slub.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/cpu.h>
  19. #include <linux/cpuset.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/ctype.h>
  22. #include <linux/debugobjects.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/memory.h>
  25. #include <linux/math64.h>
  26. #include <linux/fault-inject.h>
  27. /*
  28. * Lock order:
  29. * 1. slab_lock(page)
  30. * 2. slab->list_lock
  31. *
  32. * The slab_lock protects operations on the object of a particular
  33. * slab and its metadata in the page struct. If the slab lock
  34. * has been taken then no allocations nor frees can be performed
  35. * on the objects in the slab nor can the slab be added or removed
  36. * from the partial or full lists since this would mean modifying
  37. * the page_struct of the slab.
  38. *
  39. * The list_lock protects the partial and full list on each node and
  40. * the partial slab counter. If taken then no new slabs may be added or
  41. * removed from the lists nor make the number of partial slabs be modified.
  42. * (Note that the total number of slabs is an atomic value that may be
  43. * modified without taking the list lock).
  44. *
  45. * The list_lock is a centralized lock and thus we avoid taking it as
  46. * much as possible. As long as SLUB does not have to handle partial
  47. * slabs, operations can continue without any centralized lock. F.e.
  48. * allocating a long series of objects that fill up slabs does not require
  49. * the list lock.
  50. *
  51. * The lock order is sometimes inverted when we are trying to get a slab
  52. * off a list. We take the list_lock and then look for a page on the list
  53. * to use. While we do that objects in the slabs may be freed. We can
  54. * only operate on the slab if we have also taken the slab_lock. So we use
  55. * a slab_trylock() on the slab. If trylock was successful then no frees
  56. * can occur anymore and we can use the slab for allocations etc. If the
  57. * slab_trylock() does not succeed then frees are in progress in the slab and
  58. * we must stay away from it for a while since we may cause a bouncing
  59. * cacheline if we try to acquire the lock. So go onto the next slab.
  60. * If all pages are busy then we may allocate a new slab instead of reusing
  61. * a partial slab. A new slab has noone operating on it and thus there is
  62. * no danger of cacheline contention.
  63. *
  64. * Interrupts are disabled during allocation and deallocation in order to
  65. * make the slab allocator safe to use in the context of an irq. In addition
  66. * interrupts are disabled to ensure that the processor does not change
  67. * while handling per_cpu slabs, due to kernel preemption.
  68. *
  69. * SLUB assigns one slab for allocation to each processor.
  70. * Allocations only occur from these slabs called cpu slabs.
  71. *
  72. * Slabs with free elements are kept on a partial list and during regular
  73. * operations no list for full slabs is used. If an object in a full slab is
  74. * freed then the slab will show up again on the partial lists.
  75. * We track full slabs for debugging purposes though because otherwise we
  76. * cannot scan all objects.
  77. *
  78. * Slabs are freed when they become empty. Teardown and setup is
  79. * minimal so we rely on the page allocators per cpu caches for
  80. * fast frees and allocs.
  81. *
  82. * Overloading of page flags that are otherwise used for LRU management.
  83. *
  84. * PageActive The slab is frozen and exempt from list processing.
  85. * This means that the slab is dedicated to a purpose
  86. * such as satisfying allocations for a specific
  87. * processor. Objects may be freed in the slab while
  88. * it is frozen but slab_free will then skip the usual
  89. * list operations. It is up to the processor holding
  90. * the slab to integrate the slab into the slab lists
  91. * when the slab is no longer needed.
  92. *
  93. * One use of this flag is to mark slabs that are
  94. * used for allocations. Then such a slab becomes a cpu
  95. * slab. The cpu slab may be equipped with an additional
  96. * freelist that allows lockless access to
  97. * free objects in addition to the regular freelist
  98. * that requires the slab lock.
  99. *
  100. * PageError Slab requires special handling due to debug
  101. * options set. This moves slab handling out of
  102. * the fast path and disables lockless freelists.
  103. */
  104. #ifdef CONFIG_SLUB_DEBUG
  105. #define SLABDEBUG 1
  106. #else
  107. #define SLABDEBUG 0
  108. #endif
  109. /*
  110. * Issues still to be resolved:
  111. *
  112. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  113. *
  114. * - Variable sizing of the per node arrays
  115. */
  116. /* Enable to test recovery from slab corruption on boot */
  117. #undef SLUB_RESILIENCY_TEST
  118. /*
  119. * Mininum number of partial slabs. These will be left on the partial
  120. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  121. */
  122. #define MIN_PARTIAL 5
  123. /*
  124. * Maximum number of desirable partial slabs.
  125. * The existence of more partial slabs makes kmem_cache_shrink
  126. * sort the partial list by the number of objects in the.
  127. */
  128. #define MAX_PARTIAL 10
  129. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  130. SLAB_POISON | SLAB_STORE_USER)
  131. /*
  132. * Set of flags that will prevent slab merging
  133. */
  134. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  135. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  136. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  137. SLAB_CACHE_DMA)
  138. #ifndef ARCH_KMALLOC_MINALIGN
  139. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  140. #endif
  141. #ifndef ARCH_SLAB_MINALIGN
  142. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  143. #endif
  144. #define OO_SHIFT 16
  145. #define OO_MASK ((1 << OO_SHIFT) - 1)
  146. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  147. /* Internal SLUB flags */
  148. #define __OBJECT_POISON 0x80000000 /* Poison object */
  149. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  150. static int kmem_size = sizeof(struct kmem_cache);
  151. #ifdef CONFIG_SMP
  152. static struct notifier_block slab_notifier;
  153. #endif
  154. static enum {
  155. DOWN, /* No slab functionality available */
  156. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  157. UP, /* Everything works but does not show up in sysfs */
  158. SYSFS /* Sysfs up */
  159. } slab_state = DOWN;
  160. /* A list of all slab caches on the system */
  161. static DECLARE_RWSEM(slub_lock);
  162. static LIST_HEAD(slab_caches);
  163. /*
  164. * Tracking user of a slab.
  165. */
  166. struct track {
  167. unsigned long addr; /* Called from address */
  168. int cpu; /* Was running on cpu */
  169. int pid; /* Pid context */
  170. unsigned long when; /* When did the operation occur */
  171. };
  172. enum track_item { TRACK_ALLOC, TRACK_FREE };
  173. #ifdef CONFIG_SLUB_DEBUG
  174. static int sysfs_slab_add(struct kmem_cache *);
  175. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  176. static void sysfs_slab_remove(struct kmem_cache *);
  177. #else
  178. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  179. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  180. { return 0; }
  181. static inline void sysfs_slab_remove(struct kmem_cache *s)
  182. {
  183. kfree(s);
  184. }
  185. #endif
  186. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  187. {
  188. #ifdef CONFIG_SLUB_STATS
  189. c->stat[si]++;
  190. #endif
  191. }
  192. /********************************************************************
  193. * Core slab cache functions
  194. *******************************************************************/
  195. int slab_is_available(void)
  196. {
  197. return slab_state >= UP;
  198. }
  199. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  200. {
  201. #ifdef CONFIG_NUMA
  202. return s->node[node];
  203. #else
  204. return &s->local_node;
  205. #endif
  206. }
  207. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  208. {
  209. #ifdef CONFIG_SMP
  210. return s->cpu_slab[cpu];
  211. #else
  212. return &s->cpu_slab;
  213. #endif
  214. }
  215. /* Verify that a pointer has an address that is valid within a slab page */
  216. static inline int check_valid_pointer(struct kmem_cache *s,
  217. struct page *page, const void *object)
  218. {
  219. void *base;
  220. if (!object)
  221. return 1;
  222. base = page_address(page);
  223. if (object < base || object >= base + page->objects * s->size ||
  224. (object - base) % s->size) {
  225. return 0;
  226. }
  227. return 1;
  228. }
  229. /*
  230. * Slow version of get and set free pointer.
  231. *
  232. * This version requires touching the cache lines of kmem_cache which
  233. * we avoid to do in the fast alloc free paths. There we obtain the offset
  234. * from the page struct.
  235. */
  236. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  237. {
  238. return *(void **)(object + s->offset);
  239. }
  240. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  241. {
  242. *(void **)(object + s->offset) = fp;
  243. }
  244. /* Loop over all objects in a slab */
  245. #define for_each_object(__p, __s, __addr, __objects) \
  246. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  247. __p += (__s)->size)
  248. /* Scan freelist */
  249. #define for_each_free_object(__p, __s, __free) \
  250. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  251. /* Determine object index from a given position */
  252. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  253. {
  254. return (p - addr) / s->size;
  255. }
  256. static inline struct kmem_cache_order_objects oo_make(int order,
  257. unsigned long size)
  258. {
  259. struct kmem_cache_order_objects x = {
  260. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  261. };
  262. return x;
  263. }
  264. static inline int oo_order(struct kmem_cache_order_objects x)
  265. {
  266. return x.x >> OO_SHIFT;
  267. }
  268. static inline int oo_objects(struct kmem_cache_order_objects x)
  269. {
  270. return x.x & OO_MASK;
  271. }
  272. #ifdef CONFIG_SLUB_DEBUG
  273. /*
  274. * Debug settings:
  275. */
  276. #ifdef CONFIG_SLUB_DEBUG_ON
  277. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  278. #else
  279. static int slub_debug;
  280. #endif
  281. static char *slub_debug_slabs;
  282. /*
  283. * Object debugging
  284. */
  285. static void print_section(char *text, u8 *addr, unsigned int length)
  286. {
  287. int i, offset;
  288. int newline = 1;
  289. char ascii[17];
  290. ascii[16] = 0;
  291. for (i = 0; i < length; i++) {
  292. if (newline) {
  293. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  294. newline = 0;
  295. }
  296. printk(KERN_CONT " %02x", addr[i]);
  297. offset = i % 16;
  298. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  299. if (offset == 15) {
  300. printk(KERN_CONT " %s\n", ascii);
  301. newline = 1;
  302. }
  303. }
  304. if (!newline) {
  305. i %= 16;
  306. while (i < 16) {
  307. printk(KERN_CONT " ");
  308. ascii[i] = ' ';
  309. i++;
  310. }
  311. printk(KERN_CONT " %s\n", ascii);
  312. }
  313. }
  314. static struct track *get_track(struct kmem_cache *s, void *object,
  315. enum track_item alloc)
  316. {
  317. struct track *p;
  318. if (s->offset)
  319. p = object + s->offset + sizeof(void *);
  320. else
  321. p = object + s->inuse;
  322. return p + alloc;
  323. }
  324. static void set_track(struct kmem_cache *s, void *object,
  325. enum track_item alloc, unsigned long addr)
  326. {
  327. struct track *p;
  328. if (s->offset)
  329. p = object + s->offset + sizeof(void *);
  330. else
  331. p = object + s->inuse;
  332. p += alloc;
  333. if (addr) {
  334. p->addr = addr;
  335. p->cpu = smp_processor_id();
  336. p->pid = current->pid;
  337. p->when = jiffies;
  338. } else
  339. memset(p, 0, sizeof(struct track));
  340. }
  341. static void init_tracking(struct kmem_cache *s, void *object)
  342. {
  343. if (!(s->flags & SLAB_STORE_USER))
  344. return;
  345. set_track(s, object, TRACK_FREE, 0UL);
  346. set_track(s, object, TRACK_ALLOC, 0UL);
  347. }
  348. static void print_track(const char *s, struct track *t)
  349. {
  350. if (!t->addr)
  351. return;
  352. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  353. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  354. }
  355. static void print_tracking(struct kmem_cache *s, void *object)
  356. {
  357. if (!(s->flags & SLAB_STORE_USER))
  358. return;
  359. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  360. print_track("Freed", get_track(s, object, TRACK_FREE));
  361. }
  362. static void print_page_info(struct page *page)
  363. {
  364. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  365. page, page->objects, page->inuse, page->freelist, page->flags);
  366. }
  367. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  368. {
  369. va_list args;
  370. char buf[100];
  371. va_start(args, fmt);
  372. vsnprintf(buf, sizeof(buf), fmt, args);
  373. va_end(args);
  374. printk(KERN_ERR "========================================"
  375. "=====================================\n");
  376. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  377. printk(KERN_ERR "----------------------------------------"
  378. "-------------------------------------\n\n");
  379. }
  380. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  381. {
  382. va_list args;
  383. char buf[100];
  384. va_start(args, fmt);
  385. vsnprintf(buf, sizeof(buf), fmt, args);
  386. va_end(args);
  387. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  388. }
  389. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  390. {
  391. unsigned int off; /* Offset of last byte */
  392. u8 *addr = page_address(page);
  393. print_tracking(s, p);
  394. print_page_info(page);
  395. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  396. p, p - addr, get_freepointer(s, p));
  397. if (p > addr + 16)
  398. print_section("Bytes b4", p - 16, 16);
  399. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  400. if (s->flags & SLAB_RED_ZONE)
  401. print_section("Redzone", p + s->objsize,
  402. s->inuse - s->objsize);
  403. if (s->offset)
  404. off = s->offset + sizeof(void *);
  405. else
  406. off = s->inuse;
  407. if (s->flags & SLAB_STORE_USER)
  408. off += 2 * sizeof(struct track);
  409. if (off != s->size)
  410. /* Beginning of the filler is the free pointer */
  411. print_section("Padding", p + off, s->size - off);
  412. dump_stack();
  413. }
  414. static void object_err(struct kmem_cache *s, struct page *page,
  415. u8 *object, char *reason)
  416. {
  417. slab_bug(s, "%s", reason);
  418. print_trailer(s, page, object);
  419. }
  420. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  421. {
  422. va_list args;
  423. char buf[100];
  424. va_start(args, fmt);
  425. vsnprintf(buf, sizeof(buf), fmt, args);
  426. va_end(args);
  427. slab_bug(s, "%s", buf);
  428. print_page_info(page);
  429. dump_stack();
  430. }
  431. static void init_object(struct kmem_cache *s, void *object, int active)
  432. {
  433. u8 *p = object;
  434. if (s->flags & __OBJECT_POISON) {
  435. memset(p, POISON_FREE, s->objsize - 1);
  436. p[s->objsize - 1] = POISON_END;
  437. }
  438. if (s->flags & SLAB_RED_ZONE)
  439. memset(p + s->objsize,
  440. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  441. s->inuse - s->objsize);
  442. }
  443. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  444. {
  445. while (bytes) {
  446. if (*start != (u8)value)
  447. return start;
  448. start++;
  449. bytes--;
  450. }
  451. return NULL;
  452. }
  453. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  454. void *from, void *to)
  455. {
  456. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  457. memset(from, data, to - from);
  458. }
  459. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  460. u8 *object, char *what,
  461. u8 *start, unsigned int value, unsigned int bytes)
  462. {
  463. u8 *fault;
  464. u8 *end;
  465. fault = check_bytes(start, value, bytes);
  466. if (!fault)
  467. return 1;
  468. end = start + bytes;
  469. while (end > fault && end[-1] == value)
  470. end--;
  471. slab_bug(s, "%s overwritten", what);
  472. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  473. fault, end - 1, fault[0], value);
  474. print_trailer(s, page, object);
  475. restore_bytes(s, what, value, fault, end);
  476. return 0;
  477. }
  478. /*
  479. * Object layout:
  480. *
  481. * object address
  482. * Bytes of the object to be managed.
  483. * If the freepointer may overlay the object then the free
  484. * pointer is the first word of the object.
  485. *
  486. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  487. * 0xa5 (POISON_END)
  488. *
  489. * object + s->objsize
  490. * Padding to reach word boundary. This is also used for Redzoning.
  491. * Padding is extended by another word if Redzoning is enabled and
  492. * objsize == inuse.
  493. *
  494. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  495. * 0xcc (RED_ACTIVE) for objects in use.
  496. *
  497. * object + s->inuse
  498. * Meta data starts here.
  499. *
  500. * A. Free pointer (if we cannot overwrite object on free)
  501. * B. Tracking data for SLAB_STORE_USER
  502. * C. Padding to reach required alignment boundary or at mininum
  503. * one word if debugging is on to be able to detect writes
  504. * before the word boundary.
  505. *
  506. * Padding is done using 0x5a (POISON_INUSE)
  507. *
  508. * object + s->size
  509. * Nothing is used beyond s->size.
