xmit.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_MCS(_rc) ((_rc) & 0x1f)
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. #define OFDM_SIFS_TIME 16
  33. static u16 bits_per_symbol[][2] = {
  34. /* 20MHz 40MHz */
  35. { 26, 54 }, /* 0: BPSK */
  36. { 52, 108 }, /* 1: QPSK 1/2 */
  37. { 78, 162 }, /* 2: QPSK 3/4 */
  38. { 104, 216 }, /* 3: 16-QAM 1/2 */
  39. { 156, 324 }, /* 4: 16-QAM 3/4 */
  40. { 208, 432 }, /* 5: 64-QAM 2/3 */
  41. { 234, 486 }, /* 6: 64-QAM 3/4 */
  42. { 260, 540 }, /* 7: 64-QAM 5/6 */
  43. };
  44. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  45. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  46. struct ath_atx_tid *tid,
  47. struct list_head *bf_head);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok, int sendbar);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head);
  53. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf);
  54. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  55. struct ath_tx_status *ts, int txok);
  56. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  57. int nbad, int txok, bool update_rc);
  58. enum {
  59. MCS_HT20,
  60. MCS_HT20_SGI,
  61. MCS_HT40,
  62. MCS_HT40_SGI,
  63. };
  64. static int ath_max_4ms_framelen[4][32] = {
  65. [MCS_HT20] = {
  66. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  67. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  68. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  69. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  70. },
  71. [MCS_HT20_SGI] = {
  72. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  73. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  74. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  75. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  76. },
  77. [MCS_HT40] = {
  78. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  79. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  80. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  81. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  82. },
  83. [MCS_HT40_SGI] = {
  84. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  85. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  86. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  87. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  88. }
  89. };
  90. /*********************/
  91. /* Aggregation logic */
  92. /*********************/
  93. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  94. {
  95. struct ath_atx_ac *ac = tid->ac;
  96. if (tid->paused)
  97. return;
  98. if (tid->sched)
  99. return;
  100. tid->sched = true;
  101. list_add_tail(&tid->list, &ac->tid_q);
  102. if (ac->sched)
  103. return;
  104. ac->sched = true;
  105. list_add_tail(&ac->list, &txq->axq_acq);
  106. }
  107. static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  108. {
  109. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  110. spin_lock_bh(&txq->axq_lock);
  111. tid->paused++;
  112. spin_unlock_bh(&txq->axq_lock);
  113. }
  114. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  115. {
  116. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  117. BUG_ON(tid->paused <= 0);
  118. spin_lock_bh(&txq->axq_lock);
  119. tid->paused--;
  120. if (tid->paused > 0)
  121. goto unlock;
  122. if (list_empty(&tid->buf_q))
  123. goto unlock;
  124. ath_tx_queue_tid(txq, tid);
  125. ath_txq_schedule(sc, txq);
  126. unlock:
  127. spin_unlock_bh(&txq->axq_lock);
  128. }
  129. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  130. {
  131. struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
  132. struct ath_buf *bf;
  133. struct list_head bf_head;
  134. INIT_LIST_HEAD(&bf_head);
  135. BUG_ON(tid->paused <= 0);
  136. spin_lock_bh(&txq->axq_lock);
  137. tid->paused--;
  138. if (tid->paused > 0) {
  139. spin_unlock_bh(&txq->axq_lock);
  140. return;
  141. }
  142. while (!list_empty(&tid->buf_q)) {
  143. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  144. BUG_ON(bf_isretried(bf));
  145. list_move_tail(&bf->list, &bf_head);
  146. ath_tx_send_ht_normal(sc, txq, tid, &bf_head);
  147. }
  148. spin_unlock_bh(&txq->axq_lock);
  149. }
  150. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  151. int seqno)
  152. {
  153. int index, cindex;
  154. index = ATH_BA_INDEX(tid->seq_start, seqno);
  155. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  156. tid->tx_buf[cindex] = NULL;
  157. while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
  158. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  159. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  160. }
  161. }
  162. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  163. struct ath_buf *bf)
  164. {
  165. int index, cindex;
  166. if (bf_isretried(bf))
  167. return;
  168. index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
  169. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  170. BUG_ON(tid->tx_buf[cindex] != NULL);
  171. tid->tx_buf[cindex] = bf;
  172. if (index >= ((tid->baw_tail - tid->baw_head) &
  173. (ATH_TID_MAX_BUFS - 1))) {
  174. tid->baw_tail = cindex;
  175. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  176. }
  177. }
  178. /*
  179. * TODO: For frame(s) that are in the retry state, we will reuse the
  180. * sequence number(s) without setting the retry bit. The
  181. * alternative is to give up on these and BAR the receiver's window
  182. * forward.
  183. */
  184. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  185. struct ath_atx_tid *tid)
  186. {
  187. struct ath_buf *bf;
  188. struct list_head bf_head;
  189. struct ath_tx_status ts;
  190. memset(&ts, 0, sizeof(ts));
  191. INIT_LIST_HEAD(&bf_head);
  192. for (;;) {
  193. if (list_empty(&tid->buf_q))
  194. break;
  195. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  196. list_move_tail(&bf->list, &bf_head);
  197. if (bf_isretried(bf))
  198. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  199. spin_unlock(&txq->axq_lock);
  200. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  201. spin_lock(&txq->axq_lock);
  202. }
  203. tid->seq_next = tid->seq_start;
  204. tid->baw_tail = tid->baw_head;
  205. }
  206. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  207. struct ath_buf *bf)
  208. {
  209. struct sk_buff *skb;
  210. struct ieee80211_hdr *hdr;
  211. bf->bf_state.bf_type |= BUF_RETRY;
  212. bf->bf_retries++;
  213. TX_STAT_INC(txq->axq_qnum, a_retries);
  214. skb = bf->bf_mpdu;
  215. hdr = (struct ieee80211_hdr *)skb->data;
  216. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  217. }
  218. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  219. {
  220. struct ath_buf *bf = NULL;
  221. spin_lock_bh(&sc->tx.txbuflock);
  222. if (unlikely(list_empty(&sc->tx.txbuf))) {
  223. spin_unlock_bh(&sc->tx.txbuflock);
  224. return NULL;
  225. }
  226. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  227. list_del(&bf->list);
  228. spin_unlock_bh(&sc->tx.txbuflock);
  229. return bf;
  230. }
  231. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  232. {
  233. spin_lock_bh(&sc->tx.txbuflock);
  234. list_add_tail(&bf->list, &sc->tx.txbuf);
  235. spin_unlock_bh(&sc->tx.txbuflock);
  236. }
  237. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  238. {
  239. struct ath_buf *tbf;
  240. tbf = ath_tx_get_buffer(sc);
  241. if (WARN_ON(!tbf))
  242. return NULL;
  243. ATH_TXBUF_RESET(tbf);
  244. tbf->aphy = bf->aphy;
  245. tbf->bf_mpdu = bf->bf_mpdu;
  246. tbf->bf_buf_addr = bf->bf_buf_addr;
  247. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  248. tbf->bf_state = bf->bf_state;
  249. tbf->bf_dmacontext = bf->bf_dmacontext;
  250. return tbf;
  251. }
  252. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  253. struct ath_buf *bf, struct list_head *bf_q,
  254. struct ath_tx_status *ts, int txok)
  255. {
  256. struct ath_node *an = NULL;
  257. struct sk_buff *skb;
  258. struct ieee80211_sta *sta;
  259. struct ieee80211_hw *hw;
  260. struct ieee80211_hdr *hdr;
  261. struct ieee80211_tx_info *tx_info;
  262. struct ath_atx_tid *tid = NULL;
  263. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  264. struct list_head bf_head, bf_pending;
  265. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  266. u32 ba[WME_BA_BMP_SIZE >> 5];
  267. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  268. bool rc_update = true;
  269. skb = bf->bf_mpdu;
  270. hdr = (struct ieee80211_hdr *)skb->data;
  271. tx_info = IEEE80211_SKB_CB(skb);
  272. hw = bf->aphy->hw;
  273. rcu_read_lock();
  274. /* XXX: use ieee80211_find_sta! */
  275. sta = ieee80211_find_sta_by_hw(hw, hdr->addr1);
  276. if (!sta) {
  277. rcu_read_unlock();
  278. return;
  279. }
  280. an = (struct ath_node *)sta->drv_priv;
  281. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  282. isaggr = bf_isaggr(bf);
  283. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  284. if (isaggr && txok) {
  285. if (ts->ts_flags & ATH9K_TX_BA) {
  286. seq_st = ts->ts_seqnum;
  287. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  288. } else {
  289. /*
  290. * AR5416 can become deaf/mute when BA
  291. * issue happens. Chip needs to be reset.
  292. * But AP code may have sychronization issues
  293. * when perform internal reset in this routine.
  294. * Only enable reset in STA mode for now.
