eeprom_def.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9002_phy.h"
  18. static void ath9k_get_txgain_index(struct ath_hw *ah,
  19. struct ath9k_channel *chan,
  20. struct calDataPerFreqOpLoop *rawDatasetOpLoop,
  21. u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
  22. {
  23. u8 pcdac, i = 0;
  24. u16 idxL = 0, idxR = 0, numPiers;
  25. bool match;
  26. struct chan_centers centers;
  27. ath9k_hw_get_channel_centers(ah, chan, &centers);
  28. for (numPiers = 0; numPiers < availPiers; numPiers++)
  29. if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
  30. break;
  31. match = ath9k_hw_get_lower_upper_index(
  32. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  33. calChans, numPiers, &idxL, &idxR);
  34. if (match) {
  35. pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
  36. *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
  37. } else {
  38. pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
  39. *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
  40. rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  41. }
  42. while (pcdac > ah->originalGain[i] &&
  43. i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
  44. i++;
  45. *pcdacIdx = i;
  46. return;
  47. }
  48. static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
  49. u32 initTxGain,
  50. int txPower,
  51. u8 *pPDADCValues)
  52. {
  53. u32 i;
  54. u32 offset;
  55. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
  56. AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  57. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
  58. AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  59. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
  60. AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
  61. offset = txPower;
  62. for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
  63. if (i < offset)
  64. pPDADCValues[i] = 0x0;
  65. else
  66. pPDADCValues[i] = 0xFF;
  67. }
  68. static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
  69. {
  70. return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
  71. }
  72. static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
  73. {
  74. return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
  75. }
  76. static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
  77. {
  78. #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  79. struct ath_common *common = ath9k_hw_common(ah);
  80. u16 *eep_data = (u16 *)&ah->eeprom.def;
  81. int addr, ar5416_eep_start_loc = 0x100;
  82. for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  83. if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
  84. eep_data)) {
  85. ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
  86. "Unable to read eeprom region\n");
  87. return false;
  88. }
  89. eep_data++;
  90. }
  91. return true;
  92. #undef SIZE_EEPROM_DEF
  93. }
  94. static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
  95. {
  96. struct ar5416_eeprom_def *eep =
  97. (struct ar5416_eeprom_def *) &ah->eeprom.def;
  98. struct ath_common *common = ath9k_hw_common(ah);
  99. u16 *eepdata, temp, magic, magic2;
  100. u32 sum = 0, el;
  101. bool need_swap = false;
  102. int i, addr, size;
  103. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
  104. ath_print(common, ATH_DBG_FATAL, "Reading Magic # failed\n");
  105. return false;
  106. }
  107. if (!ath9k_hw_use_flash(ah)) {
  108. ath_print(common, ATH_DBG_EEPROM,
  109. "Read Magic = 0x%04X\n", magic);
  110. if (magic != AR5416_EEPROM_MAGIC) {
  111. magic2 = swab16(magic);
  112. if (magic2 == AR5416_EEPROM_MAGIC) {
  113. size = sizeof(struct ar5416_eeprom_def);
  114. need_swap = true;
  115. eepdata = (u16 *) (&ah->eeprom);
  116. for (addr = 0; addr < size / sizeof(u16); addr++) {
  117. temp = swab16(*eepdata);
  118. *eepdata = temp;
  119. eepdata++;
  120. }
  121. } else {
  122. ath_print(common, ATH_DBG_FATAL,
  123. "Invalid EEPROM Magic. "
  124. "Endianness mismatch.\n");
  125. return -EINVAL;
  126. }
  127. }
  128. }
  129. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  130. need_swap ? "True" : "False");
  131. if (need_swap)
  132. el = swab16(ah->eeprom.def.baseEepHeader.length);
  133. else
  134. el = ah->eeprom.def.baseEepHeader.length;
  135. if (el > sizeof(struct ar5416_eeprom_def))
  136. el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
  137. else
  138. el = el / sizeof(u16);
  139. eepdata = (u16 *)(&ah->eeprom);
  140. for (i = 0; i < el; i++)
  141. sum ^= *eepdata++;
  142. if (need_swap) {
  143. u32 integer, j;
  144. u16 word;
  145. ath_print(common, ATH_DBG_EEPROM,
  146. "EEPROM Endianness is not native.. Changing.\n");
  147. word = swab16(eep->baseEepHeader.length);
  148. eep->baseEepHeader.length = word;
  149. word = swab16(eep->baseEepHeader.checksum);
  150. eep->baseEepHeader.checksum = word;
  151. word = swab16(eep->baseEepHeader.version);
  152. eep->baseEepHeader.version = word;
  153. word = swab16(eep->baseEepHeader.regDmn[0]);
  154. eep->baseEepHeader.regDmn[0] = word;
  155. word = swab16(eep->baseEepHeader.regDmn[1]);
  156. eep->baseEepHeader.regDmn[1] = word;
  157. word = swab16(eep->baseEepHeader.rfSilent);
  158. eep->baseEepHeader.rfSilent = word;
  159. word = swab16(eep->baseEepHeader.blueToothOptions);
  160. eep->baseEepHeader.blueToothOptions = word;
  161. word = swab16(eep->baseEepHeader.deviceCap);
  162. eep->baseEepHeader.deviceCap = word;
  163. for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
  164. struct modal_eep_header *pModal =
  165. &eep->modalHeader[j];
  166. integer = swab32(pModal->antCtrlCommon);
  167. pModal->antCtrlCommon = integer;
  168. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  169. integer = swab32(pModal->antCtrlChain[i]);
  170. pModal->antCtrlChain[i] = integer;
  171. }
  172. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  173. word = swab16(pModal->spurChans[i].spurChan);
  174. pModal->spurChans[i].spurChan = word;
  175. }
  176. }
  177. }
  178. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
  179. ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  180. ath_print(common, ATH_DBG_FATAL,
  181. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  182. sum, ah->eep_ops->get_eeprom_ver(ah));
  183. return -EINVAL;
  184. }
  185. /* Enable fixup for AR_AN_TOP2 if necessary */
