kvm_main.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  82. unsigned long arg);
  83. static inline int valid_vcpu(int n)
  84. {
  85. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  86. }
  87. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  88. {
  89. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  90. return;
  91. vcpu->guest_fpu_loaded = 1;
  92. fx_save(&vcpu->host_fx_image);
  93. fx_restore(&vcpu->guest_fx_image);
  94. }
  95. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  96. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  97. {
  98. if (!vcpu->guest_fpu_loaded)
  99. return;
  100. vcpu->guest_fpu_loaded = 0;
  101. fx_save(&vcpu->guest_fx_image);
  102. fx_restore(&vcpu->host_fx_image);
  103. }
  104. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  105. /*
  106. * Switches to specified vcpu, until a matching vcpu_put()
  107. */
  108. void vcpu_load(struct kvm_vcpu *vcpu)
  109. {
  110. int cpu;
  111. mutex_lock(&vcpu->mutex);
  112. cpu = get_cpu();
  113. preempt_notifier_register(&vcpu->preempt_notifier);
  114. kvm_arch_vcpu_load(vcpu, cpu);
  115. put_cpu();
  116. }
  117. void vcpu_put(struct kvm_vcpu *vcpu)
  118. {
  119. preempt_disable();
  120. kvm_arch_vcpu_put(vcpu);
  121. preempt_notifier_unregister(&vcpu->preempt_notifier);
  122. preempt_enable();
  123. mutex_unlock(&vcpu->mutex);
  124. }
  125. static void ack_flush(void *_completed)
  126. {
  127. }
  128. void kvm_flush_remote_tlbs(struct kvm *kvm)
  129. {
  130. int i, cpu;
  131. cpumask_t cpus;
  132. struct kvm_vcpu *vcpu;
  133. cpus_clear(cpus);
  134. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  135. vcpu = kvm->vcpus[i];
  136. if (!vcpu)
  137. continue;
  138. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  139. continue;
  140. cpu = vcpu->cpu;
  141. if (cpu != -1 && cpu != raw_smp_processor_id())
  142. cpu_set(cpu, cpus);
  143. }
  144. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  145. }
  146. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  147. {
  148. struct page *page;
  149. int r;
  150. mutex_init(&vcpu->mutex);
  151. vcpu->cpu = -1;
  152. vcpu->mmu.root_hpa = INVALID_PAGE;
  153. vcpu->kvm = kvm;
  154. vcpu->vcpu_id = id;
  155. if (!irqchip_in_kernel(kvm) || id == 0)
  156. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  157. else
  158. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  159. init_waitqueue_head(&vcpu->wq);
  160. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  161. if (!page) {
  162. r = -ENOMEM;
  163. goto fail;
  164. }
  165. vcpu->run = page_address(page);
  166. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  167. if (!page) {
  168. r = -ENOMEM;
  169. goto fail_free_run;
  170. }
  171. vcpu->pio_data = page_address(page);
  172. r = kvm_mmu_create(vcpu);
  173. if (r < 0)
  174. goto fail_free_pio_data;
  175. if (irqchip_in_kernel(kvm)) {
  176. r = kvm_create_lapic(vcpu);
  177. if (r < 0)
  178. goto fail_mmu_destroy;
  179. }
  180. return 0;
  181. fail_mmu_destroy:
  182. kvm_mmu_destroy(vcpu);
  183. fail_free_pio_data:
  184. free_page((unsigned long)vcpu->pio_data);
  185. fail_free_run:
  186. free_page((unsigned long)vcpu->run);
  187. fail:
  188. return r;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  191. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  192. {
  193. kvm_free_lapic(vcpu);
  194. kvm_mmu_destroy(vcpu);
  195. free_page((unsigned long)vcpu->pio_data);
  196. free_page((unsigned long)vcpu->run);
  197. }
  198. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  199. static struct kvm *kvm_create_vm(void)
  200. {
  201. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  202. if (!kvm)
  203. return ERR_PTR(-ENOMEM);
  204. kvm_io_bus_init(&kvm->pio_bus);
  205. mutex_init(&kvm->lock);
  206. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  207. kvm_io_bus_init(&kvm->mmio_bus);
  208. spin_lock(&kvm_lock);
  209. list_add(&kvm->vm_list, &vm_list);
  210. spin_unlock(&kvm_lock);
  211. return kvm;
  212. }
  213. /*
  214. * Free any memory in @free but not in @dont.
  215. */
  216. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  217. struct kvm_memory_slot *dont)
  218. {
  219. if (!dont || free->rmap != dont->rmap)
  220. vfree(free->rmap);
  221. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  222. vfree(free->dirty_bitmap);
  223. free->npages = 0;
  224. free->dirty_bitmap = NULL;
  225. free->rmap = NULL;
  226. }
  227. static void kvm_free_physmem(struct kvm *kvm)
  228. {
  229. int i;
  230. for (i = 0; i < kvm->nmemslots; ++i)
  231. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  232. }
  233. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  234. {
  235. vcpu_load(vcpu);
  236. kvm_mmu_unload(vcpu);
  237. vcpu_put(vcpu);
  238. }
  239. static void kvm_free_vcpus(struct kvm *kvm)
  240. {
  241. unsigned int i;
  242. /*
  243. * Unpin any mmu pages first.
  244. */
  245. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  246. if (kvm->vcpus[i])
  247. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  248. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  249. if (kvm->vcpus[i]) {
  250. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  251. kvm->vcpus[i] = NULL;
  252. }
  253. }
  254. }
  255. static void kvm_destroy_vm(struct kvm *kvm)
  256. {
  257. spin_lock(&kvm_lock);
  258. list_del(&kvm->vm_list);
  259. spin_unlock(&kvm_lock);
  260. kvm_io_bus_destroy(&kvm->pio_bus);
  261. kvm_io_bus_destroy(&kvm->mmio_bus);
  262. kfree(kvm->vpic);
  263. kfree(kvm->vioapic);
  264. kvm_free_vcpus(kvm);
  265. kvm_free_physmem(kvm);
  266. kfree(kvm);
  267. }
  268. static int kvm_vm_release(struct inode *inode, struct file *filp)
  269. {
  270. struct kvm *kvm = filp->private_data;
  271. kvm_destroy_vm(kvm);
  272. return 0;
  273. }
  274. void fx_init(struct kvm_vcpu *vcpu)
  275. {
  276. unsigned after_mxcsr_mask;
  277. /* Initialize guest FPU by resetting ours and saving into guest's */
  278. preempt_disable();
  279. fx_save(&vcpu->host_fx_image);
  280. fpu_init();
  281. fx_save(&vcpu->guest_fx_image);
  282. fx_restore(&vcpu->host_fx_image);
  283. preempt_enable();
  284. vcpu->cr0 |= X86_CR0_ET;
  285. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  286. vcpu->guest_fx_image.mxcsr = 0x1f80;
  287. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  288. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  289. }
  290. EXPORT_SYMBOL_GPL(fx_init);
  291. /*
  292. * Allocate some memory and give it an address in the guest physical address
  293. * space.
  294. *
  295. * Discontiguous memory is allowed, mostly for framebuffers.
  296. *
  297. * Must be called holding kvm->lock.