  295. */
  296. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  297. needreset = 1;
  298. }
  299. }
  300. INIT_LIST_HEAD(&bf_pending);
  301. INIT_LIST_HEAD(&bf_head);
  302. nbad = ath_tx_num_badfrms(sc, bf, ts, txok);
  303. while (bf) {
  304. txfail = txpending = 0;
  305. bf_next = bf->bf_next;
  306. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
  307. /* transmit completion, subframe is
  308. * acked by block ack */
  309. acked_cnt++;
  310. } else if (!isaggr && txok) {
  311. /* transmit completion */
  312. acked_cnt++;
  313. } else {
  314. if (!(tid->state & AGGR_CLEANUP) &&
  315. !bf_last->bf_tx_aborted) {
  316. if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
  317. ath_tx_set_retry(sc, txq, bf);
  318. txpending = 1;
  319. } else {
  320. bf->bf_state.bf_type |= BUF_XRETRY;
  321. txfail = 1;
  322. sendbar = 1;
  323. txfail_cnt++;
  324. }
  325. } else {
  326. /*
  327. * cleanup in progress, just fail
  328. * the un-acked sub-frames
  329. */
  330. txfail = 1;
  331. }
  332. }
  333. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  334. bf_next == NULL) {
  335. /*
  336. * Make sure the last desc is reclaimed if it
  337. * not a holding desc.
  338. */
  339. if (!bf_last->bf_stale)
  340. list_move_tail(&bf->list, &bf_head);
  341. else
  342. INIT_LIST_HEAD(&bf_head);
  343. } else {
  344. BUG_ON(list_empty(bf_q));
  345. list_move_tail(&bf->list, &bf_head);
  346. }
  347. if (!txpending) {
  348. /*
  349. * complete the acked-ones/xretried ones; update
  350. * block-ack window
  351. */
  352. spin_lock_bh(&txq->axq_lock);
  353. ath_tx_update_baw(sc, tid, bf->bf_seqno);
  354. spin_unlock_bh(&txq->axq_lock);
  355. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  356. ath_tx_rc_status(bf, ts, nbad, txok, true);
  357. rc_update = false;
  358. } else {
  359. ath_tx_rc_status(bf, ts, nbad, txok, false);
  360. }
  361. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  362. !txfail, sendbar);
  363. } else {
  364. /* retry the un-acked ones */
  365. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  366. if (bf->bf_next == NULL && bf_last->bf_stale) {
  367. struct ath_buf *tbf;
  368. tbf = ath_clone_txbuf(sc, bf_last);
  369. /*
  370. * Update tx baw and complete the
  371. * frame with failed status if we
  372. * run out of tx buf.
  373. */
  374. if (!tbf) {
  375. spin_lock_bh(&txq->axq_lock);
  376. ath_tx_update_baw(sc, tid,
  377. bf->bf_seqno);
  378. spin_unlock_bh(&txq->axq_lock);
  379. bf->bf_state.bf_type |=
  380. BUF_XRETRY;
  381. ath_tx_rc_status(bf, ts, nbad,
  382. 0, false);
  383. ath_tx_complete_buf(sc, bf, txq,
  384. &bf_head,
  385. ts, 0, 0);
  386. break;
  387. }
  388. ath9k_hw_cleartxdesc(sc->sc_ah,
  389. tbf->bf_desc);
  390. list_add_tail(&tbf->list, &bf_head);
  391. } else {
  392. /*
  393. * Clear descriptor status words for
  394. * software retry
  395. */
  396. ath9k_hw_cleartxdesc(sc->sc_ah,
  397. bf->bf_desc);
  398. }
  399. }
  400. /*
  401. * Put this buffer to the temporary pending
  402. * queue to retain ordering
  403. */
  404. list_splice_tail_init(&bf_head, &bf_pending);
  405. }
  406. bf = bf_next;
  407. }
  408. if (tid->state & AGGR_CLEANUP) {
  409. if (tid->baw_head == tid->baw_tail) {
  410. tid->state &= ~AGGR_ADDBA_COMPLETE;
  411. tid->state &= ~AGGR_CLEANUP;
  412. /* send buffered frames as singles */
  413. ath_tx_flush_tid(sc, tid);
  414. }
  415. rcu_read_unlock();
  416. return;
  417. }
  418. /* prepend un-acked frames to the beginning of the pending frame queue */
  419. if (!list_empty(&bf_pending)) {
  420. spin_lock_bh(&txq->axq_lock);
  421. list_splice(&bf_pending, &tid->buf_q);
  422. ath_tx_queue_tid(txq, tid);
  423. spin_unlock_bh(&txq->axq_lock);
  424. }
  425. rcu_read_unlock();
  426. if (needreset)
  427. ath_reset(sc, false);
  428. }
  429. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  430. struct ath_atx_tid *tid)
  431. {
  432. struct sk_buff *skb;
  433. struct ieee80211_tx_info *tx_info;
  434. struct ieee80211_tx_rate *rates;
  435. u32 max_4ms_framelen, frmlen;
  436. u16 aggr_limit, legacy = 0;
  437. int i;
  438. skb = bf->bf_mpdu;
  439. tx_info = IEEE80211_SKB_CB(skb);
  440. rates = tx_info->control.rates;
  441. /*
  442. * Find the lowest frame length among the rate series that will have a
  443. * 4ms transmit duration.
  444. * TODO - TXOP limit needs to be considered.
  445. */
  446. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  447. for (i = 0; i < 4; i++) {
  448. if (rates[i].count) {
  449. int modeidx;
  450. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  451. legacy = 1;
  452. break;
  453. }
  454. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  455. modeidx = MCS_HT40;
  456. else
  457. modeidx = MCS_HT20;
  458. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  459. modeidx++;
  460. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  461. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  462. }
  463. }
  464. /*
  465. * limit aggregate size by the minimum rate if rate selected is
  466. * not a probe rate, if rate selected is a probe rate then
  467. * avoid aggregation of this packet.
  468. */
  469. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  470. return 0;
  471. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  472. aggr_limit = min((max_4ms_framelen * 3) / 8,
  473. (u32)ATH_AMPDU_LIMIT_MAX);
  474. else
  475. aggr_limit = min(max_4ms_framelen,
  476. (u32)ATH_AMPDU_LIMIT_MAX);
  477. /*
  478. * h/w can accept aggregates upto 16 bit lengths (65535).
  479. * The IE, however can hold upto 65536, which shows up here
  480. * as zero. Ignore 65536 since we are constrained by hw.
  481. */
  482. if (tid->an->maxampdu)
  483. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  484. return aggr_limit;
  485. }
  486. /*
  487. * Returns the number of delimiters to be added to
  488. * meet the minimum required mpdudensity.
  489. */
  490. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  491. struct ath_buf *bf, u16 frmlen)
  492. {
  493. struct sk_buff *skb = bf->bf_mpdu;
  494. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  495. u32 nsymbits, nsymbols;
  496. u16 minlen;
  497. u8 flags, rix;
  498. int width, streams, half_gi, ndelim, mindelim;
  499. /* Select standard number of delimiters based on frame length alone */
  500. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  501. /*
  502. * If encryption enabled, hardware requires some more padding between
  503. * subframes.
  504. * TODO - this could be improved to be dependent on the rate.
  505. * The hardware can keep up at lower rates, but not higher rates
  506. */
  507. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
  508. ndelim += ATH_AGGR_ENCRYPTDELIM;
  509. /*
  510. * Convert desired mpdu density from microeconds to bytes based
  511. * on highest rate in rate series (i.e. first rate) to determine
  512. * required minimum length for subframe. Take into account
  513. * whether high rate is 20 or 40Mhz and half or full GI.
  514. *
  515. * If there is no mpdu density restriction, no further calculation
  516. * is needed.
  517. */
  518. if (tid->an->mpdudensity == 0)
  519. return ndelim;
  520. rix = tx_info->control.rates[0].idx;
  521. flags = tx_info->control.rates[0].flags;
  522. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  523. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  524. if (half_gi)
  525. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  526. else
  527. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  528. if (nsymbols == 0)
  529. nsymbols = 1;
  530. streams = HT_RC_2_STREAMS(rix);
  531. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  532. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  533. if (frmlen < minlen) {
  534. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  535. ndelim = max(mindelim, ndelim);
  536. }
  537. return ndelim;
  538. }
  539. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  540. struct ath_txq *txq,
  541. struct ath_atx_tid *tid,
  542. struct list_head *bf_q)
  543. {
  544. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  545. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  546. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  547. u16 aggr_limit = 0, al = 0, bpad = 0,
  548. al_delta, h_baw = tid->baw_size / 2;
  549. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  550. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  551. do {
  552. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  553. /* do not step over block-ack window */
  554. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
  555. status = ATH_AGGR_BAW_CLOSED;
  556. break;
  557. }
  558. if (!rl) {
  559. aggr_limit = ath_lookup_rate(sc, bf, tid);
  560. rl = 1;
  561. }
  562. /* do not exceed aggregation limit */
  563. al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
  564. if (nframes &&
  565. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  566. status = ATH_AGGR_LIMITED;
  567. break;
  568. }
  569. /* do not exceed subframe limit */
  570. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  571. status = ATH_AGGR_LIMITED;
  572. break;
  573. }
  574. nframes++;
  575. /* add padding for previous frame to aggregation length */
  576. al += bpad + al_delta;
  577. /*
  578. * Get the delimiters needed to meet the MPDU
  579. * density for this node.
