forcedeth.c 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.61"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. #define TX_WORK_PER_LOOP 64
  159. #define RX_WORK_PER_LOOP 64
  160. /*
  161. * Hardware access:
  162. */
  163. #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
  164. #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
  165. #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
  166. #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
  167. #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
  168. #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
  169. #define DEV_HAS_MSI 0x00040 /* device supports MSI */
  170. #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
  171. #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
  172. #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
  173. #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
  174. #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
  175. #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
  176. #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
  177. #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
  178. #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
  179. #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
  180. #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
  181. #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
  182. enum {
  183. NvRegIrqStatus = 0x000,
  184. #define NVREG_IRQSTAT_MIIEVENT 0x040
  185. #define NVREG_IRQSTAT_MASK 0x81ff
  186. NvRegIrqMask = 0x004,
  187. #define NVREG_IRQ_RX_ERROR 0x0001
  188. #define NVREG_IRQ_RX 0x0002
  189. #define NVREG_IRQ_RX_NOBUF 0x0004
  190. #define NVREG_IRQ_TX_ERR 0x0008
  191. #define NVREG_IRQ_TX_OK 0x0010
  192. #define NVREG_IRQ_TIMER 0x0020
  193. #define NVREG_IRQ_LINK 0x0040
  194. #define NVREG_IRQ_RX_FORCED 0x0080
  195. #define NVREG_IRQ_TX_FORCED 0x0100
  196. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  197. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  198. #define NVREG_IRQMASK_CPU 0x0060
  199. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  200. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  201. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  202. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  203. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  204. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  205. NvRegUnknownSetupReg6 = 0x008,
  206. #define NVREG_UNKSETUP6_VAL 3
  207. /*
  208. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  209. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  210. */
  211. NvRegPollingInterval = 0x00c,
  212. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  213. #define NVREG_POLL_DEFAULT_CPU 13
  214. NvRegMSIMap0 = 0x020,
  215. NvRegMSIMap1 = 0x024,
  216. NvRegMSIIrqMask = 0x030,
  217. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  218. NvRegMisc1 = 0x080,
  219. #define NVREG_MISC1_PAUSE_TX 0x01
  220. #define NVREG_MISC1_HD 0x02
  221. #define NVREG_MISC1_FORCE 0x3b0f3c
  222. NvRegMacReset = 0x34,
  223. #define NVREG_MAC_RESET_ASSERT 0x0F3
  224. NvRegTransmitterControl = 0x084,
  225. #define NVREG_XMITCTL_START 0x01
  226. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  227. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  228. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  229. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  230. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  231. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  232. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  233. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  234. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  235. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  236. NvRegTransmitterStatus = 0x088,
  237. #define NVREG_XMITSTAT_BUSY 0x01
  238. NvRegPacketFilterFlags = 0x8c,
  239. #define NVREG_PFF_PAUSE_RX 0x08
  240. #define NVREG_PFF_ALWAYS 0x7F0000
  241. #define NVREG_PFF_PROMISC 0x80
  242. #define NVREG_PFF_MYADDR 0x20
  243. #define NVREG_PFF_LOOPBACK 0x10
  244. NvRegOffloadConfig = 0x90,
  245. #define NVREG_OFFLOAD_HOMEPHY 0x601
  246. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  247. NvRegReceiverControl = 0x094,
  248. #define NVREG_RCVCTL_START 0x01
  249. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  250. NvRegReceiverStatus = 0x98,
  251. #define NVREG_RCVSTAT_BUSY 0x01
  252. NvRegRandomSeed = 0x9c,
  253. #define NVREG_RNDSEED_MASK 0x00ff
  254. #define NVREG_RNDSEED_FORCE 0x7f00
  255. #define NVREG_RNDSEED_FORCE2 0x2d00
  256. #define NVREG_RNDSEED_FORCE3 0x7400
  257. NvRegTxDeferral = 0xA0,
  258. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  259. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  260. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  261. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  262. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  263. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  264. NvRegRxDeferral = 0xA4,
  265. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  266. NvRegMacAddrA = 0xA8,
  267. NvRegMacAddrB = 0xAC,
  268. NvRegMulticastAddrA = 0xB0,
  269. #define NVREG_MCASTADDRA_FORCE 0x01
  270. NvRegMulticastAddrB = 0xB4,
  271. NvRegMulticastMaskA = 0xB8,
  272. #define NVREG_MCASTMASKA_NONE 0xffffffff
  273. NvRegMulticastMaskB = 0xBC,
  274. #define NVREG_MCASTMASKB_NONE 0xffff
  275. NvRegPhyInterface = 0xC0,
  276. #define PHY_RGMII 0x10000000
  277. NvRegTxRingPhysAddr = 0x100,
  278. NvRegRxRingPhysAddr = 0x104,
  279. NvRegRingSizes = 0x108,
  280. #define NVREG_RINGSZ_TXSHIFT 0
  281. #define NVREG_RINGSZ_RXSHIFT 16
  282. NvRegTransmitPoll = 0x10c,
  283. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  284. NvRegLinkSpeed = 0x110,
  285. #define NVREG_LINKSPEED_FORCE 0x10000
  286. #define NVREG_LINKSPEED_10 1000
  287. #define NVREG_LINKSPEED_100 100
  288. #define NVREG_LINKSPEED_1000 50
  289. #define NVREG_LINKSPEED_MASK (0xFFF)
  290. NvRegUnknownSetupReg5 = 0x130,
  291. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  292. NvRegTxWatermark = 0x13c,
  293. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  294. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  295. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  296. NvRegTxRxControl = 0x144,
  297. #define NVREG_TXRXCTL_KICK 0x0001
  298. #define NVREG_TXRXCTL_BIT1 0x0002
  299. #define NVREG_TXRXCTL_BIT2 0x0004
  300. #define NVREG_TXRXCTL_IDLE 0x0008
  301. #define NVREG_TXRXCTL_RESET 0x0010
  302. #define NVREG_TXRXCTL_RXCHECK 0x0400
  303. #define NVREG_TXRXCTL_DESC_1 0
  304. #define NVREG_TXRXCTL_DESC_2 0x002100
  305. #define NVREG_TXRXCTL_DESC_3 0xc02200
  306. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  307. #define NVREG_TXRXCTL_VLANINS 0x00080
  308. NvRegTxRingPhysAddrHigh = 0x148,
  309. NvRegRxRingPhysAddrHigh = 0x14C,
  310. NvRegTxPauseFrame = 0x170,
  311. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  312. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  313. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  314. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  315. NvRegMIIStatus = 0x180,
  316. #define NVREG_MIISTAT_ERROR 0x0001
  317. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  318. #define NVREG_MIISTAT_MASK_RW 0x0007
  319. #define NVREG_MIISTAT_MASK_ALL 0x000f
  320. NvRegMIIMask = 0x184,
  321. #define NVREG_MII_LINKCHANGE 0x0008
  322. NvRegAdapterControl = 0x188,
  323. #define NVREG_ADAPTCTL_START 0x02
  324. #define NVREG_ADAPTCTL_LINKUP 0x04
  325. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  326. #define NVREG_ADAPTCTL_RUNNING 0x100000
  327. #define NVREG_ADAPTCTL_PHYSHIFT 24
  328. NvRegMIISpeed = 0x18c,
  329. #define NVREG_MIISPEED_BIT8 (1<<8)
  330. #define NVREG_MIIDELAY 5
  331. NvRegMIIControl = 0x190,
  332. #define NVREG_MIICTL_INUSE 0x08000
  333. #define NVREG_MIICTL_WRITE 0x00400
  334. #define NVREG_MIICTL_ADDRSHIFT 5
  335. NvRegMIIData = 0x194,
  336. NvRegWakeUpFlags = 0x200,
  337. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  338. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  339. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  340. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  341. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  342. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  343. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  344. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  345. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  346. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  347. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  348. NvRegPatternCRC = 0x204,
  349. NvRegPatternMask = 0x208,
  350. NvRegPowerCap = 0x268,
  351. #define NVREG_POWERCAP_D3SUPP (1<<30)
  352. #define NVREG_POWERCAP_D2SUPP (1<<26)
  353. #define NVREG_POWERCAP_D1SUPP (1<<25)
  354. NvRegPowerState = 0x26c,
  355. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  356. #define NVREG_POWERSTATE_VALID 0x0100
  357. #define NVREG_POWERSTATE_MASK 0x0003
  358. #define NVREG_POWERSTATE_D0 0x0000
  359. #define NVREG_POWERSTATE_D1 0x0001
  360. #define NVREG_POWERSTATE_D2 0x0002
  361. #define NVREG_POWERSTATE_D3 0x0003
  362. NvRegTxCnt = 0x280,
  363. NvRegTxZeroReXmt = 0x284,
  364. NvRegTxOneReXmt = 0x288,
  365. NvRegTxManyReXmt = 0x28c,
  366. NvRegTxLateCol = 0x290,
  367. NvRegTxUnderflow = 0x294,
  368. NvRegTxLossCarrier = 0x298,
  369. NvRegTxExcessDef = 0x29c,
  370. NvRegTxRetryErr = 0x2a0,
  371. NvRegRxFrameErr = 0x2a4,
  372. NvRegRxExtraByte = 0x2a8,
  373. NvRegRxLateCol = 0x2ac,
  374. NvRegRxRunt = 0x2b0,
  375. NvRegRxFrameTooLong = 0x2b4,
  376. NvRegRxOverflow = 0x2b8,
  377. NvRegRxFCSErr = 0x2bc,
  378. NvRegRxFrameAlignErr = 0x2c0,
  379. NvRegRxLenErr = 0x2c4,
  380. NvRegRxUnicast = 0x2c8,
  381. NvRegRxMulticast = 0x2cc,
  382. NvRegRxBroadcast = 0x2d0,
  383. NvRegTxDef = 0x2d4,
  384. NvRegTxFrame = 0x2d8,
  385. NvRegRxCnt = 0x2dc,
  386. NvRegTxPause = 0x2e0,
  387. NvRegRxPause = 0x2e4,
  388. NvRegRxDropFrame = 0x2e8,
  389. NvRegVlanControl = 0x300,
  390. #define NVREG_VLANCONTROL_ENABLE 0x2000
  391. NvRegMSIXMap0 = 0x3e0,
  392. NvRegMSIXMap1 = 0x3e4,
  393. NvRegMSIXIrqStatus = 0x3f0,
  394. NvRegPowerState2 = 0x600,
  395. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  396. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  397. };
  398. /* Big endian: should work, but is untested */
  399. struct ring_desc {
  400. __le32 buf;
  401. __le32 flaglen;
  402. };
  403. struct ring_desc_ex {
  404. __le32 bufhigh;
  405. __le32 buflow;
  406. __le32 txvlan;
  407. __le32 flaglen;
  408. };
  409. union ring_type {
  410. struct ring_desc* orig;
  411. struct ring_desc_ex* ex;
  412. };
  413. #define FLAG_MASK_V1 0xffff0000
  414. #define FLAG_MASK_V2 0xffffc000
  415. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  416. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  417. #define NV_TX_LASTPACKET (1<<16)
  418. #define NV_TX_RETRYERROR (1<<19)
  419. #define NV_TX_FORCED_INTERRUPT (1<<24)
  420. #define NV_TX_DEFERRED (1<<26)
  421. #define NV_TX_CARRIERLOST (1<<27)
  422. #define NV_TX_LATECOLLISION (1<<28)
  423. #define NV_TX_UNDERFLOW (1<<29)
  424. #define NV_TX_ERROR (1<<30)
  425. #define NV_TX_VALID (1<<31)
  426. #define NV_TX2_LASTPACKET (1<<29)
  427. #define NV_TX2_RETRYERROR (1<<18)
  428. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  429. #define NV_TX2_DEFERRED (1<<25)
  430. #define NV_TX2_CARRIERLOST (1<<26)
  431. #define NV_TX2_LATECOLLISION (1<<27)
  432. #define NV_TX2_UNDERFLOW (1<<28)
  433. /* error and valid are the same for both */
  434. #define NV_TX2_ERROR (1<<30)
  435. #define NV_TX2_VALID (1<<31)
  436. #define NV_TX2_TSO (1<<28)
  437. #define NV_TX2_TSO_SHIFT 14
  438. #define NV_TX2_TSO_MAX_SHIFT 14
  439. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  440. #define NV_TX2_CHECKSUM_L3 (1<<27)
  441. #define NV_TX2_CHECKSUM_L4 (1<<26)
  442. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  443. #define NV_RX_DESCRIPTORVALID (1<<16)
  444. #define NV_RX_MISSEDFRAME (1<<17)
  445. #define NV_RX_SUBSTRACT1 (1<<18)
  446. #define NV_RX_ERROR1 (1<<23)
  447. #define NV_RX_ERROR2 (1<<24)
  448. #define NV_RX_ERROR3 (1<<25)
  449. #define NV_RX_ERROR4 (1<<26)
  450. #define NV_RX_CRCERR (1<<27)
  451. #define NV_RX_OVERFLOW (1<<28)
  452. #define NV_RX_FRAMINGERR (1<<29)
  453. #define NV_RX_ERROR (1<<30)
  454. #define NV_RX_AVAIL (1<<31)
  455. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  456. #define NV_RX2_CHECKSUM_IP (0x10000000)
  457. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  458. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  459. #define NV_RX2_DESCRIPTORVALID (1<<29)
  460. #define NV_RX2_SUBSTRACT1 (1<<25)
  461. #define NV_RX2_ERROR1 (1<<18)
  462. #define NV_RX2_ERROR2 (1<<19)
  463. #define NV_RX2_ERROR3 (1<<20)
  464. #define NV_RX2_ERROR4 (1<<21)
  465. #define NV_RX2_CRCERR (1<<22)
  466. #define NV_RX2_OVERFLOW (1<<23)
  467. #define NV_RX2_FRAMINGERR (1<<24)
  468. /* error and avail are the same for both */
  469. #define NV_RX2_ERROR (1<<30)
  470. #define NV_RX2_AVAIL (1<<31)
  471. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  472. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  473. /* Miscelaneous hardware related defines: */
  474. #define NV_PCI_REGSZ_VER1 0x270
  475. #define NV_PCI_REGSZ_VER2 0x2d4
  476. #define NV_PCI_REGSZ_VER3 0x604
  477. /* various timeout delays: all in usec */
  478. #define NV_TXRX_RESET_DELAY 4
  479. #define NV_TXSTOP_DELAY1 10
  480. #define NV_TXSTOP_DELAY1MAX 500000
  481. #define NV_TXSTOP_DELAY2 100
  482. #define NV_RXSTOP_DELAY1 10
  483. #define NV_RXSTOP_DELAY1MAX 500000
  484. #define NV_RXSTOP_DELAY2 100
  485. #define NV_SETUP5_DELAY 5
  486. #define NV_SETUP5_DELAYMAX 50000
  487. #define NV_POWERUP_DELAY 5
  488. #define NV_POWERUP_DELAYMAX 5000
  489. #define NV_MIIBUSY_DELAY 50
  490. #define NV_MIIPHY_DELAY 10
  491. #define NV_MIIPHY_DELAYMAX 10000
  492. #define NV_MAC_RESET_DELAY 64
  493. #define NV_WAKEUPPATTERNS 5
  494. #define NV_WAKEUPMASKENTRIES 4
  495. /* General driver defaults */
  496. #define NV_WATCHDOG_TIMEO (5*HZ)
  497. #define RX_RING_DEFAULT 128
  498. #define TX_RING_DEFAULT 256
  499. #define RX_RING_MIN 128
  500. #define TX_RING_MIN 64
  501. #define RING_MAX_DESC_VER_1 1024
  502. #define RING_MAX_DESC_VER_2_3 16384
  503. /* rx/tx mac addr + type + vlan + align + slack*/
  504. #define NV_RX_HEADERS (64)
  505. /* even more slack. */
  506. #define NV_RX_ALLOC_PAD (64)
  507. /* maximum mtu size */
  508. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  509. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  510. #define OOM_REFILL (1+HZ/20)
  511. #define POLL_WAIT (1+HZ/100)
  512. #define LINK_TIMEOUT (3*HZ)
  513. #define STATS_INTERVAL (10*HZ)
  514. /*
  515. * desc_ver values:
  516. * The nic supports three different descriptor types:
  517. * - DESC_VER_1: Original
  518. * - DESC_VER_2: support for jumbo frames.
  519. * - DESC_VER_3: 64-bit format.