  186. if (AR_SREV_9280_10_OR_LATER(ah) &&
  187. (eep->baseEepHeader.version & 0xff) > 0x0a &&
  188. eep->baseEepHeader.pwdclkind == 0)
  189. ah->need_an_top2_fixup = 1;
  190. return 0;
  191. }
  192. static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
  193. enum eeprom_param param)
  194. {
  195. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  196. struct modal_eep_header *pModal = eep->modalHeader;
  197. struct base_eep_header *pBase = &eep->baseEepHeader;
  198. switch (param) {
  199. case EEP_NFTHRESH_5:
  200. return pModal[0].noiseFloorThreshCh[0];
  201. case EEP_NFTHRESH_2:
  202. return pModal[1].noiseFloorThreshCh[0];
  203. case EEP_MAC_LSW:
  204. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  205. case EEP_MAC_MID:
  206. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  207. case EEP_MAC_MSW:
  208. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  209. case EEP_REG_0:
  210. return pBase->regDmn[0];
  211. case EEP_REG_1:
  212. return pBase->regDmn[1];
  213. case EEP_OP_CAP:
  214. return pBase->deviceCap;
  215. case EEP_OP_MODE:
  216. return pBase->opCapFlags;
  217. case EEP_RF_SILENT:
  218. return pBase->rfSilent;
  219. case EEP_OB_5:
  220. return pModal[0].ob;
  221. case EEP_DB_5:
  222. return pModal[0].db;
  223. case EEP_OB_2:
  224. return pModal[1].ob;
  225. case EEP_DB_2:
  226. return pModal[1].db;
  227. case EEP_MINOR_REV:
  228. return AR5416_VER_MASK;
  229. case EEP_TX_MASK:
  230. return pBase->txMask;
  231. case EEP_RX_MASK:
  232. return pBase->rxMask;
  233. case EEP_RXGAIN_TYPE:
  234. return pBase->rxGainType;
  235. case EEP_TXGAIN_TYPE:
  236. return pBase->txGainType;
  237. case EEP_OL_PWRCTRL:
  238. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  239. return pBase->openLoopPwrCntl ? true : false;
  240. else
  241. return false;
  242. case EEP_RC_CHAIN_MASK:
  243. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  244. return pBase->rcChainMask;
  245. else
  246. return 0;
  247. case EEP_DAC_HPWR_5G:
  248. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
  249. return pBase->dacHiPwrMode_5G;
  250. else
  251. return 0;
  252. case EEP_FRAC_N_5G:
  253. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
  254. return pBase->frac_n_5g;
  255. else
  256. return 0;
  257. case EEP_PWR_TABLE_OFFSET:
  258. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
  259. return pBase->pwr_table_offset;
  260. else
  261. return AR5416_PWR_TABLE_OFFSET_DB;
  262. default:
  263. return 0;
  264. }
  265. }
  266. static void ath9k_hw_def_set_gain(struct ath_hw *ah,
  267. struct modal_eep_header *pModal,
  268. struct ar5416_eeprom_def *eep,
  269. u8 txRxAttenLocal, int regChainOffset, int i)
  270. {
  271. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  272. txRxAttenLocal = pModal->txRxAttenCh[i];
  273. if (AR_SREV_9280_10_OR_LATER(ah)) {
  274. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  275. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  276. pModal->bswMargin[i]);
  277. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  278. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  279. pModal->bswAtten[i]);
  280. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  281. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  282. pModal->xatten2Margin[i]);
  283. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  284. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  285. pModal->xatten2Db[i]);
  286. } else {
  287. REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  288. (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
  289. ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
  290. | SM(pModal-> bswMargin[i],
  291. AR_PHY_GAIN_2GHZ_BSW_MARGIN));
  292. REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  293. (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
  294. ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
  295. | SM(pModal->bswAtten[i],
  296. AR_PHY_GAIN_2GHZ_BSW_ATTEN));
  297. }
  298. }
  299. if (AR_SREV_9280_10_OR_LATER(ah)) {
  300. REG_RMW_FIELD(ah,
  301. AR_PHY_RXGAIN + regChainOffset,
  302. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  303. REG_RMW_FIELD(ah,
  304. AR_PHY_RXGAIN + regChainOffset,
  305. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
  306. } else {
  307. REG_WRITE(ah,
  308. AR_PHY_RXGAIN + regChainOffset,
  309. (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
  310. ~AR_PHY_RXGAIN_TXRX_ATTEN)
  311. | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
  312. REG_WRITE(ah,
  313. AR_PHY_GAIN_2GHZ + regChainOffset,
  314. (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
  315. ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
  316. SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
  317. }
  318. }
  319. static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
  320. struct ath9k_channel *chan)
  321. {
  322. struct modal_eep_header *pModal;
  323. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  324. int i, regChainOffset;
  325. u8 txRxAttenLocal;
  326. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  327. txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
  328. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  329. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  330. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  331. if (AR_SREV_9280(ah)) {
  332. if (i >= 2)
  333. break;
  334. }
  335. if (AR_SREV_5416_20_OR_LATER(ah) &&
  336. (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
  337. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  338. else
  339. regChainOffset = i * 0x1000;
  340. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  341. pModal->antCtrlChain[i]);
  342. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  343. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
  344. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  345. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  346. SM(pModal->iqCalICh[i],
  347. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  348. SM(pModal->iqCalQCh[i],
  349. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  350. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
  351. ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
  352. regChainOffset, i);
  353. }
  354. if (AR_SREV_9280_10_OR_LATER(ah)) {
