out-of-place garbage collection. The return codes are:
  506. * o positive LEB number if the LEB has been freed and may be used;
  507. * o %-EAGAIN if the caller has to run commit;
  508. * o %-ENOSPC if GC failed to make any progress;
  509. * o other negative error codes in case of other errors.
  510. *
  511. * Garbage collector writes data to the journal when GC'ing data LEBs, and just
  512. * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
  513. * commit may be required. But commit cannot be run from inside GC, because the
  514. * caller might be holding the commit lock, so %-EAGAIN is returned instead;
  515. * And this error code means that the caller has to run commit, and re-run GC
  516. * if there is still no free space.
  517. *
  518. * There are many reasons why this function may return %-EAGAIN:
  519. * o the log is full and there is no space to write an LEB reference for
  520. * @c->gc_lnum;
  521. * o the journal is too large and exceeds size limitations;
  522. * o GC moved indexing LEBs, but they can be used only after the commit;
  523. * o the shrinker fails to find clean znodes to free and requests the commit;
  524. * o etc.
  525. *
  526. * Note, if the file-system is close to be full, this function may return
  527. * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
  528. * the function. E.g., this happens if the limits on the journal size are too
  529. * tough and GC writes too much to the journal before an LEB is freed. This
  530. * might also mean that the journal is too large, and the TNC becomes to big,
  531. * so that the shrinker is constantly called, finds not clean znodes to free,
  532. * and requests commit. Well, this may also happen if the journal is all right,
  533. * but another kernel process consumes too much memory. Anyway, infinite
  534. * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
  535. */
  536. int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
  537. {
  538. int i, err, ret, min_space = c->dead_wm;
  539. struct ubifs_lprops lp;
  540. struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  541. ubifs_assert_cmt_locked(c);
  542. if (ubifs_gc_should_commit(c))
  543. return -EAGAIN;
  544. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  545. if (c->ro_media) {
  546. ret = -EROFS;
  547. goto out_unlock;
  548. }
  549. /* We expect the write-buffer to be empty on entry */
  550. ubifs_assert(!wbuf->used);
  551. for (i = 0; ; i++) {
  552. int space_before = c->leb_size - wbuf->offs - wbuf->used;
  553. int space_after;
  554. cond_resched();
  555. /* Give the commit an opportunity to run */
  556. if (ubifs_gc_should_commit(c)) {
  557. ret = -EAGAIN;
  558. break;
  559. }
  560. if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
  561. /*
  562. * We've done enough iterations. Indexing LEBs were
  563. * moved and will be available after the commit.
  564. */
  565. dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
  566. ubifs_commit_required(c);
  567. ret = -EAGAIN;
  568. break;
  569. }
  570. if (i > HARD_LEBS_LIMIT) {
  571. /*
  572. * We've moved too many LEBs and have not made
  573. * progress, give up.
  574. */
  575. dbg_gc("hard limit, -ENOSPC");
  576. ret = -ENOSPC;
  577. break;
  578. }
  579. /*
  580. * Empty and freeable LEBs can turn up while we waited for
  581. * the wbuf lock, or while we have been running GC. In that
  582. * case, we should just return one of those instead of
  583. * continuing to GC dirty LEBs. Hence we request
  584. * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
  585. */
  586. ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
  587. if (ret) {
  588. if (ret == -ENOSPC)
  589. dbg_gc("no more dirty LEBs");
  590. break;
  591. }
  592. dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
  593. "(min. space %d)", lp.lnum, lp.free, lp.dirty,
  594. lp.free + lp.dirty, min_space);
  595. if (lp.free + lp.dirty == c->leb_size) {
  596. /* An empty LEB was returned */
  597. dbg_gc("LEB %d is free, return it", lp.lnum);
  598. /*
  599. * ubifs_find_dirty_leb() doesn't return freeable index
  600. * LEBs.
  601. */
  602. ubifs_assert(!(lp.flags & LPROPS_INDEX));
  603. if (lp.free != c->leb_size) {
  604. /*
  605. * Write buffers must be sync'd before
  606. * unmapping freeable LEBs, because one of them
  607. * may contain data which obsoletes something
  608. * in 'lp.pnum'.
