vmx.c 221 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "cpuid.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <linux/mod_devicetable.h>
  29. #include <linux/ftrace_event.h>
  30. #include <linux/slab.h>
  31. #include <linux/tboot.h>
  32. #include "kvm_cache_regs.h"
  33. #include "x86.h"
  34. #include <asm/io.h>
  35. #include <asm/desc.h>
  36. #include <asm/vmx.h>
  37. #include <asm/virtext.h>
  38. #include <asm/mce.h>
  39. #include <asm/i387.h>
  40. #include <asm/xcr.h>
  41. #include <asm/perf_event.h>
  42. #include <asm/kexec.h>
  43. #include "trace.h"
  44. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  45. #define __ex_clear(x, reg) \
  46. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. static const struct x86_cpu_id vmx_cpu_id[] = {
  50. X86_FEATURE_MATCH(X86_FEATURE_VMX),
  51. {}
  52. };
  53. MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  54. static bool __read_mostly enable_vpid = 1;
  55. module_param_named(vpid, enable_vpid, bool, 0444);
  56. static bool __read_mostly flexpriority_enabled = 1;
  57. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  58. static bool __read_mostly enable_ept = 1;
  59. module_param_named(ept, enable_ept, bool, S_IRUGO);
  60. static bool __read_mostly enable_unrestricted_guest = 1;
  61. module_param_named(unrestricted_guest,
  62. enable_unrestricted_guest, bool, S_IRUGO);
  63. static bool __read_mostly enable_ept_ad_bits = 1;
  64. module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  65. static bool __read_mostly emulate_invalid_guest_state = true;
  66. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  67. static bool __read_mostly vmm_exclusive = 1;
  68. module_param(vmm_exclusive, bool, S_IRUGO);
  69. static bool __read_mostly fasteoi = 1;
  70. module_param(fasteoi, bool, S_IRUGO);
  71. static bool __read_mostly enable_apicv_reg_vid;
  72. /*
  73. * If nested=1, nested virtualization is supported, i.e., guests may use
  74. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  75. * use VMX instructions.
  76. */
  77. static bool __read_mostly nested = 0;
  78. module_param(nested, bool, S_IRUGO);
  79. #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
  80. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
  81. #define KVM_VM_CR0_ALWAYS_ON \
  82. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  83. #define KVM_CR4_GUEST_OWNED_BITS \
  84. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT)
  86. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  87. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  88. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  89. /*
  90. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  91. * ple_gap: upper bound on the amount of time between two successive
  92. * executions of PAUSE in a loop. Also indicate if ple enabled.
  93. * According to test, this time is usually smaller than 128 cycles.
  94. * ple_window: upper bound on the amount of time a guest is allowed to execute
  95. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  96. * less than 2^12 cycles
  97. * Time is measured based on a counter that runs at the same rate as the TSC,
  98. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  99. */
  100. #define KVM_VMX_DEFAULT_PLE_GAP 128
  101. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  102. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  103. module_param(ple_gap, int, S_IRUGO);
  104. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  105. module_param(ple_window, int, S_IRUGO);
  106. extern const ulong vmx_return;
  107. #define NR_AUTOLOAD_MSRS 8
  108. #define VMCS02_POOL_SIZE 1
  109. struct vmcs {
  110. u32 revision_id;
  111. u32 abort;
  112. char data[0];
  113. };
  114. /*
  115. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  116. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  117. * loaded on this CPU (so we can clear them if the CPU goes down).
  118. */
  119. struct loaded_vmcs {
  120. struct vmcs *vmcs;
  121. int cpu;
  122. int launched;
  123. struct list_head loaded_vmcss_on_cpu_link;
  124. };
  125. struct shared_msr_entry {
  126. unsigned index;
  127. u64 data;
  128. u64 mask;
  129. };
  130. /*
  131. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  132. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  133. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  134. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  135. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  136. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  137. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  138. * underlying hardware which will be used to run L2.
  139. * This structure is packed to ensure that its layout is identical across
  140. * machines (necessary for live migration).
  141. * If there are changes in this struct, VMCS12_REVISION must be changed.
  142. */
  143. typedef u64 natural_width;
  144. struct __packed vmcs12 {
  145. /* According to the Intel spec, a VMCS region must start with the
  146. * following two fields. Then follow implementation-specific data.
  147. */
  148. u32 revision_id;
  149. u32 abort;
  150. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  151. u32 padding[7]; /* room for future expansion */
  152. u64 io_bitmap_a;
  153. u64 io_bitmap_b;
  154. u64 msr_bitmap;
  155. u64 vm_exit_msr_store_addr;
  156. u64 vm_exit_msr_load_addr;
  157. u64 vm_entry_msr_load_addr;
  158. u64 tsc_offset;
  159. u64 virtual_apic_page_addr;
  160. u64 apic_access_addr;
  161. u64 ept_pointer;
  162. u64 guest_physical_address;
  163. u64 vmcs_link_pointer;
  164. u64 guest_ia32_debugctl;
  165. u64 guest_ia32_pat;
  166. u64 guest_ia32_efer;
  167. u64 guest_ia32_perf_global_ctrl;
  168. u64 guest_pdptr0;
  169. u64 guest_pdptr1;
  170. u64 guest_pdptr2;
  171. u64 guest_pdptr3;
  172. u64 host_ia32_pat;
  173. u64 host_ia32_efer;
  174. u64 host_ia32_perf_global_ctrl;
  175. u64 padding64[8]; /* room for future expansion */
  176. /*
  177. * To allow migration of L1 (complete with its L2 guests) between
  178. * machines of different natural widths (32 or 64 bit), we cannot have
  179. * unsigned long fields with no explict size. We use u64 (aliased
  180. * natural_width) instead. Luckily, x86 is little-endian.
  181. */
  182. natural_width cr0_guest_host_mask;
  183. natural_width cr4_guest_host_mask;
  184. natural_width cr0_read_shadow;
  185. natural_width cr4_read_shadow;
  186. natural_width cr3_target_value0;
  187. natural_width cr3_target_value1;
  188. natural_width cr3_target_value2;
  189. natural_width cr3_target_value3;
  190. natural_width exit_qualification;
  191. natural_width guest_linear_address;
  192. natural_width guest_cr0;
  193. natural_width guest_cr3;
  194. natural_width guest_cr4;
  195. natural_width guest_es_base;
  196. natural_width guest_cs_base;
  197. natural_width guest_ss_base;
  198. natural_width guest_ds_base;
  199. natural_width guest_fs_base;
  200. natural_width guest_gs_base;
  201. natural_width guest_ldtr_base;
  202. natural_width guest_tr_base;
  203. natural_width guest_gdtr_base;
  204. natural_width guest_idtr_base;
  205. natural_width guest_dr7;
  206. natural_width guest_rsp;
  207. natural_width guest_rip;
  208. natural_width guest_rflags;
  209. natural_width guest_pending_dbg_exceptions;
  210. natural_width guest_sysenter_esp;
  211. natural_width guest_sysenter_eip;
  212. natural_width host_cr0;
  213. natural_width host_cr3;
  214. natural_width host_cr4;
  215. natural_width host_fs_base;
  216. natural_width host_gs_base;
  217. natural_width host_tr_base;
  218. natural_width host_gdtr_base;
  219. natural_width host_idtr_base;
  220. natural_width host_ia32_sysenter_esp;
  221. natural_width host_ia32_sysenter_eip;
  222. natural_width host_rsp;
  223. natural_width host_rip;
  224. natural_width paddingl[8]; /* room for future expansion */
  225. u32 pin_based_vm_exec_control;
  226. u32 cpu_based_vm_exec_control;
  227. u32 exception_bitmap;
  228. u32 page_fault_error_code_mask;
  229. u32 page_fault_error_code_match;
  230. u32 cr3_target_count;
  231. u32 vm_exit_controls;
  232. u32 vm_exit_msr_store_count;
  233. u32 vm_exit_msr_load_count;
  234. u32 vm_entry_controls;
  235. u32 vm_entry_msr_load_count;
  236. u32 vm_entry_intr_info_field;
  237. u32 vm_entry_exception_error_code;
  238. u32 vm_entry_instruction_len;
  239. u32 tpr_threshold;
  240. u32 secondary_vm_exec_control;
  241. u32 vm_instruction_error;
  242. u32 vm_exit_reason;
  243. u32 vm_exit_intr_info;
  244. u32 vm_exit_intr_error_code;
  245. u32 idt_vectoring_info_field;
  246. u32 idt_vectoring_error_code;
  247. u32 vm_exit_instruction_len;
  248. u32 vmx_instruction_info;
  249. u32 guest_es_limit;
  250. u32 guest_cs_limit;
  251. u32 guest_ss_limit;
  252. u32 guest_ds_limit;
  253. u32 guest_fs_limit;
  254. u32 guest_gs_limit;
  255. u32 guest_ldtr_limit;
  256. u32 guest_tr_limit;
  257. u32 guest_gdtr_limit;
  258. u32 guest_idtr_limit;
  259. u32 guest_es_ar_bytes;
  260. u32 guest_cs_ar_bytes;
  261. u32 guest_ss_ar_bytes;
  262. u32 guest_ds_ar_bytes;
  263. u32 guest_fs_ar_bytes;
  264. u32 guest_gs_ar_bytes;
  265. u32 guest_ldtr_ar_bytes;
  266. u32 guest_tr_ar_bytes;
  267. u32 guest_interruptibility_info;
  268. u32 guest_activity_state;
  269. u32 guest_sysenter_cs;
  270. u32 host_ia32_sysenter_cs;
  271. u32 vmx_preemption_timer_value;
  272. u32 padding32[7]; /* room for future expansion */
  273. u16 virtual_processor_id;
  274. u16 guest_es_selector;
  275. u16 guest_cs_selector;
  276. u16 guest_ss_selector;
  277. u16 guest_ds_selector;
  278. u16 guest_fs_selector;
  279. u16 guest_gs_selector;
  280. u16 guest_ldtr_selector;
  281. u16 guest_tr_selector;
  282. u16 host_es_selector;
  283. u16 host_cs_selector;
  284. u16 host_ss_selector;
  285. u16 host_ds_selector;
  286. u16 host_fs_selector;
  287. u16 host_gs_selector;
  288. u16 host_tr_selector;
  289. };
  290. /*
  291. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  292. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  293. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  294. */
  295. #define VMCS12_REVISION 0x11e57ed0
  296. /*
  297. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  298. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  299. * current implementation, 4K are reserved to avoid future complications.
  300. */
  301. #define VMCS12_SIZE 0x1000
  302. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  303. struct vmcs02_list {
  304. struct list_head list;
  305. gpa_t vmptr;
  306. struct loaded_vmcs vmcs02;
  307. };
  308. /*
  309. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  310. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  311. */
  312. struct nested_vmx {
  313. /* Has the level1 guest done vmxon? */
  314. bool vmxon;
  315. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  316. gpa_t current_vmptr;
  317. /* The host-usable pointer to the above */
  318. struct page *current_vmcs12_page;
  319. struct vmcs12 *current_vmcs12;
  320. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  321. struct list_head vmcs02_pool;
  322. int vmcs02_num;
  323. u64 vmcs01_tsc_offset;
  324. /* L2 must run next, and mustn't decide to exit to L1. */
  325. bool nested_run_pending;
  326. /*
  327. * Guest pages referred to in vmcs02 with host-physical pointers, so
  328. * we must keep them pinned while L2 runs.
  329. */
  330. struct page *apic_access_page;
  331. };
  332. struct vcpu_vmx {
  333. struct kvm_vcpu vcpu;
  334. unsigned long host_rsp;
  335. u8 fail;
  336. u8 cpl;
  337. bool nmi_known_unmasked;
  338. u32 exit_intr_info;
  339. u32 idt_vectoring_info;
  340. ulong rflags;
  341. struct shared_msr_entry *guest_msrs;
  342. int nmsrs;
  343. int save_nmsrs;
  344. #ifdef CONFIG_X86_64
  345. u64 msr_host_kernel_gs_base;
  346. u64 msr_guest_kernel_gs_base;
  347. #endif
  348. /*
  349. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  350. * non-nested (L1) guest, it always points to vmcs01. For a nested
  351. * guest (L2), it points to a different VMCS.
  352. */
  353. struct loaded_vmcs vmcs01;
  354. struct loaded_vmcs *loaded_vmcs;
  355. bool __launched; /* temporary, used in vmx_vcpu_run */
  356. struct msr_autoload {
  357. unsigned nr;
  358. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  359. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  360. } msr_autoload;
  361. struct {
  362. int loaded;
  363. u16 fs_sel, gs_sel, ldt_sel;
  364. #ifdef CONFIG_X86_64
  365. u16 ds_sel, es_sel;
  366. #endif
  367. int gs_ldt_reload_needed;
  368. int fs_reload_needed;
  369. } host_state;
  370. struct {
  371. int vm86_active;
  372. ulong save_rflags;
  373. struct kvm_segment segs[8];
  374. } rmode;
  375. struct {
  376. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  377. struct kvm_save_segment {
  378. u16 selector;
  379. unsigned long base;
  380. u32 limit;
  381. u32 ar;
  382. } seg[8];
  383. } segment_cache;
  384. int vpid;
  385. bool emulation_required;
  386. /* Support for vnmi-less CPUs */
  387. int soft_vnmi_blocked;
  388. ktime_t entry_time;
  389. s64 vnmi_blocked_time;
  390. u32 exit_reason;
  391. bool rdtscp_enabled;
  392. /* Support for a guest hypervisor (nested VMX) */
  393. struct nested_vmx nested;
  394. };
  395. enum segment_cache_field {
  396. SEG_FIELD_SEL = 0,
  397. SEG_FIELD_BASE = 1,
  398. SEG_FIELD_LIMIT = 2,
  399. SEG_FIELD_AR = 3,
  400. SEG_FIELD_NR = 4
  401. };
  402. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  403. {
  404. return container_of(vcpu, struct vcpu_vmx, vcpu);
  405. }
  406. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  407. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  408. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  409. [number##_HIGH] = VMCS12_OFFSET(name)+4
  410. static const unsigned short vmcs_field_to_offset_table[] = {
  411. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  412. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  413. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  414. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  415. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  416. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  417. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  418. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  419. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  420. FIELD(HOST_ES_SELECTOR, host_es_selector),
  421. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  422. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  423. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  424. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  425. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  426. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  427. FIELD64(IO_BITMAP_A, io_bitmap_a),
  428. FIELD64(IO_BITMAP_B, io_bitmap_b),
  429. FIELD64(MSR_BITMAP, msr_bitmap),
  430. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  431. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  432. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  433. FIELD64(TSC_OFFSET, tsc_offset),
  434. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  435. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  436. FIELD64(EPT_POINTER, ept_pointer),
  437. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  438. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  439. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  440. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  441. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  442. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  443. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  444. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  445. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  446. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  447. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  448. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  449. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  450. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  451. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  452. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  453. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  454. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  455. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  456. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  457. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  458. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  459. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  460. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  461. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  462. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  463. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  464. FIELD(TPR_THRESHOLD, tpr_threshold),
  465. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  466. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  467. FIELD(VM_EXIT_REASON, vm_exit_reason),
  468. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  469. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  470. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  471. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  472. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  473. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  474. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  475. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  476. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  477. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  478. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  479. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  480. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  481. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  482. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  483. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  484. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  485. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  486. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  487. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  488. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  489. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  490. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  491. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  492. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  493. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  494. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  495. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  496. FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
  497. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  498. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  499. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  500. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  501. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  502. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  503. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  504. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  505. FIELD(EXIT_QUALIFICATION, exit_qualification),
  506. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  507. FIELD(GUEST_CR0, guest_cr0),
  508. FIELD(GUEST_CR3, guest_cr3),
  509. FIELD(GUEST_CR4, guest_cr4),
  510. FIELD(GUEST_ES_BASE, guest_es_base),
  511. FIELD(GUEST_CS_BASE, guest_cs_base),
  512. FIELD(GUEST_SS_BASE, guest_ss_base),
  513. FIELD(GUEST_DS_BASE, guest_ds_base),
  514. FIELD(GUEST_FS_BASE, guest_fs_base),
  515. FIELD(GUEST_GS_BASE, guest_gs_base),
  516. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  517. FIELD(GUEST_TR_BASE, guest_tr_base),
  518. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  519. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  520. FIELD(GUEST_DR7, guest_dr7),
  521. FIELD(GUEST_RSP, guest_rsp),
  522. FIELD(GUEST_RIP, guest_rip),
  523. FIELD(GUEST_RFLAGS, guest_rflags),
  524. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  525. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  526. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  527. FIELD(HOST_CR0, host_cr0),
  528. FIELD(HOST_CR3, host_cr3),
  529. FIELD(HOST_CR4, host_cr4),
  530. FIELD(HOST_FS_BASE, host_fs_base),
  531. FIELD(HOST_GS_BASE, host_gs_base),
  532. FIELD(HOST_TR_BASE, host_tr_base),
  533. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  534. FIELD(HOST_IDTR_BASE, host_idtr_base),
  535. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  536. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  537. FIELD(HOST_RSP, host_rsp),
  538. FIELD(HOST_RIP, host_rip),
  539. };
  540. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  541. static inline short vmcs_field_to_offset(unsigned long field)
  542. {
  543. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  544. return -1;
  545. return vmcs_field_to_offset_table[field];
  546. }
  547. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  548. {
  549. return to_vmx(vcpu)->nested.current_vmcs12;
  550. }
  551. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  552. {
  553. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  554. if (is_error_page(page))
  555. return NULL;
  556. return page;
  557. }
  558. static void nested_release_page(struct page *page)
  559. {
  560. kvm_release_page_dirty(page);
  561. }
  562. static void nested_release_page_clean(struct page *page)
  563. {
  564. kvm_release_page_clean(page);
  565. }
  566. static u64 construct_eptp(unsigned long root_hpa);
  567. static void kvm_cpu_vmxon(u64 addr);
  568. static void kvm_cpu_vmxoff(void);
  569. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  570. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  571. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  572. struct kvm_segment *var, int seg);
  573. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  574. struct kvm_segment *var, int seg);
  575. static bool guest_state_valid(struct kvm_vcpu *vcpu);
  576. static u32 vmx_segment_access_rights(struct kvm_segment *var);
  577. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  578. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  579. /*
  580. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  581. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  582. */
  583. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  584. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  585. static unsigned long *vmx_io_bitmap_a;
  586. static unsigned long *vmx_io_bitmap_b;
  587. static unsigned long *vmx_msr_bitmap_legacy;
  588. static unsigned long *vmx_msr_bitmap_longmode;
  589. static unsigned long *vmx_msr_bitmap_legacy_x2apic;
  590. static unsigned long *vmx_msr_bitmap_longmode_x2apic;
  591. static bool cpu_has_load_ia32_efer;
  592. static bool cpu_has_load_perf_global_ctrl;
  593. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  594. static DEFINE_SPINLOCK(vmx_vpid_lock);
  595. static struct vmcs_config {
  596. int size;
  597. int order;
  598. u32 revision_id;
  599. u32 pin_based_exec_ctrl;
  600. u32 cpu_based_exec_ctrl;
  601. u32 cpu_based_2nd_exec_ctrl;
  602. u32 vmexit_ctrl;
  603. u32 vmentry_ctrl;
  604. } vmcs_config;
  605. static struct vmx_capability {
  606. u32 ept;
  607. u32 vpid;
  608. } vmx_capability;
  609. #define VMX_SEGMENT_FIELD(seg) \
  610. [VCPU_SREG_##seg] = { \
  611. .selector = GUEST_##seg##_SELECTOR, \
  612. .base = GUEST_##seg##_BASE, \
  613. .limit = GUEST_##seg##_LIMIT, \
  614. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  615. }
  616. static const struct kvm_vmx_segment_field {
  617. unsigned selector;
  618. unsigned base;
  619. unsigned limit;
  620. unsigned ar_bytes;
  621. } kvm_vmx_segment_fields[] = {
  622. VMX_SEGMENT_FIELD(CS),
  623. VMX_SEGMENT_FIELD(DS),
  624. VMX_SEGMENT_FIELD(ES),
  625. VMX_SEGMENT_FIELD(FS),
  626. VMX_SEGMENT_FIELD(GS),
  627. VMX_SEGMENT_FIELD(SS),
  628. VMX_SEGMENT_FIELD(TR),
  629. VMX_SEGMENT_FIELD(LDTR),
  630. };
  631. static u64 host_efer;
  632. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  633. /*
  634. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  635. * away by decrementing the array size.
  636. */
  637. static const u32 vmx_msr_index[] = {
  638. #ifdef CONFIG_X86_64
  639. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  640. #endif
  641. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  642. };
  643. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  644. static inline bool is_page_fault(u32 intr_info)
  645. {
  646. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  647. INTR_INFO_VALID_MASK)) ==
  648. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  649. }
  650. static inline bool is_no_device(u32 intr_info)
  651. {
  652. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  653. INTR_INFO_VALID_MASK)) ==
  654. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  655. }
  656. static inline bool is_invalid_opcode(u32 intr_info)
  657. {
  658. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  659. INTR_INFO_VALID_MASK)) ==
  660. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  661. }
  662. static inline bool is_external_interrupt(u32 intr_info)
  663. {
  664. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  665. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  666. }
  667. static inline bool is_machine_check(u32 intr_info)
  668. {
  669. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  670. INTR_INFO_VALID_MASK)) ==
  671. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  672. }
  673. static inline bool cpu_has_vmx_msr_bitmap(void)
  674. {
  675. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  676. }
  677. static inline bool cpu_has_vmx_tpr_shadow(void)
  678. {
  679. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  680. }
  681. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  682. {
  683. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  684. }
  685. static inline bool cpu_has_secondary_exec_ctrls(void)
  686. {
  687. return vmcs_config.cpu_based_exec_ctrl &
  688. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  689. }
  690. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  691. {
  692. return vmcs_config.cpu_based_2nd_exec_ctrl &
  693. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  694. }
  695. static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
  696. {
  697. return vmcs_config.cpu_based_2nd_exec_ctrl &
  698. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  699. }
  700. static inline bool cpu_has_vmx_apic_register_virt(void)
  701. {
  702. return vmcs_config.cpu_based_2nd_exec_ctrl &
  703. SECONDARY_EXEC_APIC_REGISTER_VIRT;
  704. }
  705. static inline bool cpu_has_vmx_virtual_intr_delivery(void)
  706. {
  707. return vmcs_config.cpu_based_2nd_exec_ctrl &
  708. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  709. }
  710. static inline bool cpu_has_vmx_flexpriority(void)
  711. {
  712. return cpu_has_vmx_tpr_shadow() &&
  713. cpu_has_vmx_virtualize_apic_accesses();
  714. }
  715. static inline bool cpu_has_vmx_ept_execute_only(void)
  716. {
  717. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  718. }
  719. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  720. {
  721. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  722. }
  723. static inline bool cpu_has_vmx_eptp_writeback(void)
  724. {
  725. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  726. }
  727. static inline bool cpu_has_vmx_ept_2m_page(void)
  728. {
  729. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  730. }
  731. static inline bool cpu_has_vmx_ept_1g_page(void)
  732. {
  733. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  734. }
  735. static inline bool cpu_has_vmx_ept_4levels(void)
  736. {
  737. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  738. }
  739. static inline bool cpu_has_vmx_ept_ad_bits(void)
  740. {
  741. return vmx_capability.ept & VMX_EPT_AD_BIT;
  742. }
  743. static inline bool cpu_has_vmx_invept_context(void)
  744. {
  745. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  746. }
  747. static inline bool cpu_has_vmx_invept_global(void)
  748. {
  749. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  750. }
  751. static inline bool cpu_has_vmx_invvpid_single(void)
  752. {
  753. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  754. }
  755. static inline bool cpu_has_vmx_invvpid_global(void)
  756. {
  757. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  758. }
  759. static inline bool cpu_has_vmx_ept(void)
  760. {
  761. return vmcs_config.cpu_based_2nd_exec_ctrl &
  762. SECONDARY_EXEC_ENABLE_EPT;
  763. }
  764. static inline bool cpu_has_vmx_unrestricted_guest(void)
  765. {
  766. return vmcs_config.cpu_based_2nd_exec_ctrl &
  767. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  768. }
  769. static inline bool cpu_has_vmx_ple(void)
  770. {
  771. return vmcs_config.cpu_based_2nd_exec_ctrl &
  772. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  773. }
  774. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  775. {
  776. return flexpriority_enabled && irqchip_in_kernel(kvm);
  777. }
  778. static inline bool cpu_has_vmx_vpid(void)
  779. {
  780. return vmcs_config.cpu_based_2nd_exec_ctrl &
  781. SECONDARY_EXEC_ENABLE_VPID;
  782. }
  783. static inline bool cpu_has_vmx_rdtscp(void)
  784. {
  785. return vmcs_config.cpu_based_2nd_exec_ctrl &
  786. SECONDARY_EXEC_RDTSCP;
  787. }
  788. static inline bool cpu_has_vmx_invpcid(void)
  789. {
  790. return vmcs_config.cpu_based_2nd_exec_ctrl &
  791. SECONDARY_EXEC_ENABLE_INVPCID;
  792. }
  793. static inline bool cpu_has_virtual_nmis(void)
  794. {
  795. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  796. }
  797. static inline bool cpu_has_vmx_wbinvd_exit(void)
  798. {
  799. return vmcs_config.cpu_based_2nd_exec_ctrl &
  800. SECONDARY_EXEC_WBINVD_EXITING;
  801. }
  802. static inline bool report_flexpriority(void)
  803. {
  804. return flexpriority_enabled;
  805. }
  806. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  807. {
  808. return vmcs12->cpu_based_vm_exec_control & bit;
  809. }
  810. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  811. {
  812. return (vmcs12->cpu_based_vm_exec_control &
  813. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  814. (vmcs12->secondary_vm_exec_control & bit);
  815. }
  816. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  817. struct kvm_vcpu *vcpu)
  818. {
  819. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  820. }
  821. static inline bool is_exception(u32 intr_info)
  822. {
  823. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  824. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  825. }
  826. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  827. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  828. struct vmcs12 *vmcs12,
  829. u32 reason, unsigned long qualification);
  830. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  831. {
  832. int i;
  833. for (i = 0; i < vmx->nmsrs; ++i)
  834. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  835. return i;
  836. return -1;
  837. }
  838. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  839. {
  840. struct {
  841. u64 vpid : 16;
  842. u64 rsvd : 48;
  843. u64 gva;
  844. } operand = { vpid, 0, gva };
  845. asm volatile (__ex(ASM_VMX_INVVPID)
  846. /* CF==1 or ZF==1 --> rc = -1 */
  847. "; ja 1f ; ud2 ; 1:"
  848. : : "a"(&operand), "c"(ext) : "cc", "memory");
  849. }
  850. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  851. {
  852. struct {
  853. u64 eptp, gpa;
  854. } operand = {eptp, gpa};
  855. asm volatile (__ex(ASM_VMX_INVEPT)
  856. /* CF==1 or ZF==1 --> rc = -1 */
  857. "; ja 1f ; ud2 ; 1:\n"
  858. : : "a" (&operand), "c" (ext) : "cc", "memory");
  859. }
  860. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  861. {
  862. int i;
  863. i = __find_msr_index(vmx, msr);
  864. if (i >= 0)
  865. return &vmx->guest_msrs[i];
  866. return NULL;
  867. }
  868. static void vmcs_clear(struct vmcs *vmcs)
  869. {
  870. u64 phys_addr = __pa(vmcs);
  871. u8 error;
  872. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  873. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  874. : "cc", "memory");
  875. if (error)
  876. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  877. vmcs, phys_addr);
  878. }
  879. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  880. {
  881. vmcs_clear(loaded_vmcs->vmcs);
  882. loaded_vmcs->cpu = -1;
  883. loaded_vmcs->launched = 0;
  884. }
  885. static void vmcs_load(struct vmcs *vmcs)
  886. {
  887. u64 phys_addr = __pa(vmcs);
  888. u8 error;
  889. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  890. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  891. : "cc", "memory");
  892. if (error)
  893. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  894. vmcs, phys_addr);
  895. }
  896. #ifdef CONFIG_KEXEC
  897. /*
  898. * This bitmap is used to indicate whether the vmclear
  899. * operation is enabled on all cpus. All disabled by
  900. * default.