  580. */
  581. ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
  582. bpad = PADBYTES(al_delta) + (ndelim << 2);
  583. bf->bf_next = NULL;
  584. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  585. /* link buffers of this frame to the aggregate */
  586. ath_tx_addto_baw(sc, tid, bf);
  587. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  588. list_move_tail(&bf->list, bf_q);
  589. if (bf_prev) {
  590. bf_prev->bf_next = bf;
  591. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  592. bf->bf_daddr);
  593. }
  594. bf_prev = bf;
  595. } while (!list_empty(&tid->buf_q));
  596. bf_first->bf_al = al;
  597. bf_first->bf_nframes = nframes;
  598. return status;
  599. #undef PADBYTES
  600. }
  601. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  602. struct ath_atx_tid *tid)
  603. {
  604. struct ath_buf *bf;
  605. enum ATH_AGGR_STATUS status;
  606. struct list_head bf_q;
  607. do {
  608. if (list_empty(&tid->buf_q))
  609. return;
  610. INIT_LIST_HEAD(&bf_q);
  611. status = ath_tx_form_aggr(sc, txq, tid, &bf_q);
  612. /*
  613. * no frames picked up to be aggregated;
  614. * block-ack window is not open.
  615. */
  616. if (list_empty(&bf_q))
  617. break;
  618. bf = list_first_entry(&bf_q, struct ath_buf, list);
  619. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  620. /* if only one frame, send as non-aggregate */
  621. if (bf->bf_nframes == 1) {
  622. bf->bf_state.bf_type &= ~BUF_AGGR;
  623. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  624. ath_buf_set_rate(sc, bf);
  625. ath_tx_txqaddbuf(sc, txq, &bf_q);
  626. continue;
  627. }
  628. /* setup first desc of aggregate */
  629. bf->bf_state.bf_type |= BUF_AGGR;
  630. ath_buf_set_rate(sc, bf);
  631. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
  632. /* anchor last desc of aggregate */
  633. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  634. ath_tx_txqaddbuf(sc, txq, &bf_q);
  635. TX_STAT_INC(txq->axq_qnum, a_aggr);
  636. } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
  637. status != ATH_AGGR_BAW_CLOSED);
  638. }
  639. void ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  640. u16 tid, u16 *ssn)
  641. {
  642. struct ath_atx_tid *txtid;
  643. struct ath_node *an;
  644. an = (struct ath_node *)sta->drv_priv;
  645. txtid = ATH_AN_2_TID(an, tid);
  646. txtid->state |= AGGR_ADDBA_PROGRESS;
  647. ath_tx_pause_tid(sc, txtid);
  648. *ssn = txtid->seq_start;
  649. }
  650. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  651. {
  652. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  653. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  654. struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
  655. struct ath_tx_status ts;
  656. struct ath_buf *bf;
  657. struct list_head bf_head;
  658. memset(&ts, 0, sizeof(ts));
  659. INIT_LIST_HEAD(&bf_head);
  660. if (txtid->state & AGGR_CLEANUP)
  661. return;
  662. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  663. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  664. return;
  665. }
  666. ath_tx_pause_tid(sc, txtid);
  667. /* drop all software retried frames and mark this TID */
  668. spin_lock_bh(&txq->axq_lock);
  669. while (!list_empty(&txtid->buf_q)) {
  670. bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
  671. if (!bf_isretried(bf)) {
  672. /*
  673. * NB: it's based on the assumption that
  674. * software retried frame will always stay
  675. * at the head of software queue.
  676. */
  677. break;
  678. }
  679. list_move_tail(&bf->list, &bf_head);
  680. ath_tx_update_baw(sc, txtid, bf->bf_seqno);
  681. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  682. }
  683. spin_unlock_bh(&txq->axq_lock);
  684. if (txtid->baw_head != txtid->baw_tail) {
  685. txtid->state |= AGGR_CLEANUP;
  686. } else {
  687. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  688. ath_tx_flush_tid(sc, txtid);
  689. }
  690. }
  691. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  692. {
  693. struct ath_atx_tid *txtid;
  694. struct ath_node *an;
  695. an = (struct ath_node *)sta->drv_priv;
  696. if (sc->sc_flags & SC_OP_TXAGGR) {
  697. txtid = ATH_AN_2_TID(an, tid);
  698. txtid->baw_size =
  699. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  700. txtid->state |= AGGR_ADDBA_COMPLETE;
  701. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  702. ath_tx_resume_tid(sc, txtid);
  703. }
  704. }
  705. bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
  706. {
  707. struct ath_atx_tid *txtid;
  708. if (!(sc->sc_flags & SC_OP_TXAGGR))
  709. return false;
  710. txtid = ATH_AN_2_TID(an, tidno);
  711. if (!(txtid->state & (AGGR_ADDBA_COMPLETE | AGGR_ADDBA_PROGRESS)))
  712. return true;
  713. return false;
  714. }
  715. /********************/
  716. /* Queue Management */
  717. /********************/
  718. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  719. struct ath_txq *txq)
  720. {
  721. struct ath_atx_ac *ac, *ac_tmp;
  722. struct ath_atx_tid *tid, *tid_tmp;
  723. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  724. list_del(&ac->list);
  725. ac->sched = false;
  726. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  727. list_del(&tid->list);
  728. tid->sched = false;
  729. ath_tid_drain(sc, txq, tid);
  730. }
  731. }
  732. }
  733. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  734. {
  735. struct ath_hw *ah = sc->sc_ah;
  736. struct ath_common *common = ath9k_hw_common(ah);
  737. struct ath9k_tx_queue_info qi;
  738. int qnum, i;
  739. memset(&qi, 0, sizeof(qi));
  740. qi.tqi_subtype = subtype;
  741. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  742. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  743. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  744. qi.tqi_physCompBuf = 0;
  745. /*
  746. * Enable interrupts only for EOL and DESC conditions.
  747. * We mark tx descriptors to receive a DESC interrupt
  748. * when a tx queue gets deep; otherwise waiting for the
  749. * EOL to reap descriptors. Note that this is done to
  750. * reduce interrupt load and this only defers reaping
  751. * descriptors, never transmitting frames. Aside from
  752. * reducing interrupts this also permits more concurrency.
  753. * The only potential downside is if the tx queue backs
  754. * up in which case the top half of the kernel may backup
  755. * due to a lack of tx descriptors.
  756. *
  757. * The UAPSD queue is an exception, since we take a desc-
  758. * based intr on the EOSP frames.
  759. */
  760. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  761. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  762. TXQ_FLAG_TXERRINT_ENABLE;
  763. } else {
  764. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  765. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  766. else
  767. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  768. TXQ_FLAG_TXDESCINT_ENABLE;
  769. }
  770. qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  771. if (qnum == -1) {
  772. /*
  773. * NB: don't print a message, this happens
  774. * normally on parts with too few tx queues
  775. */
  776. return NULL;
  777. }
  778. if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
  779. ath_print(common, ATH_DBG_FATAL,
  780. "qnum %u out of range, max %u!\n",
  781. qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
  782. ath9k_hw_releasetxqueue(ah, qnum);
  783. return NULL;
  784. }
  785. if (!ATH_TXQ_SETUP(sc, qnum)) {
  786. struct ath_txq *txq = &sc->tx.txq[qnum];
  787. txq->axq_qnum = qnum;
  788. txq->axq_link = NULL;
  789. INIT_LIST_HEAD(&txq->axq_q);
  790. INIT_LIST_HEAD(&txq->axq_acq);
  791. spin_lock_init(&txq->axq_lock);
  792. txq->axq_depth = 0;
  793. txq->axq_tx_inprogress = false;
  794. sc->tx.txqsetup |= 1<<qnum;
  795. txq->txq_headidx = txq->txq_tailidx = 0;
  796. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  797. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  798. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  799. }
  800. return &sc->tx.txq[qnum];
  801. }
  802. int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
  803. {
  804. int qnum;
  805. switch (qtype) {
  806. case ATH9K_TX_QUEUE_DATA:
  807. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  808. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  809. "HAL AC %u out of range, max %zu!\n",
  810. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  811. return -1;
  812. }
  813. qnum = sc->tx.hwq_map[haltype];
  814. break;
  815. case ATH9K_TX_QUEUE_BEACON:
  816. qnum = sc->beacon.beaconq;
  817. break;
  818. case ATH9K_TX_QUEUE_CAB:
  819. qnum = sc->beacon.cabq->axq_qnum;
  820. break;
  821. default:
  822. qnum = -1;
  823. }
  824. return qnum;
  825. }
  826. struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
  827. {
  828. struct ath_txq *txq = NULL;
  829. u16 skb_queue = skb_get_queue_mapping(skb);
  830. int qnum;
  831. qnum = ath_get_hal_qnum(skb_queue, sc);
  832. txq = &sc->tx.txq[qnum];
  833. spin_lock_bh(&txq->axq_lock);
  834. if (txq->axq_depth >= (ATH_TXBUF - 20)) {
  835. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_XMIT,
  836. "TX queue: %d is full, depth: %d\n",
  837. qnum, txq->axq_depth);
  838. ath_mac80211_stop_queue(sc, skb_queue);
  839. txq->stopped = 1;
  840. spin_unlock_bh(&txq->axq_lock);
  841. return NULL;
  842. }
  843. spin_unlock_bh(&txq->axq_lock);
  844. return txq;
  845. }
  846. int ath_txq_update(struct ath_softc *sc, int qnum,
  847. struct ath9k_tx_queue_info *qinfo)
  848. {
  849. struct ath_hw *ah = sc->sc_ah;
  850. int error = 0;
  851. struct ath9k_tx_queue_info qi;
  852. if (qnum == sc->beacon.beaconq) {
  853. /*
  854. * XXX: for beacon queue, we just save the parameter.
