skge.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/mii.h>
  40. #include <asm/irq.h>
  41. #include "skge.h"
  42. #define DRV_NAME "skge"
  43. #define DRV_VERSION "1.2"
  44. #define PFX DRV_NAME " "
  45. #define DEFAULT_TX_RING_SIZE 128
  46. #define DEFAULT_RX_RING_SIZE 512
  47. #define MAX_TX_RING_SIZE 1024
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  57. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  58. MODULE_LICENSE("GPL");
  59. MODULE_VERSION(DRV_VERSION);
  60. static const u32 default_msg
  61. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  62. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  63. static int debug = -1; /* defaults above */
  64. module_param(debug, int, 0);
  65. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  66. static const struct pci_device_id skge_id_table[] = {
  67. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  74. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  76. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  77. { 0 }
  78. };
  79. MODULE_DEVICE_TABLE(pci, skge_id_table);
  80. static int skge_up(struct net_device *dev);
  81. static int skge_down(struct net_device *dev);
  82. static void skge_phy_reset(struct skge_port *skge);
  83. static void skge_tx_clean(struct skge_port *skge);
  84. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  85. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  86. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  87. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  88. static void yukon_init(struct skge_hw *hw, int port);
  89. static void genesis_mac_init(struct skge_hw *hw, int port);
  90. static void genesis_link_up(struct skge_port *skge);
  91. /* Avoid conditionals by using array */
  92. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  93. static const int rxqaddr[] = { Q_R1, Q_R2 };
  94. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  95. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  96. static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
  97. static int skge_get_regs_len(struct net_device *dev)
  98. {
  99. return 0x4000;
  100. }
  101. /*
  102. * Returns copy of whole control register region
  103. * Note: skip RAM address register because accessing it will
  104. * cause bus hangs!
  105. */
  106. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  107. void *p)
  108. {
  109. const struct skge_port *skge = netdev_priv(dev);
  110. const void __iomem *io = skge->hw->regs;
  111. regs->version = 1;
  112. memset(p, 0, regs->len);
  113. memcpy_fromio(p, io, B3_RAM_ADDR);
  114. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  115. regs->len - B3_RI_WTO_R1);
  116. }
  117. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  118. static int wol_supported(const struct skge_hw *hw)
  119. {
  120. return !((hw->chip_id == CHIP_ID_GENESIS ||
  121. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  122. }
  123. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  124. {
  125. struct skge_port *skge = netdev_priv(dev);
  126. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  127. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  128. }
  129. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  130. {
  131. struct skge_port *skge = netdev_priv(dev);
  132. struct skge_hw *hw = skge->hw;
  133. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  134. return -EOPNOTSUPP;
  135. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  136. return -EOPNOTSUPP;
  137. skge->wol = wol->wolopts == WAKE_MAGIC;
  138. if (skge->wol) {
  139. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  140. skge_write16(hw, WOL_CTRL_STAT,
  141. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  142. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  143. } else
  144. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  145. return 0;
  146. }
  147. /* Determine supported/advertised modes based on hardware.
  148. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  149. */
  150. static u32 skge_supported_modes(const struct skge_hw *hw)
  151. {
  152. u32 supported;
  153. if (hw->copper) {
  154. supported = SUPPORTED_10baseT_Half
  155. | SUPPORTED_10baseT_Full
  156. | SUPPORTED_100baseT_Half
  157. | SUPPORTED_100baseT_Full
  158. | SUPPORTED_1000baseT_Half
  159. | SUPPORTED_1000baseT_Full
  160. | SUPPORTED_Autoneg| SUPPORTED_TP;
  161. if (hw->chip_id == CHIP_ID_GENESIS)
  162. supported &= ~(SUPPORTED_10baseT_Half
  163. | SUPPORTED_10baseT_Full
  164. | SUPPORTED_100baseT_Half
  165. | SUPPORTED_100baseT_Full);
  166. else if (hw->chip_id == CHIP_ID_YUKON)
  167. supported &= ~SUPPORTED_1000baseT_Half;
  168. } else
  169. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  170. | SUPPORTED_Autoneg;
  171. return supported;
  172. }
  173. static int skge_get_settings(struct net_device *dev,
  174. struct ethtool_cmd *ecmd)
  175. {
  176. struct skge_port *skge = netdev_priv(dev);
  177. struct skge_hw *hw = skge->hw;
  178. ecmd->transceiver = XCVR_INTERNAL;
  179. ecmd->supported = skge_supported_modes(hw);
  180. if (hw->copper) {
  181. ecmd->port = PORT_TP;
  182. ecmd->phy_address = hw->phy_addr;
  183. } else
  184. ecmd->port = PORT_FIBRE;
  185. ecmd->advertising = skge->advertising;
  186. ecmd->autoneg = skge->autoneg;
  187. ecmd->speed = skge->speed;
  188. ecmd->duplex = skge->duplex;
  189. return 0;
  190. }
  191. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  192. {
  193. struct skge_port *skge = netdev_priv(dev);
  194. const struct skge_hw *hw = skge->hw;
  195. u32 supported = skge_supported_modes(hw);
  196. if (ecmd->autoneg == AUTONEG_ENABLE) {
  197. ecmd->advertising = supported;
  198. skge->duplex = -1;
  199. skge->speed = -1;
  200. } else {
  201. u32 setting;
  202. switch (ecmd->speed) {
  203. case SPEED_1000:
  204. if (ecmd->duplex == DUPLEX_FULL)
  205. setting = SUPPORTED_1000baseT_Full;
  206. else if (ecmd->duplex == DUPLEX_HALF)
  207. setting = SUPPORTED_1000baseT_Half;
  208. else
  209. return -EINVAL;
  210. break;
  211. case SPEED_100:
  212. if (ecmd->duplex == DUPLEX_FULL)
  213. setting = SUPPORTED_100baseT_Full;
  214. else if (ecmd->duplex == DUPLEX_HALF)
  215. setting = SUPPORTED_100baseT_Half;
  216. else
  217. return -EINVAL;
  218. break;
  219. case SPEED_10:
  220. if (ecmd->duplex == DUPLEX_FULL)
  221. setting = SUPPORTED_10baseT_Full;
  222. else if (ecmd->duplex == DUPLEX_HALF)
  223. setting = SUPPORTED_10baseT_Half;
  224. else
  225. return -EINVAL;
  226. break;
  227. default:
  228. return -EINVAL;
  229. }
  230. if ((setting & supported) == 0)
  231. return -EINVAL;
  232. skge->speed = ecmd->speed;
  233. skge->duplex = ecmd->duplex;
  234. }
  235. skge->autoneg = ecmd->autoneg;
  236. skge->advertising = ecmd->advertising;
  237. if (netif_running(dev))
  238. skge_phy_reset(skge);
  239. return (0);
  240. }
  241. static void skge_get_drvinfo(struct net_device *dev,
  242. struct ethtool_drvinfo *info)
  243. {
  244. struct skge_port *skge = netdev_priv(dev);
  245. strcpy(info->driver, DRV_NAME);
  246. strcpy(info->version, DRV_VERSION);
  247. strcpy(info->fw_version, "N/A");
  248. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  249. }
  250. static const struct skge_stat {
  251. char name[ETH_GSTRING_LEN];
  252. u16 xmac_offset;
  253. u16 gma_offset;
  254. } skge_stats[] = {
  255. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  256. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  257. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  258. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  259. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  260. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  261. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  262. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  263. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  264. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  265. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  266. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  267. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  268. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  269. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  270. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  271. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  272. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  273. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  274. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  275. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  276. };
  277. static int skge_get_stats_count(struct net_device *dev)
  278. {
  279. return ARRAY_SIZE(skge_stats);
  280. }
  281. static void skge_get_ethtool_stats(struct net_device *dev,
  282. struct ethtool_stats *stats, u64 *data)
  283. {
  284. struct skge_port *skge = netdev_priv(dev);
  285. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  286. genesis_get_stats(skge, data);
  287. else
  288. yukon_get_stats(skge, data);
  289. }
  290. /* Use hardware MIB variables for critical path statistics and
  291. * transmit feedback not reported at interrupt.
  292. * Other errors are accounted for in interrupt handler.
  293. */
  294. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  295. {
  296. struct skge_port *skge = netdev_priv(dev);
  297. u64 data[ARRAY_SIZE(skge_stats)];
  298. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  299. genesis_get_stats(skge, data);
  300. else
  301. yukon_get_stats(skge, data);
  302. skge->net_stats.tx_bytes = data[0];
  303. skge->net_stats.rx_bytes = data[1];
  304. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  305. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  306. skge->net_stats.multicast = data[5] + data[7];
  307. skge->net_stats.collisions = data[10];
  308. skge->net_stats.tx_aborted_errors = data[12];
  309. return &skge->net_stats;
  310. }
  311. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  312. {
  313. int i;
  314. switch (stringset) {
  315. case ETH_SS_STATS:
  316. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  317. memcpy(data + i * ETH_GSTRING_LEN,
  318. skge_stats[i].name, ETH_GSTRING_LEN);
  319. break;
  320. }
  321. }
  322. static void skge_get_ring_param(struct net_device *dev,
  323. struct ethtool_ringparam *p)
  324. {
  325. struct skge_port *skge = netdev_priv(dev);
  326. p->rx_max_pending = MAX_RX_RING_SIZE;
  327. p->tx_max_pending = MAX_TX_RING_SIZE;
  328. p->rx_mini_max_pending = 0;
  329. p->rx_jumbo_max_pending = 0;
  330. p->rx_pending = skge->rx_ring.count;
  331. p->tx_pending = skge->tx_ring.count;
  332. p->rx_mini_pending = 0;
  333. p->rx_jumbo_pending = 0;
  334. }
  335. static int skge_set_ring_param(struct net_device *dev,
  336. struct ethtool_ringparam *p)
  337. {
  338. struct skge_port *skge = netdev_priv(dev);
  339. int err;
  340. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  341. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  342. return -EINVAL;
  343. skge->rx_ring.count = p->rx_pending;
  344. skge->tx_ring.count = p->tx_pending;
  345. if (netif_running(dev)) {
  346. skge_down(dev);
  347. err = skge_up(dev);
  348. if (err)
  349. dev_close(dev);
  350. }
  351. return 0;
  352. }
  353. static u32 skge_get_msglevel(struct net_device *netdev)
  354. {
  355. struct skge_port *skge = netdev_priv(netdev);
  356. return skge->msg_enable;
  357. }
  358. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  359. {
  360. struct skge_port *skge = netdev_priv(netdev);
  361. skge->msg_enable = value;
  362. }