  520. */
  521. #define DESC_VER_1 1
  522. #define DESC_VER_2 2
  523. #define DESC_VER_3 3
  524. /* PHY defines */
  525. #define PHY_OUI_MARVELL 0x5043
  526. #define PHY_OUI_CICADA 0x03f1
  527. #define PHY_OUI_VITESSE 0x01c1
  528. #define PHY_OUI_REALTEK 0x0732
  529. #define PHYID1_OUI_MASK 0x03ff
  530. #define PHYID1_OUI_SHFT 6
  531. #define PHYID2_OUI_MASK 0xfc00
  532. #define PHYID2_OUI_SHFT 10
  533. #define PHYID2_MODEL_MASK 0x03f0
  534. #define PHY_MODEL_MARVELL_E3016 0x220
  535. #define PHY_MARVELL_E3016_INITMASK 0x0300
  536. #define PHY_CICADA_INIT1 0x0f000
  537. #define PHY_CICADA_INIT2 0x0e00
  538. #define PHY_CICADA_INIT3 0x01000
  539. #define PHY_CICADA_INIT4 0x0200
  540. #define PHY_CICADA_INIT5 0x0004
  541. #define PHY_CICADA_INIT6 0x02000
  542. #define PHY_VITESSE_INIT_REG1 0x1f
  543. #define PHY_VITESSE_INIT_REG2 0x10
  544. #define PHY_VITESSE_INIT_REG3 0x11
  545. #define PHY_VITESSE_INIT_REG4 0x12
  546. #define PHY_VITESSE_INIT_MSK1 0xc
  547. #define PHY_VITESSE_INIT_MSK2 0x0180
  548. #define PHY_VITESSE_INIT1 0x52b5
  549. #define PHY_VITESSE_INIT2 0xaf8a
  550. #define PHY_VITESSE_INIT3 0x8
  551. #define PHY_VITESSE_INIT4 0x8f8a
  552. #define PHY_VITESSE_INIT5 0xaf86
  553. #define PHY_VITESSE_INIT6 0x8f86
  554. #define PHY_VITESSE_INIT7 0xaf82
  555. #define PHY_VITESSE_INIT8 0x0100
  556. #define PHY_VITESSE_INIT9 0x8f82
  557. #define PHY_VITESSE_INIT10 0x0
  558. #define PHY_REALTEK_INIT_REG1 0x1f
  559. #define PHY_REALTEK_INIT_REG2 0x19
  560. #define PHY_REALTEK_INIT_REG3 0x13
  561. #define PHY_REALTEK_INIT1 0x0000
  562. #define PHY_REALTEK_INIT2 0x8e00
  563. #define PHY_REALTEK_INIT3 0x0001
  564. #define PHY_REALTEK_INIT4 0xad17
  565. #define PHY_GIGABIT 0x0100
  566. #define PHY_TIMEOUT 0x1
  567. #define PHY_ERROR 0x2
  568. #define PHY_100 0x1
  569. #define PHY_1000 0x2
  570. #define PHY_HALF 0x100
  571. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  572. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  573. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  574. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  575. #define NV_PAUSEFRAME_RX_REQ 0x0010
  576. #define NV_PAUSEFRAME_TX_REQ 0x0020
  577. #define NV_PAUSEFRAME_AUTONEG 0x0040
  578. /* MSI/MSI-X defines */
  579. #define NV_MSI_X_MAX_VECTORS 8
  580. #define NV_MSI_X_VECTORS_MASK 0x000f
  581. #define NV_MSI_CAPABLE 0x0010
  582. #define NV_MSI_X_CAPABLE 0x0020
  583. #define NV_MSI_ENABLED 0x0040
  584. #define NV_MSI_X_ENABLED 0x0080
  585. #define NV_MSI_X_VECTOR_ALL 0x0
  586. #define NV_MSI_X_VECTOR_RX 0x0
  587. #define NV_MSI_X_VECTOR_TX 0x1
  588. #define NV_MSI_X_VECTOR_OTHER 0x2
  589. #define NV_RESTART_TX 0x1
  590. #define NV_RESTART_RX 0x2
  591. #define NV_TX_LIMIT_COUNT 16
  592. /* statistics */
  593. struct nv_ethtool_str {
  594. char name[ETH_GSTRING_LEN];
  595. };
  596. static const struct nv_ethtool_str nv_estats_str[] = {
  597. { "tx_bytes" },
  598. { "tx_zero_rexmt" },
  599. { "tx_one_rexmt" },
  600. { "tx_many_rexmt" },
  601. { "tx_late_collision" },
  602. { "tx_fifo_errors" },
  603. { "tx_carrier_errors" },
  604. { "tx_excess_deferral" },
  605. { "tx_retry_error" },
  606. { "rx_frame_error" },
  607. { "rx_extra_byte" },
  608. { "rx_late_collision" },
  609. { "rx_runt" },
  610. { "rx_frame_too_long" },
  611. { "rx_over_errors" },
  612. { "rx_crc_errors" },
  613. { "rx_frame_align_error" },
  614. { "rx_length_error" },
  615. { "rx_unicast" },
  616. { "rx_multicast" },
  617. { "rx_broadcast" },
  618. { "rx_packets" },
  619. { "rx_errors_total" },
  620. { "tx_errors_total" },
  621. /* version 2 stats */
  622. { "tx_deferral" },
  623. { "tx_packets" },
  624. { "rx_bytes" },
  625. { "tx_pause" },
  626. { "rx_pause" },
  627. { "rx_drop_frame" }
  628. };
  629. struct nv_ethtool_stats {
  630. u64 tx_bytes;
  631. u64 tx_zero_rexmt;
  632. u64 tx_one_rexmt;
  633. u64 tx_many_rexmt;
  634. u64 tx_late_collision;
  635. u64 tx_fifo_errors;
  636. u64 tx_carrier_errors;
  637. u64 tx_excess_deferral;
  638. u64 tx_retry_error;
  639. u64 rx_frame_error;
  640. u64 rx_extra_byte;
  641. u64 rx_late_collision;
  642. u64 rx_runt;
  643. u64 rx_frame_too_long;
  644. u64 rx_over_errors;
  645. u64 rx_crc_errors;
  646. u64 rx_frame_align_error;
  647. u64 rx_length_error;
  648. u64 rx_unicast;
  649. u64 rx_multicast;
  650. u64 rx_broadcast;
  651. u64 rx_packets;
  652. u64 rx_errors_total;
  653. u64 tx_errors_total;
  654. /* version 2 stats */
  655. u64 tx_deferral;
  656. u64 tx_packets;
  657. u64 rx_bytes;
  658. u64 tx_pause;
  659. u64 rx_pause;
  660. u64 rx_drop_frame;
  661. };
  662. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  663. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  664. /* diagnostics */
  665. #define NV_TEST_COUNT_BASE 3
  666. #define NV_TEST_COUNT_EXTENDED 4
  667. static const struct nv_ethtool_str nv_etests_str[] = {
  668. { "link (online/offline)" },
  669. { "register (offline) " },
  670. { "interrupt (offline) " },
  671. { "loopback (offline) " }
  672. };
  673. struct register_test {
  674. __u32 reg;
  675. __u32 mask;
  676. };
  677. static const struct register_test nv_registers_test[] = {
  678. { NvRegUnknownSetupReg6, 0x01 },
  679. { NvRegMisc1, 0x03c },
  680. { NvRegOffloadConfig, 0x03ff },
  681. { NvRegMulticastAddrA, 0xffffffff },
  682. { NvRegTxWatermark, 0x0ff },
  683. { NvRegWakeUpFlags, 0x07777 },
  684. { 0,0 }
  685. };
  686. struct nv_skb_map {
  687. struct sk_buff *skb;
  688. dma_addr_t dma;
  689. unsigned int dma_len;
  690. struct ring_desc_ex *first_tx_desc;
  691. struct nv_skb_map *next_tx_ctx;
  692. };
  693. /*
  694. * SMP locking:
  695. * All hardware access under dev->priv->lock, except the performance
  696. * critical parts:
  697. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  698. * by the arch code for interrupts.
  699. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  700. * needs dev->priv->lock :-(
  701. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  702. */
  703. /* in dev: base, irq */
  704. struct fe_priv {
  705. spinlock_t lock;
  706. struct net_device *dev;
  707. struct napi_struct napi;
  708. /* General data:
  709. * Locking: spin_lock(&np->lock); */
  710. struct nv_ethtool_stats estats;
  711. int in_shutdown;
  712. u32 linkspeed;
  713. int duplex;
  714. int autoneg;
  715. int fixed_mode;
  716. int phyaddr;
  717. int wolenabled;
  718. unsigned int phy_oui;
  719. unsigned int phy_model;
  720. u16 gigabit;
  721. int intr_test;
  722. int recover_error;
  723. /* General data: RO fields */
  724. dma_addr_t ring_addr;
  725. struct pci_dev *pci_dev;
  726. u32 orig_mac[2];
  727. u32 irqmask;
  728. u32 desc_ver;
  729. u32 txrxctl_bits;
  730. u32 vlanctl_bits;
  731. u32 driver_data;
  732. u32 register_size;
  733. int rx_csum;
  734. u32 mac_in_use;
  735. void __iomem *base;
  736. /* rx specific fields.
  737. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  738. */
  739. union ring_type get_rx, put_rx, first_rx, last_rx;
  740. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  741. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  742. struct nv_skb_map *rx_skb;
  743. union ring_type rx_ring;
  744. unsigned int rx_buf_sz;
  745. unsigned int pkt_limit;
  746. struct timer_list oom_kick;
  747. struct timer_list nic_poll;
  748. struct timer_list stats_poll;
  749. u32 nic_poll_irq;
  750. int rx_ring_size;
  751. /* media detection workaround.
  752. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  753. */
  754. int need_linktimer;
  755. unsigned long link_timeout;
  756. /*
  757. * tx specific fields.
  758. */
  759. union ring_type get_tx, put_tx, first_tx, last_tx;
  760. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  761. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  762. struct nv_skb_map *tx_skb;
  763. union ring_type tx_ring;
  764. u32 tx_flags;
  765. int tx_ring_size;
  766. int tx_limit;
  767. u32 tx_pkts_in_progress;
  768. struct nv_skb_map *tx_change_owner;
  769. struct nv_skb_map *tx_end_flip;
  770. int tx_stop;
  771. /* vlan fields */
  772. struct vlan_group *vlangrp;
  773. /* msi/msi-x fields */
  774. u32 msi_flags;
  775. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  776. /* flow control */
  777. u32 pause_flags;
  778. };
  779. /*
  780. * Maximum number of loops until we assume that a bit in the irq mask
  781. * is stuck. Overridable with module param.
  782. */
  783. static int max_interrupt_work = 5;
  784. /*
  785. * Optimization can be either throuput mode or cpu mode
  786. *
  787. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  788. * CPU Mode: Interrupts are controlled by a timer.
  789. */
  790. enum {
  791. NV_OPTIMIZATION_MODE_THROUGHPUT,
  792. NV_OPTIMIZATION_MODE_CPU
  793. };
  794. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  795. /*
  796. * Poll interval for timer irq
  797. *
  798. * This interval determines how frequent an interrupt is generated.
  799. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  800. * Min = 0, and Max = 65535
  801. */
  802. static int poll_interval = -1;
  803. /*
  804. * MSI interrupts
  805. */
  806. enum {
  807. NV_MSI_INT_DISABLED,
  808. NV_MSI_INT_ENABLED
  809. };
  810. static int msi = NV_MSI_INT_ENABLED;
  811. /*
  812. * MSIX interrupts
  813. */
  814. enum {
  815. NV_MSIX_INT_DISABLED,
  816. NV_MSIX_INT_ENABLED
  817. };
  818. static int msix = NV_MSIX_INT_DISABLED;
  819. /*
  820. * DMA 64bit
  821. */
  822. enum {
  823. NV_DMA_64BIT_DISABLED,
  824. NV_DMA_64BIT_ENABLED
  825. };
  826. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  827. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  828. {
  829. return netdev_priv(dev);
  830. }
  831. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  832. {
  833. return ((struct fe_priv *)netdev_priv(dev))->base;
  834. }
  835. static inline void pci_push(u8 __iomem *base)
  836. {
  837. /* force out pending posted writes */
  838. readl(base);
  839. }
  840. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  841. {
  842. return le32_to_cpu(prd->flaglen)
  843. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  844. }
  845. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  846. {
  847. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  848. }
  849. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  850. int delay, int delaymax, const char *msg)
  851. {
  852. u8 __iomem *base = get_hwbase(dev);
  853. pci_push(base);
  854. do {
  855. udelay(delay);
  856. delaymax -= delay;
  857. if (delaymax < 0) {
  858. if (msg)
  859. printk(msg);
  860. return 1;
  861. }
  862. } while ((readl(base + offset) & mask) != target);
  863. return 0;
  864. }
  865. #define NV_SETUP_RX_RING 0x01
  866. #define NV_SETUP_TX_RING 0x02
  867. static inline u32 dma_low(dma_addr_t addr)
  868. {
  869. return addr;
  870. }
  871. static inline u32 dma_high(dma_addr_t addr)
  872. {
  873. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  874. }
  875. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  876. {
  877. struct fe_priv *np = get_nvpriv(dev);
  878. u8 __iomem *base = get_hwbase(dev);
  879. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  880. if (rxtx_flags & NV_SETUP_RX_RING) {
  881. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  882. }
  883. if (rxtx_flags & NV_SETUP_TX_RING) {
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  885. }
  886. } else {
  887. if (rxtx_flags & NV_SETUP_RX_RING) {
  888. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  889. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  890. }
  891. if (rxtx_flags & NV_SETUP_TX_RING) {
  892. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  893. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  894. }
  895. }
  896. }
  897. static void free_rings(struct net_device *dev)
  898. {
  899. struct fe_priv *np = get_nvpriv(dev);
  900. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  901. if (np->rx_ring.orig)
  902. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  903. np->rx_ring.orig, np->ring_addr);
  904. } else {
  905. if (np->rx_ring.ex)
  906. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  907. np->rx_ring.ex, np->ring_addr);
  908. }
  909. if (np->rx_skb)
  910. kfree(np->rx_skb);
  911. if (np->tx_skb)
  912. kfree(np->tx_skb);
  913. }
  914. static int using_multi_irqs(struct net_device *dev)
  915. {
  916. struct fe_priv *np = get_nvpriv(dev);
  917. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  918. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  919. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  920. return 0;
  921. else
  922. return 1;
  923. }
  924. static void nv_enable_irq(struct net_device *dev)
  925. {
  926. struct fe_priv *np = get_nvpriv(dev);
  927. if (!using_multi_irqs(dev)) {
  928. if (np->msi_flags & NV_MSI_X_ENABLED)
  929. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  930. else
  931. enable_irq(np->pci_dev->irq);
  932. } else {
  933. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  934. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  935. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  936. }
  937. }
  938. static void nv_disable_irq(struct net_device *dev)
  939. {
  940. struct fe_priv *np = get_nvpriv(dev);
  941. if (!using_multi_irqs(dev)) {
  942. if (np->msi_flags & NV_MSI_X_ENABLED)
  943. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  944. else
  945. disable_irq(np->pci_dev->irq);
  946. } else {
  947. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  948. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  949. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  950. }
  951. }
  952. /* In MSIX mode, a write to irqmask behaves as XOR */
  953. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  954. {
  955. u8 __iomem *base = get_hwbase(dev);
  956. writel(mask, base + NvRegIrqMask);
  957. }
  958. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  959. {
  960. struct fe_priv *np = get_nvpriv(dev);
  961. u8 __iomem *base = get_hwbase(dev);
  962. if (np->msi_flags & NV_MSI_X_ENABLED) {
  963. writel(mask, base + NvRegIrqMask);
  964. } else {
  965. if (np->msi_flags & NV_MSI_ENABLED)
  966. writel(0, base + NvRegMSIIrqMask);
  967. writel(0, base + NvRegIrqMask);
  968. }
  969. }
  970. #define MII_READ (-1)
  971. /* mii_rw: read/write a register on the PHY.
  972. *
  973. * Caller must guarantee serialization
  974. */
  975. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  976. {
  977. u8 __iomem *base = get_hwbase(dev);
  978. u32 reg;
  979. int retval;
  980. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  981. reg = readl(base + NvRegMIIControl);
  982. if (reg & NVREG_MIICTL_INUSE) {
  983. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  984. udelay(NV_MIIBUSY_DELAY);
  985. }
  986. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  987. if (value != MII_READ) {
  988. writel(value, base + NvRegMIIData);
  989. reg |= NVREG_MIICTL_WRITE;
  990. }
  991. writel(reg, base + NvRegMIIControl);
  992. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  993. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  994. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  995. dev->name, miireg, addr);
  996. retval = -1;
  997. } else if (value != MII_READ) {
  998. /* it was a write operation - fewer failures are detectable */
  999. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1000. dev->name, value, miireg, addr);
  1001. retval = 0;
  1002. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1003. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1004. dev->name, miireg, addr);
  1005. retval = -1;
  1006. } else {
  1007. retval = readl(base + NvRegMIIData);
  1008. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1009. dev->name, miireg, addr, retval);
  1010. }
  1011. return retval;
  1012. }
  1013. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1014. {
  1015. struct fe_priv *np = netdev_priv(dev);
  1016. u32 miicontrol;
  1017. unsigned int tries = 0;
  1018. miicontrol = BMCR_RESET | bmcr_setup;
  1019. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1020. return -1;
  1021. }
  1022. /* wait for 500ms */
  1023. msleep(500);
  1024. /* must wait till reset is deasserted */
  1025. while (miicontrol & BMCR_RESET) {
  1026. msleep(10);
  1027. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1028. /* FIXME: 100 tries seem excessive */
  1029. if (tries++ > 100)
  1030. return -1;
  1031. }
  1032. return 0;
  1033. }
  1034. static int phy_init(struct net_device *dev)
  1035. {
  1036. struct fe_priv *np = get_nvpriv(dev);
  1037. u8 __iomem *base = get_hwbase(dev);
  1038. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1039. /* phy errata for E3016 phy */
  1040. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1041. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1042. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1043. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1044. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. }
  1048. if (np->phy_oui == PHY_OUI_REALTEK) {
  1049. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1050. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1051. return PHY_ERROR;
  1052. }
  1053. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1054. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1055. return PHY_ERROR;
  1056. }
  1057. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1058. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1059. return PHY_ERROR;
  1060. }
  1061. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1062. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1063. return PHY_ERROR;
  1064. }
  1065. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1066. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1067. return PHY_ERROR;
  1068. }
  1069. }
  1070. /* set advertise register */
  1071. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1072. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1073. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1074. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1075. return PHY_ERROR;
  1076. }
  1077. /* get phy interface type */
  1078. phyinterface = readl(base + NvRegPhyInterface);
  1079. /* see if gigabit phy */
  1080. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1081. if (mii_status & PHY_GIGABIT) {
  1082. np->gigabit = PHY_GIGABIT;
  1083. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1084. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1085. if (phyinterface & PHY_RGMII)
  1086. mii_control_1000 |= ADVERTISE_1000FULL;
  1087. else
  1088. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1089. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1090. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1091. return PHY_ERROR;
  1092. }
  1093. }
  1094. else
  1095. np->gigabit = 0;
  1096. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1097. mii_control |= BMCR_ANENABLE;
  1098. /* reset the phy
  1099. * (certain phys need bmcr to be setup with reset)
  1100. */
  1101. if (phy_reset(dev, mii_control)) {
  1102. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1103. return PHY_ERROR;
  1104. }
  1105. /* phy vendor specific configuration */
  1106. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1107. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1108. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1109. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1110. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1111. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1112. return PHY_ERROR;
  1113. }
  1114. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1115. phy_reserved |= PHY_CICADA_INIT5;
  1116. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. if (np->phy_oui == PHY_OUI_CICADA) {
  1122. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1123. phy_reserved |= PHY_CICADA_INIT6;
  1124. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1125. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1126. return PHY_ERROR;
  1127. }
  1128. }
  1129. if (np->phy_oui == PHY_OUI_VITESSE) {
  1130. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1135. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1136. return PHY_ERROR;
  1137. }
  1138. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1139. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1140. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1141. return PHY_ERROR;
  1142. }
  1143. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1144. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1145. phy_reserved |= PHY_VITESSE_INIT3;
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1151. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1152. return PHY_ERROR;
  1153. }
  1154. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1159. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1160. phy_reserved |= PHY_VITESSE_INIT3;
  1161. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1162. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1163. return PHY_ERROR;
  1164. }
  1165. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1171. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1172. return PHY_ERROR;
  1173. }
  1174. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1175. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1176. return PHY_ERROR;
  1177. }
  1178. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1179. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1180. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1181. return PHY_ERROR;
  1182. }
  1183. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1184. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1185. phy_reserved |= PHY_VITESSE_INIT8;
  1186. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1191. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1192. return PHY_ERROR;
  1193. }
  1194. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1195. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1196. return PHY_ERROR;
  1197. }
  1198. }
  1199. if (np->phy_oui == PHY_OUI_REALTEK) {
  1200. /* reset could have cleared these out, set them back */
  1201. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1202. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1206. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1207. return PHY_ERROR;
  1208. }
  1209. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1210. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1211. return PHY_ERROR;
  1212. }
  1213. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1214. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1215. return PHY_ERROR;
  1216. }
  1217. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1218. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1219. return PHY_ERROR;
  1220. }
  1221. }
  1222. /* some phys clear out pause advertisment on reset, set it back */
  1223. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1224. /* restart auto negotiation */
  1225. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1226. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1227. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1228. return PHY_ERROR;
  1229. }
  1230. return 0;
  1231. }
  1232. static void nv_start_rx(struct net_device *dev)
  1233. {
  1234. struct fe_priv *np = netdev_priv(dev);
  1235. u8 __iomem *base = get_hwbase(dev);
  1236. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1237. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1238. /* Already running? Stop it. */
  1239. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1240. rx_ctrl &= ~NVREG_RCVCTL_START;
  1241. writel(rx_ctrl, base + NvRegReceiverControl);
  1242. pci_push(base);
  1243. }
  1244. writel(np->linkspeed, base + NvRegLinkSpeed);
  1245. pci_push(base);
  1246. rx_ctrl |= NVREG_RCVCTL_START;
  1247. if (np->mac_in_use)
  1248. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1249. writel(rx_ctrl, base + NvRegReceiverControl);
  1250. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1251. dev->name, np->duplex, np->linkspeed);
  1252. pci_push(base);
  1253. }
  1254. static void nv_stop_rx(struct net_device *dev)
  1255. {
  1256. struct fe_priv *np = netdev_priv(dev);
  1257. u8 __iomem *base = get_hwbase(dev);
  1258. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1259. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1260. if (!np->mac_in_use)
  1261. rx_ctrl &= ~NVREG_RCVCTL_START;
  1262. else
  1263. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1264. writel(rx_ctrl, base + NvRegReceiverControl);
  1265. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1266. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1267. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1268. udelay(NV_RXSTOP_DELAY2);
  1269. if (!np->mac_in_use)
  1270. writel(0, base + NvRegLinkSpeed);
  1271. }
  1272. static void nv_start_tx(struct net_device *dev)
  1273. {
  1274. struct fe_priv *np = netdev_priv(dev);
  1275. u8 __iomem *base = get_hwbase(dev);
  1276. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1277. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1278. tx_ctrl |= NVREG_XMITCTL_START;
  1279. if (np->mac_in_use)
  1280. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1281. writel(tx_ctrl, base + NvRegTransmitterControl);
  1282. pci_push(base);
  1283. }
  1284. static void nv_stop_tx(struct net_device *dev)
  1285. {
  1286. struct fe_priv *np = netdev_priv(dev);
  1287. u8 __iomem *base = get_hwbase(dev);
  1288. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1289. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1290. if (!np->mac_in_use)
  1291. tx_ctrl &= ~NVREG_XMITCTL_START;
  1292. else
  1293. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1294. writel(tx_ctrl, base + NvRegTransmitterControl);
  1295. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1296. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1297. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1298. udelay(NV_TXSTOP_DELAY2);
  1299. if (!np->mac_in_use)
  1300. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1301. base + NvRegTransmitPoll);
  1302. }
  1303. static void nv_txrx_reset(struct net_device *dev)
  1304. {
  1305. struct fe_priv *np = netdev_priv(dev);
  1306. u8 __iomem *base = get_hwbase(dev);
  1307. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1308. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1309. pci_push(base);
  1310. udelay(NV_TXRX_RESET_DELAY);
  1311. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1312. pci_push(base);
  1313. }
  1314. static void nv_mac_reset(struct net_device *dev)
  1315. {
  1316. struct fe_priv *np = netdev_priv(dev);
  1317. u8 __iomem *base = get_hwbase(dev);
  1318. u32 temp1, temp2, temp3;
  1319. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1320. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1321. pci_push(base);
  1322. /* save registers since they will be cleared on reset */
  1323. temp1 = readl(base + NvRegMacAddrA);
  1324. temp2 = readl(base + NvRegMacAddrB);
  1325. temp3 = readl(base + NvRegTransmitPoll);
  1326. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1327. pci_push(base);
  1328. udelay(NV_MAC_RESET_DELAY);
  1329. writel(0, base + NvRegMacReset);
  1330. pci_push(base);
  1331. udelay(NV_MAC_RESET_DELAY);
  1332. /* restore saved registers */
  1333. writel(temp1, base + NvRegMacAddrA);
  1334. writel(temp2, base + NvRegMacAddrB);
  1335. writel(temp3, base + NvRegTransmitPoll);
  1336. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1337. pci_push(base);
  1338. }
  1339. static void nv_get_hw_stats(struct net_device *dev)
  1340. {
  1341. struct fe_priv *np = netdev_priv(dev);
  1342. u8 __iomem *base = get_hwbase(dev);
  1343. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1344. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1345. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1346. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1347. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1348. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1349. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1350. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1351. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1352. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1353. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1354. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1355. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1356. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1357. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1358. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1359. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1360. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1361. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1362. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1363. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1364. np->estats.rx_packets =
  1365. np->estats.rx_unicast +
  1366. np->estats.rx_multicast +
  1367. np->estats.rx_broadcast;
  1368. np->estats.rx_errors_total =
  1369. np->estats.rx_crc_errors +
  1370. np->estats.rx_over_errors +
  1371. np->estats.rx_frame_error +
  1372. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1373. np->estats.rx_late_collision +
  1374. np->estats.rx_runt +
  1375. np->estats.rx_frame_too_long;
  1376. np->estats.tx_errors_total =
  1377. np->estats.tx_late_collision +
  1378. np->estats.tx_fifo_errors +
  1379. np->estats.tx_carrier_errors +
  1380. np->estats.tx_excess_deferral +
  1381. np->estats.tx_retry_error;
  1382. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1383. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1384. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1385. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1386. np->estats.tx_pause += readl(base + NvRegTxPause);
  1387. np->estats.rx_pause += readl(base + NvRegRxPause);
  1388. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1389. }
  1390. }
  1391. /*
  1392. * nv_get_stats: dev->get_stats function
  1393. * Get latest stats value from the nic.