  510. *
  511. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  512. * ignored. And therefore no slab options that rely on these boundaries
  513. * may be used with merged slabcaches.
  514. */
  515. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  516. {
  517. unsigned long off = s->inuse; /* The end of info */
  518. if (s->offset)
  519. /* Freepointer is placed after the object. */
  520. off += sizeof(void *);
  521. if (s->flags & SLAB_STORE_USER)
  522. /* We also have user information there */
  523. off += 2 * sizeof(struct track);
  524. if (s->size == off)
  525. return 1;
  526. return check_bytes_and_report(s, page, p, "Object padding",
  527. p + off, POISON_INUSE, s->size - off);
  528. }
  529. /* Check the pad bytes at the end of a slab page */
  530. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  531. {
  532. u8 *start;
  533. u8 *fault;
  534. u8 *end;
  535. int length;
  536. int remainder;
  537. if (!(s->flags & SLAB_POISON))
  538. return 1;
  539. start = page_address(page);
  540. length = (PAGE_SIZE << compound_order(page));
  541. end = start + length;
  542. remainder = length % s->size;
  543. if (!remainder)
  544. return 1;
  545. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  546. if (!fault)
  547. return 1;
  548. while (end > fault && end[-1] == POISON_INUSE)
  549. end--;
  550. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  551. print_section("Padding", end - remainder, remainder);
  552. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  553. return 0;
  554. }
  555. static int check_object(struct kmem_cache *s, struct page *page,
  556. void *object, int active)
  557. {
  558. u8 *p = object;
  559. u8 *endobject = object + s->objsize;
  560. if (s->flags & SLAB_RED_ZONE) {
  561. unsigned int red =
  562. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  563. if (!check_bytes_and_report(s, page, object, "Redzone",
  564. endobject, red, s->inuse - s->objsize))
  565. return 0;
  566. } else {
  567. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  568. check_bytes_and_report(s, page, p, "Alignment padding",
  569. endobject, POISON_INUSE, s->inuse - s->objsize);
  570. }
  571. }
  572. if (s->flags & SLAB_POISON) {
  573. if (!active && (s->flags & __OBJECT_POISON) &&
  574. (!check_bytes_and_report(s, page, p, "Poison", p,
  575. POISON_FREE, s->objsize - 1) ||
  576. !check_bytes_and_report(s, page, p, "Poison",
  577. p + s->objsize - 1, POISON_END, 1)))
  578. return 0;
  579. /*
  580. * check_pad_bytes cleans up on its own.
  581. */
  582. check_pad_bytes(s, page, p);
  583. }
  584. if (!s->offset && active)
  585. /*
  586. * Object and freepointer overlap. Cannot check
  587. * freepointer while object is allocated.
  588. */
  589. return 1;
  590. /* Check free pointer validity */
  591. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  592. object_err(s, page, p, "Freepointer corrupt");
  593. /*
  594. * No choice but to zap it and thus lose the remainder
  595. * of the free objects in this slab. May cause
  596. * another error because the object count is now wrong.
  597. */
  598. set_freepointer(s, p, NULL);
  599. return 0;
  600. }
  601. return 1;
  602. }
  603. static int check_slab(struct kmem_cache *s, struct page *page)
  604. {
  605. int maxobj;
  606. VM_BUG_ON(!irqs_disabled());
  607. if (!PageSlab(page)) {
  608. slab_err(s, page, "Not a valid slab page");
  609. return 0;
  610. }
  611. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  612. if (page->objects > maxobj) {
  613. slab_err(s, page, "objects %u > max %u",
  614. s->name, page->objects, maxobj);
  615. return 0;
  616. }
  617. if (page->inuse > page->objects) {
  618. slab_err(s, page, "inuse %u > max %u",
  619. s->name, page->inuse, page->objects);
  620. return 0;
  621. }
  622. /* Slab_pad_check fixes things up after itself */
  623. slab_pad_check(s, page);
  624. return 1;
  625. }
  626. /*
  627. * Determine if a certain object on a page is on the freelist. Must hold the
  628. * slab lock to guarantee that the chains are in a consistent state.
  629. */
  630. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  631. {
  632. int nr = 0;
  633. void *fp = page->freelist;
  634. void *object = NULL;
  635. unsigned long max_objects;
  636. while (fp && nr <= page->objects) {
  637. if (fp == search)
  638. return 1;
  639. if (!check_valid_pointer(s, page, fp)) {
  640. if (object) {
  641. object_err(s, page, object,
  642. "Freechain corrupt");
  643. set_freepointer(s, object, NULL);
  644. break;
  645. } else {
  646. slab_err(s, page, "Freepointer corrupt");
  647. page->freelist = NULL;
  648. page->inuse = page->objects;
  649. slab_fix(s, "Freelist cleared");
  650. return 0;
  651. }
  652. break;
  653. }
  654. object = fp;
  655. fp = get_freepointer(s, object);
  656. nr++;
  657. }
  658. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  659. if (max_objects > MAX_OBJS_PER_PAGE)
  660. max_objects = MAX_OBJS_PER_PAGE;
  661. if (page->objects != max_objects) {
  662. slab_err(s, page, "Wrong number of objects. Found %d but "
  663. "should be %d", page->objects, max_objects);
  664. page->objects = max_objects;
  665. slab_fix(s, "Number of objects adjusted.");
  666. }
  667. if (page->inuse != page->objects - nr) {
  668. slab_err(s, page, "Wrong object count. Counter is %d but "
  669. "counted were %d", page->inuse, page->objects - nr);
  670. page->inuse = page->objects - nr;
  671. slab_fix(s, "Object count adjusted.");
  672. }
  673. return search == NULL;
  674. }
  675. static void trace(struct kmem_cache *s, struct page *page, void *object,
  676. int alloc)
  677. {
  678. if (s->flags & SLAB_TRACE) {
  679. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  680. s->name,
  681. alloc ? "alloc" : "free",
  682. object, page->inuse,
  683. page->freelist);
  684. if (!alloc)
  685. print_section("Object", (void *)object, s->objsize);
  686. dump_stack();
  687. }
  688. }
  689. /*
  690. * Tracking of fully allocated slabs for debugging purposes.
  691. */
  692. static void add_full(struct kmem_cache_node *n, struct page *page)
  693. {
  694. spin_lock(&n->list_lock);
  695. list_add(&page->lru, &n->full);
  696. spin_unlock(&n->list_lock);
  697. }
  698. static void remove_full(struct kmem_cache *s, struct page *page)
  699. {
  700. struct kmem_cache_node *n;
  701. if (!(s->flags & SLAB_STORE_USER))
  702. return;
  703. n = get_node(s, page_to_nid(page));
  704. spin_lock(&n->list_lock);
  705. list_del(&page->lru);
  706. spin_unlock(&n->list_lock);
  707. }
  708. /* Tracking of the number of slabs for debugging purposes */
  709. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  710. {
  711. struct kmem_cache_node *n = get_node(s, node);
  712. return atomic_long_read(&n->nr_slabs);
  713. }
  714. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  715. {
  716. struct kmem_cache_node *n = get_node(s, node);
  717. /*
  718. * May be called early in order to allocate a slab for the
  719. * kmem_cache_node structure. Solve the chicken-egg
  720. * dilemma by deferring the increment of the count during
  721. * bootstrap (see early_kmem_cache_node_alloc).
  722. */
  723. if (!NUMA_BUILD || n) {
  724. atomic_long_inc(&n->nr_slabs);
  725. atomic_long_add(objects, &n->total_objects);
  726. }
  727. }
  728. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  729. {
  730. struct kmem_cache_node *n = get_node(s, node);
  731. atomic_long_dec(&n->nr_slabs);
  732. atomic_long_sub(objects, &n->total_objects);
  733. }
  734. /* Object debug checks for alloc/free paths */
  735. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  736. void *object)
  737. {
  738. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  739. return;
  740. init_object(s, object, 0);
  741. init_tracking(s, object);
  742. }
  743. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  744. void *object, unsigned long addr)
  745. {
  746. if (!check_slab(s, page))
  747. goto bad;
  748. if (!on_freelist(s, page, object)) {
  749. object_err(s, page, object, "Object already allocated");
  750. goto bad;
  751. }
  752. if (!check_valid_pointer(s, page, object)) {
  753. object_err(s, page, object, "Freelist Pointer check fails");
  754. goto bad;
  755. }
  756. if (!check_object(s, page, object, 0))
  757. goto bad;
  758. /* Success perform special debug activities for allocs */
  759. if (s->flags & SLAB_STORE_USER)
  760. set_track(s, object, TRACK_ALLOC, addr);
  761. trace(s, page, object, 1);
  762. init_object(s, object, 1);
  763. return 1;
  764. bad:
  765. if (PageSlab(page)) {
  766. /*
  767. * If this is a slab page then lets do the best we can
  768. * to avoid issues in the future. Marking all objects
  769. * as used avoids touching the remaining objects.
  770. */
  771. slab_fix(s, "Marking all objects used");
  772. page->inuse = page->objects;
  773. page->freelist = NULL;
  774. }
  775. return 0;
  776. }
  777. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  778. void *object, unsigned long addr)
  779. {
  780. if (!check_slab(s, page))
  781. goto fail;
  782. if (!check_valid_pointer(s, page, object)) {
  783. slab_err(s, page, "Invalid object pointer 0x%p", object);
  784. goto fail;
  785. }
  786. if (on_freelist(s, page, object)) {
  787. object_err(s, page, object, "Object already free");
  788. goto fail;
  789. }
  790. if (!check_object(s, page, object, 1))
  791. return 0;
  792. if (unlikely(s != page->slab)) {
  793. if (!PageSlab(page)) {
  794. slab_err(s, page, "Attempt to free object(0x%p) "
  795. "outside of slab", object);
  796. } else if (!page->slab) {
  797. printk(KERN_ERR
  798. "SLUB <none>: no slab for object 0x%p.\n",
  799. object);
  800. dump_stack();
  801. } else
  802. object_err(s, page, object,
  803. "page slab pointer corrupt.");
  804. goto fail;
  805. }
  806. /* Special debug activities for freeing objects */
  807. if (!PageSlubFrozen(page) && !page->freelist)
  808. remove_full(s, page);
  809. if (s->flags & SLAB_STORE_USER)
  810. set_track(s, object, TRACK_FREE, addr);
  811. trace(s, page, object, 0);
  812. init_object(s, object, 0);
  813. return 1;
  814. fail:
  815. slab_fix(s, "Object at 0x%p not freed", object);
  816. return 0;
  817. }
  818. static int __init setup_slub_debug(char *str)
  819. {
  820. slub_debug = DEBUG_DEFAULT_FLAGS;
  821. if (*str++ != '=' || !*str)
  822. /*
  823. * No options specified. Switch on full debugging.
  824. */
  825. goto out;
  826. if (*str == ',')
  827. /*
  828. * No options but restriction on slabs. This means full
  829. * debugging for slabs matching a pattern.
  830. */
  831. goto check_slabs;
  832. slub_debug = 0;
  833. if (*str == '-')
  834. /*
  835. * Switch off all debugging measures.
  836. */
  837. goto out;
  838. /*
  839. * Determine which debug features should be switched on
  840. */
  841. for (; *str && *str != ','; str++) {
  842. switch (tolower(*str)) {
  843. case 'f':
  844. slub_debug |= SLAB_DEBUG_FREE;
  845. break;
  846. case 'z':
  847. slub_debug |= SLAB_RED_ZONE;
  848. break;
  849. case 'p':
  850. slub_debug |= SLAB_POISON;
  851. break;
  852. case 'u':
  853. slub_debug |= SLAB_STORE_USER;
  854. break;
  855. case 't':
  856. slub_debug |= SLAB_TRACE;
  857. break;
  858. default:
  859. printk(KERN_ERR "slub_debug option '%c' "
  860. "unknown. skipped\n", *str);
  861. }
  862. }
  863. check_slabs:
  864. if (*str == ',')
  865. slub_debug_slabs = str + 1;
  866. out:
  867. return 1;
  868. }
  869. __setup("slub_debug", setup_slub_debug);
  870. static unsigned long kmem_cache_flags(unsigned long objsize,
  871. unsigned long flags, const char *name,
  872. void (*ctor)(void *))
  873. {
  874. /*
  875. * Enable debugging if selected on the kernel commandline.
  876. */
  877. if (slub_debug && (!slub_debug_slabs ||
  878. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  879. flags |= slub_debug;
  880. return flags;
  881. }
  882. #else
  883. static inline void setup_object_debug(struct kmem_cache *s,
  884. struct page *page, void *object) {}
  885. static inline int alloc_debug_processing(struct kmem_cache *s,
  886. struct page *page, void *object, unsigned long addr) { return 0; }
  887. static inline int free_debug_processing(struct kmem_cache *s,
  888. struct page *page, void *object, unsigned long addr) { return 0; }
  889. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  890. { return 1; }
  891. static inline int check_object(struct kmem_cache *s, struct page *page,
  892. void *object, int active) { return 1; }
  893. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  894. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  895. unsigned long flags, const char *name,
  896. void (*ctor)(void *))
  897. {
  898. return flags;
  899. }
  900. #define slub_debug 0
  901. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  902. { return 0; }
  903. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  904. int objects) {}
  905. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  906. int objects) {}
  907. #endif
  908. /*
  909. * Slab allocation and freeing
  910. */
  911. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  912. struct kmem_cache_order_objects oo)
  913. {
  914. int order = oo_order(oo);
  915. if (node == -1)
  916. return alloc_pages(flags, order);
  917. else
  918. return alloc_pages_node(node, flags, order);
  919. }
  920. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  921. {
  922. struct page *page;
  923. struct kmem_cache_order_objects oo = s->oo;
  924. flags |= s->allocflags;
  925. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  926. oo);
  927. if (unlikely(!page)) {
  928. oo = s->min;
  929. /*
  930. * Allocation may have failed due to fragmentation.
  931. * Try a lower order alloc if possible
  932. */
  933. page = alloc_slab_page(flags, node, oo);
  934. if (!page)
  935. return NULL;
  936. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  937. }
  938. page->objects = oo_objects(oo);
  939. mod_zone_page_state(page_zone(page),
  940. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  941. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  942. 1 << oo_order(oo));
  943. return page;
  944. }
  945. static void setup_object(struct kmem_cache *s, struct page *page,
  946. void *object)
  947. {
  948. setup_object_debug(s, page, object);
  949. if (unlikely(s->ctor))
  950. s->ctor(object);
  951. }
  952. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  953. {
  954. struct page *page;
  955. void *start;
  956. void *last;
  957. void *p;
  958. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  959. page = allocate_slab(s,
  960. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  961. if (!page)
  962. goto out;
  963. inc_slabs_node(s, page_to_nid(page), page->objects);
  964. page->slab = s;
  965. page->flags |= 1 << PG_slab;
  966. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  967. SLAB_STORE_USER | SLAB_TRACE))
  968. __SetPageSlubDebug(page);
  969. start = page_address(page);
  970. if (unlikely(s->flags & SLAB_POISON))
  971. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  972. last = start;
  973. for_each_object(p, s, start, page->objects) {
  974. setup_object(s, page, last);
  975. set_freepointer(s, last, p);
  976. last = p;
  977. }
  978. setup_object(s, page, last);
  979. set_freepointer(s, last, NULL);
  980. page->freelist = start;
  981. page->inuse = 0;
  982. out:
  983. return page;
  984. }
  985. static void __free_slab(struct kmem_cache *s, struct page *page)
  986. {
  987. int order = compound_order(page);
  988. int pages = 1 << order;
  989. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  990. void *p;
  991. slab_pad_check(s, page);
  992. for_each_object(p, s, page_address(page),
  993. page->objects)
  994. check_object(s, page, p, 0);
  995. __ClearPageSlubDebug(page);
  996. }
  997. mod_zone_page_state(page_zone(page),
  998. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  999. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1000. -pages);
  1001. __ClearPageSlab(page);
  1002. reset_page_mapcount(page);
  1003. __free_pages(page, order);
  1004. }
  1005. static void rcu_free_slab(struct rcu_head *h)
  1006. {
  1007. struct page *page;
  1008. page = container_of((struct list_head *)h, struct page, lru);
  1009. __free_slab(page->slab, page);
  1010. }
  1011. static void free_slab(struct kmem_cache *s, struct page *page)
  1012. {
  1013. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1014. /*
  1015. * RCU free overloads the RCU head over the LRU
  1016. */
  1017. struct rcu_head *head = (void *)&page->lru;
  1018. call_rcu(head, rcu_free_slab);
  1019. } else
  1020. __free_slab(s, page);
  1021. }
  1022. static void discard_slab(struct kmem_cache *s, struct page *page)
  1023. {
  1024. dec_slabs_node(s, page_to_nid(page), page->objects);
  1025. free_slab(s, page);
  1026. }
  1027. /*
  1028. * Per slab locking using the pagelock
  1029. */
  1030. static __always_inline void slab_lock(struct page *page)
  1031. {
  1032. bit_spin_lock(PG_locked, &page->flags);
  1033. }
  1034. static __always_inline void slab_unlock(struct page *page)
  1035. {
  1036. __bit_spin_unlock(PG_locked, &page->flags);
  1037. }
  1038. static __always_inline int slab_trylock(struct page *page)
  1039. {
  1040. int rc = 1;
  1041. rc = bit_spin_trylock(PG_locked, &page->flags);
  1042. return rc;
  1043. }
  1044. /*
  1045. * Management of partially allocated slabs
  1046. */
  1047. static void add_partial(struct kmem_cache_node *n,
  1048. struct page *page, int tail)
  1049. {
  1050. spin_lock(&n->list_lock);
  1051. n->nr_partial++;
  1052. if (tail)
  1053. list_add_tail(&page->lru, &n->partial);
  1054. else
  1055. list_add(&page->lru, &n->partial);
  1056. spin_unlock(&n->list_lock);
  1057. }
  1058. static void remove_partial(struct kmem_cache *s, struct page *page)
  1059. {
  1060. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1061. spin_lock(&n->list_lock);
  1062. list_del(&page->lru);
  1063. n->nr_partial--;
  1064. spin_unlock(&n->list_lock);
  1065. }
  1066. /*
  1067. * Lock slab and remove from the partial list.