  363. static int skge_nway_reset(struct net_device *dev)
  364. {
  365. struct skge_port *skge = netdev_priv(dev);
  366. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  367. return -EINVAL;
  368. skge_phy_reset(skge);
  369. return 0;
  370. }
  371. static int skge_set_sg(struct net_device *dev, u32 data)
  372. {
  373. struct skge_port *skge = netdev_priv(dev);
  374. struct skge_hw *hw = skge->hw;
  375. if (hw->chip_id == CHIP_ID_GENESIS && data)
  376. return -EOPNOTSUPP;
  377. return ethtool_op_set_sg(dev, data);
  378. }
  379. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  380. {
  381. struct skge_port *skge = netdev_priv(dev);
  382. struct skge_hw *hw = skge->hw;
  383. if (hw->chip_id == CHIP_ID_GENESIS && data)
  384. return -EOPNOTSUPP;
  385. return ethtool_op_set_tx_csum(dev, data);
  386. }
  387. static u32 skge_get_rx_csum(struct net_device *dev)
  388. {
  389. struct skge_port *skge = netdev_priv(dev);
  390. return skge->rx_csum;
  391. }
  392. /* Only Yukon supports checksum offload. */
  393. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  394. {
  395. struct skge_port *skge = netdev_priv(dev);
  396. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  397. return -EOPNOTSUPP;
  398. skge->rx_csum = data;
  399. return 0;
  400. }
  401. static void skge_get_pauseparam(struct net_device *dev,
  402. struct ethtool_pauseparam *ecmd)
  403. {
  404. struct skge_port *skge = netdev_priv(dev);
  405. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  406. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  407. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  408. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  409. ecmd->autoneg = skge->autoneg;
  410. }
  411. static int skge_set_pauseparam(struct net_device *dev,
  412. struct ethtool_pauseparam *ecmd)
  413. {
  414. struct skge_port *skge = netdev_priv(dev);
  415. skge->autoneg = ecmd->autoneg;
  416. if (ecmd->rx_pause && ecmd->tx_pause)
  417. skge->flow_control = FLOW_MODE_SYMMETRIC;
  418. else if (ecmd->rx_pause && !ecmd->tx_pause)
  419. skge->flow_control = FLOW_MODE_REM_SEND;
  420. else if (!ecmd->rx_pause && ecmd->tx_pause)
  421. skge->flow_control = FLOW_MODE_LOC_SEND;
  422. else
  423. skge->flow_control = FLOW_MODE_NONE;
  424. if (netif_running(dev))
  425. skge_phy_reset(skge);
  426. return 0;
  427. }
  428. /* Chip internal frequency for clock calculations */
  429. static inline u32 hwkhz(const struct skge_hw *hw)
  430. {
  431. if (hw->chip_id == CHIP_ID_GENESIS)
  432. return 53215; /* or: 53.125 MHz */
  433. else
  434. return 78215; /* or: 78.125 MHz */
  435. }
  436. /* Chip HZ to microseconds */
  437. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  438. {
  439. return (ticks * 1000) / hwkhz(hw);
  440. }
  441. /* Microseconds to chip HZ */
  442. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  443. {
  444. return hwkhz(hw) * usec / 1000;
  445. }
  446. static int skge_get_coalesce(struct net_device *dev,
  447. struct ethtool_coalesce *ecmd)
  448. {
  449. struct skge_port *skge = netdev_priv(dev);
  450. struct skge_hw *hw = skge->hw;
  451. int port = skge->port;
  452. ecmd->rx_coalesce_usecs = 0;
  453. ecmd->tx_coalesce_usecs = 0;
  454. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  455. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  456. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  457. if (msk & rxirqmask[port])
  458. ecmd->rx_coalesce_usecs = delay;
  459. if (msk & txirqmask[port])
  460. ecmd->tx_coalesce_usecs = delay;
  461. }
  462. return 0;
  463. }
  464. /* Note: interrupt timer is per board, but can turn on/off per port */
  465. static int skge_set_coalesce(struct net_device *dev,
  466. struct ethtool_coalesce *ecmd)
  467. {
  468. struct skge_port *skge = netdev_priv(dev);
  469. struct skge_hw *hw = skge->hw;
  470. int port = skge->port;
  471. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  472. u32 delay = 25;
  473. if (ecmd->rx_coalesce_usecs == 0)
  474. msk &= ~rxirqmask[port];
  475. else if (ecmd->rx_coalesce_usecs < 25 ||
  476. ecmd->rx_coalesce_usecs > 33333)
  477. return -EINVAL;
  478. else {
  479. msk |= rxirqmask[port];
  480. delay = ecmd->rx_coalesce_usecs;
  481. }
  482. if (ecmd->tx_coalesce_usecs == 0)
  483. msk &= ~txirqmask[port];
  484. else if (ecmd->tx_coalesce_usecs < 25 ||
  485. ecmd->tx_coalesce_usecs > 33333)
  486. return -EINVAL;
  487. else {
  488. msk |= txirqmask[port];
  489. delay = min(delay, ecmd->rx_coalesce_usecs);
  490. }
  491. skge_write32(hw, B2_IRQM_MSK, msk);
  492. if (msk == 0)
  493. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  494. else {
  495. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  496. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  497. }
  498. return 0;
  499. }
  500. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  501. static void skge_led(struct skge_port *skge, enum led_mode mode)
  502. {
  503. struct skge_hw *hw = skge->hw;
  504. int port = skge->port;
  505. spin_lock_bh(&hw->phy_lock);
  506. if (hw->chip_id == CHIP_ID_GENESIS) {
  507. switch (mode) {
  508. case LED_MODE_OFF:
  509. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  510. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  511. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  512. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  513. break;
  514. case LED_MODE_ON:
  515. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  516. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  517. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  518. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  519. break;
  520. case LED_MODE_TST:
  521. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  522. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  523. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  524. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  525. break;
  526. }
  527. } else {
  528. switch (mode) {
  529. case LED_MODE_OFF:
  530. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  531. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  532. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  533. PHY_M_LED_MO_10(MO_LED_OFF) |
  534. PHY_M_LED_MO_100(MO_LED_OFF) |
  535. PHY_M_LED_MO_1000(MO_LED_OFF) |
  536. PHY_M_LED_MO_RX(MO_LED_OFF));
  537. break;
  538. case LED_MODE_ON:
  539. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  540. PHY_M_LED_PULS_DUR(PULS_170MS) |
  541. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  542. PHY_M_LEDC_TX_CTRL |
  543. PHY_M_LEDC_DP_CTRL);
  544. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  545. PHY_M_LED_MO_RX(MO_LED_OFF) |
  546. (skge->speed == SPEED_100 ?
  547. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  548. break;
  549. case LED_MODE_TST:
  550. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  551. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  552. PHY_M_LED_MO_DUP(MO_LED_ON) |
  553. PHY_M_LED_MO_10(MO_LED_ON) |
  554. PHY_M_LED_MO_100(MO_LED_ON) |
  555. PHY_M_LED_MO_1000(MO_LED_ON) |
  556. PHY_M_LED_MO_RX(MO_LED_ON));
  557. }
  558. }
  559. spin_unlock_bh(&hw->phy_lock);
  560. }
  561. /* blink LED's for finding board */
  562. static int skge_phys_id(struct net_device *dev, u32 data)
  563. {
  564. struct skge_port *skge = netdev_priv(dev);
  565. unsigned long ms;
  566. enum led_mode mode = LED_MODE_TST;
  567. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  568. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  569. else
  570. ms = data * 1000;
  571. while (ms > 0) {
  572. skge_led(skge, mode);
  573. mode ^= LED_MODE_TST;
  574. if (msleep_interruptible(BLINK_MS))
  575. break;
  576. ms -= BLINK_MS;
  577. }
  578. /* back to regular LED state */
  579. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  580. return 0;
  581. }
  582. static struct ethtool_ops skge_ethtool_ops = {
  583. .get_settings = skge_get_settings,
  584. .set_settings = skge_set_settings,
  585. .get_drvinfo = skge_get_drvinfo,
  586. .get_regs_len = skge_get_regs_len,
  587. .get_regs = skge_get_regs,
  588. .get_wol = skge_get_wol,
  589. .set_wol = skge_set_wol,
  590. .get_msglevel = skge_get_msglevel,
  591. .set_msglevel = skge_set_msglevel,
  592. .nway_reset = skge_nway_reset,
  593. .get_link = ethtool_op_get_link,
  594. .get_ringparam = skge_get_ring_param,
  595. .set_ringparam = skge_set_ring_param,
  596. .get_pauseparam = skge_get_pauseparam,
  597. .set_pauseparam = skge_set_pauseparam,
  598. .get_coalesce = skge_get_coalesce,
  599. .set_coalesce = skge_set_coalesce,
  600. .get_sg = ethtool_op_get_sg,
  601. .set_sg = skge_set_sg,
  602. .get_tx_csum = ethtool_op_get_tx_csum,
  603. .set_tx_csum = skge_set_tx_csum,
  604. .get_rx_csum = skge_get_rx_csum,
  605. .set_rx_csum = skge_set_rx_csum,
  606. .get_strings = skge_get_strings,
  607. .phys_id = skge_phys_id,
  608. .get_stats_count = skge_get_stats_count,
  609. .get_ethtool_stats = skge_get_ethtool_stats,
  610. .get_perm_addr = ethtool_op_get_perm_addr,
  611. };
  612. /*
  613. * Allocate ring elements and chain them together
  614. * One-to-one association of board descriptors with ring elements
  615. */
  616. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  617. {
  618. struct skge_tx_desc *d;
  619. struct skge_element *e;
  620. int i;
  621. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  622. if (!ring->start)
  623. return -ENOMEM;
  624. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  625. e->desc = d;
  626. e->skb = NULL;
  627. if (i == ring->count - 1) {
  628. e->next = ring->start;
  629. d->next_offset = base;
  630. } else {
  631. e->next = e + 1;
  632. d->next_offset = base + (i+1) * sizeof(*d);
  633. }
  634. }
  635. ring->to_use = ring->to_clean = ring->start;
  636. return 0;
  637. }
  638. /* Allocate and setup a new buffer for receiving */
  639. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  640. struct sk_buff *skb, unsigned int bufsize)
  641. {
  642. struct skge_rx_desc *rd = e->desc;
  643. u64 map;
  644. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  645. PCI_DMA_FROMDEVICE);
  646. rd->dma_lo = map;
  647. rd->dma_hi = map >> 32;
  648. e->skb = skb;
  649. rd->csum1_start = ETH_HLEN;
  650. rd->csum2_start = ETH_HLEN;
  651. rd->csum1 = 0;
  652. rd->csum2 = 0;
  653. wmb();
  654. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  655. pci_unmap_addr_set(e, mapaddr, map);
  656. pci_unmap_len_set(e, maplen, bufsize);
  657. }
  658. /* Resume receiving using existing skb,
  659. * Note: DMA address is not changed by chip.
  660. * MTU not changed while receiver active.
  661. */
  662. static void skge_rx_reuse(struct skge_element *e, unsigned int size)
  663. {
  664. struct skge_rx_desc *rd = e->desc;
  665. rd->csum2 = 0;
  666. rd->csum2_start = ETH_HLEN;
  667. wmb();
  668. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  669. }
  670. /* Free all buffers in receive ring, assumes receiver stopped */
  671. static void skge_rx_clean(struct skge_port *skge)
  672. {
  673. struct skge_hw *hw = skge->hw;
  674. struct skge_ring *ring = &skge->rx_ring;
  675. struct skge_element *e;
  676. e = ring->start;
  677. do {
  678. struct skge_rx_desc *rd = e->desc;
  679. rd->control = 0;
  680. if (e->skb) {
  681. pci_unmap_single(hw->pdev,
  682. pci_unmap_addr(e, mapaddr),
  683. pci_unmap_len(e, maplen),
  684. PCI_DMA_FROMDEVICE);
  685. dev_kfree_skb(e->skb);
  686. e->skb = NULL;
  687. }
  688. } while ((e = e->next) != ring->start);
  689. }
  690. /* Allocate buffers for receive ring
  691. * For receive: to_clean is next received frame.