  355. if (IS_CHAN_2GHZ(chan)) {
  356. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  357. AR_AN_RF2G1_CH0_OB,
  358. AR_AN_RF2G1_CH0_OB_S,
  359. pModal->ob);
  360. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  361. AR_AN_RF2G1_CH0_DB,
  362. AR_AN_RF2G1_CH0_DB_S,
  363. pModal->db);
  364. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  365. AR_AN_RF2G1_CH1_OB,
  366. AR_AN_RF2G1_CH1_OB_S,
  367. pModal->ob_ch1);
  368. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  369. AR_AN_RF2G1_CH1_DB,
  370. AR_AN_RF2G1_CH1_DB_S,
  371. pModal->db_ch1);
  372. } else {
  373. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  374. AR_AN_RF5G1_CH0_OB5,
  375. AR_AN_RF5G1_CH0_OB5_S,
  376. pModal->ob);
  377. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  378. AR_AN_RF5G1_CH0_DB5,
  379. AR_AN_RF5G1_CH0_DB5_S,
  380. pModal->db);
  381. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  382. AR_AN_RF5G1_CH1_OB5,
  383. AR_AN_RF5G1_CH1_OB5_S,
  384. pModal->ob_ch1);
  385. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  386. AR_AN_RF5G1_CH1_DB5,
  387. AR_AN_RF5G1_CH1_DB5_S,
  388. pModal->db_ch1);
  389. }
  390. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  391. AR_AN_TOP2_XPABIAS_LVL,
  392. AR_AN_TOP2_XPABIAS_LVL_S,
  393. pModal->xpaBiasLvl);
  394. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  395. AR_AN_TOP2_LOCALBIAS,
  396. AR_AN_TOP2_LOCALBIAS_S,
  397. pModal->local_bias);
  398. REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
  399. pModal->force_xpaon);
  400. }
  401. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  402. pModal->switchSettling);
  403. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  404. pModal->adcDesiredSize);
  405. if (!AR_SREV_9280_10_OR_LATER(ah))
  406. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  407. AR_PHY_DESIRED_SZ_PGA,
  408. pModal->pgaDesiredSize);
  409. REG_WRITE(ah, AR_PHY_RF_CTL4,
  410. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  411. | SM(pModal->txEndToXpaOff,
  412. AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  413. | SM(pModal->txFrameToXpaOn,
  414. AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  415. | SM(pModal->txFrameToXpaOn,
  416. AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  417. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  418. pModal->txEndToRxOn);
  419. if (AR_SREV_9280_10_OR_LATER(ah)) {
  420. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  421. pModal->thresh62);
  422. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  423. AR_PHY_EXT_CCA0_THRESH62,
  424. pModal->thresh62);
  425. } else {
  426. REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
  427. pModal->thresh62);
  428. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  429. AR_PHY_EXT_CCA_THRESH62,
  430. pModal->thresh62);
  431. }
  432. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
  433. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  434. AR_PHY_TX_END_DATA_START,
  435. pModal->txFrameToDataStart);
  436. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  437. pModal->txFrameToPaOn);
  438. }
  439. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  440. if (IS_CHAN_HT40(chan))
  441. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  442. AR_PHY_SETTLING_SWITCH,
  443. pModal->swSettleHt40);
  444. }
  445. if (AR_SREV_9280_20_OR_LATER(ah) &&
  446. AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
  447. REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
  448. AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
  449. pModal->miscBits);
  450. if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
  451. if (IS_CHAN_2GHZ(chan))
  452. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  453. eep->baseEepHeader.dacLpMode);
  454. else if (eep->baseEepHeader.dacHiPwrMode_5G)
  455. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
  456. else
  457. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  458. eep->baseEepHeader.dacLpMode);
  459. udelay(100);
  460. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
  461. pModal->miscBits >> 2);
  462. REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
  463. AR_PHY_TX_DESIRED_SCALE_CCK,
  464. eep->baseEepHeader.desiredScaleCCK);
  465. }
  466. }
  467. static void ath9k_hw_def_set_addac(struct ath_hw *ah,
  468. struct ath9k_channel *chan)
  469. {
  470. #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
  471. struct modal_eep_header *pModal;
  472. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  473. u8 biaslevel;
  474. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  475. return;
  476. if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
  477. return;
  478. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  479. if (pModal->xpaBiasLvl != 0xff) {
  480. biaslevel = pModal->xpaBiasLvl;
  481. } else {
  482. u16 resetFreqBin, freqBin, freqCount = 0;
  483. struct chan_centers centers;
  484. ath9k_hw_get_channel_centers(ah, chan, &centers);
  485. resetFreqBin = FREQ2FBIN(centers.synth_center,
  486. IS_CHAN_2GHZ(chan));
  487. freqBin = XPA_LVL_FREQ(0) & 0xff;
  488. biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
  489. freqCount++;
  490. while (freqCount < 3) {
  491. if (XPA_LVL_FREQ(freqCount) == 0x0)
  492. break;
  493. freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
  494. if (resetFreqBin >= freqBin)
  495. biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
  496. else
  497. break;
  498. freqCount++;
  499. }
  500. }
  501. if (IS_CHAN_2GHZ(chan)) {
  502. INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
  503. 7, 1) & (~0x18)) | biaslevel << 3;
  504. } else {
  505. INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
  506. 6, 1) & (~0xc0)) | biaslevel << 6;
  507. }
  508. #undef XPA_LVL_FREQ
  509. }
  510. static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
  511. struct ath9k_channel *chan,
  512. struct cal_data_per_freq *pRawDataSet,
  513. u8 *bChans, u16 availPiers,
  514. u16 tPdGainOverlap, int16_t *pMinCalPower,
  515. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  516. u16 numXpdGains)
  517. {
  518. int i, j, k;
  519. int16_t ss;
  520. u16 idxL = 0, idxR = 0, numPiers;