  901. */
  902. static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
  903. static inline void crash_enable_local_vmclear(int cpu)
  904. {
  905. cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
  906. }
  907. static inline void crash_disable_local_vmclear(int cpu)
  908. {
  909. cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
  910. }
  911. static inline int crash_local_vmclear_enabled(int cpu)
  912. {
  913. return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
  914. }
  915. static void crash_vmclear_local_loaded_vmcss(void)
  916. {
  917. int cpu = raw_smp_processor_id();
  918. struct loaded_vmcs *v;
  919. if (!crash_local_vmclear_enabled(cpu))
  920. return;
  921. list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
  922. loaded_vmcss_on_cpu_link)
  923. vmcs_clear(v->vmcs);
  924. }
  925. #else
  926. static inline void crash_enable_local_vmclear(int cpu) { }
  927. static inline void crash_disable_local_vmclear(int cpu) { }
  928. #endif /* CONFIG_KEXEC */
  929. static void __loaded_vmcs_clear(void *arg)
  930. {
  931. struct loaded_vmcs *loaded_vmcs = arg;
  932. int cpu = raw_smp_processor_id();
  933. if (loaded_vmcs->cpu != cpu)
  934. return; /* vcpu migration can race with cpu offline */
  935. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  936. per_cpu(current_vmcs, cpu) = NULL;
  937. crash_disable_local_vmclear(cpu);
  938. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  939. /*
  940. * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
  941. * is before setting loaded_vmcs->vcpu to -1 which is done in
  942. * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
  943. * then adds the vmcs into percpu list before it is deleted.
  944. */
  945. smp_wmb();
  946. loaded_vmcs_init(loaded_vmcs);
  947. crash_enable_local_vmclear(cpu);
  948. }
  949. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  950. {
  951. int cpu = loaded_vmcs->cpu;
  952. if (cpu != -1)
  953. smp_call_function_single(cpu,
  954. __loaded_vmcs_clear, loaded_vmcs, 1);
  955. }
  956. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  957. {
  958. if (vmx->vpid == 0)
  959. return;
  960. if (cpu_has_vmx_invvpid_single())
  961. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  962. }
  963. static inline void vpid_sync_vcpu_global(void)
  964. {
  965. if (cpu_has_vmx_invvpid_global())
  966. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  967. }
  968. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  969. {
  970. if (cpu_has_vmx_invvpid_single())
  971. vpid_sync_vcpu_single(vmx);
  972. else
  973. vpid_sync_vcpu_global();
  974. }
  975. static inline void ept_sync_global(void)
  976. {
  977. if (cpu_has_vmx_invept_global())
  978. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  979. }
  980. static inline void ept_sync_context(u64 eptp)
  981. {
  982. if (enable_ept) {
  983. if (cpu_has_vmx_invept_context())
  984. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  985. else
  986. ept_sync_global();
  987. }
  988. }
  989. static __always_inline unsigned long vmcs_readl(unsigned long field)
  990. {
  991. unsigned long value;
  992. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  993. : "=a"(value) : "d"(field) : "cc");
  994. return value;
  995. }
  996. static __always_inline u16 vmcs_read16(unsigned long field)
  997. {
  998. return vmcs_readl(field);
  999. }
  1000. static __always_inline u32 vmcs_read32(unsigned long field)
  1001. {
  1002. return vmcs_readl(field);
  1003. }
  1004. static __always_inline u64 vmcs_read64(unsigned long field)
  1005. {
  1006. #ifdef CONFIG_X86_64
  1007. return vmcs_readl(field);
  1008. #else
  1009. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  1010. #endif
  1011. }
  1012. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  1013. {
  1014. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  1015. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  1016. dump_stack();
  1017. }
  1018. static void vmcs_writel(unsigned long field, unsigned long value)
  1019. {
  1020. u8 error;
  1021. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  1022. : "=q"(error) : "a"(value), "d"(field) : "cc");
  1023. if (unlikely(error))
  1024. vmwrite_error(field, value);
  1025. }
  1026. static void vmcs_write16(unsigned long field, u16 value)
  1027. {
  1028. vmcs_writel(field, value);
  1029. }
  1030. static void vmcs_write32(unsigned long field, u32 value)
  1031. {
  1032. vmcs_writel(field, value);
  1033. }
  1034. static void vmcs_write64(unsigned long field, u64 value)
  1035. {
  1036. vmcs_writel(field, value);
  1037. #ifndef CONFIG_X86_64
  1038. asm volatile ("");
  1039. vmcs_writel(field+1, value >> 32);
  1040. #endif
  1041. }
  1042. static void vmcs_clear_bits(unsigned long field, u32 mask)
  1043. {
  1044. vmcs_writel(field, vmcs_readl(field) & ~mask);
  1045. }
  1046. static void vmcs_set_bits(unsigned long field, u32 mask)
  1047. {
  1048. vmcs_writel(field, vmcs_readl(field) | mask);
  1049. }
  1050. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  1051. {
  1052. vmx->segment_cache.bitmask = 0;
  1053. }
  1054. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  1055. unsigned field)
  1056. {
  1057. bool ret;
  1058. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  1059. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  1060. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  1061. vmx->segment_cache.bitmask = 0;
  1062. }
  1063. ret = vmx->segment_cache.bitmask & mask;
  1064. vmx->segment_cache.bitmask |= mask;
  1065. return ret;
  1066. }
  1067. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  1068. {
  1069. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1070. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1071. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1072. return *p;
  1073. }
  1074. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1075. {
  1076. ulong *p = &vmx->segment_cache.seg[seg].base;
  1077. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1078. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1079. return *p;
  1080. }
  1081. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1082. {
  1083. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1084. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1085. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1086. return *p;
  1087. }
  1088. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1089. {
  1090. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1091. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1092. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1093. return *p;
  1094. }
  1095. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1096. {
  1097. u32 eb;
  1098. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1099. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1100. if ((vcpu->guest_debug &
  1101. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1102. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1103. eb |= 1u << BP_VECTOR;
  1104. if (to_vmx(vcpu)->rmode.vm86_active)
  1105. eb = ~0;
  1106. if (enable_ept)
  1107. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1108. if (vcpu->fpu_active)
  1109. eb &= ~(1u << NM_VECTOR);
  1110. /* When we are running a nested L2 guest and L1 specified for it a
  1111. * certain exception bitmap, we must trap the same exceptions and pass
  1112. * them to L1. When running L2, we will only handle the exceptions
  1113. * specified above if L1 did not want them.
  1114. */
  1115. if (is_guest_mode(vcpu))
  1116. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1117. vmcs_write32(EXCEPTION_BITMAP, eb);
  1118. }
  1119. static void clear_atomic_switch_msr_special(unsigned long entry,
  1120. unsigned long exit)
  1121. {
  1122. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1123. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1124. }
  1125. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1126. {
  1127. unsigned i;
  1128. struct msr_autoload *m = &vmx->msr_autoload;
  1129. switch (msr) {
  1130. case MSR_EFER:
  1131. if (cpu_has_load_ia32_efer) {
  1132. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1133. VM_EXIT_LOAD_IA32_EFER);
  1134. return;
  1135. }
  1136. break;
  1137. case MSR_CORE_PERF_GLOBAL_CTRL:
  1138. if (cpu_has_load_perf_global_ctrl) {
  1139. clear_atomic_switch_msr_special(
  1140. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1141. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1142. return;
  1143. }
  1144. break;
  1145. }
  1146. for (i = 0; i < m->nr; ++i)
  1147. if (m->guest[i].index == msr)
  1148. break;
  1149. if (i == m->nr)
  1150. return;
  1151. --m->nr;
  1152. m->guest[i] = m->guest[m->nr];
  1153. m->host[i] = m->host[m->nr];
  1154. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1155. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1156. }
  1157. static void add_atomic_switch_msr_special(unsigned long entry,
  1158. unsigned long exit, unsigned long guest_val_vmcs,
  1159. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1160. {
  1161. vmcs_write64(guest_val_vmcs, guest_val);
  1162. vmcs_write64(host_val_vmcs, host_val);
  1163. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1164. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1165. }
  1166. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1167. u64 guest_val, u64 host_val)
  1168. {
  1169. unsigned i;
  1170. struct msr_autoload *m = &vmx->msr_autoload;
  1171. switch (msr) {
  1172. case MSR_EFER:
  1173. if (cpu_has_load_ia32_efer) {
  1174. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1175. VM_EXIT_LOAD_IA32_EFER,
  1176. GUEST_IA32_EFER,
  1177. HOST_IA32_EFER,
  1178. guest_val, host_val);
  1179. return;
  1180. }
  1181. break;
  1182. case MSR_CORE_PERF_GLOBAL_CTRL:
  1183. if (cpu_has_load_perf_global_ctrl) {
  1184. add_atomic_switch_msr_special(
  1185. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1186. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1187. GUEST_IA32_PERF_GLOBAL_CTRL,
  1188. HOST_IA32_PERF_GLOBAL_CTRL,
  1189. guest_val, host_val);
  1190. return;
  1191. }
  1192. break;
  1193. }
  1194. for (i = 0; i < m->nr; ++i)
  1195. if (m->guest[i].index == msr)
  1196. break;
  1197. if (i == NR_AUTOLOAD_MSRS) {
  1198. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1199. "Can't add msr %x\n", msr);
  1200. return;
  1201. } else if (i == m->nr) {
  1202. ++m->nr;
  1203. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1204. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1205. }
  1206. m->guest[i].index = msr;
  1207. m->guest[i].value = guest_val;
  1208. m->host[i].index = msr;
  1209. m->host[i].value = host_val;
  1210. }
  1211. static void reload_tss(void)
  1212. {
  1213. /*
  1214. * VT restores TR but not its size. Useless.
  1215. */
  1216. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1217. struct desc_struct *descs;
  1218. descs = (void *)gdt->address;
  1219. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1220. load_TR_desc();
  1221. }
  1222. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1223. {
  1224. u64 guest_efer;
  1225. u64 ignore_bits;
  1226. guest_efer = vmx->vcpu.arch.efer;
  1227. /*
  1228. * NX is emulated; LMA and LME handled by hardware; SCE meaningless
  1229. * outside long mode
  1230. */
  1231. ignore_bits = EFER_NX | EFER_SCE;
  1232. #ifdef CONFIG_X86_64
  1233. ignore_bits |= EFER_LMA | EFER_LME;
  1234. /* SCE is meaningful only in long mode on Intel */
  1235. if (guest_efer & EFER_LMA)
  1236. ignore_bits &= ~(u64)EFER_SCE;
  1237. #endif
  1238. guest_efer &= ~ignore_bits;
  1239. guest_efer |= host_efer & ignore_bits;
  1240. vmx->guest_msrs[efer_offset].data = guest_efer;
  1241. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1242. clear_atomic_switch_msr(vmx, MSR_EFER);
  1243. /* On ept, can't emulate nx, and must switch nx atomically */
  1244. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1245. guest_efer = vmx->vcpu.arch.efer;
  1246. if (!(guest_efer & EFER_LMA))
  1247. guest_efer &= ~EFER_LME;
  1248. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1249. return false;
  1250. }
  1251. return true;
  1252. }
  1253. static unsigned long segment_base(u16 selector)
  1254. {
  1255. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1256. struct desc_struct *d;
  1257. unsigned long table_base;
  1258. unsigned long v;
  1259. if (!(selector & ~3))
  1260. return 0;
  1261. table_base = gdt->address;
  1262. if (selector & 4) { /* from ldt */
  1263. u16 ldt_selector = kvm_read_ldt();
  1264. if (!(ldt_selector & ~3))
  1265. return 0;
  1266. table_base = segment_base(ldt_selector);
  1267. }
  1268. d = (struct desc_struct *)(table_base + (selector & ~7));
  1269. v = get_desc_base(d);
  1270. #ifdef CONFIG_X86_64
  1271. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1272. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1273. #endif
  1274. return v;
  1275. }
  1276. static inline unsigned long kvm_read_tr_base(void)
  1277. {
  1278. u16 tr;
  1279. asm("str %0" : "=g"(tr));
  1280. return segment_base(tr);
  1281. }
  1282. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1283. {
  1284. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1285. int i;
  1286. if (vmx->host_state.loaded)
  1287. return;
  1288. vmx->host_state.loaded = 1;
  1289. /*
  1290. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1291. * allow segment selectors with cpl > 0 or ti == 1.
  1292. */
  1293. vmx->host_state.ldt_sel = kvm_read_ldt();
  1294. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1295. savesegment(fs, vmx->host_state.fs_sel);
  1296. if (!(vmx->host_state.fs_sel & 7)) {
  1297. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1298. vmx->host_state.fs_reload_needed = 0;
  1299. } else {
  1300. vmcs_write16(HOST_FS_SELECTOR, 0);
  1301. vmx->host_state.fs_reload_needed = 1;
  1302. }
  1303. savesegment(gs, vmx->host_state.gs_sel);
  1304. if (!(vmx->host_state.gs_sel & 7))
  1305. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1306. else {
  1307. vmcs_write16(HOST_GS_SELECTOR, 0);
  1308. vmx->host_state.gs_ldt_reload_needed = 1;
  1309. }
  1310. #ifdef CONFIG_X86_64
  1311. savesegment(ds, vmx->host_state.ds_sel);
  1312. savesegment(es, vmx->host_state.es_sel);
  1313. #endif
  1314. #ifdef CONFIG_X86_64
  1315. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1316. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1317. #else
  1318. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1319. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1320. #endif
  1321. #ifdef CONFIG_X86_64
  1322. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1323. if (is_long_mode(&vmx->vcpu))
  1324. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1325. #endif
  1326. for (i = 0; i < vmx->save_nmsrs; ++i)
  1327. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1328. vmx->guest_msrs[i].data,
  1329. vmx->guest_msrs[i].mask);
  1330. }
  1331. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1332. {
  1333. if (!vmx->host_state.loaded)
  1334. return;
  1335. ++vmx->vcpu.stat.host_state_reload;
  1336. vmx->host_state.loaded = 0;
  1337. #ifdef CONFIG_X86_64
  1338. if (is_long_mode(&vmx->vcpu))
  1339. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1340. #endif
  1341. if (vmx->host_state.gs_ldt_reload_needed) {
  1342. kvm_load_ldt(vmx->host_state.ldt_sel);
  1343. #ifdef CONFIG_X86_64
  1344. load_gs_index(vmx->host_state.gs_sel);
  1345. #else
  1346. loadsegment(gs, vmx->host_state.gs_sel);
  1347. #endif
  1348. }
  1349. if (vmx->host_state.fs_reload_needed)
  1350. loadsegment(fs, vmx->host_state.fs_sel);
  1351. #ifdef CONFIG_X86_64
  1352. if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
  1353. loadsegment(ds, vmx->host_state.ds_sel);
  1354. loadsegment(es, vmx->host_state.es_sel);
  1355. }
  1356. #endif
  1357. reload_tss();
  1358. #ifdef CONFIG_X86_64
  1359. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1360. #endif
  1361. /*
  1362. * If the FPU is not active (through the host task or
  1363. * the guest vcpu), then restore the cr0.TS bit.
  1364. */
  1365. if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
  1366. stts();
  1367. load_gdt(&__get_cpu_var(host_gdt));
  1368. }
  1369. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1370. {
  1371. preempt_disable();
  1372. __vmx_load_host_state(vmx);
  1373. preempt_enable();
  1374. }
  1375. /*
  1376. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1377. * vcpu mutex is already taken.
  1378. */
  1379. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1380. {
  1381. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1382. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1383. if (!vmm_exclusive)
  1384. kvm_cpu_vmxon(phys_addr);
  1385. else if (vmx->loaded_vmcs->cpu != cpu)
  1386. loaded_vmcs_clear(vmx->loaded_vmcs);
  1387. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1388. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1389. vmcs_load(vmx->loaded_vmcs->vmcs);
  1390. }
  1391. if (vmx->loaded_vmcs->cpu != cpu) {
  1392. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1393. unsigned long sysenter_esp;
  1394. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1395. local_irq_disable();
  1396. crash_disable_local_vmclear(cpu);
  1397. /*
  1398. * Read loaded_vmcs->cpu should be before fetching
  1399. * loaded_vmcs->loaded_vmcss_on_cpu_link.
  1400. * See the comments in __loaded_vmcs_clear().
  1401. */
  1402. smp_rmb();
  1403. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1404. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1405. crash_enable_local_vmclear(cpu);
  1406. local_irq_enable();
  1407. /*
  1408. * Linux uses per-cpu TSS and GDT, so set these when switching
  1409. * processors.
  1410. */
  1411. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1412. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1413. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1414. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1415. vmx->loaded_vmcs->cpu = cpu;
  1416. }
  1417. }
  1418. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1419. {
  1420. __vmx_load_host_state(to_vmx(vcpu));
  1421. if (!vmm_exclusive) {
  1422. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1423. vcpu->cpu = -1;
  1424. kvm_cpu_vmxoff();
  1425. }
  1426. }
  1427. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1428. {
  1429. ulong cr0;
  1430. if (vcpu->fpu_active)
  1431. return;
  1432. vcpu->fpu_active = 1;
  1433. cr0 = vmcs_readl(GUEST_CR0);
  1434. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1435. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1436. vmcs_writel(GUEST_CR0, cr0);
  1437. update_exception_bitmap(vcpu);
  1438. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1439. if (is_guest_mode(vcpu))
  1440. vcpu->arch.cr0_guest_owned_bits &=
  1441. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1442. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1443. }
  1444. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1445. /*
  1446. * Return the cr0 value that a nested guest would read. This is a combination
  1447. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1448. * its hypervisor (cr0_read_shadow).
  1449. */
  1450. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1451. {
  1452. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1453. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1454. }
  1455. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1456. {
  1457. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1458. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1459. }
  1460. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1461. {
  1462. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1463. * set this *before* calling this function.
  1464. */
  1465. vmx_decache_cr0_guest_bits(vcpu);
  1466. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1467. update_exception_bitmap(vcpu);
  1468. vcpu->arch.cr0_guest_owned_bits = 0;
  1469. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1470. if (is_guest_mode(vcpu)) {
  1471. /*
  1472. * L1's specified read shadow might not contain the TS bit,
  1473. * so now that we turned on shadowing of this bit, we need to
  1474. * set this bit of the shadow. Like in nested_vmx_run we need
  1475. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1476. * up-to-date here because we just decached cr0.TS (and we'll
  1477. * only update vmcs12->guest_cr0 on nested exit).
  1478. */
  1479. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1480. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1481. (vcpu->arch.cr0 & X86_CR0_TS);
  1482. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1483. } else
  1484. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1485. }
  1486. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1487. {
  1488. unsigned long rflags, save_rflags;
  1489. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1490. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1491. rflags = vmcs_readl(GUEST_RFLAGS);
  1492. if (to_vmx(vcpu)->rmode.vm86_active) {
  1493. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1494. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1495. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1496. }
  1497. to_vmx(vcpu)->rflags = rflags;
  1498. }
  1499. return to_vmx(vcpu)->rflags;
  1500. }
  1501. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1502. {
  1503. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1504. to_vmx(vcpu)->rflags = rflags;
  1505. if (to_vmx(vcpu)->rmode.vm86_active) {
  1506. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1507. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1508. }
  1509. vmcs_writel(GUEST_RFLAGS, rflags);
  1510. }
  1511. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1512. {
  1513. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1514. int ret = 0;
  1515. if (interruptibility & GUEST_INTR_STATE_STI)
  1516. ret |= KVM_X86_SHADOW_INT_STI;
  1517. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1518. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1519. return ret & mask;
  1520. }
  1521. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1522. {
  1523. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1524. u32 interruptibility = interruptibility_old;
  1525. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1526. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1527. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1528. else if (mask & KVM_X86_SHADOW_INT_STI)
  1529. interruptibility |= GUEST_INTR_STATE_STI;
  1530. if ((interruptibility != interruptibility_old))
  1531. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1532. }
  1533. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1534. {
  1535. unsigned long rip;
  1536. rip = kvm_rip_read(vcpu);
  1537. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1538. kvm_rip_write(vcpu, rip);
  1539. /* skipping an emulated instruction also counts */
  1540. vmx_set_interrupt_shadow(vcpu, 0);
  1541. }
  1542. /*
  1543. * KVM wants to inject page-faults which it got to the guest. This function
  1544. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1545. * This function assumes it is called with the exit reason in vmcs02 being
  1546. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1547. * is running).
  1548. */
  1549. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1550. {
  1551. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1552. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1553. if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
  1554. return 0;
  1555. nested_vmx_vmexit(vcpu);
  1556. return 1;
  1557. }
  1558. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1559. bool has_error_code, u32 error_code,
  1560. bool reinject)
  1561. {
  1562. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1563. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1564. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1565. nested_pf_handled(vcpu))
  1566. return;
  1567. if (has_error_code) {
  1568. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1569. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1570. }
  1571. if (vmx->rmode.vm86_active) {
  1572. int inc_eip = 0;
  1573. if (kvm_exception_is_soft(nr))
  1574. inc_eip = vcpu->arch.event_exit_inst_len;
  1575. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1576. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1577. return;
  1578. }
  1579. if (kvm_exception_is_soft(nr)) {
  1580. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1581. vmx->vcpu.arch.event_exit_inst_len);
  1582. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1583. } else
  1584. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1585. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1586. }
  1587. static bool vmx_rdtscp_supported(void)
  1588. {
  1589. return cpu_has_vmx_rdtscp();
  1590. }
  1591. static bool vmx_invpcid_supported(void)
  1592. {
  1593. return cpu_has_vmx_invpcid() && enable_ept;
  1594. }
  1595. /*
  1596. * Swap MSR entry in host/guest MSR entry array.
  1597. */
  1598. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1599. {
  1600. struct shared_msr_entry tmp;
  1601. tmp = vmx->guest_msrs[to];
  1602. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1603. vmx->guest_msrs[from] = tmp;
  1604. }
  1605. static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
  1606. {
  1607. unsigned long *msr_bitmap;
  1608. if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
  1609. if (is_long_mode(vcpu))
  1610. msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
  1611. else
  1612. msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
  1613. } else {
  1614. if (is_long_mode(vcpu))
  1615. msr_bitmap = vmx_msr_bitmap_longmode;
  1616. else
  1617. msr_bitmap = vmx_msr_bitmap_legacy;
  1618. }
  1619. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1620. }
  1621. /*
  1622. * Set up the vmcs to automatically save and restore system
  1623. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1624. * mode, as fiddling with msrs is very expensive.
  1625. */
  1626. static void setup_msrs(struct vcpu_vmx *vmx)
  1627. {
  1628. int save_nmsrs, index;
  1629. save_nmsrs = 0;
  1630. #ifdef CONFIG_X86_64
  1631. if (is_long_mode(&vmx->vcpu)) {
  1632. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1633. if (index >= 0)
  1634. move_msr_up(vmx, index, save_nmsrs++);
  1635. index = __find_msr_index(vmx, MSR_LSTAR);
  1636. if (index >= 0)
  1637. move_msr_up(vmx, index, save_nmsrs++);
  1638. index = __find_msr_index(vmx, MSR_CSTAR);
  1639. if (index >= 0)
  1640. move_msr_up(vmx, index, save_nmsrs++);
  1641. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1642. if (index >= 0 && vmx->rdtscp_enabled)
  1643. move_msr_up(vmx, index, save_nmsrs++);
  1644. /*
  1645. * MSR_STAR is only needed on long mode guests, and only
  1646. * if efer.sce is enabled.
  1647. */
  1648. index = __find_msr_index(vmx, MSR_STAR);
  1649. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1650. move_msr_up(vmx, index, save_nmsrs++);
  1651. }
  1652. #endif
  1653. index = __find_msr_index(vmx, MSR_EFER);
  1654. if (index >= 0 && update_transition_efer(vmx, index))
  1655. move_msr_up(vmx, index, save_nmsrs++);
  1656. vmx->save_nmsrs = save_nmsrs;
  1657. if (cpu_has_vmx_msr_bitmap())
  1658. vmx_set_msr_bitmap(&vmx->vcpu);
  1659. }
  1660. /*
  1661. * reads and returns guest's timestamp counter "register"
  1662. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1663. */
  1664. static u64 guest_read_tsc(void)
  1665. {
  1666. u64 host_tsc, tsc_offset;
  1667. rdtscll(host_tsc);
  1668. tsc_offset = vmcs_read64(TSC_OFFSET);
  1669. return host_tsc + tsc_offset;
  1670. }
  1671. /*
  1672. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1673. * counter, even if a nested guest (L2) is currently running.
  1674. */
  1675. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
  1676. {
  1677. u64 tsc_offset;
  1678. tsc_offset = is_guest_mode(vcpu) ?
  1679. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1680. vmcs_read64(TSC_OFFSET);
  1681. return host_tsc + tsc_offset;
  1682. }
  1683. /*
  1684. * Engage any workarounds for mis-matched TSC rates. Currently limited to
  1685. * software catchup for faster rates on slower CPUs.
  1686. */
  1687. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
  1688. {
  1689. if (!scale)
  1690. return;
  1691. if (user_tsc_khz > tsc_khz) {
  1692. vcpu->arch.tsc_catchup = 1;
  1693. vcpu->arch.tsc_always_catchup = 1;
  1694. } else
  1695. WARN(1, "user requested TSC rate below hardware speed\n");
  1696. }
  1697. static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
  1698. {
  1699. return vmcs_read64(TSC_OFFSET);
  1700. }
  1701. /*
  1702. * writes 'offset' into guest's timestamp counter offset register
  1703. */
  1704. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1705. {
  1706. if (is_guest_mode(vcpu)) {
  1707. /*
  1708. * We're here if L1 chose not to trap WRMSR to TSC. According
  1709. * to the spec, this should set L1's TSC; The offset that L1
  1710. * set for L2 remains unchanged, and still needs to be added
  1711. * to the newly set TSC to get L2's TSC.