  855. * It will be picked up by ath_beaconq_config when
  856. * it's necessary.
  857. */
  858. sc->beacon.beacon_qi = *qinfo;
  859. return 0;
  860. }
  861. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  862. ath9k_hw_get_txq_props(ah, qnum, &qi);
  863. qi.tqi_aifs = qinfo->tqi_aifs;
  864. qi.tqi_cwmin = qinfo->tqi_cwmin;
  865. qi.tqi_cwmax = qinfo->tqi_cwmax;
  866. qi.tqi_burstTime = qinfo->tqi_burstTime;
  867. qi.tqi_readyTime = qinfo->tqi_readyTime;
  868. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  869. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  870. "Unable to update hardware queue %u!\n", qnum);
  871. error = -EIO;
  872. } else {
  873. ath9k_hw_resettxqueue(ah, qnum);
  874. }
  875. return error;
  876. }
  877. int ath_cabq_update(struct ath_softc *sc)
  878. {
  879. struct ath9k_tx_queue_info qi;
  880. int qnum = sc->beacon.cabq->axq_qnum;
  881. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  882. /*
  883. * Ensure the readytime % is within the bounds.
  884. */
  885. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  886. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  887. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  888. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  889. qi.tqi_readyTime = (sc->beacon_interval *
  890. sc->config.cabqReadytime) / 100;
  891. ath_txq_update(sc, qnum, &qi);
  892. return 0;
  893. }
  894. /*
  895. * Drain a given TX queue (could be Beacon or Data)
  896. *
  897. * This assumes output has been stopped and
  898. * we do not need to block ath_tx_tasklet.
  899. */
  900. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  901. {
  902. struct ath_buf *bf, *lastbf;
  903. struct list_head bf_head;
  904. struct ath_tx_status ts;
  905. memset(&ts, 0, sizeof(ts));
  906. INIT_LIST_HEAD(&bf_head);
  907. for (;;) {
  908. spin_lock_bh(&txq->axq_lock);
  909. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  910. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  911. txq->txq_headidx = txq->txq_tailidx = 0;
  912. spin_unlock_bh(&txq->axq_lock);
  913. break;
  914. } else {
  915. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  916. struct ath_buf, list);
  917. }
  918. } else {
  919. if (list_empty(&txq->axq_q)) {
  920. txq->axq_link = NULL;
  921. spin_unlock_bh(&txq->axq_lock);
  922. break;
  923. }
  924. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  925. list);
  926. if (bf->bf_stale) {
  927. list_del(&bf->list);
  928. spin_unlock_bh(&txq->axq_lock);
  929. ath_tx_return_buffer(sc, bf);
  930. continue;
  931. }
  932. }
  933. lastbf = bf->bf_lastbf;
  934. if (!retry_tx)
  935. lastbf->bf_tx_aborted = true;
  936. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  937. list_cut_position(&bf_head,
  938. &txq->txq_fifo[txq->txq_tailidx],
  939. &lastbf->list);
  940. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  941. } else {
  942. /* remove ath_buf's of the same mpdu from txq */
  943. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  944. }
  945. txq->axq_depth--;
  946. spin_unlock_bh(&txq->axq_lock);
  947. if (bf_isampdu(bf))
  948. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0);
  949. else
  950. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  951. }
  952. spin_lock_bh(&txq->axq_lock);
  953. txq->axq_tx_inprogress = false;
  954. spin_unlock_bh(&txq->axq_lock);
  955. /* flush any pending frames if aggregation is enabled */
  956. if (sc->sc_flags & SC_OP_TXAGGR) {
  957. if (!retry_tx) {
  958. spin_lock_bh(&txq->axq_lock);
  959. ath_txq_drain_pending_buffers(sc, txq);
  960. spin_unlock_bh(&txq->axq_lock);
  961. }
  962. }
  963. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  964. spin_lock_bh(&txq->axq_lock);
  965. while (!list_empty(&txq->txq_fifo_pending)) {
  966. bf = list_first_entry(&txq->txq_fifo_pending,
  967. struct ath_buf, list);
  968. list_cut_position(&bf_head,
  969. &txq->txq_fifo_pending,
  970. &bf->bf_lastbf->list);
  971. spin_unlock_bh(&txq->axq_lock);
  972. if (bf_isampdu(bf))
  973. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  974. &ts, 0);
  975. else
  976. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  977. &ts, 0, 0);
  978. spin_lock_bh(&txq->axq_lock);
  979. }
  980. spin_unlock_bh(&txq->axq_lock);
  981. }
  982. }
  983. void ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  984. {
  985. struct ath_hw *ah = sc->sc_ah;
  986. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  987. struct ath_txq *txq;
  988. int i, npend = 0;
  989. if (sc->sc_flags & SC_OP_INVALID)
  990. return;
  991. /* Stop beacon queue */
  992. ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
  993. /* Stop data queues */
  994. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  995. if (ATH_TXQ_SETUP(sc, i)) {
  996. txq = &sc->tx.txq[i];
  997. ath9k_hw_stoptxdma(ah, txq->axq_qnum);
  998. npend += ath9k_hw_numtxpending(ah, txq->axq_qnum);
  999. }
  1000. }
  1001. if (npend) {
  1002. int r;
  1003. ath_print(common, ATH_DBG_FATAL,
  1004. "Unable to stop TxDMA. Reset HAL!\n");
  1005. spin_lock_bh(&sc->sc_resetlock);
  1006. r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
  1007. if (r)
  1008. ath_print(common, ATH_DBG_FATAL,
  1009. "Unable to reset hardware; reset status %d\n",
  1010. r);
  1011. spin_unlock_bh(&sc->sc_resetlock);
  1012. }
  1013. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1014. if (ATH_TXQ_SETUP(sc, i))
  1015. ath_draintxq(sc, &sc->tx.txq[i], retry_tx);
  1016. }
  1017. }
  1018. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1019. {
  1020. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1021. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1022. }
  1023. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1024. {
  1025. struct ath_atx_ac *ac;
  1026. struct ath_atx_tid *tid;
  1027. if (list_empty(&txq->axq_acq))
  1028. return;
  1029. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1030. list_del(&ac->list);
  1031. ac->sched = false;
  1032. do {
  1033. if (list_empty(&ac->tid_q))
  1034. return;
  1035. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
  1036. list_del(&tid->list);
  1037. tid->sched = false;
  1038. if (tid->paused)
  1039. continue;
  1040. ath_tx_sched_aggr(sc, txq, tid);
  1041. /*
  1042. * add tid to round-robin queue if more frames
  1043. * are pending for the tid
  1044. */
  1045. if (!list_empty(&tid->buf_q))
  1046. ath_tx_queue_tid(txq, tid);
  1047. break;
  1048. } while (!list_empty(&ac->tid_q));
  1049. if (!list_empty(&ac->tid_q)) {
  1050. if (!ac->sched) {
  1051. ac->sched = true;
  1052. list_add_tail(&ac->list, &txq->axq_acq);
  1053. }
  1054. }
  1055. }
  1056. int ath_tx_setup(struct ath_softc *sc, int haltype)
  1057. {
  1058. struct ath_txq *txq;
  1059. if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
  1060. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1061. "HAL AC %u out of range, max %zu!\n",
  1062. haltype, ARRAY_SIZE(sc->tx.hwq_map));
  1063. return 0;
  1064. }
  1065. txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
  1066. if (txq != NULL) {
  1067. sc->tx.hwq_map[haltype] = txq->axq_qnum;
  1068. return 1;
  1069. } else
  1070. return 0;
  1071. }
  1072. /***********/
  1073. /* TX, DMA */
  1074. /***********/
  1075. /*
  1076. * Insert a chain of ath_buf (descriptors) on a txq and
  1077. * assume the descriptors are already chained together by caller.
  1078. */
  1079. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1080. struct list_head *head)
  1081. {
  1082. struct ath_hw *ah = sc->sc_ah;
  1083. struct ath_common *common = ath9k_hw_common(ah);
  1084. struct ath_buf *bf;
  1085. /*
  1086. * Insert the frame on the outbound list and
  1087. * pass it on to the hardware.
