pci.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/acpi.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/pci.h>
  17. #include <linux/init.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/bootmem.h>
  22. #include <asm/machvec.h>
  23. #include <asm/page.h>
  24. #include <asm/system.h>
  25. #include <asm/io.h>
  26. #include <asm/sal.h>
  27. #include <asm/smp.h>
  28. #include <asm/irq.h>
  29. #include <asm/hw_irq.h>
  30. /*
  31. * Low-level SAL-based PCI configuration access functions. Note that SAL
  32. * calls are already serialized (via sal_lock), so we don't need another
  33. * synchronization mechanism here.
  34. */
  35. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  36. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  37. /* SAL 3.2 adds support for extended config space. */
  38. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  39. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  40. int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
  41. int reg, int len, u32 *value)
  42. {
  43. u64 addr, data = 0;
  44. int mode, result;
  45. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  46. return -EINVAL;
  47. if ((seg | reg) <= 255) {
  48. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  49. mode = 0;
  50. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  51. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  52. mode = 1;
  53. } else {
  54. return -EINVAL;
  55. }
  56. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  57. if (result != 0)
  58. return -EINVAL;
  59. *value = (u32) data;
  60. return 0;
  61. }
  62. int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
  63. int reg, int len, u32 value)
  64. {
  65. u64 addr;
  66. int mode, result;
  67. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  68. return -EINVAL;
  69. if ((seg | reg) <= 255) {
  70. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  71. mode = 0;
  72. } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
  73. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  74. mode = 1;
  75. } else {
  76. return -EINVAL;
  77. }
  78. result = ia64_sal_pci_config_write(addr, mode, len, value);
  79. if (result != 0)
  80. return -EINVAL;
  81. return 0;
  82. }
  83. static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
  84. int size, u32 *value)
  85. {
  86. return raw_pci_read(pci_domain_nr(bus), bus->number,
  87. devfn, where, size, value);
  88. }
  89. static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
  90. int size, u32 value)
  91. {
  92. return raw_pci_write(pci_domain_nr(bus), bus->number,
  93. devfn, where, size, value);
  94. }
  95. struct pci_ops pci_root_ops = {
  96. .read = pci_read,
  97. .write = pci_write,
  98. };
  99. /* Called by ACPI when it finds a new root bus. */
  100. static struct pci_controller * __devinit
  101. alloc_pci_controller (int seg)
  102. {
  103. struct pci_controller *controller;
  104. controller = kzalloc(sizeof(*controller), GFP_KERNEL);
  105. if (!controller)
  106. return NULL;
  107. controller->segment = seg;
  108. controller->node = -1;
  109. return controller;
  110. }
  111. struct pci_root_info {
  112. struct acpi_device *bridge;
  113. struct pci_controller *controller;
  114. char *name;
  115. };
  116. static unsigned int
  117. new_space (u64 phys_base, int sparse)
  118. {
  119. u64 mmio_base;
  120. int i;
  121. if (phys_base == 0)
  122. return 0; /* legacy I/O port space */
  123. mmio_base = (u64) ioremap(phys_base, 0);
  124. for (i = 0; i < num_io_spaces; i++)
  125. if (io_space[i].mmio_base == mmio_base &&
  126. io_space[i].sparse == sparse)
  127. return i;
  128. if (num_io_spaces == MAX_IO_SPACES) {
  129. printk(KERN_ERR "PCI: Too many IO port spaces "
  130. "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
  131. return ~0;
  132. }
  133. i = num_io_spaces++;
  134. io_space[i].mmio_base = mmio_base;
  135. io_space[i].sparse = sparse;
  136. return i;
  137. }
  138. static u64 __devinit
  139. add_io_space (struct pci_root_info *info, struct acpi_resource_address64 *addr)
  140. {
  141. struct resource *resource;
  142. char *name;
  143. unsigned long base, min, max, base_port;
  144. unsigned int sparse = 0, space_nr, len;
  145. resource = kzalloc(sizeof(*resource), GFP_KERNEL);
  146. if (!resource) {
  147. printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
  148. info->name);
  149. goto out;
  150. }
  151. len = strlen(info->name) + 32;
  152. name = kzalloc(len, GFP_KERNEL);
  153. if (!name) {
  154. printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
  155. info->name);
  156. goto free_resource;
  157. }
  158. min = addr->minimum;
  159. max = min + addr->address_length - 1;
  160. if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
  161. sparse = 1;
  162. space_nr = new_space(addr->translation_offset, sparse);
  163. if (space_nr == ~0)
  164. goto free_name;
  165. base = __pa(io_space[space_nr].mmio_base);
  166. base_port = IO_SPACE_BASE(space_nr);
  167. snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
  168. base_port + min, base_port + max);
  169. /*
  170. * The SDM guarantees the legacy 0-64K space is sparse, but if the
  171. * mapping is done by the processor (not the bridge), ACPI may not
  172. * mark it as sparse.