  1394. * Called with read_lock(&dev_base_lock) held for read -
  1395. * only synchronized against unregister_netdevice.
  1396. */
  1397. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1398. {
  1399. struct fe_priv *np = netdev_priv(dev);
  1400. /* If the nic supports hw counters then retrieve latest values */
  1401. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1402. nv_get_hw_stats(dev);
  1403. /* copy to net_device stats */
  1404. dev->stats.tx_bytes = np->estats.tx_bytes;
  1405. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1406. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1407. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1408. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1409. dev->stats.rx_errors = np->estats.rx_errors_total;
  1410. dev->stats.tx_errors = np->estats.tx_errors_total;
  1411. }
  1412. return &dev->stats;
  1413. }
  1414. /*
  1415. * nv_alloc_rx: fill rx ring entries.
  1416. * Return 1 if the allocations for the skbs failed and the
  1417. * rx engine is without Available descriptors
  1418. */
  1419. static int nv_alloc_rx(struct net_device *dev)
  1420. {
  1421. struct fe_priv *np = netdev_priv(dev);
  1422. struct ring_desc* less_rx;
  1423. less_rx = np->get_rx.orig;
  1424. if (less_rx-- == np->first_rx.orig)
  1425. less_rx = np->last_rx.orig;
  1426. while (np->put_rx.orig != less_rx) {
  1427. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1428. if (skb) {
  1429. np->put_rx_ctx->skb = skb;
  1430. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1431. skb->data,
  1432. skb_tailroom(skb),
  1433. PCI_DMA_FROMDEVICE);
  1434. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1435. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1436. wmb();
  1437. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1438. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1439. np->put_rx.orig = np->first_rx.orig;
  1440. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1441. np->put_rx_ctx = np->first_rx_ctx;
  1442. } else {
  1443. return 1;
  1444. }
  1445. }
  1446. return 0;
  1447. }
  1448. static int nv_alloc_rx_optimized(struct net_device *dev)
  1449. {
  1450. struct fe_priv *np = netdev_priv(dev);
  1451. struct ring_desc_ex* less_rx;
  1452. less_rx = np->get_rx.ex;
  1453. if (less_rx-- == np->first_rx.ex)
  1454. less_rx = np->last_rx.ex;
  1455. while (np->put_rx.ex != less_rx) {
  1456. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1457. if (skb) {
  1458. np->put_rx_ctx->skb = skb;
  1459. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1460. skb->data,
  1461. skb_tailroom(skb),
  1462. PCI_DMA_FROMDEVICE);
  1463. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1464. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1465. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1466. wmb();
  1467. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1468. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1469. np->put_rx.ex = np->first_rx.ex;
  1470. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1471. np->put_rx_ctx = np->first_rx_ctx;
  1472. } else {
  1473. return 1;
  1474. }
  1475. }
  1476. return 0;
  1477. }
  1478. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1479. #ifdef CONFIG_FORCEDETH_NAPI
  1480. static void nv_do_rx_refill(unsigned long data)
  1481. {
  1482. struct net_device *dev = (struct net_device *) data;
  1483. struct fe_priv *np = netdev_priv(dev);
  1484. /* Just reschedule NAPI rx processing */
  1485. netif_rx_schedule(dev, &np->napi);
  1486. }
  1487. #else
  1488. static void nv_do_rx_refill(unsigned long data)
  1489. {
  1490. struct net_device *dev = (struct net_device *) data;
  1491. struct fe_priv *np = netdev_priv(dev);
  1492. int retcode;
  1493. if (!using_multi_irqs(dev)) {
  1494. if (np->msi_flags & NV_MSI_X_ENABLED)
  1495. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1496. else
  1497. disable_irq(np->pci_dev->irq);
  1498. } else {
  1499. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1500. }
  1501. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1502. retcode = nv_alloc_rx(dev);
  1503. else
  1504. retcode = nv_alloc_rx_optimized(dev);
  1505. if (retcode) {
  1506. spin_lock_irq(&np->lock);
  1507. if (!np->in_shutdown)
  1508. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1509. spin_unlock_irq(&np->lock);
  1510. }
  1511. if (!using_multi_irqs(dev)) {
  1512. if (np->msi_flags & NV_MSI_X_ENABLED)
  1513. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1514. else
  1515. enable_irq(np->pci_dev->irq);
  1516. } else {
  1517. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1518. }
  1519. }
  1520. #endif
  1521. static void nv_init_rx(struct net_device *dev)
  1522. {
  1523. struct fe_priv *np = netdev_priv(dev);
  1524. int i;
  1525. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1526. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1527. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1528. else
  1529. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1530. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1531. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1532. for (i = 0; i < np->rx_ring_size; i++) {
  1533. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1534. np->rx_ring.orig[i].flaglen = 0;
  1535. np->rx_ring.orig[i].buf = 0;
  1536. } else {
  1537. np->rx_ring.ex[i].flaglen = 0;
  1538. np->rx_ring.ex[i].txvlan = 0;
  1539. np->rx_ring.ex[i].bufhigh = 0;
  1540. np->rx_ring.ex[i].buflow = 0;
  1541. }
  1542. np->rx_skb[i].skb = NULL;
  1543. np->rx_skb[i].dma = 0;
  1544. }
  1545. }
  1546. static void nv_init_tx(struct net_device *dev)
  1547. {
  1548. struct fe_priv *np = netdev_priv(dev);
  1549. int i;
  1550. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1551. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1552. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1553. else
  1554. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1555. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1556. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1557. np->tx_pkts_in_progress = 0;
  1558. np->tx_change_owner = NULL;
  1559. np->tx_end_flip = NULL;
  1560. for (i = 0; i < np->tx_ring_size; i++) {
  1561. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1562. np->tx_ring.orig[i].flaglen = 0;
  1563. np->tx_ring.orig[i].buf = 0;
  1564. } else {
  1565. np->tx_ring.ex[i].flaglen = 0;
  1566. np->tx_ring.ex[i].txvlan = 0;
  1567. np->tx_ring.ex[i].bufhigh = 0;
  1568. np->tx_ring.ex[i].buflow = 0;
  1569. }
  1570. np->tx_skb[i].skb = NULL;
  1571. np->tx_skb[i].dma = 0;
  1572. np->tx_skb[i].dma_len = 0;
  1573. np->tx_skb[i].first_tx_desc = NULL;
  1574. np->tx_skb[i].next_tx_ctx = NULL;
  1575. }
  1576. }
  1577. static int nv_init_ring(struct net_device *dev)
  1578. {
  1579. struct fe_priv *np = netdev_priv(dev);
  1580. nv_init_tx(dev);
  1581. nv_init_rx(dev);
  1582. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1583. return nv_alloc_rx(dev);
  1584. else
  1585. return nv_alloc_rx_optimized(dev);
  1586. }
  1587. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1588. {
  1589. struct fe_priv *np = netdev_priv(dev);
  1590. if (tx_skb->dma) {
  1591. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1592. tx_skb->dma_len,
  1593. PCI_DMA_TODEVICE);
  1594. tx_skb->dma = 0;
  1595. }
  1596. if (tx_skb->skb) {
  1597. dev_kfree_skb_any(tx_skb->skb);
  1598. tx_skb->skb = NULL;
  1599. return 1;
  1600. } else {
  1601. return 0;
  1602. }
  1603. }
  1604. static void nv_drain_tx(struct net_device *dev)
  1605. {
  1606. struct fe_priv *np = netdev_priv(dev);
  1607. unsigned int i;
  1608. for (i = 0; i < np->tx_ring_size; i++) {
  1609. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1610. np->tx_ring.orig[i].flaglen = 0;
  1611. np->tx_ring.orig[i].buf = 0;
  1612. } else {
  1613. np->tx_ring.ex[i].flaglen = 0;
  1614. np->tx_ring.ex[i].txvlan = 0;
  1615. np->tx_ring.ex[i].bufhigh = 0;
  1616. np->tx_ring.ex[i].buflow = 0;
  1617. }
  1618. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1619. dev->stats.tx_dropped++;
  1620. np->tx_skb[i].dma = 0;
  1621. np->tx_skb[i].dma_len = 0;
  1622. np->tx_skb[i].first_tx_desc = NULL;
  1623. np->tx_skb[i].next_tx_ctx = NULL;
  1624. }
  1625. np->tx_pkts_in_progress = 0;
  1626. np->tx_change_owner = NULL;
  1627. np->tx_end_flip = NULL;
  1628. }
  1629. static void nv_drain_rx(struct net_device *dev)
  1630. {
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. int i;
  1633. for (i = 0; i < np->rx_ring_size; i++) {
  1634. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1635. np->rx_ring.orig[i].flaglen = 0;
  1636. np->rx_ring.orig[i].buf = 0;
  1637. } else {
  1638. np->rx_ring.ex[i].flaglen = 0;
  1639. np->rx_ring.ex[i].txvlan = 0;
  1640. np->rx_ring.ex[i].bufhigh = 0;
  1641. np->rx_ring.ex[i].buflow = 0;
  1642. }
  1643. wmb();
  1644. if (np->rx_skb[i].skb) {
  1645. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1646. (skb_end_pointer(np->rx_skb[i].skb) -
  1647. np->rx_skb[i].skb->data),
  1648. PCI_DMA_FROMDEVICE);
  1649. dev_kfree_skb(np->rx_skb[i].skb);
  1650. np->rx_skb[i].skb = NULL;
  1651. }
  1652. }
  1653. }
  1654. static void drain_ring(struct net_device *dev)
  1655. {
  1656. nv_drain_tx(dev);
  1657. nv_drain_rx(dev);
  1658. }
  1659. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1660. {
  1661. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1662. }
  1663. /*
  1664. * nv_start_xmit: dev->hard_start_xmit function
  1665. * Called with netif_tx_lock held.
  1666. */
  1667. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1668. {
  1669. struct fe_priv *np = netdev_priv(dev);
  1670. u32 tx_flags = 0;
  1671. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1672. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1673. unsigned int i;
  1674. u32 offset = 0;
  1675. u32 bcnt;
  1676. u32 size = skb->len-skb->data_len;
  1677. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1678. u32 empty_slots;
  1679. struct ring_desc* put_tx;
  1680. struct ring_desc* start_tx;
  1681. struct ring_desc* prev_tx;
  1682. struct nv_skb_map* prev_tx_ctx;
  1683. /* add fragments to entries count */
  1684. for (i = 0; i < fragments; i++) {
  1685. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1686. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1687. }
  1688. empty_slots = nv_get_empty_tx_slots(np);
  1689. if (unlikely(empty_slots <= entries)) {
  1690. spin_lock_irq(&np->lock);
  1691. netif_stop_queue(dev);
  1692. np->tx_stop = 1;
  1693. spin_unlock_irq(&np->lock);
  1694. return NETDEV_TX_BUSY;
  1695. }
  1696. start_tx = put_tx = np->put_tx.orig;
  1697. /* setup the header buffer */
  1698. do {
  1699. prev_tx = put_tx;
  1700. prev_tx_ctx = np->put_tx_ctx;
  1701. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1702. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1703. PCI_DMA_TODEVICE);
  1704. np->put_tx_ctx->dma_len = bcnt;
  1705. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1706. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1707. tx_flags = np->tx_flags;
  1708. offset += bcnt;
  1709. size -= bcnt;
  1710. if (unlikely(put_tx++ == np->last_tx.orig))
  1711. put_tx = np->first_tx.orig;
  1712. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1713. np->put_tx_ctx = np->first_tx_ctx;
  1714. } while (size);
  1715. /* setup the fragments */
  1716. for (i = 0; i < fragments; i++) {
  1717. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1718. u32 size = frag->size;
  1719. offset = 0;
  1720. do {
  1721. prev_tx = put_tx;
  1722. prev_tx_ctx = np->put_tx_ctx;
  1723. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1724. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1725. PCI_DMA_TODEVICE);
  1726. np->put_tx_ctx->dma_len = bcnt;
  1727. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1728. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1729. offset += bcnt;
  1730. size -= bcnt;
  1731. if (unlikely(put_tx++ == np->last_tx.orig))
  1732. put_tx = np->first_tx.orig;
  1733. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1734. np->put_tx_ctx = np->first_tx_ctx;
  1735. } while (size);
  1736. }
  1737. /* set last fragment flag */
  1738. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1739. /* save skb in this slot's context area */
  1740. prev_tx_ctx->skb = skb;
  1741. if (skb_is_gso(skb))
  1742. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1743. else
  1744. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1745. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1746. spin_lock_irq(&np->lock);
  1747. /* set tx flags */
  1748. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1749. np->put_tx.orig = put_tx;
  1750. spin_unlock_irq(&np->lock);
  1751. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1752. dev->name, entries, tx_flags_extra);
  1753. {
  1754. int j;
  1755. for (j=0; j<64; j++) {
  1756. if ((j%16) == 0)
  1757. dprintk("\n%03x:", j);
  1758. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1759. }
  1760. dprintk("\n");
  1761. }
  1762. dev->trans_start = jiffies;
  1763. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1764. return NETDEV_TX_OK;
  1765. }
  1766. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1767. {
  1768. struct fe_priv *np = netdev_priv(dev);
  1769. u32 tx_flags = 0;
  1770. u32 tx_flags_extra;
  1771. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1772. unsigned int i;
  1773. u32 offset = 0;
  1774. u32 bcnt;
  1775. u32 size = skb->len-skb->data_len;
  1776. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1777. u32 empty_slots;
  1778. struct ring_desc_ex* put_tx;
  1779. struct ring_desc_ex* start_tx;
  1780. struct ring_desc_ex* prev_tx;
  1781. struct nv_skb_map* prev_tx_ctx;
  1782. struct nv_skb_map* start_tx_ctx;
  1783. /* add fragments to entries count */
  1784. for (i = 0; i < fragments; i++) {
  1785. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1786. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1787. }
  1788. empty_slots = nv_get_empty_tx_slots(np);
  1789. if (unlikely(empty_slots <= entries)) {
  1790. spin_lock_irq(&np->lock);
  1791. netif_stop_queue(dev);
  1792. np->tx_stop = 1;
  1793. spin_unlock_irq(&np->lock);
  1794. return NETDEV_TX_BUSY;
  1795. }
  1796. start_tx = put_tx = np->put_tx.ex;
  1797. start_tx_ctx = np->put_tx_ctx;
  1798. /* setup the header buffer */
  1799. do {
  1800. prev_tx = put_tx;
  1801. prev_tx_ctx = np->put_tx_ctx;
  1802. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1803. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1804. PCI_DMA_TODEVICE);
  1805. np->put_tx_ctx->dma_len = bcnt;
  1806. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1807. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1808. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1809. tx_flags = NV_TX2_VALID;
  1810. offset += bcnt;
  1811. size -= bcnt;
  1812. if (unlikely(put_tx++ == np->last_tx.ex))
  1813. put_tx = np->first_tx.ex;
  1814. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1815. np->put_tx_ctx = np->first_tx_ctx;
  1816. } while (size);
  1817. /* setup the fragments */
  1818. for (i = 0; i < fragments; i++) {
  1819. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1820. u32 size = frag->size;
  1821. offset = 0;
  1822. do {
  1823. prev_tx = put_tx;
  1824. prev_tx_ctx = np->put_tx_ctx;
  1825. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1826. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1827. PCI_DMA_TODEVICE);
  1828. np->put_tx_ctx->dma_len = bcnt;
  1829. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1830. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1831. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1832. offset += bcnt;
  1833. size -= bcnt;
  1834. if (unlikely(put_tx++ == np->last_tx.ex))
  1835. put_tx = np->first_tx.ex;
  1836. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1837. np->put_tx_ctx = np->first_tx_ctx;
  1838. } while (size);
  1839. }
  1840. /* set last fragment flag */
  1841. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1842. /* save skb in this slot's context area */
  1843. prev_tx_ctx->skb = skb;
  1844. if (skb_is_gso(skb))
  1845. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1846. else
  1847. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1848. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1849. /* vlan tag */
  1850. if (likely(!np->vlangrp)) {
  1851. start_tx->txvlan = 0;
  1852. } else {
  1853. if (vlan_tx_tag_present(skb))
  1854. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1855. else
  1856. start_tx->txvlan = 0;
  1857. }
  1858. spin_lock_irq(&np->lock);
  1859. if (np->tx_limit) {
  1860. /* Limit the number of outstanding tx. Setup all fragments, but
  1861. * do not set the VALID bit on the first descriptor. Save a pointer
  1862. * to that descriptor and also for next skb_map element.