  298. */
  299. int __kvm_set_memory_region(struct kvm *kvm,
  300. struct kvm_userspace_memory_region *mem,
  301. int user_alloc)
  302. {
  303. int r;
  304. gfn_t base_gfn;
  305. unsigned long npages;
  306. unsigned long i;
  307. struct kvm_memory_slot *memslot;
  308. struct kvm_memory_slot old, new;
  309. r = -EINVAL;
  310. /* General sanity checks */
  311. if (mem->memory_size & (PAGE_SIZE - 1))
  312. goto out;
  313. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  314. goto out;
  315. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  316. goto out;
  317. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  318. goto out;
  319. memslot = &kvm->memslots[mem->slot];
  320. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  321. npages = mem->memory_size >> PAGE_SHIFT;
  322. if (!npages)
  323. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  324. new = old = *memslot;
  325. new.base_gfn = base_gfn;
  326. new.npages = npages;
  327. new.flags = mem->flags;
  328. /* Disallow changing a memory slot's size. */
  329. r = -EINVAL;
  330. if (npages && old.npages && npages != old.npages)
  331. goto out_free;
  332. /* Check for overlaps */
  333. r = -EEXIST;
  334. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  335. struct kvm_memory_slot *s = &kvm->memslots[i];
  336. if (s == memslot)
  337. continue;
  338. if (!((base_gfn + npages <= s->base_gfn) ||
  339. (base_gfn >= s->base_gfn + s->npages)))
  340. goto out_free;
  341. }
  342. /* Free page dirty bitmap if unneeded */
  343. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  344. new.dirty_bitmap = NULL;
  345. r = -ENOMEM;
  346. /* Allocate if a slot is being created */
  347. if (npages && !new.rmap) {
  348. new.rmap = vmalloc(npages * sizeof(struct page *));
  349. if (!new.rmap)
  350. goto out_free;
  351. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  352. new.user_alloc = user_alloc;
  353. if (user_alloc)
  354. new.userspace_addr = mem->userspace_addr;
  355. else {
  356. down_write(&current->mm->mmap_sem);
  357. new.userspace_addr = do_mmap(NULL, 0,
  358. npages * PAGE_SIZE,
  359. PROT_READ | PROT_WRITE,
  360. MAP_SHARED | MAP_ANONYMOUS,
  361. 0);
  362. up_write(&current->mm->mmap_sem);
  363. if (IS_ERR((void *)new.userspace_addr))
  364. goto out_free;
  365. }
  366. } else {
  367. if (!old.user_alloc && old.rmap) {
  368. int ret;
  369. down_write(&current->mm->mmap_sem);
  370. ret = do_munmap(current->mm, old.userspace_addr,
  371. old.npages * PAGE_SIZE);
  372. up_write(&current->mm->mmap_sem);
  373. if (ret < 0)
  374. printk(KERN_WARNING
  375. "kvm_vm_ioctl_set_memory_region: "
  376. "failed to munmap memory\n");
  377. }
  378. }
  379. /* Allocate page dirty bitmap if needed */
  380. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  381. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  382. new.dirty_bitmap = vmalloc(dirty_bytes);
  383. if (!new.dirty_bitmap)
  384. goto out_free;
  385. memset(new.dirty_bitmap, 0, dirty_bytes);
  386. }
  387. if (mem->slot >= kvm->nmemslots)
  388. kvm->nmemslots = mem->slot + 1;
  389. if (!kvm->n_requested_mmu_pages) {
  390. unsigned int n_pages;
  391. if (npages) {
  392. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  393. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  394. n_pages);
  395. } else {
  396. unsigned int nr_mmu_pages;
  397. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  398. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  399. nr_mmu_pages = max(nr_mmu_pages,
  400. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  401. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  402. }
  403. }
  404. *memslot = new;
  405. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  406. kvm_flush_remote_tlbs(kvm);
  407. kvm_free_physmem_slot(&old, &new);
  408. return 0;
  409. out_free:
  410. kvm_free_physmem_slot(&new, &old);
  411. out:
  412. return r;
  413. }
  414. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  415. int kvm_set_memory_region(struct kvm *kvm,
  416. struct kvm_userspace_memory_region *mem,
  417. int user_alloc)
  418. {
  419. int r;
  420. mutex_lock(&kvm->lock);
  421. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  422. mutex_unlock(&kvm->lock);
  423. return r;
  424. }
  425. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  426. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  427. struct
  428. kvm_userspace_memory_region *mem,
  429. int user_alloc)
  430. {
  431. if (mem->slot >= KVM_MEMORY_SLOTS)
  432. return -EINVAL;
  433. return kvm_set_memory_region(kvm, mem, user_alloc);
  434. }
  435. /*
  436. * Get (and clear) the dirty memory log for a memory slot.
  437. */
  438. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  439. struct kvm_dirty_log *log)
  440. {
  441. struct kvm_memory_slot *memslot;
  442. int r, i;
  443. int n;
  444. unsigned long any = 0;
  445. mutex_lock(&kvm->lock);
  446. r = -EINVAL;
  447. if (log->slot >= KVM_MEMORY_SLOTS)
  448. goto out;
  449. memslot = &kvm->memslots[log->slot];
  450. r = -ENOENT;
  451. if (!memslot->dirty_bitmap)
  452. goto out;
  453. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  454. for (i = 0; !any && i < n/sizeof(long); ++i)
  455. any = memslot->dirty_bitmap[i];
  456. r = -EFAULT;
  457. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  458. goto out;
  459. /* If nothing is dirty, don't bother messing with page tables. */
  460. if (any) {
  461. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  462. kvm_flush_remote_tlbs(kvm);
  463. memset(memslot->dirty_bitmap, 0, n);
  464. }
  465. r = 0;
  466. out:
  467. mutex_unlock(&kvm->lock);
  468. return r;
  469. }
  470. int is_error_page(struct page *page)
  471. {
  472. return page == bad_page;
  473. }
  474. EXPORT_SYMBOL_GPL(is_error_page);
  475. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  476. {
  477. int i;
  478. struct kvm_mem_alias *alias;
  479. for (i = 0; i < kvm->naliases; ++i) {
  480. alias = &kvm->aliases[i];
  481. if (gfn >= alias->base_gfn
  482. && gfn < alias->base_gfn + alias->npages)
  483. return alias->target_gfn + gfn - alias->base_gfn;
  484. }
  485. return gfn;
  486. }
  487. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  488. {
  489. int i;
  490. for (i = 0; i < kvm->nmemslots; ++i) {
  491. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  492. if (gfn >= memslot->base_gfn
  493. && gfn < memslot->base_gfn + memslot->npages)
  494. return memslot;
  495. }
  496. return NULL;
  497. }
  498. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  499. {
  500. gfn = unalias_gfn(kvm, gfn);
  501. return __gfn_to_memslot(kvm, gfn);
  502. }
  503. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  504. {
  505. int i;
  506. gfn = unalias_gfn(kvm, gfn);
  507. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  508. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  509. if (gfn >= memslot->base_gfn
  510. && gfn < memslot->base_gfn + memslot->npages)
  511. return 1;
  512. }
  513. return 0;
  514. }
  515. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  516. /*
  517. * Requires current->mm->mmap_sem to be held
  518. */
  519. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  520. {
  521. struct kvm_memory_slot *slot;
  522. struct page *page[1];
  523. int npages;
  524. might_sleep();
  525. gfn = unalias_gfn(kvm, gfn);
  526. slot = __gfn_to_memslot(kvm, gfn);
  527. if (!slot) {
  528. get_page(bad_page);
  529. return bad_page;
  530. }
  531. npages = get_user_pages(current, current->mm,
  532. slot->userspace_addr
  533. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  534. 1, 1, page, NULL);
  535. if (npages != 1) {
  536. get_page(bad_page);
  537. return bad_page;
  538. }
  539. return page[0];
  540. }
  541. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  542. {
  543. struct page *page;
  544. down_read(&current->mm->mmap_sem);
  545. page = __gfn_to_page(kvm, gfn);
  546. up_read(&current->mm->mmap_sem);
  547. return page;
  548. }
  549. EXPORT_SYMBOL_GPL(gfn_to_page);
  550. void kvm_release_page(struct page *page)
  551. {
  552. if (!PageReserved(page))
  553. SetPageDirty(page);
  554. put_page(page);
  555. }
  556. EXPORT_SYMBOL_GPL(kvm_release_page);
  557. static int next_segment(unsigned long len, int offset)
  558. {
  559. if (len > PAGE_SIZE - offset)
  560. return PAGE_SIZE - offset;
  561. else
  562. return len;