  173. */
  174. if (space_nr == 0)
  175. sparse = 1;
  176. resource->name = name;
  177. resource->flags = IORESOURCE_MEM;
  178. resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
  179. resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
  180. insert_resource(&iomem_resource, resource);
  181. return base_port;
  182. free_name:
  183. kfree(name);
  184. free_resource:
  185. kfree(resource);
  186. out:
  187. return ~0;
  188. }
  189. static acpi_status __devinit resource_to_window(struct acpi_resource *resource,
  190. struct acpi_resource_address64 *addr)
  191. {
  192. acpi_status status;
  193. /*
  194. * We're only interested in _CRS descriptors that are
  195. * - address space descriptors for memory or I/O space
  196. * - non-zero size
  197. * - producers, i.e., the address space is routed downstream,
  198. * not consumed by the bridge itself
  199. */
  200. status = acpi_resource_to_address64(resource, addr);
  201. if (ACPI_SUCCESS(status) &&
  202. (addr->resource_type == ACPI_MEMORY_RANGE ||
  203. addr->resource_type == ACPI_IO_RANGE) &&
  204. addr->address_length &&
  205. addr->producer_consumer == ACPI_PRODUCER)
  206. return AE_OK;
  207. return AE_ERROR;
  208. }
  209. static acpi_status __devinit
  210. count_window (struct acpi_resource *resource, void *data)
  211. {
  212. unsigned int *windows = (unsigned int *) data;
  213. struct acpi_resource_address64 addr;
  214. acpi_status status;
  215. status = resource_to_window(resource, &addr);
  216. if (ACPI_SUCCESS(status))
  217. (*windows)++;
  218. return AE_OK;
  219. }
  220. static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
  221. {
  222. struct pci_root_info *info = data;
  223. struct pci_window *window;
  224. struct acpi_resource_address64 addr;
  225. acpi_status status;
  226. unsigned long flags, offset = 0;
  227. struct resource *root;
  228. /* Return AE_OK for non-window resources to keep scanning for more */
  229. status = resource_to_window(res, &addr);
  230. if (!ACPI_SUCCESS(status))
  231. return AE_OK;
  232. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  233. flags = IORESOURCE_MEM;
  234. root = &iomem_resource;
  235. offset = addr.translation_offset;
  236. } else if (addr.resource_type == ACPI_IO_RANGE) {
  237. flags = IORESOURCE_IO;
  238. root = &ioport_resource;
  239. offset = add_io_space(info, &addr);
  240. if (offset == ~0)
  241. return AE_OK;
  242. } else
  243. return AE_OK;
  244. window = &info->controller->window[info->controller->windows++];
  245. window->resource.name = info->name;
  246. window->resource.flags = flags;
  247. window->resource.start = addr.minimum + offset;
  248. window->resource.end = window->resource.start + addr.address_length - 1;
  249. window->resource.child = NULL;
  250. window->offset = offset;
  251. if (insert_resource(root, &window->resource)) {
  252. dev_err(&info->bridge->dev,
  253. "can't allocate host bridge window %pR\n",
  254. &window->resource);
  255. } else {
  256. if (offset)
  257. dev_info(&info->bridge->dev, "host bridge window %pR "
  258. "(PCI address [%#llx-%#llx])\n",
  259. &window->resource,
  260. window->resource.start - offset,
  261. window->resource.end - offset);
  262. else
  263. dev_info(&info->bridge->dev,
  264. "host bridge window %pR\n",
  265. &window->resource);
  266. }
  267. return AE_OK;
  268. }
  269. static void __devinit
  270. pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
  271. {
  272. int i, j;
  273. j = 0;
  274. for (i = 0; i < ctrl->windows; i++) {
  275. struct resource *res = &ctrl->window[i].resource;
  276. /* HP's firmware has a hack to work around a Windows bug.