  521. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  522. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  523. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  524. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  525. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  526. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  527. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  528. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  529. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  530. int16_t vpdStep;
  531. int16_t tmpVal;
  532. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  533. bool match;
  534. int16_t minDelta = 0;
  535. struct chan_centers centers;
  536. ath9k_hw_get_channel_centers(ah, chan, &centers);
  537. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  538. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  539. break;
  540. }
  541. match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
  542. IS_CHAN_2GHZ(chan)),
  543. bChans, numPiers, &idxL, &idxR);
  544. if (match) {
  545. for (i = 0; i < numXpdGains; i++) {
  546. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  547. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  548. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  549. pRawDataSet[idxL].pwrPdg[i],
  550. pRawDataSet[idxL].vpdPdg[i],
  551. AR5416_PD_GAIN_ICEPTS,
  552. vpdTableI[i]);
  553. }
  554. } else {
  555. for (i = 0; i < numXpdGains; i++) {
  556. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  557. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  558. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  559. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  560. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  561. maxPwrT4[i] =
  562. min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
  563. pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  564. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  565. pPwrL, pVpdL,
  566. AR5416_PD_GAIN_ICEPTS,
  567. vpdTableL[i]);
  568. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  569. pPwrR, pVpdR,
  570. AR5416_PD_GAIN_ICEPTS,
  571. vpdTableR[i]);
  572. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  573. vpdTableI[i][j] =
  574. (u8)(ath9k_hw_interpolate((u16)
  575. FREQ2FBIN(centers.
  576. synth_center,
  577. IS_CHAN_2GHZ
  578. (chan)),
  579. bChans[idxL], bChans[idxR],
  580. vpdTableL[i][j], vpdTableR[i][j]));
  581. }
  582. }
  583. }
  584. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  585. k = 0;
  586. for (i = 0; i < numXpdGains; i++) {
  587. if (i == (numXpdGains - 1))
  588. pPdGainBoundaries[i] =
  589. (u16)(maxPwrT4[i] / 2);
  590. else
  591. pPdGainBoundaries[i] =
  592. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  593. pPdGainBoundaries[i] =
  594. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  595. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  596. minDelta = pPdGainBoundaries[0] - 23;
  597. pPdGainBoundaries[0] = 23;
  598. } else {
  599. minDelta = 0;
  600. }
  601. if (i == 0) {
  602. if (AR_SREV_9280_10_OR_LATER(ah))
  603. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  604. else
  605. ss = 0;
  606. } else {
  607. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  608. (minPwrT4[i] / 2)) -
  609. tPdGainOverlap + 1 + minDelta);
  610. }
  611. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  612. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  613. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  614. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  615. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  616. ss++;
  617. }
  618. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  619. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  620. (minPwrT4[i] / 2));
  621. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  622. tgtIndex : sizeCurrVpdTable;
  623. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  624. pPDADCValues[k++] = vpdTableI[i][ss++];
  625. }
  626. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  627. vpdTableI[i][sizeCurrVpdTable - 2]);
  628. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  629. if (tgtIndex > maxIndex) {
  630. while ((ss <= tgtIndex) &&
  631. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  632. tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  633. (ss - maxIndex + 1) * vpdStep));
  634. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  635. 255 : tmpVal);
  636. ss++;
  637. }
  638. }
  639. }
  640. while (i < AR5416_PD_GAINS_IN_MASK) {
  641. pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
  642. i++;
  643. }
  644. while (k < AR5416_NUM_PDADC_VALUES) {
  645. pPDADCValues[k] = pPDADCValues[k - 1];
  646. k++;
  647. }
  648. return;
  649. }
  650. static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
  651. u16 *gb,
  652. u16 numXpdGain,
  653. u16 pdGainOverlap_t2,
  654. int8_t pwr_table_offset,
  655. int16_t *diff)
  656. {
  657. u16 k;
  658. /* Prior to writing the boundaries or the pdadc vs. power table
  659. * into the chip registers the default starting point on the pdadc
  660. * vs. power table needs to be checked and the curve boundaries
  661. * adjusted accordingly
  662. */
  663. if (AR_SREV_9280_20_OR_LATER(ah)) {
  664. u16 gb_limit;
  665. if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
  666. /* get the difference in dB */
  667. *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
  668. /* get the number of half dB steps */
  669. *diff *= 2;
  670. /* change the original gain boundary settings
  671. * by the number of half dB steps
  672. */
  673. for (k = 0; k < numXpdGain; k++)
  674. gb[k] = (u16)(gb[k] - *diff);
  675. }
  676. /* Because of a hardware limitation, ensure the gain boundary
  677. * is not larger than (63 - overlap)
  678. */
  679. gb_limit = (u16)(AR5416_MAX_RATE_POWER - pdGainOverlap_t2);
  680. for (k = 0; k < numXpdGain; k++)
  681. gb[k] = (u16)min(gb_limit, gb[k]);
  682. }
  683. return *diff;
  684. }
  685. static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
  686. int8_t pwr_table_offset,
  687. int16_t diff,
  688. u8 *pdadcValues)
  689. {
  690. #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
  691. u16 k;
  692. /* If this is a board that has a pwrTableOffset that differs from
  693. * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
  694. * pdadc vs pwr table needs to be adjusted prior to writing to the
  695. * chip.