  1712. */
  1713. struct vmcs12 *vmcs12;
  1714. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1715. /* recalculate vmcs02.TSC_OFFSET: */
  1716. vmcs12 = get_vmcs12(vcpu);
  1717. vmcs_write64(TSC_OFFSET, offset +
  1718. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1719. vmcs12->tsc_offset : 0));
  1720. } else {
  1721. vmcs_write64(TSC_OFFSET, offset);
  1722. }
  1723. }
  1724. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
  1725. {
  1726. u64 offset = vmcs_read64(TSC_OFFSET);
  1727. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1728. if (is_guest_mode(vcpu)) {
  1729. /* Even when running L2, the adjustment needs to apply to L1 */
  1730. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1731. }
  1732. }
  1733. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1734. {
  1735. return target_tsc - native_read_tsc();
  1736. }
  1737. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1738. {
  1739. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1740. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1741. }
  1742. /*
  1743. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1744. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1745. * all guests if the "nested" module option is off, and can also be disabled
  1746. * for a single guest by disabling its VMX cpuid bit.
  1747. */
  1748. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1749. {
  1750. return nested && guest_cpuid_has_vmx(vcpu);
  1751. }
  1752. /*
  1753. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1754. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1755. * The same values should also be used to verify that vmcs12 control fields are
  1756. * valid during nested entry from L1 to L2.
  1757. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1758. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1759. * bit in the high half is on if the corresponding bit in the control field
  1760. * may be on. See also vmx_control_verify().
  1761. * TODO: allow these variables to be modified (downgraded) by module options
  1762. * or other means.
  1763. */
  1764. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1765. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1766. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1767. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1768. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1769. static u32 nested_vmx_misc_low, nested_vmx_misc_high;
  1770. static __init void nested_vmx_setup_ctls_msrs(void)
  1771. {
  1772. /*
  1773. * Note that as a general rule, the high half of the MSRs (bits in
  1774. * the control fields which may be 1) should be initialized by the
  1775. * intersection of the underlying hardware's MSR (i.e., features which
  1776. * can be supported) and the list of features we want to expose -
  1777. * because they are known to be properly supported in our code.
  1778. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1779. * be set to 0, meaning that L1 may turn off any of these bits. The
  1780. * reason is that if one of these bits is necessary, it will appear
  1781. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1782. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1783. * nested_vmx_exit_handled() will not pass related exits to L1.
  1784. * These rules have exceptions below.
  1785. */
  1786. /* pin-based controls */
  1787. rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
  1788. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
  1789. /*
  1790. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1791. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1792. */
  1793. nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1794. nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
  1795. PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
  1796. PIN_BASED_VMX_PREEMPTION_TIMER;
  1797. nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
  1798. /*
  1799. * Exit controls
  1800. * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
  1801. * 17 must be 1.
  1802. */
  1803. nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1804. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1805. #ifdef CONFIG_X86_64
  1806. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1807. #else
  1808. nested_vmx_exit_ctls_high = 0;
  1809. #endif
  1810. nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
  1811. /* entry controls */
  1812. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1813. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1814. /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
  1815. nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1816. nested_vmx_entry_ctls_high &=
  1817. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1818. nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
  1819. /* cpu-based controls */
  1820. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1821. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1822. nested_vmx_procbased_ctls_low = 0;
  1823. nested_vmx_procbased_ctls_high &=
  1824. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1825. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1826. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1827. CPU_BASED_CR3_STORE_EXITING |
  1828. #ifdef CONFIG_X86_64
  1829. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1830. #endif
  1831. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1832. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1833. CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
  1834. CPU_BASED_PAUSE_EXITING |
  1835. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1836. /*
  1837. * We can allow some features even when not supported by the
  1838. * hardware. For example, L1 can specify an MSR bitmap - and we
  1839. * can use it to avoid exits to L1 - even when L0 runs L2
  1840. * without MSR bitmaps.
  1841. */
  1842. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1843. /* secondary cpu-based controls */
  1844. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1845. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1846. nested_vmx_secondary_ctls_low = 0;
  1847. nested_vmx_secondary_ctls_high &=
  1848. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1849. SECONDARY_EXEC_WBINVD_EXITING;
  1850. /* miscellaneous data */
  1851. rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
  1852. nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
  1853. VMX_MISC_SAVE_EFER_LMA;
  1854. nested_vmx_misc_high = 0;
  1855. }
  1856. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1857. {
  1858. /*
  1859. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1860. */
  1861. return ((control & high) | low) == control;
  1862. }
  1863. static inline u64 vmx_control_msr(u32 low, u32 high)
  1864. {
  1865. return low | ((u64)high << 32);
  1866. }
  1867. /*
  1868. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1869. * also let it use VMX-specific MSRs.
  1870. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1871. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1872. * like all other MSRs).
  1873. */
  1874. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1875. {
  1876. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1877. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1878. /*
  1879. * According to the spec, processors which do not support VMX
  1880. * should throw a #GP(0) when VMX capability MSRs are read.
  1881. */
  1882. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1883. return 1;
  1884. }
  1885. switch (msr_index) {
  1886. case MSR_IA32_FEATURE_CONTROL:
  1887. *pdata = 0;
  1888. break;
  1889. case MSR_IA32_VMX_BASIC:
  1890. /*
  1891. * This MSR reports some information about VMX support. We
  1892. * should return information about the VMX we emulate for the
  1893. * guest, and the VMCS structure we give it - not about the
  1894. * VMX support of the underlying hardware.
  1895. */
  1896. *pdata = VMCS12_REVISION |
  1897. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1898. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1899. break;
  1900. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1901. case MSR_IA32_VMX_PINBASED_CTLS:
  1902. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1903. nested_vmx_pinbased_ctls_high);
  1904. break;
  1905. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1906. case MSR_IA32_VMX_PROCBASED_CTLS:
  1907. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1908. nested_vmx_procbased_ctls_high);
  1909. break;
  1910. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1911. case MSR_IA32_VMX_EXIT_CTLS:
  1912. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1913. nested_vmx_exit_ctls_high);
  1914. break;
  1915. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1916. case MSR_IA32_VMX_ENTRY_CTLS:
  1917. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1918. nested_vmx_entry_ctls_high);
  1919. break;
  1920. case MSR_IA32_VMX_MISC:
  1921. *pdata = vmx_control_msr(nested_vmx_misc_low,
  1922. nested_vmx_misc_high);
  1923. break;
  1924. /*
  1925. * These MSRs specify bits which the guest must keep fixed (on or off)
  1926. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1927. * We picked the standard core2 setting.
  1928. */
  1929. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1930. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1931. case MSR_IA32_VMX_CR0_FIXED0:
  1932. *pdata = VMXON_CR0_ALWAYSON;
  1933. break;
  1934. case MSR_IA32_VMX_CR0_FIXED1:
  1935. *pdata = -1ULL;
  1936. break;
  1937. case MSR_IA32_VMX_CR4_FIXED0:
  1938. *pdata = VMXON_CR4_ALWAYSON;
  1939. break;
  1940. case MSR_IA32_VMX_CR4_FIXED1:
  1941. *pdata = -1ULL;
  1942. break;
  1943. case MSR_IA32_VMX_VMCS_ENUM:
  1944. *pdata = 0x1f;
  1945. break;
  1946. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1947. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1948. nested_vmx_secondary_ctls_high);
  1949. break;
  1950. case MSR_IA32_VMX_EPT_VPID_CAP:
  1951. /* Currently, no nested ept or nested vpid */
  1952. *pdata = 0;
  1953. break;
  1954. default:
  1955. return 0;
  1956. }
  1957. return 1;
  1958. }
  1959. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1960. {
  1961. if (!nested_vmx_allowed(vcpu))
  1962. return 0;
  1963. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1964. /* TODO: the right thing. */
  1965. return 1;
  1966. /*
  1967. * No need to treat VMX capability MSRs specially: If we don't handle
  1968. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1969. */
  1970. return 0;
  1971. }
  1972. /*
  1973. * Reads an msr value (of 'msr_index') into 'pdata'.
  1974. * Returns 0 on success, non-0 otherwise.
  1975. * Assumes vcpu_load() was already called.
  1976. */
  1977. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1978. {
  1979. u64 data;
  1980. struct shared_msr_entry *msr;
  1981. if (!pdata) {
  1982. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1983. return -EINVAL;
  1984. }
  1985. switch (msr_index) {
  1986. #ifdef CONFIG_X86_64
  1987. case MSR_FS_BASE:
  1988. data = vmcs_readl(GUEST_FS_BASE);
  1989. break;
  1990. case MSR_GS_BASE:
  1991. data = vmcs_readl(GUEST_GS_BASE);
  1992. break;
  1993. case MSR_KERNEL_GS_BASE:
  1994. vmx_load_host_state(to_vmx(vcpu));
  1995. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1996. break;
  1997. #endif
  1998. case MSR_EFER:
  1999. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2000. case MSR_IA32_TSC:
  2001. data = guest_read_tsc();
  2002. break;
  2003. case MSR_IA32_SYSENTER_CS:
  2004. data = vmcs_read32(GUEST_SYSENTER_CS);
  2005. break;
  2006. case MSR_IA32_SYSENTER_EIP:
  2007. data = vmcs_readl(GUEST_SYSENTER_EIP);
  2008. break;
  2009. case MSR_IA32_SYSENTER_ESP:
  2010. data = vmcs_readl(GUEST_SYSENTER_ESP);
  2011. break;
  2012. case MSR_TSC_AUX:
  2013. if (!to_vmx(vcpu)->rdtscp_enabled)
  2014. return 1;
  2015. /* Otherwise falls through */
  2016. default:
  2017. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  2018. return 0;
  2019. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  2020. if (msr) {
  2021. data = msr->data;
  2022. break;
  2023. }
  2024. return kvm_get_msr_common(vcpu, msr_index, pdata);
  2025. }
  2026. *pdata = data;
  2027. return 0;
  2028. }
  2029. /*
  2030. * Writes msr value into into the appropriate "register".
  2031. * Returns 0 on success, non-0 otherwise.
  2032. * Assumes vcpu_load() was already called.
  2033. */
  2034. static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
  2035. {
  2036. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2037. struct shared_msr_entry *msr;
  2038. int ret = 0;
  2039. u32 msr_index = msr_info->index;
  2040. u64 data = msr_info->data;
  2041. switch (msr_index) {
  2042. case MSR_EFER:
  2043. ret = kvm_set_msr_common(vcpu, msr_info);
  2044. break;
  2045. #ifdef CONFIG_X86_64
  2046. case MSR_FS_BASE:
  2047. vmx_segment_cache_clear(vmx);
  2048. vmcs_writel(GUEST_FS_BASE, data);
  2049. break;
  2050. case MSR_GS_BASE:
  2051. vmx_segment_cache_clear(vmx);
  2052. vmcs_writel(GUEST_GS_BASE, data);
  2053. break;
  2054. case MSR_KERNEL_GS_BASE:
  2055. vmx_load_host_state(vmx);
  2056. vmx->msr_guest_kernel_gs_base = data;
  2057. break;
  2058. #endif
  2059. case MSR_IA32_SYSENTER_CS:
  2060. vmcs_write32(GUEST_SYSENTER_CS, data);
  2061. break;
  2062. case MSR_IA32_SYSENTER_EIP:
  2063. vmcs_writel(GUEST_SYSENTER_EIP, data);
  2064. break;
  2065. case MSR_IA32_SYSENTER_ESP:
  2066. vmcs_writel(GUEST_SYSENTER_ESP, data);
  2067. break;
  2068. case MSR_IA32_TSC:
  2069. kvm_write_tsc(vcpu, msr_info);
  2070. break;
  2071. case MSR_IA32_CR_PAT:
  2072. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2073. vmcs_write64(GUEST_IA32_PAT, data);
  2074. vcpu->arch.pat = data;
  2075. break;
  2076. }
  2077. ret = kvm_set_msr_common(vcpu, msr_info);
  2078. break;
  2079. case MSR_IA32_TSC_ADJUST:
  2080. ret = kvm_set_msr_common(vcpu, msr_info);
  2081. break;
  2082. case MSR_TSC_AUX:
  2083. if (!vmx->rdtscp_enabled)
  2084. return 1;
  2085. /* Check reserved bit, higher 32 bits should be zero */
  2086. if ((data >> 32) != 0)
  2087. return 1;
  2088. /* Otherwise falls through */
  2089. default:
  2090. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  2091. break;
  2092. msr = find_msr_entry(vmx, msr_index);
  2093. if (msr) {
  2094. msr->data = data;
  2095. if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
  2096. preempt_disable();
  2097. kvm_set_shared_msr(msr->index, msr->data,
  2098. msr->mask);
  2099. preempt_enable();
  2100. }
  2101. break;
  2102. }
  2103. ret = kvm_set_msr_common(vcpu, msr_info);
  2104. }
  2105. return ret;
  2106. }
  2107. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  2108. {
  2109. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  2110. switch (reg) {
  2111. case VCPU_REGS_RSP:
  2112. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  2113. break;
  2114. case VCPU_REGS_RIP:
  2115. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  2116. break;
  2117. case VCPU_EXREG_PDPTR:
  2118. if (enable_ept)
  2119. ept_save_pdptrs(vcpu);
  2120. break;
  2121. default:
  2122. break;
  2123. }
  2124. }
  2125. static __init int cpu_has_kvm_support(void)
  2126. {
  2127. return cpu_has_vmx();
  2128. }
  2129. static __init int vmx_disabled_by_bios(void)
  2130. {
  2131. u64 msr;
  2132. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2133. if (msr & FEATURE_CONTROL_LOCKED) {
  2134. /* launched w/ TXT and VMX disabled */
  2135. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2136. && tboot_enabled())
  2137. return 1;
  2138. /* launched w/o TXT and VMX only enabled w/ TXT */
  2139. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2140. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2141. && !tboot_enabled()) {
  2142. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2143. "activate TXT before enabling KVM\n");
  2144. return 1;
  2145. }
  2146. /* launched w/o TXT and VMX disabled */
  2147. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2148. && !tboot_enabled())
  2149. return 1;
  2150. }
  2151. return 0;
  2152. }
  2153. static void kvm_cpu_vmxon(u64 addr)
  2154. {
  2155. asm volatile (ASM_VMX_VMXON_RAX
  2156. : : "a"(&addr), "m"(addr)
  2157. : "memory", "cc");
  2158. }
  2159. static int hardware_enable(void *garbage)
  2160. {
  2161. int cpu = raw_smp_processor_id();
  2162. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2163. u64 old, test_bits;
  2164. if (read_cr4() & X86_CR4_VMXE)
  2165. return -EBUSY;
  2166. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2167. /*
  2168. * Now we can enable the vmclear operation in kdump
  2169. * since the loaded_vmcss_on_cpu list on this cpu
  2170. * has been initialized.
  2171. *
  2172. * Though the cpu is not in VMX operation now, there
  2173. * is no problem to enable the vmclear operation
  2174. * for the loaded_vmcss_on_cpu list is empty!
  2175. */
  2176. crash_enable_local_vmclear(cpu);
  2177. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2178. test_bits = FEATURE_CONTROL_LOCKED;
  2179. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2180. if (tboot_enabled())
  2181. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2182. if ((old & test_bits) != test_bits) {
  2183. /* enable and lock */
  2184. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2185. }
  2186. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2187. if (vmm_exclusive) {
  2188. kvm_cpu_vmxon(phys_addr);
  2189. ept_sync_global();
  2190. }
  2191. store_gdt(&__get_cpu_var(host_gdt));
  2192. return 0;
  2193. }
  2194. static void vmclear_local_loaded_vmcss(void)
  2195. {
  2196. int cpu = raw_smp_processor_id();
  2197. struct loaded_vmcs *v, *n;
  2198. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2199. loaded_vmcss_on_cpu_link)
  2200. __loaded_vmcs_clear(v);
  2201. }
  2202. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2203. * tricks.
  2204. */
  2205. static void kvm_cpu_vmxoff(void)
  2206. {
  2207. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2208. }
  2209. static void hardware_disable(void *garbage)
  2210. {
  2211. if (vmm_exclusive) {
  2212. vmclear_local_loaded_vmcss();
  2213. kvm_cpu_vmxoff();
  2214. }
  2215. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2216. }
  2217. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2218. u32 msr, u32 *result)
  2219. {
  2220. u32 vmx_msr_low, vmx_msr_high;
  2221. u32 ctl = ctl_min | ctl_opt;
  2222. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2223. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2224. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2225. /* Ensure minimum (required) set of control bits are supported. */
  2226. if (ctl_min & ~ctl)
  2227. return -EIO;
  2228. *result = ctl;
  2229. return 0;
  2230. }
  2231. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2232. {
  2233. u32 vmx_msr_low, vmx_msr_high;
  2234. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2235. return vmx_msr_high & ctl;
  2236. }
  2237. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2238. {
  2239. u32 vmx_msr_low, vmx_msr_high;
  2240. u32 min, opt, min2, opt2;
  2241. u32 _pin_based_exec_control = 0;
  2242. u32 _cpu_based_exec_control = 0;
  2243. u32 _cpu_based_2nd_exec_control = 0;
  2244. u32 _vmexit_control = 0;
  2245. u32 _vmentry_control = 0;
  2246. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2247. opt = PIN_BASED_VIRTUAL_NMIS;
  2248. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2249. &_pin_based_exec_control) < 0)
  2250. return -EIO;
  2251. min = CPU_BASED_HLT_EXITING |
  2252. #ifdef CONFIG_X86_64
  2253. CPU_BASED_CR8_LOAD_EXITING |
  2254. CPU_BASED_CR8_STORE_EXITING |
  2255. #endif
  2256. CPU_BASED_CR3_LOAD_EXITING |
  2257. CPU_BASED_CR3_STORE_EXITING |
  2258. CPU_BASED_USE_IO_BITMAPS |
  2259. CPU_BASED_MOV_DR_EXITING |
  2260. CPU_BASED_USE_TSC_OFFSETING |
  2261. CPU_BASED_MWAIT_EXITING |
  2262. CPU_BASED_MONITOR_EXITING |
  2263. CPU_BASED_INVLPG_EXITING |
  2264. CPU_BASED_RDPMC_EXITING;
  2265. opt = CPU_BASED_TPR_SHADOW |
  2266. CPU_BASED_USE_MSR_BITMAPS |
  2267. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2268. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2269. &_cpu_based_exec_control) < 0)
  2270. return -EIO;
  2271. #ifdef CONFIG_X86_64
  2272. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2273. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2274. ~CPU_BASED_CR8_STORE_EXITING;
  2275. #endif
  2276. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2277. min2 = 0;
  2278. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2279. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2280. SECONDARY_EXEC_WBINVD_EXITING |
  2281. SECONDARY_EXEC_ENABLE_VPID |
  2282. SECONDARY_EXEC_ENABLE_EPT |
  2283. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2284. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2285. SECONDARY_EXEC_RDTSCP |
  2286. SECONDARY_EXEC_ENABLE_INVPCID |
  2287. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2288. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
  2289. if (adjust_vmx_controls(min2, opt2,
  2290. MSR_IA32_VMX_PROCBASED_CTLS2,
  2291. &_cpu_based_2nd_exec_control) < 0)
  2292. return -EIO;
  2293. }
  2294. #ifndef CONFIG_X86_64
  2295. if (!(_cpu_based_2nd_exec_control &
  2296. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2297. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2298. #endif
  2299. if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2300. _cpu_based_2nd_exec_control &= ~(
  2301. SECONDARY_EXEC_APIC_REGISTER_VIRT |
  2302. SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
  2303. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  2304. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2305. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2306. enabled */
  2307. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2308. CPU_BASED_CR3_STORE_EXITING |
  2309. CPU_BASED_INVLPG_EXITING);
  2310. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2311. vmx_capability.ept, vmx_capability.vpid);
  2312. }
  2313. min = 0;
  2314. #ifdef CONFIG_X86_64
  2315. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2316. #endif
  2317. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2318. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2319. &_vmexit_control) < 0)
  2320. return -EIO;
  2321. min = 0;
  2322. opt = VM_ENTRY_LOAD_IA32_PAT;
  2323. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2324. &_vmentry_control) < 0)
  2325. return -EIO;
  2326. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2327. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2328. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2329. return -EIO;
  2330. #ifdef CONFIG_X86_64
  2331. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2332. if (vmx_msr_high & (1u<<16))
  2333. return -EIO;
  2334. #endif
  2335. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2336. if (((vmx_msr_high >> 18) & 15) != 6)
  2337. return -EIO;
  2338. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2339. vmcs_conf->order = get_order(vmcs_config.size);
  2340. vmcs_conf->revision_id = vmx_msr_low;
  2341. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2342. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2343. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2344. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2345. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2346. cpu_has_load_ia32_efer =
  2347. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2348. VM_ENTRY_LOAD_IA32_EFER)
  2349. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2350. VM_EXIT_LOAD_IA32_EFER);
  2351. cpu_has_load_perf_global_ctrl =
  2352. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2353. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2354. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2355. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2356. /*
  2357. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2358. * but due to arrata below it can't be used. Workaround is to use
  2359. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2360. *
  2361. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2362. *
  2363. * AAK155 (model 26)
  2364. * AAP115 (model 30)
  2365. * AAT100 (model 37)
  2366. * BC86,AAY89,BD102 (model 44)
  2367. * BA97 (model 46)
  2368. *
  2369. */
  2370. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2371. switch (boot_cpu_data.x86_model) {
  2372. case 26:
  2373. case 30:
  2374. case 37:
  2375. case 44:
  2376. case 46:
  2377. cpu_has_load_perf_global_ctrl = false;
  2378. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2379. "does not work properly. Using workaround\n");
  2380. break;
  2381. default:
  2382. break;
  2383. }
  2384. }
  2385. return 0;
  2386. }
  2387. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2388. {
  2389. int node = cpu_to_node(cpu);
  2390. struct page *pages;
  2391. struct vmcs *vmcs;
  2392. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2393. if (!pages)
  2394. return NULL;
  2395. vmcs = page_address(pages);
  2396. memset(vmcs, 0, vmcs_config.size);
  2397. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2398. return vmcs;
  2399. }
  2400. static struct vmcs *alloc_vmcs(void)
  2401. {
  2402. return alloc_vmcs_cpu(raw_smp_processor_id());
  2403. }
  2404. static void free_vmcs(struct vmcs *vmcs)
  2405. {
  2406. free_pages((unsigned long)vmcs, vmcs_config.order);
  2407. }
  2408. /*
  2409. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2410. */
  2411. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2412. {
  2413. if (!loaded_vmcs->vmcs)
  2414. return;
  2415. loaded_vmcs_clear(loaded_vmcs);
  2416. free_vmcs(loaded_vmcs->vmcs);
  2417. loaded_vmcs->vmcs = NULL;
  2418. }
  2419. static void free_kvm_area(void)
  2420. {
  2421. int cpu;
  2422. for_each_possible_cpu(cpu) {
  2423. free_vmcs(per_cpu(vmxarea, cpu));
  2424. per_cpu(vmxarea, cpu) = NULL;
  2425. }
  2426. }
  2427. static __init int alloc_kvm_area(void)
  2428. {
  2429. int cpu;
  2430. for_each_possible_cpu(cpu) {
  2431. struct vmcs *vmcs;
  2432. vmcs = alloc_vmcs_cpu(cpu);
  2433. if (!vmcs) {
  2434. free_kvm_area();
  2435. return -ENOMEM;
  2436. }
  2437. per_cpu(vmxarea, cpu) = vmcs;
  2438. }
  2439. return 0;
  2440. }
  2441. static __init int hardware_setup(void)
  2442. {
  2443. if (setup_vmcs_config(&vmcs_config) < 0)
  2444. return -EIO;
  2445. if (boot_cpu_has(X86_FEATURE_NX))
  2446. kvm_enable_efer_bits(EFER_NX);
  2447. if (!cpu_has_vmx_vpid())
  2448. enable_vpid = 0;
  2449. if (!cpu_has_vmx_ept() ||
  2450. !cpu_has_vmx_ept_4levels()) {
  2451. enable_ept = 0;
  2452. enable_unrestricted_guest = 0;
  2453. enable_ept_ad_bits = 0;
  2454. }
  2455. if (!cpu_has_vmx_ept_ad_bits())
  2456. enable_ept_ad_bits = 0;
  2457. if (!cpu_has_vmx_unrestricted_guest())
  2458. enable_unrestricted_guest = 0;
  2459. if (!cpu_has_vmx_flexpriority())
  2460. flexpriority_enabled = 0;
  2461. if (!cpu_has_vmx_tpr_shadow())
  2462. kvm_x86_ops->update_cr8_intercept = NULL;
  2463. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2464. kvm_disable_largepages();
  2465. if (!cpu_has_vmx_ple())
  2466. ple_gap = 0;
  2467. if (!cpu_has_vmx_apic_register_virt() ||
  2468. !cpu_has_vmx_virtual_intr_delivery())
  2469. enable_apicv_reg_vid = 0;
  2470. if (enable_apicv_reg_vid)
  2471. kvm_x86_ops->update_cr8_intercept = NULL;
  2472. else
  2473. kvm_x86_ops->hwapic_irr_update = NULL;
  2474. if (nested)
  2475. nested_vmx_setup_ctls_msrs();
  2476. return alloc_kvm_area();
  2477. }
  2478. static __exit void hardware_unsetup(void)
  2479. {
  2480. free_kvm_area();
  2481. }
  2482. static bool emulation_required(struct kvm_vcpu *vcpu)
  2483. {
  2484. return emulate_invalid_guest_state && !guest_state_valid(vcpu);
  2485. }
  2486. static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
  2487. struct kvm_segment *save)
  2488. {
  2489. if (!emulate_invalid_guest_state) {
  2490. /*
  2491. * CS and SS RPL should be equal during guest entry according
  2492. * to VMX spec, but in reality it is not always so. Since vcpu
  2493. * is in the middle of the transition from real mode to
  2494. * protected mode it is safe to assume that RPL 0 is a good
  2495. * default value.
  2496. */
  2497. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  2498. save->selector &= ~SELECTOR_RPL_MASK;
  2499. save->dpl = save->selector & SELECTOR_RPL_MASK;
  2500. save->s = 1;
  2501. }
  2502. vmx_set_segment(vcpu, save, seg);
  2503. }
  2504. static void enter_pmode(struct kvm_vcpu *vcpu)
  2505. {
  2506. unsigned long flags;
  2507. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2508. /*
  2509. * Update real mode segment cache. It may be not up-to-date if sement
  2510. * register was written while vcpu was in a guest mode.