  1068. *
  1069. * Must hold list_lock.
  1070. */
  1071. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1072. struct page *page)
  1073. {
  1074. if (slab_trylock(page)) {
  1075. list_del(&page->lru);
  1076. n->nr_partial--;
  1077. __SetPageSlubFrozen(page);
  1078. return 1;
  1079. }
  1080. return 0;
  1081. }
  1082. /*
  1083. * Try to allocate a partial slab from a specific node.
  1084. */
  1085. static struct page *get_partial_node(struct kmem_cache_node *n)
  1086. {
  1087. struct page *page;
  1088. /*
  1089. * Racy check. If we mistakenly see no partial slabs then we
  1090. * just allocate an empty slab. If we mistakenly try to get a
  1091. * partial slab and there is none available then get_partials()
  1092. * will return NULL.
  1093. */
  1094. if (!n || !n->nr_partial)
  1095. return NULL;
  1096. spin_lock(&n->list_lock);
  1097. list_for_each_entry(page, &n->partial, lru)
  1098. if (lock_and_freeze_slab(n, page))
  1099. goto out;
  1100. page = NULL;
  1101. out:
  1102. spin_unlock(&n->list_lock);
  1103. return page;
  1104. }
  1105. /*
  1106. * Get a page from somewhere. Search in increasing NUMA distances.
  1107. */
  1108. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1109. {
  1110. #ifdef CONFIG_NUMA
  1111. struct zonelist *zonelist;
  1112. struct zoneref *z;
  1113. struct zone *zone;
  1114. enum zone_type high_zoneidx = gfp_zone(flags);
  1115. struct page *page;
  1116. /*
  1117. * The defrag ratio allows a configuration of the tradeoffs between
  1118. * inter node defragmentation and node local allocations. A lower
  1119. * defrag_ratio increases the tendency to do local allocations
  1120. * instead of attempting to obtain partial slabs from other nodes.
  1121. *
  1122. * If the defrag_ratio is set to 0 then kmalloc() always
  1123. * returns node local objects. If the ratio is higher then kmalloc()
  1124. * may return off node objects because partial slabs are obtained
  1125. * from other nodes and filled up.
  1126. *
  1127. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1128. * defrag_ratio = 1000) then every (well almost) allocation will
  1129. * first attempt to defrag slab caches on other nodes. This means
  1130. * scanning over all nodes to look for partial slabs which may be
  1131. * expensive if we do it every time we are trying to find a slab
  1132. * with available objects.
  1133. */
  1134. if (!s->remote_node_defrag_ratio ||
  1135. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1136. return NULL;
  1137. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1138. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1139. struct kmem_cache_node *n;
  1140. n = get_node(s, zone_to_nid(zone));
  1141. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1142. n->nr_partial > s->min_partial) {
  1143. page = get_partial_node(n);
  1144. if (page)
  1145. return page;
  1146. }
  1147. }
  1148. #endif
  1149. return NULL;
  1150. }
  1151. /*
  1152. * Get a partial page, lock it and return it.
  1153. */
  1154. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1155. {
  1156. struct page *page;
  1157. int searchnode = (node == -1) ? numa_node_id() : node;
  1158. page = get_partial_node(get_node(s, searchnode));
  1159. if (page || (flags & __GFP_THISNODE))
  1160. return page;
  1161. return get_any_partial(s, flags);
  1162. }
  1163. /*
  1164. * Move a page back to the lists.
  1165. *
  1166. * Must be called with the slab lock held.
  1167. *
  1168. * On exit the slab lock will have been dropped.
  1169. */
  1170. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1171. {
  1172. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1173. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1174. __ClearPageSlubFrozen(page);
  1175. if (page->inuse) {
  1176. if (page->freelist) {
  1177. add_partial(n, page, tail);
  1178. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1179. } else {
  1180. stat(c, DEACTIVATE_FULL);
  1181. if (SLABDEBUG && PageSlubDebug(page) &&
  1182. (s->flags & SLAB_STORE_USER))
  1183. add_full(n, page);
  1184. }
  1185. slab_unlock(page);
  1186. } else {
  1187. stat(c, DEACTIVATE_EMPTY);
  1188. if (n->nr_partial < s->min_partial) {
  1189. /*
  1190. * Adding an empty slab to the partial slabs in order
  1191. * to avoid page allocator overhead. This slab needs
  1192. * to come after the other slabs with objects in
  1193. * so that the others get filled first. That way the
  1194. * size of the partial list stays small.
  1195. *
  1196. * kmem_cache_shrink can reclaim any empty slabs from
  1197. * the partial list.
  1198. */
  1199. add_partial(n, page, 1);
  1200. slab_unlock(page);
  1201. } else {
  1202. slab_unlock(page);
  1203. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1204. discard_slab(s, page);
  1205. }
  1206. }
  1207. }
  1208. /*
  1209. * Remove the cpu slab
  1210. */
  1211. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1212. {
  1213. struct page *page = c->page;
  1214. int tail = 1;
  1215. if (page->freelist)
  1216. stat(c, DEACTIVATE_REMOTE_FREES);
  1217. /*
  1218. * Merge cpu freelist into slab freelist. Typically we get here
  1219. * because both freelists are empty. So this is unlikely
  1220. * to occur.
  1221. */
  1222. while (unlikely(c->freelist)) {
  1223. void **object;
  1224. tail = 0; /* Hot objects. Put the slab first */
  1225. /* Retrieve object from cpu_freelist */
  1226. object = c->freelist;
  1227. c->freelist = c->freelist[c->offset];
  1228. /* And put onto the regular freelist */
  1229. object[c->offset] = page->freelist;
  1230. page->freelist = object;
  1231. page->inuse--;
  1232. }
  1233. c->page = NULL;
  1234. unfreeze_slab(s, page, tail);
  1235. }
  1236. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1237. {
  1238. stat(c, CPUSLAB_FLUSH);
  1239. slab_lock(c->page);
  1240. deactivate_slab(s, c);
  1241. }
  1242. /*
  1243. * Flush cpu slab.
  1244. *
  1245. * Called from IPI handler with interrupts disabled.
  1246. */
  1247. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1248. {
  1249. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1250. if (likely(c && c->page))
  1251. flush_slab(s, c);
  1252. }
  1253. static void flush_cpu_slab(void *d)
  1254. {
  1255. struct kmem_cache *s = d;
  1256. __flush_cpu_slab(s, smp_processor_id());
  1257. }
  1258. static void flush_all(struct kmem_cache *s)
  1259. {
  1260. on_each_cpu(flush_cpu_slab, s, 1);
  1261. }
  1262. /*
  1263. * Check if the objects in a per cpu structure fit numa
  1264. * locality expectations.
  1265. */
  1266. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1267. {
  1268. #ifdef CONFIG_NUMA
  1269. if (node != -1 && c->node != node)
  1270. return 0;
  1271. #endif
  1272. return 1;
  1273. }
  1274. /*
  1275. * Slow path. The lockless freelist is empty or we need to perform
  1276. * debugging duties.
  1277. *
  1278. * Interrupts are disabled.
  1279. *
  1280. * Processing is still very fast if new objects have been freed to the
  1281. * regular freelist. In that case we simply take over the regular freelist
  1282. * as the lockless freelist and zap the regular freelist.
  1283. *
  1284. * If that is not working then we fall back to the partial lists. We take the
  1285. * first element of the freelist as the object to allocate now and move the
  1286. * rest of the freelist to the lockless freelist.
  1287. *
  1288. * And if we were unable to get a new slab from the partial slab lists then
  1289. * we need to allocate a new slab. This is the slowest path since it involves
  1290. * a call to the page allocator and the setup of a new slab.
  1291. */
  1292. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1293. unsigned long addr, struct kmem_cache_cpu *c)
  1294. {
  1295. void **object;
  1296. struct page *new;
  1297. /* We handle __GFP_ZERO in the caller */
  1298. gfpflags &= ~__GFP_ZERO;
  1299. if (!c->page)
  1300. goto new_slab;
  1301. slab_lock(c->page);
  1302. if (unlikely(!node_match(c, node)))
  1303. goto another_slab;
  1304. stat(c, ALLOC_REFILL);
  1305. load_freelist:
  1306. object = c->page->freelist;
  1307. if (unlikely(!object))
  1308. goto another_slab;
  1309. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1310. goto debug;
  1311. c->freelist = object[c->offset];
  1312. c->page->inuse = c->page->objects;
  1313. c->page->freelist = NULL;
  1314. c->node = page_to_nid(c->page);
  1315. unlock_out:
  1316. slab_unlock(c->page);
  1317. stat(c, ALLOC_SLOWPATH);
  1318. return object;
  1319. another_slab:
  1320. deactivate_slab(s, c);
  1321. new_slab:
  1322. new = get_partial(s, gfpflags, node);
  1323. if (new) {
  1324. c->page = new;
  1325. stat(c, ALLOC_FROM_PARTIAL);
  1326. goto load_freelist;
  1327. }
  1328. if (gfpflags & __GFP_WAIT)
  1329. local_irq_enable();
  1330. new = new_slab(s, gfpflags, node);
  1331. if (gfpflags & __GFP_WAIT)
  1332. local_irq_disable();
  1333. if (new) {
  1334. c = get_cpu_slab(s, smp_processor_id());
  1335. stat(c, ALLOC_SLAB);
  1336. if (c->page)
  1337. flush_slab(s, c);
  1338. slab_lock(new);
  1339. __SetPageSlubFrozen(new);
  1340. c->page = new;
  1341. goto load_freelist;
  1342. }
  1343. return NULL;
  1344. debug:
  1345. if (!alloc_debug_processing(s, c->page, object, addr))
  1346. goto another_slab;
  1347. c->page->inuse++;
  1348. c->page->freelist = object[c->offset];
  1349. c->node = -1;
  1350. goto unlock_out;
  1351. }
  1352. /*
  1353. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1354. * have the fastpath folded into their functions. So no function call
  1355. * overhead for requests that can be satisfied on the fastpath.
  1356. *
  1357. * The fastpath works by first checking if the lockless freelist can be used.
  1358. * If not then __slab_alloc is called for slow processing.
  1359. *
  1360. * Otherwise we can simply pick the next object from the lockless free list.
  1361. */
  1362. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1363. gfp_t gfpflags, int node, unsigned long addr)
  1364. {
  1365. void **object;
  1366. struct kmem_cache_cpu *c;
  1367. unsigned long flags;
  1368. unsigned int objsize;
  1369. might_sleep_if(gfpflags & __GFP_WAIT);
  1370. if (should_failslab(s->objsize, gfpflags))
  1371. return NULL;
  1372. local_irq_save(flags);
  1373. c = get_cpu_slab(s, smp_processor_id());
  1374. objsize = c->objsize;
  1375. if (unlikely(!c->freelist || !node_match(c, node)))
  1376. object = __slab_alloc(s, gfpflags, node, addr, c);
  1377. else {
  1378. object = c->freelist;
  1379. c->freelist = object[c->offset];
  1380. stat(c, ALLOC_FASTPATH);
  1381. }
  1382. local_irq_restore(flags);
  1383. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1384. memset(object, 0, objsize);
  1385. return object;
  1386. }
  1387. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1388. {
  1389. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1390. }
  1391. EXPORT_SYMBOL(kmem_cache_alloc);
  1392. #ifdef CONFIG_NUMA
  1393. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1394. {
  1395. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1396. }
  1397. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1398. #endif
  1399. /*
  1400. * Slow patch handling. This may still be called frequently since objects
  1401. * have a longer lifetime than the cpu slabs in most processing loads.
  1402. *
  1403. * So we still attempt to reduce cache line usage. Just take the slab
  1404. * lock and free the item. If there is no additional partial page
  1405. * handling required then we can return immediately.
  1406. */
  1407. static void __slab_free(struct kmem_cache *s, struct page *page,
  1408. void *x, unsigned long addr, unsigned int offset)
  1409. {
  1410. void *prior;
  1411. void **object = (void *)x;
  1412. struct kmem_cache_cpu *c;
  1413. c = get_cpu_slab(s, raw_smp_processor_id());
  1414. stat(c, FREE_SLOWPATH);
  1415. slab_lock(page);
  1416. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1417. goto debug;
  1418. checks_ok:
  1419. prior = object[offset] = page->freelist;
  1420. page->freelist = object;
  1421. page->inuse--;
  1422. if (unlikely(PageSlubFrozen(page))) {
  1423. stat(c, FREE_FROZEN);
  1424. goto out_unlock;
  1425. }
  1426. if (unlikely(!page->inuse))
  1427. goto slab_empty;
  1428. /*
  1429. * Objects left in the slab. If it was not on the partial list before
  1430. * then add it.
  1431. */
  1432. if (unlikely(!prior)) {
  1433. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1434. stat(c, FREE_ADD_PARTIAL);
  1435. }
  1436. out_unlock:
  1437. slab_unlock(page);
  1438. return;
  1439. slab_empty:
  1440. if (prior) {
  1441. /*
  1442. * Slab still on the partial list.
  1443. */
  1444. remove_partial(s, page);
  1445. stat(c, FREE_REMOVE_PARTIAL);
  1446. }
  1447. slab_unlock(page);
  1448. stat(c, FREE_SLAB);
  1449. discard_slab(s, page);
  1450. return;
  1451. debug:
  1452. if (!free_debug_processing(s, page, x, addr))
  1453. goto out_unlock;
  1454. goto checks_ok;
  1455. }
  1456. /*
  1457. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1458. * can perform fastpath freeing without additional function calls.
  1459. *
  1460. * The fastpath is only possible if we are freeing to the current cpu slab
  1461. * of this processor. This typically the case if we have just allocated
  1462. * the item before.
  1463. *
  1464. * If fastpath is not possible then fall back to __slab_free where we deal
  1465. * with all sorts of special processing.