  1863. */
  1864. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  1865. if (!np->tx_change_owner)
  1866. np->tx_change_owner = start_tx_ctx;
  1867. /* remove VALID bit */
  1868. tx_flags &= ~NV_TX2_VALID;
  1869. start_tx_ctx->first_tx_desc = start_tx;
  1870. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  1871. np->tx_end_flip = np->put_tx_ctx;
  1872. } else {
  1873. np->tx_pkts_in_progress++;
  1874. }
  1875. }
  1876. /* set tx flags */
  1877. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1878. np->put_tx.ex = put_tx;
  1879. spin_unlock_irq(&np->lock);
  1880. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1881. dev->name, entries, tx_flags_extra);
  1882. {
  1883. int j;
  1884. for (j=0; j<64; j++) {
  1885. if ((j%16) == 0)
  1886. dprintk("\n%03x:", j);
  1887. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1888. }
  1889. dprintk("\n");
  1890. }
  1891. dev->trans_start = jiffies;
  1892. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1893. return NETDEV_TX_OK;
  1894. }
  1895. static inline void nv_tx_flip_ownership(struct net_device *dev)
  1896. {
  1897. struct fe_priv *np = netdev_priv(dev);
  1898. np->tx_pkts_in_progress--;
  1899. if (np->tx_change_owner) {
  1900. __le32 flaglen = le32_to_cpu(np->tx_change_owner->first_tx_desc->flaglen);
  1901. flaglen |= NV_TX2_VALID;
  1902. np->tx_change_owner->first_tx_desc->flaglen = cpu_to_le32(flaglen);
  1903. np->tx_pkts_in_progress++;
  1904. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  1905. if (np->tx_change_owner == np->tx_end_flip)
  1906. np->tx_change_owner = NULL;
  1907. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1908. }
  1909. }
  1910. /*
  1911. * nv_tx_done: check for completed packets, release the skbs.
  1912. *
  1913. * Caller must own np->lock.
  1914. */
  1915. static void nv_tx_done(struct net_device *dev)
  1916. {
  1917. struct fe_priv *np = netdev_priv(dev);
  1918. u32 flags;
  1919. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1920. while ((np->get_tx.orig != np->put_tx.orig) &&
  1921. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1922. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1923. dev->name, flags);
  1924. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1925. np->get_tx_ctx->dma_len,
  1926. PCI_DMA_TODEVICE);
  1927. np->get_tx_ctx->dma = 0;
  1928. if (np->desc_ver == DESC_VER_1) {
  1929. if (flags & NV_TX_LASTPACKET) {
  1930. if (flags & NV_TX_ERROR) {
  1931. if (flags & NV_TX_UNDERFLOW)
  1932. dev->stats.tx_fifo_errors++;
  1933. if (flags & NV_TX_CARRIERLOST)
  1934. dev->stats.tx_carrier_errors++;
  1935. dev->stats.tx_errors++;
  1936. } else {
  1937. dev->stats.tx_packets++;
  1938. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1939. }
  1940. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1941. np->get_tx_ctx->skb = NULL;
  1942. }
  1943. } else {
  1944. if (flags & NV_TX2_LASTPACKET) {
  1945. if (flags & NV_TX2_ERROR) {
  1946. if (flags & NV_TX2_UNDERFLOW)
  1947. dev->stats.tx_fifo_errors++;
  1948. if (flags & NV_TX2_CARRIERLOST)
  1949. dev->stats.tx_carrier_errors++;
  1950. dev->stats.tx_errors++;
  1951. } else {
  1952. dev->stats.tx_packets++;
  1953. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1954. }
  1955. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1956. np->get_tx_ctx->skb = NULL;
  1957. }
  1958. }
  1959. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1960. np->get_tx.orig = np->first_tx.orig;
  1961. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1962. np->get_tx_ctx = np->first_tx_ctx;
  1963. }
  1964. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1965. np->tx_stop = 0;
  1966. netif_wake_queue(dev);
  1967. }
  1968. }
  1969. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1970. {
  1971. struct fe_priv *np = netdev_priv(dev);
  1972. u32 flags;
  1973. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1974. while ((np->get_tx.ex != np->put_tx.ex) &&
  1975. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1976. (limit-- > 0)) {
  1977. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1978. dev->name, flags);
  1979. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1980. np->get_tx_ctx->dma_len,
  1981. PCI_DMA_TODEVICE);
  1982. np->get_tx_ctx->dma = 0;
  1983. if (flags & NV_TX2_LASTPACKET) {
  1984. if (!(flags & NV_TX2_ERROR))
  1985. dev->stats.tx_packets++;
  1986. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1987. np->get_tx_ctx->skb = NULL;
  1988. if (np->tx_limit) {
  1989. nv_tx_flip_ownership(dev);
  1990. }
  1991. }
  1992. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1993. np->get_tx.ex = np->first_tx.ex;
  1994. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1995. np->get_tx_ctx = np->first_tx_ctx;
  1996. }
  1997. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1998. np->tx_stop = 0;
  1999. netif_wake_queue(dev);
  2000. }
  2001. }
  2002. /*
  2003. * nv_tx_timeout: dev->tx_timeout function
  2004. * Called with netif_tx_lock held.
  2005. */
  2006. static void nv_tx_timeout(struct net_device *dev)
  2007. {
  2008. struct fe_priv *np = netdev_priv(dev);
  2009. u8 __iomem *base = get_hwbase(dev);
  2010. u32 status;
  2011. if (np->msi_flags & NV_MSI_X_ENABLED)
  2012. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2013. else
  2014. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2015. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2016. {
  2017. int i;
  2018. printk(KERN_INFO "%s: Ring at %lx\n",
  2019. dev->name, (unsigned long)np->ring_addr);
  2020. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2021. for (i=0;i<=np->register_size;i+= 32) {
  2022. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2023. i,
  2024. readl(base + i + 0), readl(base + i + 4),
  2025. readl(base + i + 8), readl(base + i + 12),
  2026. readl(base + i + 16), readl(base + i + 20),
  2027. readl(base + i + 24), readl(base + i + 28));
  2028. }
  2029. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2030. for (i=0;i<np->tx_ring_size;i+= 4) {
  2031. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2032. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2033. i,
  2034. le32_to_cpu(np->tx_ring.orig[i].buf),
  2035. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2036. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2037. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2038. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2039. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2040. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2041. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2042. } else {
  2043. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2044. i,
  2045. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2046. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2047. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2048. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2049. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2050. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2051. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2052. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2053. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2054. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2055. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2056. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2057. }
  2058. }
  2059. }
  2060. spin_lock_irq(&np->lock);
  2061. /* 1) stop tx engine */
  2062. nv_stop_tx(dev);
  2063. /* 2) check that the packets were not sent already: */
  2064. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2065. nv_tx_done(dev);
  2066. else
  2067. nv_tx_done_optimized(dev, np->tx_ring_size);
  2068. /* 3) if there are dead entries: clear everything */
  2069. if (np->get_tx_ctx != np->put_tx_ctx) {
  2070. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2071. nv_drain_tx(dev);
  2072. nv_init_tx(dev);
  2073. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2074. }
  2075. netif_wake_queue(dev);
  2076. /* 4) restart tx engine */
  2077. nv_start_tx(dev);
  2078. spin_unlock_irq(&np->lock);
  2079. }
  2080. /*
  2081. * Called when the nic notices a mismatch between the actual data len on the
  2082. * wire and the len indicated in the 802 header
  2083. */
  2084. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2085. {
  2086. int hdrlen; /* length of the 802 header */
  2087. int protolen; /* length as stored in the proto field */
  2088. /* 1) calculate len according to header */
  2089. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2090. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2091. hdrlen = VLAN_HLEN;
  2092. } else {
  2093. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2094. hdrlen = ETH_HLEN;
  2095. }
  2096. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2097. dev->name, datalen, protolen, hdrlen);
  2098. if (protolen > ETH_DATA_LEN)
  2099. return datalen; /* Value in proto field not a len, no checks possible */
  2100. protolen += hdrlen;
  2101. /* consistency checks: */
  2102. if (datalen > ETH_ZLEN) {
  2103. if (datalen >= protolen) {
  2104. /* more data on wire than in 802 header, trim of
  2105. * additional data.
  2106. */
  2107. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2108. dev->name, protolen);
  2109. return protolen;
  2110. } else {
  2111. /* less data on wire than mentioned in header.
  2112. * Discard the packet.
  2113. */
  2114. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2115. dev->name);
  2116. return -1;
  2117. }
  2118. } else {
  2119. /* short packet. Accept only if 802 values are also short */
  2120. if (protolen > ETH_ZLEN) {
  2121. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2122. dev->name);
  2123. return -1;
  2124. }
  2125. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2126. dev->name, datalen);
  2127. return datalen;
  2128. }
  2129. }
  2130. static int nv_rx_process(struct net_device *dev, int limit)
  2131. {
  2132. struct fe_priv *np = netdev_priv(dev);
  2133. u32 flags;
  2134. int rx_work = 0;
  2135. struct sk_buff *skb;
  2136. int len;
  2137. while((np->get_rx.orig != np->put_rx.orig) &&
  2138. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2139. (rx_work < limit)) {
  2140. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2141. dev->name, flags);
  2142. /*
  2143. * the packet is for us - immediately tear down the pci mapping.
  2144. * TODO: check if a prefetch of the first cacheline improves
  2145. * the performance.
  2146. */
  2147. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2148. np->get_rx_ctx->dma_len,
  2149. PCI_DMA_FROMDEVICE);
  2150. skb = np->get_rx_ctx->skb;
  2151. np->get_rx_ctx->skb = NULL;
  2152. {
  2153. int j;
  2154. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2155. for (j=0; j<64; j++) {
  2156. if ((j%16) == 0)
  2157. dprintk("\n%03x:", j);
  2158. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2159. }
  2160. dprintk("\n");
  2161. }
  2162. /* look at what we actually got: */
  2163. if (np->desc_ver == DESC_VER_1) {
  2164. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2165. len = flags & LEN_MASK_V1;
  2166. if (unlikely(flags & NV_RX_ERROR)) {
  2167. if (flags & NV_RX_ERROR4) {
  2168. len = nv_getlen(dev, skb->data, len);
  2169. if (len < 0) {
  2170. dev->stats.rx_errors++;
  2171. dev_kfree_skb(skb);
  2172. goto next_pkt;
  2173. }
  2174. }
  2175. /* framing errors are soft errors */
  2176. else if (flags & NV_RX_FRAMINGERR) {
  2177. if (flags & NV_RX_SUBSTRACT1) {
  2178. len--;
  2179. }
  2180. }
  2181. /* the rest are hard errors */
  2182. else {
  2183. if (flags & NV_RX_MISSEDFRAME)
  2184. dev->stats.rx_missed_errors++;
  2185. if (flags & NV_RX_CRCERR)
  2186. dev->stats.rx_crc_errors++;
  2187. if (flags & NV_RX_OVERFLOW)
  2188. dev->stats.rx_over_errors++;
  2189. dev->stats.rx_errors++;
  2190. dev_kfree_skb(skb);
  2191. goto next_pkt;
  2192. }
  2193. }
  2194. } else {
  2195. dev_kfree_skb(skb);
  2196. goto next_pkt;
  2197. }
  2198. } else {
  2199. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2200. len = flags & LEN_MASK_V2;
  2201. if (unlikely(flags & NV_RX2_ERROR)) {
  2202. if (flags & NV_RX2_ERROR4) {
  2203. len = nv_getlen(dev, skb->data, len);
  2204. if (len < 0) {
  2205. dev->stats.rx_errors++;
  2206. dev_kfree_skb(skb);
  2207. goto next_pkt;
  2208. }
  2209. }
  2210. /* framing errors are soft errors */
  2211. else if (flags & NV_RX2_FRAMINGERR) {
  2212. if (flags & NV_RX2_SUBSTRACT1) {
  2213. len--;
  2214. }
  2215. }
  2216. /* the rest are hard errors */
  2217. else {
  2218. if (flags & NV_RX2_CRCERR)
  2219. dev->stats.rx_crc_errors++;
  2220. if (flags & NV_RX2_OVERFLOW)
  2221. dev->stats.rx_over_errors++;
  2222. dev->stats.rx_errors++;
  2223. dev_kfree_skb(skb);
  2224. goto next_pkt;
  2225. }
  2226. }
  2227. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2228. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2229. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2230. } else {
  2231. dev_kfree_skb(skb);
  2232. goto next_pkt;
  2233. }
  2234. }
  2235. /* got a valid packet - forward it to the network core */
  2236. skb_put(skb, len);
  2237. skb->protocol = eth_type_trans(skb, dev);
  2238. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2239. dev->name, len, skb->protocol);
  2240. #ifdef CONFIG_FORCEDETH_NAPI
  2241. netif_receive_skb(skb);
  2242. #else
  2243. netif_rx(skb);
  2244. #endif
  2245. dev->last_rx = jiffies;
  2246. dev->stats.rx_packets++;
  2247. dev->stats.rx_bytes += len;
  2248. next_pkt:
  2249. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2250. np->get_rx.orig = np->first_rx.orig;
  2251. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2252. np->get_rx_ctx = np->first_rx_ctx;
  2253. rx_work++;
  2254. }
  2255. return rx_work;
  2256. }
  2257. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2258. {
  2259. struct fe_priv *np = netdev_priv(dev);
  2260. u32 flags;
  2261. u32 vlanflags = 0;
  2262. int rx_work = 0;
  2263. struct sk_buff *skb;
  2264. int len;
  2265. while((np->get_rx.ex != np->put_rx.ex) &&
  2266. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2267. (rx_work < limit)) {
  2268. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2269. dev->name, flags);
  2270. /*
  2271. * the packet is for us - immediately tear down the pci mapping.
  2272. * TODO: check if a prefetch of the first cacheline improves
  2273. * the performance.
  2274. */
  2275. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2276. np->get_rx_ctx->dma_len,
  2277. PCI_DMA_FROMDEVICE);
  2278. skb = np->get_rx_ctx->skb;
  2279. np->get_rx_ctx->skb = NULL;
  2280. {
  2281. int j;
  2282. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2283. for (j=0; j<64; j++) {
  2284. if ((j%16) == 0)
  2285. dprintk("\n%03x:", j);
  2286. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2287. }
  2288. dprintk("\n");
  2289. }
  2290. /* look at what we actually got: */
  2291. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2292. len = flags & LEN_MASK_V2;
  2293. if (unlikely(flags & NV_RX2_ERROR)) {
  2294. if (flags & NV_RX2_ERROR4) {
  2295. len = nv_getlen(dev, skb->data, len);
  2296. if (len < 0) {
  2297. dev_kfree_skb(skb);
  2298. goto next_pkt;
  2299. }
  2300. }
  2301. /* framing errors are soft errors */
  2302. else if (flags & NV_RX2_FRAMINGERR) {
  2303. if (flags & NV_RX2_SUBSTRACT1) {
  2304. len--;
  2305. }
  2306. }
  2307. /* the rest are hard errors */
  2308. else {
  2309. dev_kfree_skb(skb);
  2310. goto next_pkt;
  2311. }
  2312. }
  2313. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2314. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2315. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2316. /* got a valid packet - forward it to the network core */
  2317. skb_put(skb, len);
  2318. skb->protocol = eth_type_trans(skb, dev);
  2319. prefetch(skb->data);
  2320. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2321. dev->name, len, skb->protocol);
  2322. if (likely(!np->vlangrp)) {
  2323. #ifdef CONFIG_FORCEDETH_NAPI
  2324. netif_receive_skb(skb);
  2325. #else
  2326. netif_rx(skb);
  2327. #endif
  2328. } else {
  2329. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2330. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2331. #ifdef CONFIG_FORCEDETH_NAPI
  2332. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2333. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2334. #else
  2335. vlan_hwaccel_rx(skb, np->vlangrp,
  2336. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2337. #endif
  2338. } else {
  2339. #ifdef CONFIG_FORCEDETH_NAPI
  2340. netif_receive_skb(skb);
  2341. #else
  2342. netif_rx(skb);
  2343. #endif
  2344. }
  2345. }
  2346. dev->last_rx = jiffies;
  2347. dev->stats.rx_packets++;
  2348. dev->stats.rx_bytes += len;
  2349. } else {
  2350. dev_kfree_skb(skb);
  2351. }
  2352. next_pkt:
  2353. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2354. np->get_rx.ex = np->first_rx.ex;
  2355. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2356. np->get_rx_ctx = np->first_rx_ctx;
  2357. rx_work++;
  2358. }
  2359. return rx_work;
  2360. }
  2361. static void set_bufsize(struct net_device *dev)
  2362. {
  2363. struct fe_priv *np = netdev_priv(dev);
  2364. if (dev->mtu <= ETH_DATA_LEN)
  2365. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2366. else
  2367. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2368. }
  2369. /*
  2370. * nv_change_mtu: dev->change_mtu function
  2371. * Called with dev_base_lock held for read.