  696. */
  697. if (AR_SREV_9280_20_OR_LATER(ah)) {
  698. if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
  699. /* shift the table to start at the new offset */
  700. for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
  701. pdadcValues[k] = pdadcValues[k + diff];
  702. }
  703. /* fill the back of the table */
  704. for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
  705. pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
  706. }
  707. }
  708. }
  709. #undef NUM_PDADC
  710. }
  711. static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
  712. struct ath9k_channel *chan,
  713. int16_t *pTxPowerIndexOffset)
  714. {
  715. #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
  716. #define SM_PDGAIN_B(x, y) \
  717. SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
  718. struct ath_common *common = ath9k_hw_common(ah);
  719. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  720. struct cal_data_per_freq *pRawDataset;
  721. u8 *pCalBChans = NULL;
  722. u16 pdGainOverlap_t2;
  723. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  724. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  725. u16 numPiers, i, j;
  726. int16_t tMinCalPower, diff = 0;
  727. u16 numXpdGain, xpdMask;
  728. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  729. u32 reg32, regOffset, regChainOffset;
  730. int16_t modalIdx;
  731. int8_t pwr_table_offset;
  732. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  733. xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
  734. pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
  735. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  736. AR5416_EEP_MINOR_VER_2) {
  737. pdGainOverlap_t2 =
  738. pEepData->modalHeader[modalIdx].pdGainOverlap;
  739. } else {
  740. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  741. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  742. }
  743. if (IS_CHAN_2GHZ(chan)) {
  744. pCalBChans = pEepData->calFreqPier2G;
  745. numPiers = AR5416_NUM_2G_CAL_PIERS;
  746. } else {
  747. pCalBChans = pEepData->calFreqPier5G;
  748. numPiers = AR5416_NUM_5G_CAL_PIERS;
  749. }
  750. if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
  751. pRawDataset = pEepData->calPierData2G[0];
  752. ah->initPDADC = ((struct calDataPerFreqOpLoop *)
  753. pRawDataset)->vpdPdg[0][0];
  754. }
  755. numXpdGain = 0;
  756. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  757. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  758. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  759. break;
  760. xpdGainValues[numXpdGain] =
  761. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  762. numXpdGain++;
  763. }
  764. }
  765. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  766. (numXpdGain - 1) & 0x3);
  767. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  768. xpdGainValues[0]);
  769. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  770. xpdGainValues[1]);
  771. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  772. xpdGainValues[2]);
  773. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  774. if (AR_SREV_5416_20_OR_LATER(ah) &&
  775. (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
  776. (i != 0)) {
  777. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  778. } else
  779. regChainOffset = i * 0x1000;
  780. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  781. if (IS_CHAN_2GHZ(chan))
  782. pRawDataset = pEepData->calPierData2G[i];
  783. else
  784. pRawDataset = pEepData->calPierData5G[i];
  785. if (OLC_FOR_AR9280_20_LATER) {
  786. u8 pcdacIdx;
  787. u8 txPower;
  788. ath9k_get_txgain_index(ah, chan,
  789. (struct calDataPerFreqOpLoop *)pRawDataset,
  790. pCalBChans, numPiers, &txPower, &pcdacIdx);
  791. ath9k_olc_get_pdadcs(ah, pcdacIdx,
  792. txPower/2, pdadcValues);
  793. } else {
  794. ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
  795. chan, pRawDataset,
  796. pCalBChans, numPiers,
  797. pdGainOverlap_t2,
  798. &tMinCalPower,
  799. gainBoundaries,
  800. pdadcValues,
  801. numXpdGain);
  802. }
  803. diff = ath9k_change_gain_boundary_setting(ah,
  804. gainBoundaries,
  805. numXpdGain,
  806. pdGainOverlap_t2,
  807. pwr_table_offset,
  808. &diff);
  809. if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
  810. if (OLC_FOR_AR9280_20_LATER) {
  811. REG_WRITE(ah,
  812. AR_PHY_TPCRG5 + regChainOffset,
  813. SM(0x6,
  814. AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
  815. SM_PD_GAIN(1) | SM_PD_GAIN(2) |
  816. SM_PD_GAIN(3) | SM_PD_GAIN(4));
  817. } else {
  818. REG_WRITE(ah,
  819. AR_PHY_TPCRG5 + regChainOffset,
  820. SM(pdGainOverlap_t2,
  821. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
  822. SM_PDGAIN_B(0, 1) |
  823. SM_PDGAIN_B(1, 2) |
  824. SM_PDGAIN_B(2, 3) |
  825. SM_PDGAIN_B(3, 4));
  826. }
  827. }
  828. ath9k_adjust_pdadc_values(ah, pwr_table_offset,
  829. diff, pdadcValues);
  830. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  831. for (j = 0; j < 32; j++) {
  832. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  833. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  834. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  835. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  836. REG_WRITE(ah, regOffset, reg32);
  837. ath_print(common, ATH_DBG_EEPROM,
  838. "PDADC (%d,%4x): %4.4x %8.8x\n",
  839. i, regChainOffset, regOffset,
  840. reg32);
  841. ath_print(common, ATH_DBG_EEPROM,
  842. "PDADC: Chain %d | PDADC %3d "
  843. "Value %3d | PDADC %3d Value %3d | "
  844. "PDADC %3d Value %3d | PDADC %3d "
  845. "Value %3d |\n",
  846. i, 4 * j, pdadcValues[4 * j],
  847. 4 * j + 1, pdadcValues[4 * j + 1],
  848. 4 * j + 2, pdadcValues[4 * j + 2],
  849. 4 * j + 3,
  850. pdadcValues[4 * j + 3]);
  851. regOffset += 4;
  852. }
  853. }
  854. }
  855. *pTxPowerIndexOffset = 0;
  856. #undef SM_PD_GAIN
  857. #undef SM_PDGAIN_B
  858. }
  859. static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