  2511. */
  2512. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2513. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2514. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2515. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2516. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2517. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2518. vmx->rmode.vm86_active = 0;
  2519. vmx_segment_cache_clear(vmx);
  2520. vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2521. flags = vmcs_readl(GUEST_RFLAGS);
  2522. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2523. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2524. vmcs_writel(GUEST_RFLAGS, flags);
  2525. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2526. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2527. update_exception_bitmap(vcpu);
  2528. fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2529. fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2530. fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2531. fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2532. fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2533. fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2534. /* CPL is always 0 when CPU enters protected mode */
  2535. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2536. vmx->cpl = 0;
  2537. }
  2538. static void fix_rmode_seg(int seg, struct kvm_segment *save)
  2539. {
  2540. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2541. struct kvm_segment var = *save;
  2542. var.dpl = 0x3;
  2543. if (seg == VCPU_SREG_CS)
  2544. var.type = 0x3;
  2545. if (!emulate_invalid_guest_state) {
  2546. var.selector = var.base >> 4;
  2547. var.base = var.base & 0xffff0;
  2548. var.limit = 0xffff;
  2549. var.g = 0;
  2550. var.db = 0;
  2551. var.present = 1;
  2552. var.s = 1;
  2553. var.l = 0;
  2554. var.unusable = 0;
  2555. var.type = 0x3;
  2556. var.avl = 0;
  2557. if (save->base & 0xf)
  2558. printk_once(KERN_WARNING "kvm: segment base is not "
  2559. "paragraph aligned when entering "
  2560. "protected mode (seg=%d)", seg);
  2561. }
  2562. vmcs_write16(sf->selector, var.selector);
  2563. vmcs_write32(sf->base, var.base);
  2564. vmcs_write32(sf->limit, var.limit);
  2565. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
  2566. }
  2567. static void enter_rmode(struct kvm_vcpu *vcpu)
  2568. {
  2569. unsigned long flags;
  2570. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2571. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
  2572. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
  2573. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
  2574. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
  2575. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
  2576. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
  2577. vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
  2578. vmx->rmode.vm86_active = 1;
  2579. /*
  2580. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2581. * vcpu. Warn the user that an update is overdue.
  2582. */
  2583. if (!vcpu->kvm->arch.tss_addr)
  2584. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2585. "called before entering vcpu\n");
  2586. vmx_segment_cache_clear(vmx);
  2587. vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
  2588. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2589. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2590. flags = vmcs_readl(GUEST_RFLAGS);
  2591. vmx->rmode.save_rflags = flags;
  2592. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2593. vmcs_writel(GUEST_RFLAGS, flags);
  2594. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2595. update_exception_bitmap(vcpu);
  2596. fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
  2597. fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
  2598. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
  2599. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
  2600. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
  2601. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
  2602. kvm_mmu_reset_context(vcpu);
  2603. }
  2604. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2605. {
  2606. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2607. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2608. if (!msr)
  2609. return;
  2610. /*
  2611. * Force kernel_gs_base reloading before EFER changes, as control
  2612. * of this msr depends on is_long_mode().
  2613. */
  2614. vmx_load_host_state(to_vmx(vcpu));
  2615. vcpu->arch.efer = efer;
  2616. if (efer & EFER_LMA) {
  2617. vmcs_write32(VM_ENTRY_CONTROLS,
  2618. vmcs_read32(VM_ENTRY_CONTROLS) |
  2619. VM_ENTRY_IA32E_MODE);
  2620. msr->data = efer;
  2621. } else {
  2622. vmcs_write32(VM_ENTRY_CONTROLS,
  2623. vmcs_read32(VM_ENTRY_CONTROLS) &
  2624. ~VM_ENTRY_IA32E_MODE);
  2625. msr->data = efer & ~EFER_LME;
  2626. }
  2627. setup_msrs(vmx);
  2628. }
  2629. #ifdef CONFIG_X86_64
  2630. static void enter_lmode(struct kvm_vcpu *vcpu)
  2631. {
  2632. u32 guest_tr_ar;
  2633. vmx_segment_cache_clear(to_vmx(vcpu));
  2634. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2635. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2636. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2637. __func__);
  2638. vmcs_write32(GUEST_TR_AR_BYTES,
  2639. (guest_tr_ar & ~AR_TYPE_MASK)
  2640. | AR_TYPE_BUSY_64_TSS);
  2641. }
  2642. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2643. }
  2644. static void exit_lmode(struct kvm_vcpu *vcpu)
  2645. {
  2646. vmcs_write32(VM_ENTRY_CONTROLS,
  2647. vmcs_read32(VM_ENTRY_CONTROLS)
  2648. & ~VM_ENTRY_IA32E_MODE);
  2649. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2650. }
  2651. #endif
  2652. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2653. {
  2654. vpid_sync_context(to_vmx(vcpu));
  2655. if (enable_ept) {
  2656. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2657. return;
  2658. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2659. }
  2660. }
  2661. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2662. {
  2663. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2664. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2665. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2666. }
  2667. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2668. {
  2669. if (enable_ept && is_paging(vcpu))
  2670. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2671. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2672. }
  2673. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2674. {
  2675. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2676. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2677. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2678. }
  2679. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2680. {
  2681. if (!test_bit(VCPU_EXREG_PDPTR,
  2682. (unsigned long *)&vcpu->arch.regs_dirty))
  2683. return;
  2684. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2685. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2686. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2687. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2688. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2689. }
  2690. }
  2691. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2692. {
  2693. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2694. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2695. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2696. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2697. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2698. }
  2699. __set_bit(VCPU_EXREG_PDPTR,
  2700. (unsigned long *)&vcpu->arch.regs_avail);
  2701. __set_bit(VCPU_EXREG_PDPTR,
  2702. (unsigned long *)&vcpu->arch.regs_dirty);
  2703. }
  2704. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2705. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2706. unsigned long cr0,
  2707. struct kvm_vcpu *vcpu)
  2708. {
  2709. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2710. vmx_decache_cr3(vcpu);
  2711. if (!(cr0 & X86_CR0_PG)) {
  2712. /* From paging/starting to nonpaging */
  2713. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2714. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2715. (CPU_BASED_CR3_LOAD_EXITING |
  2716. CPU_BASED_CR3_STORE_EXITING));
  2717. vcpu->arch.cr0 = cr0;
  2718. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2719. } else if (!is_paging(vcpu)) {
  2720. /* From nonpaging to paging */
  2721. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2722. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2723. ~(CPU_BASED_CR3_LOAD_EXITING |
  2724. CPU_BASED_CR3_STORE_EXITING));
  2725. vcpu->arch.cr0 = cr0;
  2726. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2727. }
  2728. if (!(cr0 & X86_CR0_WP))
  2729. *hw_cr0 &= ~X86_CR0_WP;
  2730. }
  2731. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2732. {
  2733. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2734. unsigned long hw_cr0;
  2735. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
  2736. if (enable_unrestricted_guest)
  2737. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2738. else {
  2739. hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
  2740. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2741. enter_pmode(vcpu);
  2742. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2743. enter_rmode(vcpu);
  2744. }
  2745. #ifdef CONFIG_X86_64
  2746. if (vcpu->arch.efer & EFER_LME) {
  2747. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2748. enter_lmode(vcpu);
  2749. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2750. exit_lmode(vcpu);
  2751. }
  2752. #endif
  2753. if (enable_ept)
  2754. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2755. if (!vcpu->fpu_active)
  2756. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2757. vmcs_writel(CR0_READ_SHADOW, cr0);
  2758. vmcs_writel(GUEST_CR0, hw_cr0);
  2759. vcpu->arch.cr0 = cr0;
  2760. /* depends on vcpu->arch.cr0 to be set to a new value */
  2761. vmx->emulation_required = emulation_required(vcpu);
  2762. }
  2763. static u64 construct_eptp(unsigned long root_hpa)
  2764. {
  2765. u64 eptp;
  2766. /* TODO write the value reading from MSR */
  2767. eptp = VMX_EPT_DEFAULT_MT |
  2768. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2769. if (enable_ept_ad_bits)
  2770. eptp |= VMX_EPT_AD_ENABLE_BIT;
  2771. eptp |= (root_hpa & PAGE_MASK);
  2772. return eptp;
  2773. }
  2774. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2775. {
  2776. unsigned long guest_cr3;
  2777. u64 eptp;
  2778. guest_cr3 = cr3;
  2779. if (enable_ept) {
  2780. eptp = construct_eptp(cr3);
  2781. vmcs_write64(EPT_POINTER, eptp);
  2782. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2783. vcpu->kvm->arch.ept_identity_map_addr;
  2784. ept_load_pdptrs(vcpu);
  2785. }
  2786. vmx_flush_tlb(vcpu);
  2787. vmcs_writel(GUEST_CR3, guest_cr3);
  2788. }
  2789. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2790. {
  2791. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2792. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2793. if (cr4 & X86_CR4_VMXE) {
  2794. /*
  2795. * To use VMXON (and later other VMX instructions), a guest
  2796. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2797. * So basically the check on whether to allow nested VMX
  2798. * is here.
  2799. */
  2800. if (!nested_vmx_allowed(vcpu))
  2801. return 1;
  2802. }
  2803. if (to_vmx(vcpu)->nested.vmxon &&
  2804. ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
  2805. return 1;
  2806. vcpu->arch.cr4 = cr4;
  2807. if (enable_ept) {
  2808. if (!is_paging(vcpu)) {
  2809. hw_cr4 &= ~X86_CR4_PAE;
  2810. hw_cr4 |= X86_CR4_PSE;
  2811. /*
  2812. * SMEP is disabled if CPU is in non-paging mode in
  2813. * hardware. However KVM always uses paging mode to
  2814. * emulate guest non-paging mode with TDP.
  2815. * To emulate this behavior, SMEP needs to be manually
  2816. * disabled when guest switches to non-paging mode.
  2817. */
  2818. hw_cr4 &= ~X86_CR4_SMEP;
  2819. } else if (!(cr4 & X86_CR4_PAE)) {
  2820. hw_cr4 &= ~X86_CR4_PAE;
  2821. }
  2822. }
  2823. vmcs_writel(CR4_READ_SHADOW, cr4);
  2824. vmcs_writel(GUEST_CR4, hw_cr4);
  2825. return 0;
  2826. }
  2827. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2828. struct kvm_segment *var, int seg)
  2829. {
  2830. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2831. u32 ar;
  2832. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2833. *var = vmx->rmode.segs[seg];
  2834. if (seg == VCPU_SREG_TR
  2835. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2836. return;
  2837. var->base = vmx_read_guest_seg_base(vmx, seg);
  2838. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2839. return;
  2840. }
  2841. var->base = vmx_read_guest_seg_base(vmx, seg);
  2842. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2843. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2844. ar = vmx_read_guest_seg_ar(vmx, seg);
  2845. var->type = ar & 15;
  2846. var->s = (ar >> 4) & 1;
  2847. var->dpl = (ar >> 5) & 3;
  2848. var->present = (ar >> 7) & 1;
  2849. var->avl = (ar >> 12) & 1;
  2850. var->l = (ar >> 13) & 1;
  2851. var->db = (ar >> 14) & 1;
  2852. var->g = (ar >> 15) & 1;
  2853. var->unusable = (ar >> 16) & 1;
  2854. }
  2855. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2856. {
  2857. struct kvm_segment s;
  2858. if (to_vmx(vcpu)->rmode.vm86_active) {
  2859. vmx_get_segment(vcpu, &s, seg);
  2860. return s.base;
  2861. }
  2862. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2863. }
  2864. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2865. {
  2866. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2867. if (!is_protmode(vcpu))
  2868. return 0;
  2869. if (!is_long_mode(vcpu)
  2870. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2871. return 3;
  2872. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2873. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2874. vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
  2875. }
  2876. return vmx->cpl;
  2877. }
  2878. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2879. {
  2880. u32 ar;
  2881. if (var->unusable || !var->present)
  2882. ar = 1 << 16;
  2883. else {
  2884. ar = var->type & 15;
  2885. ar |= (var->s & 1) << 4;
  2886. ar |= (var->dpl & 3) << 5;
  2887. ar |= (var->present & 1) << 7;
  2888. ar |= (var->avl & 1) << 12;
  2889. ar |= (var->l & 1) << 13;
  2890. ar |= (var->db & 1) << 14;
  2891. ar |= (var->g & 1) << 15;
  2892. }
  2893. return ar;
  2894. }
  2895. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2896. struct kvm_segment *var, int seg)
  2897. {
  2898. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2899. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2900. vmx_segment_cache_clear(vmx);
  2901. if (seg == VCPU_SREG_CS)
  2902. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2903. if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
  2904. vmx->rmode.segs[seg] = *var;
  2905. if (seg == VCPU_SREG_TR)
  2906. vmcs_write16(sf->selector, var->selector);
  2907. else if (var->s)
  2908. fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
  2909. goto out;
  2910. }
  2911. vmcs_writel(sf->base, var->base);
  2912. vmcs_write32(sf->limit, var->limit);
  2913. vmcs_write16(sf->selector, var->selector);
  2914. /*
  2915. * Fix the "Accessed" bit in AR field of segment registers for older
  2916. * qemu binaries.
  2917. * IA32 arch specifies that at the time of processor reset the
  2918. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2919. * is setting it to 0 in the userland code. This causes invalid guest
  2920. * state vmexit when "unrestricted guest" mode is turned on.
  2921. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2922. * tree. Newer qemu binaries with that qemu fix would not need this
  2923. * kvm hack.
  2924. */
  2925. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2926. var->type |= 0x1; /* Accessed */
  2927. vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
  2928. out:
  2929. vmx->emulation_required |= emulation_required(vcpu);
  2930. }
  2931. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2932. {
  2933. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2934. *db = (ar >> 14) & 1;
  2935. *l = (ar >> 13) & 1;
  2936. }
  2937. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2938. {
  2939. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2940. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2941. }
  2942. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2943. {
  2944. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2945. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2946. }
  2947. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2948. {
  2949. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2950. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2951. }
  2952. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2953. {
  2954. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2955. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2956. }
  2957. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2958. {
  2959. struct kvm_segment var;
  2960. u32 ar;
  2961. vmx_get_segment(vcpu, &var, seg);
  2962. var.dpl = 0x3;
  2963. if (seg == VCPU_SREG_CS)
  2964. var.type = 0x3;
  2965. ar = vmx_segment_access_rights(&var);
  2966. if (var.base != (var.selector << 4))
  2967. return false;
  2968. if (var.limit != 0xffff)
  2969. return false;
  2970. if (ar != 0xf3)
  2971. return false;
  2972. return true;
  2973. }
  2974. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2975. {
  2976. struct kvm_segment cs;
  2977. unsigned int cs_rpl;
  2978. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2979. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2980. if (cs.unusable)
  2981. return false;
  2982. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2983. return false;
  2984. if (!cs.s)
  2985. return false;
  2986. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2987. if (cs.dpl > cs_rpl)
  2988. return false;
  2989. } else {
  2990. if (cs.dpl != cs_rpl)
  2991. return false;
  2992. }
  2993. if (!cs.present)
  2994. return false;
  2995. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2996. return true;
  2997. }
  2998. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2999. {
  3000. struct kvm_segment ss;
  3001. unsigned int ss_rpl;
  3002. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3003. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  3004. if (ss.unusable)
  3005. return true;
  3006. if (ss.type != 3 && ss.type != 7)
  3007. return false;
  3008. if (!ss.s)
  3009. return false;
  3010. if (ss.dpl != ss_rpl) /* DPL != RPL */
  3011. return false;
  3012. if (!ss.present)
  3013. return false;
  3014. return true;
  3015. }
  3016. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  3017. {
  3018. struct kvm_segment var;
  3019. unsigned int rpl;
  3020. vmx_get_segment(vcpu, &var, seg);
  3021. rpl = var.selector & SELECTOR_RPL_MASK;
  3022. if (var.unusable)
  3023. return true;
  3024. if (!var.s)
  3025. return false;
  3026. if (!var.present)
  3027. return false;
  3028. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  3029. if (var.dpl < rpl) /* DPL < RPL */
  3030. return false;
  3031. }
  3032. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  3033. * rights flags
  3034. */
  3035. return true;
  3036. }
  3037. static bool tr_valid(struct kvm_vcpu *vcpu)
  3038. {
  3039. struct kvm_segment tr;
  3040. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  3041. if (tr.unusable)
  3042. return false;
  3043. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3044. return false;
  3045. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  3046. return false;
  3047. if (!tr.present)
  3048. return false;
  3049. return true;
  3050. }
  3051. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  3052. {
  3053. struct kvm_segment ldtr;
  3054. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  3055. if (ldtr.unusable)
  3056. return true;
  3057. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  3058. return false;
  3059. if (ldtr.type != 2)
  3060. return false;
  3061. if (!ldtr.present)
  3062. return false;
  3063. return true;
  3064. }
  3065. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  3066. {
  3067. struct kvm_segment cs, ss;
  3068. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3069. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  3070. return ((cs.selector & SELECTOR_RPL_MASK) ==
  3071. (ss.selector & SELECTOR_RPL_MASK));
  3072. }
  3073. /*
  3074. * Check if guest state is valid. Returns true if valid, false if
  3075. * not.
  3076. * We assume that registers are always usable
  3077. */
  3078. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  3079. {
  3080. if (enable_unrestricted_guest)
  3081. return true;
  3082. /* real mode guest state checks */
  3083. if (!is_protmode(vcpu)) {
  3084. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  3085. return false;
  3086. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  3087. return false;
  3088. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  3089. return false;
  3090. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  3091. return false;
  3092. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  3093. return false;
  3094. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  3095. return false;
  3096. } else {
  3097. /* protected mode guest state checks */
  3098. if (!cs_ss_rpl_check(vcpu))
  3099. return false;
  3100. if (!code_segment_valid(vcpu))
  3101. return false;
  3102. if (!stack_segment_valid(vcpu))
  3103. return false;
  3104. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  3105. return false;
  3106. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  3107. return false;
  3108. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  3109. return false;
  3110. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  3111. return false;
  3112. if (!tr_valid(vcpu))
  3113. return false;
  3114. if (!ldtr_valid(vcpu))
  3115. return false;
  3116. }
  3117. /* TODO:
  3118. * - Add checks on RIP
  3119. * - Add checks on RFLAGS
  3120. */
  3121. return true;
  3122. }
  3123. static int init_rmode_tss(struct kvm *kvm)
  3124. {
  3125. gfn_t fn;
  3126. u16 data = 0;
  3127. int r, idx, ret = 0;
  3128. idx = srcu_read_lock(&kvm->srcu);
  3129. fn = kvm->arch.tss_addr >> PAGE_SHIFT;
  3130. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3131. if (r < 0)
  3132. goto out;
  3133. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  3134. r = kvm_write_guest_page(kvm, fn++, &data,
  3135. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  3136. if (r < 0)
  3137. goto out;
  3138. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3139. if (r < 0)
  3140. goto out;
  3141. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3142. if (r < 0)
  3143. goto out;
  3144. data = ~0;
  3145. r = kvm_write_guest_page(kvm, fn, &data,
  3146. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3147. sizeof(u8));
  3148. if (r < 0)
  3149. goto out;
  3150. ret = 1;
  3151. out:
  3152. srcu_read_unlock(&kvm->srcu, idx);
  3153. return ret;
  3154. }
  3155. static int init_rmode_identity_map(struct kvm *kvm)
  3156. {
  3157. int i, idx, r, ret;
  3158. pfn_t identity_map_pfn;
  3159. u32 tmp;
  3160. if (!enable_ept)
  3161. return 1;
  3162. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3163. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3164. "haven't been allocated!\n");
  3165. return 0;
  3166. }
  3167. if (likely(kvm->arch.ept_identity_pagetable_done))
  3168. return 1;
  3169. ret = 0;
  3170. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3171. idx = srcu_read_lock(&kvm->srcu);
  3172. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3173. if (r < 0)
  3174. goto out;
  3175. /* Set up identity-mapping pagetable for EPT in real mode */
  3176. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3177. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3178. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3179. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3180. &tmp, i * sizeof(tmp), sizeof(tmp));
  3181. if (r < 0)
  3182. goto out;
  3183. }
  3184. kvm->arch.ept_identity_pagetable_done = true;
  3185. ret = 1;
  3186. out:
  3187. srcu_read_unlock(&kvm->srcu, idx);
  3188. return ret;
  3189. }
  3190. static void seg_setup(int seg)
  3191. {
  3192. const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3193. unsigned int ar;
  3194. vmcs_write16(sf->selector, 0);
  3195. vmcs_writel(sf->base, 0);
  3196. vmcs_write32(sf->limit, 0xffff);
  3197. ar = 0x93;
  3198. if (seg == VCPU_SREG_CS)
  3199. ar |= 0x08; /* code segment */
  3200. vmcs_write32(sf->ar_bytes, ar);
  3201. }
  3202. static int alloc_apic_access_page(struct kvm *kvm)
  3203. {
  3204. struct page *page;
  3205. struct kvm_userspace_memory_region kvm_userspace_mem;
  3206. int r = 0;
  3207. mutex_lock(&kvm->slots_lock);
  3208. if (kvm->arch.apic_access_page)
  3209. goto out;
  3210. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3211. kvm_userspace_mem.flags = 0;
  3212. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3213. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3214. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3215. if (r)
  3216. goto out;
  3217. page = gfn_to_page(kvm, 0xfee00);
  3218. if (is_error_page(page)) {
  3219. r = -EFAULT;
  3220. goto out;
  3221. }
  3222. kvm->arch.apic_access_page = page;
  3223. out:
  3224. mutex_unlock(&kvm->slots_lock);
  3225. return r;
  3226. }
  3227. static int alloc_identity_pagetable(struct kvm *kvm)
  3228. {
  3229. struct page *page;
  3230. struct kvm_userspace_memory_region kvm_userspace_mem;
  3231. int r = 0;
  3232. mutex_lock(&kvm->slots_lock);
  3233. if (kvm->arch.ept_identity_pagetable)
  3234. goto out;
  3235. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3236. kvm_userspace_mem.flags = 0;
  3237. kvm_userspace_mem.guest_phys_addr =
  3238. kvm->arch.ept_identity_map_addr;
  3239. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3240. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
  3241. if (r)
  3242. goto out;
  3243. page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3244. if (is_error_page(page)) {
  3245. r = -EFAULT;
  3246. goto out;
  3247. }
  3248. kvm->arch.ept_identity_pagetable = page;
  3249. out:
  3250. mutex_unlock(&kvm->slots_lock);
  3251. return r;
  3252. }
  3253. static void allocate_vpid(struct vcpu_vmx *vmx)
  3254. {
  3255. int vpid;
  3256. vmx->vpid = 0;
  3257. if (!enable_vpid)
  3258. return;
  3259. spin_lock(&vmx_vpid_lock);
  3260. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3261. if (vpid < VMX_NR_VPIDS) {
  3262. vmx->vpid = vpid;
  3263. __set_bit(vpid, vmx_vpid_bitmap);
  3264. }
  3265. spin_unlock(&vmx_vpid_lock);
  3266. }
  3267. static void free_vpid(struct vcpu_vmx *vmx)
  3268. {
  3269. if (!enable_vpid)
  3270. return;
  3271. spin_lock(&vmx_vpid_lock);
  3272. if (vmx->vpid != 0)
  3273. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3274. spin_unlock(&vmx_vpid_lock);
  3275. }
  3276. #define MSR_TYPE_R 1
  3277. #define MSR_TYPE_W 2
  3278. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
  3279. u32 msr, int type)
  3280. {
  3281. int f = sizeof(unsigned long);
  3282. if (!cpu_has_vmx_msr_bitmap())
  3283. return;
  3284. /*
  3285. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3286. * have the write-low and read-high bitmap offsets the wrong way round.
  3287. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3288. */
  3289. if (msr <= 0x1fff) {
  3290. if (type & MSR_TYPE_R)
  3291. /* read-low */
  3292. __clear_bit(msr, msr_bitmap + 0x000 / f);
  3293. if (type & MSR_TYPE_W)
  3294. /* write-low */
  3295. __clear_bit(msr, msr_bitmap + 0x800 / f);
  3296. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3297. msr &= 0x1fff;
  3298. if (type & MSR_TYPE_R)
  3299. /* read-high */
  3300. __clear_bit(msr, msr_bitmap + 0x400 / f);
  3301. if (type & MSR_TYPE_W)
  3302. /* write-high */
  3303. __clear_bit(msr, msr_bitmap + 0xc00 / f);
  3304. }
  3305. }
  3306. static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
  3307. u32 msr, int type)
  3308. {
  3309. int f = sizeof(unsigned long);
  3310. if (!cpu_has_vmx_msr_bitmap())
  3311. return;
  3312. /*
  3313. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3314. * have the write-low and read-high bitmap offsets the wrong way round.
  3315. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3316. */
  3317. if (msr <= 0x1fff) {
  3318. if (type & MSR_TYPE_R)
  3319. /* read-low */
  3320. __set_bit(msr, msr_bitmap + 0x000 / f);
  3321. if (type & MSR_TYPE_W)
  3322. /* write-low */
  3323. __set_bit(msr, msr_bitmap + 0x800 / f);
  3324. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3325. msr &= 0x1fff;
  3326. if (type & MSR_TYPE_R)
  3327. /* read-high */
  3328. __set_bit(msr, msr_bitmap + 0x400 / f);
  3329. if (type & MSR_TYPE_W)
  3330. /* write-high */
  3331. __set_bit(msr, msr_bitmap + 0xc00 / f);
  3332. }
  3333. }
  3334. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3335. {
  3336. if (!longmode_only)
  3337. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
  3338. msr, MSR_TYPE_R | MSR_TYPE_W);
  3339. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
  3340. msr, MSR_TYPE_R | MSR_TYPE_W);
  3341. }
  3342. static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
  3343. {
  3344. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3345. msr, MSR_TYPE_R);
  3346. __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3347. msr, MSR_TYPE_R);
  3348. }
  3349. static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
  3350. {
  3351. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3352. msr, MSR_TYPE_R);
  3353. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3354. msr, MSR_TYPE_R);
  3355. }
  3356. static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
  3357. {
  3358. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
  3359. msr, MSR_TYPE_W);
  3360. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
  3361. msr, MSR_TYPE_W);
  3362. }
  3363. /*
  3364. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3365. * will not change in the lifetime of the guest.
  3366. * Note that host-state that does change is set elsewhere. E.g., host-state
  3367. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3368. */
  3369. static void vmx_set_constant_host_state(void)
  3370. {
  3371. u32 low32, high32;
  3372. unsigned long tmpl;
  3373. struct desc_ptr dt;
  3374. vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
  3375. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3376. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3377. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3378. #ifdef CONFIG_X86_64
  3379. /*
  3380. * Load null selectors, so we can avoid reloading them in
  3381. * __vmx_load_host_state(), in case userspace uses the null selectors
  3382. * too (the expected case).
  3383. */
  3384. vmcs_write16(HOST_DS_SELECTOR, 0);
  3385. vmcs_write16(HOST_ES_SELECTOR, 0);
  3386. #else
  3387. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3388. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3389. #endif
  3390. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3391. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3392. native_store_idt(&dt);
  3393. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3394. vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
  3395. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3396. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3397. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3398. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3399. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3400. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3401. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3402. }
  3403. }
  3404. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3405. {
  3406. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3407. if (enable_ept)
  3408. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3409. if (is_guest_mode(&vmx->vcpu))
  3410. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3411. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3412. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3413. }
  3414. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3415. {
  3416. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3417. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3418. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3419. #ifdef CONFIG_X86_64
  3420. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3421. CPU_BASED_CR8_LOAD_EXITING;
  3422. #endif
  3423. }
  3424. if (!enable_ept)
  3425. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3426. CPU_BASED_CR3_LOAD_EXITING |
  3427. CPU_BASED_INVLPG_EXITING;
  3428. return exec_control;
  3429. }
  3430. static int vmx_vm_has_apicv(struct kvm *kvm)
  3431. {
  3432. return enable_apicv_reg_vid && irqchip_in_kernel(kvm);
  3433. }
  3434. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3435. {
  3436. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3437. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3438. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3439. if (vmx->vpid == 0)
  3440. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3441. if (!enable_ept) {
  3442. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3443. enable_unrestricted_guest = 0;
  3444. /* Enable INVPCID for non-ept guests may cause performance regression. */
  3445. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  3446. }
  3447. if (!enable_unrestricted_guest)
  3448. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3449. if (!ple_gap)
  3450. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3451. if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
  3452. exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
  3453. SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
  3454. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  3455. return exec_control;
  3456. }
  3457. static void ept_set_mmio_spte_mask(void)
  3458. {
  3459. /*
  3460. * EPT Misconfigurations can be generated if the value of bits 2:0
  3461. * of an EPT paging-structure entry is 110b (write/execute).