  2372. */
  2373. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2374. {
  2375. struct fe_priv *np = netdev_priv(dev);
  2376. int old_mtu;
  2377. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2378. return -EINVAL;
  2379. old_mtu = dev->mtu;
  2380. dev->mtu = new_mtu;
  2381. /* return early if the buffer sizes will not change */
  2382. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2383. return 0;
  2384. if (old_mtu == new_mtu)
  2385. return 0;
  2386. /* synchronized against open : rtnl_lock() held by caller */
  2387. if (netif_running(dev)) {
  2388. u8 __iomem *base = get_hwbase(dev);
  2389. /*
  2390. * It seems that the nic preloads valid ring entries into an
  2391. * internal buffer. The procedure for flushing everything is
  2392. * guessed, there is probably a simpler approach.
  2393. * Changing the MTU is a rare event, it shouldn't matter.
  2394. */
  2395. nv_disable_irq(dev);
  2396. netif_tx_lock_bh(dev);
  2397. spin_lock(&np->lock);
  2398. /* stop engines */
  2399. nv_stop_rx(dev);
  2400. nv_stop_tx(dev);
  2401. nv_txrx_reset(dev);
  2402. /* drain rx queue */
  2403. nv_drain_rx(dev);
  2404. nv_drain_tx(dev);
  2405. /* reinit driver view of the rx queue */
  2406. set_bufsize(dev);
  2407. if (nv_init_ring(dev)) {
  2408. if (!np->in_shutdown)
  2409. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2410. }
  2411. /* reinit nic view of the rx queue */
  2412. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2413. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2414. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2415. base + NvRegRingSizes);
  2416. pci_push(base);
  2417. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2418. pci_push(base);
  2419. /* restart rx engine */
  2420. nv_start_rx(dev);
  2421. nv_start_tx(dev);
  2422. spin_unlock(&np->lock);
  2423. netif_tx_unlock_bh(dev);
  2424. nv_enable_irq(dev);
  2425. }
  2426. return 0;
  2427. }
  2428. static void nv_copy_mac_to_hw(struct net_device *dev)
  2429. {
  2430. u8 __iomem *base = get_hwbase(dev);
  2431. u32 mac[2];
  2432. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2433. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2434. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2435. writel(mac[0], base + NvRegMacAddrA);
  2436. writel(mac[1], base + NvRegMacAddrB);
  2437. }
  2438. /*
  2439. * nv_set_mac_address: dev->set_mac_address function
  2440. * Called with rtnl_lock() held.
  2441. */
  2442. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2443. {
  2444. struct fe_priv *np = netdev_priv(dev);
  2445. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2446. if (!is_valid_ether_addr(macaddr->sa_data))
  2447. return -EADDRNOTAVAIL;
  2448. /* synchronized against open : rtnl_lock() held by caller */
  2449. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2450. if (netif_running(dev)) {
  2451. netif_tx_lock_bh(dev);
  2452. spin_lock_irq(&np->lock);
  2453. /* stop rx engine */
  2454. nv_stop_rx(dev);
  2455. /* set mac address */
  2456. nv_copy_mac_to_hw(dev);
  2457. /* restart rx engine */
  2458. nv_start_rx(dev);
  2459. spin_unlock_irq(&np->lock);
  2460. netif_tx_unlock_bh(dev);
  2461. } else {
  2462. nv_copy_mac_to_hw(dev);
  2463. }
  2464. return 0;
  2465. }
  2466. /*
  2467. * nv_set_multicast: dev->set_multicast function
  2468. * Called with netif_tx_lock held.
  2469. */
  2470. static void nv_set_multicast(struct net_device *dev)
  2471. {
  2472. struct fe_priv *np = netdev_priv(dev);
  2473. u8 __iomem *base = get_hwbase(dev);
  2474. u32 addr[2];
  2475. u32 mask[2];
  2476. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2477. memset(addr, 0, sizeof(addr));
  2478. memset(mask, 0, sizeof(mask));
  2479. if (dev->flags & IFF_PROMISC) {
  2480. pff |= NVREG_PFF_PROMISC;
  2481. } else {
  2482. pff |= NVREG_PFF_MYADDR;
  2483. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2484. u32 alwaysOff[2];
  2485. u32 alwaysOn[2];
  2486. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2487. if (dev->flags & IFF_ALLMULTI) {
  2488. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2489. } else {
  2490. struct dev_mc_list *walk;
  2491. walk = dev->mc_list;
  2492. while (walk != NULL) {
  2493. u32 a, b;
  2494. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2495. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2496. alwaysOn[0] &= a;
  2497. alwaysOff[0] &= ~a;
  2498. alwaysOn[1] &= b;
  2499. alwaysOff[1] &= ~b;
  2500. walk = walk->next;
  2501. }
  2502. }
  2503. addr[0] = alwaysOn[0];
  2504. addr[1] = alwaysOn[1];
  2505. mask[0] = alwaysOn[0] | alwaysOff[0];
  2506. mask[1] = alwaysOn[1] | alwaysOff[1];
  2507. } else {
  2508. mask[0] = NVREG_MCASTMASKA_NONE;
  2509. mask[1] = NVREG_MCASTMASKB_NONE;
  2510. }
  2511. }
  2512. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2513. pff |= NVREG_PFF_ALWAYS;
  2514. spin_lock_irq(&np->lock);
  2515. nv_stop_rx(dev);
  2516. writel(addr[0], base + NvRegMulticastAddrA);
  2517. writel(addr[1], base + NvRegMulticastAddrB);
  2518. writel(mask[0], base + NvRegMulticastMaskA);
  2519. writel(mask[1], base + NvRegMulticastMaskB);
  2520. writel(pff, base + NvRegPacketFilterFlags);
  2521. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2522. dev->name);
  2523. nv_start_rx(dev);
  2524. spin_unlock_irq(&np->lock);
  2525. }
  2526. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2527. {
  2528. struct fe_priv *np = netdev_priv(dev);
  2529. u8 __iomem *base = get_hwbase(dev);
  2530. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2531. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2532. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2533. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2534. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2535. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2536. } else {
  2537. writel(pff, base + NvRegPacketFilterFlags);
  2538. }
  2539. }
  2540. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2541. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2542. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2543. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2544. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2545. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2546. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2547. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2548. writel(pause_enable, base + NvRegTxPauseFrame);
  2549. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2550. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2551. } else {
  2552. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2553. writel(regmisc, base + NvRegMisc1);
  2554. }
  2555. }
  2556. }
  2557. /**
  2558. * nv_update_linkspeed: Setup the MAC according to the link partner
  2559. * @dev: Network device to be configured
  2560. *
  2561. * The function queries the PHY and checks if there is a link partner.
  2562. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2563. * set to 10 MBit HD.
  2564. *
  2565. * The function returns 0 if there is no link partner and 1 if there is
  2566. * a good link partner.
  2567. */
  2568. static int nv_update_linkspeed(struct net_device *dev)
  2569. {
  2570. struct fe_priv *np = netdev_priv(dev);
  2571. u8 __iomem *base = get_hwbase(dev);
  2572. int adv = 0;
  2573. int lpa = 0;
  2574. int adv_lpa, adv_pause, lpa_pause;
  2575. int newls = np->linkspeed;
  2576. int newdup = np->duplex;
  2577. int mii_status;
  2578. int retval = 0;
  2579. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2580. u32 txrxFlags = 0;
  2581. u32 phy_exp;
  2582. /* BMSR_LSTATUS is latched, read it twice:
  2583. * we want the current value.
  2584. */
  2585. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2586. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2587. if (!(mii_status & BMSR_LSTATUS)) {
  2588. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2589. dev->name);
  2590. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2591. newdup = 0;
  2592. retval = 0;
  2593. goto set_speed;
  2594. }
  2595. if (np->autoneg == 0) {
  2596. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2597. dev->name, np->fixed_mode);
  2598. if (np->fixed_mode & LPA_100FULL) {
  2599. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2600. newdup = 1;
  2601. } else if (np->fixed_mode & LPA_100HALF) {
  2602. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2603. newdup = 0;
  2604. } else if (np->fixed_mode & LPA_10FULL) {
  2605. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2606. newdup = 1;
  2607. } else {
  2608. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2609. newdup = 0;
  2610. }
  2611. retval = 1;
  2612. goto set_speed;
  2613. }
  2614. /* check auto negotiation is complete */
  2615. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2616. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2617. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2618. newdup = 0;
  2619. retval = 0;
  2620. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2621. goto set_speed;
  2622. }
  2623. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2624. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2625. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2626. dev->name, adv, lpa);
  2627. retval = 1;
  2628. if (np->gigabit == PHY_GIGABIT) {
  2629. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2630. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2631. if ((control_1000 & ADVERTISE_1000FULL) &&
  2632. (status_1000 & LPA_1000FULL)) {
  2633. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2634. dev->name);
  2635. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2636. newdup = 1;
  2637. goto set_speed;
  2638. }
  2639. }
  2640. /* FIXME: handle parallel detection properly */
  2641. adv_lpa = lpa & adv;
  2642. if (adv_lpa & LPA_100FULL) {
  2643. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2644. newdup = 1;
  2645. } else if (adv_lpa & LPA_100HALF) {
  2646. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2647. newdup = 0;
  2648. } else if (adv_lpa & LPA_10FULL) {
  2649. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2650. newdup = 1;
  2651. } else if (adv_lpa & LPA_10HALF) {
  2652. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2653. newdup = 0;
  2654. } else {
  2655. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2656. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2657. newdup = 0;
  2658. }
  2659. set_speed:
  2660. if (np->duplex == newdup && np->linkspeed == newls)
  2661. return retval;
  2662. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2663. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2664. np->duplex = newdup;
  2665. np->linkspeed = newls;
  2666. /* The transmitter and receiver must be restarted for safe update */
  2667. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2668. txrxFlags |= NV_RESTART_TX;
  2669. nv_stop_tx(dev);
  2670. }
  2671. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2672. txrxFlags |= NV_RESTART_RX;
  2673. nv_stop_rx(dev);
  2674. }
  2675. if (np->gigabit == PHY_GIGABIT) {
  2676. phyreg = readl(base + NvRegRandomSeed);
  2677. phyreg &= ~(0x3FF00);
  2678. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2679. phyreg |= NVREG_RNDSEED_FORCE3;
  2680. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2681. phyreg |= NVREG_RNDSEED_FORCE2;
  2682. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2683. phyreg |= NVREG_RNDSEED_FORCE;
  2684. writel(phyreg, base + NvRegRandomSeed);
  2685. }
  2686. phyreg = readl(base + NvRegPhyInterface);
  2687. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2688. if (np->duplex == 0)
  2689. phyreg |= PHY_HALF;
  2690. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2691. phyreg |= PHY_100;
  2692. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2693. phyreg |= PHY_1000;
  2694. writel(phyreg, base + NvRegPhyInterface);
  2695. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2696. if (phyreg & PHY_RGMII) {
  2697. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2698. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2699. } else {
  2700. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2701. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2702. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2703. else
  2704. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2705. } else {
  2706. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2707. }
  2708. }
  2709. } else {
  2710. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2711. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2712. else
  2713. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2714. }
  2715. writel(txreg, base + NvRegTxDeferral);
  2716. if (np->desc_ver == DESC_VER_1) {
  2717. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2718. } else {
  2719. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2720. txreg = NVREG_TX_WM_DESC2_3_1000;
  2721. else
  2722. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2723. }
  2724. writel(txreg, base + NvRegTxWatermark);
  2725. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2726. base + NvRegMisc1);
  2727. pci_push(base);
  2728. writel(np->linkspeed, base + NvRegLinkSpeed);
  2729. pci_push(base);
  2730. pause_flags = 0;
  2731. /* setup pause frame */
  2732. if (np->duplex != 0) {
  2733. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2734. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2735. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2736. switch (adv_pause) {
  2737. case ADVERTISE_PAUSE_CAP:
  2738. if (lpa_pause & LPA_PAUSE_CAP) {
  2739. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2740. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2741. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2742. }
  2743. break;
  2744. case ADVERTISE_PAUSE_ASYM:
  2745. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2746. {
  2747. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2748. }
  2749. break;
  2750. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2751. if (lpa_pause & LPA_PAUSE_CAP)
  2752. {
  2753. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2754. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2755. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2756. }
  2757. if (lpa_pause == LPA_PAUSE_ASYM)
  2758. {
  2759. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2760. }
  2761. break;
  2762. }
  2763. } else {
  2764. pause_flags = np->pause_flags;
  2765. }
  2766. }
  2767. nv_update_pause(dev, pause_flags);
  2768. if (txrxFlags & NV_RESTART_TX)
  2769. nv_start_tx(dev);
  2770. if (txrxFlags & NV_RESTART_RX)
  2771. nv_start_rx(dev);
  2772. return retval;
  2773. }
  2774. static void nv_linkchange(struct net_device *dev)
  2775. {
  2776. if (nv_update_linkspeed(dev)) {
  2777. if (!netif_carrier_ok(dev)) {
  2778. netif_carrier_on(dev);
  2779. printk(KERN_INFO "%s: link up.\n", dev->name);
  2780. nv_start_rx(dev);
  2781. }
  2782. } else {
  2783. if (netif_carrier_ok(dev)) {
  2784. netif_carrier_off(dev);
  2785. printk(KERN_INFO "%s: link down.\n", dev->name);
  2786. nv_stop_rx(dev);
  2787. }
  2788. }
  2789. }
  2790. static void nv_link_irq(struct net_device *dev)
  2791. {
  2792. u8 __iomem *base = get_hwbase(dev);
  2793. u32 miistat;
  2794. miistat = readl(base + NvRegMIIStatus);
  2795. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2796. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2797. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2798. nv_linkchange(dev);
  2799. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2800. }
  2801. static irqreturn_t nv_nic_irq(int foo, void *data)
  2802. {
  2803. struct net_device *dev = (struct net_device *) data;
  2804. struct fe_priv *np = netdev_priv(dev);
  2805. u8 __iomem *base = get_hwbase(dev);
  2806. u32 events;
  2807. int i;
  2808. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2809. for (i=0; ; i++) {
  2810. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2811. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2812. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2813. } else {
  2814. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2815. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2816. }
  2817. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2818. if (!(events & np->irqmask))
  2819. break;
  2820. spin_lock(&np->lock);
  2821. nv_tx_done(dev);
  2822. spin_unlock(&np->lock);
  2823. #ifdef CONFIG_FORCEDETH_NAPI
  2824. if (events & NVREG_IRQ_RX_ALL) {
  2825. netif_rx_schedule(dev, &np->napi);
  2826. /* Disable furthur receive irq's */
  2827. spin_lock(&np->lock);
  2828. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2829. if (np->msi_flags & NV_MSI_X_ENABLED)
  2830. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2831. else
  2832. writel(np->irqmask, base + NvRegIrqMask);
  2833. spin_unlock(&np->lock);
  2834. }
  2835. #else
  2836. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2837. if (unlikely(nv_alloc_rx(dev))) {
  2838. spin_lock(&np->lock);
  2839. if (!np->in_shutdown)
  2840. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2841. spin_unlock(&np->lock);
  2842. }
  2843. }
  2844. #endif
  2845. if (unlikely(events & NVREG_IRQ_LINK)) {
  2846. spin_lock(&np->lock);
  2847. nv_link_irq(dev);
  2848. spin_unlock(&np->lock);
  2849. }
  2850. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2851. spin_lock(&np->lock);
  2852. nv_linkchange(dev);
  2853. spin_unlock(&np->lock);
  2854. np->link_timeout = jiffies + LINK_TIMEOUT;
  2855. }
  2856. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2857. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2858. dev->name, events);
  2859. }
  2860. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2861. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2862. dev->name, events);
  2863. }
  2864. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2865. spin_lock(&np->lock);
  2866. /* disable interrupts on the nic */
  2867. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2868. writel(0, base + NvRegIrqMask);
  2869. else
  2870. writel(np->irqmask, base + NvRegIrqMask);
  2871. pci_push(base);
  2872. if (!np->in_shutdown) {
  2873. np->nic_poll_irq = np->irqmask;
  2874. np->recover_error = 1;
  2875. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2876. }
  2877. spin_unlock(&np->lock);
  2878. break;
  2879. }
  2880. if (unlikely(i > max_interrupt_work)) {
  2881. spin_lock(&np->lock);
  2882. /* disable interrupts on the nic */
  2883. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2884. writel(0, base + NvRegIrqMask);
  2885. else
  2886. writel(np->irqmask, base + NvRegIrqMask);
  2887. pci_push(base);
  2888. if (!np->in_shutdown) {
  2889. np->nic_poll_irq = np->irqmask;
  2890. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2891. }
  2892. spin_unlock(&np->lock);
  2893. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2894. break;
  2895. }
  2896. }
  2897. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2898. return IRQ_RETVAL(i);
  2899. }
  2900. /**
  2901. * All _optimized functions are used to help increase performance
  2902. * (reduce CPU and increase throughput). They use descripter version 3,
  2903. * compiler directives, and reduce memory accesses.