  1466. */
  1467. static __always_inline void slab_free(struct kmem_cache *s,
  1468. struct page *page, void *x, unsigned long addr)
  1469. {
  1470. void **object = (void *)x;
  1471. struct kmem_cache_cpu *c;
  1472. unsigned long flags;
  1473. local_irq_save(flags);
  1474. c = get_cpu_slab(s, smp_processor_id());
  1475. debug_check_no_locks_freed(object, c->objsize);
  1476. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1477. debug_check_no_obj_freed(object, s->objsize);
  1478. if (likely(page == c->page && c->node >= 0)) {
  1479. object[c->offset] = c->freelist;
  1480. c->freelist = object;
  1481. stat(c, FREE_FASTPATH);
  1482. } else
  1483. __slab_free(s, page, x, addr, c->offset);
  1484. local_irq_restore(flags);
  1485. }
  1486. void kmem_cache_free(struct kmem_cache *s, void *x)
  1487. {
  1488. struct page *page;
  1489. page = virt_to_head_page(x);
  1490. slab_free(s, page, x, _RET_IP_);
  1491. }
  1492. EXPORT_SYMBOL(kmem_cache_free);
  1493. /* Figure out on which slab page the object resides */
  1494. static struct page *get_object_page(const void *x)
  1495. {
  1496. struct page *page = virt_to_head_page(x);
  1497. if (!PageSlab(page))
  1498. return NULL;
  1499. return page;
  1500. }
  1501. /*
  1502. * Object placement in a slab is made very easy because we always start at
  1503. * offset 0. If we tune the size of the object to the alignment then we can
  1504. * get the required alignment by putting one properly sized object after
  1505. * another.
  1506. *
  1507. * Notice that the allocation order determines the sizes of the per cpu
  1508. * caches. Each processor has always one slab available for allocations.
  1509. * Increasing the allocation order reduces the number of times that slabs
  1510. * must be moved on and off the partial lists and is therefore a factor in
  1511. * locking overhead.
  1512. */
  1513. /*
  1514. * Mininum / Maximum order of slab pages. This influences locking overhead
  1515. * and slab fragmentation. A higher order reduces the number of partial slabs
  1516. * and increases the number of allocations possible without having to
  1517. * take the list_lock.
  1518. */
  1519. static int slub_min_order;
  1520. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1521. static int slub_min_objects;
  1522. /*
  1523. * Merge control. If this is set then no merging of slab caches will occur.
  1524. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1525. */
  1526. static int slub_nomerge;
  1527. /*
  1528. * Calculate the order of allocation given an slab object size.
  1529. *
  1530. * The order of allocation has significant impact on performance and other
  1531. * system components. Generally order 0 allocations should be preferred since
  1532. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1533. * be problematic to put into order 0 slabs because there may be too much
  1534. * unused space left. We go to a higher order if more than 1/16th of the slab
  1535. * would be wasted.
  1536. *
  1537. * In order to reach satisfactory performance we must ensure that a minimum
  1538. * number of objects is in one slab. Otherwise we may generate too much
  1539. * activity on the partial lists which requires taking the list_lock. This is
  1540. * less a concern for large slabs though which are rarely used.
  1541. *
  1542. * slub_max_order specifies the order where we begin to stop considering the
  1543. * number of objects in a slab as critical. If we reach slub_max_order then
  1544. * we try to keep the page order as low as possible. So we accept more waste
  1545. * of space in favor of a small page order.
  1546. *
  1547. * Higher order allocations also allow the placement of more objects in a
  1548. * slab and thereby reduce object handling overhead. If the user has
  1549. * requested a higher mininum order then we start with that one instead of
  1550. * the smallest order which will fit the object.
  1551. */
  1552. static inline int slab_order(int size, int min_objects,
  1553. int max_order, int fract_leftover)
  1554. {
  1555. int order;
  1556. int rem;
  1557. int min_order = slub_min_order;
  1558. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1559. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1560. for (order = max(min_order,
  1561. fls(min_objects * size - 1) - PAGE_SHIFT);
  1562. order <= max_order; order++) {
  1563. unsigned long slab_size = PAGE_SIZE << order;
  1564. if (slab_size < min_objects * size)
  1565. continue;
  1566. rem = slab_size % size;
  1567. if (rem <= slab_size / fract_leftover)
  1568. break;
  1569. }
  1570. return order;
  1571. }
  1572. static inline int calculate_order(int size)
  1573. {
  1574. int order;
  1575. int min_objects;
  1576. int fraction;
  1577. /*
  1578. * Attempt to find best configuration for a slab. This
  1579. * works by first attempting to generate a layout with
  1580. * the best configuration and backing off gradually.
  1581. *
  1582. * First we reduce the acceptable waste in a slab. Then
  1583. * we reduce the minimum objects required in a slab.
  1584. */
  1585. min_objects = slub_min_objects;
  1586. if (!min_objects)
  1587. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1588. while (min_objects > 1) {
  1589. fraction = 16;
  1590. while (fraction >= 4) {
  1591. order = slab_order(size, min_objects,
  1592. slub_max_order, fraction);
  1593. if (order <= slub_max_order)
  1594. return order;
  1595. fraction /= 2;
  1596. }
  1597. min_objects /= 2;
  1598. }
  1599. /*
  1600. * We were unable to place multiple objects in a slab. Now
  1601. * lets see if we can place a single object there.
  1602. */
  1603. order = slab_order(size, 1, slub_max_order, 1);
  1604. if (order <= slub_max_order)
  1605. return order;
  1606. /*
  1607. * Doh this slab cannot be placed using slub_max_order.
  1608. */
  1609. order = slab_order(size, 1, MAX_ORDER, 1);
  1610. if (order <= MAX_ORDER)
  1611. return order;
  1612. return -ENOSYS;
  1613. }
  1614. /*
  1615. * Figure out what the alignment of the objects will be.
  1616. */
  1617. static unsigned long calculate_alignment(unsigned long flags,
  1618. unsigned long align, unsigned long size)
  1619. {
  1620. /*
  1621. * If the user wants hardware cache aligned objects then follow that
  1622. * suggestion if the object is sufficiently large.
  1623. *
  1624. * The hardware cache alignment cannot override the specified
  1625. * alignment though. If that is greater then use it.
  1626. */
  1627. if (flags & SLAB_HWCACHE_ALIGN) {
  1628. unsigned long ralign = cache_line_size();
  1629. while (size <= ralign / 2)
  1630. ralign /= 2;
  1631. align = max(align, ralign);
  1632. }
  1633. if (align < ARCH_SLAB_MINALIGN)
  1634. align = ARCH_SLAB_MINALIGN;
  1635. return ALIGN(align, sizeof(void *));
  1636. }
  1637. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1638. struct kmem_cache_cpu *c)
  1639. {
  1640. c->page = NULL;
  1641. c->freelist = NULL;
  1642. c->node = 0;
  1643. c->offset = s->offset / sizeof(void *);
  1644. c->objsize = s->objsize;
  1645. #ifdef CONFIG_SLUB_STATS
  1646. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1647. #endif
  1648. }
  1649. static void
  1650. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1651. {
  1652. n->nr_partial = 0;
  1653. spin_lock_init(&n->list_lock);
  1654. INIT_LIST_HEAD(&n->partial);
  1655. #ifdef CONFIG_SLUB_DEBUG
  1656. atomic_long_set(&n->nr_slabs, 0);
  1657. atomic_long_set(&n->total_objects, 0);
  1658. INIT_LIST_HEAD(&n->full);
  1659. #endif
  1660. }
  1661. #ifdef CONFIG_SMP
  1662. /*
  1663. * Per cpu array for per cpu structures.
  1664. *
  1665. * The per cpu array places all kmem_cache_cpu structures from one processor
  1666. * close together meaning that it becomes possible that multiple per cpu
  1667. * structures are contained in one cacheline. This may be particularly
  1668. * beneficial for the kmalloc caches.
  1669. *
  1670. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1671. * likely able to get per cpu structures for all caches from the array defined
  1672. * here. We must be able to cover all kmalloc caches during bootstrap.
  1673. *
  1674. * If the per cpu array is exhausted then fall back to kmalloc
  1675. * of individual cachelines. No sharing is possible then.
  1676. */
  1677. #define NR_KMEM_CACHE_CPU 100
  1678. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1679. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1680. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1681. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1682. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1683. int cpu, gfp_t flags)
  1684. {
  1685. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1686. if (c)
  1687. per_cpu(kmem_cache_cpu_free, cpu) =
  1688. (void *)c->freelist;
  1689. else {
  1690. /* Table overflow: So allocate ourselves */
  1691. c = kmalloc_node(
  1692. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1693. flags, cpu_to_node(cpu));
  1694. if (!c)
  1695. return NULL;
  1696. }
  1697. init_kmem_cache_cpu(s, c);
  1698. return c;
  1699. }
  1700. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1701. {
  1702. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1703. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1704. kfree(c);
  1705. return;
  1706. }
  1707. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1708. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1709. }
  1710. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1711. {
  1712. int cpu;
  1713. for_each_online_cpu(cpu) {
  1714. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1715. if (c) {
  1716. s->cpu_slab[cpu] = NULL;
  1717. free_kmem_cache_cpu(c, cpu);
  1718. }
  1719. }
  1720. }
  1721. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1722. {
  1723. int cpu;
  1724. for_each_online_cpu(cpu) {
  1725. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1726. if (c)
  1727. continue;
  1728. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1729. if (!c) {
  1730. free_kmem_cache_cpus(s);
  1731. return 0;
  1732. }
  1733. s->cpu_slab[cpu] = c;
  1734. }
  1735. return 1;
  1736. }
  1737. /*
  1738. * Initialize the per cpu array.
  1739. */
  1740. static void init_alloc_cpu_cpu(int cpu)
  1741. {
  1742. int i;
  1743. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1744. return;
  1745. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1746. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1747. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1748. }
  1749. static void __init init_alloc_cpu(void)
  1750. {
  1751. int cpu;
  1752. for_each_online_cpu(cpu)
  1753. init_alloc_cpu_cpu(cpu);
  1754. }
  1755. #else
  1756. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1757. static inline void init_alloc_cpu(void) {}
  1758. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1759. {
  1760. init_kmem_cache_cpu(s, &s->cpu_slab);
  1761. return 1;
  1762. }
  1763. #endif
  1764. #ifdef CONFIG_NUMA
  1765. /*
  1766. * No kmalloc_node yet so do it by hand. We know that this is the first
  1767. * slab on the node for this slabcache. There are no concurrent accesses
  1768. * possible.
  1769. *
  1770. * Note that this function only works on the kmalloc_node_cache
  1771. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1772. * memory on a fresh node that has no slab structures yet.
  1773. */
  1774. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1775. {
  1776. struct page *page;
  1777. struct kmem_cache_node *n;
  1778. unsigned long flags;
  1779. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1780. page = new_slab(kmalloc_caches, gfpflags, node);
  1781. BUG_ON(!page);
  1782. if (page_to_nid(page) != node) {
  1783. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1784. "node %d\n", node);
  1785. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1786. "in order to be able to continue\n");
  1787. }
  1788. n = page->freelist;
  1789. BUG_ON(!n);
  1790. page->freelist = get_freepointer(kmalloc_caches, n);
  1791. page->inuse++;
  1792. kmalloc_caches->node[node] = n;
  1793. #ifdef CONFIG_SLUB_DEBUG
  1794. init_object(kmalloc_caches, n, 1);
  1795. init_tracking(kmalloc_caches, n);
  1796. #endif
  1797. init_kmem_cache_node(n, kmalloc_caches);
  1798. inc_slabs_node(kmalloc_caches, node, page->objects);
  1799. /*
  1800. * lockdep requires consistent irq usage for each lock
  1801. * so even though there cannot be a race this early in
  1802. * the boot sequence, we still disable irqs.
  1803. */
  1804. local_irq_save(flags);
  1805. add_partial(n, page, 0);
  1806. local_irq_restore(flags);
  1807. }
  1808. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1809. {
  1810. int node;
  1811. for_each_node_state(node, N_NORMAL_MEMORY) {
  1812. struct kmem_cache_node *n = s->node[node];
  1813. if (n && n != &s->local_node)
  1814. kmem_cache_free(kmalloc_caches, n);
  1815. s->node[node] = NULL;
  1816. }
  1817. }
  1818. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1819. {
  1820. int node;
  1821. int local_node;
  1822. if (slab_state >= UP)
  1823. local_node = page_to_nid(virt_to_page(s));
  1824. else
  1825. local_node = 0;
  1826. for_each_node_state(node, N_NORMAL_MEMORY) {
  1827. struct kmem_cache_node *n;
  1828. if (local_node == node)
  1829. n = &s->local_node;
  1830. else {
  1831. if (slab_state == DOWN) {
  1832. early_kmem_cache_node_alloc(gfpflags, node);
  1833. continue;
  1834. }
  1835. n = kmem_cache_alloc_node(kmalloc_caches,
  1836. gfpflags, node);
  1837. if (!n) {
  1838. free_kmem_cache_nodes(s);
  1839. return 0;
  1840. }
  1841. }
  1842. s->node[node] = n;
  1843. init_kmem_cache_node(n, s);
  1844. }
  1845. return 1;
  1846. }
  1847. #else
  1848. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1849. {
  1850. }
  1851. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1852. {
  1853. init_kmem_cache_node(&s->local_node, s);
  1854. return 1;
  1855. }
  1856. #endif
  1857. static void calculate_min_partial(struct kmem_cache *s, unsigned long min)
  1858. {
  1859. if (min < MIN_PARTIAL)
  1860. min = MIN_PARTIAL;
  1861. else if (min > MAX_PARTIAL)
  1862. min = MAX_PARTIAL;
  1863. s->min_partial = min;
  1864. }
  1865. /*
  1866. * calculate_sizes() determines the order and the distribution of data within
  1867. * a slab object.
  1868. */
  1869. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1870. {
  1871. unsigned long flags = s->flags;
  1872. unsigned long size = s->objsize;
  1873. unsigned long align = s->align;
  1874. int order;
  1875. /*
  1876. * Round up object size to the next word boundary. We can only
  1877. * place the free pointer at word boundaries and this determines
  1878. * the possible location of the free pointer.
  1879. */
  1880. size = ALIGN(size, sizeof(void *));
  1881. #ifdef CONFIG_SLUB_DEBUG
  1882. /*
  1883. * Determine if we can poison the object itself. If the user of
  1884. * the slab may touch the object after free or before allocation
  1885. * then we should never poison the object itself.
  1886. */
  1887. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1888. !s->ctor)
  1889. s->flags |= __OBJECT_POISON;
  1890. else
  1891. s->flags &= ~__OBJECT_POISON;
  1892. /*
  1893. * If we are Redzoning then check if there is some space between the
  1894. * end of the object and the free pointer. If not then add an
  1895. * additional word to have some bytes to store Redzone information.
  1896. */
  1897. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1898. size += sizeof(void *);
  1899. #endif
  1900. /*
  1901. * With that we have determined the number of bytes in actual use
  1902. * by the object. This is the potential offset to the free pointer.
  1903. */
  1904. s->inuse = size;
  1905. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1906. s->ctor)) {
  1907. /*
  1908. * Relocate free pointer after the object if it is not
  1909. * permitted to overwrite the first word of the object on
  1910. * kmem_cache_free.
  1911. *
  1912. * This is the case if we do RCU, have a constructor or
  1913. * destructor or are poisoning the objects.
  1914. */
  1915. s->offset = size;
  1916. size += sizeof(void *);
  1917. }
  1918. #ifdef CONFIG_SLUB_DEBUG
  1919. if (flags & SLAB_STORE_USER)
  1920. /*
  1921. * Need to store information about allocs and frees after
  1922. * the object.
  1923. */
  1924. size += 2 * sizeof(struct track);
  1925. if (flags & SLAB_RED_ZONE)
  1926. /*
  1927. * Add some empty padding so that we can catch
  1928. * overwrites from earlier objects rather than let
  1929. * tracking information or the free pointer be
  1930. * corrupted if a user writes before the start
  1931. * of the object.
  1932. */
  1933. size += sizeof(void *);
  1934. #endif
  1935. /*
  1936. * Determine the alignment based on various parameters that the
  1937. * user specified and the dynamic determination of cache line size
  1938. * on bootup.