  1088. */
  1089. if (list_empty(head))
  1090. return;
  1091. bf = list_first_entry(head, struct ath_buf, list);
  1092. ath_print(common, ATH_DBG_QUEUE,
  1093. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1094. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1095. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1096. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1097. return;
  1098. }
  1099. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1100. ath_print(common, ATH_DBG_XMIT,
  1101. "Initializing tx fifo %d which "
  1102. "is non-empty\n",
  1103. txq->txq_headidx);
  1104. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1105. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1106. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1107. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1108. ath_print(common, ATH_DBG_XMIT,
  1109. "TXDP[%u] = %llx (%p)\n",
  1110. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1111. } else {
  1112. list_splice_tail_init(head, &txq->axq_q);
  1113. if (txq->axq_link == NULL) {
  1114. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1115. ath_print(common, ATH_DBG_XMIT,
  1116. "TXDP[%u] = %llx (%p)\n",
  1117. txq->axq_qnum, ito64(bf->bf_daddr),
  1118. bf->bf_desc);
  1119. } else {
  1120. *txq->axq_link = bf->bf_daddr;
  1121. ath_print(common, ATH_DBG_XMIT,
  1122. "link[%u] (%p)=%llx (%p)\n",
  1123. txq->axq_qnum, txq->axq_link,
  1124. ito64(bf->bf_daddr), bf->bf_desc);
  1125. }
  1126. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1127. &txq->axq_link);
  1128. ath9k_hw_txstart(ah, txq->axq_qnum);
  1129. }
  1130. txq->axq_depth++;
  1131. }
  1132. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1133. struct list_head *bf_head,
  1134. struct ath_tx_control *txctl)
  1135. {
  1136. struct ath_buf *bf;
  1137. bf = list_first_entry(bf_head, struct ath_buf, list);
  1138. bf->bf_state.bf_type |= BUF_AMPDU;
  1139. TX_STAT_INC(txctl->txq->axq_qnum, a_queued);
  1140. /*
  1141. * Do not queue to h/w when any of the following conditions is true:
  1142. * - there are pending frames in software queue
  1143. * - the TID is currently paused for ADDBA/BAR request
  1144. * - seqno is not within block-ack window
  1145. * - h/w queue depth exceeds low water mark
  1146. */
  1147. if (!list_empty(&tid->buf_q) || tid->paused ||
  1148. !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
  1149. txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
  1150. /*
  1151. * Add this frame to software queue for scheduling later
  1152. * for aggregation.
  1153. */
  1154. list_move_tail(&bf->list, &tid->buf_q);
  1155. ath_tx_queue_tid(txctl->txq, tid);
  1156. return;
  1157. }
  1158. /* Add sub-frame to BAW */
  1159. ath_tx_addto_baw(sc, tid, bf);
  1160. /* Queue to h/w without aggregation */
  1161. bf->bf_nframes = 1;
  1162. bf->bf_lastbf = bf;
  1163. ath_buf_set_rate(sc, bf);
  1164. ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
  1165. }
  1166. static void ath_tx_send_ht_normal(struct ath_softc *sc, struct ath_txq *txq,
  1167. struct ath_atx_tid *tid,
  1168. struct list_head *bf_head)
  1169. {
  1170. struct ath_buf *bf;
  1171. bf = list_first_entry(bf_head, struct ath_buf, list);
  1172. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1173. /* update starting sequence number for subsequent ADDBA request */
  1174. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1175. bf->bf_nframes = 1;
  1176. bf->bf_lastbf = bf;
  1177. ath_buf_set_rate(sc, bf);
  1178. ath_tx_txqaddbuf(sc, txq, bf_head);
  1179. TX_STAT_INC(txq->axq_qnum, queued);
  1180. }
  1181. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1182. struct list_head *bf_head)
  1183. {
  1184. struct ath_buf *bf;
  1185. bf = list_first_entry(bf_head, struct ath_buf, list);
  1186. bf->bf_lastbf = bf;
  1187. bf->bf_nframes = 1;
  1188. ath_buf_set_rate(sc, bf);
  1189. ath_tx_txqaddbuf(sc, txq, bf_head);
  1190. TX_STAT_INC(txq->axq_qnum, queued);
  1191. }
  1192. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1193. {
  1194. struct ieee80211_hdr *hdr;
  1195. enum ath9k_pkt_type htype;
  1196. __le16 fc;
  1197. hdr = (struct ieee80211_hdr *)skb->data;
  1198. fc = hdr->frame_control;
  1199. if (ieee80211_is_beacon(fc))
  1200. htype = ATH9K_PKT_TYPE_BEACON;
  1201. else if (ieee80211_is_probe_resp(fc))
  1202. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1203. else if (ieee80211_is_atim(fc))
  1204. htype = ATH9K_PKT_TYPE_ATIM;
  1205. else if (ieee80211_is_pspoll(fc))
  1206. htype = ATH9K_PKT_TYPE_PSPOLL;
  1207. else
  1208. htype = ATH9K_PKT_TYPE_NORMAL;
  1209. return htype;
  1210. }
  1211. static int get_hw_crypto_keytype(struct sk_buff *skb)
  1212. {
  1213. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1214. if (tx_info->control.hw_key) {
  1215. if (tx_info->control.hw_key->alg == ALG_WEP)
  1216. return ATH9K_KEY_TYPE_WEP;
  1217. else if (tx_info->control.hw_key->alg == ALG_TKIP)
  1218. return ATH9K_KEY_TYPE_TKIP;
  1219. else if (tx_info->control.hw_key->alg == ALG_CCMP)
  1220. return ATH9K_KEY_TYPE_AES;
  1221. }
  1222. return ATH9K_KEY_TYPE_CLEAR;
  1223. }
  1224. static void assign_aggr_tid_seqno(struct sk_buff *skb,
  1225. struct ath_buf *bf)
  1226. {
  1227. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1228. struct ieee80211_hdr *hdr;
  1229. struct ath_node *an;
  1230. struct ath_atx_tid *tid;
  1231. __le16 fc;
  1232. u8 *qc;
  1233. if (!tx_info->control.sta)
  1234. return;
  1235. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1236. hdr = (struct ieee80211_hdr *)skb->data;
  1237. fc = hdr->frame_control;
  1238. if (ieee80211_is_data_qos(fc)) {
  1239. qc = ieee80211_get_qos_ctl(hdr);
  1240. bf->bf_tidno = qc[0] & 0xf;
  1241. }
  1242. /*
  1243. * For HT capable stations, we save tidno for later use.
  1244. * We also override seqno set by upper layer with the one
  1245. * in tx aggregation state.
  1246. */
  1247. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1248. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1249. bf->bf_seqno = tid->seq_next;
  1250. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1251. }
  1252. static int setup_tx_flags(struct sk_buff *skb, bool use_ldpc)
  1253. {
  1254. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1255. int flags = 0;
  1256. flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
  1257. flags |= ATH9K_TXDESC_INTREQ;
  1258. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1259. flags |= ATH9K_TXDESC_NOACK;
  1260. if (use_ldpc)
  1261. flags |= ATH9K_TXDESC_LDPC;
  1262. return flags;
  1263. }
  1264. /*
  1265. * rix - rate index
  1266. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1267. * width - 0 for 20 MHz, 1 for 40 MHz
  1268. * half_gi - to use 4us v/s 3.6 us for symbol time
  1269. */
  1270. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
  1271. int width, int half_gi, bool shortPreamble)
  1272. {
  1273. u32 nbits, nsymbits, duration, nsymbols;
  1274. int streams, pktlen;
  1275. pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
  1276. /* find number of symbols: PLCP + data */
  1277. streams = HT_RC_2_STREAMS(rix);
  1278. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1279. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1280. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1281. if (!half_gi)
  1282. duration = SYMBOL_TIME(nsymbols);
  1283. else
  1284. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1285. /* addup duration for legacy/ht training and signal fields */
  1286. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1287. return duration;
  1288. }
  1289. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
  1290. {
  1291. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1292. struct ath9k_11n_rate_series series[4];
  1293. struct sk_buff *skb;
  1294. struct ieee80211_tx_info *tx_info;
  1295. struct ieee80211_tx_rate *rates;
  1296. const struct ieee80211_rate *rate;
  1297. struct ieee80211_hdr *hdr;
  1298. int i, flags = 0;
  1299. u8 rix = 0, ctsrate = 0;
  1300. bool is_pspoll;
  1301. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1302. skb = bf->bf_mpdu;
  1303. tx_info = IEEE80211_SKB_CB(skb);
  1304. rates = tx_info->control.rates;
  1305. hdr = (struct ieee80211_hdr *)skb->data;
  1306. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1307. /*
  1308. * We check if Short Preamble is needed for the CTS rate by
  1309. * checking the BSS's global flag.