  609. */
  610. ret = gc_sync_wbufs(c);
  611. if (ret)
  612. goto out;
  613. ret = ubifs_change_one_lp(c, lp.lnum,
  614. c->leb_size, 0, 0, 0,
  615. 0);
  616. if (ret)
  617. goto out;
  618. }
  619. ret = ubifs_leb_unmap(c, lp.lnum);
  620. if (ret)
  621. goto out;
  622. ret = lp.lnum;
  623. break;
  624. }
  625. space_before = c->leb_size - wbuf->offs - wbuf->used;
  626. if (wbuf->lnum == -1)
  627. space_before = 0;
  628. ret = ubifs_garbage_collect_leb(c, &lp);
  629. if (ret < 0) {
  630. if (ret == -EAGAIN) {
  631. /*
  632. * This is not error, so we have to return the
  633. * LEB to lprops. But if 'ubifs_return_leb()'
  634. * fails, its failure code is propagated to the
  635. * caller instead of the original '-EAGAIN'.
  636. */
  637. err = ubifs_return_leb(c, lp.lnum);
  638. if (err)
  639. ret = err;
  640. break;
  641. }
  642. goto out;
  643. }
  644. if (ret == LEB_FREED) {
  645. /* An LEB has been freed and is ready for use */
  646. dbg_gc("LEB %d freed, return", lp.lnum);
  647. ret = lp.lnum;
  648. break;
  649. }
  650. if (ret == LEB_FREED_IDX) {
  651. /*
  652. * This was an indexing LEB and it cannot be
  653. * immediately used. And instead of requesting the
  654. * commit straight away, we try to garbage collect some
  655. * more.
  656. */
  657. dbg_gc("indexing LEB %d freed, continue", lp.lnum);
  658. continue;
  659. }
  660. ubifs_assert(ret == LEB_RETAINED);
  661. space_after = c->leb_size - wbuf->offs - wbuf->used;
  662. dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
  663. space_after - space_before);
  664. if (space_after > space_before) {
  665. /* GC makes progress, keep working */
  666. min_space >>= 1;
  667. if (min_space < c->dead_wm)
  668. min_space = c->dead_wm;
  669. continue;
  670. }
  671. dbg_gc("did not make progress");
  672. /*
  673. * GC moved an LEB bud have not done any progress. This means
  674. * that the previous GC head LEB contained too few free space
  675. * and the LEB which was GC'ed contained only large nodes which
  676. * did not fit that space.
  677. *
  678. * We can do 2 things:
  679. * 1. pick another LEB in a hope it'll contain a small node
  680. * which will fit the space we have at the end of current GC
  681. * head LEB, but there is no guarantee, so we try this out
  682. * unless we have already been working for too long;
  683. * 2. request an LEB with more dirty space, which will force
  684. * 'ubifs_find_dirty_leb()' to start scanning the lprops
  685. * table, instead of just picking one from the heap
  686. * (previously it already picked the dirtiest LEB).
  687. */
  688. if (i < SOFT_LEBS_LIMIT) {
  689. dbg_gc("try again");
  690. continue;
  691. }
  692. min_space <<= 1;
  693. if (min_space > c->dark_wm)
  694. min_space = c->dark_wm;
  695. dbg_gc("set min. space to %d", min_space);
  696. }
  697. if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
  698. dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
  699. ubifs_commit_required(c);
  700. ret = -EAGAIN;
  701. }
  702. err = ubifs_wbuf_sync_nolock(wbuf);
  703. if (!err)
  704. err = ubifs_leb_unmap(c, c->gc_lnum);
  705. if (err) {
  706. ret = err;
  707. goto out;
  708. }
  709. out_unlock:
  710. mutex_unlock(&wbuf->io_mutex);
  711. return ret;
  712. out:
  713. ubifs_assert(ret < 0);
  714. ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
  715. ubifs_wbuf_sync_nolock(wbuf);
  716. ubifs_ro_mode(c, ret);
  717. mutex_unlock(&wbuf->io_mutex);
  718. ubifs_return_leb(c, lp.lnum);
  719. return ret;
  720. }
  721. /**
  722. * ubifs_gc_start_commit - garbage collection at start of commit.
  723. * @c: UBIFS file-system description object
  724. *
  725. * If a LEB has only dirty and free space, then we may safely unmap it and make
  726. * it free. Note, we cannot do this with indexing LEBs because dirty space may
  727. * correspond index nodes that are required for recovery. In that case, the
  728. * LEB cannot be unmapped until after the next commit.
  729. *
  730. * This function returns %0 upon success and a negative error code upon failure.
  731. */
  732. int ubifs_gc_start_commit(struct ubifs_info *c)
  733. {
  734. struct ubifs_gced_idx_leb *idx_gc;
  735. const struct ubifs_lprops *lp;
  736. int err = 0, flags;
  737. ubifs_get_lprops(c);
  738. /*
  739. * Unmap (non-index) freeable LEBs. Note that recovery requires that all
  740. * wbufs are sync'd before this, which is done in 'do_commit()'.