  1939. */
  1940. align = calculate_alignment(flags, align, s->objsize);
  1941. /*
  1942. * SLUB stores one object immediately after another beginning from
  1943. * offset 0. In order to align the objects we have to simply size
  1944. * each object to conform to the alignment.
  1945. */
  1946. size = ALIGN(size, align);
  1947. s->size = size;
  1948. if (forced_order >= 0)
  1949. order = forced_order;
  1950. else
  1951. order = calculate_order(size);
  1952. if (order < 0)
  1953. return 0;
  1954. s->allocflags = 0;
  1955. if (order)
  1956. s->allocflags |= __GFP_COMP;
  1957. if (s->flags & SLAB_CACHE_DMA)
  1958. s->allocflags |= SLUB_DMA;
  1959. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1960. s->allocflags |= __GFP_RECLAIMABLE;
  1961. /*
  1962. * Determine the number of objects per slab
  1963. */
  1964. s->oo = oo_make(order, size);
  1965. s->min = oo_make(get_order(size), size);
  1966. if (oo_objects(s->oo) > oo_objects(s->max))
  1967. s->max = s->oo;
  1968. return !!oo_objects(s->oo);
  1969. }
  1970. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1971. const char *name, size_t size,
  1972. size_t align, unsigned long flags,
  1973. void (*ctor)(void *))
  1974. {
  1975. memset(s, 0, kmem_size);
  1976. s->name = name;
  1977. s->ctor = ctor;
  1978. s->objsize = size;
  1979. s->align = align;
  1980. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1981. if (!calculate_sizes(s, -1))
  1982. goto error;
  1983. /*
  1984. * The larger the object size is, the more pages we want on the partial
  1985. * list to avoid pounding the page allocator excessively.
  1986. */
  1987. calculate_min_partial(s, ilog2(s->size));
  1988. s->refcount = 1;
  1989. #ifdef CONFIG_NUMA
  1990. s->remote_node_defrag_ratio = 1000;
  1991. #endif
  1992. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1993. goto error;
  1994. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1995. return 1;
  1996. free_kmem_cache_nodes(s);
  1997. error:
  1998. if (flags & SLAB_PANIC)
  1999. panic("Cannot create slab %s size=%lu realsize=%u "
  2000. "order=%u offset=%u flags=%lx\n",
  2001. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2002. s->offset, flags);
  2003. return 0;
  2004. }
  2005. /*
  2006. * Check if a given pointer is valid
  2007. */
  2008. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2009. {
  2010. struct page *page;
  2011. page = get_object_page(object);
  2012. if (!page || s != page->slab)
  2013. /* No slab or wrong slab */
  2014. return 0;
  2015. if (!check_valid_pointer(s, page, object))
  2016. return 0;
  2017. /*
  2018. * We could also check if the object is on the slabs freelist.
  2019. * But this would be too expensive and it seems that the main
  2020. * purpose of kmem_ptr_valid() is to check if the object belongs
  2021. * to a certain slab.
  2022. */
  2023. return 1;
  2024. }
  2025. EXPORT_SYMBOL(kmem_ptr_validate);
  2026. /*
  2027. * Determine the size of a slab object
  2028. */
  2029. unsigned int kmem_cache_size(struct kmem_cache *s)
  2030. {
  2031. return s->objsize;
  2032. }
  2033. EXPORT_SYMBOL(kmem_cache_size);
  2034. const char *kmem_cache_name(struct kmem_cache *s)
  2035. {
  2036. return s->name;
  2037. }
  2038. EXPORT_SYMBOL(kmem_cache_name);
  2039. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2040. const char *text)
  2041. {
  2042. #ifdef CONFIG_SLUB_DEBUG
  2043. void *addr = page_address(page);
  2044. void *p;
  2045. DECLARE_BITMAP(map, page->objects);
  2046. bitmap_zero(map, page->objects);
  2047. slab_err(s, page, "%s", text);
  2048. slab_lock(page);
  2049. for_each_free_object(p, s, page->freelist)
  2050. set_bit(slab_index(p, s, addr), map);
  2051. for_each_object(p, s, addr, page->objects) {
  2052. if (!test_bit(slab_index(p, s, addr), map)) {
  2053. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2054. p, p - addr);
  2055. print_tracking(s, p);
  2056. }
  2057. }
  2058. slab_unlock(page);
  2059. #endif
  2060. }
  2061. /*
  2062. * Attempt to free all partial slabs on a node.
  2063. */
  2064. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2065. {
  2066. unsigned long flags;
  2067. struct page *page, *h;
  2068. spin_lock_irqsave(&n->list_lock, flags);
  2069. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2070. if (!page->inuse) {
  2071. list_del(&page->lru);
  2072. discard_slab(s, page);
  2073. n->nr_partial--;
  2074. } else {
  2075. list_slab_objects(s, page,
  2076. "Objects remaining on kmem_cache_close()");
  2077. }
  2078. }
  2079. spin_unlock_irqrestore(&n->list_lock, flags);
  2080. }
  2081. /*
  2082. * Release all resources used by a slab cache.
  2083. */
  2084. static inline int kmem_cache_close(struct kmem_cache *s)
  2085. {
  2086. int node;
  2087. flush_all(s);
  2088. /* Attempt to free all objects */
  2089. free_kmem_cache_cpus(s);
  2090. for_each_node_state(node, N_NORMAL_MEMORY) {
  2091. struct kmem_cache_node *n = get_node(s, node);
  2092. free_partial(s, n);
  2093. if (n->nr_partial || slabs_node(s, node))
  2094. return 1;
  2095. }
  2096. free_kmem_cache_nodes(s);
  2097. return 0;
  2098. }
  2099. /*
  2100. * Close a cache and release the kmem_cache structure
  2101. * (must be used for caches created using kmem_cache_create)
  2102. */
  2103. void kmem_cache_destroy(struct kmem_cache *s)
  2104. {
  2105. down_write(&slub_lock);
  2106. s->refcount--;
  2107. if (!s->refcount) {
  2108. list_del(&s->list);
  2109. up_write(&slub_lock);
  2110. if (kmem_cache_close(s)) {
  2111. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2112. "still has objects.\n", s->name, __func__);
  2113. dump_stack();
  2114. }
  2115. sysfs_slab_remove(s);
  2116. } else
  2117. up_write(&slub_lock);
  2118. }
  2119. EXPORT_SYMBOL(kmem_cache_destroy);
  2120. /********************************************************************
  2121. * Kmalloc subsystem
  2122. *******************************************************************/
  2123. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2124. EXPORT_SYMBOL(kmalloc_caches);
  2125. static int __init setup_slub_min_order(char *str)
  2126. {
  2127. get_option(&str, &slub_min_order);
  2128. return 1;
  2129. }
  2130. __setup("slub_min_order=", setup_slub_min_order);
  2131. static int __init setup_slub_max_order(char *str)
  2132. {
  2133. get_option(&str, &slub_max_order);
  2134. return 1;
  2135. }
  2136. __setup("slub_max_order=", setup_slub_max_order);
  2137. static int __init setup_slub_min_objects(char *str)
  2138. {
  2139. get_option(&str, &slub_min_objects);
  2140. return 1;
  2141. }
  2142. __setup("slub_min_objects=", setup_slub_min_objects);
  2143. static int __init setup_slub_nomerge(char *str)
  2144. {
  2145. slub_nomerge = 1;
  2146. return 1;
  2147. }
  2148. __setup("slub_nomerge", setup_slub_nomerge);
  2149. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2150. const char *name, int size, gfp_t gfp_flags)
  2151. {
  2152. unsigned int flags = 0;
  2153. if (gfp_flags & SLUB_DMA)
  2154. flags = SLAB_CACHE_DMA;
  2155. down_write(&slub_lock);
  2156. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2157. flags, NULL))
  2158. goto panic;
  2159. list_add(&s->list, &slab_caches);
  2160. up_write(&slub_lock);
  2161. if (sysfs_slab_add(s))
  2162. goto panic;
  2163. return s;
  2164. panic:
  2165. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2166. }
  2167. #ifdef CONFIG_ZONE_DMA
  2168. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2169. static void sysfs_add_func(struct work_struct *w)
  2170. {
  2171. struct kmem_cache *s;
  2172. down_write(&slub_lock);
  2173. list_for_each_entry(s, &slab_caches, list) {
  2174. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2175. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2176. sysfs_slab_add(s);
  2177. }
  2178. }
  2179. up_write(&slub_lock);
  2180. }
  2181. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2182. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2183. {
  2184. struct kmem_cache *s;
  2185. char *text;
  2186. size_t realsize;
  2187. s = kmalloc_caches_dma[index];
  2188. if (s)
  2189. return s;
  2190. /* Dynamically create dma cache */
  2191. if (flags & __GFP_WAIT)
  2192. down_write(&slub_lock);
  2193. else {
  2194. if (!down_write_trylock(&slub_lock))
  2195. goto out;
  2196. }
  2197. if (kmalloc_caches_dma[index])
  2198. goto unlock_out;
  2199. realsize = kmalloc_caches[index].objsize;
  2200. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2201. (unsigned int)realsize);
  2202. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2203. if (!s || !text || !kmem_cache_open(s, flags, text,
  2204. realsize, ARCH_KMALLOC_MINALIGN,
  2205. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2206. kfree(s);
  2207. kfree(text);
  2208. goto unlock_out;
  2209. }
  2210. list_add(&s->list, &slab_caches);
  2211. kmalloc_caches_dma[index] = s;
  2212. schedule_work(&sysfs_add_work);
  2213. unlock_out:
  2214. up_write(&slub_lock);
  2215. out:
  2216. return kmalloc_caches_dma[index];
  2217. }
  2218. #endif
  2219. /*
  2220. * Conversion table for small slabs sizes / 8 to the index in the
  2221. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2222. * of two cache sizes there. The size of larger slabs can be determined using
  2223. * fls.
  2224. */
  2225. static s8 size_index[24] = {
  2226. 3, /* 8 */
  2227. 4, /* 16 */
  2228. 5, /* 24 */
  2229. 5, /* 32 */
  2230. 6, /* 40 */
  2231. 6, /* 48 */
  2232. 6, /* 56 */
  2233. 6, /* 64 */
  2234. 1, /* 72 */
  2235. 1, /* 80 */
  2236. 1, /* 88 */
  2237. 1, /* 96 */
  2238. 7, /* 104 */
  2239. 7, /* 112 */
  2240. 7, /* 120 */
  2241. 7, /* 128 */
  2242. 2, /* 136 */
  2243. 2, /* 144 */
  2244. 2, /* 152 */
  2245. 2, /* 160 */
  2246. 2, /* 168 */
  2247. 2, /* 176 */
  2248. 2, /* 184 */
  2249. 2 /* 192 */
  2250. };
  2251. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2252. {
  2253. int index;
  2254. if (size <= 192) {
  2255. if (!size)
  2256. return ZERO_SIZE_PTR;
  2257. index = size_index[(size - 1) / 8];
  2258. } else
  2259. index = fls(size - 1);
  2260. #ifdef CONFIG_ZONE_DMA
  2261. if (unlikely((flags & SLUB_DMA)))
  2262. return dma_kmalloc_cache(index, flags);
  2263. #endif
  2264. return &kmalloc_caches[index];
  2265. }
  2266. void *__kmalloc(size_t size, gfp_t flags)
  2267. {
  2268. struct kmem_cache *s;
  2269. if (unlikely(size > PAGE_SIZE))
  2270. return kmalloc_large(size, flags);
  2271. s = get_slab(size, flags);
  2272. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2273. return s;
  2274. return slab_alloc(s, flags, -1, _RET_IP_);
  2275. }
  2276. EXPORT_SYMBOL(__kmalloc);
  2277. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2278. {
  2279. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2280. get_order(size));
  2281. if (page)
  2282. return page_address(page);
  2283. else
  2284. return NULL;
  2285. }
  2286. #ifdef CONFIG_NUMA
  2287. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2288. {
  2289. struct kmem_cache *s;
  2290. if (unlikely(size > PAGE_SIZE))
  2291. return kmalloc_large_node(size, flags, node);
  2292. s = get_slab(size, flags);
  2293. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2294. return s;
  2295. return slab_alloc(s, flags, node, _RET_IP_);
  2296. }
  2297. EXPORT_SYMBOL(__kmalloc_node);
  2298. #endif
  2299. size_t ksize(const void *object)
  2300. {
  2301. struct page *page;
  2302. struct kmem_cache *s;
  2303. if (unlikely(object == ZERO_SIZE_PTR))
  2304. return 0;
  2305. page = virt_to_head_page(object);
  2306. if (unlikely(!PageSlab(page))) {
  2307. WARN_ON(!PageCompound(page));
  2308. return PAGE_SIZE << compound_order(page);
  2309. }
  2310. s = page->slab;
  2311. #ifdef CONFIG_SLUB_DEBUG
  2312. /*
  2313. * Debugging requires use of the padding between object
  2314. * and whatever may come after it.
  2315. */
  2316. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2317. return s->objsize;
  2318. #endif
  2319. /*
  2320. * If we have the need to store the freelist pointer
  2321. * back there or track user information then we can
  2322. * only use the space before that information.
  2323. */
  2324. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2325. return s->inuse;
  2326. /*
  2327. * Else we can use all the padding etc for the allocation
  2328. */
  2329. return s->size;
  2330. }
  2331. void kfree(const void *x)
  2332. {
  2333. struct page *page;
  2334. void *object = (void *)x;
  2335. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2336. return;
  2337. page = virt_to_head_page(x);
  2338. if (unlikely(!PageSlab(page))) {
  2339. BUG_ON(!PageCompound(page));
  2340. put_page(page);
  2341. return;
  2342. }
  2343. slab_free(page->slab, page, object, _RET_IP_);
  2344. }
  2345. EXPORT_SYMBOL(kfree);
  2346. /*
  2347. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2348. * the remaining slabs by the number of items in use. The slabs with the
  2349. * most items in use come first. New allocations will then fill those up
  2350. * and thus they can be removed from the partial lists.
  2351. *
  2352. * The slabs with the least items are placed last. This results in them
  2353. * being allocated from last increasing the chance that the last objects
  2354. * are freed in them.
  2355. */
  2356. int kmem_cache_shrink(struct kmem_cache *s)
  2357. {
  2358. int node;
  2359. int i;
  2360. struct kmem_cache_node *n;
  2361. struct page *page;
  2362. struct page *t;
  2363. int objects = oo_objects(s->max);
  2364. struct list_head *slabs_by_inuse =
  2365. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2366. unsigned long flags;
  2367. if (!slabs_by_inuse)
  2368. return -ENOMEM;
  2369. flush_all(s);
  2370. for_each_node_state(node, N_NORMAL_MEMORY) {
  2371. n = get_node(s, node);
  2372. if (!n->nr_partial)
  2373. continue;
  2374. for (i = 0; i < objects; i++)
  2375. INIT_LIST_HEAD(slabs_by_inuse + i);
  2376. spin_lock_irqsave(&n->list_lock, flags);
  2377. /*
  2378. * Build lists indexed by the items in use in each slab.
  2379. *
  2380. * Note that concurrent frees may occur while we hold the
  2381. * list_lock. page->inuse here is the upper limit.
  2382. */
  2383. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2384. if (!page->inuse && slab_trylock(page)) {
  2385. /*
  2386. * Must hold slab lock here because slab_free
  2387. * may have freed the last object and be
  2388. * waiting to release the slab.
  2389. */
  2390. list_del(&page->lru);
  2391. n->nr_partial--;
  2392. slab_unlock(page);
  2393. discard_slab(s, page);
  2394. } else {
  2395. list_move(&page->lru,
  2396. slabs_by_inuse + page->inuse);
  2397. }
  2398. }
  2399. /*
  2400. * Rebuild the partial list with the slabs filled up most
  2401. * first and the least used slabs at the end.