  563. }
  564. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  565. int len)
  566. {
  567. void *page_virt;
  568. struct page *page;
  569. page = gfn_to_page(kvm, gfn);
  570. if (is_error_page(page)) {
  571. kvm_release_page(page);
  572. return -EFAULT;
  573. }
  574. page_virt = kmap_atomic(page, KM_USER0);
  575. memcpy(data, page_virt + offset, len);
  576. kunmap_atomic(page_virt, KM_USER0);
  577. kvm_release_page(page);
  578. return 0;
  579. }
  580. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  581. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  582. {
  583. gfn_t gfn = gpa >> PAGE_SHIFT;
  584. int seg;
  585. int offset = offset_in_page(gpa);
  586. int ret;
  587. while ((seg = next_segment(len, offset)) != 0) {
  588. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  589. if (ret < 0)
  590. return ret;
  591. offset = 0;
  592. len -= seg;
  593. data += seg;
  594. ++gfn;
  595. }
  596. return 0;
  597. }
  598. EXPORT_SYMBOL_GPL(kvm_read_guest);
  599. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  600. int offset, int len)
  601. {
  602. void *page_virt;
  603. struct page *page;
  604. page = gfn_to_page(kvm, gfn);
  605. if (is_error_page(page)) {
  606. kvm_release_page(page);
  607. return -EFAULT;
  608. }
  609. page_virt = kmap_atomic(page, KM_USER0);
  610. memcpy(page_virt + offset, data, len);
  611. kunmap_atomic(page_virt, KM_USER0);
  612. mark_page_dirty(kvm, gfn);
  613. kvm_release_page(page);
  614. return 0;
  615. }
  616. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  617. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  618. unsigned long len)
  619. {
  620. gfn_t gfn = gpa >> PAGE_SHIFT;
  621. int seg;
  622. int offset = offset_in_page(gpa);
  623. int ret;
  624. while ((seg = next_segment(len, offset)) != 0) {
  625. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  626. if (ret < 0)
  627. return ret;
  628. offset = 0;
  629. len -= seg;
  630. data += seg;
  631. ++gfn;
  632. }
  633. return 0;
  634. }
  635. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  636. {
  637. void *page_virt;
  638. struct page *page;
  639. page = gfn_to_page(kvm, gfn);
  640. if (is_error_page(page)) {
  641. kvm_release_page(page);
  642. return -EFAULT;
  643. }
  644. page_virt = kmap_atomic(page, KM_USER0);
  645. memset(page_virt + offset, 0, len);
  646. kunmap_atomic(page_virt, KM_USER0);
  647. kvm_release_page(page);
  648. return 0;
  649. }
  650. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  651. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  652. {
  653. gfn_t gfn = gpa >> PAGE_SHIFT;
  654. int seg;
  655. int offset = offset_in_page(gpa);
  656. int ret;
  657. while ((seg = next_segment(len, offset)) != 0) {
  658. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  659. if (ret < 0)
  660. return ret;
  661. offset = 0;
  662. len -= seg;
  663. ++gfn;
  664. }
  665. return 0;
  666. }
  667. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  668. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  669. {
  670. struct kvm_memory_slot *memslot;
  671. gfn = unalias_gfn(kvm, gfn);
  672. memslot = __gfn_to_memslot(kvm, gfn);
  673. if (memslot && memslot->dirty_bitmap) {
  674. unsigned long rel_gfn = gfn - memslot->base_gfn;
  675. /* avoid RMW */
  676. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  677. set_bit(rel_gfn, memslot->dirty_bitmap);
  678. }
  679. }
  680. /*
  681. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  682. */
  683. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  684. {
  685. DECLARE_WAITQUEUE(wait, current);
  686. add_wait_queue(&vcpu->wq, &wait);
  687. /*
  688. * We will block until either an interrupt or a signal wakes us up
  689. */
  690. while (!kvm_cpu_has_interrupt(vcpu)
  691. && !signal_pending(current)
  692. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  693. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  694. set_current_state(TASK_INTERRUPTIBLE);
  695. vcpu_put(vcpu);
  696. schedule();
  697. vcpu_load(vcpu);
  698. }
  699. __set_current_state(TASK_RUNNING);
  700. remove_wait_queue(&vcpu->wq, &wait);
  701. }
  702. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  703. {
  704. ++vcpu->stat.halt_exits;
  705. if (irqchip_in_kernel(vcpu->kvm)) {
  706. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  707. kvm_vcpu_block(vcpu);
  708. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  709. return -EINTR;
  710. return 1;
  711. } else {
  712. vcpu->run->exit_reason = KVM_EXIT_HLT;
  713. return 0;
  714. }
  715. }
  716. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  717. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  718. {
  719. unsigned long nr, a0, a1, a2, a3, ret;
  720. kvm_x86_ops->cache_regs(vcpu);
  721. nr = vcpu->regs[VCPU_REGS_RAX];
  722. a0 = vcpu->regs[VCPU_REGS_RBX];
  723. a1 = vcpu->regs[VCPU_REGS_RCX];
  724. a2 = vcpu->regs[VCPU_REGS_RDX];
  725. a3 = vcpu->regs[VCPU_REGS_RSI];
  726. if (!is_long_mode(vcpu)) {
  727. nr &= 0xFFFFFFFF;
  728. a0 &= 0xFFFFFFFF;
  729. a1 &= 0xFFFFFFFF;
  730. a2 &= 0xFFFFFFFF;
  731. a3 &= 0xFFFFFFFF;
  732. }
  733. switch (nr) {
  734. default:
  735. ret = -KVM_ENOSYS;
  736. break;
  737. }
  738. vcpu->regs[VCPU_REGS_RAX] = ret;
  739. kvm_x86_ops->decache_regs(vcpu);
  740. return 0;
  741. }
  742. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  743. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  744. {
  745. char instruction[3];
  746. int ret = 0;
  747. mutex_lock(&vcpu->kvm->lock);
  748. /*
  749. * Blow out the MMU to ensure that no other VCPU has an active mapping
  750. * to ensure that the updated hypercall appears atomically across all
  751. * VCPUs.
  752. */
  753. kvm_mmu_zap_all(vcpu->kvm);
  754. kvm_x86_ops->cache_regs(vcpu);
  755. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  756. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  757. != X86EMUL_CONTINUE)
  758. ret = -EFAULT;
  759. mutex_unlock(&vcpu->kvm->lock);
  760. return ret;
  761. }
  762. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  763. {
  764. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  765. }
  766. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  767. {
  768. struct descriptor_table dt = { limit, base };
  769. kvm_x86_ops->set_gdt(vcpu, &dt);
  770. }
  771. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  772. {
  773. struct descriptor_table dt = { limit, base };
  774. kvm_x86_ops->set_idt(vcpu, &dt);
  775. }
  776. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  777. unsigned long *rflags)
  778. {
  779. lmsw(vcpu, msw);
  780. *rflags = kvm_x86_ops->get_rflags(vcpu);
  781. }
  782. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  783. {
  784. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  785. switch (cr) {
  786. case 0:
  787. return vcpu->cr0;
  788. case 2:
  789. return vcpu->cr2;
  790. case 3:
  791. return vcpu->cr3;
  792. case 4:
  793. return vcpu->cr4;
  794. default:
  795. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  796. return 0;
  797. }
  798. }
  799. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  800. unsigned long *rflags)
  801. {
  802. switch (cr) {
  803. case 0:
  804. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  805. *rflags = kvm_x86_ops->get_rflags(vcpu);
  806. break;
  807. case 2:
  808. vcpu->cr2 = val;
  809. break;
  810. case 3:
  811. set_cr3(vcpu, val);
  812. break;
  813. case 4:
  814. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  815. break;
  816. default:
  817. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  818. }
  819. }
  820. void kvm_resched(struct kvm_vcpu *vcpu)
  821. {
  822. if (!need_resched())
  823. return;
  824. cond_resched();
  825. }
  826. EXPORT_SYMBOL_GPL(kvm_resched);
  827. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  828. {
  829. int i;
  830. u32 function;
  831. struct kvm_cpuid_entry *e, *best;
  832. kvm_x86_ops->cache_regs(vcpu);
  833. function = vcpu->regs[VCPU_REGS_RAX];
  834. vcpu->regs[VCPU_REGS_RAX] = 0;
  835. vcpu->regs[VCPU_REGS_RBX] = 0;
  836. vcpu->regs[VCPU_REGS_RCX] = 0;
  837. vcpu->regs[VCPU_REGS_RDX] = 0;
  838. best = NULL;
  839. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  840. e = &vcpu->cpuid_entries[i];
  841. if (e->function == function) {
  842. best = e;
  843. break;
  844. }
  845. /*
  846. * Both basic or both extended?