  692. */
  693. static int skge_rx_fill(struct skge_port *skge)
  694. {
  695. struct skge_ring *ring = &skge->rx_ring;
  696. struct skge_element *e;
  697. e = ring->start;
  698. do {
  699. struct sk_buff *skb;
  700. skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  701. if (!skb)
  702. return -ENOMEM;
  703. skb_reserve(skb, NET_IP_ALIGN);
  704. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  705. } while ( (e = e->next) != ring->start);
  706. ring->to_clean = ring->start;
  707. return 0;
  708. }
  709. static void skge_link_up(struct skge_port *skge)
  710. {
  711. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  712. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  713. netif_carrier_on(skge->netdev);
  714. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  715. netif_wake_queue(skge->netdev);
  716. if (netif_msg_link(skge))
  717. printk(KERN_INFO PFX
  718. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  719. skge->netdev->name, skge->speed,
  720. skge->duplex == DUPLEX_FULL ? "full" : "half",
  721. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  722. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  723. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  724. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  725. "unknown");
  726. }
  727. static void skge_link_down(struct skge_port *skge)
  728. {
  729. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  730. netif_carrier_off(skge->netdev);
  731. netif_stop_queue(skge->netdev);
  732. if (netif_msg_link(skge))
  733. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  734. }
  735. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  736. {
  737. int i;
  738. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  739. xm_read16(hw, port, XM_PHY_DATA);
  740. /* Need to wait for external PHY */
  741. for (i = 0; i < PHY_RETRIES; i++) {
  742. udelay(1);
  743. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  744. goto ready;
  745. }
  746. return -ETIMEDOUT;
  747. ready:
  748. *val = xm_read16(hw, port, XM_PHY_DATA);
  749. return 0;
  750. }
  751. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  752. {
  753. u16 v = 0;
  754. if (__xm_phy_read(hw, port, reg, &v))
  755. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  756. hw->dev[port]->name);
  757. return v;
  758. }
  759. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  760. {
  761. int i;
  762. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  763. for (i = 0; i < PHY_RETRIES; i++) {
  764. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  765. goto ready;
  766. udelay(1);
  767. }
  768. return -EIO;
  769. ready:
  770. xm_write16(hw, port, XM_PHY_DATA, val);
  771. return 0;
  772. }
  773. static void genesis_init(struct skge_hw *hw)
  774. {
  775. /* set blink source counter */
  776. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  777. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  778. /* configure mac arbiter */
  779. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  780. /* configure mac arbiter timeout values */
  781. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  782. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  783. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  784. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  785. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  786. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  787. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  788. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  789. /* configure packet arbiter timeout */
  790. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  791. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  792. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  793. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  794. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  795. }
  796. static void genesis_reset(struct skge_hw *hw, int port)
  797. {
  798. const u8 zero[8] = { 0 };
  799. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  800. /* reset the statistics module */
  801. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  802. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  803. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  804. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  805. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  806. /* disable Broadcom PHY IRQ */
  807. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  808. xm_outhash(hw, port, XM_HSM, zero);
  809. }
  810. /* Convert mode to MII values */
  811. static const u16 phy_pause_map[] = {
  812. [FLOW_MODE_NONE] = 0,
  813. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  814. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  815. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  816. };
  817. /* Check status of Broadcom phy link */
  818. static void bcom_check_link(struct skge_hw *hw, int port)
  819. {
  820. struct net_device *dev = hw->dev[port];
  821. struct skge_port *skge = netdev_priv(dev);
  822. u16 status;
  823. /* read twice because of latch */
  824. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  825. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  826. if ((status & PHY_ST_LSYNC) == 0) {
  827. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  828. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  829. xm_write16(hw, port, XM_MMU_CMD, cmd);
  830. /* dummy read to ensure writing */
  831. (void) xm_read16(hw, port, XM_MMU_CMD);
  832. if (netif_carrier_ok(dev))
  833. skge_link_down(skge);
  834. } else {
  835. if (skge->autoneg == AUTONEG_ENABLE &&
  836. (status & PHY_ST_AN_OVER)) {
  837. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  838. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  839. if (lpa & PHY_B_AN_RF) {
  840. printk(KERN_NOTICE PFX "%s: remote fault\n",
  841. dev->name);
  842. return;
  843. }
  844. /* Check Duplex mismatch */
  845. switch (aux & PHY_B_AS_AN_RES_MSK) {
  846. case PHY_B_RES_1000FD:
  847. skge->duplex = DUPLEX_FULL;
  848. break;
  849. case PHY_B_RES_1000HD:
  850. skge->duplex = DUPLEX_HALF;
  851. break;
  852. default:
  853. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  854. dev->name);
  855. return;
  856. }
  857. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  858. switch (aux & PHY_B_AS_PAUSE_MSK) {
  859. case PHY_B_AS_PAUSE_MSK:
  860. skge->flow_control = FLOW_MODE_SYMMETRIC;
  861. break;
  862. case PHY_B_AS_PRR:
  863. skge->flow_control = FLOW_MODE_REM_SEND;
  864. break;
  865. case PHY_B_AS_PRT:
  866. skge->flow_control = FLOW_MODE_LOC_SEND;
  867. break;
  868. default:
  869. skge->flow_control = FLOW_MODE_NONE;
  870. }
  871. skge->speed = SPEED_1000;
  872. }
  873. if (!netif_carrier_ok(dev))
  874. genesis_link_up(skge);
  875. }
  876. }
  877. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  878. * Phy on for 100 or 10Mbit operation
  879. */
  880. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  881. {
  882. struct skge_hw *hw = skge->hw;
  883. int port = skge->port;
  884. int i;
  885. u16 id1, r, ext, ctl;
  886. /* magic workaround patterns for Broadcom */
  887. static const struct {
  888. u16 reg;
  889. u16 val;
  890. } A1hack[] = {
  891. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  892. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  893. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  894. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  895. }, C0hack[] = {
  896. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  897. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  898. };
  899. /* read Id from external PHY (all have the same address) */
  900. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  901. /* Optimize MDIO transfer by suppressing preamble. */
  902. r = xm_read16(hw, port, XM_MMU_CMD);
  903. r |= XM_MMU_NO_PRE;
  904. xm_write16(hw, port, XM_MMU_CMD,r);
  905. switch (id1) {
  906. case PHY_BCOM_ID1_C0:
  907. /*
  908. * Workaround BCOM Errata for the C0 type.
  909. * Write magic patterns to reserved registers.
  910. */
  911. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  912. xm_phy_write(hw, port,
  913. C0hack[i].reg, C0hack[i].val);
  914. break;
  915. case PHY_BCOM_ID1_A1:
  916. /*
  917. * Workaround BCOM Errata for the A1 type.
  918. * Write magic patterns to reserved registers.
  919. */
  920. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  921. xm_phy_write(hw, port,
  922. A1hack[i].reg, A1hack[i].val);
  923. break;
  924. }
  925. /*
  926. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  927. * Disable Power Management after reset.
  928. */
  929. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  930. r |= PHY_B_AC_DIS_PM;
  931. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  932. /* Dummy read */
  933. xm_read16(hw, port, XM_ISRC);
  934. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  935. ctl = PHY_CT_SP1000; /* always 1000mbit */
  936. if (skge->autoneg == AUTONEG_ENABLE) {
  937. /*
  938. * Workaround BCOM Errata #1 for the C5 type.
  939. * 1000Base-T Link Acquisition Failure in Slave Mode
  940. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  941. */
  942. u16 adv = PHY_B_1000C_RD;
  943. if (skge->advertising & ADVERTISED_1000baseT_Half)
  944. adv |= PHY_B_1000C_AHD;
  945. if (skge->advertising & ADVERTISED_1000baseT_Full)
  946. adv |= PHY_B_1000C_AFD;
  947. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  948. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  949. } else {
  950. if (skge->duplex == DUPLEX_FULL)
  951. ctl |= PHY_CT_DUP_MD;
  952. /* Force to slave */
  953. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  954. }
  955. /* Set autonegotiation pause parameters */
  956. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  957. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  958. /* Handle Jumbo frames */
  959. if (jumbo) {
  960. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  961. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  962. ext |= PHY_B_PEC_HIGH_LA;
  963. }
  964. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  965. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  966. /* Use link status change interrupt */
  967. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  968. bcom_check_link(hw, port);
  969. }
  970. static void genesis_mac_init(struct skge_hw *hw, int port)
  971. {
  972. struct net_device *dev = hw->dev[port];
  973. struct skge_port *skge = netdev_priv(dev);
  974. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  975. int i;
  976. u32 r;
  977. const u8 zero[6] = { 0 };
  978. /* Clear MIB counters */
  979. xm_write16(hw, port, XM_STAT_CMD,
  980. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  981. /* Clear two times according to Errata #3 */
  982. xm_write16(hw, port, XM_STAT_CMD,
  983. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  984. /* Unreset the XMAC. */
  985. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  986. /*
  987. * Perform additional initialization for external PHYs,
  988. * namely for the 1000baseTX cards that use the XMAC's
  989. * GMII mode.
  990. */
  991. /* Take external Phy out of reset */
  992. r = skge_read32(hw, B2_GP_IO);
  993. if (port == 0)
  994. r |= GP_DIR_0|GP_IO_0;
  995. else
  996. r |= GP_DIR_2|GP_IO_2;
  997. skge_write32(hw, B2_GP_IO, r);
  998. skge_read32(hw, B2_GP_IO);
  999. /* Enable GMII interface */
  1000. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1001. bcom_phy_init(skge, jumbo);
  1002. /* Set Station Address */
  1003. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1004. /* We don't use match addresses so clear */
  1005. for (i = 1; i < 16; i++)
  1006. xm_outaddr(hw, port, XM_EXM(i), zero);
  1007. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1008. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1009. /* We don't need the FCS appended to the packet. */
  1010. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1011. if (jumbo)
  1012. r |= XM_RX_BIG_PK_OK;
  1013. if (skge->duplex == DUPLEX_HALF) {
  1014. /*
  1015. * If in manual half duplex mode the other side might be in
  1016. * full duplex mode, so ignore if a carrier extension is not seen
  1017. * on frames received
  1018. */
  1019. r |= XM_RX_DIS_CEXT;
  1020. }
  1021. xm_write16(hw, port, XM_RX_CMD, r);
  1022. /* We want short frames padded to 60 bytes. */
  1023. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1024. /*
  1025. * Bump up the transmit threshold. This helps hold off transmit
  1026. * underruns when we're blasting traffic from both ports at once.
  1027. */
  1028. xm_write16(hw, port, XM_TX_THR, 512);
  1029. /*
  1030. * Enable the reception of all error frames. This is is
  1031. * a necessary evil due to the design of the XMAC. The
  1032. * XMAC's receive FIFO is only 8K in size, however jumbo
  1033. * frames can be up to 9000 bytes in length. When bad
  1034. * frame filtering is enabled, the XMAC's RX FIFO operates
  1035. * in 'store and forward' mode. For this to work, the
  1036. * entire frame has to fit into the FIFO, but that means
  1037. * that jumbo frames larger than 8192 bytes will be
  1038. * truncated. Disabling all bad frame filtering causes
  1039. * the RX FIFO to operate in streaming mode, in which
  1040. * case the XMAC will start transferring frames out of the
  1041. * RX FIFO as soon as the FIFO threshold is reached.
  1042. */
  1043. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1044. /*
  1045. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1046. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1047. * and 'Octets Rx OK Hi Cnt Ov'.
  1048. */
  1049. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1050. /*
  1051. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1052. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1053. * and 'Octets Tx OK Hi Cnt Ov'.
  1054. */
  1055. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1056. /* Configure MAC arbiter */
  1057. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1058. /* configure timeout values */
  1059. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1060. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1061. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1062. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1063. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1064. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1065. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1066. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1067. /* Configure Rx MAC FIFO */
  1068. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1069. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1070. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1071. /* Configure Tx MAC FIFO */
  1072. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1073. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1074. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1075. if (jumbo) {
  1076. /* Enable frame flushing if jumbo frames used */
  1077. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1078. } else {
  1079. /* enable timeout timers if normal frames */
  1080. skge_write16(hw, B3_PA_CTRL,
  1081. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1082. }
  1083. }
  1084. static void genesis_stop(struct skge_port *skge)
  1085. {
  1086. struct skge_hw *hw = skge->hw;
  1087. int port = skge->port;
  1088. u32 reg;
  1089. genesis_reset(hw, port);
  1090. /* Clear Tx packet arbiter timeout IRQ */
  1091. skge_write16(hw, B3_PA_CTRL,
  1092. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1093. /*
  1094. * If the transfer sticks at the MAC the STOP command will not
  1095. * terminate if we don't flush the XMAC's transmit FIFO !