  2402. */
  2403. for (i = objects - 1; i >= 0; i--)
  2404. list_splice(slabs_by_inuse + i, n->partial.prev);
  2405. spin_unlock_irqrestore(&n->list_lock, flags);
  2406. }
  2407. kfree(slabs_by_inuse);
  2408. return 0;
  2409. }
  2410. EXPORT_SYMBOL(kmem_cache_shrink);
  2411. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2412. static int slab_mem_going_offline_callback(void *arg)
  2413. {
  2414. struct kmem_cache *s;
  2415. down_read(&slub_lock);
  2416. list_for_each_entry(s, &slab_caches, list)
  2417. kmem_cache_shrink(s);
  2418. up_read(&slub_lock);
  2419. return 0;
  2420. }
  2421. static void slab_mem_offline_callback(void *arg)
  2422. {
  2423. struct kmem_cache_node *n;
  2424. struct kmem_cache *s;
  2425. struct memory_notify *marg = arg;
  2426. int offline_node;
  2427. offline_node = marg->status_change_nid;
  2428. /*
  2429. * If the node still has available memory. we need kmem_cache_node
  2430. * for it yet.
  2431. */
  2432. if (offline_node < 0)
  2433. return;
  2434. down_read(&slub_lock);
  2435. list_for_each_entry(s, &slab_caches, list) {
  2436. n = get_node(s, offline_node);
  2437. if (n) {
  2438. /*
  2439. * if n->nr_slabs > 0, slabs still exist on the node
  2440. * that is going down. We were unable to free them,
  2441. * and offline_pages() function shoudn't call this
  2442. * callback. So, we must fail.
  2443. */
  2444. BUG_ON(slabs_node(s, offline_node));
  2445. s->node[offline_node] = NULL;
  2446. kmem_cache_free(kmalloc_caches, n);
  2447. }
  2448. }
  2449. up_read(&slub_lock);
  2450. }
  2451. static int slab_mem_going_online_callback(void *arg)
  2452. {
  2453. struct kmem_cache_node *n;
  2454. struct kmem_cache *s;
  2455. struct memory_notify *marg = arg;
  2456. int nid = marg->status_change_nid;
  2457. int ret = 0;
  2458. /*
  2459. * If the node's memory is already available, then kmem_cache_node is
  2460. * already created. Nothing to do.
  2461. */
  2462. if (nid < 0)
  2463. return 0;
  2464. /*
  2465. * We are bringing a node online. No memory is available yet. We must
  2466. * allocate a kmem_cache_node structure in order to bring the node
  2467. * online.
  2468. */
  2469. down_read(&slub_lock);
  2470. list_for_each_entry(s, &slab_caches, list) {
  2471. /*
  2472. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2473. * since memory is not yet available from the node that
  2474. * is brought up.
  2475. */
  2476. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2477. if (!n) {
  2478. ret = -ENOMEM;
  2479. goto out;
  2480. }
  2481. init_kmem_cache_node(n, s);
  2482. s->node[nid] = n;
  2483. }
  2484. out:
  2485. up_read(&slub_lock);
  2486. return ret;
  2487. }
  2488. static int slab_memory_callback(struct notifier_block *self,
  2489. unsigned long action, void *arg)
  2490. {
  2491. int ret = 0;
  2492. switch (action) {
  2493. case MEM_GOING_ONLINE:
  2494. ret = slab_mem_going_online_callback(arg);
  2495. break;
  2496. case MEM_GOING_OFFLINE:
  2497. ret = slab_mem_going_offline_callback(arg);
  2498. break;
  2499. case MEM_OFFLINE:
  2500. case MEM_CANCEL_ONLINE:
  2501. slab_mem_offline_callback(arg);
  2502. break;
  2503. case MEM_ONLINE:
  2504. case MEM_CANCEL_OFFLINE:
  2505. break;
  2506. }
  2507. if (ret)
  2508. ret = notifier_from_errno(ret);
  2509. else
  2510. ret = NOTIFY_OK;
  2511. return ret;
  2512. }
  2513. #endif /* CONFIG_MEMORY_HOTPLUG */
  2514. /********************************************************************
  2515. * Basic setup of slabs
  2516. *******************************************************************/
  2517. void __init kmem_cache_init(void)
  2518. {
  2519. int i;
  2520. int caches = 0;
  2521. init_alloc_cpu();
  2522. #ifdef CONFIG_NUMA
  2523. /*
  2524. * Must first have the slab cache available for the allocations of the
  2525. * struct kmem_cache_node's. There is special bootstrap code in
  2526. * kmem_cache_open for slab_state == DOWN.
  2527. */
  2528. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2529. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2530. kmalloc_caches[0].refcount = -1;
  2531. caches++;
  2532. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2533. #endif
  2534. /* Able to allocate the per node structures */
  2535. slab_state = PARTIAL;
  2536. /* Caches that are not of the two-to-the-power-of size */
  2537. if (KMALLOC_MIN_SIZE <= 64) {
  2538. create_kmalloc_cache(&kmalloc_caches[1],
  2539. "kmalloc-96", 96, GFP_KERNEL);
  2540. caches++;
  2541. create_kmalloc_cache(&kmalloc_caches[2],
  2542. "kmalloc-192", 192, GFP_KERNEL);
  2543. caches++;
  2544. }
  2545. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2546. create_kmalloc_cache(&kmalloc_caches[i],
  2547. "kmalloc", 1 << i, GFP_KERNEL);
  2548. caches++;
  2549. }
  2550. /*
  2551. * Patch up the size_index table if we have strange large alignment
  2552. * requirements for the kmalloc array. This is only the case for
  2553. * MIPS it seems. The standard arches will not generate any code here.
  2554. *
  2555. * Largest permitted alignment is 256 bytes due to the way we
  2556. * handle the index determination for the smaller caches.
  2557. *
  2558. * Make sure that nothing crazy happens if someone starts tinkering
  2559. * around with ARCH_KMALLOC_MINALIGN
  2560. */
  2561. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2562. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2563. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2564. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2565. if (KMALLOC_MIN_SIZE == 128) {
  2566. /*
  2567. * The 192 byte sized cache is not used if the alignment
  2568. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2569. * instead.
  2570. */
  2571. for (i = 128 + 8; i <= 192; i += 8)
  2572. size_index[(i - 1) / 8] = 8;
  2573. }
  2574. slab_state = UP;
  2575. /* Provide the correct kmalloc names now that the caches are up */
  2576. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2577. kmalloc_caches[i]. name =
  2578. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2579. #ifdef CONFIG_SMP
  2580. register_cpu_notifier(&slab_notifier);
  2581. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2582. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2583. #else
  2584. kmem_size = sizeof(struct kmem_cache);
  2585. #endif
  2586. printk(KERN_INFO
  2587. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2588. " CPUs=%d, Nodes=%d\n",
  2589. caches, cache_line_size(),
  2590. slub_min_order, slub_max_order, slub_min_objects,
  2591. nr_cpu_ids, nr_node_ids);
  2592. }
  2593. /*
  2594. * Find a mergeable slab cache
  2595. */
  2596. static int slab_unmergeable(struct kmem_cache *s)
  2597. {
  2598. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2599. return 1;
  2600. if (s->ctor)
  2601. return 1;
  2602. /*
  2603. * We may have set a slab to be unmergeable during bootstrap.
  2604. */
  2605. if (s->refcount < 0)
  2606. return 1;
  2607. return 0;
  2608. }
  2609. static struct kmem_cache *find_mergeable(size_t size,
  2610. size_t align, unsigned long flags, const char *name,
  2611. void (*ctor)(void *))
  2612. {
  2613. struct kmem_cache *s;
  2614. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2615. return NULL;
  2616. if (ctor)
  2617. return NULL;
  2618. size = ALIGN(size, sizeof(void *));
  2619. align = calculate_alignment(flags, align, size);
  2620. size = ALIGN(size, align);
  2621. flags = kmem_cache_flags(size, flags, name, NULL);
  2622. list_for_each_entry(s, &slab_caches, list) {
  2623. if (slab_unmergeable(s))
  2624. continue;
  2625. if (size > s->size)
  2626. continue;
  2627. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2628. continue;
  2629. /*
  2630. * Check if alignment is compatible.
  2631. * Courtesy of Adrian Drzewiecki
  2632. */
  2633. if ((s->size & ~(align - 1)) != s->size)
  2634. continue;
  2635. if (s->size - size >= sizeof(void *))
  2636. continue;
  2637. return s;
  2638. }
  2639. return NULL;
  2640. }
  2641. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2642. size_t align, unsigned long flags, void (*ctor)(void *))
  2643. {
  2644. struct kmem_cache *s;
  2645. down_write(&slub_lock);
  2646. s = find_mergeable(size, align, flags, name, ctor);
  2647. if (s) {
  2648. int cpu;
  2649. s->refcount++;
  2650. /*
  2651. * Adjust the object sizes so that we clear
  2652. * the complete object on kzalloc.
  2653. */
  2654. s->objsize = max(s->objsize, (int)size);
  2655. /*
  2656. * And then we need to update the object size in the
  2657. * per cpu structures
  2658. */
  2659. for_each_online_cpu(cpu)
  2660. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2661. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2662. up_write(&slub_lock);
  2663. if (sysfs_slab_alias(s, name)) {
  2664. down_write(&slub_lock);
  2665. s->refcount--;
  2666. up_write(&slub_lock);
  2667. goto err;
  2668. }
  2669. return s;
  2670. }
  2671. s = kmalloc(kmem_size, GFP_KERNEL);
  2672. if (s) {
  2673. if (kmem_cache_open(s, GFP_KERNEL, name,
  2674. size, align, flags, ctor)) {
  2675. list_add(&s->list, &slab_caches);
  2676. up_write(&slub_lock);
  2677. if (sysfs_slab_add(s)) {
  2678. down_write(&slub_lock);
  2679. list_del(&s->list);
  2680. up_write(&slub_lock);
  2681. kfree(s);
  2682. goto err;
  2683. }
  2684. return s;
  2685. }
  2686. kfree(s);
  2687. }
  2688. up_write(&slub_lock);
  2689. err:
  2690. if (flags & SLAB_PANIC)
  2691. panic("Cannot create slabcache %s\n", name);
  2692. else
  2693. s = NULL;
  2694. return s;
  2695. }
  2696. EXPORT_SYMBOL(kmem_cache_create);
  2697. #ifdef CONFIG_SMP
  2698. /*
  2699. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2700. * necessary.
  2701. */
  2702. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2703. unsigned long action, void *hcpu)
  2704. {
  2705. long cpu = (long)hcpu;
  2706. struct kmem_cache *s;
  2707. unsigned long flags;
  2708. switch (action) {
  2709. case CPU_UP_PREPARE:
  2710. case CPU_UP_PREPARE_FROZEN:
  2711. init_alloc_cpu_cpu(cpu);
  2712. down_read(&slub_lock);
  2713. list_for_each_entry(s, &slab_caches, list)
  2714. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2715. GFP_KERNEL);
  2716. up_read(&slub_lock);
  2717. break;
  2718. case CPU_UP_CANCELED:
  2719. case CPU_UP_CANCELED_FROZEN:
  2720. case CPU_DEAD:
  2721. case CPU_DEAD_FROZEN:
  2722. down_read(&slub_lock);
  2723. list_for_each_entry(s, &slab_caches, list) {
  2724. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2725. local_irq_save(flags);
  2726. __flush_cpu_slab(s, cpu);
  2727. local_irq_restore(flags);
  2728. free_kmem_cache_cpu(c, cpu);
  2729. s->cpu_slab[cpu] = NULL;
  2730. }
  2731. up_read(&slub_lock);
  2732. break;
  2733. default:
  2734. break;
  2735. }
  2736. return NOTIFY_OK;
  2737. }
  2738. static struct notifier_block __cpuinitdata slab_notifier = {
  2739. .notifier_call = slab_cpuup_callback
  2740. };
  2741. #endif
  2742. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2743. {
  2744. struct kmem_cache *s;
  2745. if (unlikely(size > PAGE_SIZE))
  2746. return kmalloc_large(size, gfpflags);
  2747. s = get_slab(size, gfpflags);
  2748. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2749. return s;
  2750. return slab_alloc(s, gfpflags, -1, caller);
  2751. }
  2752. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2753. int node, unsigned long caller)
  2754. {
  2755. struct kmem_cache *s;
  2756. if (unlikely(size > PAGE_SIZE))
  2757. return kmalloc_large_node(size, gfpflags, node);
  2758. s = get_slab(size, gfpflags);
  2759. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2760. return s;
  2761. return slab_alloc(s, gfpflags, node, caller);
  2762. }
  2763. #ifdef CONFIG_SLUB_DEBUG
  2764. static unsigned long count_partial(struct kmem_cache_node *n,
  2765. int (*get_count)(struct page *))
  2766. {
  2767. unsigned long flags;
  2768. unsigned long x = 0;
  2769. struct page *page;
  2770. spin_lock_irqsave(&n->list_lock, flags);
  2771. list_for_each_entry(page, &n->partial, lru)
  2772. x += get_count(page);
  2773. spin_unlock_irqrestore(&n->list_lock, flags);
  2774. return x;
  2775. }
  2776. static int count_inuse(struct page *page)
  2777. {
  2778. return page->inuse;
  2779. }
  2780. static int count_total(struct page *page)
  2781. {
  2782. return page->objects;
  2783. }
  2784. static int count_free(struct page *page)
  2785. {
  2786. return page->objects - page->inuse;
  2787. }
  2788. static int validate_slab(struct kmem_cache *s, struct page *page,
  2789. unsigned long *map)
  2790. {
  2791. void *p;
  2792. void *addr = page_address(page);
  2793. if (!check_slab(s, page) ||
  2794. !on_freelist(s, page, NULL))
  2795. return 0;
  2796. /* Now we know that a valid freelist exists */
  2797. bitmap_zero(map, page->objects);
  2798. for_each_free_object(p, s, page->freelist) {
  2799. set_bit(slab_index(p, s, addr), map);
  2800. if (!check_object(s, page, p, 0))
  2801. return 0;
  2802. }
  2803. for_each_object(p, s, addr, page->objects)
  2804. if (!test_bit(slab_index(p, s, addr), map))
  2805. if (!check_object(s, page, p, 1))
  2806. return 0;
  2807. return 1;
  2808. }
  2809. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2810. unsigned long *map)
  2811. {
  2812. if (slab_trylock(page)) {
  2813. validate_slab(s, page, map);
  2814. slab_unlock(page);
  2815. } else
  2816. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2817. s->name, page);
  2818. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2819. if (!PageSlubDebug(page))
  2820. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2821. "on slab 0x%p\n", s->name, page);
  2822. } else {
  2823. if (PageSlubDebug(page))
  2824. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2825. "slab 0x%p\n", s->name, page);
  2826. }
  2827. }
  2828. static int validate_slab_node(struct kmem_cache *s,
  2829. struct kmem_cache_node *n, unsigned long *map)
  2830. {
  2831. unsigned long count = 0;
  2832. struct page *page;
  2833. unsigned long flags;
  2834. spin_lock_irqsave(&n->list_lock, flags);
  2835. list_for_each_entry(page, &n->partial, lru) {
  2836. validate_slab_slab(s, page, map);
  2837. count++;
  2838. }
  2839. if (count != n->nr_partial)
  2840. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2841. "counter=%ld\n", s->name, count, n->nr_partial);
  2842. if (!(s->flags & SLAB_STORE_USER))
  2843. goto out;
  2844. list_for_each_entry(page, &n->full, lru) {
  2845. validate_slab_slab(s, page, map);
  2846. count++;
  2847. }
  2848. if (count != atomic_long_read(&n->nr_slabs))
  2849. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2850. "counter=%ld\n", s->name, count,
  2851. atomic_long_read(&n->nr_slabs));
  2852. out:
  2853. spin_unlock_irqrestore(&n->list_lock, flags);
  2854. return count;
  2855. }
  2856. static long validate_slab_cache(struct kmem_cache *s)
  2857. {
  2858. int node;
  2859. unsigned long count = 0;
  2860. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2861. sizeof(unsigned long), GFP_KERNEL);
  2862. if (!map)
  2863. return -ENOMEM;
  2864. flush_all(s);
  2865. for_each_node_state(node, N_NORMAL_MEMORY) {
  2866. struct kmem_cache_node *n = get_node(s, node);
  2867. count += validate_slab_node(s, n, map);
  2868. }
  2869. kfree(map);
  2870. return count;
  2871. }
  2872. #ifdef SLUB_RESILIENCY_TEST
  2873. static void resiliency_test(void)
  2874. {
  2875. u8 *p;
  2876. printk(KERN_ERR "SLUB resiliency testing\n");
  2877. printk(KERN_ERR "-----------------------\n");
  2878. printk(KERN_ERR "A. Corruption after allocation\n");
  2879. p = kzalloc(16, GFP_KERNEL);
  2880. p[16] = 0x12;
  2881. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2882. " 0x12->0x%p\n\n", p + 16);
  2883. validate_slab_cache(kmalloc_caches + 4);
  2884. /* Hmmm... The next two are dangerous */
  2885. p = kzalloc(32, GFP_KERNEL);
  2886. p[32 + sizeof(void *)] = 0x34;
  2887. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2888. " 0x34 -> -0x%p\n", p);
  2889. printk(KERN_ERR
  2890. "If allocated object is overwritten then not detectable\n\n");
  2891. validate_slab_cache(kmalloc_caches + 5);
  2892. p = kzalloc(64, GFP_KERNEL);
  2893. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2894. *p = 0x56;
  2895. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2896. p);
  2897. printk(KERN_ERR
  2898. "If allocated object is overwritten then not detectable\n\n");
  2899. validate_slab_cache(kmalloc_caches + 6);
  2900. printk(KERN_ERR "\nB. Corruption after free\n");
  2901. p = kzalloc(128, GFP_KERNEL);
  2902. kfree(p);
  2903. *p = 0x78;
  2904. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2905. validate_slab_cache(kmalloc_caches + 7);
  2906. p = kzalloc(256, GFP_KERNEL);
  2907. kfree(p);
  2908. p[50] = 0x9a;
  2909. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2910. p);
  2911. validate_slab_cache(kmalloc_caches + 8);
  2912. p = kzalloc(512, GFP_KERNEL);
  2913. kfree(p);
  2914. p[512] = 0xab;
  2915. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2916. validate_slab_cache(kmalloc_caches + 9);
  2917. }
  2918. #else
  2919. static void resiliency_test(void) {};
  2920. #endif
  2921. /*
  2922. * Generate lists of code addresses where slabcache objects are allocated
  2923. * and freed.