  847. */
  848. if (((e->function ^ function) & 0x80000000) == 0)
  849. if (!best || e->function > best->function)
  850. best = e;
  851. }
  852. if (best) {
  853. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  854. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  855. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  856. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  857. }
  858. kvm_x86_ops->decache_regs(vcpu);
  859. kvm_x86_ops->skip_emulated_instruction(vcpu);
  860. }
  861. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  862. /*
  863. * Check if userspace requested an interrupt window, and that the
  864. * interrupt window is open.
  865. *
  866. * No need to exit to userspace if we already have an interrupt queued.
  867. */
  868. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  869. struct kvm_run *kvm_run)
  870. {
  871. return (!vcpu->irq_summary &&
  872. kvm_run->request_interrupt_window &&
  873. vcpu->interrupt_window_open &&
  874. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  875. }
  876. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  877. struct kvm_run *kvm_run)
  878. {
  879. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  880. kvm_run->cr8 = get_cr8(vcpu);
  881. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  882. if (irqchip_in_kernel(vcpu->kvm))
  883. kvm_run->ready_for_interrupt_injection = 1;
  884. else
  885. kvm_run->ready_for_interrupt_injection =
  886. (vcpu->interrupt_window_open &&
  887. vcpu->irq_summary == 0);
  888. }
  889. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  890. {
  891. int r;
  892. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  893. pr_debug("vcpu %d received sipi with vector # %x\n",
  894. vcpu->vcpu_id, vcpu->sipi_vector);
  895. kvm_lapic_reset(vcpu);
  896. r = kvm_x86_ops->vcpu_reset(vcpu);
  897. if (r)
  898. return r;
  899. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  900. }
  901. preempted:
  902. if (vcpu->guest_debug.enabled)
  903. kvm_x86_ops->guest_debug_pre(vcpu);
  904. again:
  905. r = kvm_mmu_reload(vcpu);
  906. if (unlikely(r))
  907. goto out;
  908. kvm_inject_pending_timer_irqs(vcpu);
  909. preempt_disable();
  910. kvm_x86_ops->prepare_guest_switch(vcpu);
  911. kvm_load_guest_fpu(vcpu);
  912. local_irq_disable();
  913. if (signal_pending(current)) {
  914. local_irq_enable();
  915. preempt_enable();
  916. r = -EINTR;
  917. kvm_run->exit_reason = KVM_EXIT_INTR;
  918. ++vcpu->stat.signal_exits;
  919. goto out;
  920. }
  921. if (irqchip_in_kernel(vcpu->kvm))
  922. kvm_x86_ops->inject_pending_irq(vcpu);
  923. else if (!vcpu->mmio_read_completed)
  924. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  925. vcpu->guest_mode = 1;
  926. kvm_guest_enter();
  927. if (vcpu->requests)
  928. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  929. kvm_x86_ops->tlb_flush(vcpu);
  930. kvm_x86_ops->run(vcpu, kvm_run);
  931. vcpu->guest_mode = 0;
  932. local_irq_enable();
  933. ++vcpu->stat.exits;
  934. /*
  935. * We must have an instruction between local_irq_enable() and
  936. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  937. * the interrupt shadow. The stat.exits increment will do nicely.
  938. * But we need to prevent reordering, hence this barrier():
  939. */
  940. barrier();
  941. kvm_guest_exit();
  942. preempt_enable();
  943. /*
  944. * Profile KVM exit RIPs:
  945. */
  946. if (unlikely(prof_on == KVM_PROFILING)) {
  947. kvm_x86_ops->cache_regs(vcpu);
  948. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  949. }
  950. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  951. if (r > 0) {
  952. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  953. r = -EINTR;
  954. kvm_run->exit_reason = KVM_EXIT_INTR;
  955. ++vcpu->stat.request_irq_exits;
  956. goto out;
  957. }
  958. if (!need_resched()) {
  959. ++vcpu->stat.light_exits;
  960. goto again;
  961. }
  962. }
  963. out:
  964. if (r > 0) {
  965. kvm_resched(vcpu);
  966. goto preempted;
  967. }
  968. post_kvm_run_save(vcpu, kvm_run);
  969. return r;
  970. }
  971. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  972. {
  973. int r;
  974. sigset_t sigsaved;
  975. vcpu_load(vcpu);
  976. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  977. kvm_vcpu_block(vcpu);
  978. vcpu_put(vcpu);
  979. return -EAGAIN;
  980. }
  981. if (vcpu->sigset_active)
  982. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  983. /* re-sync apic's tpr */
  984. if (!irqchip_in_kernel(vcpu->kvm))
  985. set_cr8(vcpu, kvm_run->cr8);
  986. if (vcpu->pio.cur_count) {
  987. r = complete_pio(vcpu);
  988. if (r)
  989. goto out;
  990. }
  991. #if CONFIG_HAS_IOMEM
  992. if (vcpu->mmio_needed) {
  993. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  994. vcpu->mmio_read_completed = 1;
  995. vcpu->mmio_needed = 0;
  996. r = emulate_instruction(vcpu, kvm_run,
  997. vcpu->mmio_fault_cr2, 0, 1);
  998. if (r == EMULATE_DO_MMIO) {
  999. /*
  1000. * Read-modify-write. Back to userspace.