  860. struct ath9k_channel *chan,
  861. int16_t *ratesArray,
  862. u16 cfgCtl,
  863. u16 AntennaReduction,
  864. u16 twiceMaxRegulatoryPower,
  865. u16 powerLimit)
  866. {
  867. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
  868. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
  869. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  870. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  871. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  872. static const u16 tpScaleReductionTable[5] =
  873. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  874. int i;
  875. int16_t twiceLargestAntenna;
  876. struct cal_ctl_data *rep;
  877. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  878. 0, { 0, 0, 0, 0}
  879. };
  880. struct cal_target_power_leg targetPowerOfdmExt = {
  881. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  882. 0, { 0, 0, 0, 0 }
  883. };
  884. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  885. 0, {0, 0, 0, 0}
  886. };
  887. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  888. u16 ctlModesFor11a[] =
  889. { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
  890. u16 ctlModesFor11g[] =
  891. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  892. CTL_2GHT40
  893. };
  894. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  895. struct chan_centers centers;
  896. int tx_chainmask;
  897. u16 twiceMinEdgePower;
  898. tx_chainmask = ah->txchainmask;
  899. ath9k_hw_get_channel_centers(ah, chan, &centers);
  900. twiceLargestAntenna = max(
  901. pEepData->modalHeader
  902. [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
  903. pEepData->modalHeader
  904. [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
  905. twiceLargestAntenna = max((u8)twiceLargestAntenna,
  906. pEepData->modalHeader
  907. [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
  908. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  909. twiceLargestAntenna, 0);
  910. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  911. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
  912. maxRegAllowedPower -=
  913. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  914. }
  915. scaledPower = min(powerLimit, maxRegAllowedPower);
  916. switch (ar5416_get_ntxchains(tx_chainmask)) {
  917. case 1:
  918. break;
  919. case 2:
  920. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  921. break;
  922. case 3:
  923. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  924. break;
  925. }
  926. scaledPower = max((u16)0, scaledPower);
  927. if (IS_CHAN_2GHZ(chan)) {
  928. numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
  929. SUB_NUM_CTL_MODES_AT_2G_40;
  930. pCtlMode = ctlModesFor11g;
  931. ath9k_hw_get_legacy_target_powers(ah, chan,
  932. pEepData->calTargetPowerCck,
  933. AR5416_NUM_2G_CCK_TARGET_POWERS,
  934. &targetPowerCck, 4, false);
  935. ath9k_hw_get_legacy_target_powers(ah, chan,
  936. pEepData->calTargetPower2G,
  937. AR5416_NUM_2G_20_TARGET_POWERS,
  938. &targetPowerOfdm, 4, false);
  939. ath9k_hw_get_target_powers(ah, chan,
  940. pEepData->calTargetPower2GHT20,
  941. AR5416_NUM_2G_20_TARGET_POWERS,
  942. &targetPowerHt20, 8, false);
  943. if (IS_CHAN_HT40(chan)) {
  944. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  945. ath9k_hw_get_target_powers(ah, chan,
  946. pEepData->calTargetPower2GHT40,
  947. AR5416_NUM_2G_40_TARGET_POWERS,
  948. &targetPowerHt40, 8, true);
  949. ath9k_hw_get_legacy_target_powers(ah, chan,
  950. pEepData->calTargetPowerCck,
  951. AR5416_NUM_2G_CCK_TARGET_POWERS,
  952. &targetPowerCckExt, 4, true);
  953. ath9k_hw_get_legacy_target_powers(ah, chan,
  954. pEepData->calTargetPower2G,
  955. AR5416_NUM_2G_20_TARGET_POWERS,
  956. &targetPowerOfdmExt, 4, true);
  957. }
  958. } else {
  959. numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
  960. SUB_NUM_CTL_MODES_AT_5G_40;
  961. pCtlMode = ctlModesFor11a;
  962. ath9k_hw_get_legacy_target_powers(ah, chan,
  963. pEepData->calTargetPower5G,
  964. AR5416_NUM_5G_20_TARGET_POWERS,
  965. &targetPowerOfdm, 4, false);
  966. ath9k_hw_get_target_powers(ah, chan,
  967. pEepData->calTargetPower5GHT20,
  968. AR5416_NUM_5G_20_TARGET_POWERS,
  969. &targetPowerHt20, 8, false);
  970. if (IS_CHAN_HT40(chan)) {
  971. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  972. ath9k_hw_get_target_powers(ah, chan,
  973. pEepData->calTargetPower5GHT40,
  974. AR5416_NUM_5G_40_TARGET_POWERS,
  975. &targetPowerHt40, 8, true);
  976. ath9k_hw_get_legacy_target_powers(ah, chan,
  977. pEepData->calTargetPower5G,
  978. AR5416_NUM_5G_20_TARGET_POWERS,
  979. &targetPowerOfdmExt, 4, true);
  980. }
  981. }
  982. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  983. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  984. (pCtlMode[ctlMode] == CTL_2GHT40);
  985. if (isHt40CtlMode)
  986. freq = centers.synth_center;
  987. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  988. freq = centers.ext_center;
  989. else
  990. freq = centers.ctl_center;
  991. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  992. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  993. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  994. for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  995. if ((((cfgCtl & ~CTL_MODE_M) |
  996. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  997. pEepData->ctlIndex[i]) ||
  998. (((cfgCtl & ~CTL_MODE_M) |
  999. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  1000. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  1001. rep = &(pEepData->ctlData[i]);
  1002. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  1003. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
  1004. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  1005. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  1006. twiceMaxEdgePower = min(twiceMaxEdgePower,
  1007. twiceMinEdgePower);
  1008. } else {