  3462. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3463. * spte.
  3464. */
  3465. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3466. }
  3467. /*
  3468. * Sets up the vmcs for emulated real mode.
  3469. */
  3470. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3471. {
  3472. #ifdef CONFIG_X86_64
  3473. unsigned long a;
  3474. #endif
  3475. int i;
  3476. /* I/O */
  3477. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3478. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3479. if (cpu_has_vmx_msr_bitmap())
  3480. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3481. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3482. /* Control */
  3483. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3484. vmcs_config.pin_based_exec_ctrl);
  3485. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3486. if (cpu_has_secondary_exec_ctrls()) {
  3487. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3488. vmx_secondary_exec_control(vmx));
  3489. }
  3490. if (enable_apicv_reg_vid) {
  3491. vmcs_write64(EOI_EXIT_BITMAP0, 0);
  3492. vmcs_write64(EOI_EXIT_BITMAP1, 0);
  3493. vmcs_write64(EOI_EXIT_BITMAP2, 0);
  3494. vmcs_write64(EOI_EXIT_BITMAP3, 0);
  3495. vmcs_write16(GUEST_INTR_STATUS, 0);
  3496. }
  3497. if (ple_gap) {
  3498. vmcs_write32(PLE_GAP, ple_gap);
  3499. vmcs_write32(PLE_WINDOW, ple_window);
  3500. }
  3501. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3502. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3503. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3504. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3505. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3506. vmx_set_constant_host_state();
  3507. #ifdef CONFIG_X86_64
  3508. rdmsrl(MSR_FS_BASE, a);
  3509. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3510. rdmsrl(MSR_GS_BASE, a);
  3511. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3512. #else
  3513. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3514. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3515. #endif
  3516. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3517. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3518. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3519. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3520. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3521. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3522. u32 msr_low, msr_high;
  3523. u64 host_pat;
  3524. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3525. host_pat = msr_low | ((u64) msr_high << 32);
  3526. /* Write the default value follow host pat */
  3527. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3528. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3529. vmx->vcpu.arch.pat = host_pat;
  3530. }
  3531. for (i = 0; i < NR_VMX_MSR; ++i) {
  3532. u32 index = vmx_msr_index[i];
  3533. u32 data_low, data_high;
  3534. int j = vmx->nmsrs;
  3535. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3536. continue;
  3537. if (wrmsr_safe(index, data_low, data_high) < 0)
  3538. continue;
  3539. vmx->guest_msrs[j].index = i;
  3540. vmx->guest_msrs[j].data = 0;
  3541. vmx->guest_msrs[j].mask = -1ull;
  3542. ++vmx->nmsrs;
  3543. }
  3544. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3545. /* 22.2.1, 20.8.1 */
  3546. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3547. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3548. set_cr4_guest_host_mask(vmx);
  3549. return 0;
  3550. }
  3551. static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3552. {
  3553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3554. u64 msr;
  3555. vmx->rmode.vm86_active = 0;
  3556. vmx->soft_vnmi_blocked = 0;
  3557. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3558. kvm_set_cr8(&vmx->vcpu, 0);
  3559. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3560. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3561. msr |= MSR_IA32_APICBASE_BSP;
  3562. kvm_set_apic_base(&vmx->vcpu, msr);
  3563. vmx_segment_cache_clear(vmx);
  3564. seg_setup(VCPU_SREG_CS);
  3565. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3566. vmcs_write32(GUEST_CS_BASE, 0xffff0000);
  3567. seg_setup(VCPU_SREG_DS);
  3568. seg_setup(VCPU_SREG_ES);
  3569. seg_setup(VCPU_SREG_FS);
  3570. seg_setup(VCPU_SREG_GS);
  3571. seg_setup(VCPU_SREG_SS);
  3572. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3573. vmcs_writel(GUEST_TR_BASE, 0);
  3574. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3575. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3576. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3577. vmcs_writel(GUEST_LDTR_BASE, 0);
  3578. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3579. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3580. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3581. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3582. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3583. vmcs_writel(GUEST_RFLAGS, 0x02);
  3584. kvm_rip_write(vcpu, 0xfff0);
  3585. vmcs_writel(GUEST_GDTR_BASE, 0);
  3586. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3587. vmcs_writel(GUEST_IDTR_BASE, 0);
  3588. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3589. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3590. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3591. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3592. /* Special registers */
  3593. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3594. setup_msrs(vmx);
  3595. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3596. if (cpu_has_vmx_tpr_shadow()) {
  3597. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3598. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3599. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3600. __pa(vmx->vcpu.arch.apic->regs));
  3601. vmcs_write32(TPR_THRESHOLD, 0);
  3602. }
  3603. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3604. vmcs_write64(APIC_ACCESS_ADDR,
  3605. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3606. if (vmx->vpid != 0)
  3607. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3608. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3609. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3610. vmx_set_cr4(&vmx->vcpu, 0);
  3611. vmx_set_efer(&vmx->vcpu, 0);
  3612. vmx_fpu_activate(&vmx->vcpu);
  3613. update_exception_bitmap(&vmx->vcpu);
  3614. vpid_sync_context(vmx);
  3615. }
  3616. /*
  3617. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3618. * For most existing hypervisors, this will always return true.
  3619. */
  3620. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3621. {
  3622. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3623. PIN_BASED_EXT_INTR_MASK;
  3624. }
  3625. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3626. {
  3627. u32 cpu_based_vm_exec_control;
  3628. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3629. /*
  3630. * We get here if vmx_interrupt_allowed() said we can't
  3631. * inject to L1 now because L2 must run. Ask L2 to exit
  3632. * right after entry, so we can inject to L1 more promptly.
  3633. */
  3634. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3635. return;
  3636. }
  3637. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3638. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3639. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3640. }
  3641. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3642. {
  3643. u32 cpu_based_vm_exec_control;
  3644. if (!cpu_has_virtual_nmis()) {
  3645. enable_irq_window(vcpu);
  3646. return;
  3647. }
  3648. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3649. enable_irq_window(vcpu);
  3650. return;
  3651. }
  3652. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3653. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3654. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3655. }
  3656. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3657. {
  3658. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3659. uint32_t intr;
  3660. int irq = vcpu->arch.interrupt.nr;
  3661. trace_kvm_inj_virq(irq);
  3662. ++vcpu->stat.irq_injections;
  3663. if (vmx->rmode.vm86_active) {
  3664. int inc_eip = 0;
  3665. if (vcpu->arch.interrupt.soft)
  3666. inc_eip = vcpu->arch.event_exit_inst_len;
  3667. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3668. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3669. return;
  3670. }
  3671. intr = irq | INTR_INFO_VALID_MASK;
  3672. if (vcpu->arch.interrupt.soft) {
  3673. intr |= INTR_TYPE_SOFT_INTR;
  3674. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3675. vmx->vcpu.arch.event_exit_inst_len);
  3676. } else
  3677. intr |= INTR_TYPE_EXT_INTR;
  3678. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3679. }
  3680. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3681. {
  3682. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3683. if (is_guest_mode(vcpu))
  3684. return;
  3685. if (!cpu_has_virtual_nmis()) {
  3686. /*
  3687. * Tracking the NMI-blocked state in software is built upon
  3688. * finding the next open IRQ window. This, in turn, depends on
  3689. * well-behaving guests: They have to keep IRQs disabled at
  3690. * least as long as the NMI handler runs. Otherwise we may
  3691. * cause NMI nesting, maybe breaking the guest. But as this is
  3692. * highly unlikely, we can live with the residual risk.
  3693. */
  3694. vmx->soft_vnmi_blocked = 1;
  3695. vmx->vnmi_blocked_time = 0;
  3696. }
  3697. ++vcpu->stat.nmi_injections;
  3698. vmx->nmi_known_unmasked = false;
  3699. if (vmx->rmode.vm86_active) {
  3700. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3701. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3702. return;
  3703. }
  3704. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3705. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3706. }
  3707. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3708. {
  3709. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3710. return 0;
  3711. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3712. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3713. | GUEST_INTR_STATE_NMI));
  3714. }
  3715. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3716. {
  3717. if (!cpu_has_virtual_nmis())
  3718. return to_vmx(vcpu)->soft_vnmi_blocked;
  3719. if (to_vmx(vcpu)->nmi_known_unmasked)
  3720. return false;
  3721. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3722. }
  3723. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3724. {
  3725. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3726. if (!cpu_has_virtual_nmis()) {
  3727. if (vmx->soft_vnmi_blocked != masked) {
  3728. vmx->soft_vnmi_blocked = masked;
  3729. vmx->vnmi_blocked_time = 0;
  3730. }
  3731. } else {
  3732. vmx->nmi_known_unmasked = !masked;
  3733. if (masked)
  3734. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3735. GUEST_INTR_STATE_NMI);
  3736. else
  3737. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3738. GUEST_INTR_STATE_NMI);
  3739. }
  3740. }
  3741. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3742. {
  3743. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3744. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3745. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3746. (vmcs12->idt_vectoring_info_field &
  3747. VECTORING_INFO_VALID_MASK))
  3748. return 0;
  3749. nested_vmx_vmexit(vcpu);
  3750. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3751. vmcs12->vm_exit_intr_info = 0;
  3752. /* fall through to normal code, but now in L1, not L2 */
  3753. }
  3754. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3755. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3756. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3757. }
  3758. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3759. {
  3760. int ret;
  3761. struct kvm_userspace_memory_region tss_mem = {
  3762. .slot = TSS_PRIVATE_MEMSLOT,
  3763. .guest_phys_addr = addr,
  3764. .memory_size = PAGE_SIZE * 3,
  3765. .flags = 0,
  3766. };
  3767. ret = kvm_set_memory_region(kvm, &tss_mem);
  3768. if (ret)
  3769. return ret;
  3770. kvm->arch.tss_addr = addr;
  3771. if (!init_rmode_tss(kvm))
  3772. return -ENOMEM;
  3773. return 0;
  3774. }
  3775. static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
  3776. {
  3777. switch (vec) {
  3778. case BP_VECTOR:
  3779. /*
  3780. * Update instruction length as we may reinject the exception
  3781. * from user space while in guest debugging mode.
  3782. */
  3783. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3784. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3785. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3786. return false;
  3787. /* fall through */
  3788. case DB_VECTOR:
  3789. if (vcpu->guest_debug &
  3790. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3791. return false;
  3792. /* fall through */
  3793. case DE_VECTOR:
  3794. case OF_VECTOR:
  3795. case BR_VECTOR:
  3796. case UD_VECTOR:
  3797. case DF_VECTOR:
  3798. case SS_VECTOR:
  3799. case GP_VECTOR:
  3800. case MF_VECTOR:
  3801. return true;
  3802. break;
  3803. }
  3804. return false;
  3805. }
  3806. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3807. int vec, u32 err_code)
  3808. {
  3809. /*
  3810. * Instruction with address size override prefix opcode 0x67
  3811. * Cause the #SS fault with 0 error code in VM86 mode.
  3812. */
  3813. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
  3814. if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
  3815. if (vcpu->arch.halt_request) {
  3816. vcpu->arch.halt_request = 0;
  3817. return kvm_emulate_halt(vcpu);
  3818. }
  3819. return 1;
  3820. }
  3821. return 0;
  3822. }
  3823. /*
  3824. * Forward all other exceptions that are valid in real mode.
  3825. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3826. * the required debugging infrastructure rework.
  3827. */
  3828. kvm_queue_exception(vcpu, vec);
  3829. return 1;
  3830. }
  3831. /*
  3832. * Trigger machine check on the host. We assume all the MSRs are already set up
  3833. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3834. * We pass a fake environment to the machine check handler because we want
  3835. * the guest to be always treated like user space, no matter what context
  3836. * it used internally.
  3837. */
  3838. static void kvm_machine_check(void)
  3839. {
  3840. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3841. struct pt_regs regs = {
  3842. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3843. .flags = X86_EFLAGS_IF,
  3844. };
  3845. do_machine_check(&regs, 0);
  3846. #endif
  3847. }
  3848. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3849. {
  3850. /* already handled by vcpu_run */
  3851. return 1;
  3852. }
  3853. static int handle_exception(struct kvm_vcpu *vcpu)
  3854. {
  3855. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3856. struct kvm_run *kvm_run = vcpu->run;
  3857. u32 intr_info, ex_no, error_code;
  3858. unsigned long cr2, rip, dr6;
  3859. u32 vect_info;
  3860. enum emulation_result er;
  3861. vect_info = vmx->idt_vectoring_info;
  3862. intr_info = vmx->exit_intr_info;
  3863. if (is_machine_check(intr_info))
  3864. return handle_machine_check(vcpu);
  3865. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3866. return 1; /* already handled by vmx_vcpu_run() */
  3867. if (is_no_device(intr_info)) {
  3868. vmx_fpu_activate(vcpu);
  3869. return 1;
  3870. }
  3871. if (is_invalid_opcode(intr_info)) {
  3872. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3873. if (er != EMULATE_DONE)
  3874. kvm_queue_exception(vcpu, UD_VECTOR);
  3875. return 1;
  3876. }
  3877. error_code = 0;
  3878. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3879. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3880. /*
  3881. * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
  3882. * MMIO, it is better to report an internal error.
  3883. * See the comments in vmx_handle_exit.
  3884. */
  3885. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3886. !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
  3887. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3888. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3889. vcpu->run->internal.ndata = 2;
  3890. vcpu->run->internal.data[0] = vect_info;
  3891. vcpu->run->internal.data[1] = intr_info;
  3892. return 0;
  3893. }
  3894. if (is_page_fault(intr_info)) {
  3895. /* EPT won't cause page fault directly */
  3896. BUG_ON(enable_ept);
  3897. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3898. trace_kvm_page_fault(cr2, error_code);
  3899. if (kvm_event_needs_reinjection(vcpu))
  3900. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3901. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3902. }
  3903. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3904. if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
  3905. return handle_rmode_exception(vcpu, ex_no, error_code);
  3906. switch (ex_no) {
  3907. case DB_VECTOR:
  3908. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3909. if (!(vcpu->guest_debug &
  3910. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3911. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3912. kvm_queue_exception(vcpu, DB_VECTOR);
  3913. return 1;
  3914. }
  3915. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3916. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3917. /* fall through */
  3918. case BP_VECTOR:
  3919. /*
  3920. * Update instruction length as we may reinject #BP from
  3921. * user space while in guest debugging mode. Reading it for
  3922. * #DB as well causes no harm, it is not used in that case.
  3923. */
  3924. vmx->vcpu.arch.event_exit_inst_len =
  3925. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3926. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3927. rip = kvm_rip_read(vcpu);
  3928. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3929. kvm_run->debug.arch.exception = ex_no;
  3930. break;
  3931. default:
  3932. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3933. kvm_run->ex.exception = ex_no;
  3934. kvm_run->ex.error_code = error_code;
  3935. break;
  3936. }
  3937. return 0;
  3938. }
  3939. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3940. {
  3941. ++vcpu->stat.irq_exits;
  3942. return 1;
  3943. }
  3944. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3945. {
  3946. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3947. return 0;
  3948. }
  3949. static int handle_io(struct kvm_vcpu *vcpu)
  3950. {
  3951. unsigned long exit_qualification;
  3952. int size, in, string;
  3953. unsigned port;
  3954. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3955. string = (exit_qualification & 16) != 0;
  3956. in = (exit_qualification & 8) != 0;
  3957. ++vcpu->stat.io_exits;
  3958. if (string || in)
  3959. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3960. port = exit_qualification >> 16;
  3961. size = (exit_qualification & 7) + 1;
  3962. skip_emulated_instruction(vcpu);
  3963. return kvm_fast_pio_out(vcpu, size, port);
  3964. }
  3965. static void
  3966. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3967. {
  3968. /*
  3969. * Patch in the VMCALL instruction:
  3970. */
  3971. hypercall[0] = 0x0f;
  3972. hypercall[1] = 0x01;
  3973. hypercall[2] = 0xc1;
  3974. }
  3975. /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
  3976. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3977. {
  3978. if (is_guest_mode(vcpu)) {
  3979. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3980. unsigned long orig_val = val;
  3981. /*
  3982. * We get here when L2 changed cr0 in a way that did not change
  3983. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3984. * but did change L0 shadowed bits. So we first calculate the
  3985. * effective cr0 value that L1 would like to write into the
  3986. * hardware. It consists of the L2-owned bits from the new
  3987. * value combined with the L1-owned bits from L1's guest_cr0.
  3988. */
  3989. val = (val & ~vmcs12->cr0_guest_host_mask) |
  3990. (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
  3991. /* TODO: will have to take unrestricted guest mode into
  3992. * account */
  3993. if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
  3994. return 1;
  3995. if (kvm_set_cr0(vcpu, val))
  3996. return 1;
  3997. vmcs_writel(CR0_READ_SHADOW, orig_val);
  3998. return 0;
  3999. } else {
  4000. if (to_vmx(vcpu)->nested.vmxon &&
  4001. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  4002. return 1;
  4003. return kvm_set_cr0(vcpu, val);
  4004. }
  4005. }
  4006. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  4007. {
  4008. if (is_guest_mode(vcpu)) {
  4009. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4010. unsigned long orig_val = val;
  4011. /* analogously to handle_set_cr0 */
  4012. val = (val & ~vmcs12->cr4_guest_host_mask) |
  4013. (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
  4014. if (kvm_set_cr4(vcpu, val))
  4015. return 1;
  4016. vmcs_writel(CR4_READ_SHADOW, orig_val);
  4017. return 0;
  4018. } else
  4019. return kvm_set_cr4(vcpu, val);
  4020. }
  4021. /* called to set cr0 as approriate for clts instruction exit. */
  4022. static void handle_clts(struct kvm_vcpu *vcpu)
  4023. {
  4024. if (is_guest_mode(vcpu)) {
  4025. /*
  4026. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  4027. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  4028. * just pretend it's off (also in arch.cr0 for fpu_activate).
  4029. */
  4030. vmcs_writel(CR0_READ_SHADOW,
  4031. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  4032. vcpu->arch.cr0 &= ~X86_CR0_TS;
  4033. } else
  4034. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  4035. }
  4036. static int handle_cr(struct kvm_vcpu *vcpu)
  4037. {
  4038. unsigned long exit_qualification, val;
  4039. int cr;
  4040. int reg;
  4041. int err;
  4042. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4043. cr = exit_qualification & 15;
  4044. reg = (exit_qualification >> 8) & 15;
  4045. switch ((exit_qualification >> 4) & 3) {
  4046. case 0: /* mov to cr */
  4047. val = kvm_register_read(vcpu, reg);
  4048. trace_kvm_cr_write(cr, val);
  4049. switch (cr) {
  4050. case 0:
  4051. err = handle_set_cr0(vcpu, val);
  4052. kvm_complete_insn_gp(vcpu, err);
  4053. return 1;
  4054. case 3:
  4055. err = kvm_set_cr3(vcpu, val);
  4056. kvm_complete_insn_gp(vcpu, err);
  4057. return 1;
  4058. case 4:
  4059. err = handle_set_cr4(vcpu, val);
  4060. kvm_complete_insn_gp(vcpu, err);
  4061. return 1;
  4062. case 8: {
  4063. u8 cr8_prev = kvm_get_cr8(vcpu);
  4064. u8 cr8 = kvm_register_read(vcpu, reg);
  4065. err = kvm_set_cr8(vcpu, cr8);
  4066. kvm_complete_insn_gp(vcpu, err);
  4067. if (irqchip_in_kernel(vcpu->kvm))
  4068. return 1;
  4069. if (cr8_prev <= cr8)
  4070. return 1;
  4071. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  4072. return 0;
  4073. }
  4074. }
  4075. break;
  4076. case 2: /* clts */
  4077. handle_clts(vcpu);
  4078. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  4079. skip_emulated_instruction(vcpu);
  4080. vmx_fpu_activate(vcpu);
  4081. return 1;
  4082. case 1: /*mov from cr*/
  4083. switch (cr) {
  4084. case 3:
  4085. val = kvm_read_cr3(vcpu);
  4086. kvm_register_write(vcpu, reg, val);
  4087. trace_kvm_cr_read(cr, val);
  4088. skip_emulated_instruction(vcpu);
  4089. return 1;
  4090. case 8:
  4091. val = kvm_get_cr8(vcpu);
  4092. kvm_register_write(vcpu, reg, val);
  4093. trace_kvm_cr_read(cr, val);
  4094. skip_emulated_instruction(vcpu);
  4095. return 1;
  4096. }
  4097. break;
  4098. case 3: /* lmsw */
  4099. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  4100. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  4101. kvm_lmsw(vcpu, val);
  4102. skip_emulated_instruction(vcpu);
  4103. return 1;
  4104. default:
  4105. break;
  4106. }
  4107. vcpu->run->exit_reason = 0;
  4108. vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  4109. (int)(exit_qualification >> 4) & 3, cr);
  4110. return 0;
  4111. }
  4112. static int handle_dr(struct kvm_vcpu *vcpu)
  4113. {
  4114. unsigned long exit_qualification;
  4115. int dr, reg;
  4116. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  4117. if (!kvm_require_cpl(vcpu, 0))
  4118. return 1;
  4119. dr = vmcs_readl(GUEST_DR7);
  4120. if (dr & DR7_GD) {
  4121. /*
  4122. * As the vm-exit takes precedence over the debug trap, we
  4123. * need to emulate the latter, either for the host or the
  4124. * guest debugging itself.
  4125. */
  4126. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4127. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  4128. vcpu->run->debug.arch.dr7 = dr;
  4129. vcpu->run->debug.arch.pc =
  4130. vmcs_readl(GUEST_CS_BASE) +
  4131. vmcs_readl(GUEST_RIP);
  4132. vcpu->run->debug.arch.exception = DB_VECTOR;
  4133. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  4134. return 0;
  4135. } else {
  4136. vcpu->arch.dr7 &= ~DR7_GD;
  4137. vcpu->arch.dr6 |= DR6_BD;
  4138. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  4139. kvm_queue_exception(vcpu, DB_VECTOR);
  4140. return 1;
  4141. }
  4142. }
  4143. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4144. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  4145. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  4146. if (exit_qualification & TYPE_MOV_FROM_DR) {
  4147. unsigned long val;
  4148. if (!kvm_get_dr(vcpu, dr, &val))
  4149. kvm_register_write(vcpu, reg, val);
  4150. } else
  4151. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  4152. skip_emulated_instruction(vcpu);
  4153. return 1;
  4154. }
  4155. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  4156. {
  4157. vmcs_writel(GUEST_DR7, val);
  4158. }
  4159. static int handle_cpuid(struct kvm_vcpu *vcpu)
  4160. {
  4161. kvm_emulate_cpuid(vcpu);
  4162. return 1;
  4163. }
  4164. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  4165. {
  4166. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4167. u64 data;
  4168. if (vmx_get_msr(vcpu, ecx, &data)) {
  4169. trace_kvm_msr_read_ex(ecx);
  4170. kvm_inject_gp(vcpu, 0);
  4171. return 1;
  4172. }
  4173. trace_kvm_msr_read(ecx, data);
  4174. /* FIXME: handling of bits 32:63 of rax, rdx */
  4175. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  4176. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  4177. skip_emulated_instruction(vcpu);
  4178. return 1;
  4179. }
  4180. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  4181. {
  4182. struct msr_data msr;
  4183. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  4184. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  4185. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  4186. msr.data = data;
  4187. msr.index = ecx;
  4188. msr.host_initiated = false;
  4189. if (vmx_set_msr(vcpu, &msr) != 0) {
  4190. trace_kvm_msr_write_ex(ecx, data);
  4191. kvm_inject_gp(vcpu, 0);
  4192. return 1;
  4193. }
  4194. trace_kvm_msr_write(ecx, data);
  4195. skip_emulated_instruction(vcpu);
  4196. return 1;
  4197. }
  4198. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  4199. {
  4200. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4201. return 1;
  4202. }
  4203. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  4204. {
  4205. u32 cpu_based_vm_exec_control;
  4206. /* clear pending irq */
  4207. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4208. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  4209. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4210. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4211. ++vcpu->stat.irq_window_exits;
  4212. /*
  4213. * If the user space waits to inject interrupts, exit as soon as
  4214. * possible
  4215. */
  4216. if (!irqchip_in_kernel(vcpu->kvm) &&
  4217. vcpu->run->request_interrupt_window &&
  4218. !kvm_cpu_has_interrupt(vcpu)) {
  4219. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  4220. return 0;
  4221. }
  4222. return 1;
  4223. }
  4224. static int handle_halt(struct kvm_vcpu *vcpu)
  4225. {
  4226. skip_emulated_instruction(vcpu);
  4227. return kvm_emulate_halt(vcpu);
  4228. }
  4229. static int handle_vmcall(struct kvm_vcpu *vcpu)
  4230. {
  4231. skip_emulated_instruction(vcpu);
  4232. kvm_emulate_hypercall(vcpu);
  4233. return 1;
  4234. }
  4235. static int handle_invd(struct kvm_vcpu *vcpu)
  4236. {
  4237. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4238. }
  4239. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4240. {
  4241. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4242. kvm_mmu_invlpg(vcpu, exit_qualification);
  4243. skip_emulated_instruction(vcpu);
  4244. return 1;
  4245. }
  4246. static int handle_rdpmc(struct kvm_vcpu *vcpu)
  4247. {
  4248. int err;
  4249. err = kvm_rdpmc(vcpu);
  4250. kvm_complete_insn_gp(vcpu, err);
  4251. return 1;
  4252. }
  4253. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4254. {
  4255. skip_emulated_instruction(vcpu);
  4256. kvm_emulate_wbinvd(vcpu);
  4257. return 1;
  4258. }
  4259. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4260. {
  4261. u64 new_bv = kvm_read_edx_eax(vcpu);
  4262. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4263. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4264. skip_emulated_instruction(vcpu);
  4265. return 1;
  4266. }
  4267. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4268. {
  4269. if (likely(fasteoi)) {
  4270. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4271. int access_type, offset;
  4272. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4273. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4274. /*
  4275. * Sane guest uses MOV to write EOI, with written value
  4276. * not cared. So make a short-circuit here by avoiding
  4277. * heavy instruction emulation.