  1001. */
  1002. r = 0;
  1003. goto out;
  1004. }
  1005. }
  1006. #endif
  1007. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1008. kvm_x86_ops->cache_regs(vcpu);
  1009. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1010. kvm_x86_ops->decache_regs(vcpu);
  1011. }
  1012. r = __vcpu_run(vcpu, kvm_run);
  1013. out:
  1014. if (vcpu->sigset_active)
  1015. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1016. vcpu_put(vcpu);
  1017. return r;
  1018. }
  1019. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1020. struct kvm_regs *regs)
  1021. {
  1022. vcpu_load(vcpu);
  1023. kvm_x86_ops->cache_regs(vcpu);
  1024. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1025. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1026. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1027. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1028. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1029. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1030. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1031. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1032. #ifdef CONFIG_X86_64
  1033. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1034. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1035. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1036. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1037. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1038. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1039. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1040. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1041. #endif
  1042. regs->rip = vcpu->rip;
  1043. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1044. /*
  1045. * Don't leak debug flags in case they were set for guest debugging
  1046. */
  1047. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1048. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1049. vcpu_put(vcpu);
  1050. return 0;
  1051. }
  1052. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1053. struct kvm_regs *regs)
  1054. {
  1055. vcpu_load(vcpu);
  1056. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1057. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1058. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1059. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1060. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1061. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1062. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1063. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1064. #ifdef CONFIG_X86_64
  1065. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1066. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1067. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1068. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1069. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1070. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1071. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1072. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1073. #endif
  1074. vcpu->rip = regs->rip;
  1075. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1076. kvm_x86_ops->decache_regs(vcpu);
  1077. vcpu_put(vcpu);
  1078. return 0;
  1079. }
  1080. static void get_segment(struct kvm_vcpu *vcpu,
  1081. struct kvm_segment *var, int seg)
  1082. {
  1083. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1084. }
  1085. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1086. struct kvm_sregs *sregs)
  1087. {
  1088. struct descriptor_table dt;
  1089. int pending_vec;
  1090. vcpu_load(vcpu);
  1091. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1092. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1093. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1094. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1095. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1096. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1097. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1098. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1099. kvm_x86_ops->get_idt(vcpu, &dt);
  1100. sregs->idt.limit = dt.limit;
  1101. sregs->idt.base = dt.base;
  1102. kvm_x86_ops->get_gdt(vcpu, &dt);
  1103. sregs->gdt.limit = dt.limit;
  1104. sregs->gdt.base = dt.base;
  1105. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1106. sregs->cr0 = vcpu->cr0;
  1107. sregs->cr2 = vcpu->cr2;
  1108. sregs->cr3 = vcpu->cr3;
  1109. sregs->cr4 = vcpu->cr4;
  1110. sregs->cr8 = get_cr8(vcpu);
  1111. sregs->efer = vcpu->shadow_efer;
  1112. sregs->apic_base = kvm_get_apic_base(vcpu);
  1113. if (irqchip_in_kernel(vcpu->kvm)) {
  1114. memset(sregs->interrupt_bitmap, 0,
  1115. sizeof sregs->interrupt_bitmap);
  1116. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1117. if (pending_vec >= 0)
  1118. set_bit(pending_vec,
  1119. (unsigned long *)sregs->interrupt_bitmap);
  1120. } else
  1121. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1122. sizeof sregs->interrupt_bitmap);
  1123. vcpu_put(vcpu);
  1124. return 0;
  1125. }
  1126. static void set_segment(struct kvm_vcpu *vcpu,
  1127. struct kvm_segment *var, int seg)
  1128. {
  1129. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1130. }
  1131. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1132. struct kvm_sregs *sregs)
  1133. {
  1134. int mmu_reset_needed = 0;
  1135. int i, pending_vec, max_bits;
  1136. struct descriptor_table dt;
  1137. vcpu_load(vcpu);
  1138. dt.limit = sregs->idt.limit;
  1139. dt.base = sregs->idt.base;
  1140. kvm_x86_ops->set_idt(vcpu, &dt);
  1141. dt.limit = sregs->gdt.limit;
  1142. dt.base = sregs->gdt.base;
  1143. kvm_x86_ops->set_gdt(vcpu, &dt);
  1144. vcpu->cr2 = sregs->cr2;
  1145. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1146. vcpu->cr3 = sregs->cr3;
  1147. set_cr8(vcpu, sregs->cr8);
  1148. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1149. #ifdef CONFIG_X86_64
  1150. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1151. #endif
  1152. kvm_set_apic_base(vcpu, sregs->apic_base);
  1153. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1154. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1155. vcpu->cr0 = sregs->cr0;
  1156. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1157. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1158. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1159. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1160. load_pdptrs(vcpu, vcpu->cr3);
  1161. if (mmu_reset_needed)
  1162. kvm_mmu_reset_context(vcpu);
  1163. if (!irqchip_in_kernel(vcpu->kvm)) {
  1164. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1165. sizeof vcpu->irq_pending);
  1166. vcpu->irq_summary = 0;
  1167. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1168. if (vcpu->irq_pending[i])
  1169. __set_bit(i, &vcpu->irq_summary);
  1170. } else {
  1171. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1172. pending_vec = find_first_bit(
  1173. (const unsigned long *)sregs->interrupt_bitmap,
  1174. max_bits);
  1175. /* Only pending external irq is handled here */
  1176. if (pending_vec < max_bits) {
  1177. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1178. pr_debug("Set back pending irq %d\n",
  1179. pending_vec);
  1180. }
  1181. }
  1182. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1183. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1184. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1185. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1186. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1187. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1188. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1189. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1190. vcpu_put(vcpu);
  1191. return 0;
  1192. }
  1193. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1194. {
  1195. struct kvm_segment cs;
  1196. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1197. *db = cs.db;
  1198. *l = cs.l;
  1199. }
  1200. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1201. /*
  1202. * Translate a guest virtual address to a guest physical address.
  1203. */
  1204. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1205. struct kvm_translation *tr)
  1206. {
  1207. unsigned long vaddr = tr->linear_address;
  1208. gpa_t gpa;
  1209. vcpu_load(vcpu);
  1210. mutex_lock(&vcpu->kvm->lock);
  1211. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1212. tr->physical_address = gpa;
  1213. tr->valid = gpa != UNMAPPED_GVA;
  1214. tr->writeable = 1;
  1215. tr->usermode = 0;
  1216. mutex_unlock(&vcpu->kvm->lock);
  1217. vcpu_put(vcpu);
  1218. return 0;
  1219. }
  1220. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1221. struct kvm_interrupt *irq)
  1222. {
  1223. if (irq->irq < 0 || irq->irq >= 256)
  1224. return -EINVAL;
  1225. if (irqchip_in_kernel(vcpu->kvm))
  1226. return -ENXIO;
  1227. vcpu_load(vcpu);
  1228. set_bit(irq->irq, vcpu->irq_pending);
  1229. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1230. vcpu_put(vcpu);
  1231. return 0;
  1232. }
  1233. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1234. struct kvm_debug_guest *dbg)
  1235. {
  1236. int r;
  1237. vcpu_load(vcpu);
  1238. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  1239. vcpu_put(vcpu);
  1240. return r;
  1241. }
  1242. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1243. unsigned long address,
  1244. int *type)
  1245. {
  1246. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1247. unsigned long pgoff;
  1248. struct page *page;
  1249. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1250. if (pgoff == 0)
  1251. page = virt_to_page(vcpu->run);
  1252. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1253. page = virt_to_page(vcpu->pio_data);
  1254. else
  1255. return NOPAGE_SIGBUS;
  1256. get_page(page);
  1257. if (type != NULL)
  1258. *type = VM_FAULT_MINOR;
  1259. return page;
  1260. }
  1261. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1262. .nopage = kvm_vcpu_nopage,
  1263. };
  1264. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1265. {
  1266. vma->vm_ops = &kvm_vcpu_vm_ops;
  1267. return 0;
  1268. }
  1269. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1270. {
  1271. struct kvm_vcpu *vcpu = filp->private_data;
  1272. fput(vcpu->kvm->filp);
  1273. return 0;
  1274. }
  1275. static struct file_operations kvm_vcpu_fops = {
  1276. .release = kvm_vcpu_release,
  1277. .unlocked_ioctl = kvm_vcpu_ioctl,
  1278. .compat_ioctl = kvm_vcpu_ioctl,
  1279. .mmap = kvm_vcpu_mmap,
  1280. };
  1281. /*
  1282. * Allocates an inode for the vcpu.
  1283. */
  1284. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1285. {
  1286. int fd, r;
  1287. struct inode *inode;
  1288. struct file *file;
  1289. r = anon_inode_getfd(&fd, &inode, &file,
  1290. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  1291. if (r)
  1292. return r;
  1293. atomic_inc(&vcpu->kvm->filp->f_count);
  1294. return fd;
  1295. }
  1296. /*
  1297. * Creates some virtual cpus. Good luck creating more than one.