  741. */
  742. while (1) {
  743. lp = ubifs_fast_find_freeable(c);
  744. if (IS_ERR(lp)) {
  745. err = PTR_ERR(lp);
  746. goto out;
  747. }
  748. if (!lp)
  749. break;
  750. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  751. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  752. err = ubifs_leb_unmap(c, lp->lnum);
  753. if (err)
  754. goto out;
  755. lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
  756. if (IS_ERR(lp)) {
  757. err = PTR_ERR(lp);
  758. goto out;
  759. }
  760. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  761. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  762. }
  763. /* Mark GC'd index LEBs OK to unmap after this commit finishes */
  764. list_for_each_entry(idx_gc, &c->idx_gc, list)
  765. idx_gc->unmap = 1;
  766. /* Record index freeable LEBs for unmapping after commit */
  767. while (1) {
  768. lp = ubifs_fast_find_frdi_idx(c);
  769. if (IS_ERR(lp)) {
  770. err = PTR_ERR(lp);
  771. goto out;
  772. }
  773. if (!lp)
  774. break;
  775. idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
  776. if (!idx_gc) {
  777. err = -ENOMEM;
  778. goto out;
  779. }
  780. ubifs_assert(!(lp->flags & LPROPS_TAKEN));
  781. ubifs_assert(lp->flags & LPROPS_INDEX);
  782. /* Don't release the LEB until after the next commit */
  783. flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
  784. lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
  785. if (IS_ERR(lp)) {
  786. err = PTR_ERR(lp);
  787. kfree(idx_gc);
  788. goto out;
  789. }
  790. ubifs_assert(lp->flags & LPROPS_TAKEN);
  791. ubifs_assert(!(lp->flags & LPROPS_INDEX));
  792. idx_gc->lnum = lp->lnum;
  793. idx_gc->unmap = 1;
  794. list_add(&idx_gc->list, &c->idx_gc);
  795. }
  796. out:
  797. ubifs_release_lprops(c);
  798. return err;
  799. }
  800. /**
  801. * ubifs_gc_end_commit - garbage collection at end of commit.
  802. * @c: UBIFS file-system description object
  803. *
  804. * This function completes out-of-place garbage collection of index LEBs.
  805. */
  806. int ubifs_gc_end_commit(struct ubifs_info *c)
  807. {
  808. struct ubifs_gced_idx_leb *idx_gc, *tmp;
  809. struct ubifs_wbuf *wbuf;
  810. int err = 0;
  811. wbuf = &c->jheads[GCHD].wbuf;
  812. mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
  813. list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
  814. if (idx_gc->unmap) {
  815. dbg_gc("LEB %d", idx_gc->lnum);
  816. err = ubifs_leb_unmap(c, idx_gc->lnum);
  817. if (err)
  818. goto out;
  819. err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
  820. LPROPS_NC, 0, LPROPS_TAKEN, -1);
  821. if (err)
  822. goto out;
  823. list_del(&idx_gc->list);
  824. kfree(idx_gc);
  825. }
  826. out:
  827. mutex_unlock(&wbuf->io_mutex);
  828. return err;
  829. }
  830. /**
  831. * ubifs_destroy_idx_gc - destroy idx_gc list.
  832. * @c: UBIFS file-system description object
  833. *
  834. * This function destroys the @c->idx_gc list. It is called when unmounting
  835. * so locks are not needed. Returns zero in case of success and a negative
  836. * error code in case of failure.
  837. */
  838. void ubifs_destroy_idx_gc(struct ubifs_info *c)
  839. {
  840. while (!list_empty(&c->idx_gc)) {
  841. struct ubifs_gced_idx_leb *idx_gc;
  842. idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
  843. list);
  844. c->idx_gc_cnt -= 1;
  845. list_del(&idx_gc->list);
  846. kfree(idx_gc);
  847. }
  848. }
  849. /**
  850. * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
  851. * @c: UBIFS file-system description object
  852. *
  853. * Called during start commit so locks are not needed.
  854. */
  855. int ubifs_get_idx_gc_leb(struct ubifs_info *c)
  856. {
  857. struct ubifs_gced_idx_leb *idx_gc;
  858. int lnum;
  859. if (list_empty(&c->idx_gc))
  860. return -ENOSPC;
  861. idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
  862. lnum = idx_gc->lnum;
  863. /* c->idx_gc_cnt is updated by the caller when lprops are updated */
  864. list_del(&idx_gc->list);
  865. kfree(idx_gc);
  866. return lnum;
  867. }