  1096. */
  1097. xm_write32(hw, port, XM_MODE,
  1098. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1099. /* Reset the MAC */
  1100. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1101. /* For external PHYs there must be special handling */
  1102. reg = skge_read32(hw, B2_GP_IO);
  1103. if (port == 0) {
  1104. reg |= GP_DIR_0;
  1105. reg &= ~GP_IO_0;
  1106. } else {
  1107. reg |= GP_DIR_2;
  1108. reg &= ~GP_IO_2;
  1109. }
  1110. skge_write32(hw, B2_GP_IO, reg);
  1111. skge_read32(hw, B2_GP_IO);
  1112. xm_write16(hw, port, XM_MMU_CMD,
  1113. xm_read16(hw, port, XM_MMU_CMD)
  1114. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1115. xm_read16(hw, port, XM_MMU_CMD);
  1116. }
  1117. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1118. {
  1119. struct skge_hw *hw = skge->hw;
  1120. int port = skge->port;
  1121. int i;
  1122. unsigned long timeout = jiffies + HZ;
  1123. xm_write16(hw, port,
  1124. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1125. /* wait for update to complete */
  1126. while (xm_read16(hw, port, XM_STAT_CMD)
  1127. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1128. if (time_after(jiffies, timeout))
  1129. break;
  1130. udelay(10);
  1131. }
  1132. /* special case for 64 bit octet counter */
  1133. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1134. | xm_read32(hw, port, XM_TXO_OK_LO);
  1135. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1136. | xm_read32(hw, port, XM_RXO_OK_LO);
  1137. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1138. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1139. }
  1140. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1141. {
  1142. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1143. u16 status = xm_read16(hw, port, XM_ISRC);
  1144. if (netif_msg_intr(skge))
  1145. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1146. skge->netdev->name, status);
  1147. if (status & XM_IS_TXF_UR) {
  1148. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1149. ++skge->net_stats.tx_fifo_errors;
  1150. }
  1151. if (status & XM_IS_RXF_OV) {
  1152. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1153. ++skge->net_stats.rx_fifo_errors;
  1154. }
  1155. }
  1156. static void genesis_link_up(struct skge_port *skge)
  1157. {
  1158. struct skge_hw *hw = skge->hw;
  1159. int port = skge->port;
  1160. u16 cmd;
  1161. u32 mode, msk;
  1162. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1163. /*
  1164. * enabling pause frame reception is required for 1000BT
  1165. * because the XMAC is not reset if the link is going down
  1166. */
  1167. if (skge->flow_control == FLOW_MODE_NONE ||
  1168. skge->flow_control == FLOW_MODE_LOC_SEND)
  1169. /* Disable Pause Frame Reception */
  1170. cmd |= XM_MMU_IGN_PF;
  1171. else
  1172. /* Enable Pause Frame Reception */
  1173. cmd &= ~XM_MMU_IGN_PF;
  1174. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1175. mode = xm_read32(hw, port, XM_MODE);
  1176. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1177. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1178. /*
  1179. * Configure Pause Frame Generation
  1180. * Use internal and external Pause Frame Generation.
  1181. * Sending pause frames is edge triggered.
  1182. * Send a Pause frame with the maximum pause time if
  1183. * internal oder external FIFO full condition occurs.
  1184. * Send a zero pause time frame to re-start transmission.
  1185. */
  1186. /* XM_PAUSE_DA = '010000C28001' (default) */
  1187. /* XM_MAC_PTIME = 0xffff (maximum) */
  1188. /* remember this value is defined in big endian (!) */
  1189. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1190. mode |= XM_PAUSE_MODE;
  1191. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1192. } else {
  1193. /*
  1194. * disable pause frame generation is required for 1000BT
  1195. * because the XMAC is not reset if the link is going down
  1196. */
  1197. /* Disable Pause Mode in Mode Register */
  1198. mode &= ~XM_PAUSE_MODE;
  1199. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1200. }
  1201. xm_write32(hw, port, XM_MODE, mode);
  1202. msk = XM_DEF_MSK;
  1203. /* disable GP0 interrupt bit for external Phy */
  1204. msk |= XM_IS_INP_ASS;
  1205. xm_write16(hw, port, XM_IMSK, msk);
  1206. xm_read16(hw, port, XM_ISRC);
  1207. /* get MMU Command Reg. */
  1208. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1209. if (skge->duplex == DUPLEX_FULL)
  1210. cmd |= XM_MMU_GMII_FD;
  1211. /*
  1212. * Workaround BCOM Errata (#10523) for all BCom Phys
  1213. * Enable Power Management after link up
  1214. */
  1215. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1216. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1217. & ~PHY_B_AC_DIS_PM);
  1218. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1219. /* enable Rx/Tx */
  1220. xm_write16(hw, port, XM_MMU_CMD,
  1221. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1222. skge_link_up(skge);
  1223. }
  1224. static inline void bcom_phy_intr(struct skge_port *skge)
  1225. {
  1226. struct skge_hw *hw = skge->hw;
  1227. int port = skge->port;
  1228. u16 isrc;
  1229. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1230. if (netif_msg_intr(skge))
  1231. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1232. skge->netdev->name, isrc);
  1233. if (isrc & PHY_B_IS_PSE)
  1234. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1235. hw->dev[port]->name);
  1236. /* Workaround BCom Errata:
  1237. * enable and disable loopback mode if "NO HCD" occurs.
  1238. */
  1239. if (isrc & PHY_B_IS_NO_HDCL) {
  1240. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1241. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1242. ctrl | PHY_CT_LOOP);
  1243. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1244. ctrl & ~PHY_CT_LOOP);
  1245. }
  1246. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1247. bcom_check_link(hw, port);
  1248. }
  1249. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1250. {
  1251. int i;
  1252. gma_write16(hw, port, GM_SMI_DATA, val);
  1253. gma_write16(hw, port, GM_SMI_CTRL,
  1254. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1255. for (i = 0; i < PHY_RETRIES; i++) {
  1256. udelay(1);
  1257. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1258. return 0;
  1259. }
  1260. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1261. hw->dev[port]->name);
  1262. return -EIO;
  1263. }
  1264. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1265. {
  1266. int i;
  1267. gma_write16(hw, port, GM_SMI_CTRL,
  1268. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1269. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1270. for (i = 0; i < PHY_RETRIES; i++) {
  1271. udelay(1);
  1272. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1273. goto ready;
  1274. }
  1275. return -ETIMEDOUT;
  1276. ready:
  1277. *val = gma_read16(hw, port, GM_SMI_DATA);
  1278. return 0;
  1279. }
  1280. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1281. {
  1282. u16 v = 0;
  1283. if (__gm_phy_read(hw, port, reg, &v))
  1284. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1285. hw->dev[port]->name);
  1286. return v;
  1287. }
  1288. /* Marvell Phy Initialization */
  1289. static void yukon_init(struct skge_hw *hw, int port)
  1290. {
  1291. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1292. u16 ctrl, ct1000, adv;
  1293. if (skge->autoneg == AUTONEG_ENABLE) {
  1294. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1295. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1296. PHY_M_EC_MAC_S_MSK);
  1297. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1298. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1299. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1300. }
  1301. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1302. if (skge->autoneg == AUTONEG_DISABLE)
  1303. ctrl &= ~PHY_CT_ANE;
  1304. ctrl |= PHY_CT_RESET;
  1305. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1306. ctrl = 0;
  1307. ct1000 = 0;
  1308. adv = PHY_AN_CSMA;
  1309. if (skge->autoneg == AUTONEG_ENABLE) {
  1310. if (hw->copper) {
  1311. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1312. ct1000 |= PHY_M_1000C_AFD;
  1313. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1314. ct1000 |= PHY_M_1000C_AHD;
  1315. if (skge->advertising & ADVERTISED_100baseT_Full)
  1316. adv |= PHY_M_AN_100_FD;
  1317. if (skge->advertising & ADVERTISED_100baseT_Half)
  1318. adv |= PHY_M_AN_100_HD;
  1319. if (skge->advertising & ADVERTISED_10baseT_Full)
  1320. adv |= PHY_M_AN_10_FD;
  1321. if (skge->advertising & ADVERTISED_10baseT_Half)
  1322. adv |= PHY_M_AN_10_HD;
  1323. } else /* special defines for FIBER (88E1011S only) */
  1324. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1325. /* Set Flow-control capabilities */
  1326. adv |= phy_pause_map[skge->flow_control];
  1327. /* Restart Auto-negotiation */
  1328. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1329. } else {
  1330. /* forced speed/duplex settings */
  1331. ct1000 = PHY_M_1000C_MSE;
  1332. if (skge->duplex == DUPLEX_FULL)
  1333. ctrl |= PHY_CT_DUP_MD;
  1334. switch (skge->speed) {
  1335. case SPEED_1000:
  1336. ctrl |= PHY_CT_SP1000;
  1337. break;
  1338. case SPEED_100:
  1339. ctrl |= PHY_CT_SP100;
  1340. break;
  1341. }
  1342. ctrl |= PHY_CT_RESET;
  1343. }
  1344. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1345. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1346. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1347. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1348. if (skge->autoneg == AUTONEG_ENABLE)
  1349. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1350. else
  1351. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1352. }
  1353. static void yukon_reset(struct skge_hw *hw, int port)
  1354. {
  1355. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1356. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1357. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1358. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1359. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1360. gma_write16(hw, port, GM_RX_CTRL,
  1361. gma_read16(hw, port, GM_RX_CTRL)
  1362. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1363. }
  1364. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1365. static int is_yukon_lite_a0(struct skge_hw *hw)
  1366. {
  1367. u32 reg;
  1368. int ret;
  1369. if (hw->chip_id != CHIP_ID_YUKON)
  1370. return 0;
  1371. reg = skge_read32(hw, B2_FAR);
  1372. skge_write8(hw, B2_FAR + 3, 0xff);
  1373. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1374. skge_write32(hw, B2_FAR, reg);
  1375. return ret;
  1376. }
  1377. static void yukon_mac_init(struct skge_hw *hw, int port)
  1378. {
  1379. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1380. int i;
  1381. u32 reg;
  1382. const u8 *addr = hw->dev[port]->dev_addr;
  1383. /* WA code for COMA mode -- set PHY reset */
  1384. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1385. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1386. reg = skge_read32(hw, B2_GP_IO);
  1387. reg |= GP_DIR_9 | GP_IO_9;
  1388. skge_write32(hw, B2_GP_IO, reg);
  1389. }
  1390. /* hard reset */
  1391. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1392. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1393. /* WA code for COMA mode -- clear PHY reset */
  1394. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1395. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1396. reg = skge_read32(hw, B2_GP_IO);
  1397. reg |= GP_DIR_9;
  1398. reg &= ~GP_IO_9;
  1399. skge_write32(hw, B2_GP_IO, reg);
  1400. }
  1401. /* Set hardware config mode */
  1402. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1403. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1404. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1405. /* Clear GMC reset */
  1406. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1407. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1408. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1409. if (skge->autoneg == AUTONEG_DISABLE) {
  1410. reg = GM_GPCR_AU_ALL_DIS;
  1411. gma_write16(hw, port, GM_GP_CTRL,
  1412. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1413. switch (skge->speed) {
  1414. case SPEED_1000:
  1415. reg |= GM_GPCR_SPEED_1000;
  1416. /* fallthru */
  1417. case SPEED_100:
  1418. reg |= GM_GPCR_SPEED_100;
  1419. }
  1420. if (skge->duplex == DUPLEX_FULL)
  1421. reg |= GM_GPCR_DUP_FULL;
  1422. } else
  1423. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1424. switch (skge->flow_control) {
  1425. case FLOW_MODE_NONE:
  1426. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1427. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1428. break;
  1429. case FLOW_MODE_LOC_SEND:
  1430. /* disable Rx flow-control */
  1431. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1432. }
  1433. gma_write16(hw, port, GM_GP_CTRL, reg);
  1434. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1435. yukon_init(hw, port);
  1436. /* MIB clear */
  1437. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1438. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1439. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1440. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1441. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1442. /* transmit control */
  1443. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1444. /* receive control reg: unicast + multicast + no FCS */
  1445. gma_write16(hw, port, GM_RX_CTRL,
  1446. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1447. /* transmit flow control */
  1448. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1449. /* transmit parameter */
  1450. gma_write16(hw, port, GM_TX_PARAM,
  1451. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1452. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1453. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1454. /* serial mode register */
  1455. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1456. if (hw->dev[port]->mtu > 1500)
  1457. reg |= GM_SMOD_JUMBO_ENA;
  1458. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1459. /* physical address: used for pause frames */
  1460. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1461. /* virtual address for data */
  1462. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1463. /* enable interrupt mask for counter overflows */
  1464. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1465. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1466. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1467. /* Initialize Mac Fifo */
  1468. /* Configure Rx MAC FIFO */
  1469. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1470. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1471. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1472. if (is_yukon_lite_a0(hw))
  1473. reg &= ~GMF_RX_F_FL_ON;
  1474. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1475. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1476. /*
  1477. * because Pause Packet Truncation in GMAC is not working
  1478. * we have to increase the Flush Threshold to 64 bytes
  1479. * in order to flush pause packets in Rx FIFO on Yukon-1
  1480. */
  1481. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1482. /* Configure Tx MAC FIFO */
  1483. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1484. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1485. }
  1486. /* Go into power down mode */
  1487. static void yukon_suspend(struct skge_hw *hw, int port)
  1488. {
  1489. u16 ctrl;