  4278. */
  4279. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4280. (offset == APIC_EOI)) {
  4281. kvm_lapic_set_eoi(vcpu);
  4282. skip_emulated_instruction(vcpu);
  4283. return 1;
  4284. }
  4285. }
  4286. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4287. }
  4288. static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
  4289. {
  4290. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4291. int vector = exit_qualification & 0xff;
  4292. /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
  4293. kvm_apic_set_eoi_accelerated(vcpu, vector);
  4294. return 1;
  4295. }
  4296. static int handle_apic_write(struct kvm_vcpu *vcpu)
  4297. {
  4298. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4299. u32 offset = exit_qualification & 0xfff;
  4300. /* APIC-write VM exit is trap-like and thus no need to adjust IP */
  4301. kvm_apic_write_nodecode(vcpu, offset);
  4302. return 1;
  4303. }
  4304. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4305. {
  4306. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4307. unsigned long exit_qualification;
  4308. bool has_error_code = false;
  4309. u32 error_code = 0;
  4310. u16 tss_selector;
  4311. int reason, type, idt_v, idt_index;
  4312. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4313. idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
  4314. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4315. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4316. reason = (u32)exit_qualification >> 30;
  4317. if (reason == TASK_SWITCH_GATE && idt_v) {
  4318. switch (type) {
  4319. case INTR_TYPE_NMI_INTR:
  4320. vcpu->arch.nmi_injected = false;
  4321. vmx_set_nmi_mask(vcpu, true);
  4322. break;
  4323. case INTR_TYPE_EXT_INTR:
  4324. case INTR_TYPE_SOFT_INTR:
  4325. kvm_clear_interrupt_queue(vcpu);
  4326. break;
  4327. case INTR_TYPE_HARD_EXCEPTION:
  4328. if (vmx->idt_vectoring_info &
  4329. VECTORING_INFO_DELIVER_CODE_MASK) {
  4330. has_error_code = true;
  4331. error_code =
  4332. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4333. }
  4334. /* fall through */
  4335. case INTR_TYPE_SOFT_EXCEPTION:
  4336. kvm_clear_exception_queue(vcpu);
  4337. break;
  4338. default:
  4339. break;
  4340. }
  4341. }
  4342. tss_selector = exit_qualification;
  4343. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4344. type != INTR_TYPE_EXT_INTR &&
  4345. type != INTR_TYPE_NMI_INTR))
  4346. skip_emulated_instruction(vcpu);
  4347. if (kvm_task_switch(vcpu, tss_selector,
  4348. type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
  4349. has_error_code, error_code) == EMULATE_FAIL) {
  4350. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4351. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4352. vcpu->run->internal.ndata = 0;
  4353. return 0;
  4354. }
  4355. /* clear all local breakpoint enable flags */
  4356. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4357. /*
  4358. * TODO: What about debug traps on tss switch?
  4359. * Are we supposed to inject them and update dr6?
  4360. */
  4361. return 1;
  4362. }
  4363. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4364. {
  4365. unsigned long exit_qualification;
  4366. gpa_t gpa;
  4367. u32 error_code;
  4368. int gla_validity;
  4369. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4370. gla_validity = (exit_qualification >> 7) & 0x3;
  4371. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4372. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4373. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4374. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4375. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4376. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4377. (long unsigned int)exit_qualification);
  4378. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4379. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4380. return 0;
  4381. }
  4382. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4383. trace_kvm_page_fault(gpa, exit_qualification);
  4384. /* It is a write fault? */
  4385. error_code = exit_qualification & (1U << 1);
  4386. /* ept page table is present? */
  4387. error_code |= (exit_qualification >> 3) & 0x1;
  4388. return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
  4389. }
  4390. static u64 ept_rsvd_mask(u64 spte, int level)
  4391. {
  4392. int i;
  4393. u64 mask = 0;
  4394. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4395. mask |= (1ULL << i);
  4396. if (level > 2)
  4397. /* bits 7:3 reserved */
  4398. mask |= 0xf8;
  4399. else if (level == 2) {
  4400. if (spte & (1ULL << 7))
  4401. /* 2MB ref, bits 20:12 reserved */
  4402. mask |= 0x1ff000;
  4403. else
  4404. /* bits 6:3 reserved */
  4405. mask |= 0x78;
  4406. }
  4407. return mask;
  4408. }
  4409. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4410. int level)
  4411. {
  4412. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4413. /* 010b (write-only) */
  4414. WARN_ON((spte & 0x7) == 0x2);
  4415. /* 110b (write/execute) */
  4416. WARN_ON((spte & 0x7) == 0x6);
  4417. /* 100b (execute-only) and value not supported by logical processor */
  4418. if (!cpu_has_vmx_ept_execute_only())
  4419. WARN_ON((spte & 0x7) == 0x4);
  4420. /* not 000b */
  4421. if ((spte & 0x7)) {
  4422. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4423. if (rsvd_bits != 0) {
  4424. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4425. __func__, rsvd_bits);
  4426. WARN_ON(1);
  4427. }
  4428. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4429. u64 ept_mem_type = (spte & 0x38) >> 3;
  4430. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4431. ept_mem_type == 7) {
  4432. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4433. __func__, ept_mem_type);
  4434. WARN_ON(1);
  4435. }
  4436. }
  4437. }
  4438. }
  4439. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4440. {
  4441. u64 sptes[4];
  4442. int nr_sptes, i, ret;
  4443. gpa_t gpa;
  4444. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4445. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4446. if (likely(ret == 1))
  4447. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4448. EMULATE_DONE;
  4449. if (unlikely(!ret))
  4450. return 1;
  4451. /* It is the real ept misconfig */
  4452. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4453. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4454. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4455. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4456. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4457. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4458. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4459. return 0;
  4460. }
  4461. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4462. {
  4463. u32 cpu_based_vm_exec_control;
  4464. /* clear pending NMI */
  4465. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4466. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4467. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4468. ++vcpu->stat.nmi_window_exits;
  4469. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4470. return 1;
  4471. }
  4472. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4473. {
  4474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4475. enum emulation_result err = EMULATE_DONE;
  4476. int ret = 1;
  4477. u32 cpu_exec_ctrl;
  4478. bool intr_window_requested;
  4479. unsigned count = 130;
  4480. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4481. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4482. while (!guest_state_valid(vcpu) && count-- != 0) {
  4483. if (intr_window_requested && vmx_interrupt_allowed(vcpu))
  4484. return handle_interrupt_window(&vmx->vcpu);
  4485. if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
  4486. return 1;
  4487. err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
  4488. if (err == EMULATE_DO_MMIO) {
  4489. ret = 0;
  4490. goto out;
  4491. }
  4492. if (err != EMULATE_DONE) {
  4493. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4494. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4495. vcpu->run->internal.ndata = 0;
  4496. return 0;
  4497. }
  4498. if (signal_pending(current))
  4499. goto out;
  4500. if (need_resched())
  4501. schedule();
  4502. }
  4503. vmx->emulation_required = emulation_required(vcpu);
  4504. out:
  4505. return ret;
  4506. }
  4507. /*
  4508. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4509. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4510. */
  4511. static int handle_pause(struct kvm_vcpu *vcpu)
  4512. {
  4513. skip_emulated_instruction(vcpu);
  4514. kvm_vcpu_on_spin(vcpu);
  4515. return 1;
  4516. }
  4517. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4518. {
  4519. kvm_queue_exception(vcpu, UD_VECTOR);
  4520. return 1;
  4521. }
  4522. /*
  4523. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4524. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4525. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4526. * allows keeping them loaded on the processor, and in the future will allow
  4527. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4528. * every entry if they never change.
  4529. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4530. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4531. *
  4532. * The following functions allocate and free a vmcs02 in this pool.
  4533. */
  4534. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4535. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4536. {
  4537. struct vmcs02_list *item;
  4538. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4539. if (item->vmptr == vmx->nested.current_vmptr) {
  4540. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4541. return &item->vmcs02;
  4542. }
  4543. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4544. /* Recycle the least recently used VMCS. */
  4545. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4546. struct vmcs02_list, list);
  4547. item->vmptr = vmx->nested.current_vmptr;
  4548. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4549. return &item->vmcs02;
  4550. }
  4551. /* Create a new VMCS */
  4552. item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4553. if (!item)
  4554. return NULL;
  4555. item->vmcs02.vmcs = alloc_vmcs();
  4556. if (!item->vmcs02.vmcs) {
  4557. kfree(item);
  4558. return NULL;
  4559. }
  4560. loaded_vmcs_init(&item->vmcs02);
  4561. item->vmptr = vmx->nested.current_vmptr;
  4562. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4563. vmx->nested.vmcs02_num++;
  4564. return &item->vmcs02;
  4565. }
  4566. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4567. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4568. {
  4569. struct vmcs02_list *item;
  4570. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4571. if (item->vmptr == vmptr) {
  4572. free_loaded_vmcs(&item->vmcs02);
  4573. list_del(&item->list);
  4574. kfree(item);
  4575. vmx->nested.vmcs02_num--;
  4576. return;
  4577. }
  4578. }
  4579. /*
  4580. * Free all VMCSs saved for this vcpu, except the one pointed by
  4581. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4582. * currently used, if running L2), and vmcs01 when running L2.
  4583. */
  4584. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4585. {
  4586. struct vmcs02_list *item, *n;
  4587. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4588. if (vmx->loaded_vmcs != &item->vmcs02)
  4589. free_loaded_vmcs(&item->vmcs02);
  4590. list_del(&item->list);
  4591. kfree(item);
  4592. }
  4593. vmx->nested.vmcs02_num = 0;
  4594. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4595. free_loaded_vmcs(&vmx->vmcs01);
  4596. }
  4597. /*
  4598. * Emulate the VMXON instruction.
  4599. * Currently, we just remember that VMX is active, and do not save or even
  4600. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4601. * do not currently need to store anything in that guest-allocated memory
  4602. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4603. * argument is different from the VMXON pointer (which the spec says they do).
  4604. */
  4605. static int handle_vmon(struct kvm_vcpu *vcpu)
  4606. {
  4607. struct kvm_segment cs;
  4608. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4609. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4610. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4611. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4612. * Otherwise, we should fail with #UD. We test these now:
  4613. */
  4614. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4615. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4616. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4617. kvm_queue_exception(vcpu, UD_VECTOR);
  4618. return 1;
  4619. }
  4620. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4621. if (is_long_mode(vcpu) && !cs.l) {
  4622. kvm_queue_exception(vcpu, UD_VECTOR);
  4623. return 1;
  4624. }
  4625. if (vmx_get_cpl(vcpu)) {
  4626. kvm_inject_gp(vcpu, 0);
  4627. return 1;
  4628. }
  4629. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4630. vmx->nested.vmcs02_num = 0;
  4631. vmx->nested.vmxon = true;
  4632. skip_emulated_instruction(vcpu);
  4633. return 1;
  4634. }
  4635. /*
  4636. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4637. * for running VMX instructions (except VMXON, whose prerequisites are
  4638. * slightly different). It also specifies what exception to inject otherwise.
  4639. */
  4640. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4641. {
  4642. struct kvm_segment cs;
  4643. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4644. if (!vmx->nested.vmxon) {
  4645. kvm_queue_exception(vcpu, UD_VECTOR);
  4646. return 0;
  4647. }
  4648. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4649. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4650. (is_long_mode(vcpu) && !cs.l)) {
  4651. kvm_queue_exception(vcpu, UD_VECTOR);
  4652. return 0;
  4653. }
  4654. if (vmx_get_cpl(vcpu)) {
  4655. kvm_inject_gp(vcpu, 0);
  4656. return 0;
  4657. }
  4658. return 1;
  4659. }
  4660. /*
  4661. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4662. * just stops using VMX.
  4663. */
  4664. static void free_nested(struct vcpu_vmx *vmx)
  4665. {
  4666. if (!vmx->nested.vmxon)
  4667. return;
  4668. vmx->nested.vmxon = false;
  4669. if (vmx->nested.current_vmptr != -1ull) {
  4670. kunmap(vmx->nested.current_vmcs12_page);
  4671. nested_release_page(vmx->nested.current_vmcs12_page);
  4672. vmx->nested.current_vmptr = -1ull;
  4673. vmx->nested.current_vmcs12 = NULL;
  4674. }
  4675. /* Unpin physical memory we referred to in current vmcs02 */
  4676. if (vmx->nested.apic_access_page) {
  4677. nested_release_page(vmx->nested.apic_access_page);
  4678. vmx->nested.apic_access_page = 0;
  4679. }
  4680. nested_free_all_saved_vmcss(vmx);
  4681. }
  4682. /* Emulate the VMXOFF instruction */
  4683. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4684. {
  4685. if (!nested_vmx_check_permission(vcpu))
  4686. return 1;
  4687. free_nested(to_vmx(vcpu));
  4688. skip_emulated_instruction(vcpu);
  4689. return 1;
  4690. }
  4691. /*
  4692. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4693. * exit caused by such an instruction (run by a guest hypervisor).
  4694. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4695. * #UD or #GP.
  4696. */
  4697. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4698. unsigned long exit_qualification,
  4699. u32 vmx_instruction_info, gva_t *ret)
  4700. {
  4701. /*
  4702. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4703. * Execution", on an exit, vmx_instruction_info holds most of the
  4704. * addressing components of the operand. Only the displacement part
  4705. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4706. * For how an actual address is calculated from all these components,
  4707. * refer to Vol. 1, "Operand Addressing".
  4708. */
  4709. int scaling = vmx_instruction_info & 3;
  4710. int addr_size = (vmx_instruction_info >> 7) & 7;
  4711. bool is_reg = vmx_instruction_info & (1u << 10);
  4712. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4713. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4714. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4715. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4716. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4717. if (is_reg) {
  4718. kvm_queue_exception(vcpu, UD_VECTOR);
  4719. return 1;
  4720. }
  4721. /* Addr = segment_base + offset */
  4722. /* offset = base + [index * scale] + displacement */
  4723. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4724. if (base_is_valid)
  4725. *ret += kvm_register_read(vcpu, base_reg);
  4726. if (index_is_valid)
  4727. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4728. *ret += exit_qualification; /* holds the displacement */
  4729. if (addr_size == 1) /* 32 bit */
  4730. *ret &= 0xffffffff;
  4731. /*
  4732. * TODO: throw #GP (and return 1) in various cases that the VM*
  4733. * instructions require it - e.g., offset beyond segment limit,
  4734. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4735. * address, and so on. Currently these are not checked.
  4736. */
  4737. return 0;
  4738. }
  4739. /*
  4740. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4741. * set the success or error code of an emulated VMX instruction, as specified
  4742. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4743. */
  4744. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4745. {
  4746. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4747. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4748. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4749. }
  4750. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4751. {
  4752. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4753. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4754. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4755. | X86_EFLAGS_CF);
  4756. }
  4757. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4758. u32 vm_instruction_error)
  4759. {
  4760. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4761. /*
  4762. * failValid writes the error number to the current VMCS, which
  4763. * can't be done there isn't a current VMCS.
  4764. */
  4765. nested_vmx_failInvalid(vcpu);
  4766. return;
  4767. }
  4768. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4769. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4770. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4771. | X86_EFLAGS_ZF);
  4772. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4773. }
  4774. /* Emulate the VMCLEAR instruction */
  4775. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4776. {
  4777. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4778. gva_t gva;
  4779. gpa_t vmptr;
  4780. struct vmcs12 *vmcs12;
  4781. struct page *page;
  4782. struct x86_exception e;
  4783. if (!nested_vmx_check_permission(vcpu))
  4784. return 1;
  4785. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4786. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4787. return 1;
  4788. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4789. sizeof(vmptr), &e)) {
  4790. kvm_inject_page_fault(vcpu, &e);
  4791. return 1;
  4792. }
  4793. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4794. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4795. skip_emulated_instruction(vcpu);
  4796. return 1;
  4797. }
  4798. if (vmptr == vmx->nested.current_vmptr) {
  4799. kunmap(vmx->nested.current_vmcs12_page);
  4800. nested_release_page(vmx->nested.current_vmcs12_page);
  4801. vmx->nested.current_vmptr = -1ull;
  4802. vmx->nested.current_vmcs12 = NULL;
  4803. }
  4804. page = nested_get_page(vcpu, vmptr);
  4805. if (page == NULL) {
  4806. /*
  4807. * For accurate processor emulation, VMCLEAR beyond available
  4808. * physical memory should do nothing at all. However, it is
  4809. * possible that a nested vmx bug, not a guest hypervisor bug,
  4810. * resulted in this case, so let's shut down before doing any
  4811. * more damage:
  4812. */
  4813. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4814. return 1;
  4815. }
  4816. vmcs12 = kmap(page);
  4817. vmcs12->launch_state = 0;
  4818. kunmap(page);
  4819. nested_release_page(page);
  4820. nested_free_vmcs02(vmx, vmptr);
  4821. skip_emulated_instruction(vcpu);
  4822. nested_vmx_succeed(vcpu);
  4823. return 1;
  4824. }
  4825. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4826. /* Emulate the VMLAUNCH instruction */
  4827. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4828. {
  4829. return nested_vmx_run(vcpu, true);
  4830. }
  4831. /* Emulate the VMRESUME instruction */
  4832. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4833. {
  4834. return nested_vmx_run(vcpu, false);
  4835. }
  4836. enum vmcs_field_type {
  4837. VMCS_FIELD_TYPE_U16 = 0,
  4838. VMCS_FIELD_TYPE_U64 = 1,
  4839. VMCS_FIELD_TYPE_U32 = 2,
  4840. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4841. };
  4842. static inline int vmcs_field_type(unsigned long field)
  4843. {
  4844. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4845. return VMCS_FIELD_TYPE_U32;
  4846. return (field >> 13) & 0x3 ;
  4847. }
  4848. static inline int vmcs_field_readonly(unsigned long field)
  4849. {
  4850. return (((field >> 10) & 0x3) == 1);
  4851. }
  4852. /*
  4853. * Read a vmcs12 field. Since these can have varying lengths and we return
  4854. * one type, we chose the biggest type (u64) and zero-extend the return value
  4855. * to that size. Note that the caller, handle_vmread, might need to use only
  4856. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4857. * 64-bit fields are to be returned).
  4858. */
  4859. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4860. unsigned long field, u64 *ret)
  4861. {
  4862. short offset = vmcs_field_to_offset(field);
  4863. char *p;
  4864. if (offset < 0)
  4865. return 0;
  4866. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4867. switch (vmcs_field_type(field)) {
  4868. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4869. *ret = *((natural_width *)p);
  4870. return 1;
  4871. case VMCS_FIELD_TYPE_U16:
  4872. *ret = *((u16 *)p);
  4873. return 1;
  4874. case VMCS_FIELD_TYPE_U32:
  4875. *ret = *((u32 *)p);
  4876. return 1;
  4877. case VMCS_FIELD_TYPE_U64:
  4878. *ret = *((u64 *)p);
  4879. return 1;
  4880. default:
  4881. return 0; /* can never happen. */
  4882. }
  4883. }
  4884. /*
  4885. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4886. * used before) all generate the same failure when it is missing.
  4887. */
  4888. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4889. {
  4890. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4891. if (vmx->nested.current_vmptr == -1ull) {
  4892. nested_vmx_failInvalid(vcpu);
  4893. skip_emulated_instruction(vcpu);
  4894. return 0;
  4895. }
  4896. return 1;
  4897. }
  4898. static int handle_vmread(struct kvm_vcpu *vcpu)
  4899. {
  4900. unsigned long field;
  4901. u64 field_value;
  4902. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4903. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4904. gva_t gva = 0;
  4905. if (!nested_vmx_check_permission(vcpu) ||
  4906. !nested_vmx_check_vmcs12(vcpu))
  4907. return 1;
  4908. /* Decode instruction info and find the field to read */
  4909. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4910. /* Read the field, zero-extended to a u64 field_value */
  4911. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4912. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4913. skip_emulated_instruction(vcpu);
  4914. return 1;
  4915. }
  4916. /*
  4917. * Now copy part of this value to register or memory, as requested.
  4918. * Note that the number of bits actually copied is 32 or 64 depending
  4919. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4920. */
  4921. if (vmx_instruction_info & (1u << 10)) {
  4922. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4923. field_value);
  4924. } else {
  4925. if (get_vmx_mem_address(vcpu, exit_qualification,
  4926. vmx_instruction_info, &gva))
  4927. return 1;
  4928. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4929. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4930. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4931. }
  4932. nested_vmx_succeed(vcpu);
  4933. skip_emulated_instruction(vcpu);
  4934. return 1;
  4935. }
  4936. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4937. {
  4938. unsigned long field;
  4939. gva_t gva;
  4940. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4941. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4942. char *p;
  4943. short offset;
  4944. /* The value to write might be 32 or 64 bits, depending on L1's long
  4945. * mode, and eventually we need to write that into a field of several
  4946. * possible lengths. The code below first zero-extends the value to 64
  4947. * bit (field_value), and then copies only the approriate number of
  4948. * bits into the vmcs12 field.
  4949. */
  4950. u64 field_value = 0;
  4951. struct x86_exception e;
  4952. if (!nested_vmx_check_permission(vcpu) ||
  4953. !nested_vmx_check_vmcs12(vcpu))
  4954. return 1;
  4955. if (vmx_instruction_info & (1u << 10))
  4956. field_value = kvm_register_read(vcpu,
  4957. (((vmx_instruction_info) >> 3) & 0xf));
  4958. else {
  4959. if (get_vmx_mem_address(vcpu, exit_qualification,
  4960. vmx_instruction_info, &gva))
  4961. return 1;
  4962. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4963. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4964. kvm_inject_page_fault(vcpu, &e);
  4965. return 1;
  4966. }
  4967. }
  4968. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4969. if (vmcs_field_readonly(field)) {
  4970. nested_vmx_failValid(vcpu,
  4971. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4972. skip_emulated_instruction(vcpu);
  4973. return 1;
  4974. }
  4975. offset = vmcs_field_to_offset(field);
  4976. if (offset < 0) {
  4977. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4978. skip_emulated_instruction(vcpu);
  4979. return 1;
  4980. }
  4981. p = ((char *) get_vmcs12(vcpu)) + offset;
  4982. switch (vmcs_field_type(field)) {
  4983. case VMCS_FIELD_TYPE_U16:
  4984. *(u16 *)p = field_value;
  4985. break;
  4986. case VMCS_FIELD_TYPE_U32:
  4987. *(u32 *)p = field_value;
  4988. break;
  4989. case VMCS_FIELD_TYPE_U64:
  4990. *(u64 *)p = field_value;
  4991. break;
  4992. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4993. *(natural_width *)p = field_value;
  4994. break;
  4995. default:
  4996. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4997. skip_emulated_instruction(vcpu);
  4998. return 1;
  4999. }
  5000. nested_vmx_succeed(vcpu);
  5001. skip_emulated_instruction(vcpu);
  5002. return 1;
  5003. }
  5004. /* Emulate the VMPTRLD instruction */
  5005. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  5006. {
  5007. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5008. gva_t gva;
  5009. gpa_t vmptr;
  5010. struct x86_exception e;
  5011. if (!nested_vmx_check_permission(vcpu))
  5012. return 1;
  5013. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  5014. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  5015. return 1;
  5016. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  5017. sizeof(vmptr), &e)) {
  5018. kvm_inject_page_fault(vcpu, &e);
  5019. return 1;
  5020. }
  5021. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  5022. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  5023. skip_emulated_instruction(vcpu);
  5024. return 1;
  5025. }
  5026. if (vmx->nested.current_vmptr != vmptr) {
  5027. struct vmcs12 *new_vmcs12;
  5028. struct page *page;
  5029. page = nested_get_page(vcpu, vmptr);
  5030. if (page == NULL) {
  5031. nested_vmx_failInvalid(vcpu);
  5032. skip_emulated_instruction(vcpu);
  5033. return 1;
  5034. }
  5035. new_vmcs12 = kmap(page);
  5036. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  5037. kunmap(page);
  5038. nested_release_page_clean(page);
  5039. nested_vmx_failValid(vcpu,
  5040. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  5041. skip_emulated_instruction(vcpu);
  5042. return 1;
  5043. }
  5044. if (vmx->nested.current_vmptr != -1ull) {
  5045. kunmap(vmx->nested.current_vmcs12_page);
  5046. nested_release_page(vmx->nested.current_vmcs12_page);
  5047. }
  5048. vmx->nested.current_vmptr = vmptr;
  5049. vmx->nested.current_vmcs12 = new_vmcs12;
  5050. vmx->nested.current_vmcs12_page = page;
  5051. }
  5052. nested_vmx_succeed(vcpu);
  5053. skip_emulated_instruction(vcpu);
  5054. return 1;
  5055. }
  5056. /* Emulate the VMPTRST instruction */
  5057. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  5058. {
  5059. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5060. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5061. gva_t vmcs_gva;
  5062. struct x86_exception e;
  5063. if (!nested_vmx_check_permission(vcpu))
  5064. return 1;
  5065. if (get_vmx_mem_address(vcpu, exit_qualification,
  5066. vmx_instruction_info, &vmcs_gva))
  5067. return 1;
  5068. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  5069. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  5070. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  5071. sizeof(u64), &e)) {
  5072. kvm_inject_page_fault(vcpu, &e);
  5073. return 1;
  5074. }
  5075. nested_vmx_succeed(vcpu);
  5076. skip_emulated_instruction(vcpu);
  5077. return 1;
  5078. }
  5079. /*
  5080. * The exit handlers return 1 if the exit was handled fully and guest execution
  5081. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  5082. * to be done to userspace and return 0.
  5083. */
  5084. static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  5085. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  5086. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  5087. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  5088. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  5089. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  5090. [EXIT_REASON_CR_ACCESS] = handle_cr,
  5091. [EXIT_REASON_DR_ACCESS] = handle_dr,
  5092. [EXIT_REASON_CPUID] = handle_cpuid,
  5093. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  5094. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  5095. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  5096. [EXIT_REASON_HLT] = handle_halt,
  5097. [EXIT_REASON_INVD] = handle_invd,
  5098. [EXIT_REASON_INVLPG] = handle_invlpg,
  5099. [EXIT_REASON_RDPMC] = handle_rdpmc,
  5100. [EXIT_REASON_VMCALL] = handle_vmcall,
  5101. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  5102. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  5103. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  5104. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  5105. [EXIT_REASON_VMREAD] = handle_vmread,
  5106. [EXIT_REASON_VMRESUME] = handle_vmresume,
  5107. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  5108. [EXIT_REASON_VMOFF] = handle_vmoff,
  5109. [EXIT_REASON_VMON] = handle_vmon,
  5110. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  5111. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  5112. [EXIT_REASON_APIC_WRITE] = handle_apic_write,
  5113. [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
  5114. [EXIT_REASON_WBINVD] = handle_wbinvd,
  5115. [EXIT_REASON_XSETBV] = handle_xsetbv,
  5116. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  5117. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  5118. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  5119. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  5120. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  5121. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  5122. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  5123. };
  5124. static const int kvm_vmx_max_exit_handlers =
  5125. ARRAY_SIZE(kvm_vmx_exit_handlers);
  5126. static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
  5127. struct vmcs12 *vmcs12)
  5128. {
  5129. unsigned long exit_qualification;
  5130. gpa_t bitmap, last_bitmap;
  5131. unsigned int port;
  5132. int size;
  5133. u8 b;
  5134. if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
  5135. return 1;
  5136. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
  5137. return 0;
  5138. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5139. port = exit_qualification >> 16;
  5140. size = (exit_qualification & 7) + 1;
  5141. last_bitmap = (gpa_t)-1;
  5142. b = -1;
  5143. while (size > 0) {
  5144. if (port < 0x8000)
  5145. bitmap = vmcs12->io_bitmap_a;
  5146. else if (port < 0x10000)
  5147. bitmap = vmcs12->io_bitmap_b;
  5148. else
  5149. return 1;
  5150. bitmap += (port & 0x7fff) / 8;
  5151. if (last_bitmap != bitmap)
  5152. if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
  5153. return 1;
  5154. if (b & (1 << (port & 7)))
  5155. return 1;
  5156. port++;
  5157. size--;
  5158. last_bitmap = bitmap;
  5159. }
  5160. return 0;
  5161. }
  5162. /*
  5163. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  5164. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  5165. * disinterest in the current event (read or write a specific MSR) by using an
  5166. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  5167. */
  5168. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  5169. struct vmcs12 *vmcs12, u32 exit_reason)
  5170. {
  5171. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  5172. gpa_t bitmap;
  5173. if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
  5174. return 1;
  5175. /*
  5176. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  5177. * for the four combinations of read/write and low/high MSR numbers.