  1310. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1311. */
  1312. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1313. ctsrate = rate->hw_value;
  1314. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1315. ctsrate |= rate->hw_value_short;
  1316. for (i = 0; i < 4; i++) {
  1317. bool is_40, is_sgi, is_sp;
  1318. int phy;
  1319. if (!rates[i].count || (rates[i].idx < 0))
  1320. continue;
  1321. rix = rates[i].idx;
  1322. series[i].Tries = rates[i].count;
  1323. series[i].ChSel = common->tx_chainmask;
  1324. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1325. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1326. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1327. flags |= ATH9K_TXDESC_RTSENA;
  1328. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1329. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1330. flags |= ATH9K_TXDESC_CTSENA;
  1331. }
  1332. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1333. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1334. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1335. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1336. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1337. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1338. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1339. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1340. /* MCS rates */
  1341. series[i].Rate = rix | 0x80;
  1342. series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
  1343. is_40, is_sgi, is_sp);
  1344. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1345. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1346. continue;
  1347. }
  1348. /* legcay rates */
  1349. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1350. !(rate->flags & IEEE80211_RATE_ERP_G))
  1351. phy = WLAN_RC_PHY_CCK;
  1352. else
  1353. phy = WLAN_RC_PHY_OFDM;
  1354. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1355. series[i].Rate = rate->hw_value;
  1356. if (rate->hw_value_short) {
  1357. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1358. series[i].Rate |= rate->hw_value_short;
  1359. } else {
  1360. is_sp = false;
  1361. }
  1362. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1363. phy, rate->bitrate * 100, bf->bf_frmlen, rix, is_sp);
  1364. }
  1365. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1366. if (bf_isaggr(bf) && (bf->bf_al > sc->sc_ah->caps.rts_aggr_limit))
  1367. flags &= ~ATH9K_TXDESC_RTSENA;
  1368. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1369. if (flags & ATH9K_TXDESC_RTSENA)
  1370. flags &= ~ATH9K_TXDESC_CTSENA;
  1371. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1372. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1373. bf->bf_lastbf->bf_desc,
  1374. !is_pspoll, ctsrate,
  1375. 0, series, 4, flags);
  1376. if (sc->config.ath_aggr_prot && flags)
  1377. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1378. }
  1379. static int ath_tx_setup_buffer(struct ieee80211_hw *hw, struct ath_buf *bf,
  1380. struct sk_buff *skb,
  1381. struct ath_tx_control *txctl)
  1382. {
  1383. struct ath_wiphy *aphy = hw->priv;
  1384. struct ath_softc *sc = aphy->sc;
  1385. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1386. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1387. int hdrlen;
  1388. __le16 fc;
  1389. int padpos, padsize;
  1390. bool use_ldpc = false;
  1391. tx_info->pad[0] = 0;
  1392. switch (txctl->frame_type) {
  1393. case ATH9K_IFT_NOT_INTERNAL:
  1394. break;
  1395. case ATH9K_IFT_PAUSE:
  1396. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_PAUSE;
  1397. /* fall through */
  1398. case ATH9K_IFT_UNPAUSE:
  1399. tx_info->pad[0] |= ATH_TX_INFO_FRAME_TYPE_INTERNAL;
  1400. break;
  1401. }
  1402. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  1403. fc = hdr->frame_control;
  1404. ATH_TXBUF_RESET(bf);
  1405. bf->aphy = aphy;
  1406. bf->bf_frmlen = skb->len + FCS_LEN;
  1407. /* Remove the padding size from bf_frmlen, if any */
  1408. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1409. padsize = padpos & 3;
  1410. if (padsize && skb->len>padpos+padsize) {
  1411. bf->bf_frmlen -= padsize;
  1412. }
  1413. if (conf_is_ht(&hw->conf)) {
  1414. bf->bf_state.bf_type |= BUF_HT;
  1415. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1416. use_ldpc = true;
  1417. }
  1418. bf->bf_flags = setup_tx_flags(skb, use_ldpc);
  1419. bf->bf_keytype = get_hw_crypto_keytype(skb);
  1420. if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
  1421. bf->bf_frmlen += tx_info->control.hw_key->icv_len;
  1422. bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
  1423. } else {
  1424. bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
  1425. }
  1426. if (ieee80211_is_data_qos(fc) && bf_isht(bf) &&
  1427. (sc->sc_flags & SC_OP_TXAGGR))
  1428. assign_aggr_tid_seqno(skb, bf);
  1429. bf->bf_mpdu = skb;
  1430. bf->bf_dmacontext = dma_map_single(sc->dev, skb->data,
  1431. skb->len, DMA_TO_DEVICE);
  1432. if (unlikely(dma_mapping_error(sc->dev, bf->bf_dmacontext))) {
  1433. bf->bf_mpdu = NULL;
  1434. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL,
  1435. "dma_mapping_error() on TX\n");
  1436. return -ENOMEM;
  1437. }
  1438. bf->bf_buf_addr = bf->bf_dmacontext;
  1439. /* tag if this is a nullfunc frame to enable PS when AP acks it */
  1440. if (ieee80211_is_nullfunc(fc) && ieee80211_has_pm(fc)) {
  1441. bf->bf_isnullfunc = true;
  1442. sc->ps_flags &= ~PS_NULLFUNC_COMPLETED;
  1443. } else
  1444. bf->bf_isnullfunc = false;
  1445. return 0;
  1446. }
  1447. /* FIXME: tx power */
  1448. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1449. struct ath_tx_control *txctl)
  1450. {
  1451. struct sk_buff *skb = bf->bf_mpdu;
  1452. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1453. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1454. struct ath_node *an = NULL;
  1455. struct list_head bf_head;
  1456. struct ath_desc *ds;
  1457. struct ath_atx_tid *tid;
  1458. struct ath_hw *ah = sc->sc_ah;
  1459. int frm_type;
  1460. __le16 fc;
  1461. frm_type = get_hw_packet_type(skb);
  1462. fc = hdr->frame_control;
  1463. INIT_LIST_HEAD(&bf_head);
  1464. list_add_tail(&bf->list, &bf_head);
  1465. ds = bf->bf_desc;
  1466. ath9k_hw_set_desc_link(ah, ds, 0);
  1467. ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
  1468. bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
  1469. ath9k_hw_filltxdesc(ah, ds,
  1470. skb->len, /* segment length */
  1471. true, /* first segment */
  1472. true, /* last segment */
  1473. ds, /* first descriptor */
  1474. bf->bf_buf_addr,
  1475. txctl->txq->axq_qnum);
  1476. spin_lock_bh(&txctl->txq->axq_lock);
  1477. if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
  1478. tx_info->control.sta) {
  1479. an = (struct ath_node *)tx_info->control.sta->drv_priv;
  1480. tid = ATH_AN_2_TID(an, bf->bf_tidno);
  1481. if (!ieee80211_is_data_qos(fc)) {
  1482. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1483. goto tx_done;
  1484. }
  1485. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1486. /*
  1487. * Try aggregation if it's a unicast data frame
  1488. * and the destination is HT capable.
  1489. */
  1490. ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
  1491. } else {
  1492. /*
  1493. * Send this frame as regular when ADDBA
  1494. * exchange is neither complete nor pending.
  1495. */
  1496. ath_tx_send_ht_normal(sc, txctl->txq,
  1497. tid, &bf_head);
  1498. }
  1499. } else {
  1500. ath_tx_send_normal(sc, txctl->txq, &bf_head);
  1501. }
  1502. tx_done:
  1503. spin_unlock_bh(&txctl->txq->axq_lock);
  1504. }
  1505. /* Upon failure caller should free skb */
  1506. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1507. struct ath_tx_control *txctl)
  1508. {
  1509. struct ath_wiphy *aphy = hw->priv;
  1510. struct ath_softc *sc = aphy->sc;
  1511. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1512. struct ath_buf *bf;
  1513. int r;
  1514. bf = ath_tx_get_buffer(sc);
  1515. if (!bf) {
  1516. ath_print(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1517. return -1;
  1518. }
  1519. r = ath_tx_setup_buffer(hw, bf, skb, txctl);
  1520. if (unlikely(r)) {
  1521. struct ath_txq *txq = txctl->txq;
  1522. ath_print(common, ATH_DBG_FATAL, "TX mem alloc failure\n");
  1523. /* upon ath_tx_processq() this TX queue will be resumed, we
  1524. * guarantee this will happen by knowing beforehand that
  1525. * we will at least have to run TX completionon one buffer
  1526. * on the queue */
  1527. spin_lock_bh(&txq->axq_lock);
  1528. if (sc->tx.txq[txq->axq_qnum].axq_depth > 1) {
  1529. ath_mac80211_stop_queue(sc, skb_get_queue_mapping(skb));
  1530. txq->stopped = 1;
  1531. }
  1532. spin_unlock_bh(&txq->axq_lock);
  1533. ath_tx_return_buffer(sc, bf);
  1534. return r;
  1535. }
  1536. ath_tx_start_dma(sc, bf, txctl);
  1537. return 0;
  1538. }
  1539. void ath_tx_cabq(struct ieee80211_hw *hw, struct sk_buff *skb)
  1540. {
  1541. struct ath_wiphy *aphy = hw->priv;
  1542. struct ath_softc *sc = aphy->sc;
  1543. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1544. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1545. int padpos, padsize;
  1546. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1547. struct ath_tx_control txctl;
  1548. memset(&txctl, 0, sizeof(struct ath_tx_control));
  1549. /*
  1550. * As a temporary workaround, assign seq# here; this will likely need
  1551. * to be cleaned up to work better with Beacon transmission and virtual
  1552. * BSSes.