  1490. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1491. ctrl |= PHY_M_PC_POL_R_DIS;
  1492. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1493. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1494. ctrl |= PHY_CT_RESET;
  1495. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1496. /* switch IEEE compatible power down mode on */
  1497. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1498. ctrl |= PHY_CT_PDOWN;
  1499. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1500. }
  1501. static void yukon_stop(struct skge_port *skge)
  1502. {
  1503. struct skge_hw *hw = skge->hw;
  1504. int port = skge->port;
  1505. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1506. yukon_reset(hw, port);
  1507. gma_write16(hw, port, GM_GP_CTRL,
  1508. gma_read16(hw, port, GM_GP_CTRL)
  1509. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1510. gma_read16(hw, port, GM_GP_CTRL);
  1511. yukon_suspend(hw, port);
  1512. /* set GPHY Control reset */
  1513. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1514. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1515. }
  1516. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1517. {
  1518. struct skge_hw *hw = skge->hw;
  1519. int port = skge->port;
  1520. int i;
  1521. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1522. | gma_read32(hw, port, GM_TXO_OK_LO);
  1523. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1524. | gma_read32(hw, port, GM_RXO_OK_LO);
  1525. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1526. data[i] = gma_read32(hw, port,
  1527. skge_stats[i].gma_offset);
  1528. }
  1529. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1530. {
  1531. struct net_device *dev = hw->dev[port];
  1532. struct skge_port *skge = netdev_priv(dev);
  1533. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1534. if (netif_msg_intr(skge))
  1535. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1536. dev->name, status);
  1537. if (status & GM_IS_RX_FF_OR) {
  1538. ++skge->net_stats.rx_fifo_errors;
  1539. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1540. }
  1541. if (status & GM_IS_TX_FF_UR) {
  1542. ++skge->net_stats.tx_fifo_errors;
  1543. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1544. }
  1545. }
  1546. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1547. {
  1548. switch (aux & PHY_M_PS_SPEED_MSK) {
  1549. case PHY_M_PS_SPEED_1000:
  1550. return SPEED_1000;
  1551. case PHY_M_PS_SPEED_100:
  1552. return SPEED_100;
  1553. default:
  1554. return SPEED_10;
  1555. }
  1556. }
  1557. static void yukon_link_up(struct skge_port *skge)
  1558. {
  1559. struct skge_hw *hw = skge->hw;
  1560. int port = skge->port;
  1561. u16 reg;
  1562. /* Enable Transmit FIFO Underrun */
  1563. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1564. reg = gma_read16(hw, port, GM_GP_CTRL);
  1565. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1566. reg |= GM_GPCR_DUP_FULL;
  1567. /* enable Rx/Tx */
  1568. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1569. gma_write16(hw, port, GM_GP_CTRL, reg);
  1570. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1571. skge_link_up(skge);
  1572. }
  1573. static void yukon_link_down(struct skge_port *skge)
  1574. {
  1575. struct skge_hw *hw = skge->hw;
  1576. int port = skge->port;
  1577. u16 ctrl;
  1578. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1579. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1580. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1581. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1582. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1583. /* restore Asymmetric Pause bit */
  1584. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1585. gm_phy_read(hw, port,
  1586. PHY_MARV_AUNE_ADV)
  1587. | PHY_M_AN_ASP);
  1588. }
  1589. yukon_reset(hw, port);
  1590. skge_link_down(skge);
  1591. yukon_init(hw, port);
  1592. }
  1593. static void yukon_phy_intr(struct skge_port *skge)
  1594. {
  1595. struct skge_hw *hw = skge->hw;
  1596. int port = skge->port;
  1597. const char *reason = NULL;
  1598. u16 istatus, phystat;
  1599. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1600. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1601. if (netif_msg_intr(skge))
  1602. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1603. skge->netdev->name, istatus, phystat);
  1604. if (istatus & PHY_M_IS_AN_COMPL) {
  1605. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1606. & PHY_M_AN_RF) {
  1607. reason = "remote fault";
  1608. goto failed;
  1609. }
  1610. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1611. reason = "master/slave fault";
  1612. goto failed;
  1613. }
  1614. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1615. reason = "speed/duplex";
  1616. goto failed;
  1617. }
  1618. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1619. ? DUPLEX_FULL : DUPLEX_HALF;
  1620. skge->speed = yukon_speed(hw, phystat);
  1621. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1622. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1623. case PHY_M_PS_PAUSE_MSK:
  1624. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1625. break;
  1626. case PHY_M_PS_RX_P_EN:
  1627. skge->flow_control = FLOW_MODE_REM_SEND;
  1628. break;
  1629. case PHY_M_PS_TX_P_EN:
  1630. skge->flow_control = FLOW_MODE_LOC_SEND;
  1631. break;
  1632. default:
  1633. skge->flow_control = FLOW_MODE_NONE;
  1634. }
  1635. if (skge->flow_control == FLOW_MODE_NONE ||
  1636. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1637. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1638. else
  1639. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1640. yukon_link_up(skge);
  1641. return;
  1642. }
  1643. if (istatus & PHY_M_IS_LSP_CHANGE)
  1644. skge->speed = yukon_speed(hw, phystat);
  1645. if (istatus & PHY_M_IS_DUP_CHANGE)
  1646. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1647. if (istatus & PHY_M_IS_LST_CHANGE) {
  1648. if (phystat & PHY_M_PS_LINK_UP)
  1649. yukon_link_up(skge);
  1650. else
  1651. yukon_link_down(skge);
  1652. }
  1653. return;
  1654. failed:
  1655. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1656. skge->netdev->name, reason);
  1657. /* XXX restart autonegotiation? */
  1658. }
  1659. static void skge_phy_reset(struct skge_port *skge)
  1660. {
  1661. struct skge_hw *hw = skge->hw;
  1662. int port = skge->port;
  1663. netif_stop_queue(skge->netdev);
  1664. netif_carrier_off(skge->netdev);
  1665. spin_lock_bh(&hw->phy_lock);
  1666. if (hw->chip_id == CHIP_ID_GENESIS) {
  1667. genesis_reset(hw, port);
  1668. genesis_mac_init(hw, port);
  1669. } else {
  1670. yukon_reset(hw, port);
  1671. yukon_init(hw, port);
  1672. }
  1673. spin_unlock_bh(&hw->phy_lock);
  1674. }
  1675. /* Basic MII support */
  1676. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1677. {
  1678. struct mii_ioctl_data *data = if_mii(ifr);
  1679. struct skge_port *skge = netdev_priv(dev);
  1680. struct skge_hw *hw = skge->hw;
  1681. int err = -EOPNOTSUPP;
  1682. if (!netif_running(dev))
  1683. return -ENODEV; /* Phy still in reset */
  1684. switch(cmd) {
  1685. case SIOCGMIIPHY:
  1686. data->phy_id = hw->phy_addr;
  1687. /* fallthru */
  1688. case SIOCGMIIREG: {
  1689. u16 val = 0;
  1690. spin_lock_bh(&hw->phy_lock);
  1691. if (hw->chip_id == CHIP_ID_GENESIS)
  1692. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1693. else
  1694. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1695. spin_unlock_bh(&hw->phy_lock);
  1696. data->val_out = val;
  1697. break;
  1698. }
  1699. case SIOCSMIIREG:
  1700. if (!capable(CAP_NET_ADMIN))
  1701. return -EPERM;
  1702. spin_lock_bh(&hw->phy_lock);
  1703. if (hw->chip_id == CHIP_ID_GENESIS)
  1704. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1705. data->val_in);
  1706. else
  1707. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1708. data->val_in);
  1709. spin_unlock_bh(&hw->phy_lock);
  1710. break;
  1711. }
  1712. return err;
  1713. }
  1714. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1715. {
  1716. u32 end;
  1717. start /= 8;
  1718. len /= 8;
  1719. end = start + len - 1;
  1720. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1721. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1722. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1723. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1724. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1725. if (q == Q_R1 || q == Q_R2) {
  1726. /* Set thresholds on receive queue's */
  1727. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1728. start + (2*len)/3);
  1729. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1730. start + (len/3));
  1731. } else {
  1732. /* Enable store & forward on Tx queue's because
  1733. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1734. */
  1735. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1736. }
  1737. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1738. }
  1739. /* Setup Bus Memory Interface */
  1740. static void skge_qset(struct skge_port *skge, u16 q,
  1741. const struct skge_element *e)
  1742. {
  1743. struct skge_hw *hw = skge->hw;
  1744. u32 watermark = 0x600;
  1745. u64 base = skge->dma + (e->desc - skge->mem);
  1746. /* optimization to reduce window on 32bit/33mhz */
  1747. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1748. watermark /= 2;
  1749. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1750. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1751. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1752. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1753. }
  1754. static int skge_up(struct net_device *dev)
  1755. {
  1756. struct skge_port *skge = netdev_priv(dev);
  1757. struct skge_hw *hw = skge->hw;
  1758. int port = skge->port;
  1759. u32 chunk, ram_addr;
  1760. size_t rx_size, tx_size;
  1761. int err;
  1762. if (netif_msg_ifup(skge))
  1763. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1764. if (dev->mtu > RX_BUF_SIZE)
  1765. skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
  1766. else
  1767. skge->rx_buf_size = RX_BUF_SIZE;
  1768. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1769. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1770. skge->mem_size = tx_size + rx_size;
  1771. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1772. if (!skge->mem)
  1773. return -ENOMEM;
  1774. memset(skge->mem, 0, skge->mem_size);
  1775. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1776. goto free_pci_mem;
  1777. err = skge_rx_fill(skge);
  1778. if (err)
  1779. goto free_rx_ring;
  1780. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1781. skge->dma + rx_size)))
  1782. goto free_rx_ring;
  1783. skge->tx_avail = skge->tx_ring.count - 1;
  1784. /* Enable IRQ from port */
  1785. hw->intr_mask |= portirqmask[port];
  1786. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1787. /* Initialize MAC */
  1788. spin_lock_bh(&hw->phy_lock);
  1789. if (hw->chip_id == CHIP_ID_GENESIS)
  1790. genesis_mac_init(hw, port);
  1791. else
  1792. yukon_mac_init(hw, port);
  1793. spin_unlock_bh(&hw->phy_lock);
  1794. /* Configure RAMbuffers */
  1795. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1796. ram_addr = hw->ram_offset + 2 * chunk * port;
  1797. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1798. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1799. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1800. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1801. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1802. /* Start receiver BMU */
  1803. wmb();
  1804. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1805. skge_led(skge, LED_MODE_ON);
  1806. return 0;
  1807. free_rx_ring:
  1808. skge_rx_clean(skge);
  1809. kfree(skge->rx_ring.start);
  1810. free_pci_mem:
  1811. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1812. skge->mem = NULL;
  1813. return err;
  1814. }
  1815. static int skge_down(struct net_device *dev)
  1816. {
  1817. struct skge_port *skge = netdev_priv(dev);
  1818. struct skge_hw *hw = skge->hw;
  1819. int port = skge->port;
  1820. if (skge->mem == NULL)
  1821. return 0;
  1822. if (netif_msg_ifdown(skge))
  1823. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1824. netif_stop_queue(dev);
  1825. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1826. if (hw->chip_id == CHIP_ID_GENESIS)
  1827. genesis_stop(skge);
  1828. else
  1829. yukon_stop(skge);
  1830. hw->intr_mask &= ~portirqmask[skge->port];
  1831. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1832. /* Stop transmitter */
  1833. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1834. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1835. RB_RST_SET|RB_DIS_OP_MD);
  1836. /* Disable Force Sync bit and Enable Alloc bit */
  1837. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1838. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1839. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1840. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1841. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1842. /* Reset PCI FIFO */
  1843. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1844. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1845. /* Reset the RAM Buffer async Tx queue */
  1846. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1847. /* stop receiver */
  1848. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1849. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1850. RB_RST_SET|RB_DIS_OP_MD);
  1851. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1852. if (hw->chip_id == CHIP_ID_GENESIS) {
  1853. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1854. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1855. } else {
  1856. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1857. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1858. }
  1859. skge_led(skge, LED_MODE_OFF);
  1860. skge_tx_clean(skge);
  1861. skge_rx_clean(skge);
  1862. kfree(skge->rx_ring.start);
  1863. kfree(skge->tx_ring.start);
  1864. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1865. skge->mem = NULL;
  1866. return 0;
  1867. }
  1868. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1869. {
  1870. struct skge_port *skge = netdev_priv(dev);
  1871. struct skge_hw *hw = skge->hw;
  1872. struct skge_ring *ring = &skge->tx_ring;
  1873. struct skge_element *e;
  1874. struct skge_tx_desc *td;
  1875. int i;
  1876. u32 control, len;
  1877. u64 map;
  1878. unsigned long flags;
  1879. skb = skb_padto(skb, ETH_ZLEN);
  1880. if (!skb)
  1881. return NETDEV_TX_OK;
  1882. local_irq_save(flags);
  1883. if (!spin_trylock(&skge->tx_lock)) {
  1884. /* Collision - tell upper layer to requeue */
  1885. local_irq_restore(flags);
  1886. return NETDEV_TX_LOCKED;
  1887. }
  1888. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1889. if (!netif_queue_stopped(dev)) {
  1890. netif_stop_queue(dev);
  1891. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1892. dev->name);
  1893. }
  1894. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1895. return NETDEV_TX_BUSY;
  1896. }
  1897. e = ring->to_use;
  1898. td = e->desc;
  1899. e->skb = skb;
  1900. len = skb_headlen(skb);
  1901. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1902. pci_unmap_addr_set(e, mapaddr, map);
  1903. pci_unmap_len_set(e, maplen, len);
  1904. td->dma_lo = map;
  1905. td->dma_hi = map >> 32;
  1906. if (skb->ip_summed == CHECKSUM_HW) {
  1907. int offset = skb->h.raw - skb->data;
  1908. /* This seems backwards, but it is what the sk98lin
  1909. * does. Looks like hardware is wrong?