  1298. */
  1299. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1300. {
  1301. int r;
  1302. struct kvm_vcpu *vcpu;
  1303. if (!valid_vcpu(n))
  1304. return -EINVAL;
  1305. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  1306. if (IS_ERR(vcpu))
  1307. return PTR_ERR(vcpu);
  1308. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1309. /* We do fxsave: this must be aligned. */
  1310. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  1311. vcpu_load(vcpu);
  1312. r = kvm_x86_ops->vcpu_reset(vcpu);
  1313. if (r == 0)
  1314. r = kvm_mmu_setup(vcpu);
  1315. vcpu_put(vcpu);
  1316. if (r < 0)
  1317. goto free_vcpu;
  1318. mutex_lock(&kvm->lock);
  1319. if (kvm->vcpus[n]) {
  1320. r = -EEXIST;
  1321. mutex_unlock(&kvm->lock);
  1322. goto mmu_unload;
  1323. }
  1324. kvm->vcpus[n] = vcpu;
  1325. mutex_unlock(&kvm->lock);
  1326. /* Now it's all set up, let userspace reach it */
  1327. r = create_vcpu_fd(vcpu);
  1328. if (r < 0)
  1329. goto unlink;
  1330. return r;
  1331. unlink:
  1332. mutex_lock(&kvm->lock);
  1333. kvm->vcpus[n] = NULL;
  1334. mutex_unlock(&kvm->lock);
  1335. mmu_unload:
  1336. vcpu_load(vcpu);
  1337. kvm_mmu_unload(vcpu);
  1338. vcpu_put(vcpu);
  1339. free_vcpu:
  1340. kvm_x86_ops->vcpu_free(vcpu);
  1341. return r;
  1342. }
  1343. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1344. {
  1345. if (sigset) {
  1346. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1347. vcpu->sigset_active = 1;
  1348. vcpu->sigset = *sigset;
  1349. } else
  1350. vcpu->sigset_active = 0;
  1351. return 0;
  1352. }
  1353. /*
  1354. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  1355. * we have asm/x86/processor.h
  1356. */
  1357. struct fxsave {
  1358. u16 cwd;
  1359. u16 swd;
  1360. u16 twd;
  1361. u16 fop;
  1362. u64 rip;
  1363. u64 rdp;
  1364. u32 mxcsr;
  1365. u32 mxcsr_mask;
  1366. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  1367. #ifdef CONFIG_X86_64
  1368. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  1369. #else
  1370. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  1371. #endif
  1372. };
  1373. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1374. {
  1375. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1376. vcpu_load(vcpu);
  1377. memcpy(fpu->fpr, fxsave->st_space, 128);
  1378. fpu->fcw = fxsave->cwd;
  1379. fpu->fsw = fxsave->swd;
  1380. fpu->ftwx = fxsave->twd;
  1381. fpu->last_opcode = fxsave->fop;
  1382. fpu->last_ip = fxsave->rip;
  1383. fpu->last_dp = fxsave->rdp;
  1384. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  1385. vcpu_put(vcpu);
  1386. return 0;
  1387. }
  1388. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1389. {
  1390. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  1391. vcpu_load(vcpu);
  1392. memcpy(fxsave->st_space, fpu->fpr, 128);
  1393. fxsave->cwd = fpu->fcw;
  1394. fxsave->swd = fpu->fsw;
  1395. fxsave->twd = fpu->ftwx;
  1396. fxsave->fop = fpu->last_opcode;
  1397. fxsave->rip = fpu->last_ip;
  1398. fxsave->rdp = fpu->last_dp;
  1399. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  1400. vcpu_put(vcpu);
  1401. return 0;
  1402. }
  1403. static long kvm_vcpu_ioctl(struct file *filp,
  1404. unsigned int ioctl, unsigned long arg)
  1405. {
  1406. struct kvm_vcpu *vcpu = filp->private_data;
  1407. void __user *argp = (void __user *)arg;
  1408. int r;
  1409. switch (ioctl) {
  1410. case KVM_RUN:
  1411. r = -EINVAL;
  1412. if (arg)
  1413. goto out;
  1414. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  1415. break;
  1416. case KVM_GET_REGS: {
  1417. struct kvm_regs kvm_regs;
  1418. memset(&kvm_regs, 0, sizeof kvm_regs);
  1419. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  1420. if (r)
  1421. goto out;
  1422. r = -EFAULT;
  1423. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1424. goto out;
  1425. r = 0;
  1426. break;
  1427. }
  1428. case KVM_SET_REGS: {
  1429. struct kvm_regs kvm_regs;
  1430. r = -EFAULT;
  1431. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1432. goto out;
  1433. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  1434. if (r)
  1435. goto out;
  1436. r = 0;
  1437. break;
  1438. }
  1439. case KVM_GET_SREGS: {
  1440. struct kvm_sregs kvm_sregs;
  1441. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  1442. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  1443. if (r)
  1444. goto out;
  1445. r = -EFAULT;
  1446. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1447. goto out;
  1448. r = 0;
  1449. break;
  1450. }
  1451. case KVM_SET_SREGS: {
  1452. struct kvm_sregs kvm_sregs;
  1453. r = -EFAULT;
  1454. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1455. goto out;
  1456. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  1457. if (r)
  1458. goto out;
  1459. r = 0;
  1460. break;
  1461. }
  1462. case KVM_TRANSLATE: {
  1463. struct kvm_translation tr;
  1464. r = -EFAULT;
  1465. if (copy_from_user(&tr, argp, sizeof tr))
  1466. goto out;
  1467. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  1468. if (r)
  1469. goto out;
  1470. r = -EFAULT;
  1471. if (copy_to_user(argp, &tr, sizeof tr))
  1472. goto out;
  1473. r = 0;
  1474. break;
  1475. }
  1476. case KVM_INTERRUPT: {
  1477. struct kvm_interrupt irq;
  1478. r = -EFAULT;
  1479. if (copy_from_user(&irq, argp, sizeof irq))
  1480. goto out;
  1481. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1482. if (r)
  1483. goto out;
  1484. r = 0;
  1485. break;
  1486. }
  1487. case KVM_DEBUG_GUEST: {
  1488. struct kvm_debug_guest dbg;
  1489. r = -EFAULT;
  1490. if (copy_from_user(&dbg, argp, sizeof dbg))
  1491. goto out;
  1492. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1493. if (r)
  1494. goto out;
  1495. r = 0;
  1496. break;
  1497. }
  1498. case KVM_SET_SIGNAL_MASK: {
  1499. struct kvm_signal_mask __user *sigmask_arg = argp;
  1500. struct kvm_signal_mask kvm_sigmask;
  1501. sigset_t sigset, *p;
  1502. p = NULL;
  1503. if (argp) {
  1504. r = -EFAULT;
  1505. if (copy_from_user(&kvm_sigmask, argp,
  1506. sizeof kvm_sigmask))
  1507. goto out;
  1508. r = -EINVAL;
  1509. if (kvm_sigmask.len != sizeof sigset)
  1510. goto out;
  1511. r = -EFAULT;
  1512. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1513. sizeof sigset))
  1514. goto out;
  1515. p = &sigset;
  1516. }
  1517. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1518. break;
  1519. }
  1520. case KVM_GET_FPU: {
  1521. struct kvm_fpu fpu;
  1522. memset(&fpu, 0, sizeof fpu);
  1523. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  1524. if (r)
  1525. goto out;
  1526. r = -EFAULT;
  1527. if (copy_to_user(argp, &fpu, sizeof fpu))
  1528. goto out;
  1529. r = 0;
  1530. break;
  1531. }
  1532. case KVM_SET_FPU: {
  1533. struct kvm_fpu fpu;
  1534. r = -EFAULT;
  1535. if (copy_from_user(&fpu, argp, sizeof fpu))