  1553. */
  1554. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1555. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1556. sc->tx.seq_no += 0x10;
  1557. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1558. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1559. }
  1560. /* Add the padding after the header if this is not already done */
  1561. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1562. padsize = padpos & 3;
  1563. if (padsize && skb->len>padpos) {
  1564. if (skb_headroom(skb) < padsize) {
  1565. ath_print(common, ATH_DBG_XMIT,
  1566. "TX CABQ padding failed\n");
  1567. dev_kfree_skb_any(skb);
  1568. return;
  1569. }
  1570. skb_push(skb, padsize);
  1571. memmove(skb->data, skb->data + padsize, padpos);
  1572. }
  1573. txctl.txq = sc->beacon.cabq;
  1574. ath_print(common, ATH_DBG_XMIT,
  1575. "transmitting CABQ packet, skb: %p\n", skb);
  1576. if (ath_tx_start(hw, skb, &txctl) != 0) {
  1577. ath_print(common, ATH_DBG_XMIT, "CABQ TX failed\n");
  1578. goto exit;
  1579. }
  1580. return;
  1581. exit:
  1582. dev_kfree_skb_any(skb);
  1583. }
  1584. /*****************/
  1585. /* TX Completion */
  1586. /*****************/
  1587. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1588. struct ath_wiphy *aphy, int tx_flags)
  1589. {
  1590. struct ieee80211_hw *hw = sc->hw;
  1591. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1592. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1593. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1594. int padpos, padsize;
  1595. ath_print(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1596. if (aphy)
  1597. hw = aphy->hw;
  1598. if (tx_flags & ATH_TX_BAR)
  1599. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1600. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1601. /* Frame was ACKed */
  1602. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1603. }
  1604. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1605. padsize = padpos & 3;
  1606. if (padsize && skb->len>padpos+padsize) {
  1607. /*
  1608. * Remove MAC header padding before giving the frame back to
  1609. * mac80211.
  1610. */
  1611. memmove(skb->data + padsize, skb->data, padpos);
  1612. skb_pull(skb, padsize);
  1613. }
  1614. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1615. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1616. ath_print(common, ATH_DBG_PS,
  1617. "Going back to sleep after having "
  1618. "received TX status (0x%lx)\n",
  1619. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1620. PS_WAIT_FOR_CAB |
  1621. PS_WAIT_FOR_PSPOLL_DATA |
  1622. PS_WAIT_FOR_TX_ACK));
  1623. }
  1624. if (unlikely(tx_info->pad[0] & ATH_TX_INFO_FRAME_TYPE_INTERNAL))
  1625. ath9k_tx_status(hw, skb);
  1626. else
  1627. ieee80211_tx_status(hw, skb);
  1628. }
  1629. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1630. struct ath_txq *txq, struct list_head *bf_q,
  1631. struct ath_tx_status *ts, int txok, int sendbar)
  1632. {
  1633. struct sk_buff *skb = bf->bf_mpdu;
  1634. unsigned long flags;
  1635. int tx_flags = 0;
  1636. if (sendbar)
  1637. tx_flags = ATH_TX_BAR;
  1638. if (!txok) {
  1639. tx_flags |= ATH_TX_ERROR;
  1640. if (bf_isxretried(bf))
  1641. tx_flags |= ATH_TX_XRETRY;
  1642. }
  1643. dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE);
  1644. ath_tx_complete(sc, skb, bf->aphy, tx_flags);
  1645. ath_debug_stat_tx(sc, txq, bf, ts);
  1646. /*
  1647. * Return the list of ath_buf of this mpdu to free queue
  1648. */
  1649. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1650. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1651. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1652. }
  1653. static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
  1654. struct ath_tx_status *ts, int txok)
  1655. {
  1656. u16 seq_st = 0;
  1657. u32 ba[WME_BA_BMP_SIZE >> 5];
  1658. int ba_index;
  1659. int nbad = 0;
  1660. int isaggr = 0;
  1661. if (bf->bf_tx_aborted)
  1662. return 0;
  1663. isaggr = bf_isaggr(bf);
  1664. if (isaggr) {
  1665. seq_st = ts->ts_seqnum;
  1666. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  1667. }
  1668. while (bf) {
  1669. ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
  1670. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  1671. nbad++;
  1672. bf = bf->bf_next;
  1673. }
  1674. return nbad;
  1675. }
  1676. static void ath_tx_rc_status(struct ath_buf *bf, struct ath_tx_status *ts,
  1677. int nbad, int txok, bool update_rc)
  1678. {
  1679. struct sk_buff *skb = bf->bf_mpdu;
  1680. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1681. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1682. struct ieee80211_hw *hw = bf->aphy->hw;
  1683. u8 i, tx_rateindex;
  1684. if (txok)
  1685. tx_info->status.ack_signal = ts->ts_rssi;
  1686. tx_rateindex = ts->ts_rateindex;
  1687. WARN_ON(tx_rateindex >= hw->max_rates);
  1688. if (ts->ts_status & ATH9K_TXERR_FILT)
  1689. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1690. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc)
  1691. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1692. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1693. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1694. if (ieee80211_is_data(hdr->frame_control)) {
  1695. if (ts->ts_flags &
  1696. (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN))
  1697. tx_info->pad[0] |= ATH_TX_INFO_UNDERRUN;
  1698. if ((ts->ts_status & ATH9K_TXERR_XRETRY) ||
  1699. (ts->ts_status & ATH9K_TXERR_FIFO))
  1700. tx_info->pad[0] |= ATH_TX_INFO_XRETRY;
  1701. tx_info->status.ampdu_len = bf->bf_nframes;
  1702. tx_info->status.ampdu_ack_len = bf->bf_nframes - nbad;
  1703. }
  1704. }
  1705. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1706. tx_info->status.rates[i].count = 0;
  1707. tx_info->status.rates[i].idx = -1;
  1708. }
  1709. tx_info->status.rates[tx_rateindex].count = bf->bf_retries + 1;
  1710. }
  1711. static void ath_wake_mac80211_queue(struct ath_softc *sc, struct ath_txq *txq)
  1712. {
  1713. int qnum;
  1714. spin_lock_bh(&txq->axq_lock);
  1715. if (txq->stopped &&
  1716. sc->tx.txq[txq->axq_qnum].axq_depth <= (ATH_TXBUF - 20)) {
  1717. qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
  1718. if (qnum != -1) {
  1719. ath_mac80211_start_queue(sc, qnum);
  1720. txq->stopped = 0;
  1721. }
  1722. }
  1723. spin_unlock_bh(&txq->axq_lock);
  1724. }
  1725. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1726. {
  1727. struct ath_hw *ah = sc->sc_ah;
  1728. struct ath_common *common = ath9k_hw_common(ah);
  1729. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1730. struct list_head bf_head;
  1731. struct ath_desc *ds;
  1732. struct ath_tx_status ts;
  1733. int txok;
  1734. int status;
  1735. ath_print(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1736. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1737. txq->axq_link);
  1738. for (;;) {
  1739. spin_lock_bh(&txq->axq_lock);
  1740. if (list_empty(&txq->axq_q)) {
  1741. txq->axq_link = NULL;
  1742. spin_unlock_bh(&txq->axq_lock);
  1743. break;
  1744. }
  1745. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1746. /*
  1747. * There is a race condition that a BH gets scheduled
  1748. * after sw writes TxE and before hw re-load the last
  1749. * descriptor to get the newly chained one.
  1750. * Software must keep the last DONE descriptor as a
  1751. * holding descriptor - software does so by marking
  1752. * it with the STALE flag.
  1753. */
  1754. bf_held = NULL;
  1755. if (bf->bf_stale) {
  1756. bf_held = bf;
  1757. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1758. spin_unlock_bh(&txq->axq_lock);
  1759. break;
  1760. } else {
  1761. bf = list_entry(bf_held->list.next,
  1762. struct ath_buf, list);
  1763. }
  1764. }
  1765. lastbf = bf->bf_lastbf;
  1766. ds = lastbf->bf_desc;
  1767. memset(&ts, 0, sizeof(ts));
  1768. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1769. if (status == -EINPROGRESS) {
  1770. spin_unlock_bh(&txq->axq_lock);
  1771. break;
  1772. }
  1773. /*
  1774. * We now know the nullfunc frame has been ACKed so we
  1775. * can disable RX.
  1776. */
  1777. if (bf->bf_isnullfunc &&
  1778. (ts.ts_status & ATH9K_TX_ACKED)) {
  1779. if ((sc->ps_flags & PS_ENABLED))
  1780. ath9k_enable_ps(sc);
  1781. else
  1782. sc->ps_flags |= PS_NULLFUNC_COMPLETED;
  1783. }
  1784. /*
  1785. * Remove ath_buf's of the same transmit unit from txq,
  1786. * however leave the last descriptor back as the holding
  1787. * descriptor for hw.
  1788. */
  1789. lastbf->bf_stale = true;
  1790. INIT_LIST_HEAD(&bf_head);
  1791. if (!list_is_singular(&lastbf->list))
  1792. list_cut_position(&bf_head,
  1793. &txq->axq_q, lastbf->list.prev);
  1794. txq->axq_depth--;
  1795. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1796. txq->axq_tx_inprogress = false;
  1797. if (bf_held)
  1798. list_del(&bf_held->list);
  1799. spin_unlock_bh(&txq->axq_lock);
  1800. if (bf_held)
  1801. ath_tx_return_buffer(sc, bf_held);
  1802. if (!bf_isampdu(bf)) {
  1803. /*
  1804. * This frame is sent out as a single frame.
  1805. * Use hardware retry status for this frame.