  1009. twiceMaxEdgePower = twiceMinEdgePower;
  1010. break;
  1011. }
  1012. }
  1013. }
  1014. minCtlPower = min(twiceMaxEdgePower, scaledPower);
  1015. switch (pCtlMode[ctlMode]) {
  1016. case CTL_11B:
  1017. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  1018. targetPowerCck.tPow2x[i] =
  1019. min((u16)targetPowerCck.tPow2x[i],
  1020. minCtlPower);
  1021. }
  1022. break;
  1023. case CTL_11A:
  1024. case CTL_11G:
  1025. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  1026. targetPowerOfdm.tPow2x[i] =
  1027. min((u16)targetPowerOfdm.tPow2x[i],
  1028. minCtlPower);
  1029. }
  1030. break;
  1031. case CTL_5GHT20:
  1032. case CTL_2GHT20:
  1033. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  1034. targetPowerHt20.tPow2x[i] =
  1035. min((u16)targetPowerHt20.tPow2x[i],
  1036. minCtlPower);
  1037. }
  1038. break;
  1039. case CTL_11B_EXT:
  1040. targetPowerCckExt.tPow2x[0] = min((u16)
  1041. targetPowerCckExt.tPow2x[0],
  1042. minCtlPower);
  1043. break;
  1044. case CTL_11A_EXT:
  1045. case CTL_11G_EXT:
  1046. targetPowerOfdmExt.tPow2x[0] = min((u16)
  1047. targetPowerOfdmExt.tPow2x[0],
  1048. minCtlPower);
  1049. break;
  1050. case CTL_5GHT40:
  1051. case CTL_2GHT40:
  1052. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  1053. targetPowerHt40.tPow2x[i] =
  1054. min((u16)targetPowerHt40.tPow2x[i],
  1055. minCtlPower);
  1056. }
  1057. break;
  1058. default:
  1059. break;
  1060. }
  1061. }
  1062. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  1063. ratesArray[rate18mb] = ratesArray[rate24mb] =
  1064. targetPowerOfdm.tPow2x[0];
  1065. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  1066. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  1067. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  1068. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  1069. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  1070. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  1071. if (IS_CHAN_2GHZ(chan)) {
  1072. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  1073. ratesArray[rate2s] = ratesArray[rate2l] =
  1074. targetPowerCck.tPow2x[1];
  1075. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  1076. targetPowerCck.tPow2x[2];
  1077. ratesArray[rate11s] = ratesArray[rate11l] =
  1078. targetPowerCck.tPow2x[3];
  1079. }
  1080. if (IS_CHAN_HT40(chan)) {
  1081. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  1082. ratesArray[rateHt40_0 + i] =
  1083. targetPowerHt40.tPow2x[i];
  1084. }
  1085. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  1086. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  1087. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  1088. if (IS_CHAN_2GHZ(chan)) {
  1089. ratesArray[rateExtCck] =
  1090. targetPowerCckExt.tPow2x[0];
  1091. }
  1092. }
  1093. }
  1094. static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
  1095. struct ath9k_channel *chan,
  1096. u16 cfgCtl,
  1097. u8 twiceAntennaReduction,
  1098. u8 twiceMaxRegulatoryPower,
  1099. u8 powerLimit)
  1100. {
  1101. #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
  1102. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1103. struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
  1104. struct modal_eep_header *pModal =
  1105. &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
  1106. int16_t ratesArray[Ar5416RateSize];
  1107. int16_t txPowerIndexOffset = 0;
  1108. u8 ht40PowerIncForPdadc = 2;
  1109. int i, cck_ofdm_delta = 0;
  1110. memset(ratesArray, 0, sizeof(ratesArray));
  1111. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1112. AR5416_EEP_MINOR_VER_2) {
  1113. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  1114. }
  1115. ath9k_hw_set_def_power_per_rate_table(ah, chan,
  1116. &ratesArray[0], cfgCtl,
  1117. twiceAntennaReduction,
  1118. twiceMaxRegulatoryPower,
  1119. powerLimit);
  1120. ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
  1121. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  1122. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  1123. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  1124. ratesArray[i] = AR5416_MAX_RATE_POWER;
  1125. }
  1126. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1127. for (i = 0; i < Ar5416RateSize; i++) {
  1128. int8_t pwr_table_offset;
  1129. pwr_table_offset = ah->eep_ops->get_eeprom(ah,
  1130. EEP_PWR_TABLE_OFFSET);
  1131. ratesArray[i] -= pwr_table_offset * 2;
  1132. }
  1133. }
  1134. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  1135. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  1136. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  1137. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  1138. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  1139. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  1140. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  1141. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  1142. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  1143. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  1144. if (IS_CHAN_2GHZ(chan)) {
  1145. if (OLC_FOR_AR9280_20_LATER) {
  1146. cck_ofdm_delta = 2;
  1147. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  1148. ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
  1149. | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
  1150. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  1151. | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
  1152. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  1153. ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
  1154. | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
  1155. | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
  1156. | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
  1157. } else {
  1158. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  1159. ATH9K_POW_SM(ratesArray[rate2s], 24)