  2904. */
  2905. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2906. {
  2907. struct net_device *dev = (struct net_device *) data;
  2908. struct fe_priv *np = netdev_priv(dev);
  2909. u8 __iomem *base = get_hwbase(dev);
  2910. u32 events;
  2911. int i;
  2912. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2913. for (i=0; ; i++) {
  2914. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2915. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2916. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2917. } else {
  2918. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2919. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2920. }
  2921. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2922. if (!(events & np->irqmask))
  2923. break;
  2924. spin_lock(&np->lock);
  2925. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2926. spin_unlock(&np->lock);
  2927. #ifdef CONFIG_FORCEDETH_NAPI
  2928. if (events & NVREG_IRQ_RX_ALL) {
  2929. netif_rx_schedule(dev, &np->napi);
  2930. /* Disable furthur receive irq's */
  2931. spin_lock(&np->lock);
  2932. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2933. if (np->msi_flags & NV_MSI_X_ENABLED)
  2934. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2935. else
  2936. writel(np->irqmask, base + NvRegIrqMask);
  2937. spin_unlock(&np->lock);
  2938. }
  2939. #else
  2940. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2941. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2942. spin_lock(&np->lock);
  2943. if (!np->in_shutdown)
  2944. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2945. spin_unlock(&np->lock);
  2946. }
  2947. }
  2948. #endif
  2949. if (unlikely(events & NVREG_IRQ_LINK)) {
  2950. spin_lock(&np->lock);
  2951. nv_link_irq(dev);
  2952. spin_unlock(&np->lock);
  2953. }
  2954. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2955. spin_lock(&np->lock);
  2956. nv_linkchange(dev);
  2957. spin_unlock(&np->lock);
  2958. np->link_timeout = jiffies + LINK_TIMEOUT;
  2959. }
  2960. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2961. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2962. dev->name, events);
  2963. }
  2964. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2965. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2966. dev->name, events);
  2967. }
  2968. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2969. spin_lock(&np->lock);
  2970. /* disable interrupts on the nic */
  2971. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2972. writel(0, base + NvRegIrqMask);
  2973. else
  2974. writel(np->irqmask, base + NvRegIrqMask);
  2975. pci_push(base);
  2976. if (!np->in_shutdown) {
  2977. np->nic_poll_irq = np->irqmask;
  2978. np->recover_error = 1;
  2979. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2980. }
  2981. spin_unlock(&np->lock);
  2982. break;
  2983. }
  2984. if (unlikely(i > max_interrupt_work)) {
  2985. spin_lock(&np->lock);
  2986. /* disable interrupts on the nic */
  2987. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2988. writel(0, base + NvRegIrqMask);
  2989. else
  2990. writel(np->irqmask, base + NvRegIrqMask);
  2991. pci_push(base);
  2992. if (!np->in_shutdown) {
  2993. np->nic_poll_irq = np->irqmask;
  2994. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2995. }
  2996. spin_unlock(&np->lock);
  2997. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2998. break;
  2999. }
  3000. }
  3001. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3002. return IRQ_RETVAL(i);
  3003. }
  3004. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3005. {
  3006. struct net_device *dev = (struct net_device *) data;
  3007. struct fe_priv *np = netdev_priv(dev);
  3008. u8 __iomem *base = get_hwbase(dev);
  3009. u32 events;
  3010. int i;
  3011. unsigned long flags;
  3012. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3013. for (i=0; ; i++) {
  3014. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3015. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3016. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3017. if (!(events & np->irqmask))
  3018. break;
  3019. spin_lock_irqsave(&np->lock, flags);
  3020. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3021. spin_unlock_irqrestore(&np->lock, flags);
  3022. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3023. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3024. dev->name, events);
  3025. }
  3026. if (unlikely(i > max_interrupt_work)) {
  3027. spin_lock_irqsave(&np->lock, flags);
  3028. /* disable interrupts on the nic */
  3029. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3030. pci_push(base);
  3031. if (!np->in_shutdown) {
  3032. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3033. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3034. }
  3035. spin_unlock_irqrestore(&np->lock, flags);
  3036. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3037. break;
  3038. }
  3039. }
  3040. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3041. return IRQ_RETVAL(i);
  3042. }
  3043. #ifdef CONFIG_FORCEDETH_NAPI
  3044. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3045. {
  3046. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3047. struct net_device *dev = np->dev;
  3048. u8 __iomem *base = get_hwbase(dev);
  3049. unsigned long flags;
  3050. int pkts, retcode;
  3051. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3052. pkts = nv_rx_process(dev, budget);
  3053. retcode = nv_alloc_rx(dev);
  3054. } else {
  3055. pkts = nv_rx_process_optimized(dev, budget);
  3056. retcode = nv_alloc_rx_optimized(dev);
  3057. }
  3058. if (retcode) {
  3059. spin_lock_irqsave(&np->lock, flags);
  3060. if (!np->in_shutdown)
  3061. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3062. spin_unlock_irqrestore(&np->lock, flags);
  3063. }
  3064. if (pkts < budget) {
  3065. /* re-enable receive interrupts */
  3066. spin_lock_irqsave(&np->lock, flags);
  3067. __netif_rx_complete(dev, napi);
  3068. np->irqmask |= NVREG_IRQ_RX_ALL;
  3069. if (np->msi_flags & NV_MSI_X_ENABLED)
  3070. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3071. else
  3072. writel(np->irqmask, base + NvRegIrqMask);
  3073. spin_unlock_irqrestore(&np->lock, flags);
  3074. }
  3075. return pkts;
  3076. }
  3077. #endif
  3078. #ifdef CONFIG_FORCEDETH_NAPI
  3079. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3080. {
  3081. struct net_device *dev = (struct net_device *) data;
  3082. struct fe_priv *np = netdev_priv(dev);
  3083. u8 __iomem *base = get_hwbase(dev);
  3084. u32 events;
  3085. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3086. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3087. if (events) {
  3088. netif_rx_schedule(dev, &np->napi);
  3089. /* disable receive interrupts on the nic */
  3090. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3091. pci_push(base);
  3092. }
  3093. return IRQ_HANDLED;
  3094. }
  3095. #else
  3096. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3097. {
  3098. struct net_device *dev = (struct net_device *) data;
  3099. struct fe_priv *np = netdev_priv(dev);
  3100. u8 __iomem *base = get_hwbase(dev);
  3101. u32 events;
  3102. int i;
  3103. unsigned long flags;
  3104. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3105. for (i=0; ; i++) {
  3106. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3107. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3108. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3109. if (!(events & np->irqmask))
  3110. break;
  3111. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3112. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3113. spin_lock_irqsave(&np->lock, flags);
  3114. if (!np->in_shutdown)
  3115. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3116. spin_unlock_irqrestore(&np->lock, flags);
  3117. }
  3118. }
  3119. if (unlikely(i > max_interrupt_work)) {
  3120. spin_lock_irqsave(&np->lock, flags);
  3121. /* disable interrupts on the nic */
  3122. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3123. pci_push(base);
  3124. if (!np->in_shutdown) {
  3125. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3126. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3127. }
  3128. spin_unlock_irqrestore(&np->lock, flags);
  3129. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3130. break;
  3131. }
  3132. }
  3133. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3134. return IRQ_RETVAL(i);
  3135. }
  3136. #endif
  3137. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3138. {
  3139. struct net_device *dev = (struct net_device *) data;
  3140. struct fe_priv *np = netdev_priv(dev);
  3141. u8 __iomem *base = get_hwbase(dev);
  3142. u32 events;
  3143. int i;
  3144. unsigned long flags;
  3145. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3146. for (i=0; ; i++) {
  3147. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3148. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3149. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3150. if (!(events & np->irqmask))
  3151. break;
  3152. /* check tx in case we reached max loop limit in tx isr */
  3153. spin_lock_irqsave(&np->lock, flags);
  3154. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3155. spin_unlock_irqrestore(&np->lock, flags);
  3156. if (events & NVREG_IRQ_LINK) {
  3157. spin_lock_irqsave(&np->lock, flags);
  3158. nv_link_irq(dev);
  3159. spin_unlock_irqrestore(&np->lock, flags);
  3160. }
  3161. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3162. spin_lock_irqsave(&np->lock, flags);
  3163. nv_linkchange(dev);
  3164. spin_unlock_irqrestore(&np->lock, flags);
  3165. np->link_timeout = jiffies + LINK_TIMEOUT;
  3166. }
  3167. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3168. spin_lock_irq(&np->lock);
  3169. /* disable interrupts on the nic */
  3170. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3171. pci_push(base);
  3172. if (!np->in_shutdown) {
  3173. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3174. np->recover_error = 1;
  3175. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3176. }
  3177. spin_unlock_irq(&np->lock);
  3178. break;
  3179. }
  3180. if (events & (NVREG_IRQ_UNKNOWN)) {
  3181. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3182. dev->name, events);
  3183. }
  3184. if (unlikely(i > max_interrupt_work)) {
  3185. spin_lock_irqsave(&np->lock, flags);
  3186. /* disable interrupts on the nic */
  3187. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3188. pci_push(base);
  3189. if (!np->in_shutdown) {
  3190. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3191. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3192. }
  3193. spin_unlock_irqrestore(&np->lock, flags);
  3194. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3195. break;
  3196. }
  3197. }
  3198. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3199. return IRQ_RETVAL(i);
  3200. }
  3201. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3202. {
  3203. struct net_device *dev = (struct net_device *) data;
  3204. struct fe_priv *np = netdev_priv(dev);
  3205. u8 __iomem *base = get_hwbase(dev);
  3206. u32 events;
  3207. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3208. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3209. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3210. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3211. } else {
  3212. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3213. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3214. }
  3215. pci_push(base);
  3216. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3217. if (!(events & NVREG_IRQ_TIMER))
  3218. return IRQ_RETVAL(0);
  3219. spin_lock(&np->lock);
  3220. np->intr_test = 1;
  3221. spin_unlock(&np->lock);
  3222. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3223. return IRQ_RETVAL(1);
  3224. }
  3225. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3226. {
  3227. u8 __iomem *base = get_hwbase(dev);
  3228. int i;
  3229. u32 msixmap = 0;
  3230. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3231. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3232. * the remaining 8 interrupts.
  3233. */
  3234. for (i = 0; i < 8; i++) {
  3235. if ((irqmask >> i) & 0x1) {
  3236. msixmap |= vector << (i << 2);
  3237. }
  3238. }
  3239. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3240. msixmap = 0;
  3241. for (i = 0; i < 8; i++) {
  3242. if ((irqmask >> (i + 8)) & 0x1) {
  3243. msixmap |= vector << (i << 2);
  3244. }
  3245. }
  3246. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3247. }
  3248. static int nv_request_irq(struct net_device *dev, int intr_test)
  3249. {
  3250. struct fe_priv *np = get_nvpriv(dev);
  3251. u8 __iomem *base = get_hwbase(dev);
  3252. int ret = 1;
  3253. int i;
  3254. irqreturn_t (*handler)(int foo, void *data);
  3255. if (intr_test) {
  3256. handler = nv_nic_irq_test;
  3257. } else {
  3258. if (np->desc_ver == DESC_VER_3)
  3259. handler = nv_nic_irq_optimized;
  3260. else
  3261. handler = nv_nic_irq;
  3262. }
  3263. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3264. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3265. np->msi_x_entry[i].entry = i;
  3266. }
  3267. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3268. np->msi_flags |= NV_MSI_X_ENABLED;
  3269. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3270. /* Request irq for rx handling */
  3271. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3272. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3273. pci_disable_msix(np->pci_dev);
  3274. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3275. goto out_err;
  3276. }
  3277. /* Request irq for tx handling */
  3278. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3279. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3280. pci_disable_msix(np->pci_dev);
  3281. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3282. goto out_free_rx;
  3283. }
  3284. /* Request irq for link and timer handling */
  3285. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3286. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3287. pci_disable_msix(np->pci_dev);
  3288. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3289. goto out_free_tx;
  3290. }
  3291. /* map interrupts to their respective vector */
  3292. writel(0, base + NvRegMSIXMap0);
  3293. writel(0, base + NvRegMSIXMap1);
  3294. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3295. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3296. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3297. } else {
  3298. /* Request irq for all interrupts */
  3299. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3300. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3301. pci_disable_msix(np->pci_dev);
  3302. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3303. goto out_err;
  3304. }
  3305. /* map interrupts to vector 0 */
  3306. writel(0, base + NvRegMSIXMap0);
  3307. writel(0, base + NvRegMSIXMap1);
  3308. }
  3309. }
  3310. }
  3311. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3312. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3313. np->msi_flags |= NV_MSI_ENABLED;
  3314. dev->irq = np->pci_dev->irq;
  3315. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3316. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3317. pci_disable_msi(np->pci_dev);
  3318. np->msi_flags &= ~NV_MSI_ENABLED;
  3319. dev->irq = np->pci_dev->irq;
  3320. goto out_err;
  3321. }
  3322. /* map interrupts to vector 0 */
  3323. writel(0, base + NvRegMSIMap0);
  3324. writel(0, base + NvRegMSIMap1);
  3325. /* enable msi vector 0 */
  3326. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3327. }
  3328. }
  3329. if (ret != 0) {
  3330. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3331. goto out_err;
  3332. }
  3333. return 0;
  3334. out_free_tx:
  3335. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3336. out_free_rx:
  3337. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3338. out_err:
  3339. return 1;
  3340. }
  3341. static void nv_free_irq(struct net_device *dev)
  3342. {
  3343. struct fe_priv *np = get_nvpriv(dev);
  3344. int i;
  3345. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3346. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3347. free_irq(np->msi_x_entry[i].vector, dev);
  3348. }
  3349. pci_disable_msix(np->pci_dev);
  3350. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3351. } else {
  3352. free_irq(np->pci_dev->irq, dev);
  3353. if (np->msi_flags & NV_MSI_ENABLED) {
  3354. pci_disable_msi(np->pci_dev);
  3355. np->msi_flags &= ~NV_MSI_ENABLED;
  3356. }
  3357. }
  3358. }
  3359. static void nv_do_nic_poll(unsigned long data)
  3360. {
  3361. struct net_device *dev = (struct net_device *) data;
  3362. struct fe_priv *np = netdev_priv(dev);
  3363. u8 __iomem *base = get_hwbase(dev);
  3364. u32 mask = 0;
  3365. /*
  3366. * First disable irq(s) and then
  3367. * reenable interrupts on the nic, we have to do this before calling
  3368. * nv_nic_irq because that may decide to do otherwise
  3369. */
  3370. if (!using_multi_irqs(dev)) {
  3371. if (np->msi_flags & NV_MSI_X_ENABLED)
  3372. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3373. else
  3374. disable_irq_lockdep(np->pci_dev->irq);
  3375. mask = np->irqmask;
  3376. } else {
  3377. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3378. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3379. mask |= NVREG_IRQ_RX_ALL;
  3380. }
  3381. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3382. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3383. mask |= NVREG_IRQ_TX_ALL;
  3384. }
  3385. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3386. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3387. mask |= NVREG_IRQ_OTHER;
  3388. }
  3389. }
  3390. np->nic_poll_irq = 0;
  3391. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3392. if (np->recover_error) {
  3393. np->recover_error = 0;
  3394. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3395. if (netif_running(dev)) {
  3396. netif_tx_lock_bh(dev);
  3397. spin_lock(&np->lock);
  3398. /* stop engines */
  3399. nv_stop_rx(dev);
  3400. nv_stop_tx(dev);
  3401. nv_txrx_reset(dev);
  3402. /* drain rx queue */
  3403. nv_drain_rx(dev);
  3404. nv_drain_tx(dev);
  3405. /* reinit driver view of the rx queue */
  3406. set_bufsize(dev);
  3407. if (nv_init_ring(dev)) {
  3408. if (!np->in_shutdown)
  3409. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3410. }
  3411. /* reinit nic view of the rx queue */
  3412. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3413. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3414. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3415. base + NvRegRingSizes);
  3416. pci_push(base);
  3417. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3418. pci_push(base);
  3419. /* restart rx engine */
  3420. nv_start_rx(dev);
  3421. nv_start_tx(dev);
  3422. spin_unlock(&np->lock);
  3423. netif_tx_unlock_bh(dev);
  3424. }
  3425. }
  3426. writel(mask, base + NvRegIrqMask);
  3427. pci_push(base);
  3428. if (!using_multi_irqs(dev)) {
  3429. if (np->desc_ver == DESC_VER_3)
  3430. nv_nic_irq_optimized(0, dev);
  3431. else
  3432. nv_nic_irq(0, dev);
  3433. if (np->msi_flags & NV_MSI_X_ENABLED)
  3434. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3435. else
  3436. enable_irq_lockdep(np->pci_dev->irq);
  3437. } else {
  3438. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3439. nv_nic_irq_rx(0, dev);
  3440. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3441. }
  3442. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3443. nv_nic_irq_tx(0, dev);
  3444. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3445. }
  3446. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3447. nv_nic_irq_other(0, dev);
  3448. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3449. }
  3450. }
  3451. }
  3452. #ifdef CONFIG_NET_POLL_CONTROLLER
  3453. static void nv_poll_controller(struct net_device *dev)
  3454. {
  3455. nv_do_nic_poll((unsigned long) dev);
  3456. }
  3457. #endif
  3458. static void nv_do_stats_poll(unsigned long data)
  3459. {
  3460. struct net_device *dev = (struct net_device *) data;
  3461. struct fe_priv *np = netdev_priv(dev);
  3462. nv_get_hw_stats(dev);
  3463. if (!np->in_shutdown)
  3464. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3465. }
  3466. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3467. {
  3468. struct fe_priv *np = netdev_priv(dev);
  3469. strcpy(info->driver, DRV_NAME);
  3470. strcpy(info->version, FORCEDETH_VERSION);
  3471. strcpy(info->bus_info, pci_name(np->pci_dev));
  3472. }
  3473. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3474. {
  3475. struct fe_priv *np = netdev_priv(dev);
  3476. wolinfo->supported = WAKE_MAGIC;
  3477. spin_lock_irq(&np->lock);
  3478. if (np->wolenabled)
  3479. wolinfo->wolopts = WAKE_MAGIC;
  3480. spin_unlock_irq(&np->lock);
  3481. }
  3482. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3483. {
  3484. struct fe_priv *np = netdev_priv(dev);
  3485. u8 __iomem *base = get_hwbase(dev);
  3486. u32 flags = 0;
  3487. if (wolinfo->wolopts == 0) {
  3488. np->wolenabled = 0;
  3489. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3490. np->wolenabled = 1;
  3491. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3492. }
  3493. if (netif_running(dev)) {
  3494. spin_lock_irq(&np->lock);
  3495. writel(flags, base + NvRegWakeUpFlags);
  3496. spin_unlock_irq(&np->lock);
  3497. }
  3498. return 0;
  3499. }
  3500. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3501. {
  3502. struct fe_priv *np = netdev_priv(dev);
  3503. int adv;
  3504. spin_lock_irq(&np->lock);
  3505. ecmd->port = PORT_MII;
  3506. if (!netif_running(dev)) {
  3507. /* We do not track link speed / duplex setting if the
  3508. * interface is disabled. Force a link check */
  3509. if (nv_update_linkspeed(dev)) {
  3510. if (!netif_carrier_ok(dev))
  3511. netif_carrier_on(dev);
  3512. } else {
  3513. if (netif_carrier_ok(dev))
  3514. netif_carrier_off(dev);
  3515. }
  3516. }
  3517. if (netif_carrier_ok(dev)) {
  3518. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3519. case NVREG_LINKSPEED_10:
  3520. ecmd->speed = SPEED_10;
  3521. break;
  3522. case NVREG_LINKSPEED_100:
  3523. ecmd->speed = SPEED_100;
  3524. break;
  3525. case NVREG_LINKSPEED_1000:
  3526. ecmd->speed = SPEED_1000;
  3527. break;
  3528. }
  3529. ecmd->duplex = DUPLEX_HALF;
  3530. if (np->duplex)
  3531. ecmd->duplex = DUPLEX_FULL;
  3532. } else {
  3533. ecmd->speed = -1;
  3534. ecmd->duplex = -1;
  3535. }
  3536. ecmd->autoneg = np->autoneg;
  3537. ecmd->advertising = ADVERTISED_MII;
  3538. if (np->autoneg) {
  3539. ecmd->advertising |= ADVERTISED_Autoneg;
  3540. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3541. if (adv & ADVERTISE_10HALF)