  1806. */
  1807. bf->bf_retries = ts.ts_longretry;
  1808. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1809. bf->bf_state.bf_type |= BUF_XRETRY;
  1810. ath_tx_rc_status(bf, &ts, 0, txok, true);
  1811. }
  1812. if (bf_isampdu(bf))
  1813. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok);
  1814. else
  1815. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1816. ath_wake_mac80211_queue(sc, txq);
  1817. spin_lock_bh(&txq->axq_lock);
  1818. if (sc->sc_flags & SC_OP_TXAGGR)
  1819. ath_txq_schedule(sc, txq);
  1820. spin_unlock_bh(&txq->axq_lock);
  1821. }
  1822. }
  1823. static void ath_tx_complete_poll_work(struct work_struct *work)
  1824. {
  1825. struct ath_softc *sc = container_of(work, struct ath_softc,
  1826. tx_complete_work.work);
  1827. struct ath_txq *txq;
  1828. int i;
  1829. bool needreset = false;
  1830. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1831. if (ATH_TXQ_SETUP(sc, i)) {
  1832. txq = &sc->tx.txq[i];
  1833. spin_lock_bh(&txq->axq_lock);
  1834. if (txq->axq_depth) {
  1835. if (txq->axq_tx_inprogress) {
  1836. needreset = true;
  1837. spin_unlock_bh(&txq->axq_lock);
  1838. break;
  1839. } else {
  1840. txq->axq_tx_inprogress = true;
  1841. }
  1842. }
  1843. spin_unlock_bh(&txq->axq_lock);
  1844. }
  1845. if (needreset) {
  1846. ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1847. "tx hung, resetting the chip\n");
  1848. ath9k_ps_wakeup(sc);
  1849. ath_reset(sc, false);
  1850. ath9k_ps_restore(sc);
  1851. }
  1852. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1853. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1854. }
  1855. void ath_tx_tasklet(struct ath_softc *sc)
  1856. {
  1857. int i;
  1858. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1859. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1860. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1861. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1862. ath_tx_processq(sc, &sc->tx.txq[i]);
  1863. }
  1864. }
  1865. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1866. {
  1867. struct ath_tx_status txs;
  1868. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1869. struct ath_hw *ah = sc->sc_ah;
  1870. struct ath_txq *txq;
  1871. struct ath_buf *bf, *lastbf;
  1872. struct list_head bf_head;
  1873. int status;
  1874. int txok;
  1875. for (;;) {
  1876. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1877. if (status == -EINPROGRESS)
  1878. break;
  1879. if (status == -EIO) {
  1880. ath_print(common, ATH_DBG_XMIT,
  1881. "Error processing tx status\n");
  1882. break;
  1883. }
  1884. /* Skip beacon completions */
  1885. if (txs.qid == sc->beacon.beaconq)
  1886. continue;
  1887. txq = &sc->tx.txq[txs.qid];
  1888. spin_lock_bh(&txq->axq_lock);
  1889. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1890. spin_unlock_bh(&txq->axq_lock);
  1891. return;
  1892. }
  1893. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1894. struct ath_buf, list);
  1895. lastbf = bf->bf_lastbf;
  1896. INIT_LIST_HEAD(&bf_head);
  1897. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1898. &lastbf->list);
  1899. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1900. txq->axq_depth--;
  1901. txq->axq_tx_inprogress = false;
  1902. spin_unlock_bh(&txq->axq_lock);
  1903. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1904. if (!bf_isampdu(bf)) {
  1905. bf->bf_retries = txs.ts_longretry;
  1906. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1907. bf->bf_state.bf_type |= BUF_XRETRY;
  1908. ath_tx_rc_status(bf, &txs, 0, txok, true);
  1909. }
  1910. if (bf_isampdu(bf))
  1911. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs, txok);
  1912. else
  1913. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1914. &txs, txok, 0);
  1915. spin_lock_bh(&txq->axq_lock);
  1916. if (!list_empty(&txq->txq_fifo_pending)) {
  1917. INIT_LIST_HEAD(&bf_head);
  1918. bf = list_first_entry(&txq->txq_fifo_pending,
  1919. struct ath_buf, list);
  1920. list_cut_position(&bf_head, &txq->txq_fifo_pending,
  1921. &bf->bf_lastbf->list);
  1922. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1923. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1924. ath_txq_schedule(sc, txq);
  1925. spin_unlock_bh(&txq->axq_lock);
  1926. }
  1927. }
  1928. /*****************/
  1929. /* Init, Cleanup */
  1930. /*****************/
  1931. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1932. {
  1933. struct ath_descdma *dd = &sc->txsdma;
  1934. u8 txs_len = sc->sc_ah->caps.txs_len;
  1935. dd->dd_desc_len = size * txs_len;
  1936. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1937. &dd->dd_desc_paddr, GFP_KERNEL);
  1938. if (!dd->dd_desc)
  1939. return -ENOMEM;
  1940. return 0;
  1941. }
  1942. static int ath_tx_edma_init(struct ath_softc *sc)
  1943. {
  1944. int err;
  1945. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1946. if (!err)
  1947. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1948. sc->txsdma.dd_desc_paddr,
  1949. ATH_TXSTATUS_RING_SIZE);
  1950. return err;
  1951. }
  1952. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1953. {
  1954. struct ath_descdma *dd = &sc->txsdma;
  1955. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1956. dd->dd_desc_paddr);
  1957. }
  1958. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1959. {
  1960. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1961. int error = 0;
  1962. spin_lock_init(&sc->tx.txbuflock);
  1963. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1964. "tx", nbufs, 1, 1);
  1965. if (error != 0) {
  1966. ath_print(common, ATH_DBG_FATAL,
  1967. "Failed to allocate tx descriptors: %d\n", error);
  1968. goto err;
  1969. }
  1970. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1971. "beacon", ATH_BCBUF, 1, 1);
  1972. if (error != 0) {
  1973. ath_print(common, ATH_DBG_FATAL,
  1974. "Failed to allocate beacon descriptors: %d\n", error);
  1975. goto err;
  1976. }
  1977. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1978. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1979. error = ath_tx_edma_init(sc);
  1980. if (error)
  1981. goto err;
  1982. }
  1983. err:
  1984. if (error != 0)
  1985. ath_tx_cleanup(sc);
  1986. return error;
  1987. }
  1988. void ath_tx_cleanup(struct ath_softc *sc)
  1989. {
  1990. if (sc->beacon.bdma.dd_desc_len != 0)
  1991. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1992. if (sc->tx.txdma.dd_desc_len != 0)
  1993. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1994. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1995. ath_tx_edma_cleanup(sc);
  1996. }
  1997. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1998. {
  1999. struct ath_atx_tid *tid;
  2000. struct ath_atx_ac *ac;
  2001. int tidno, acno;
  2002. for (tidno = 0, tid = &an->tid[tidno];
  2003. tidno < WME_NUM_TID;
  2004. tidno++, tid++) {
  2005. tid->an = an;
  2006. tid->tidno = tidno;
  2007. tid->seq_start = tid->seq_next = 0;
  2008. tid->baw_size = WME_MAX_BA;
  2009. tid->baw_head = tid->baw_tail = 0;
  2010. tid->sched = false;
  2011. tid->paused = false;
  2012. tid->state &= ~AGGR_CLEANUP;
  2013. INIT_LIST_HEAD(&tid->buf_q);
  2014. acno = TID_TO_WME_AC(tidno);
  2015. tid->ac = &an->ac[acno];
  2016. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2017. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2018. }
  2019. for (acno = 0, ac = &an->ac[acno];
  2020. acno < WME_NUM_AC; acno++, ac++) {
  2021. ac->sched = false;
  2022. INIT_LIST_HEAD(&ac->tid_q);
  2023. switch (acno) {
  2024. case WME_AC_BE:
  2025. ac->qnum = ath_tx_get_qnum(sc,
  2026. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
  2027. break;
  2028. case WME_AC_BK:
  2029. ac->qnum = ath_tx_get_qnum(sc,
  2030. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
  2031. break;
  2032. case WME_AC_VI:
  2033. ac->qnum = ath_tx_get_qnum(sc,
  2034. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
  2035. break;
  2036. case WME_AC_VO:
  2037. ac->qnum = ath_tx_get_qnum(sc,
  2038. ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
  2039. break;
  2040. }
  2041. }
  2042. }
  2043. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2044. {
  2045. int i;
  2046. struct ath_atx_ac *ac, *ac_tmp;
  2047. struct ath_atx_tid *tid, *tid_tmp;
  2048. struct ath_txq *txq;
  2049. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2050. if (ATH_TXQ_SETUP(sc, i)) {
  2051. txq = &sc->tx.txq[i];
  2052. spin_lock_bh(&txq->axq_lock);
  2053. list_for_each_entry_safe(ac,
  2054. ac_tmp, &txq->axq_acq, list) {
  2055. tid = list_first_entry(&ac->tid_q,
  2056. struct ath_atx_tid, list);
  2057. if (tid && tid->an != an)
  2058. continue;
  2059. list_del(&ac->list);
  2060. ac->sched = false;
  2061. list_for_each_entry_safe(tid,
  2062. tid_tmp, &ac->tid_q, list) {
  2063. list_del(&tid->list);
  2064. tid->sched = false;
  2065. ath_tid_drain(sc, txq, tid);
  2066. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2067. tid->state &= ~AGGR_CLEANUP;
  2068. }
  2069. }
  2070. spin_unlock_bh(&txq->axq_lock);
  2071. }
  2072. }
  2073. }