  1910. */
  1911. if (skb->h.ipiph->protocol == IPPROTO_UDP
  1912. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1913. control = BMU_TCP_CHECK;
  1914. else
  1915. control = BMU_UDP_CHECK;
  1916. td->csum_offs = 0;
  1917. td->csum_start = offset;
  1918. td->csum_write = offset + skb->csum;
  1919. } else
  1920. control = BMU_CHECK;
  1921. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1922. control |= BMU_EOF| BMU_IRQ_EOF;
  1923. else {
  1924. struct skge_tx_desc *tf = td;
  1925. control |= BMU_STFWD;
  1926. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1927. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1928. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1929. frag->size, PCI_DMA_TODEVICE);
  1930. e = e->next;
  1931. e->skb = NULL;
  1932. tf = e->desc;
  1933. tf->dma_lo = map;
  1934. tf->dma_hi = (u64) map >> 32;
  1935. pci_unmap_addr_set(e, mapaddr, map);
  1936. pci_unmap_len_set(e, maplen, frag->size);
  1937. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1938. }
  1939. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1940. }
  1941. /* Make sure all the descriptors written */
  1942. wmb();
  1943. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1944. wmb();
  1945. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1946. if (netif_msg_tx_queued(skge))
  1947. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1948. dev->name, e - ring->start, skb->len);
  1949. ring->to_use = e->next;
  1950. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1951. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1952. pr_debug("%s: transmit queue full\n", dev->name);
  1953. netif_stop_queue(dev);
  1954. }
  1955. dev->trans_start = jiffies;
  1956. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1957. return NETDEV_TX_OK;
  1958. }
  1959. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1960. {
  1961. /* This ring element can be skb or fragment */
  1962. if (e->skb) {
  1963. pci_unmap_single(hw->pdev,
  1964. pci_unmap_addr(e, mapaddr),
  1965. pci_unmap_len(e, maplen),
  1966. PCI_DMA_TODEVICE);
  1967. dev_kfree_skb_any(e->skb);
  1968. e->skb = NULL;
  1969. } else {
  1970. pci_unmap_page(hw->pdev,
  1971. pci_unmap_addr(e, mapaddr),
  1972. pci_unmap_len(e, maplen),
  1973. PCI_DMA_TODEVICE);
  1974. }
  1975. }
  1976. static void skge_tx_clean(struct skge_port *skge)
  1977. {
  1978. struct skge_ring *ring = &skge->tx_ring;
  1979. struct skge_element *e;
  1980. unsigned long flags;
  1981. spin_lock_irqsave(&skge->tx_lock, flags);
  1982. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1983. ++skge->tx_avail;
  1984. skge_tx_free(skge->hw, e);
  1985. }
  1986. ring->to_clean = e;
  1987. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1988. }
  1989. static void skge_tx_timeout(struct net_device *dev)
  1990. {
  1991. struct skge_port *skge = netdev_priv(dev);
  1992. if (netif_msg_timer(skge))
  1993. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  1994. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  1995. skge_tx_clean(skge);
  1996. }
  1997. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  1998. {
  1999. int err;
  2000. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2001. return -EINVAL;
  2002. if (!netif_running(dev)) {
  2003. dev->mtu = new_mtu;
  2004. return 0;
  2005. }
  2006. skge_down(dev);
  2007. dev->mtu = new_mtu;
  2008. err = skge_up(dev);
  2009. if (err)
  2010. dev_close(dev);
  2011. return err;
  2012. }
  2013. static void genesis_set_multicast(struct net_device *dev)
  2014. {
  2015. struct skge_port *skge = netdev_priv(dev);
  2016. struct skge_hw *hw = skge->hw;
  2017. int port = skge->port;
  2018. int i, count = dev->mc_count;
  2019. struct dev_mc_list *list = dev->mc_list;
  2020. u32 mode;
  2021. u8 filter[8];
  2022. mode = xm_read32(hw, port, XM_MODE);
  2023. mode |= XM_MD_ENA_HASH;
  2024. if (dev->flags & IFF_PROMISC)
  2025. mode |= XM_MD_ENA_PROM;
  2026. else
  2027. mode &= ~XM_MD_ENA_PROM;
  2028. if (dev->flags & IFF_ALLMULTI)
  2029. memset(filter, 0xff, sizeof(filter));
  2030. else {
  2031. memset(filter, 0, sizeof(filter));
  2032. for (i = 0; list && i < count; i++, list = list->next) {
  2033. u32 crc, bit;
  2034. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2035. bit = ~crc & 0x3f;
  2036. filter[bit/8] |= 1 << (bit%8);
  2037. }
  2038. }
  2039. xm_write32(hw, port, XM_MODE, mode);
  2040. xm_outhash(hw, port, XM_HSM, filter);
  2041. }
  2042. static void yukon_set_multicast(struct net_device *dev)
  2043. {
  2044. struct skge_port *skge = netdev_priv(dev);
  2045. struct skge_hw *hw = skge->hw;
  2046. int port = skge->port;
  2047. struct dev_mc_list *list = dev->mc_list;
  2048. u16 reg;
  2049. u8 filter[8];
  2050. memset(filter, 0, sizeof(filter));
  2051. reg = gma_read16(hw, port, GM_RX_CTRL);
  2052. reg |= GM_RXCR_UCF_ENA;
  2053. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2054. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2055. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2056. memset(filter, 0xff, sizeof(filter));
  2057. else if (dev->mc_count == 0) /* no multicast */
  2058. reg &= ~GM_RXCR_MCF_ENA;
  2059. else {
  2060. int i;
  2061. reg |= GM_RXCR_MCF_ENA;
  2062. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2063. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2064. filter[bit/8] |= 1 << (bit%8);
  2065. }
  2066. }
  2067. gma_write16(hw, port, GM_MC_ADDR_H1,
  2068. (u16)filter[0] | ((u16)filter[1] << 8));
  2069. gma_write16(hw, port, GM_MC_ADDR_H2,
  2070. (u16)filter[2] | ((u16)filter[3] << 8));
  2071. gma_write16(hw, port, GM_MC_ADDR_H3,
  2072. (u16)filter[4] | ((u16)filter[5] << 8));
  2073. gma_write16(hw, port, GM_MC_ADDR_H4,
  2074. (u16)filter[6] | ((u16)filter[7] << 8));
  2075. gma_write16(hw, port, GM_RX_CTRL, reg);
  2076. }
  2077. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2078. {
  2079. if (hw->chip_id == CHIP_ID_GENESIS)
  2080. return status >> XMR_FS_LEN_SHIFT;
  2081. else
  2082. return status >> GMR_FS_LEN_SHIFT;
  2083. }
  2084. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2085. {
  2086. if (hw->chip_id == CHIP_ID_GENESIS)
  2087. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2088. else
  2089. return (status & GMR_FS_ANY_ERR) ||
  2090. (status & GMR_FS_RX_OK) == 0;
  2091. }
  2092. /* Get receive buffer from descriptor.