  3542. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3543. if (adv & ADVERTISE_10FULL)
  3544. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3545. if (adv & ADVERTISE_100HALF)
  3546. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3547. if (adv & ADVERTISE_100FULL)
  3548. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3549. if (np->gigabit == PHY_GIGABIT) {
  3550. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3551. if (adv & ADVERTISE_1000FULL)
  3552. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3553. }
  3554. }
  3555. ecmd->supported = (SUPPORTED_Autoneg |
  3556. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3557. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3558. SUPPORTED_MII);
  3559. if (np->gigabit == PHY_GIGABIT)
  3560. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3561. ecmd->phy_address = np->phyaddr;
  3562. ecmd->transceiver = XCVR_EXTERNAL;
  3563. /* ignore maxtxpkt, maxrxpkt for now */
  3564. spin_unlock_irq(&np->lock);
  3565. return 0;
  3566. }
  3567. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3568. {
  3569. struct fe_priv *np = netdev_priv(dev);
  3570. if (ecmd->port != PORT_MII)
  3571. return -EINVAL;
  3572. if (ecmd->transceiver != XCVR_EXTERNAL)
  3573. return -EINVAL;
  3574. if (ecmd->phy_address != np->phyaddr) {
  3575. /* TODO: support switching between multiple phys. Should be
  3576. * trivial, but not enabled due to lack of test hardware. */
  3577. return -EINVAL;
  3578. }
  3579. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3580. u32 mask;
  3581. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3582. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3583. if (np->gigabit == PHY_GIGABIT)
  3584. mask |= ADVERTISED_1000baseT_Full;
  3585. if ((ecmd->advertising & mask) == 0)
  3586. return -EINVAL;
  3587. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3588. /* Note: autonegotiation disable, speed 1000 intentionally
  3589. * forbidden - noone should need that. */
  3590. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3591. return -EINVAL;
  3592. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3593. return -EINVAL;
  3594. } else {
  3595. return -EINVAL;
  3596. }
  3597. netif_carrier_off(dev);
  3598. if (netif_running(dev)) {
  3599. nv_disable_irq(dev);
  3600. netif_tx_lock_bh(dev);
  3601. spin_lock(&np->lock);
  3602. /* stop engines */
  3603. nv_stop_rx(dev);
  3604. nv_stop_tx(dev);
  3605. spin_unlock(&np->lock);
  3606. netif_tx_unlock_bh(dev);
  3607. }
  3608. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3609. int adv, bmcr;
  3610. np->autoneg = 1;
  3611. /* advertise only what has been requested */
  3612. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3613. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3614. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3615. adv |= ADVERTISE_10HALF;
  3616. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3617. adv |= ADVERTISE_10FULL;
  3618. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3619. adv |= ADVERTISE_100HALF;
  3620. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3621. adv |= ADVERTISE_100FULL;
  3622. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3623. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3624. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3625. adv |= ADVERTISE_PAUSE_ASYM;
  3626. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3627. if (np->gigabit == PHY_GIGABIT) {
  3628. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3629. adv &= ~ADVERTISE_1000FULL;
  3630. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3631. adv |= ADVERTISE_1000FULL;
  3632. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3633. }
  3634. if (netif_running(dev))
  3635. printk(KERN_INFO "%s: link down.\n", dev->name);
  3636. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3637. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3638. bmcr |= BMCR_ANENABLE;
  3639. /* reset the phy in order for settings to stick,
  3640. * and cause autoneg to start */
  3641. if (phy_reset(dev, bmcr)) {
  3642. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3643. return -EINVAL;
  3644. }
  3645. } else {
  3646. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3647. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3648. }
  3649. } else {
  3650. int adv, bmcr;
  3651. np->autoneg = 0;
  3652. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3653. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3654. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3655. adv |= ADVERTISE_10HALF;
  3656. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3657. adv |= ADVERTISE_10FULL;
  3658. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3659. adv |= ADVERTISE_100HALF;
  3660. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3661. adv |= ADVERTISE_100FULL;
  3662. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3663. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3664. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3665. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3666. }
  3667. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3668. adv |= ADVERTISE_PAUSE_ASYM;
  3669. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3670. }
  3671. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3672. np->fixed_mode = adv;
  3673. if (np->gigabit == PHY_GIGABIT) {
  3674. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3675. adv &= ~ADVERTISE_1000FULL;
  3676. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3677. }
  3678. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3679. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3680. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3681. bmcr |= BMCR_FULLDPLX;
  3682. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3683. bmcr |= BMCR_SPEED100;
  3684. if (np->phy_oui == PHY_OUI_MARVELL) {
  3685. /* reset the phy in order for forced mode settings to stick */
  3686. if (phy_reset(dev, bmcr)) {
  3687. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3688. return -EINVAL;
  3689. }
  3690. } else {
  3691. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3692. if (netif_running(dev)) {
  3693. /* Wait a bit and then reconfigure the nic. */
  3694. udelay(10);
  3695. nv_linkchange(dev);
  3696. }
  3697. }
  3698. }
  3699. if (netif_running(dev)) {
  3700. nv_start_rx(dev);
  3701. nv_start_tx(dev);
  3702. nv_enable_irq(dev);
  3703. }
  3704. return 0;
  3705. }
  3706. #define FORCEDETH_REGS_VER 1
  3707. static int nv_get_regs_len(struct net_device *dev)
  3708. {
  3709. struct fe_priv *np = netdev_priv(dev);
  3710. return np->register_size;
  3711. }
  3712. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3713. {
  3714. struct fe_priv *np = netdev_priv(dev);
  3715. u8 __iomem *base = get_hwbase(dev);
  3716. u32 *rbuf = buf;
  3717. int i;
  3718. regs->version = FORCEDETH_REGS_VER;
  3719. spin_lock_irq(&np->lock);
  3720. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3721. rbuf[i] = readl(base + i*sizeof(u32));
  3722. spin_unlock_irq(&np->lock);
  3723. }
  3724. static int nv_nway_reset(struct net_device *dev)
  3725. {
  3726. struct fe_priv *np = netdev_priv(dev);
  3727. int ret;
  3728. if (np->autoneg) {
  3729. int bmcr;
  3730. netif_carrier_off(dev);
  3731. if (netif_running(dev)) {
  3732. nv_disable_irq(dev);
  3733. netif_tx_lock_bh(dev);
  3734. spin_lock(&np->lock);
  3735. /* stop engines */
  3736. nv_stop_rx(dev);
  3737. nv_stop_tx(dev);
  3738. spin_unlock(&np->lock);
  3739. netif_tx_unlock_bh(dev);
  3740. printk(KERN_INFO "%s: link down.\n", dev->name);
  3741. }
  3742. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3743. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3744. bmcr |= BMCR_ANENABLE;
  3745. /* reset the phy in order for settings to stick*/
  3746. if (phy_reset(dev, bmcr)) {
  3747. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3748. return -EINVAL;
  3749. }
  3750. } else {
  3751. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3752. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3753. }
  3754. if (netif_running(dev)) {
  3755. nv_start_rx(dev);
  3756. nv_start_tx(dev);
  3757. nv_enable_irq(dev);
  3758. }
  3759. ret = 0;
  3760. } else {
  3761. ret = -EINVAL;
  3762. }
  3763. return ret;
  3764. }
  3765. static int nv_set_tso(struct net_device *dev, u32 value)
  3766. {
  3767. struct fe_priv *np = netdev_priv(dev);
  3768. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3769. return ethtool_op_set_tso(dev, value);
  3770. else
  3771. return -EOPNOTSUPP;
  3772. }
  3773. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3774. {
  3775. struct fe_priv *np = netdev_priv(dev);
  3776. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3777. ring->rx_mini_max_pending = 0;
  3778. ring->rx_jumbo_max_pending = 0;
  3779. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3780. ring->rx_pending = np->rx_ring_size;
  3781. ring->rx_mini_pending = 0;
  3782. ring->rx_jumbo_pending = 0;
  3783. ring->tx_pending = np->tx_ring_size;
  3784. }
  3785. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3786. {
  3787. struct fe_priv *np = netdev_priv(dev);
  3788. u8 __iomem *base = get_hwbase(dev);
  3789. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3790. dma_addr_t ring_addr;
  3791. if (ring->rx_pending < RX_RING_MIN ||
  3792. ring->tx_pending < TX_RING_MIN ||
  3793. ring->rx_mini_pending != 0 ||
  3794. ring->rx_jumbo_pending != 0 ||
  3795. (np->desc_ver == DESC_VER_1 &&
  3796. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3797. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3798. (np->desc_ver != DESC_VER_1 &&
  3799. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3800. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3801. return -EINVAL;
  3802. }
  3803. /* allocate new rings */
  3804. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3805. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3806. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3807. &ring_addr);
  3808. } else {
  3809. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3810. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3811. &ring_addr);
  3812. }
  3813. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3814. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3815. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3816. /* fall back to old rings */
  3817. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3818. if (rxtx_ring)
  3819. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3820. rxtx_ring, ring_addr);
  3821. } else {
  3822. if (rxtx_ring)
  3823. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3824. rxtx_ring, ring_addr);
  3825. }
  3826. if (rx_skbuff)
  3827. kfree(rx_skbuff);
  3828. if (tx_skbuff)
  3829. kfree(tx_skbuff);
  3830. goto exit;
  3831. }
  3832. if (netif_running(dev)) {
  3833. nv_disable_irq(dev);
  3834. netif_tx_lock_bh(dev);
  3835. spin_lock(&np->lock);
  3836. /* stop engines */
  3837. nv_stop_rx(dev);
  3838. nv_stop_tx(dev);
  3839. nv_txrx_reset(dev);
  3840. /* drain queues */
  3841. nv_drain_rx(dev);
  3842. nv_drain_tx(dev);
  3843. /* delete queues */
  3844. free_rings(dev);
  3845. }
  3846. /* set new values */
  3847. np->rx_ring_size = ring->rx_pending;
  3848. np->tx_ring_size = ring->tx_pending;
  3849. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3850. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3851. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3852. } else {
  3853. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3854. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3855. }
  3856. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3857. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3858. np->ring_addr = ring_addr;
  3859. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3860. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3861. if (netif_running(dev)) {
  3862. /* reinit driver view of the queues */
  3863. set_bufsize(dev);
  3864. if (nv_init_ring(dev)) {
  3865. if (!np->in_shutdown)
  3866. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3867. }
  3868. /* reinit nic view of the queues */
  3869. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3870. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3871. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3872. base + NvRegRingSizes);
  3873. pci_push(base);
  3874. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3875. pci_push(base);
  3876. /* restart engines */
  3877. nv_start_rx(dev);
  3878. nv_start_tx(dev);
  3879. spin_unlock(&np->lock);
  3880. netif_tx_unlock_bh(dev);
  3881. nv_enable_irq(dev);
  3882. }
  3883. return 0;
  3884. exit:
  3885. return -ENOMEM;
  3886. }
  3887. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3888. {
  3889. struct fe_priv *np = netdev_priv(dev);
  3890. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3891. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3892. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3893. }
  3894. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3895. {
  3896. struct fe_priv *np = netdev_priv(dev);
  3897. int adv, bmcr;
  3898. if ((!np->autoneg && np->duplex == 0) ||
  3899. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3900. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3901. dev->name);
  3902. return -EINVAL;
  3903. }
  3904. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3905. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3906. return -EINVAL;
  3907. }
  3908. netif_carrier_off(dev);
  3909. if (netif_running(dev)) {
  3910. nv_disable_irq(dev);
  3911. netif_tx_lock_bh(dev);
  3912. spin_lock(&np->lock);
  3913. /* stop engines */
  3914. nv_stop_rx(dev);
  3915. nv_stop_tx(dev);
  3916. spin_unlock(&np->lock);
  3917. netif_tx_unlock_bh(dev);
  3918. }
  3919. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3920. if (pause->rx_pause)
  3921. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3922. if (pause->tx_pause)
  3923. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3924. if (np->autoneg && pause->autoneg) {
  3925. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3926. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3927. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3928. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3929. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3930. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3931. adv |= ADVERTISE_PAUSE_ASYM;
  3932. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3933. if (netif_running(dev))
  3934. printk(KERN_INFO "%s: link down.\n", dev->name);
  3935. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3936. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3937. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3938. } else {
  3939. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3940. if (pause->rx_pause)
  3941. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3942. if (pause->tx_pause)
  3943. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3944. if (!netif_running(dev))
  3945. nv_update_linkspeed(dev);
  3946. else
  3947. nv_update_pause(dev, np->pause_flags);
  3948. }
  3949. if (netif_running(dev)) {
  3950. nv_start_rx(dev);
  3951. nv_start_tx(dev);
  3952. nv_enable_irq(dev);
  3953. }
  3954. return 0;
  3955. }
  3956. static u32 nv_get_rx_csum(struct net_device *dev)
  3957. {
  3958. struct fe_priv *np = netdev_priv(dev);
  3959. return (np->rx_csum) != 0;
  3960. }
  3961. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3962. {
  3963. struct fe_priv *np = netdev_priv(dev);
  3964. u8 __iomem *base = get_hwbase(dev);
  3965. int retcode = 0;
  3966. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3967. if (data) {
  3968. np->rx_csum = 1;
  3969. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3970. } else {
  3971. np->rx_csum = 0;
  3972. /* vlan is dependent on rx checksum offload */
  3973. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3974. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3975. }
  3976. if (netif_running(dev)) {
  3977. spin_lock_irq(&np->lock);
  3978. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3979. spin_unlock_irq(&np->lock);
  3980. }
  3981. } else {
  3982. return -EINVAL;
  3983. }
  3984. return retcode;
  3985. }
  3986. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3987. {
  3988. struct fe_priv *np = netdev_priv(dev);
  3989. if (np->driver_data & DEV_HAS_CHECKSUM)
  3990. return ethtool_op_set_tx_hw_csum(dev, data);
  3991. else
  3992. return -EOPNOTSUPP;
  3993. }
  3994. static int nv_set_sg(struct net_device *dev, u32 data)
  3995. {
  3996. struct fe_priv *np = netdev_priv(dev);
  3997. if (np->driver_data & DEV_HAS_CHECKSUM)
  3998. return ethtool_op_set_sg(dev, data);
  3999. else
  4000. return -EOPNOTSUPP;
  4001. }
  4002. static int nv_get_sset_count(struct net_device *dev, int sset)
  4003. {
  4004. struct fe_priv *np = netdev_priv(dev);
  4005. switch (sset) {
  4006. case ETH_SS_TEST:
  4007. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4008. return NV_TEST_COUNT_EXTENDED;
  4009. else
  4010. return NV_TEST_COUNT_BASE;
  4011. case ETH_SS_STATS:
  4012. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4013. return NV_DEV_STATISTICS_V1_COUNT;
  4014. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4015. return NV_DEV_STATISTICS_V2_COUNT;
  4016. else
  4017. return 0;
  4018. default:
  4019. return -EOPNOTSUPP;
  4020. }
  4021. }
  4022. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4023. {
  4024. struct fe_priv *np = netdev_priv(dev);
  4025. /* update stats */
  4026. nv_do_stats_poll((unsigned long)dev);
  4027. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4028. }
  4029. static int nv_link_test(struct net_device *dev)
  4030. {
  4031. struct fe_priv *np = netdev_priv(dev);
  4032. int mii_status;
  4033. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4034. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4035. /* check phy link status */
  4036. if (!(mii_status & BMSR_LSTATUS))
  4037. return 0;
  4038. else
  4039. return 1;
  4040. }
  4041. static int nv_register_test(struct net_device *dev)
  4042. {
  4043. u8 __iomem *base = get_hwbase(dev);
  4044. int i = 0;
  4045. u32 orig_read, new_read;
  4046. do {
  4047. orig_read = readl(base + nv_registers_test[i].reg);
  4048. /* xor with mask to toggle bits */
  4049. orig_read ^= nv_registers_test[i].mask;
  4050. writel(orig_read, base + nv_registers_test[i].reg);
  4051. new_read = readl(base + nv_registers_test[i].reg);
  4052. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4053. return 0;
  4054. /* restore original value */
  4055. orig_read ^= nv_registers_test[i].mask;
  4056. writel(orig_read, base + nv_registers_test[i].reg);
  4057. } while (nv_registers_test[++i].reg != 0);
  4058. return 1;
  4059. }
  4060. static int nv_interrupt_test(struct net_device *dev)
  4061. {
  4062. struct fe_priv *np = netdev_priv(dev);
  4063. u8 __iomem *base = get_hwbase(dev);
  4064. int ret = 1;
  4065. int testcnt;
  4066. u32 save_msi_flags, save_poll_interval = 0;
  4067. if (netif_running(dev)) {
  4068. /* free current irq */
  4069. nv_free_irq(dev);
  4070. save_poll_interval = readl(base+NvRegPollingInterval);
  4071. }
  4072. /* flag to test interrupt handler */
  4073. np->intr_test = 0;
  4074. /* setup test irq */
  4075. save_msi_flags = np->msi_flags;
  4076. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4077. np->msi_flags |= 0x001; /* setup 1 vector */
  4078. if (nv_request_irq(dev, 1))
  4079. return 0;
  4080. /* setup timer interrupt */
  4081. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4082. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4083. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4084. /* wait for at least one interrupt */
  4085. msleep(100);
  4086. spin_lock_irq(&np->lock);
  4087. /* flag should be set within ISR */
  4088. testcnt = np->intr_test;
  4089. if (!testcnt)
  4090. ret = 2;
  4091. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4092. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4093. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4094. else
  4095. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4096. spin_unlock_irq(&np->lock);
  4097. nv_free_irq(dev);
  4098. np->msi_flags = save_msi_flags;
  4099. if (netif_running(dev)) {
  4100. writel(save_poll_interval, base + NvRegPollingInterval);
  4101. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4102. /* restore original irq */
  4103. if (nv_request_irq(dev, 0))
  4104. return 0;
  4105. }
  4106. return ret;
  4107. }
  4108. static int nv_loopback_test(struct net_device *dev)
  4109. {
  4110. struct fe_priv *np = netdev_priv(dev);
  4111. u8 __iomem *base = get_hwbase(dev);
  4112. struct sk_buff *tx_skb, *rx_skb;
  4113. dma_addr_t test_dma_addr;
  4114. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4115. u32 flags;
  4116. int len, i, pkt_len;
  4117. u8 *pkt_data;
  4118. u32 filter_flags = 0;
  4119. u32 misc1_flags = 0;
  4120. int ret = 1;
  4121. if (netif_running(dev)) {
  4122. nv_disable_irq(dev);
  4123. filter_flags = readl(base + NvRegPacketFilterFlags);
  4124. misc1_flags = readl(base + NvRegMisc1);
  4125. } else {
  4126. nv_txrx_reset(dev);
  4127. }
  4128. /* reinit driver view of the rx queue */
  4129. set_bufsize(dev);
  4130. nv_init_ring(dev);
  4131. /* setup hardware for loopback */
  4132. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4133. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4134. /* reinit nic view of the rx queue */
  4135. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4136. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4137. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4138. base + NvRegRingSizes);
  4139. pci_push(base);
  4140. /* restart rx engine */
  4141. nv_start_rx(dev);
  4142. nv_start_tx(dev);
  4143. /* setup packet for tx */
  4144. pkt_len = ETH_DATA_LEN;
  4145. tx_skb = dev_alloc_skb(pkt_len);
  4146. if (!tx_skb) {
  4147. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4148. " of %s\n", dev->name);
  4149. ret = 0;
  4150. goto out;
  4151. }
  4152. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4153. skb_tailroom(tx_skb),
  4154. PCI_DMA_FROMDEVICE);
  4155. pkt_data = skb_put(tx_skb, pkt_len);
  4156. for (i = 0; i < pkt_len; i++)
  4157. pkt_data[i] = (u8)(i & 0xff);
  4158. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4159. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4160. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4161. } else {
  4162. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4163. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4164. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4165. }
  4166. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4167. pci_push(get_hwbase(dev));