  1536. goto out;
  1537. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  1538. if (r)
  1539. goto out;
  1540. r = 0;
  1541. break;
  1542. }
  1543. default:
  1544. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1545. }
  1546. out:
  1547. return r;
  1548. }
  1549. static long kvm_vm_ioctl(struct file *filp,
  1550. unsigned int ioctl, unsigned long arg)
  1551. {
  1552. struct kvm *kvm = filp->private_data;
  1553. void __user *argp = (void __user *)arg;
  1554. int r;
  1555. switch (ioctl) {
  1556. case KVM_CREATE_VCPU:
  1557. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1558. if (r < 0)
  1559. goto out;
  1560. break;
  1561. case KVM_SET_USER_MEMORY_REGION: {
  1562. struct kvm_userspace_memory_region kvm_userspace_mem;
  1563. r = -EFAULT;
  1564. if (copy_from_user(&kvm_userspace_mem, argp,
  1565. sizeof kvm_userspace_mem))
  1566. goto out;
  1567. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1568. if (r)
  1569. goto out;
  1570. break;
  1571. }
  1572. case KVM_GET_DIRTY_LOG: {
  1573. struct kvm_dirty_log log;
  1574. r = -EFAULT;
  1575. if (copy_from_user(&log, argp, sizeof log))
  1576. goto out;
  1577. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1578. if (r)
  1579. goto out;
  1580. break;
  1581. }
  1582. default:
  1583. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1584. }
  1585. out:
  1586. return r;
  1587. }
  1588. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  1589. unsigned long address,
  1590. int *type)
  1591. {
  1592. struct kvm *kvm = vma->vm_file->private_data;
  1593. unsigned long pgoff;
  1594. struct page *page;
  1595. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1596. if (!kvm_is_visible_gfn(kvm, pgoff))
  1597. return NOPAGE_SIGBUS;
  1598. /* current->mm->mmap_sem is already held so call lockless version */
  1599. page = __gfn_to_page(kvm, pgoff);
  1600. if (is_error_page(page)) {
  1601. kvm_release_page(page);
  1602. return NOPAGE_SIGBUS;
  1603. }
  1604. if (type != NULL)
  1605. *type = VM_FAULT_MINOR;
  1606. return page;
  1607. }
  1608. static struct vm_operations_struct kvm_vm_vm_ops = {
  1609. .nopage = kvm_vm_nopage,
  1610. };
  1611. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1612. {
  1613. vma->vm_ops = &kvm_vm_vm_ops;
  1614. return 0;
  1615. }
  1616. static struct file_operations kvm_vm_fops = {
  1617. .release = kvm_vm_release,
  1618. .unlocked_ioctl = kvm_vm_ioctl,
  1619. .compat_ioctl = kvm_vm_ioctl,
  1620. .mmap = kvm_vm_mmap,
  1621. };
  1622. static int kvm_dev_ioctl_create_vm(void)
  1623. {
  1624. int fd, r;
  1625. struct inode *inode;
  1626. struct file *file;
  1627. struct kvm *kvm;
  1628. kvm = kvm_create_vm();
  1629. if (IS_ERR(kvm))
  1630. return PTR_ERR(kvm);
  1631. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1632. if (r) {
  1633. kvm_destroy_vm(kvm);
  1634. return r;
  1635. }
  1636. kvm->filp = file;
  1637. return fd;
  1638. }
  1639. static long kvm_dev_ioctl(struct file *filp,
  1640. unsigned int ioctl, unsigned long arg)
  1641. {
  1642. void __user *argp = (void __user *)arg;
  1643. long r = -EINVAL;
  1644. switch (ioctl) {
  1645. case KVM_GET_API_VERSION:
  1646. r = -EINVAL;
  1647. if (arg)
  1648. goto out;
  1649. r = KVM_API_VERSION;
  1650. break;
  1651. case KVM_CREATE_VM:
  1652. r = -EINVAL;
  1653. if (arg)
  1654. goto out;
  1655. r = kvm_dev_ioctl_create_vm();
  1656. break;
  1657. case KVM_CHECK_EXTENSION: {
  1658. int ext = (long)argp;
  1659. switch (ext) {
  1660. case KVM_CAP_IRQCHIP:
  1661. case KVM_CAP_HLT:
  1662. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1663. case KVM_CAP_USER_MEMORY:
  1664. case KVM_CAP_SET_TSS_ADDR:
  1665. r = 1;
  1666. break;
  1667. default:
  1668. r = 0;
  1669. break;
  1670. }
  1671. break;
  1672. }
  1673. case KVM_GET_VCPU_MMAP_SIZE:
  1674. r = -EINVAL;
  1675. if (arg)
  1676. goto out;
  1677. r = 2 * PAGE_SIZE;
  1678. break;
  1679. default:
  1680. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1681. }
  1682. out:
  1683. return r;
  1684. }
  1685. static struct file_operations kvm_chardev_ops = {
  1686. .unlocked_ioctl = kvm_dev_ioctl,
  1687. .compat_ioctl = kvm_dev_ioctl,
  1688. };
  1689. static struct miscdevice kvm_dev = {
  1690. KVM_MINOR,
  1691. "kvm",
  1692. &kvm_chardev_ops,
  1693. };
  1694. /*
  1695. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1696. * cached on it.
  1697. */
  1698. static void decache_vcpus_on_cpu(int cpu)
  1699. {
  1700. struct kvm *vm;
  1701. struct kvm_vcpu *vcpu;
  1702. int i;
  1703. spin_lock(&kvm_lock);
  1704. list_for_each_entry(vm, &vm_list, vm_list)
  1705. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1706. vcpu = vm->vcpus[i];
  1707. if (!vcpu)
  1708. continue;
  1709. /*
  1710. * If the vcpu is locked, then it is running on some
  1711. * other cpu and therefore it is not cached on the
  1712. * cpu in question.
  1713. *
  1714. * If it's not locked, check the last cpu it executed
  1715. * on.
  1716. */
  1717. if (mutex_trylock(&vcpu->mutex)) {
  1718. if (vcpu->cpu == cpu) {
  1719. kvm_x86_ops->vcpu_decache(vcpu);
  1720. vcpu->cpu = -1;
  1721. }
  1722. mutex_unlock(&vcpu->mutex);
  1723. }
  1724. }
  1725. spin_unlock(&kvm_lock);
  1726. }
  1727. static void hardware_enable(void *junk)
  1728. {
  1729. int cpu = raw_smp_processor_id();
  1730. if (cpu_isset(cpu, cpus_hardware_enabled))
  1731. return;
  1732. cpu_set(cpu, cpus_hardware_enabled);
  1733. kvm_x86_ops->hardware_enable(NULL);
  1734. }
  1735. static void hardware_disable(void *junk)
  1736. {
  1737. int cpu = raw_smp_processor_id();
  1738. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1739. return;
  1740. cpu_clear(cpu, cpus_hardware_enabled);
  1741. decache_vcpus_on_cpu(cpu);
  1742. kvm_x86_ops->hardware_disable(NULL);
  1743. }
  1744. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1745. void *v)
  1746. {
  1747. int cpu = (long)v;
  1748. switch (val) {
  1749. case CPU_DYING:
  1750. case CPU_DYING_FROZEN:
  1751. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1752. cpu);
  1753. hardware_disable(NULL);
  1754. break;
  1755. case CPU_UP_CANCELED:
  1756. case CPU_UP_CANCELED_FROZEN:
  1757. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1758. cpu);
  1759. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1760. break;
  1761. case CPU_ONLINE:
  1762. case CPU_ONLINE_FROZEN:
  1763. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1764. cpu);
  1765. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1766. break;
  1767. }
  1768. return NOTIFY_OK;
  1769. }
  1770. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1771. void *v)
  1772. {
  1773. if (val == SYS_RESTART) {
  1774. /*
  1775. * Some (well, at least mine) BIOSes hang on reboot if
  1776. * in vmx root mode.