  277. * Ignore these tiny memory ranges */
  278. if ((res->flags & IORESOURCE_MEM) &&
  279. (res->end - res->start < 16))
  280. continue;
  281. if (j >= PCI_BUS_NUM_RESOURCES) {
  282. dev_warn(&bus->dev,
  283. "ignoring host bridge window %pR (no space)\n",
  284. res);
  285. continue;
  286. }
  287. bus->resource[j++] = res;
  288. }
  289. }
  290. struct pci_bus * __devinit
  291. pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
  292. {
  293. struct pci_controller *controller;
  294. unsigned int windows = 0;
  295. struct pci_bus *pbus;
  296. char *name;
  297. int pxm;
  298. controller = alloc_pci_controller(domain);
  299. if (!controller)
  300. goto out1;
  301. controller->acpi_handle = device->handle;
  302. pxm = acpi_get_pxm(controller->acpi_handle);
  303. #ifdef CONFIG_NUMA
  304. if (pxm >= 0)
  305. controller->node = pxm_to_node(pxm);
  306. #endif
  307. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  308. &windows);
  309. if (windows) {
  310. struct pci_root_info info;
  311. controller->window =
  312. kmalloc_node(sizeof(*controller->window) * windows,
  313. GFP_KERNEL, controller->node);
  314. if (!controller->window)
  315. goto out2;
  316. name = kmalloc(16, GFP_KERNEL);
  317. if (!name)
  318. goto out3;
  319. sprintf(name, "PCI Bus %04x:%02x", domain, bus);
  320. info.bridge = device;
  321. info.controller = controller;
  322. info.name = name;
  323. acpi_walk_resources(device->handle, METHOD_NAME__CRS,
  324. add_window, &info);
  325. }
  326. /*
  327. * See arch/x86/pci/acpi.c.
  328. * The desired pci bus might already be scanned in a quirk. We
  329. * should handle the case here, but it appears that IA64 hasn't
  330. * such quirk. So we just ignore the case now.
  331. */
  332. pbus = pci_scan_bus_parented(NULL, bus, &pci_root_ops, controller);
  333. return pbus;
  334. out3:
  335. kfree(controller->window);
  336. out2:
  337. kfree(controller);
  338. out1:
  339. return NULL;
  340. }
  341. void pcibios_resource_to_bus(struct pci_dev *dev,
  342. struct pci_bus_region *region, struct resource *res)
  343. {
  344. struct pci_controller *controller = PCI_CONTROLLER(dev);
  345. unsigned long offset = 0;
  346. int i;
  347. for (i = 0; i < controller->windows; i++) {
  348. struct pci_window *window = &controller->window[i];
  349. if (!(window->resource.flags & res->flags))
  350. continue;
  351. if (window->resource.start > res->start)
  352. continue;
  353. if (window->resource.end < res->end)
  354. continue;
  355. offset = window->offset;
  356. break;
  357. }
  358. region->start = res->start - offset;
  359. region->end = res->end - offset;
  360. }
  361. EXPORT_SYMBOL(pcibios_resource_to_bus);
  362. void pcibios_bus_to_resource(struct pci_dev *dev,
  363. struct resource *res, struct pci_bus_region *region)
  364. {
  365. struct pci_controller *controller = PCI_CONTROLLER(dev);
  366. unsigned long offset = 0;
  367. int i;
  368. for (i = 0; i < controller->windows; i++) {
  369. struct pci_window *window = &controller->window[i];
  370. if (!(window->resource.flags & res->flags))
  371. continue;
  372. if (window->resource.start - window->offset > region->start)
  373. continue;
  374. if (window->resource.end - window->offset < region->end)
  375. continue;
  376. offset = window->offset;
  377. break;
  378. }
  379. res->start = region->start + offset;
  380. res->end = region->end + offset;
  381. }
  382. EXPORT_SYMBOL(pcibios_bus_to_resource);
  383. static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
  384. {
  385. unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
  386. struct resource *devr = &dev->resource[idx];
  387. if (!dev->bus)
  388. return 0;
  389. for (i=0; i<PCI_BUS_NUM_RESOURCES; i++) {
  390. struct resource *busr = dev->bus->resource[i];
  391. if (!busr || ((busr->flags ^ devr->flags) & type_mask))
  392. continue;
  393. if ((devr->start) && (devr->start >= busr->start) &&
  394. (devr->end <= busr->end))
  395. return 1;
  396. }
  397. return 0;
  398. }
  399. static void __devinit
  400. pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
  401. {
  402. struct pci_bus_region region;
  403. int i;
  404. for (i = start; i < limit; i++) {
  405. if (!dev->resource[i].flags)
  406. continue;
  407. region.start = dev->resource[i].start;
  408. region.end = dev->resource[i].end;
  409. pcibios_bus_to_resource(dev, &dev->resource[i], &region);
  410. if ((is_valid_resource(dev, i)))
  411. pci_claim_resource(dev, i);
  412. }
  413. }
  414. void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
  415. {
  416. pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
  417. }
  418. EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
  419. static void __devinit pcibios_fixup_bridge_resources(struct pci_dev *dev)
  420. {
  421. pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
  422. }
  423. /*
  424. * Called after each bus is probed, but before its children are examined.