  5178. * First we need to figure out which of the four to use:
  5179. */
  5180. bitmap = vmcs12->msr_bitmap;
  5181. if (exit_reason == EXIT_REASON_MSR_WRITE)
  5182. bitmap += 2048;
  5183. if (msr_index >= 0xc0000000) {
  5184. msr_index -= 0xc0000000;
  5185. bitmap += 1024;
  5186. }
  5187. /* Then read the msr_index'th bit from this bitmap: */
  5188. if (msr_index < 1024*8) {
  5189. unsigned char b;
  5190. if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
  5191. return 1;
  5192. return 1 & (b >> (msr_index & 7));
  5193. } else
  5194. return 1; /* let L1 handle the wrong parameter */
  5195. }
  5196. /*
  5197. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  5198. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  5199. * intercept (via guest_host_mask etc.) the current event.
  5200. */
  5201. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  5202. struct vmcs12 *vmcs12)
  5203. {
  5204. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5205. int cr = exit_qualification & 15;
  5206. int reg = (exit_qualification >> 8) & 15;
  5207. unsigned long val = kvm_register_read(vcpu, reg);
  5208. switch ((exit_qualification >> 4) & 3) {
  5209. case 0: /* mov to cr */
  5210. switch (cr) {
  5211. case 0:
  5212. if (vmcs12->cr0_guest_host_mask &
  5213. (val ^ vmcs12->cr0_read_shadow))
  5214. return 1;
  5215. break;
  5216. case 3:
  5217. if ((vmcs12->cr3_target_count >= 1 &&
  5218. vmcs12->cr3_target_value0 == val) ||
  5219. (vmcs12->cr3_target_count >= 2 &&
  5220. vmcs12->cr3_target_value1 == val) ||
  5221. (vmcs12->cr3_target_count >= 3 &&
  5222. vmcs12->cr3_target_value2 == val) ||
  5223. (vmcs12->cr3_target_count >= 4 &&
  5224. vmcs12->cr3_target_value3 == val))
  5225. return 0;
  5226. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  5227. return 1;
  5228. break;
  5229. case 4:
  5230. if (vmcs12->cr4_guest_host_mask &
  5231. (vmcs12->cr4_read_shadow ^ val))
  5232. return 1;
  5233. break;
  5234. case 8:
  5235. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  5236. return 1;
  5237. break;
  5238. }
  5239. break;
  5240. case 2: /* clts */
  5241. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  5242. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  5243. return 1;
  5244. break;
  5245. case 1: /* mov from cr */
  5246. switch (cr) {
  5247. case 3:
  5248. if (vmcs12->cpu_based_vm_exec_control &
  5249. CPU_BASED_CR3_STORE_EXITING)
  5250. return 1;
  5251. break;
  5252. case 8:
  5253. if (vmcs12->cpu_based_vm_exec_control &
  5254. CPU_BASED_CR8_STORE_EXITING)
  5255. return 1;
  5256. break;
  5257. }
  5258. break;
  5259. case 3: /* lmsw */
  5260. /*
  5261. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  5262. * cr0. Other attempted changes are ignored, with no exit.
  5263. */
  5264. if (vmcs12->cr0_guest_host_mask & 0xe &
  5265. (val ^ vmcs12->cr0_read_shadow))
  5266. return 1;
  5267. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  5268. !(vmcs12->cr0_read_shadow & 0x1) &&
  5269. (val & 0x1))
  5270. return 1;
  5271. break;
  5272. }
  5273. return 0;
  5274. }
  5275. /*
  5276. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  5277. * should handle it ourselves in L0 (and then continue L2). Only call this
  5278. * when in is_guest_mode (L2).
  5279. */
  5280. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  5281. {
  5282. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5284. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5285. u32 exit_reason = vmx->exit_reason;
  5286. if (vmx->nested.nested_run_pending)
  5287. return 0;
  5288. if (unlikely(vmx->fail)) {
  5289. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  5290. vmcs_read32(VM_INSTRUCTION_ERROR));
  5291. return 1;
  5292. }
  5293. switch (exit_reason) {
  5294. case EXIT_REASON_EXCEPTION_NMI:
  5295. if (!is_exception(intr_info))
  5296. return 0;
  5297. else if (is_page_fault(intr_info))
  5298. return enable_ept;
  5299. return vmcs12->exception_bitmap &
  5300. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  5301. case EXIT_REASON_EXTERNAL_INTERRUPT:
  5302. return 0;
  5303. case EXIT_REASON_TRIPLE_FAULT:
  5304. return 1;
  5305. case EXIT_REASON_PENDING_INTERRUPT:
  5306. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
  5307. case EXIT_REASON_NMI_WINDOW:
  5308. return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
  5309. case EXIT_REASON_TASK_SWITCH:
  5310. return 1;
  5311. case EXIT_REASON_CPUID:
  5312. return 1;
  5313. case EXIT_REASON_HLT:
  5314. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5315. case EXIT_REASON_INVD:
  5316. return 1;
  5317. case EXIT_REASON_INVLPG:
  5318. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5319. case EXIT_REASON_RDPMC:
  5320. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5321. case EXIT_REASON_RDTSC:
  5322. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5323. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5324. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5325. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5326. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5327. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5328. /*
  5329. * VMX instructions trap unconditionally. This allows L1 to
  5330. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5331. */
  5332. return 1;
  5333. case EXIT_REASON_CR_ACCESS:
  5334. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5335. case EXIT_REASON_DR_ACCESS:
  5336. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5337. case EXIT_REASON_IO_INSTRUCTION:
  5338. return nested_vmx_exit_handled_io(vcpu, vmcs12);
  5339. case EXIT_REASON_MSR_READ:
  5340. case EXIT_REASON_MSR_WRITE:
  5341. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5342. case EXIT_REASON_INVALID_STATE:
  5343. return 1;
  5344. case EXIT_REASON_MWAIT_INSTRUCTION:
  5345. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5346. case EXIT_REASON_MONITOR_INSTRUCTION:
  5347. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5348. case EXIT_REASON_PAUSE_INSTRUCTION:
  5349. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5350. nested_cpu_has2(vmcs12,
  5351. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5352. case EXIT_REASON_MCE_DURING_VMENTRY:
  5353. return 0;
  5354. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5355. return 1;
  5356. case EXIT_REASON_APIC_ACCESS:
  5357. return nested_cpu_has2(vmcs12,
  5358. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5359. case EXIT_REASON_EPT_VIOLATION:
  5360. case EXIT_REASON_EPT_MISCONFIG:
  5361. return 0;
  5362. case EXIT_REASON_PREEMPTION_TIMER:
  5363. return vmcs12->pin_based_vm_exec_control &
  5364. PIN_BASED_VMX_PREEMPTION_TIMER;
  5365. case EXIT_REASON_WBINVD:
  5366. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5367. case EXIT_REASON_XSETBV:
  5368. return 1;
  5369. default:
  5370. return 1;
  5371. }
  5372. }
  5373. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5374. {
  5375. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5376. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5377. }
  5378. /*
  5379. * The guest has exited. See if we can fix it or if we need userspace
  5380. * assistance.
  5381. */
  5382. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5383. {
  5384. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5385. u32 exit_reason = vmx->exit_reason;
  5386. u32 vectoring_info = vmx->idt_vectoring_info;
  5387. /* If guest state is invalid, start emulating */
  5388. if (vmx->emulation_required)
  5389. return handle_invalid_guest_state(vcpu);
  5390. /*
  5391. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5392. * we did not inject a still-pending event to L1 now because of
  5393. * nested_run_pending, we need to re-enable this bit.
  5394. */
  5395. if (vmx->nested.nested_run_pending)
  5396. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5397. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5398. exit_reason == EXIT_REASON_VMRESUME))
  5399. vmx->nested.nested_run_pending = 1;
  5400. else
  5401. vmx->nested.nested_run_pending = 0;
  5402. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5403. nested_vmx_vmexit(vcpu);
  5404. return 1;
  5405. }
  5406. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5407. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5408. vcpu->run->fail_entry.hardware_entry_failure_reason
  5409. = exit_reason;
  5410. return 0;
  5411. }
  5412. if (unlikely(vmx->fail)) {
  5413. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5414. vcpu->run->fail_entry.hardware_entry_failure_reason
  5415. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5416. return 0;
  5417. }
  5418. /*
  5419. * Note:
  5420. * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
  5421. * delivery event since it indicates guest is accessing MMIO.
  5422. * The vm-exit can be triggered again after return to guest that
  5423. * will cause infinite loop.
  5424. */
  5425. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5426. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5427. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5428. exit_reason != EXIT_REASON_TASK_SWITCH)) {
  5429. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  5430. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
  5431. vcpu->run->internal.ndata = 2;
  5432. vcpu->run->internal.data[0] = vectoring_info;
  5433. vcpu->run->internal.data[1] = exit_reason;
  5434. return 0;
  5435. }
  5436. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5437. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5438. get_vmcs12(vcpu), vcpu)))) {
  5439. if (vmx_interrupt_allowed(vcpu)) {
  5440. vmx->soft_vnmi_blocked = 0;
  5441. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5442. vcpu->arch.nmi_pending) {
  5443. /*
  5444. * This CPU don't support us in finding the end of an
  5445. * NMI-blocked window if the guest runs with IRQs
  5446. * disabled. So we pull the trigger after 1 s of
  5447. * futile waiting, but inform the user about this.
  5448. */
  5449. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5450. "state on VCPU %d after 1 s timeout\n",
  5451. __func__, vcpu->vcpu_id);
  5452. vmx->soft_vnmi_blocked = 0;
  5453. }
  5454. }
  5455. if (exit_reason < kvm_vmx_max_exit_handlers
  5456. && kvm_vmx_exit_handlers[exit_reason])
  5457. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5458. else {
  5459. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5460. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5461. }
  5462. return 0;
  5463. }
  5464. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5465. {
  5466. if (irr == -1 || tpr < irr) {
  5467. vmcs_write32(TPR_THRESHOLD, 0);
  5468. return;
  5469. }
  5470. vmcs_write32(TPR_THRESHOLD, irr);
  5471. }
  5472. static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
  5473. {
  5474. u32 sec_exec_control;
  5475. /*
  5476. * There is not point to enable virtualize x2apic without enable
  5477. * apicv
  5478. */
  5479. if (!cpu_has_vmx_virtualize_x2apic_mode() ||
  5480. !vmx_vm_has_apicv(vcpu->kvm))
  5481. return;
  5482. if (!vm_need_tpr_shadow(vcpu->kvm))
  5483. return;
  5484. sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5485. if (set) {
  5486. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5487. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5488. } else {
  5489. sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
  5490. sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5491. }
  5492. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
  5493. vmx_set_msr_bitmap(vcpu);
  5494. }
  5495. static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
  5496. {
  5497. u16 status;
  5498. u8 old;
  5499. if (!vmx_vm_has_apicv(kvm))
  5500. return;
  5501. if (isr == -1)
  5502. isr = 0;
  5503. status = vmcs_read16(GUEST_INTR_STATUS);
  5504. old = status >> 8;
  5505. if (isr != old) {
  5506. status &= 0xff;
  5507. status |= isr << 8;
  5508. vmcs_write16(GUEST_INTR_STATUS, status);
  5509. }
  5510. }
  5511. static void vmx_set_rvi(int vector)
  5512. {
  5513. u16 status;
  5514. u8 old;
  5515. status = vmcs_read16(GUEST_INTR_STATUS);
  5516. old = (u8)status & 0xff;
  5517. if ((u8)vector != old) {
  5518. status &= ~0xff;
  5519. status |= (u8)vector;
  5520. vmcs_write16(GUEST_INTR_STATUS, status);
  5521. }
  5522. }
  5523. static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
  5524. {
  5525. if (max_irr == -1)
  5526. return;
  5527. vmx_set_rvi(max_irr);
  5528. }
  5529. static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
  5530. {
  5531. vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
  5532. vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
  5533. vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
  5534. vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
  5535. }
  5536. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5537. {
  5538. u32 exit_intr_info;
  5539. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5540. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5541. return;
  5542. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5543. exit_intr_info = vmx->exit_intr_info;
  5544. /* Handle machine checks before interrupts are enabled */
  5545. if (is_machine_check(exit_intr_info))
  5546. kvm_machine_check();
  5547. /* We need to handle NMIs before interrupts are enabled */
  5548. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5549. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5550. kvm_before_handle_nmi(&vmx->vcpu);
  5551. asm("int $2");
  5552. kvm_after_handle_nmi(&vmx->vcpu);
  5553. }
  5554. }
  5555. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5556. {
  5557. u32 exit_intr_info;
  5558. bool unblock_nmi;
  5559. u8 vector;
  5560. bool idtv_info_valid;
  5561. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5562. if (cpu_has_virtual_nmis()) {
  5563. if (vmx->nmi_known_unmasked)
  5564. return;
  5565. /*
  5566. * Can't use vmx->exit_intr_info since we're not sure what
  5567. * the exit reason is.
  5568. */
  5569. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5570. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5571. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5572. /*
  5573. * SDM 3: 27.7.1.2 (September 2008)
  5574. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5575. * a guest IRET fault.
  5576. * SDM 3: 23.2.2 (September 2008)
  5577. * Bit 12 is undefined in any of the following cases:
  5578. * If the VM exit sets the valid bit in the IDT-vectoring
  5579. * information field.
  5580. * If the VM exit is due to a double fault.
  5581. */
  5582. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5583. vector != DF_VECTOR && !idtv_info_valid)
  5584. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5585. GUEST_INTR_STATE_NMI);
  5586. else
  5587. vmx->nmi_known_unmasked =
  5588. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5589. & GUEST_INTR_STATE_NMI);
  5590. } else if (unlikely(vmx->soft_vnmi_blocked))
  5591. vmx->vnmi_blocked_time +=
  5592. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5593. }
  5594. static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
  5595. u32 idt_vectoring_info,
  5596. int instr_len_field,
  5597. int error_code_field)
  5598. {
  5599. u8 vector;
  5600. int type;
  5601. bool idtv_info_valid;
  5602. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5603. vcpu->arch.nmi_injected = false;
  5604. kvm_clear_exception_queue(vcpu);
  5605. kvm_clear_interrupt_queue(vcpu);
  5606. if (!idtv_info_valid)
  5607. return;
  5608. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5609. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5610. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5611. switch (type) {
  5612. case INTR_TYPE_NMI_INTR:
  5613. vcpu->arch.nmi_injected = true;
  5614. /*
  5615. * SDM 3: 27.7.1.2 (September 2008)
  5616. * Clear bit "block by NMI" before VM entry if a NMI
  5617. * delivery faulted.
  5618. */
  5619. vmx_set_nmi_mask(vcpu, false);
  5620. break;
  5621. case INTR_TYPE_SOFT_EXCEPTION:
  5622. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5623. /* fall through */
  5624. case INTR_TYPE_HARD_EXCEPTION:
  5625. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5626. u32 err = vmcs_read32(error_code_field);
  5627. kvm_queue_exception_e(vcpu, vector, err);
  5628. } else
  5629. kvm_queue_exception(vcpu, vector);
  5630. break;
  5631. case INTR_TYPE_SOFT_INTR:
  5632. vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
  5633. /* fall through */
  5634. case INTR_TYPE_EXT_INTR:
  5635. kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
  5636. break;
  5637. default:
  5638. break;
  5639. }
  5640. }
  5641. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5642. {
  5643. if (is_guest_mode(&vmx->vcpu))
  5644. return;
  5645. __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
  5646. VM_EXIT_INSTRUCTION_LEN,
  5647. IDT_VECTORING_ERROR_CODE);
  5648. }
  5649. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5650. {
  5651. if (is_guest_mode(vcpu))
  5652. return;
  5653. __vmx_complete_interrupts(vcpu,
  5654. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5655. VM_ENTRY_INSTRUCTION_LEN,
  5656. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5657. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5658. }
  5659. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5660. {
  5661. int i, nr_msrs;
  5662. struct perf_guest_switch_msr *msrs;
  5663. msrs = perf_guest_get_msrs(&nr_msrs);
  5664. if (!msrs)
  5665. return;
  5666. for (i = 0; i < nr_msrs; i++)
  5667. if (msrs[i].host == msrs[i].guest)
  5668. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5669. else
  5670. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5671. msrs[i].host);
  5672. }
  5673. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5674. {
  5675. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5676. unsigned long debugctlmsr;
  5677. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5678. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5679. if (vmcs12->idt_vectoring_info_field &
  5680. VECTORING_INFO_VALID_MASK) {
  5681. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5682. vmcs12->idt_vectoring_info_field);
  5683. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5684. vmcs12->vm_exit_instruction_len);
  5685. if (vmcs12->idt_vectoring_info_field &
  5686. VECTORING_INFO_DELIVER_CODE_MASK)
  5687. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5688. vmcs12->idt_vectoring_error_code);
  5689. }
  5690. }
  5691. /* Record the guest's net vcpu time for enforced NMI injections. */
  5692. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5693. vmx->entry_time = ktime_get();
  5694. /* Don't enter VMX if guest state is invalid, let the exit handler
  5695. start emulation until we arrive back to a valid state */
  5696. if (vmx->emulation_required)
  5697. return;
  5698. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5699. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5700. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5701. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5702. /* When single-stepping over STI and MOV SS, we must clear the
  5703. * corresponding interruptibility bits in the guest state. Otherwise
  5704. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5705. * exceptions being set, but that's not correct for the guest debugging
  5706. * case. */
  5707. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5708. vmx_set_interrupt_shadow(vcpu, 0);
  5709. atomic_switch_perf_msrs(vmx);
  5710. debugctlmsr = get_debugctlmsr();
  5711. vmx->__launched = vmx->loaded_vmcs->launched;
  5712. asm(
  5713. /* Store host registers */
  5714. "push %%" _ASM_DX "; push %%" _ASM_BP ";"
  5715. "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
  5716. "push %%" _ASM_CX " \n\t"
  5717. "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5718. "je 1f \n\t"
  5719. "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
  5720. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5721. "1: \n\t"
  5722. /* Reload cr2 if changed */
  5723. "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
  5724. "mov %%cr2, %%" _ASM_DX " \n\t"
  5725. "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
  5726. "je 2f \n\t"
  5727. "mov %%" _ASM_AX", %%cr2 \n\t"
  5728. "2: \n\t"
  5729. /* Check if vmlaunch of vmresume is needed */
  5730. "cmpl $0, %c[launched](%0) \n\t"
  5731. /* Load guest registers. Don't clobber flags. */
  5732. "mov %c[rax](%0), %%" _ASM_AX " \n\t"
  5733. "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
  5734. "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
  5735. "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
  5736. "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
  5737. "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
  5738. #ifdef CONFIG_X86_64
  5739. "mov %c[r8](%0), %%r8 \n\t"
  5740. "mov %c[r9](%0), %%r9 \n\t"
  5741. "mov %c[r10](%0), %%r10 \n\t"
  5742. "mov %c[r11](%0), %%r11 \n\t"
  5743. "mov %c[r12](%0), %%r12 \n\t"
  5744. "mov %c[r13](%0), %%r13 \n\t"
  5745. "mov %c[r14](%0), %%r14 \n\t"
  5746. "mov %c[r15](%0), %%r15 \n\t"
  5747. #endif
  5748. "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
  5749. /* Enter guest mode */
  5750. "jne 1f \n\t"
  5751. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5752. "jmp 2f \n\t"
  5753. "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5754. "2: "
  5755. /* Save guest registers, load host registers, keep flags */
  5756. "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
  5757. "pop %0 \n\t"
  5758. "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
  5759. "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
  5760. __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
  5761. "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
  5762. "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
  5763. "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
  5764. "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
  5765. #ifdef CONFIG_X86_64
  5766. "mov %%r8, %c[r8](%0) \n\t"
  5767. "mov %%r9, %c[r9](%0) \n\t"
  5768. "mov %%r10, %c[r10](%0) \n\t"
  5769. "mov %%r11, %c[r11](%0) \n\t"
  5770. "mov %%r12, %c[r12](%0) \n\t"
  5771. "mov %%r13, %c[r13](%0) \n\t"
  5772. "mov %%r14, %c[r14](%0) \n\t"
  5773. "mov %%r15, %c[r15](%0) \n\t"
  5774. #endif
  5775. "mov %%cr2, %%" _ASM_AX " \n\t"
  5776. "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
  5777. "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
  5778. "setbe %c[fail](%0) \n\t"
  5779. ".pushsection .rodata \n\t"
  5780. ".global vmx_return \n\t"
  5781. "vmx_return: " _ASM_PTR " 2b \n\t"
  5782. ".popsection"
  5783. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5784. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5785. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5786. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5787. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5788. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5789. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5790. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5791. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5792. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5793. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5794. #ifdef CONFIG_X86_64
  5795. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5796. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5797. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5798. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5799. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5800. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5801. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5802. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5803. #endif
  5804. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5805. [wordsize]"i"(sizeof(ulong))
  5806. : "cc", "memory"
  5807. #ifdef CONFIG_X86_64
  5808. , "rax", "rbx", "rdi", "rsi"
  5809. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5810. #else
  5811. , "eax", "ebx", "edi", "esi"
  5812. #endif
  5813. );
  5814. /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
  5815. if (debugctlmsr)
  5816. update_debugctlmsr(debugctlmsr);
  5817. #ifndef CONFIG_X86_64
  5818. /*
  5819. * The sysexit path does not restore ds/es, so we must set them to
  5820. * a reasonable value ourselves.
  5821. *
  5822. * We can't defer this to vmx_load_host_state() since that function
  5823. * may be executed in interrupt context, which saves and restore segments
  5824. * around it, nullifying its effect.
  5825. */
  5826. loadsegment(ds, __USER_DS);
  5827. loadsegment(es, __USER_DS);
  5828. #endif
  5829. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5830. | (1 << VCPU_EXREG_RFLAGS)
  5831. | (1 << VCPU_EXREG_CPL)
  5832. | (1 << VCPU_EXREG_PDPTR)
  5833. | (1 << VCPU_EXREG_SEGMENTS)
  5834. | (1 << VCPU_EXREG_CR3));
  5835. vcpu->arch.regs_dirty = 0;
  5836. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5837. if (is_guest_mode(vcpu)) {
  5838. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5839. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5840. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5841. vmcs12->idt_vectoring_error_code =
  5842. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5843. vmcs12->vm_exit_instruction_len =
  5844. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5845. }
  5846. }
  5847. vmx->loaded_vmcs->launched = 1;
  5848. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5849. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5850. vmx_complete_atomic_exit(vmx);
  5851. vmx_recover_nmi_blocking(vmx);
  5852. vmx_complete_interrupts(vmx);
  5853. }
  5854. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5855. {
  5856. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5857. free_vpid(vmx);
  5858. free_nested(vmx);
  5859. free_loaded_vmcs(vmx->loaded_vmcs);
  5860. kfree(vmx->guest_msrs);
  5861. kvm_vcpu_uninit(vcpu);
  5862. kmem_cache_free(kvm_vcpu_cache, vmx);
  5863. }
  5864. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5865. {
  5866. int err;
  5867. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5868. int cpu;
  5869. if (!vmx)
  5870. return ERR_PTR(-ENOMEM);
  5871. allocate_vpid(vmx);
  5872. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5873. if (err)
  5874. goto free_vcpu;
  5875. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5876. err = -ENOMEM;
  5877. if (!vmx->guest_msrs) {
  5878. goto uninit_vcpu;
  5879. }
  5880. vmx->loaded_vmcs = &vmx->vmcs01;
  5881. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5882. if (!vmx->loaded_vmcs->vmcs)
  5883. goto free_msrs;
  5884. if (!vmm_exclusive)
  5885. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5886. loaded_vmcs_init(vmx->loaded_vmcs);
  5887. if (!vmm_exclusive)
  5888. kvm_cpu_vmxoff();
  5889. cpu = get_cpu();
  5890. vmx_vcpu_load(&vmx->vcpu, cpu);
  5891. vmx->vcpu.cpu = cpu;
  5892. err = vmx_vcpu_setup(vmx);
  5893. vmx_vcpu_put(&vmx->vcpu);
  5894. put_cpu();
  5895. if (err)
  5896. goto free_vmcs;
  5897. if (vm_need_virtualize_apic_accesses(kvm)) {
  5898. err = alloc_apic_access_page(kvm);
  5899. if (err)
  5900. goto free_vmcs;
  5901. }
  5902. if (enable_ept) {
  5903. if (!kvm->arch.ept_identity_map_addr)
  5904. kvm->arch.ept_identity_map_addr =
  5905. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5906. err = -ENOMEM;
  5907. if (alloc_identity_pagetable(kvm) != 0)
  5908. goto free_vmcs;
  5909. if (!init_rmode_identity_map(kvm))
  5910. goto free_vmcs;
  5911. }
  5912. vmx->nested.current_vmptr = -1ull;
  5913. vmx->nested.current_vmcs12 = NULL;
  5914. return &vmx->vcpu;
  5915. free_vmcs:
  5916. free_loaded_vmcs(vmx->loaded_vmcs);
  5917. free_msrs:
  5918. kfree(vmx->guest_msrs);
  5919. uninit_vcpu:
  5920. kvm_vcpu_uninit(&vmx->vcpu);
  5921. free_vcpu:
  5922. free_vpid(vmx);
  5923. kmem_cache_free(kvm_vcpu_cache, vmx);
  5924. return ERR_PTR(err);
  5925. }
  5926. static void __init vmx_check_processor_compat(void *rtn)
  5927. {
  5928. struct vmcs_config vmcs_conf;
  5929. *(int *)rtn = 0;
  5930. if (setup_vmcs_config(&vmcs_conf) < 0)
  5931. *(int *)rtn = -EIO;
  5932. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5933. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5934. smp_processor_id());
  5935. *(int *)rtn = -EIO;
  5936. }
  5937. }
  5938. static int get_ept_level(void)
  5939. {
  5940. return VMX_EPT_DEFAULT_GAW + 1;
  5941. }
  5942. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5943. {
  5944. u64 ret;
  5945. /* For VT-d and EPT combination
  5946. * 1. MMIO: always map as UC
  5947. * 2. EPT with VT-d:
  5948. * a. VT-d without snooping control feature: can't guarantee the
  5949. * result, try to trust guest.