  2093. * Handles copy of small buffers and reallocation failures
  2094. */
  2095. static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
  2096. struct skge_element *e,
  2097. u32 control, u32 status, u16 csum)
  2098. {
  2099. struct sk_buff *skb;
  2100. u16 len = control & BMU_BBC;
  2101. if (unlikely(netif_msg_rx_status(skge)))
  2102. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2103. skge->netdev->name, e - skge->rx_ring.start,
  2104. status, len);
  2105. if (len > skge->rx_buf_size)
  2106. goto error;
  2107. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2108. goto error;
  2109. if (bad_phy_status(skge->hw, status))
  2110. goto error;
  2111. if (phy_length(skge->hw, status) != len)
  2112. goto error;
  2113. if (len < RX_COPY_THRESHOLD) {
  2114. skb = dev_alloc_skb(len + 2);
  2115. if (!skb)
  2116. goto resubmit;
  2117. skb_reserve(skb, 2);
  2118. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2119. pci_unmap_addr(e, mapaddr),
  2120. len, PCI_DMA_FROMDEVICE);
  2121. memcpy(skb->data, e->skb->data, len);
  2122. pci_dma_sync_single_for_device(skge->hw->pdev,
  2123. pci_unmap_addr(e, mapaddr),
  2124. len, PCI_DMA_FROMDEVICE);
  2125. skge_rx_reuse(e, skge->rx_buf_size);
  2126. } else {
  2127. struct sk_buff *nskb;
  2128. nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  2129. if (!nskb)
  2130. goto resubmit;
  2131. pci_unmap_single(skge->hw->pdev,
  2132. pci_unmap_addr(e, mapaddr),
  2133. pci_unmap_len(e, maplen),
  2134. PCI_DMA_FROMDEVICE);
  2135. skb = e->skb;
  2136. prefetch(skb->data);
  2137. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2138. }
  2139. skb_put(skb, len);
  2140. skb->dev = skge->netdev;
  2141. if (skge->rx_csum) {
  2142. skb->csum = csum;
  2143. skb->ip_summed = CHECKSUM_HW;
  2144. }
  2145. skb->protocol = eth_type_trans(skb, skge->netdev);
  2146. return skb;
  2147. error:
  2148. if (netif_msg_rx_err(skge))
  2149. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2150. skge->netdev->name, e - skge->rx_ring.start,
  2151. control, status);
  2152. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2153. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2154. skge->net_stats.rx_length_errors++;
  2155. if (status & XMR_FS_FRA_ERR)
  2156. skge->net_stats.rx_frame_errors++;
  2157. if (status & XMR_FS_FCS_ERR)
  2158. skge->net_stats.rx_crc_errors++;
  2159. } else {
  2160. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2161. skge->net_stats.rx_length_errors++;
  2162. if (status & GMR_FS_FRAGMENT)
  2163. skge->net_stats.rx_frame_errors++;
  2164. if (status & GMR_FS_CRC_ERR)
  2165. skge->net_stats.rx_crc_errors++;
  2166. }
  2167. resubmit:
  2168. skge_rx_reuse(e, skge->rx_buf_size);
  2169. return NULL;
  2170. }
  2171. static int skge_poll(struct net_device *dev, int *budget)
  2172. {
  2173. struct skge_port *skge = netdev_priv(dev);
  2174. struct skge_hw *hw = skge->hw;
  2175. struct skge_ring *ring = &skge->rx_ring;
  2176. struct skge_element *e;
  2177. unsigned int to_do = min(dev->quota, *budget);
  2178. unsigned int work_done = 0;
  2179. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2180. struct skge_rx_desc *rd = e->desc;
  2181. struct sk_buff *skb;
  2182. u32 control;
  2183. rmb();
  2184. control = rd->control;
  2185. if (control & BMU_OWN)
  2186. break;
  2187. skb = skge_rx_get(skge, e, control, rd->status,
  2188. le16_to_cpu(rd->csum2));
  2189. if (likely(skb)) {
  2190. dev->last_rx = jiffies;
  2191. netif_receive_skb(skb);
  2192. ++work_done;
  2193. } else
  2194. skge_rx_reuse(e, skge->rx_buf_size);
  2195. }
  2196. ring->to_clean = e;
  2197. /* restart receiver */
  2198. wmb();
  2199. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2200. CSR_START | CSR_IRQ_CL_F);
  2201. *budget -= work_done;
  2202. dev->quota -= work_done;
  2203. if (work_done >= to_do)
  2204. return 1; /* not done */
  2205. netif_rx_complete(dev);
  2206. hw->intr_mask |= portirqmask[skge->port];
  2207. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2208. skge_read32(hw, B0_IMSK);
  2209. return 0;
  2210. }
  2211. static inline void skge_tx_intr(struct net_device *dev)
  2212. {
  2213. struct skge_port *skge = netdev_priv(dev);
  2214. struct skge_hw *hw = skge->hw;
  2215. struct skge_ring *ring = &skge->tx_ring;
  2216. struct skge_element *e;
  2217. spin_lock(&skge->tx_lock);
  2218. for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) {
  2219. struct skge_tx_desc *td = e->desc;
  2220. u32 control;
  2221. rmb();
  2222. control = td->control;
  2223. if (control & BMU_OWN)
  2224. break;
  2225. if (unlikely(netif_msg_tx_done(skge)))
  2226. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2227. dev->name, e - ring->start, td->status);
  2228. skge_tx_free(hw, e);
  2229. e->skb = NULL;
  2230. ++skge->tx_avail;
  2231. }
  2232. ring->to_clean = e;
  2233. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2234. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2235. netif_wake_queue(dev);
  2236. spin_unlock(&skge->tx_lock);
  2237. }
  2238. /* Parity errors seem to happen when Genesis is connected to a switch
  2239. * with no other ports present. Heartbeat error??
  2240. */
  2241. static void skge_mac_parity(struct skge_hw *hw, int port)
  2242. {
  2243. struct net_device *dev = hw->dev[port];
  2244. if (dev) {
  2245. struct skge_port *skge = netdev_priv(dev);
  2246. ++skge->net_stats.tx_heartbeat_errors;
  2247. }
  2248. if (hw->chip_id == CHIP_ID_GENESIS)
  2249. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2250. MFF_CLR_PERR);
  2251. else
  2252. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2253. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2254. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2255. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2256. }
  2257. static void skge_pci_clear(struct skge_hw *hw)
  2258. {
  2259. u16 status;
  2260. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2261. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2262. pci_write_config_word(hw->pdev, PCI_STATUS,
  2263. status | PCI_STATUS_ERROR_BITS);
  2264. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2265. }
  2266. static void skge_mac_intr(struct skge_hw *hw, int port)
  2267. {
  2268. if (hw->chip_id == CHIP_ID_GENESIS)
  2269. genesis_mac_intr(hw, port);
  2270. else
  2271. yukon_mac_intr(hw, port);
  2272. }
  2273. /* Handle device specific framing and timeout interrupts */
  2274. static void skge_error_irq(struct skge_hw *hw)
  2275. {
  2276. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2277. if (hw->chip_id == CHIP_ID_GENESIS) {
  2278. /* clear xmac errors */
  2279. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2280. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2281. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2282. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2283. } else {
  2284. /* Timestamp (unused) overflow */
  2285. if (hwstatus & IS_IRQ_TIST_OV)
  2286. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2287. }
  2288. if (hwstatus & IS_RAM_RD_PAR) {
  2289. printk(KERN_ERR PFX "Ram read data parity error\n");
  2290. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2291. }
  2292. if (hwstatus & IS_RAM_WR_PAR) {
  2293. printk(KERN_ERR PFX "Ram write data parity error\n");
  2294. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2295. }
  2296. if (hwstatus & IS_M1_PAR_ERR)
  2297. skge_mac_parity(hw, 0);
  2298. if (hwstatus & IS_M2_PAR_ERR)
  2299. skge_mac_parity(hw, 1);
  2300. if (hwstatus & IS_R1_PAR_ERR)
  2301. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2302. if (hwstatus & IS_R2_PAR_ERR)
  2303. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2304. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2305. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2306. hwstatus);
  2307. skge_pci_clear(hw);
  2308. /* if error still set then just ignore it */
  2309. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2310. if (hwstatus & IS_IRQ_STAT) {
  2311. pr_debug("IRQ status %x: still set ignoring hardware errors\n",
  2312. hwstatus);
  2313. hw->intr_mask &= ~IS_HW_ERR;
  2314. }
  2315. }
  2316. }
  2317. /*
  2318. * Interrupt from PHY are handled in tasklet (soft irq)
  2319. * because accessing phy registers requires spin wait which might
  2320. * cause excess interrupt latency.
  2321. */
  2322. static void skge_extirq(unsigned long data)
  2323. {
  2324. struct skge_hw *hw = (struct skge_hw *) data;
  2325. int port;
  2326. spin_lock(&hw->phy_lock);
  2327. for (port = 0; port < 2; port++) {
  2328. struct net_device *dev = hw->dev[port];
  2329. if (dev && netif_running(dev)) {
  2330. struct skge_port *skge = netdev_priv(dev);
  2331. if (hw->chip_id != CHIP_ID_GENESIS)
  2332. yukon_phy_intr(skge);
  2333. else
  2334. bcom_phy_intr(skge);
  2335. }
  2336. }
  2337. spin_unlock(&hw->phy_lock);
  2338. local_irq_disable();
  2339. hw->intr_mask |= IS_EXT_REG;
  2340. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2341. local_irq_enable();
  2342. }
  2343. static inline void skge_wakeup(struct net_device *dev)
  2344. {
  2345. struct skge_port *skge = netdev_priv(dev);
  2346. prefetch(skge->rx_ring.to_clean);
  2347. netif_rx_schedule(dev);
  2348. }
  2349. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2350. {
  2351. struct skge_hw *hw = dev_id;
  2352. u32 status = skge_read32(hw, B0_SP_ISRC);
  2353. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2354. return IRQ_NONE;
  2355. status &= hw->intr_mask;
  2356. if (status & IS_R1_F) {
  2357. hw->intr_mask &= ~IS_R1_F;
  2358. skge_wakeup(hw->dev[0]);
  2359. }
  2360. if (status & IS_R2_F) {
  2361. hw->intr_mask &= ~IS_R2_F;
  2362. skge_wakeup(hw->dev[1]);
  2363. }
  2364. if (status & IS_XA1_F)
  2365. skge_tx_intr(hw->dev[0]);
  2366. if (status & IS_XA2_F)
  2367. skge_tx_intr(hw->dev[1]);
  2368. if (status & IS_PA_TO_RX1) {
  2369. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2370. ++skge->net_stats.rx_over_errors;
  2371. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2372. }
  2373. if (status & IS_PA_TO_RX2) {
  2374. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2375. ++skge->net_stats.rx_over_errors;
  2376. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2377. }
  2378. if (status & IS_PA_TO_TX1)
  2379. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2380. if (status & IS_PA_TO_TX2)
  2381. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2382. if (status & IS_MAC1)
  2383. skge_mac_intr(hw, 0);
  2384. if (status & IS_MAC2)
  2385. skge_mac_intr(hw, 1);
  2386. if (status & IS_HW_ERR)
  2387. skge_error_irq(hw);
  2388. if (status & IS_EXT_REG) {
  2389. hw->intr_mask &= ~IS_EXT_REG;
  2390. tasklet_schedule(&hw->ext_tasklet);
  2391. }
  2392. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2393. return IRQ_HANDLED;
  2394. }
  2395. #ifdef CONFIG_NET_POLL_CONTROLLER
  2396. static void skge_netpoll(struct net_device *dev)
  2397. {
  2398. struct skge_port *skge = netdev_priv(dev);
  2399. disable_irq(dev->irq);
  2400. skge_intr(dev->irq, skge->hw, NULL);
  2401. enable_irq(dev->irq);
  2402. }
  2403. #endif
  2404. static int skge_set_mac_address(struct net_device *dev, void *p)
  2405. {
  2406. struct skge_port *skge = netdev_priv(dev);
  2407. struct skge_hw *hw = skge->hw;
  2408. unsigned port = skge->port;
  2409. const struct sockaddr *addr = p;
  2410. if (!is_valid_ether_addr(addr->sa_data))
  2411. return -EADDRNOTAVAIL;
  2412. spin_lock_bh(&hw->phy_lock);
  2413. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2414. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2415. dev->dev_addr, ETH_ALEN);
  2416. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2417. dev->dev_addr, ETH_ALEN);
  2418. if (hw->chip_id == CHIP_ID_GENESIS)
  2419. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2420. else {
  2421. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2422. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2423. }
  2424. spin_unlock_bh(&hw->phy_lock);
  2425. return 0;
  2426. }
  2427. static const struct {
  2428. u8 id;
  2429. const char *name;
  2430. } skge_chips[] = {
  2431. { CHIP_ID_GENESIS, "Genesis" },
  2432. { CHIP_ID_YUKON, "Yukon" },
  2433. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2434. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2435. };
  2436. static const char *skge_board_name(const struct skge_hw *hw)
  2437. {
  2438. int i;
  2439. static char buf[16];
  2440. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2441. if (skge_chips[i].id == hw->chip_id)
  2442. return skge_chips[i].name;
  2443. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2444. return buf;
  2445. }
  2446. /*
  2447. * Setup the board data structure, but don't bring up
  2448. * the port(s)
  2449. */
  2450. static int skge_reset(struct skge_hw *hw)
  2451. {
  2452. u32 reg;
  2453. u16 ctst;
  2454. u8 t8, mac_cfg, pmd_type, phy_type;
  2455. int i;
  2456. ctst = skge_read16(hw, B0_CTST);
  2457. /* do a SW reset */
  2458. skge_write8(hw, B0_CTST, CS_RST_SET);
  2459. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2460. /* clear PCI errors, if any */
  2461. skge_pci_clear(hw);