  425. */
  426. void __devinit
  427. pcibios_fixup_bus (struct pci_bus *b)
  428. {
  429. struct pci_dev *dev;
  430. if (b->self) {
  431. pci_read_bridge_bases(b);
  432. pcibios_fixup_bridge_resources(b->self);
  433. } else {
  434. pcibios_setup_root_windows(b, b->sysdata);
  435. }
  436. list_for_each_entry(dev, &b->devices, bus_list)
  437. pcibios_fixup_device_resources(dev);
  438. platform_pci_fixup_bus(b);
  439. return;
  440. }
  441. void __devinit
  442. pcibios_update_irq (struct pci_dev *dev, int irq)
  443. {
  444. pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
  445. /* ??? FIXME -- record old value for shutdown. */
  446. }
  447. int
  448. pcibios_enable_device (struct pci_dev *dev, int mask)
  449. {
  450. int ret;
  451. ret = pci_enable_resources(dev, mask);
  452. if (ret < 0)
  453. return ret;
  454. if (!dev->msi_enabled)
  455. return acpi_pci_irq_enable(dev);
  456. return 0;
  457. }
  458. void
  459. pcibios_disable_device (struct pci_dev *dev)
  460. {
  461. BUG_ON(atomic_read(&dev->enable_cnt));
  462. if (!dev->msi_enabled)
  463. acpi_pci_irq_disable(dev);
  464. }
  465. resource_size_t
  466. pcibios_align_resource (void *data, const struct resource *res,
  467. resource_size_t size, resource_size_t align)
  468. {
  469. return res->start;
  470. }
  471. /*
  472. * PCI BIOS setup, always defaults to SAL interface
  473. */
  474. char * __init
  475. pcibios_setup (char *str)
  476. {
  477. return str;
  478. }
  479. int
  480. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  481. enum pci_mmap_state mmap_state, int write_combine)
  482. {
  483. unsigned long size = vma->vm_end - vma->vm_start;
  484. pgprot_t prot;
  485. /*
  486. * I/O space cannot be accessed via normal processor loads and
  487. * stores on this platform.
  488. */
  489. if (mmap_state == pci_mmap_io)
  490. /*
  491. * XXX we could relax this for I/O spaces for which ACPI
  492. * indicates that the space is 1-to-1 mapped. But at the
  493. * moment, we don't support multiple PCI address spaces and
  494. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  495. */
  496. return -EINVAL;
  497. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  498. return -EINVAL;
  499. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  500. vma->vm_page_prot);
  501. /*
  502. * If the user requested WC, the kernel uses UC or WC for this region,
  503. * and the chipset supports WC, we can use WC. Otherwise, we have to
  504. * use the same attribute the kernel uses.
  505. */
  506. if (write_combine &&
  507. ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
  508. (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
  509. efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
  510. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  511. else
  512. vma->vm_page_prot = prot;
  513. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  514. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  515. return -EAGAIN;
  516. return 0;
  517. }
  518. /**
  519. * ia64_pci_get_legacy_mem - generic legacy mem routine
  520. * @bus: bus to get legacy memory base address for
  521. *
  522. * Find the base of legacy memory for @bus. This is typically the first
  523. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  524. * chipsets support legacy I/O and memory routing. Returns the base address
  525. * or an error pointer if an error occurred.
  526. *
  527. * This is the ia64 generic version of this routine. Other platforms
  528. * are free to override it with a machine vector.
  529. */
  530. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  531. {
  532. return (char *)__IA64_UNCACHED_OFFSET;
  533. }
  534. /**
  535. * pci_mmap_legacy_page_range - map legacy memory space to userland
  536. * @bus: bus whose legacy space we're mapping
  537. * @vma: vma passed in by mmap
  538. *
  539. * Map legacy memory space for this device back to userspace using a machine
  540. * vector to get the base address.