  1160. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  1161. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  1162. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  1163. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  1164. ATH9K_POW_SM(ratesArray[rate11s], 24)
  1165. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  1166. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  1167. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  1168. }
  1169. }
  1170. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  1171. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  1172. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  1173. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  1174. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  1175. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  1176. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  1177. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  1178. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  1179. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  1180. if (IS_CHAN_HT40(chan)) {
  1181. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  1182. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  1183. ht40PowerIncForPdadc, 24)
  1184. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  1185. ht40PowerIncForPdadc, 16)
  1186. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  1187. ht40PowerIncForPdadc, 8)
  1188. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  1189. ht40PowerIncForPdadc, 0));
  1190. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  1191. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  1192. ht40PowerIncForPdadc, 24)
  1193. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  1194. ht40PowerIncForPdadc, 16)
  1195. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  1196. ht40PowerIncForPdadc, 8)
  1197. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  1198. ht40PowerIncForPdadc, 0));
  1199. if (OLC_FOR_AR9280_20_LATER) {
  1200. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  1201. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  1202. | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
  1203. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1204. | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
  1205. } else {
  1206. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  1207. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  1208. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  1209. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1210. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  1211. }
  1212. }
  1213. REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
  1214. ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
  1215. | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
  1216. i = rate6mb;
  1217. if (IS_CHAN_HT40(chan))
  1218. i = rateHt40_0;
  1219. else if (IS_CHAN_HT20(chan))
  1220. i = rateHt20_0;
  1221. if (AR_SREV_9280_10_OR_LATER(ah))
  1222. regulatory->max_power_level =
  1223. ratesArray[i] + AR5416_PWR_TABLE_OFFSET_DB * 2;
  1224. else
  1225. regulatory->max_power_level = ratesArray[i];
  1226. switch(ar5416_get_ntxchains(ah->txchainmask)) {
  1227. case 1:
  1228. break;
  1229. case 2:
  1230. regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
  1231. break;
  1232. case 3:
  1233. regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
  1234. break;
  1235. default:
  1236. ath_print(ath9k_hw_common(ah), ATH_DBG_EEPROM,
  1237. "Invalid chainmask configuration\n");
  1238. break;
  1239. }
  1240. }
  1241. static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
  1242. enum ieee80211_band freq_band)
  1243. {
  1244. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1245. struct modal_eep_header *pModal =
  1246. &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
  1247. struct base_eep_header *pBase = &eep->baseEepHeader;
  1248. u8 num_ant_config;
  1249. num_ant_config = 1;
  1250. if (pBase->version >= 0x0E0D)
  1251. if (pModal->useAnt1)
  1252. num_ant_config += 1;
  1253. return num_ant_config;
  1254. }
  1255. static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
  1256. struct ath9k_channel *chan)
  1257. {
  1258. struct ar5416_eeprom_def *eep = &ah->eeprom.def;
  1259. struct modal_eep_header *pModal =
  1260. &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1261. return pModal->antCtrlCommon & 0xFFFF;
  1262. }
  1263. static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
  1264. {
  1265. #define EEP_DEF_SPURCHAN \
  1266. (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
  1267. struct ath_common *common = ath9k_hw_common(ah);
  1268. u16 spur_val = AR_NO_SPUR;
  1269. ath_print(common, ATH_DBG_ANI,
  1270. "Getting spur idx %d is2Ghz. %d val %x\n",
  1271. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  1272. switch (ah->config.spurmode) {
  1273. case SPUR_DISABLE:
  1274. break;
  1275. case SPUR_ENABLE_IOCTL:
  1276. spur_val = ah->config.spurchans[i][is2GHz];
  1277. ath_print(common, ATH_DBG_ANI,
  1278. "Getting spur val from new loc. %d\n", spur_val);
  1279. break;
  1280. case SPUR_ENABLE_EEPROM:
  1281. spur_val = EEP_DEF_SPURCHAN;
  1282. break;
  1283. }
  1284. return spur_val;
  1285. #undef EEP_DEF_SPURCHAN
  1286. }
  1287. const struct eeprom_ops eep_def_ops = {
  1288. .check_eeprom = ath9k_hw_def_check_eeprom,
  1289. .get_eeprom = ath9k_hw_def_get_eeprom,
  1290. .fill_eeprom = ath9k_hw_def_fill_eeprom,
  1291. .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
  1292. .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
  1293. .get_num_ant_config = ath9k_hw_def_get_num_ant_config,
  1294. .get_eeprom_antenna_cfg = ath9k_hw_def_get_eeprom_antenna_cfg,
  1295. .set_board_values = ath9k_hw_def_set_board_values,
  1296. .set_addac = ath9k_hw_def_set_addac,
  1297. .set_txpower = ath9k_hw_def_set_txpower,
  1298. .get_spur_channel = ath9k_hw_def_get_spur_channel
  1299. };