  2924. */
  2925. struct location {
  2926. unsigned long count;
  2927. unsigned long addr;
  2928. long long sum_time;
  2929. long min_time;
  2930. long max_time;
  2931. long min_pid;
  2932. long max_pid;
  2933. DECLARE_BITMAP(cpus, NR_CPUS);
  2934. nodemask_t nodes;
  2935. };
  2936. struct loc_track {
  2937. unsigned long max;
  2938. unsigned long count;
  2939. struct location *loc;
  2940. };
  2941. static void free_loc_track(struct loc_track *t)
  2942. {
  2943. if (t->max)
  2944. free_pages((unsigned long)t->loc,
  2945. get_order(sizeof(struct location) * t->max));
  2946. }
  2947. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2948. {
  2949. struct location *l;
  2950. int order;
  2951. order = get_order(sizeof(struct location) * max);
  2952. l = (void *)__get_free_pages(flags, order);
  2953. if (!l)
  2954. return 0;
  2955. if (t->count) {
  2956. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2957. free_loc_track(t);
  2958. }
  2959. t->max = max;
  2960. t->loc = l;
  2961. return 1;
  2962. }
  2963. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2964. const struct track *track)
  2965. {
  2966. long start, end, pos;
  2967. struct location *l;
  2968. unsigned long caddr;
  2969. unsigned long age = jiffies - track->when;
  2970. start = -1;
  2971. end = t->count;
  2972. for ( ; ; ) {
  2973. pos = start + (end - start + 1) / 2;
  2974. /*
  2975. * There is nothing at "end". If we end up there
  2976. * we need to add something to before end.
  2977. */
  2978. if (pos == end)
  2979. break;
  2980. caddr = t->loc[pos].addr;
  2981. if (track->addr == caddr) {
  2982. l = &t->loc[pos];
  2983. l->count++;
  2984. if (track->when) {
  2985. l->sum_time += age;
  2986. if (age < l->min_time)
  2987. l->min_time = age;
  2988. if (age > l->max_time)
  2989. l->max_time = age;
  2990. if (track->pid < l->min_pid)
  2991. l->min_pid = track->pid;
  2992. if (track->pid > l->max_pid)
  2993. l->max_pid = track->pid;
  2994. cpumask_set_cpu(track->cpu,
  2995. to_cpumask(l->cpus));
  2996. }
  2997. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2998. return 1;
  2999. }
  3000. if (track->addr < caddr)
  3001. end = pos;
  3002. else
  3003. start = pos;
  3004. }
  3005. /*
  3006. * Not found. Insert new tracking element.
  3007. */
  3008. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3009. return 0;
  3010. l = t->loc + pos;
  3011. if (pos < t->count)
  3012. memmove(l + 1, l,
  3013. (t->count - pos) * sizeof(struct location));
  3014. t->count++;
  3015. l->count = 1;
  3016. l->addr = track->addr;
  3017. l->sum_time = age;
  3018. l->min_time = age;
  3019. l->max_time = age;
  3020. l->min_pid = track->pid;
  3021. l->max_pid = track->pid;
  3022. cpumask_clear(to_cpumask(l->cpus));
  3023. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3024. nodes_clear(l->nodes);
  3025. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3026. return 1;
  3027. }
  3028. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3029. struct page *page, enum track_item alloc)
  3030. {
  3031. void *addr = page_address(page);
  3032. DECLARE_BITMAP(map, page->objects);
  3033. void *p;
  3034. bitmap_zero(map, page->objects);
  3035. for_each_free_object(p, s, page->freelist)
  3036. set_bit(slab_index(p, s, addr), map);
  3037. for_each_object(p, s, addr, page->objects)
  3038. if (!test_bit(slab_index(p, s, addr), map))
  3039. add_location(t, s, get_track(s, p, alloc));
  3040. }
  3041. static int list_locations(struct kmem_cache *s, char *buf,
  3042. enum track_item alloc)
  3043. {
  3044. int len = 0;
  3045. unsigned long i;
  3046. struct loc_track t = { 0, 0, NULL };
  3047. int node;
  3048. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3049. GFP_TEMPORARY))
  3050. return sprintf(buf, "Out of memory\n");
  3051. /* Push back cpu slabs */
  3052. flush_all(s);
  3053. for_each_node_state(node, N_NORMAL_MEMORY) {
  3054. struct kmem_cache_node *n = get_node(s, node);
  3055. unsigned long flags;
  3056. struct page *page;
  3057. if (!atomic_long_read(&n->nr_slabs))
  3058. continue;
  3059. spin_lock_irqsave(&n->list_lock, flags);
  3060. list_for_each_entry(page, &n->partial, lru)
  3061. process_slab(&t, s, page, alloc);
  3062. list_for_each_entry(page, &n->full, lru)
  3063. process_slab(&t, s, page, alloc);
  3064. spin_unlock_irqrestore(&n->list_lock, flags);
  3065. }
  3066. for (i = 0; i < t.count; i++) {
  3067. struct location *l = &t.loc[i];
  3068. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3069. break;
  3070. len += sprintf(buf + len, "%7ld ", l->count);
  3071. if (l->addr)
  3072. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3073. else
  3074. len += sprintf(buf + len, "<not-available>");
  3075. if (l->sum_time != l->min_time) {
  3076. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3077. l->min_time,
  3078. (long)div_u64(l->sum_time, l->count),
  3079. l->max_time);
  3080. } else
  3081. len += sprintf(buf + len, " age=%ld",
  3082. l->min_time);
  3083. if (l->min_pid != l->max_pid)
  3084. len += sprintf(buf + len, " pid=%ld-%ld",
  3085. l->min_pid, l->max_pid);
  3086. else
  3087. len += sprintf(buf + len, " pid=%ld",
  3088. l->min_pid);
  3089. if (num_online_cpus() > 1 &&
  3090. !cpumask_empty(to_cpumask(l->cpus)) &&
  3091. len < PAGE_SIZE - 60) {
  3092. len += sprintf(buf + len, " cpus=");
  3093. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3094. to_cpumask(l->cpus));
  3095. }
  3096. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3097. len < PAGE_SIZE - 60) {
  3098. len += sprintf(buf + len, " nodes=");
  3099. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3100. l->nodes);
  3101. }
  3102. len += sprintf(buf + len, "\n");
  3103. }
  3104. free_loc_track(&t);
  3105. if (!t.count)
  3106. len += sprintf(buf, "No data\n");
  3107. return len;
  3108. }
  3109. enum slab_stat_type {
  3110. SL_ALL, /* All slabs */
  3111. SL_PARTIAL, /* Only partially allocated slabs */
  3112. SL_CPU, /* Only slabs used for cpu caches */
  3113. SL_OBJECTS, /* Determine allocated objects not slabs */
  3114. SL_TOTAL /* Determine object capacity not slabs */
  3115. };
  3116. #define SO_ALL (1 << SL_ALL)
  3117. #define SO_PARTIAL (1 << SL_PARTIAL)
  3118. #define SO_CPU (1 << SL_CPU)
  3119. #define SO_OBJECTS (1 << SL_OBJECTS)
  3120. #define SO_TOTAL (1 << SL_TOTAL)
  3121. static ssize_t show_slab_objects(struct kmem_cache *s,
  3122. char *buf, unsigned long flags)
  3123. {
  3124. unsigned long total = 0;
  3125. int node;
  3126. int x;
  3127. unsigned long *nodes;
  3128. unsigned long *per_cpu;
  3129. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3130. if (!nodes)
  3131. return -ENOMEM;
  3132. per_cpu = nodes + nr_node_ids;
  3133. if (flags & SO_CPU) {
  3134. int cpu;
  3135. for_each_possible_cpu(cpu) {
  3136. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3137. if (!c || c->node < 0)
  3138. continue;
  3139. if (c->page) {
  3140. if (flags & SO_TOTAL)
  3141. x = c->page->objects;
  3142. else if (flags & SO_OBJECTS)
  3143. x = c->page->inuse;
  3144. else
  3145. x = 1;
  3146. total += x;
  3147. nodes[c->node] += x;
  3148. }
  3149. per_cpu[c->node]++;
  3150. }
  3151. }
  3152. if (flags & SO_ALL) {
  3153. for_each_node_state(node, N_NORMAL_MEMORY) {
  3154. struct kmem_cache_node *n = get_node(s, node);
  3155. if (flags & SO_TOTAL)
  3156. x = atomic_long_read(&n->total_objects);
  3157. else if (flags & SO_OBJECTS)
  3158. x = atomic_long_read(&n->total_objects) -
  3159. count_partial(n, count_free);
  3160. else
  3161. x = atomic_long_read(&n->nr_slabs);
  3162. total += x;
  3163. nodes[node] += x;
  3164. }
  3165. } else if (flags & SO_PARTIAL) {
  3166. for_each_node_state(node, N_NORMAL_MEMORY) {
  3167. struct kmem_cache_node *n = get_node(s, node);
  3168. if (flags & SO_TOTAL)
  3169. x = count_partial(n, count_total);
  3170. else if (flags & SO_OBJECTS)
  3171. x = count_partial(n, count_inuse);
  3172. else
  3173. x = n->nr_partial;
  3174. total += x;
  3175. nodes[node] += x;
  3176. }
  3177. }
  3178. x = sprintf(buf, "%lu", total);
  3179. #ifdef CONFIG_NUMA
  3180. for_each_node_state(node, N_NORMAL_MEMORY)
  3181. if (nodes[node])
  3182. x += sprintf(buf + x, " N%d=%lu",
  3183. node, nodes[node]);
  3184. #endif
  3185. kfree(nodes);
  3186. return x + sprintf(buf + x, "\n");
  3187. }
  3188. static int any_slab_objects(struct kmem_cache *s)
  3189. {
  3190. int node;
  3191. for_each_online_node(node) {
  3192. struct kmem_cache_node *n = get_node(s, node);
  3193. if (!n)
  3194. continue;
  3195. if (atomic_long_read(&n->total_objects))
  3196. return 1;
  3197. }
  3198. return 0;
  3199. }
  3200. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3201. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3202. struct slab_attribute {
  3203. struct attribute attr;
  3204. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3205. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3206. };
  3207. #define SLAB_ATTR_RO(_name) \
  3208. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3209. #define SLAB_ATTR(_name) \
  3210. static struct slab_attribute _name##_attr = \
  3211. __ATTR(_name, 0644, _name##_show, _name##_store)
  3212. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3213. {
  3214. return sprintf(buf, "%d\n", s->size);
  3215. }
  3216. SLAB_ATTR_RO(slab_size);
  3217. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3218. {
  3219. return sprintf(buf, "%d\n", s->align);
  3220. }
  3221. SLAB_ATTR_RO(align);
  3222. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3223. {
  3224. return sprintf(buf, "%d\n", s->objsize);
  3225. }
  3226. SLAB_ATTR_RO(object_size);
  3227. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3228. {
  3229. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3230. }
  3231. SLAB_ATTR_RO(objs_per_slab);
  3232. static ssize_t order_store(struct kmem_cache *s,
  3233. const char *buf, size_t length)
  3234. {
  3235. unsigned long order;
  3236. int err;
  3237. err = strict_strtoul(buf, 10, &order);
  3238. if (err)
  3239. return err;
  3240. if (order > slub_max_order || order < slub_min_order)
  3241. return -EINVAL;
  3242. calculate_sizes(s, order);
  3243. return length;
  3244. }
  3245. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3246. {
  3247. return sprintf(buf, "%d\n", oo_order(s->oo));
  3248. }
  3249. SLAB_ATTR(order);
  3250. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3251. {
  3252. if (s->ctor) {
  3253. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3254. return n + sprintf(buf + n, "\n");
  3255. }
  3256. return 0;
  3257. }
  3258. SLAB_ATTR_RO(ctor);
  3259. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3260. {
  3261. return sprintf(buf, "%d\n", s->refcount - 1);
  3262. }
  3263. SLAB_ATTR_RO(aliases);
  3264. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3265. {
  3266. return show_slab_objects(s, buf, SO_ALL);
  3267. }
  3268. SLAB_ATTR_RO(slabs);
  3269. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3270. {
  3271. return show_slab_objects(s, buf, SO_PARTIAL);
  3272. }
  3273. SLAB_ATTR_RO(partial);
  3274. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3275. {
  3276. return show_slab_objects(s, buf, SO_CPU);
  3277. }
  3278. SLAB_ATTR_RO(cpu_slabs);
  3279. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3280. {
  3281. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3282. }
  3283. SLAB_ATTR_RO(objects);
  3284. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3285. {
  3286. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3287. }
  3288. SLAB_ATTR_RO(objects_partial);
  3289. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3290. {
  3291. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3292. }
  3293. SLAB_ATTR_RO(total_objects);
  3294. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3295. {
  3296. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3297. }
  3298. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3299. const char *buf, size_t length)
  3300. {
  3301. s->flags &= ~SLAB_DEBUG_FREE;
  3302. if (buf[0] == '1')
  3303. s->flags |= SLAB_DEBUG_FREE;
  3304. return length;
  3305. }
  3306. SLAB_ATTR(sanity_checks);
  3307. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3308. {
  3309. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3310. }
  3311. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3312. size_t length)
  3313. {
  3314. s->flags &= ~SLAB_TRACE;
  3315. if (buf[0] == '1')
  3316. s->flags |= SLAB_TRACE;
  3317. return length;
  3318. }
  3319. SLAB_ATTR(trace);
  3320. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3321. {
  3322. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3323. }
  3324. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3325. const char *buf, size_t length)
  3326. {
  3327. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3328. if (buf[0] == '1')
  3329. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3330. return length;
  3331. }
  3332. SLAB_ATTR(reclaim_account);
  3333. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3334. {
  3335. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3336. }
  3337. SLAB_ATTR_RO(hwcache_align);
  3338. #ifdef CONFIG_ZONE_DMA
  3339. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3340. {
  3341. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3342. }
  3343. SLAB_ATTR_RO(cache_dma);
  3344. #endif
  3345. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3346. {
  3347. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3348. }
  3349. SLAB_ATTR_RO(destroy_by_rcu);
  3350. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3351. {
  3352. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3353. }
  3354. static ssize_t red_zone_store(struct kmem_cache *s,
  3355. const char *buf, size_t length)
  3356. {
  3357. if (any_slab_objects(s))
  3358. return -EBUSY;
  3359. s->flags &= ~SLAB_RED_ZONE;
  3360. if (buf[0] == '1')
  3361. s->flags |= SLAB_RED_ZONE;
  3362. calculate_sizes(s, -1);
  3363. return length;
  3364. }
  3365. SLAB_ATTR(red_zone);
  3366. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3367. {
  3368. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3369. }
  3370. static ssize_t poison_store(struct kmem_cache *s,
  3371. const char *buf, size_t length)
  3372. {
  3373. if (any_slab_objects(s))
  3374. return -EBUSY;
  3375. s->flags &= ~SLAB_POISON;
  3376. if (buf[0] == '1')
  3377. s->flags |= SLAB_POISON;
  3378. calculate_sizes(s, -1);