  541. */
  542. int
  543. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
  544. enum pci_mmap_state mmap_state)
  545. {
  546. unsigned long size = vma->vm_end - vma->vm_start;
  547. pgprot_t prot;
  548. char *addr;
  549. /* We only support mmap'ing of legacy memory space */
  550. if (mmap_state != pci_mmap_mem)
  551. return -ENOSYS;
  552. /*
  553. * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
  554. * for more details.
  555. */
  556. if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
  557. return -EINVAL;
  558. prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
  559. vma->vm_page_prot);
  560. addr = pci_get_legacy_mem(bus);
  561. if (IS_ERR(addr))
  562. return PTR_ERR(addr);
  563. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  564. vma->vm_page_prot = prot;
  565. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  566. size, vma->vm_page_prot))
  567. return -EAGAIN;
  568. return 0;
  569. }
  570. /**
  571. * ia64_pci_legacy_read - read from legacy I/O space
  572. * @bus: bus to read
  573. * @port: legacy port value
  574. * @val: caller allocated storage for returned value
  575. * @size: number of bytes to read
  576. *
  577. * Simply reads @size bytes from @port and puts the result in @val.
  578. *
  579. * Again, this (and the write routine) are generic versions that can be
  580. * overridden by the platform. This is necessary on platforms that don't
  581. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  582. */
  583. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  584. {
  585. int ret = size;
  586. switch (size) {
  587. case 1:
  588. *val = inb(port);
  589. break;
  590. case 2:
  591. *val = inw(port);
  592. break;
  593. case 4:
  594. *val = inl(port);
  595. break;
  596. default:
  597. ret = -EINVAL;
  598. break;
  599. }
  600. return ret;
  601. }
  602. /**
  603. * ia64_pci_legacy_write - perform a legacy I/O write
  604. * @bus: bus pointer
  605. * @port: port to write
  606. * @val: value to write
  607. * @size: number of bytes to write from @val
  608. *
  609. * Simply writes @size bytes of @val to @port.
  610. */
  611. int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
  612. {
  613. int ret = size;
  614. switch (size) {
  615. case 1:
  616. outb(val, port);
  617. break;
  618. case 2:
  619. outw(val, port);
  620. break;
  621. case 4:
  622. outl(val, port);
  623. break;
  624. default:
  625. ret = -EINVAL;
  626. break;
  627. }
  628. return ret;
  629. }
  630. /**
  631. * set_pci_cacheline_size - determine cacheline size for PCI devices
  632. *
  633. * We want to use the line-size of the outer-most cache. We assume
  634. * that this line-size is the same for all CPUs.
  635. *
  636. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  637. */
  638. static void __init set_pci_dfl_cacheline_size(void)
  639. {
  640. unsigned long levels, unique_caches;
  641. long status;
  642. pal_cache_config_info_t cci;
  643. status = ia64_pal_cache_summary(&levels, &unique_caches);
  644. if (status != 0) {
  645. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
  646. "(status=%ld)\n", __func__, status);
  647. return;
  648. }
  649. status = ia64_pal_cache_config_info(levels - 1,
  650. /* cache_type (data_or_unified)= */ 2, &cci);
  651. if (status != 0) {
  652. printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
  653. "(status=%ld)\n", __func__, status);
  654. return;
  655. }
  656. pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
  657. }
  658. u64 ia64_dma_get_required_mask(struct device *dev)
  659. {
  660. u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
  661. u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
  662. u64 mask;
  663. if (!high_totalram) {
  664. /* convert to mask just covering totalram */
  665. low_totalram = (1 << (fls(low_totalram) - 1));
  666. low_totalram += low_totalram - 1;
  667. mask = low_totalram;
  668. } else {
  669. high_totalram = (1 << (fls(high_totalram) - 1));
  670. high_totalram += high_totalram - 1;
  671. mask = (((u64)high_totalram) << 32) + 0xffffffff;
  672. }
  673. return mask;
  674. }
  675. EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
  676. u64 dma_get_required_mask(struct device *dev)
  677. {
  678. return platform_dma_get_required_mask(dev);
  679. }
  680. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  681. static int __init pcibios_init(void)
  682. {
  683. set_pci_dfl_cacheline_size();
  684. return 0;
  685. }
  686. subsys_initcall(pcibios_init);