  5950. * b. VT-d with snooping control feature: snooping control feature of
  5951. * VT-d engine can guarantee the cache correctness. Just set it
  5952. * to WB to keep consistent with host. So the same as item 3.
  5953. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5954. * consistent with host MTRR
  5955. */
  5956. if (is_mmio)
  5957. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5958. else if (vcpu->kvm->arch.iommu_domain &&
  5959. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5960. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5961. VMX_EPT_MT_EPTE_SHIFT;
  5962. else
  5963. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5964. | VMX_EPT_IPAT_BIT;
  5965. return ret;
  5966. }
  5967. static int vmx_get_lpage_level(void)
  5968. {
  5969. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5970. return PT_DIRECTORY_LEVEL;
  5971. else
  5972. /* For shadow and EPT supported 1GB page */
  5973. return PT_PDPE_LEVEL;
  5974. }
  5975. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5976. {
  5977. struct kvm_cpuid_entry2 *best;
  5978. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5979. u32 exec_control;
  5980. vmx->rdtscp_enabled = false;
  5981. if (vmx_rdtscp_supported()) {
  5982. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5983. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5984. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5985. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5986. vmx->rdtscp_enabled = true;
  5987. else {
  5988. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5989. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5990. exec_control);
  5991. }
  5992. }
  5993. }
  5994. /* Exposing INVPCID only when PCID is exposed */
  5995. best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
  5996. if (vmx_invpcid_supported() &&
  5997. best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
  5998. guest_cpuid_has_pcid(vcpu)) {
  5999. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6000. exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
  6001. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6002. exec_control);
  6003. } else {
  6004. if (cpu_has_secondary_exec_ctrls()) {
  6005. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  6006. exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
  6007. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  6008. exec_control);
  6009. }
  6010. if (best)
  6011. best->ebx &= ~bit(X86_FEATURE_INVPCID);
  6012. }
  6013. }
  6014. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  6015. {
  6016. if (func == 1 && nested)
  6017. entry->ecx |= bit(X86_FEATURE_VMX);
  6018. }
  6019. /*
  6020. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  6021. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  6022. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  6023. * guest in a way that will both be appropriate to L1's requests, and our
  6024. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  6025. * function also has additional necessary side-effects, like setting various
  6026. * vcpu->arch fields.
  6027. */
  6028. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6029. {
  6030. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6031. u32 exec_control;
  6032. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  6033. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  6034. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  6035. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  6036. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  6037. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  6038. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  6039. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  6040. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  6041. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  6042. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  6043. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  6044. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  6045. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  6046. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  6047. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  6048. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  6049. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  6050. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  6051. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  6052. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  6053. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  6054. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  6055. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  6056. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  6057. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  6058. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  6059. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  6060. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  6061. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  6062. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  6063. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  6064. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  6065. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  6066. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  6067. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  6068. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  6069. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  6070. vmcs12->vm_entry_intr_info_field);
  6071. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  6072. vmcs12->vm_entry_exception_error_code);
  6073. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  6074. vmcs12->vm_entry_instruction_len);
  6075. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  6076. vmcs12->guest_interruptibility_info);
  6077. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  6078. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  6079. kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
  6080. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  6081. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  6082. vmcs12->guest_pending_dbg_exceptions);
  6083. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  6084. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  6085. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  6086. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  6087. (vmcs_config.pin_based_exec_ctrl |
  6088. vmcs12->pin_based_vm_exec_control));
  6089. if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
  6090. vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
  6091. vmcs12->vmx_preemption_timer_value);
  6092. /*
  6093. * Whether page-faults are trapped is determined by a combination of
  6094. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  6095. * If enable_ept, L0 doesn't care about page faults and we should
  6096. * set all of these to L1's desires. However, if !enable_ept, L0 does
  6097. * care about (at least some) page faults, and because it is not easy
  6098. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  6099. * to exit on each and every L2 page fault. This is done by setting
  6100. * MASK=MATCH=0 and (see below) EB.PF=1.
  6101. * Note that below we don't need special code to set EB.PF beyond the
  6102. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  6103. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  6104. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  6105. *
  6106. * A problem with this approach (when !enable_ept) is that L1 may be
  6107. * injected with more page faults than it asked for. This could have
  6108. * caused problems, but in practice existing hypervisors don't care.
  6109. * To fix this, we will need to emulate the PFEC checking (on the L1
  6110. * page tables), using walk_addr(), when injecting PFs to L1.
  6111. */
  6112. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  6113. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  6114. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  6115. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  6116. if (cpu_has_secondary_exec_ctrls()) {
  6117. u32 exec_control = vmx_secondary_exec_control(vmx);
  6118. if (!vmx->rdtscp_enabled)
  6119. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  6120. /* Take the following fields only from vmcs12 */
  6121. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6122. if (nested_cpu_has(vmcs12,
  6123. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  6124. exec_control |= vmcs12->secondary_vm_exec_control;
  6125. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  6126. /*
  6127. * Translate L1 physical address to host physical
  6128. * address for vmcs02. Keep the page pinned, so this
  6129. * physical address remains valid. We keep a reference
  6130. * to it so we can release it later.
  6131. */
  6132. if (vmx->nested.apic_access_page) /* shouldn't happen */
  6133. nested_release_page(vmx->nested.apic_access_page);
  6134. vmx->nested.apic_access_page =
  6135. nested_get_page(vcpu, vmcs12->apic_access_addr);
  6136. /*
  6137. * If translation failed, no matter: This feature asks
  6138. * to exit when accessing the given address, and if it
  6139. * can never be accessed, this feature won't do
  6140. * anything anyway.
  6141. */
  6142. if (!vmx->nested.apic_access_page)
  6143. exec_control &=
  6144. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  6145. else
  6146. vmcs_write64(APIC_ACCESS_ADDR,
  6147. page_to_phys(vmx->nested.apic_access_page));
  6148. }
  6149. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  6150. }
  6151. /*
  6152. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  6153. * Some constant fields are set here by vmx_set_constant_host_state().
  6154. * Other fields are different per CPU, and will be set later when
  6155. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  6156. */
  6157. vmx_set_constant_host_state();
  6158. /*
  6159. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  6160. * entry, but only if the current (host) sp changed from the value
  6161. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  6162. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  6163. * here we just force the write to happen on entry.
  6164. */
  6165. vmx->host_rsp = 0;
  6166. exec_control = vmx_exec_control(vmx); /* L0's desires */
  6167. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  6168. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  6169. exec_control &= ~CPU_BASED_TPR_SHADOW;
  6170. exec_control |= vmcs12->cpu_based_vm_exec_control;
  6171. /*
  6172. * Merging of IO and MSR bitmaps not currently supported.
  6173. * Rather, exit every time.
  6174. */
  6175. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  6176. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  6177. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  6178. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  6179. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  6180. * bitwise-or of what L1 wants to trap for L2, and what we want to
  6181. * trap. Note that CR0.TS also needs updating - we do this later.
  6182. */
  6183. update_exception_bitmap(vcpu);
  6184. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  6185. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6186. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  6187. vmcs_write32(VM_EXIT_CONTROLS,
  6188. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  6189. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  6190. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  6191. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  6192. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  6193. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  6194. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  6195. set_cr4_guest_host_mask(vmx);
  6196. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  6197. vmcs_write64(TSC_OFFSET,
  6198. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  6199. else
  6200. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6201. if (enable_vpid) {
  6202. /*
  6203. * Trivially support vpid by letting L2s share their parent
  6204. * L1's vpid. TODO: move to a more elaborate solution, giving
  6205. * each L2 its own vpid and exposing the vpid feature to L1.
  6206. */
  6207. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  6208. vmx_flush_tlb(vcpu);
  6209. }
  6210. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  6211. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  6212. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  6213. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6214. else
  6215. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6216. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  6217. vmx_set_efer(vcpu, vcpu->arch.efer);
  6218. /*
  6219. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  6220. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  6221. * The CR0_READ_SHADOW is what L2 should have expected to read given
  6222. * the specifications by L1; It's not enough to take
  6223. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  6224. * have more bits than L1 expected.
  6225. */
  6226. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  6227. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  6228. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  6229. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  6230. /* shadow page tables on either EPT or shadow page tables */
  6231. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  6232. kvm_mmu_reset_context(vcpu);
  6233. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  6234. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  6235. }
  6236. /*
  6237. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  6238. * for running an L2 nested guest.
  6239. */
  6240. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  6241. {
  6242. struct vmcs12 *vmcs12;
  6243. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6244. int cpu;
  6245. struct loaded_vmcs *vmcs02;
  6246. if (!nested_vmx_check_permission(vcpu) ||
  6247. !nested_vmx_check_vmcs12(vcpu))
  6248. return 1;
  6249. skip_emulated_instruction(vcpu);
  6250. vmcs12 = get_vmcs12(vcpu);
  6251. /*
  6252. * The nested entry process starts with enforcing various prerequisites
  6253. * on vmcs12 as required by the Intel SDM, and act appropriately when
  6254. * they fail: As the SDM explains, some conditions should cause the
  6255. * instruction to fail, while others will cause the instruction to seem
  6256. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  6257. * To speed up the normal (success) code path, we should avoid checking
  6258. * for misconfigurations which will anyway be caught by the processor
  6259. * when using the merged vmcs02.
  6260. */
  6261. if (vmcs12->launch_state == launch) {
  6262. nested_vmx_failValid(vcpu,
  6263. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  6264. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  6265. return 1;
  6266. }
  6267. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  6268. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  6269. /*TODO: Also verify bits beyond physical address width are 0*/
  6270. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6271. return 1;
  6272. }
  6273. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  6274. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  6275. /*TODO: Also verify bits beyond physical address width are 0*/
  6276. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6277. return 1;
  6278. }
  6279. if (vmcs12->vm_entry_msr_load_count > 0 ||
  6280. vmcs12->vm_exit_msr_load_count > 0 ||
  6281. vmcs12->vm_exit_msr_store_count > 0) {
  6282. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  6283. __func__);
  6284. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6285. return 1;
  6286. }
  6287. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  6288. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  6289. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  6290. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  6291. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  6292. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  6293. !vmx_control_verify(vmcs12->vm_exit_controls,
  6294. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  6295. !vmx_control_verify(vmcs12->vm_entry_controls,
  6296. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  6297. {
  6298. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  6299. return 1;
  6300. }
  6301. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6302. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6303. nested_vmx_failValid(vcpu,
  6304. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  6305. return 1;
  6306. }
  6307. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  6308. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  6309. nested_vmx_entry_failure(vcpu, vmcs12,
  6310. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  6311. return 1;
  6312. }
  6313. if (vmcs12->vmcs_link_pointer != -1ull) {
  6314. nested_vmx_entry_failure(vcpu, vmcs12,
  6315. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  6316. return 1;
  6317. }
  6318. /*
  6319. * We're finally done with prerequisite checking, and can start with
  6320. * the nested entry.
  6321. */
  6322. vmcs02 = nested_get_current_vmcs02(vmx);
  6323. if (!vmcs02)
  6324. return -ENOMEM;
  6325. enter_guest_mode(vcpu);
  6326. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  6327. cpu = get_cpu();
  6328. vmx->loaded_vmcs = vmcs02;
  6329. vmx_vcpu_put(vcpu);
  6330. vmx_vcpu_load(vcpu, cpu);
  6331. vcpu->cpu = cpu;
  6332. put_cpu();
  6333. vmx_segment_cache_clear(vmx);
  6334. vmcs12->launch_state = 1;
  6335. prepare_vmcs02(vcpu, vmcs12);
  6336. /*
  6337. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  6338. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  6339. * returned as far as L1 is concerned. It will only return (and set
  6340. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  6341. */
  6342. return 1;
  6343. }
  6344. /*
  6345. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  6346. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  6347. * This function returns the new value we should put in vmcs12.guest_cr0.
  6348. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  6349. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  6350. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  6351. * didn't trap the bit, because if L1 did, so would L0).
  6352. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  6353. * been modified by L2, and L1 knows it. So just leave the old value of
  6354. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  6355. * isn't relevant, because if L0 traps this bit it can set it to anything.
  6356. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  6357. * changed these bits, and therefore they need to be updated, but L0
  6358. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  6359. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  6360. */
  6361. static inline unsigned long
  6362. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6363. {
  6364. return
  6365. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  6366. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  6367. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  6368. vcpu->arch.cr0_guest_owned_bits));
  6369. }
  6370. static inline unsigned long
  6371. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6372. {
  6373. return
  6374. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  6375. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  6376. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  6377. vcpu->arch.cr4_guest_owned_bits));
  6378. }
  6379. /*
  6380. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  6381. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  6382. * and this function updates it to reflect the changes to the guest state while
  6383. * L2 was running (and perhaps made some exits which were handled directly by L0
  6384. * without going back to L1), and to reflect the exit reason.
  6385. * Note that we do not have to copy here all VMCS fields, just those that
  6386. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  6387. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  6388. * which already writes to vmcs12 directly.
  6389. */
  6390. static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6391. {
  6392. /* update guest state fields: */
  6393. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  6394. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  6395. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  6396. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  6397. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  6398. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  6399. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  6400. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  6401. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  6402. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  6403. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  6404. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  6405. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  6406. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  6407. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  6408. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  6409. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6410. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6411. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6412. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6413. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6414. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6415. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6416. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6417. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6418. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6419. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6420. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6421. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6422. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6423. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6424. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6425. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6426. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6427. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6428. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6429. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6430. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6431. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6432. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6433. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6434. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6435. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6436. vmcs12->guest_interruptibility_info =
  6437. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6438. vmcs12->guest_pending_dbg_exceptions =
  6439. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6440. vmcs12->vm_entry_controls =
  6441. (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
  6442. (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
  6443. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6444. * the relevant bit asks not to trap the change */
  6445. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6446. if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
  6447. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6448. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6449. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6450. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6451. /* update exit information fields: */
  6452. vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
  6453. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6454. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6455. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6456. vmcs12->idt_vectoring_info_field = to_vmx(vcpu)->idt_vectoring_info;
  6457. vmcs12->idt_vectoring_error_code =
  6458. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6459. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6460. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6461. /* clear vm-entry fields which are to be cleared on exit */
  6462. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6463. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6464. }
  6465. /*
  6466. * A part of what we need to when the nested L2 guest exits and we want to
  6467. * run its L1 parent, is to reset L1's guest state to the host state specified
  6468. * in vmcs12.
  6469. * This function is to be called not only on normal nested exit, but also on
  6470. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6471. * Failures During or After Loading Guest State").
  6472. * This function should be called when the active VMCS is L1's (vmcs01).
  6473. */
  6474. static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
  6475. struct vmcs12 *vmcs12)
  6476. {
  6477. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6478. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6479. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6480. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6481. else
  6482. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6483. vmx_set_efer(vcpu, vcpu->arch.efer);
  6484. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6485. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6486. vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
  6487. /*
  6488. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6489. * actually changed, because it depends on the current state of
  6490. * fpu_active (which may have changed).
  6491. * Note that vmx_set_cr0 refers to efer set above.
  6492. */
  6493. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6494. /*
  6495. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6496. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6497. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6498. */
  6499. update_exception_bitmap(vcpu);
  6500. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6501. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6502. /*
  6503. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6504. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6505. */
  6506. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6507. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6508. /* shadow page tables on either EPT or shadow page tables */
  6509. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6510. kvm_mmu_reset_context(vcpu);
  6511. if (enable_vpid) {
  6512. /*
  6513. * Trivially support vpid by letting L2s share their parent
  6514. * L1's vpid. TODO: move to a more elaborate solution, giving
  6515. * each L2 its own vpid and exposing the vpid feature to L1.
  6516. */
  6517. vmx_flush_tlb(vcpu);
  6518. }
  6519. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6520. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6521. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6522. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6523. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6524. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6525. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6526. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6527. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6528. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6529. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6530. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6531. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6532. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6533. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6534. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6535. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6536. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6537. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6538. vmcs12->host_ia32_perf_global_ctrl);
  6539. kvm_set_dr(vcpu, 7, 0x400);
  6540. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  6541. }
  6542. /*
  6543. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6544. * and modify vmcs12 to make it see what it would expect to see there if
  6545. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6546. */
  6547. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6548. {
  6549. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6550. int cpu;
  6551. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6552. leave_guest_mode(vcpu);
  6553. prepare_vmcs12(vcpu, vmcs12);
  6554. cpu = get_cpu();
  6555. vmx->loaded_vmcs = &vmx->vmcs01;
  6556. vmx_vcpu_put(vcpu);
  6557. vmx_vcpu_load(vcpu, cpu);
  6558. vcpu->cpu = cpu;
  6559. put_cpu();
  6560. vmx_segment_cache_clear(vmx);
  6561. /* if no vmcs02 cache requested, remove the one we used */
  6562. if (VMCS02_POOL_SIZE == 0)
  6563. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6564. load_vmcs12_host_state(vcpu, vmcs12);
  6565. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6566. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6567. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6568. vmx->host_rsp = 0;
  6569. /* Unpin physical memory we referred to in vmcs02 */
  6570. if (vmx->nested.apic_access_page) {
  6571. nested_release_page(vmx->nested.apic_access_page);
  6572. vmx->nested.apic_access_page = 0;
  6573. }
  6574. /*
  6575. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6576. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6577. * success or failure flag accordingly.
  6578. */
  6579. if (unlikely(vmx->fail)) {
  6580. vmx->fail = 0;
  6581. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6582. } else
  6583. nested_vmx_succeed(vcpu);
  6584. }
  6585. /*
  6586. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6587. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6588. * lists the acceptable exit-reason and exit-qualification parameters).
  6589. * It should only be called before L2 actually succeeded to run, and when
  6590. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6591. */
  6592. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6593. struct vmcs12 *vmcs12,
  6594. u32 reason, unsigned long qualification)
  6595. {
  6596. load_vmcs12_host_state(vcpu, vmcs12);
  6597. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6598. vmcs12->exit_qualification = qualification;
  6599. nested_vmx_succeed(vcpu);
  6600. }
  6601. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6602. struct x86_instruction_info *info,
  6603. enum x86_intercept_stage stage)
  6604. {
  6605. return X86EMUL_CONTINUE;
  6606. }
  6607. static struct kvm_x86_ops vmx_x86_ops = {
  6608. .cpu_has_kvm_support = cpu_has_kvm_support,
  6609. .disabled_by_bios = vmx_disabled_by_bios,
  6610. .hardware_setup = hardware_setup,
  6611. .hardware_unsetup = hardware_unsetup,
  6612. .check_processor_compatibility = vmx_check_processor_compat,
  6613. .hardware_enable = hardware_enable,
  6614. .hardware_disable = hardware_disable,
  6615. .cpu_has_accelerated_tpr = report_flexpriority,
  6616. .vcpu_create = vmx_create_vcpu,
  6617. .vcpu_free = vmx_free_vcpu,
  6618. .vcpu_reset = vmx_vcpu_reset,
  6619. .prepare_guest_switch = vmx_save_host_state,
  6620. .vcpu_load = vmx_vcpu_load,
  6621. .vcpu_put = vmx_vcpu_put,
  6622. .update_db_bp_intercept = update_exception_bitmap,
  6623. .get_msr = vmx_get_msr,
  6624. .set_msr = vmx_set_msr,
  6625. .get_segment_base = vmx_get_segment_base,
  6626. .get_segment = vmx_get_segment,
  6627. .set_segment = vmx_set_segment,
  6628. .get_cpl = vmx_get_cpl,
  6629. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6630. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6631. .decache_cr3 = vmx_decache_cr3,
  6632. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6633. .set_cr0 = vmx_set_cr0,
  6634. .set_cr3 = vmx_set_cr3,
  6635. .set_cr4 = vmx_set_cr4,
  6636. .set_efer = vmx_set_efer,
  6637. .get_idt = vmx_get_idt,
  6638. .set_idt = vmx_set_idt,
  6639. .get_gdt = vmx_get_gdt,
  6640. .set_gdt = vmx_set_gdt,
  6641. .set_dr7 = vmx_set_dr7,
  6642. .cache_reg = vmx_cache_reg,
  6643. .get_rflags = vmx_get_rflags,
  6644. .set_rflags = vmx_set_rflags,
  6645. .fpu_activate = vmx_fpu_activate,
  6646. .fpu_deactivate = vmx_fpu_deactivate,
  6647. .tlb_flush = vmx_flush_tlb,
  6648. .run = vmx_vcpu_run,
  6649. .handle_exit = vmx_handle_exit,
  6650. .skip_emulated_instruction = skip_emulated_instruction,
  6651. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6652. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6653. .patch_hypercall = vmx_patch_hypercall,
  6654. .set_irq = vmx_inject_irq,
  6655. .set_nmi = vmx_inject_nmi,
  6656. .queue_exception = vmx_queue_exception,
  6657. .cancel_injection = vmx_cancel_injection,
  6658. .interrupt_allowed = vmx_interrupt_allowed,
  6659. .nmi_allowed = vmx_nmi_allowed,
  6660. .get_nmi_mask = vmx_get_nmi_mask,
  6661. .set_nmi_mask = vmx_set_nmi_mask,
  6662. .enable_nmi_window = enable_nmi_window,
  6663. .enable_irq_window = enable_irq_window,
  6664. .update_cr8_intercept = update_cr8_intercept,
  6665. .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
  6666. .vm_has_apicv = vmx_vm_has_apicv,
  6667. .load_eoi_exitmap = vmx_load_eoi_exitmap,
  6668. .hwapic_irr_update = vmx_hwapic_irr_update,
  6669. .hwapic_isr_update = vmx_hwapic_isr_update,
  6670. .set_tss_addr = vmx_set_tss_addr,
  6671. .get_tdp_level = get_ept_level,
  6672. .get_mt_mask = vmx_get_mt_mask,
  6673. .get_exit_info = vmx_get_exit_info,
  6674. .get_lpage_level = vmx_get_lpage_level,
  6675. .cpuid_update = vmx_cpuid_update,
  6676. .rdtscp_supported = vmx_rdtscp_supported,
  6677. .invpcid_supported = vmx_invpcid_supported,
  6678. .set_supported_cpuid = vmx_set_supported_cpuid,
  6679. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6680. .set_tsc_khz = vmx_set_tsc_khz,
  6681. .read_tsc_offset = vmx_read_tsc_offset,
  6682. .write_tsc_offset = vmx_write_tsc_offset,
  6683. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6684. .compute_tsc_offset = vmx_compute_tsc_offset,
  6685. .read_l1_tsc = vmx_read_l1_tsc,
  6686. .set_tdp_cr3 = vmx_set_cr3,
  6687. .check_intercept = vmx_check_intercept,
  6688. };
  6689. static int __init vmx_init(void)
  6690. {
  6691. int r, i, msr;
  6692. rdmsrl_safe(MSR_EFER, &host_efer);
  6693. for (i = 0; i < NR_VMX_MSR; ++i)
  6694. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6695. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6696. if (!vmx_io_bitmap_a)
  6697. return -ENOMEM;
  6698. r = -ENOMEM;
  6699. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6700. if (!vmx_io_bitmap_b)
  6701. goto out;
  6702. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6703. if (!vmx_msr_bitmap_legacy)
  6704. goto out1;
  6705. vmx_msr_bitmap_legacy_x2apic =
  6706. (unsigned long *)__get_free_page(GFP_KERNEL);
  6707. if (!vmx_msr_bitmap_legacy_x2apic)
  6708. goto out2;
  6709. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6710. if (!vmx_msr_bitmap_longmode)
  6711. goto out3;
  6712. vmx_msr_bitmap_longmode_x2apic =
  6713. (unsigned long *)__get_free_page(GFP_KERNEL);
  6714. if (!vmx_msr_bitmap_longmode_x2apic)
  6715. goto out4;
  6716. /*
  6717. * Allow direct access to the PC debug port (it is often used for I/O
  6718. * delays, but the vmexits simply slow things down).
  6719. */
  6720. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6721. clear_bit(0x80, vmx_io_bitmap_a);
  6722. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6723. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6724. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6725. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6726. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6727. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6728. if (r)
  6729. goto out5;
  6730. #ifdef CONFIG_KEXEC
  6731. rcu_assign_pointer(crash_vmclear_loaded_vmcss,
  6732. crash_vmclear_local_loaded_vmcss);
  6733. #endif
  6734. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6735. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6736. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6737. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6738. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6739. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6740. memcpy(vmx_msr_bitmap_legacy_x2apic,
  6741. vmx_msr_bitmap_legacy, PAGE_SIZE);
  6742. memcpy(vmx_msr_bitmap_longmode_x2apic,
  6743. vmx_msr_bitmap_longmode, PAGE_SIZE);
  6744. if (enable_apicv_reg_vid) {
  6745. for (msr = 0x800; msr <= 0x8ff; msr++)
  6746. vmx_disable_intercept_msr_read_x2apic(msr);
  6747. /* According SDM, in x2apic mode, the whole id reg is used.
  6748. * But in KVM, it only use the highest eight bits. Need to
  6749. * intercept it */
  6750. vmx_enable_intercept_msr_read_x2apic(0x802);
  6751. /* TMCCT */
  6752. vmx_enable_intercept_msr_read_x2apic(0x839);
  6753. /* TPR */
  6754. vmx_disable_intercept_msr_write_x2apic(0x808);
  6755. /* EOI */
  6756. vmx_disable_intercept_msr_write_x2apic(0x80b);
  6757. /* SELF-IPI */
  6758. vmx_disable_intercept_msr_write_x2apic(0x83f);
  6759. }
  6760. if (enable_ept) {
  6761. kvm_mmu_set_mask_ptes(0ull,
  6762. (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
  6763. (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
  6764. 0ull, VMX_EPT_EXECUTABLE_MASK);
  6765. ept_set_mmio_spte_mask();
  6766. kvm_enable_tdp();
  6767. } else
  6768. kvm_disable_tdp();
  6769. return 0;
  6770. out5:
  6771. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6772. out4:
  6773. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6774. out3:
  6775. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6776. out2:
  6777. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6778. out1:
  6779. free_page((unsigned long)vmx_io_bitmap_b);
  6780. out:
  6781. free_page((unsigned long)vmx_io_bitmap_a);
  6782. return r;
  6783. }
  6784. static void __exit vmx_exit(void)
  6785. {
  6786. free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
  6787. free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
  6788. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6789. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6790. free_page((unsigned long)vmx_io_bitmap_b);
  6791. free_page((unsigned long)vmx_io_bitmap_a);
  6792. #ifdef CONFIG_KEXEC
  6793. rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
  6794. synchronize_rcu();
  6795. #endif
  6796. kvm_exit();
  6797. }
  6798. module_init(vmx_init)
  6799. module_exit(vmx_exit)