  3379. return length;
  3380. }
  3381. SLAB_ATTR(poison);
  3382. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3383. {
  3384. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3385. }
  3386. static ssize_t store_user_store(struct kmem_cache *s,
  3387. const char *buf, size_t length)
  3388. {
  3389. if (any_slab_objects(s))
  3390. return -EBUSY;
  3391. s->flags &= ~SLAB_STORE_USER;
  3392. if (buf[0] == '1')
  3393. s->flags |= SLAB_STORE_USER;
  3394. calculate_sizes(s, -1);
  3395. return length;
  3396. }
  3397. SLAB_ATTR(store_user);
  3398. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3399. {
  3400. return 0;
  3401. }
  3402. static ssize_t validate_store(struct kmem_cache *s,
  3403. const char *buf, size_t length)
  3404. {
  3405. int ret = -EINVAL;
  3406. if (buf[0] == '1') {
  3407. ret = validate_slab_cache(s);
  3408. if (ret >= 0)
  3409. ret = length;
  3410. }
  3411. return ret;
  3412. }
  3413. SLAB_ATTR(validate);
  3414. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3415. {
  3416. return 0;
  3417. }
  3418. static ssize_t shrink_store(struct kmem_cache *s,
  3419. const char *buf, size_t length)
  3420. {
  3421. if (buf[0] == '1') {
  3422. int rc = kmem_cache_shrink(s);
  3423. if (rc)
  3424. return rc;
  3425. } else
  3426. return -EINVAL;
  3427. return length;
  3428. }
  3429. SLAB_ATTR(shrink);
  3430. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3431. {
  3432. if (!(s->flags & SLAB_STORE_USER))
  3433. return -ENOSYS;
  3434. return list_locations(s, buf, TRACK_ALLOC);
  3435. }
  3436. SLAB_ATTR_RO(alloc_calls);
  3437. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3438. {
  3439. if (!(s->flags & SLAB_STORE_USER))
  3440. return -ENOSYS;
  3441. return list_locations(s, buf, TRACK_FREE);
  3442. }
  3443. SLAB_ATTR_RO(free_calls);
  3444. #ifdef CONFIG_NUMA
  3445. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3446. {
  3447. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3448. }
  3449. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3450. const char *buf, size_t length)
  3451. {
  3452. unsigned long ratio;
  3453. int err;
  3454. err = strict_strtoul(buf, 10, &ratio);
  3455. if (err)
  3456. return err;
  3457. if (ratio <= 100)
  3458. s->remote_node_defrag_ratio = ratio * 10;
  3459. return length;
  3460. }
  3461. SLAB_ATTR(remote_node_defrag_ratio);
  3462. #endif
  3463. #ifdef CONFIG_SLUB_STATS
  3464. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3465. {
  3466. unsigned long sum = 0;
  3467. int cpu;
  3468. int len;
  3469. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3470. if (!data)
  3471. return -ENOMEM;
  3472. for_each_online_cpu(cpu) {
  3473. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3474. data[cpu] = x;
  3475. sum += x;
  3476. }
  3477. len = sprintf(buf, "%lu", sum);
  3478. #ifdef CONFIG_SMP
  3479. for_each_online_cpu(cpu) {
  3480. if (data[cpu] && len < PAGE_SIZE - 20)
  3481. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3482. }
  3483. #endif
  3484. kfree(data);
  3485. return len + sprintf(buf + len, "\n");
  3486. }
  3487. #define STAT_ATTR(si, text) \
  3488. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3489. { \
  3490. return show_stat(s, buf, si); \
  3491. } \
  3492. SLAB_ATTR_RO(text); \
  3493. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3494. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3495. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3496. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3497. STAT_ATTR(FREE_FROZEN, free_frozen);
  3498. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3499. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3500. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3501. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3502. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3503. STAT_ATTR(FREE_SLAB, free_slab);
  3504. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3505. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3506. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3507. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3508. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3509. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3510. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3511. #endif
  3512. static struct attribute *slab_attrs[] = {
  3513. &slab_size_attr.attr,
  3514. &object_size_attr.attr,
  3515. &objs_per_slab_attr.attr,
  3516. &order_attr.attr,
  3517. &objects_attr.attr,
  3518. &objects_partial_attr.attr,
  3519. &total_objects_attr.attr,
  3520. &slabs_attr.attr,
  3521. &partial_attr.attr,
  3522. &cpu_slabs_attr.attr,
  3523. &ctor_attr.attr,
  3524. &aliases_attr.attr,
  3525. &align_attr.attr,
  3526. &sanity_checks_attr.attr,
  3527. &trace_attr.attr,
  3528. &hwcache_align_attr.attr,
  3529. &reclaim_account_attr.attr,
  3530. &destroy_by_rcu_attr.attr,
  3531. &red_zone_attr.attr,
  3532. &poison_attr.attr,
  3533. &store_user_attr.attr,
  3534. &validate_attr.attr,
  3535. &shrink_attr.attr,
  3536. &alloc_calls_attr.attr,
  3537. &free_calls_attr.attr,
  3538. #ifdef CONFIG_ZONE_DMA
  3539. &cache_dma_attr.attr,
  3540. #endif
  3541. #ifdef CONFIG_NUMA
  3542. &remote_node_defrag_ratio_attr.attr,
  3543. #endif
  3544. #ifdef CONFIG_SLUB_STATS
  3545. &alloc_fastpath_attr.attr,
  3546. &alloc_slowpath_attr.attr,
  3547. &free_fastpath_attr.attr,
  3548. &free_slowpath_attr.attr,
  3549. &free_frozen_attr.attr,
  3550. &free_add_partial_attr.attr,
  3551. &free_remove_partial_attr.attr,
  3552. &alloc_from_partial_attr.attr,
  3553. &alloc_slab_attr.attr,
  3554. &alloc_refill_attr.attr,
  3555. &free_slab_attr.attr,
  3556. &cpuslab_flush_attr.attr,
  3557. &deactivate_full_attr.attr,
  3558. &deactivate_empty_attr.attr,
  3559. &deactivate_to_head_attr.attr,
  3560. &deactivate_to_tail_attr.attr,
  3561. &deactivate_remote_frees_attr.attr,
  3562. &order_fallback_attr.attr,
  3563. #endif
  3564. NULL
  3565. };
  3566. static struct attribute_group slab_attr_group = {
  3567. .attrs = slab_attrs,
  3568. };
  3569. static ssize_t slab_attr_show(struct kobject *kobj,
  3570. struct attribute *attr,
  3571. char *buf)
  3572. {
  3573. struct slab_attribute *attribute;
  3574. struct kmem_cache *s;
  3575. int err;
  3576. attribute = to_slab_attr(attr);
  3577. s = to_slab(kobj);
  3578. if (!attribute->show)
  3579. return -EIO;
  3580. err = attribute->show(s, buf);
  3581. return err;
  3582. }
  3583. static ssize_t slab_attr_store(struct kobject *kobj,
  3584. struct attribute *attr,
  3585. const char *buf, size_t len)
  3586. {
  3587. struct slab_attribute *attribute;
  3588. struct kmem_cache *s;
  3589. int err;
  3590. attribute = to_slab_attr(attr);
  3591. s = to_slab(kobj);
  3592. if (!attribute->store)
  3593. return -EIO;
  3594. err = attribute->store(s, buf, len);
  3595. return err;
  3596. }
  3597. static void kmem_cache_release(struct kobject *kobj)
  3598. {
  3599. struct kmem_cache *s = to_slab(kobj);
  3600. kfree(s);
  3601. }
  3602. static struct sysfs_ops slab_sysfs_ops = {
  3603. .show = slab_attr_show,
  3604. .store = slab_attr_store,
  3605. };
  3606. static struct kobj_type slab_ktype = {
  3607. .sysfs_ops = &slab_sysfs_ops,
  3608. .release = kmem_cache_release
  3609. };
  3610. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3611. {
  3612. struct kobj_type *ktype = get_ktype(kobj);
  3613. if (ktype == &slab_ktype)
  3614. return 1;
  3615. return 0;
  3616. }
  3617. static struct kset_uevent_ops slab_uevent_ops = {
  3618. .filter = uevent_filter,
  3619. };
  3620. static struct kset *slab_kset;
  3621. #define ID_STR_LENGTH 64
  3622. /* Create a unique string id for a slab cache:
  3623. *
  3624. * Format :[flags-]size
  3625. */
  3626. static char *create_unique_id(struct kmem_cache *s)
  3627. {
  3628. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3629. char *p = name;
  3630. BUG_ON(!name);
  3631. *p++ = ':';
  3632. /*
  3633. * First flags affecting slabcache operations. We will only
  3634. * get here for aliasable slabs so we do not need to support
  3635. * too many flags. The flags here must cover all flags that
  3636. * are matched during merging to guarantee that the id is
  3637. * unique.
  3638. */
  3639. if (s->flags & SLAB_CACHE_DMA)
  3640. *p++ = 'd';
  3641. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3642. *p++ = 'a';
  3643. if (s->flags & SLAB_DEBUG_FREE)
  3644. *p++ = 'F';
  3645. if (p != name + 1)
  3646. *p++ = '-';
  3647. p += sprintf(p, "%07d", s->size);
  3648. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3649. return name;
  3650. }
  3651. static int sysfs_slab_add(struct kmem_cache *s)
  3652. {
  3653. int err;
  3654. const char *name;
  3655. int unmergeable;
  3656. if (slab_state < SYSFS)
  3657. /* Defer until later */
  3658. return 0;
  3659. unmergeable = slab_unmergeable(s);
  3660. if (unmergeable) {
  3661. /*
  3662. * Slabcache can never be merged so we can use the name proper.
  3663. * This is typically the case for debug situations. In that
  3664. * case we can catch duplicate names easily.
  3665. */
  3666. sysfs_remove_link(&slab_kset->kobj, s->name);
  3667. name = s->name;
  3668. } else {
  3669. /*
  3670. * Create a unique name for the slab as a target
  3671. * for the symlinks.
  3672. */
  3673. name = create_unique_id(s);
  3674. }
  3675. s->kobj.kset = slab_kset;
  3676. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3677. if (err) {
  3678. kobject_put(&s->kobj);
  3679. return err;
  3680. }
  3681. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3682. if (err)
  3683. return err;
  3684. kobject_uevent(&s->kobj, KOBJ_ADD);
  3685. if (!unmergeable) {
  3686. /* Setup first alias */
  3687. sysfs_slab_alias(s, s->name);
  3688. kfree(name);
  3689. }
  3690. return 0;
  3691. }
  3692. static void sysfs_slab_remove(struct kmem_cache *s)
  3693. {
  3694. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3695. kobject_del(&s->kobj);
  3696. kobject_put(&s->kobj);
  3697. }
  3698. /*
  3699. * Need to buffer aliases during bootup until sysfs becomes
  3700. * available lest we lose that information.
  3701. */
  3702. struct saved_alias {
  3703. struct kmem_cache *s;
  3704. const char *name;
  3705. struct saved_alias *next;
  3706. };
  3707. static struct saved_alias *alias_list;
  3708. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3709. {
  3710. struct saved_alias *al;
  3711. if (slab_state == SYSFS) {
  3712. /*
  3713. * If we have a leftover link then remove it.
  3714. */
  3715. sysfs_remove_link(&slab_kset->kobj, name);
  3716. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3717. }
  3718. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3719. if (!al)
  3720. return -ENOMEM;
  3721. al->s = s;
  3722. al->name = name;
  3723. al->next = alias_list;
  3724. alias_list = al;
  3725. return 0;
  3726. }
  3727. static int __init slab_sysfs_init(void)
  3728. {
  3729. struct kmem_cache *s;
  3730. int err;
  3731. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3732. if (!slab_kset) {
  3733. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3734. return -ENOSYS;
  3735. }
  3736. slab_state = SYSFS;
  3737. list_for_each_entry(s, &slab_caches, list) {
  3738. err = sysfs_slab_add(s);
  3739. if (err)
  3740. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3741. " to sysfs\n", s->name);
  3742. }
  3743. while (alias_list) {
  3744. struct saved_alias *al = alias_list;
  3745. alias_list = alias_list->next;
  3746. err = sysfs_slab_alias(al->s, al->name);
  3747. if (err)
  3748. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3749. " %s to sysfs\n", s->name);
  3750. kfree(al);
  3751. }
  3752. resiliency_test();
  3753. return 0;
  3754. }
  3755. __initcall(slab_sysfs_init);
  3756. #endif
  3757. /*
  3758. * The /proc/slabinfo ABI
  3759. */
  3760. #ifdef CONFIG_SLABINFO
  3761. static void print_slabinfo_header(struct seq_file *m)
  3762. {
  3763. seq_puts(m, "slabinfo - version: 2.1\n");
  3764. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3765. "<objperslab> <pagesperslab>");
  3766. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3767. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3768. seq_putc(m, '\n');
  3769. }
  3770. static void *s_start(struct seq_file *m, loff_t *pos)
  3771. {
  3772. loff_t n = *pos;
  3773. down_read(&slub_lock);
  3774. if (!n)
  3775. print_slabinfo_header(m);
  3776. return seq_list_start(&slab_caches, *pos);
  3777. }
  3778. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3779. {
  3780. return seq_list_next(p, &slab_caches, pos);
  3781. }
  3782. static void s_stop(struct seq_file *m, void *p)
  3783. {
  3784. up_read(&slub_lock);
  3785. }
  3786. static int s_show(struct seq_file *m, void *p)
  3787. {
  3788. unsigned long nr_partials = 0;
  3789. unsigned long nr_slabs = 0;
  3790. unsigned long nr_inuse = 0;
  3791. unsigned long nr_objs = 0;
  3792. unsigned long nr_free = 0;
  3793. struct kmem_cache *s;
  3794. int node;
  3795. s = list_entry(p, struct kmem_cache, list);
  3796. for_each_online_node(node) {
  3797. struct kmem_cache_node *n = get_node(s, node);
  3798. if (!n)
  3799. continue;
  3800. nr_partials += n->nr_partial;
  3801. nr_slabs += atomic_long_read(&n->nr_slabs);
  3802. nr_objs += atomic_long_read(&n->total_objects);
  3803. nr_free += count_partial(n, count_free);
  3804. }
  3805. nr_inuse = nr_objs - nr_free;
  3806. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3807. nr_objs, s->size, oo_objects(s->oo),
  3808. (1 << oo_order(s->oo)));
  3809. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3810. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3811. 0UL);
  3812. seq_putc(m, '\n');
  3813. return 0;
  3814. }
  3815. static const struct seq_operations slabinfo_op = {
  3816. .start = s_start,
  3817. .next = s_next,
  3818. .stop = s_stop,
  3819. .show = s_show,
  3820. };
  3821. static int slabinfo_open(struct inode *inode, struct file *file)
  3822. {
  3823. return seq_open(file, &slabinfo_op);
  3824. }
  3825. static const struct file_operations proc_slabinfo_operations = {
  3826. .open = slabinfo_open,
  3827. .read = seq_read,
  3828. .llseek = seq_lseek,
  3829. .release = seq_release,
  3830. };
  3831. static int __init slab_proc_init(void)
  3832. {
  3833. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3834. return 0;
  3835. }
  3836. module_init(slab_proc_init);
  3837. #endif /* CONFIG_SLABINFO */