  2462. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2463. /* restore CLK_RUN bits (for Yukon-Lite) */
  2464. skge_write16(hw, B0_CTST,
  2465. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2466. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2467. phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2468. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2469. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2470. switch (hw->chip_id) {
  2471. case CHIP_ID_GENESIS:
  2472. switch (phy_type) {
  2473. case SK_PHY_BCOM:
  2474. hw->phy_addr = PHY_ADDR_BCOM;
  2475. break;
  2476. default:
  2477. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2478. pci_name(hw->pdev), phy_type);
  2479. return -EOPNOTSUPP;
  2480. }
  2481. break;
  2482. case CHIP_ID_YUKON:
  2483. case CHIP_ID_YUKON_LITE:
  2484. case CHIP_ID_YUKON_LP:
  2485. if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2486. hw->copper = 1;
  2487. hw->phy_addr = PHY_ADDR_MARV;
  2488. break;
  2489. default:
  2490. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2491. pci_name(hw->pdev), hw->chip_id);
  2492. return -EOPNOTSUPP;
  2493. }
  2494. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2495. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2496. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2497. /* read the adapters RAM size */
  2498. t8 = skge_read8(hw, B2_E_0);
  2499. if (hw->chip_id == CHIP_ID_GENESIS) {
  2500. if (t8 == 3) {
  2501. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2502. hw->ram_size = 0x100000;
  2503. hw->ram_offset = 0x80000;
  2504. } else
  2505. hw->ram_size = t8 * 512;
  2506. }
  2507. else if (t8 == 0)
  2508. hw->ram_size = 0x20000;
  2509. else
  2510. hw->ram_size = t8 * 4096;
  2511. hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
  2512. if (hw->chip_id == CHIP_ID_GENESIS)
  2513. genesis_init(hw);
  2514. else {
  2515. /* switch power to VCC (WA for VAUX problem) */
  2516. skge_write8(hw, B0_POWER_CTRL,
  2517. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2518. /* avoid boards with stuck Hardware error bits */
  2519. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2520. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2521. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2522. hw->intr_mask &= ~IS_HW_ERR;
  2523. }
  2524. /* Clear PHY COMA */
  2525. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2526. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2527. reg &= ~PCI_PHY_COMA;
  2528. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2529. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2530. for (i = 0; i < hw->ports; i++) {
  2531. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2532. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2533. }
  2534. }
  2535. /* turn off hardware timer (unused) */
  2536. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2537. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2538. skge_write8(hw, B0_LED, LED_STAT_ON);
  2539. /* enable the Tx Arbiters */
  2540. for (i = 0; i < hw->ports; i++)
  2541. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2542. /* Initialize ram interface */
  2543. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2544. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2545. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2546. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2547. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2548. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2549. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2550. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2551. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2552. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2553. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2554. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2555. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2556. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2557. /* Set interrupt moderation for Transmit only
  2558. * Receive interrupts avoided by NAPI
  2559. */
  2560. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2561. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2562. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2563. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2564. spin_lock_bh(&hw->phy_lock);
  2565. for (i = 0; i < hw->ports; i++) {
  2566. if (hw->chip_id == CHIP_ID_GENESIS)
  2567. genesis_reset(hw, i);
  2568. else
  2569. yukon_reset(hw, i);
  2570. }
  2571. spin_unlock_bh(&hw->phy_lock);
  2572. return 0;
  2573. }
  2574. /* Initialize network device */
  2575. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2576. int highmem)
  2577. {
  2578. struct skge_port *skge;
  2579. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2580. if (!dev) {
  2581. printk(KERN_ERR "skge etherdev alloc failed");
  2582. return NULL;
  2583. }
  2584. SET_MODULE_OWNER(dev);
  2585. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2586. dev->open = skge_up;
  2587. dev->stop = skge_down;
  2588. dev->do_ioctl = skge_ioctl;
  2589. dev->hard_start_xmit = skge_xmit_frame;
  2590. dev->get_stats = skge_get_stats;
  2591. if (hw->chip_id == CHIP_ID_GENESIS)
  2592. dev->set_multicast_list = genesis_set_multicast;
  2593. else
  2594. dev->set_multicast_list = yukon_set_multicast;
  2595. dev->set_mac_address = skge_set_mac_address;
  2596. dev->change_mtu = skge_change_mtu;
  2597. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2598. dev->tx_timeout = skge_tx_timeout;
  2599. dev->watchdog_timeo = TX_WATCHDOG;
  2600. dev->poll = skge_poll;
  2601. dev->weight = NAPI_WEIGHT;
  2602. #ifdef CONFIG_NET_POLL_CONTROLLER
  2603. dev->poll_controller = skge_netpoll;
  2604. #endif
  2605. dev->irq = hw->pdev->irq;
  2606. dev->features = NETIF_F_LLTX;
  2607. if (highmem)
  2608. dev->features |= NETIF_F_HIGHDMA;
  2609. skge = netdev_priv(dev);
  2610. skge->netdev = dev;
  2611. skge->hw = hw;
  2612. skge->msg_enable = netif_msg_init(debug, default_msg);
  2613. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2614. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2615. /* Auto speed and flow control */
  2616. skge->autoneg = AUTONEG_ENABLE;
  2617. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2618. skge->duplex = -1;
  2619. skge->speed = -1;
  2620. skge->advertising = skge_supported_modes(hw);
  2621. hw->dev[port] = dev;
  2622. skge->port = port;
  2623. spin_lock_init(&skge->tx_lock);
  2624. if (hw->chip_id != CHIP_ID_GENESIS) {
  2625. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2626. skge->rx_csum = 1;
  2627. }
  2628. /* read the mac address */
  2629. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2630. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2631. /* device is off until link detection */
  2632. netif_carrier_off(dev);
  2633. netif_stop_queue(dev);
  2634. return dev;
  2635. }
  2636. static void __devinit skge_show_addr(struct net_device *dev)
  2637. {
  2638. const struct skge_port *skge = netdev_priv(dev);
  2639. if (netif_msg_probe(skge))
  2640. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2641. dev->name,
  2642. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2643. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2644. }
  2645. static int __devinit skge_probe(struct pci_dev *pdev,
  2646. const struct pci_device_id *ent)
  2647. {
  2648. struct net_device *dev, *dev1;
  2649. struct skge_hw *hw;
  2650. int err, using_dac = 0;
  2651. if ((err = pci_enable_device(pdev))) {
  2652. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2653. pci_name(pdev));
  2654. goto err_out;
  2655. }
  2656. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2657. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2658. pci_name(pdev));
  2659. goto err_out_disable_pdev;
  2660. }
  2661. pci_set_master(pdev);
  2662. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2663. using_dac = 1;
  2664. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2665. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2666. pci_name(pdev));
  2667. goto err_out_free_regions;
  2668. }
  2669. #ifdef __BIG_ENDIAN
  2670. /* byte swap descriptors in hardware */
  2671. {
  2672. u32 reg;
  2673. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2674. reg |= PCI_REV_DESC;
  2675. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2676. }
  2677. #endif
  2678. err = -ENOMEM;
  2679. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2680. if (!hw) {
  2681. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2682. pci_name(pdev));
  2683. goto err_out_free_regions;
  2684. }
  2685. hw->pdev = pdev;
  2686. spin_lock_init(&hw->phy_lock);
  2687. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2688. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2689. if (!hw->regs) {
  2690. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2691. pci_name(pdev));
  2692. goto err_out_free_hw;
  2693. }
  2694. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2695. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2696. pci_name(pdev), pdev->irq);
  2697. goto err_out_iounmap;
  2698. }
  2699. pci_set_drvdata(pdev, hw);
  2700. err = skge_reset(hw);
  2701. if (err)
  2702. goto err_out_free_irq;
  2703. printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
  2704. pci_resource_start(pdev, 0), pdev->irq,
  2705. skge_board_name(hw), hw->chip_rev);
  2706. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2707. goto err_out_led_off;
  2708. if ((err = register_netdev(dev))) {
  2709. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2710. pci_name(pdev));
  2711. goto err_out_free_netdev;
  2712. }
  2713. skge_show_addr(dev);
  2714. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2715. if (register_netdev(dev1) == 0)
  2716. skge_show_addr(dev1);
  2717. else {
  2718. /* Failure to register second port need not be fatal */
  2719. printk(KERN_WARNING PFX "register of second port failed\n");
  2720. hw->dev[1] = NULL;
  2721. free_netdev(dev1);
  2722. }
  2723. }
  2724. return 0;
  2725. err_out_free_netdev:
  2726. free_netdev(dev);
  2727. err_out_led_off:
  2728. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2729. err_out_free_irq:
  2730. free_irq(pdev->irq, hw);
  2731. err_out_iounmap:
  2732. iounmap(hw->regs);
  2733. err_out_free_hw:
  2734. kfree(hw);
  2735. err_out_free_regions:
  2736. pci_release_regions(pdev);
  2737. err_out_disable_pdev:
  2738. pci_disable_device(pdev);
  2739. pci_set_drvdata(pdev, NULL);
  2740. err_out:
  2741. return err;
  2742. }
  2743. static void __devexit skge_remove(struct pci_dev *pdev)
  2744. {
  2745. struct skge_hw *hw = pci_get_drvdata(pdev);
  2746. struct net_device *dev0, *dev1;
  2747. if (!hw)
  2748. return;
  2749. if ((dev1 = hw->dev[1]))
  2750. unregister_netdev(dev1);
  2751. dev0 = hw->dev[0];
  2752. unregister_netdev(dev0);
  2753. skge_write32(hw, B0_IMSK, 0);
  2754. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2755. skge_pci_clear(hw);
  2756. skge_write8(hw, B0_CTST, CS_RST_SET);
  2757. tasklet_kill(&hw->ext_tasklet);
  2758. free_irq(pdev->irq, hw);
  2759. pci_release_regions(pdev);
  2760. pci_disable_device(pdev);
  2761. if (dev1)
  2762. free_netdev(dev1);
  2763. free_netdev(dev0);
  2764. iounmap(hw->regs);
  2765. kfree(hw);
  2766. pci_set_drvdata(pdev, NULL);
  2767. }
  2768. #ifdef CONFIG_PM
  2769. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2770. {
  2771. struct skge_hw *hw = pci_get_drvdata(pdev);
  2772. int i, wol = 0;
  2773. for (i = 0; i < 2; i++) {
  2774. struct net_device *dev = hw->dev[i];
  2775. if (dev) {
  2776. struct skge_port *skge = netdev_priv(dev);
  2777. if (netif_running(dev)) {
  2778. netif_carrier_off(dev);
  2779. if (skge->wol)
  2780. netif_stop_queue(dev);
  2781. else
  2782. skge_down(dev);
  2783. }
  2784. netif_device_detach(dev);
  2785. wol |= skge->wol;
  2786. }
  2787. }
  2788. pci_save_state(pdev);
  2789. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2790. pci_disable_device(pdev);
  2791. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2792. return 0;
  2793. }
  2794. static int skge_resume(struct pci_dev *pdev)
  2795. {
  2796. struct skge_hw *hw = pci_get_drvdata(pdev);
  2797. int i;
  2798. pci_set_power_state(pdev, PCI_D0);
  2799. pci_restore_state(pdev);
  2800. pci_enable_wake(pdev, PCI_D0, 0);
  2801. skge_reset(hw);
  2802. for (i = 0; i < 2; i++) {
  2803. struct net_device *dev = hw->dev[i];
  2804. if (dev) {
  2805. netif_device_attach(dev);
  2806. if (netif_running(dev))
  2807. skge_up(dev);
  2808. }
  2809. }
  2810. return 0;
  2811. }
  2812. #endif
  2813. static struct pci_driver skge_driver = {
  2814. .name = DRV_NAME,
  2815. .id_table = skge_id_table,
  2816. .probe = skge_probe,
  2817. .remove = __devexit_p(skge_remove),
  2818. #ifdef CONFIG_PM
  2819. .suspend = skge_suspend,
  2820. .resume = skge_resume,
  2821. #endif
  2822. };
  2823. static int __init skge_init_module(void)
  2824. {
  2825. return pci_module_init(&skge_driver);
  2826. }
  2827. static void __exit skge_cleanup_module(void)
  2828. {
  2829. pci_unregister_driver(&skge_driver);
  2830. }
  2831. module_init(skge_init_module);
  2832. module_exit(skge_cleanup_module);