  1777. */
  1778. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1779. on_each_cpu(hardware_disable, NULL, 0, 1);
  1780. }
  1781. return NOTIFY_OK;
  1782. }
  1783. static struct notifier_block kvm_reboot_notifier = {
  1784. .notifier_call = kvm_reboot,
  1785. .priority = 0,
  1786. };
  1787. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1788. {
  1789. memset(bus, 0, sizeof(*bus));
  1790. }
  1791. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1792. {
  1793. int i;
  1794. for (i = 0; i < bus->dev_count; i++) {
  1795. struct kvm_io_device *pos = bus->devs[i];
  1796. kvm_iodevice_destructor(pos);
  1797. }
  1798. }
  1799. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1800. {
  1801. int i;
  1802. for (i = 0; i < bus->dev_count; i++) {
  1803. struct kvm_io_device *pos = bus->devs[i];
  1804. if (pos->in_range(pos, addr))
  1805. return pos;
  1806. }
  1807. return NULL;
  1808. }
  1809. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1810. {
  1811. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1812. bus->devs[bus->dev_count++] = dev;
  1813. }
  1814. static struct notifier_block kvm_cpu_notifier = {
  1815. .notifier_call = kvm_cpu_hotplug,
  1816. .priority = 20, /* must be > scheduler priority */
  1817. };
  1818. static u64 stat_get(void *_offset)
  1819. {
  1820. unsigned offset = (long)_offset;
  1821. u64 total = 0;
  1822. struct kvm *kvm;
  1823. struct kvm_vcpu *vcpu;
  1824. int i;
  1825. spin_lock(&kvm_lock);
  1826. list_for_each_entry(kvm, &vm_list, vm_list)
  1827. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1828. vcpu = kvm->vcpus[i];
  1829. if (vcpu)
  1830. total += *(u32 *)((void *)vcpu + offset);
  1831. }
  1832. spin_unlock(&kvm_lock);
  1833. return total;
  1834. }
  1835. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1836. static __init void kvm_init_debug(void)
  1837. {
  1838. struct kvm_stats_debugfs_item *p;
  1839. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1840. for (p = debugfs_entries; p->name; ++p)
  1841. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1842. (void *)(long)p->offset,
  1843. &stat_fops);
  1844. }
  1845. static void kvm_exit_debug(void)
  1846. {
  1847. struct kvm_stats_debugfs_item *p;
  1848. for (p = debugfs_entries; p->name; ++p)
  1849. debugfs_remove(p->dentry);
  1850. debugfs_remove(debugfs_dir);
  1851. }
  1852. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1853. {
  1854. hardware_disable(NULL);
  1855. return 0;
  1856. }
  1857. static int kvm_resume(struct sys_device *dev)
  1858. {
  1859. hardware_enable(NULL);
  1860. return 0;
  1861. }
  1862. static struct sysdev_class kvm_sysdev_class = {
  1863. .name = "kvm",
  1864. .suspend = kvm_suspend,
  1865. .resume = kvm_resume,
  1866. };
  1867. static struct sys_device kvm_sysdev = {
  1868. .id = 0,
  1869. .cls = &kvm_sysdev_class,
  1870. };
  1871. struct page *bad_page;
  1872. static inline
  1873. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1874. {
  1875. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1876. }
  1877. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1878. {
  1879. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1880. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1881. }
  1882. static void kvm_sched_out(struct preempt_notifier *pn,
  1883. struct task_struct *next)
  1884. {
  1885. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1886. kvm_x86_ops->vcpu_put(vcpu);
  1887. }
  1888. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  1889. struct module *module)
  1890. {
  1891. int r;
  1892. int cpu;
  1893. if (kvm_x86_ops) {
  1894. printk(KERN_ERR "kvm: already loaded the other module\n");
  1895. return -EEXIST;
  1896. }
  1897. if (!ops->cpu_has_kvm_support()) {
  1898. printk(KERN_ERR "kvm: no hardware support\n");
  1899. return -EOPNOTSUPP;
  1900. }
  1901. if (ops->disabled_by_bios()) {
  1902. printk(KERN_ERR "kvm: disabled by bios\n");
  1903. return -EOPNOTSUPP;
  1904. }
  1905. kvm_x86_ops = ops;
  1906. r = kvm_x86_ops->hardware_setup();
  1907. if (r < 0)
  1908. goto out;
  1909. for_each_online_cpu(cpu) {
  1910. smp_call_function_single(cpu,
  1911. kvm_x86_ops->check_processor_compatibility,
  1912. &r, 0, 1);
  1913. if (r < 0)
  1914. goto out_free_0;
  1915. }
  1916. on_each_cpu(hardware_enable, NULL, 0, 1);
  1917. r = register_cpu_notifier(&kvm_cpu_notifier);
  1918. if (r)
  1919. goto out_free_1;
  1920. register_reboot_notifier(&kvm_reboot_notifier);
  1921. r = sysdev_class_register(&kvm_sysdev_class);
  1922. if (r)
  1923. goto out_free_2;
  1924. r = sysdev_register(&kvm_sysdev);
  1925. if (r)
  1926. goto out_free_3;
  1927. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1928. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1929. __alignof__(struct kvm_vcpu), 0, 0);
  1930. if (!kvm_vcpu_cache) {
  1931. r = -ENOMEM;
  1932. goto out_free_4;
  1933. }
  1934. kvm_chardev_ops.owner = module;
  1935. r = misc_register(&kvm_dev);
  1936. if (r) {
  1937. printk(KERN_ERR "kvm: misc device register failed\n");
  1938. goto out_free;
  1939. }
  1940. kvm_preempt_ops.sched_in = kvm_sched_in;
  1941. kvm_preempt_ops.sched_out = kvm_sched_out;
  1942. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1943. return 0;
  1944. out_free:
  1945. kmem_cache_destroy(kvm_vcpu_cache);
  1946. out_free_4:
  1947. sysdev_unregister(&kvm_sysdev);
  1948. out_free_3:
  1949. sysdev_class_unregister(&kvm_sysdev_class);
  1950. out_free_2:
  1951. unregister_reboot_notifier(&kvm_reboot_notifier);
  1952. unregister_cpu_notifier(&kvm_cpu_notifier);
  1953. out_free_1:
  1954. on_each_cpu(hardware_disable, NULL, 0, 1);
  1955. out_free_0:
  1956. kvm_x86_ops->hardware_unsetup();
  1957. out:
  1958. kvm_x86_ops = NULL;
  1959. return r;
  1960. }
  1961. EXPORT_SYMBOL_GPL(kvm_init_x86);
  1962. void kvm_exit_x86(void)
  1963. {
  1964. misc_deregister(&kvm_dev);
  1965. kmem_cache_destroy(kvm_vcpu_cache);
  1966. sysdev_unregister(&kvm_sysdev);
  1967. sysdev_class_unregister(&kvm_sysdev_class);
  1968. unregister_reboot_notifier(&kvm_reboot_notifier);
  1969. unregister_cpu_notifier(&kvm_cpu_notifier);
  1970. on_each_cpu(hardware_disable, NULL, 0, 1);
  1971. kvm_x86_ops->hardware_unsetup();
  1972. kvm_x86_ops = NULL;
  1973. }
  1974. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  1975. static __init int kvm_init(void)
  1976. {
  1977. int r;
  1978. r = kvm_mmu_module_init();
  1979. if (r)
  1980. goto out4;
  1981. kvm_init_debug();
  1982. kvm_arch_init();
  1983. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1984. if (bad_page == NULL) {
  1985. r = -ENOMEM;
  1986. goto out;
  1987. }
  1988. return 0;
  1989. out:
  1990. kvm_exit_debug();
  1991. kvm_mmu_module_exit();
  1992. out4:
  1993. return r;
  1994. }
  1995. static __exit void kvm_exit(void)
  1996. {
  1997. kvm_exit_debug();
  1998. __free_page(bad_page);
  1999. kvm_mmu_module_exit();
  2000. }
  2001. module_init(kvm_init)
  2002. module_exit(kvm_exit)