  4168. msleep(500);
  4169. /* check for rx of the packet */
  4170. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4171. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4172. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4173. } else {
  4174. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4175. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4176. }
  4177. if (flags & NV_RX_AVAIL) {
  4178. ret = 0;
  4179. } else if (np->desc_ver == DESC_VER_1) {
  4180. if (flags & NV_RX_ERROR)
  4181. ret = 0;
  4182. } else {
  4183. if (flags & NV_RX2_ERROR) {
  4184. ret = 0;
  4185. }
  4186. }
  4187. if (ret) {
  4188. if (len != pkt_len) {
  4189. ret = 0;
  4190. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4191. dev->name, len, pkt_len);
  4192. } else {
  4193. rx_skb = np->rx_skb[0].skb;
  4194. for (i = 0; i < pkt_len; i++) {
  4195. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4196. ret = 0;
  4197. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4198. dev->name, i);
  4199. break;
  4200. }
  4201. }
  4202. }
  4203. } else {
  4204. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4205. }
  4206. pci_unmap_page(np->pci_dev, test_dma_addr,
  4207. (skb_end_pointer(tx_skb) - tx_skb->data),
  4208. PCI_DMA_TODEVICE);
  4209. dev_kfree_skb_any(tx_skb);
  4210. out:
  4211. /* stop engines */
  4212. nv_stop_rx(dev);
  4213. nv_stop_tx(dev);
  4214. nv_txrx_reset(dev);
  4215. /* drain rx queue */
  4216. nv_drain_rx(dev);
  4217. nv_drain_tx(dev);
  4218. if (netif_running(dev)) {
  4219. writel(misc1_flags, base + NvRegMisc1);
  4220. writel(filter_flags, base + NvRegPacketFilterFlags);
  4221. nv_enable_irq(dev);
  4222. }
  4223. return ret;
  4224. }
  4225. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4226. {
  4227. struct fe_priv *np = netdev_priv(dev);
  4228. u8 __iomem *base = get_hwbase(dev);
  4229. int result;
  4230. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4231. if (!nv_link_test(dev)) {
  4232. test->flags |= ETH_TEST_FL_FAILED;
  4233. buffer[0] = 1;
  4234. }
  4235. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4236. if (netif_running(dev)) {
  4237. netif_stop_queue(dev);
  4238. #ifdef CONFIG_FORCEDETH_NAPI
  4239. napi_disable(&np->napi);
  4240. #endif
  4241. netif_tx_lock_bh(dev);
  4242. spin_lock_irq(&np->lock);
  4243. nv_disable_hw_interrupts(dev, np->irqmask);
  4244. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4245. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4246. } else {
  4247. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4248. }
  4249. /* stop engines */
  4250. nv_stop_rx(dev);
  4251. nv_stop_tx(dev);
  4252. nv_txrx_reset(dev);
  4253. /* drain rx queue */
  4254. nv_drain_rx(dev);
  4255. nv_drain_tx(dev);
  4256. spin_unlock_irq(&np->lock);
  4257. netif_tx_unlock_bh(dev);
  4258. }
  4259. if (!nv_register_test(dev)) {
  4260. test->flags |= ETH_TEST_FL_FAILED;
  4261. buffer[1] = 1;
  4262. }
  4263. result = nv_interrupt_test(dev);
  4264. if (result != 1) {
  4265. test->flags |= ETH_TEST_FL_FAILED;
  4266. buffer[2] = 1;
  4267. }
  4268. if (result == 0) {
  4269. /* bail out */
  4270. return;
  4271. }
  4272. if (!nv_loopback_test(dev)) {
  4273. test->flags |= ETH_TEST_FL_FAILED;
  4274. buffer[3] = 1;
  4275. }
  4276. if (netif_running(dev)) {
  4277. /* reinit driver view of the rx queue */
  4278. set_bufsize(dev);
  4279. if (nv_init_ring(dev)) {
  4280. if (!np->in_shutdown)
  4281. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4282. }
  4283. /* reinit nic view of the rx queue */
  4284. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4285. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4286. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4287. base + NvRegRingSizes);
  4288. pci_push(base);
  4289. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4290. pci_push(base);
  4291. /* restart rx engine */
  4292. nv_start_rx(dev);
  4293. nv_start_tx(dev);
  4294. netif_start_queue(dev);
  4295. #ifdef CONFIG_FORCEDETH_NAPI
  4296. napi_enable(&np->napi);
  4297. #endif
  4298. nv_enable_hw_interrupts(dev, np->irqmask);
  4299. }
  4300. }
  4301. }
  4302. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4303. {
  4304. switch (stringset) {
  4305. case ETH_SS_STATS:
  4306. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4307. break;
  4308. case ETH_SS_TEST:
  4309. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4310. break;
  4311. }
  4312. }
  4313. static const struct ethtool_ops ops = {
  4314. .get_drvinfo = nv_get_drvinfo,
  4315. .get_link = ethtool_op_get_link,
  4316. .get_wol = nv_get_wol,
  4317. .set_wol = nv_set_wol,
  4318. .get_settings = nv_get_settings,
  4319. .set_settings = nv_set_settings,
  4320. .get_regs_len = nv_get_regs_len,
  4321. .get_regs = nv_get_regs,
  4322. .nway_reset = nv_nway_reset,
  4323. .set_tso = nv_set_tso,
  4324. .get_ringparam = nv_get_ringparam,
  4325. .set_ringparam = nv_set_ringparam,
  4326. .get_pauseparam = nv_get_pauseparam,
  4327. .set_pauseparam = nv_set_pauseparam,
  4328. .get_rx_csum = nv_get_rx_csum,
  4329. .set_rx_csum = nv_set_rx_csum,
  4330. .set_tx_csum = nv_set_tx_csum,
  4331. .set_sg = nv_set_sg,
  4332. .get_strings = nv_get_strings,
  4333. .get_ethtool_stats = nv_get_ethtool_stats,
  4334. .get_sset_count = nv_get_sset_count,
  4335. .self_test = nv_self_test,
  4336. };
  4337. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4338. {
  4339. struct fe_priv *np = get_nvpriv(dev);
  4340. spin_lock_irq(&np->lock);
  4341. /* save vlan group */
  4342. np->vlangrp = grp;
  4343. if (grp) {
  4344. /* enable vlan on MAC */
  4345. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4346. } else {
  4347. /* disable vlan on MAC */
  4348. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4349. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4350. }
  4351. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4352. spin_unlock_irq(&np->lock);
  4353. }
  4354. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4355. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4356. {
  4357. u8 __iomem *base = get_hwbase(dev);
  4358. int i;
  4359. u32 tx_ctrl, mgmt_sema;
  4360. for (i = 0; i < 10; i++) {
  4361. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4362. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4363. break;
  4364. msleep(500);
  4365. }
  4366. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4367. return 0;
  4368. for (i = 0; i < 2; i++) {
  4369. tx_ctrl = readl(base + NvRegTransmitterControl);
  4370. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4371. writel(tx_ctrl, base + NvRegTransmitterControl);
  4372. /* verify that semaphore was acquired */
  4373. tx_ctrl = readl(base + NvRegTransmitterControl);
  4374. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4375. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4376. return 1;
  4377. else
  4378. udelay(50);
  4379. }
  4380. return 0;
  4381. }
  4382. static int nv_open(struct net_device *dev)
  4383. {
  4384. struct fe_priv *np = netdev_priv(dev);
  4385. u8 __iomem *base = get_hwbase(dev);
  4386. int ret = 1;
  4387. int oom, i;
  4388. dprintk(KERN_DEBUG "nv_open: begin\n");
  4389. /* erase previous misconfiguration */
  4390. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4391. nv_mac_reset(dev);
  4392. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4393. writel(0, base + NvRegMulticastAddrB);
  4394. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4395. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4396. writel(0, base + NvRegPacketFilterFlags);
  4397. writel(0, base + NvRegTransmitterControl);
  4398. writel(0, base + NvRegReceiverControl);
  4399. writel(0, base + NvRegAdapterControl);
  4400. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4401. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4402. /* initialize descriptor rings */
  4403. set_bufsize(dev);
  4404. oom = nv_init_ring(dev);
  4405. writel(0, base + NvRegLinkSpeed);
  4406. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4407. nv_txrx_reset(dev);
  4408. writel(0, base + NvRegUnknownSetupReg6);
  4409. np->in_shutdown = 0;
  4410. /* give hw rings */
  4411. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4412. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4413. base + NvRegRingSizes);
  4414. writel(np->linkspeed, base + NvRegLinkSpeed);
  4415. if (np->desc_ver == DESC_VER_1)
  4416. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4417. else
  4418. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4419. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4420. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4421. pci_push(base);
  4422. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4423. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4424. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4425. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4426. writel(0, base + NvRegMIIMask);
  4427. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4428. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4429. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4430. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4431. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4432. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4433. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4434. get_random_bytes(&i, sizeof(i));
  4435. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4436. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4437. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4438. if (poll_interval == -1) {
  4439. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4440. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4441. else
  4442. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4443. }
  4444. else
  4445. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4446. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4447. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4448. base + NvRegAdapterControl);
  4449. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4450. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4451. if (np->wolenabled)
  4452. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4453. i = readl(base + NvRegPowerState);
  4454. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4455. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4456. pci_push(base);
  4457. udelay(10);
  4458. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4459. nv_disable_hw_interrupts(dev, np->irqmask);
  4460. pci_push(base);
  4461. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4462. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4463. pci_push(base);
  4464. if (nv_request_irq(dev, 0)) {
  4465. goto out_drain;
  4466. }
  4467. /* ask for interrupts */
  4468. nv_enable_hw_interrupts(dev, np->irqmask);
  4469. spin_lock_irq(&np->lock);
  4470. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4471. writel(0, base + NvRegMulticastAddrB);
  4472. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4473. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4474. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4475. /* One manual link speed update: Interrupts are enabled, future link
  4476. * speed changes cause interrupts and are handled by nv_link_irq().
  4477. */
  4478. {
  4479. u32 miistat;
  4480. miistat = readl(base + NvRegMIIStatus);
  4481. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4482. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4483. }
  4484. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4485. * to init hw */
  4486. np->linkspeed = 0;
  4487. ret = nv_update_linkspeed(dev);
  4488. nv_start_rx(dev);
  4489. nv_start_tx(dev);
  4490. netif_start_queue(dev);
  4491. #ifdef CONFIG_FORCEDETH_NAPI
  4492. napi_enable(&np->napi);
  4493. #endif
  4494. if (ret) {
  4495. netif_carrier_on(dev);
  4496. } else {
  4497. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4498. netif_carrier_off(dev);
  4499. }
  4500. if (oom)
  4501. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4502. /* start statistics timer */
  4503. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4504. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4505. spin_unlock_irq(&np->lock);
  4506. return 0;
  4507. out_drain:
  4508. drain_ring(dev);
  4509. return ret;
  4510. }
  4511. static int nv_close(struct net_device *dev)
  4512. {
  4513. struct fe_priv *np = netdev_priv(dev);
  4514. u8 __iomem *base;
  4515. spin_lock_irq(&np->lock);
  4516. np->in_shutdown = 1;
  4517. spin_unlock_irq(&np->lock);
  4518. #ifdef CONFIG_FORCEDETH_NAPI
  4519. napi_disable(&np->napi);
  4520. #endif
  4521. synchronize_irq(np->pci_dev->irq);
  4522. del_timer_sync(&np->oom_kick);
  4523. del_timer_sync(&np->nic_poll);
  4524. del_timer_sync(&np->stats_poll);
  4525. netif_stop_queue(dev);
  4526. spin_lock_irq(&np->lock);
  4527. nv_stop_tx(dev);
  4528. nv_stop_rx(dev);
  4529. nv_txrx_reset(dev);
  4530. /* disable interrupts on the nic or we will lock up */
  4531. base = get_hwbase(dev);
  4532. nv_disable_hw_interrupts(dev, np->irqmask);
  4533. pci_push(base);
  4534. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4535. spin_unlock_irq(&np->lock);
  4536. nv_free_irq(dev);
  4537. drain_ring(dev);
  4538. if (np->wolenabled) {
  4539. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4540. nv_start_rx(dev);
  4541. }
  4542. /* FIXME: power down nic */
  4543. return 0;
  4544. }
  4545. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4546. {
  4547. struct net_device *dev;
  4548. struct fe_priv *np;
  4549. unsigned long addr;
  4550. u8 __iomem *base;
  4551. int err, i;
  4552. u32 powerstate, txreg;
  4553. u32 phystate_orig = 0, phystate;
  4554. int phyinitialized = 0;
  4555. DECLARE_MAC_BUF(mac);
  4556. static int printed_version;
  4557. if (!printed_version++)
  4558. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4559. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4560. dev = alloc_etherdev(sizeof(struct fe_priv));
  4561. err = -ENOMEM;
  4562. if (!dev)
  4563. goto out;
  4564. np = netdev_priv(dev);
  4565. np->dev = dev;
  4566. np->pci_dev = pci_dev;
  4567. spin_lock_init(&np->lock);
  4568. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4569. init_timer(&np->oom_kick);
  4570. np->oom_kick.data = (unsigned long) dev;
  4571. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4572. init_timer(&np->nic_poll);
  4573. np->nic_poll.data = (unsigned long) dev;
  4574. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4575. init_timer(&np->stats_poll);
  4576. np->stats_poll.data = (unsigned long) dev;
  4577. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4578. err = pci_enable_device(pci_dev);
  4579. if (err)
  4580. goto out_free;
  4581. pci_set_master(pci_dev);
  4582. err = pci_request_regions(pci_dev, DRV_NAME);
  4583. if (err < 0)
  4584. goto out_disable;
  4585. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4586. np->register_size = NV_PCI_REGSZ_VER3;
  4587. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4588. np->register_size = NV_PCI_REGSZ_VER2;
  4589. else
  4590. np->register_size = NV_PCI_REGSZ_VER1;
  4591. err = -EINVAL;
  4592. addr = 0;
  4593. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4594. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4595. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4596. pci_resource_len(pci_dev, i),
  4597. pci_resource_flags(pci_dev, i));
  4598. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4599. pci_resource_len(pci_dev, i) >= np->register_size) {
  4600. addr = pci_resource_start(pci_dev, i);
  4601. break;
  4602. }
  4603. }
  4604. if (i == DEVICE_COUNT_RESOURCE) {
  4605. dev_printk(KERN_INFO, &pci_dev->dev,
  4606. "Couldn't find register window\n");
  4607. goto out_relreg;
  4608. }
  4609. /* copy of driver data */
  4610. np->driver_data = id->driver_data;
  4611. /* handle different descriptor versions */
  4612. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4613. /* packet format 3: supports 40-bit addressing */
  4614. np->desc_ver = DESC_VER_3;
  4615. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4616. if (dma_64bit) {
  4617. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4618. dev_printk(KERN_INFO, &pci_dev->dev,
  4619. "64-bit DMA failed, using 32-bit addressing\n");
  4620. else
  4621. dev->features |= NETIF_F_HIGHDMA;
  4622. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4623. dev_printk(KERN_INFO, &pci_dev->dev,
  4624. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4625. }
  4626. }
  4627. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4628. /* packet format 2: supports jumbo frames */
  4629. np->desc_ver = DESC_VER_2;
  4630. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4631. } else {
  4632. /* original packet format */
  4633. np->desc_ver = DESC_VER_1;
  4634. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4635. }
  4636. np->pkt_limit = NV_PKTLIMIT_1;
  4637. if (id->driver_data & DEV_HAS_LARGEDESC)
  4638. np->pkt_limit = NV_PKTLIMIT_2;
  4639. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4640. np->rx_csum = 1;
  4641. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4642. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4643. dev->features |= NETIF_F_TSO;
  4644. }
  4645. np->vlanctl_bits = 0;
  4646. if (id->driver_data & DEV_HAS_VLAN) {
  4647. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4648. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4649. dev->vlan_rx_register = nv_vlan_rx_register;
  4650. }
  4651. np->msi_flags = 0;
  4652. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4653. np->msi_flags |= NV_MSI_CAPABLE;
  4654. }
  4655. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4656. np->msi_flags |= NV_MSI_X_CAPABLE;
  4657. }
  4658. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4659. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4660. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4661. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4662. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4663. }
  4664. err = -ENOMEM;
  4665. np->base = ioremap(addr, np->register_size);
  4666. if (!np->base)
  4667. goto out_relreg;
  4668. dev->base_addr = (unsigned long)np->base;
  4669. dev->irq = pci_dev->irq;
  4670. np->rx_ring_size = RX_RING_DEFAULT;
  4671. np->tx_ring_size = TX_RING_DEFAULT;
  4672. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4673. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4674. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4675. &np->ring_addr);
  4676. if (!np->rx_ring.orig)
  4677. goto out_unmap;
  4678. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4679. } else {
  4680. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4681. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4682. &np->ring_addr);
  4683. if (!np->rx_ring.ex)
  4684. goto out_unmap;
  4685. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4686. }
  4687. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4688. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4689. if (!np->rx_skb || !np->tx_skb)
  4690. goto out_freering;
  4691. dev->open = nv_open;
  4692. dev->stop = nv_close;
  4693. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4694. dev->hard_start_xmit = nv_start_xmit;
  4695. else
  4696. dev->hard_start_xmit = nv_start_xmit_optimized;
  4697. dev->get_stats = nv_get_stats;
  4698. dev->change_mtu = nv_change_mtu;
  4699. dev->set_mac_address = nv_set_mac_address;
  4700. dev->set_multicast_list = nv_set_multicast;
  4701. #ifdef CONFIG_NET_POLL_CONTROLLER
  4702. dev->poll_controller = nv_poll_controller;
  4703. #endif
  4704. #ifdef CONFIG_FORCEDETH_NAPI
  4705. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4706. #endif
  4707. SET_ETHTOOL_OPS(dev, &ops);
  4708. dev->tx_timeout = nv_tx_timeout;
  4709. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4710. pci_set_drvdata(pci_dev, dev);
  4711. /* read the mac address */
  4712. base = get_hwbase(dev);
  4713. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4714. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4715. /* check the workaround bit for correct mac address order */
  4716. txreg = readl(base + NvRegTransmitPoll);
  4717. if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
  4718. (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
  4719. /* mac address is already in correct order */
  4720. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4721. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4722. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4723. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4724. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4725. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4726. } else {
  4727. /* need to reverse mac address to correct order */
  4728. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4729. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4730. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4731. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4732. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4733. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4734. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4735. }
  4736. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4737. if (!is_valid_ether_addr(dev->perm_addr)) {
  4738. /*
  4739. * Bad mac address. At least one bios sets the mac address
  4740. * to 01:23:45:67:89:ab
  4741. */
  4742. dev_printk(KERN_ERR, &pci_dev->dev,
  4743. "Invalid Mac address detected: %s\n",
  4744. print_mac(mac, dev->dev_addr));
  4745. dev_printk(KERN_ERR, &pci_dev->dev,
  4746. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4747. dev->dev_addr[0] = 0x00;
  4748. dev->dev_addr[1] = 0x00;
  4749. dev->dev_addr[2] = 0x6c;
  4750. get_random_bytes(&dev->dev_addr[3], 3);
  4751. }
  4752. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4753. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4754. /* set mac address */
  4755. nv_copy_mac_to_hw(dev);
  4756. /* disable WOL */
  4757. writel(0, base + NvRegWakeUpFlags);
  4758. np->wolenabled = 0;
  4759. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4760. /* take phy and nic out of low power mode */
  4761. powerstate = readl(base + NvRegPowerState2);
  4762. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4763. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4764. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4765. pci_dev->revision >= 0xA3)
  4766. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4767. writel(powerstate, base + NvRegPowerState2);
  4768. }
  4769. if (np->desc_ver == DESC_VER_1) {
  4770. np->tx_flags = NV_TX_VALID;
  4771. } else {
  4772. np->tx_flags = NV_TX2_VALID;
  4773. }
  4774. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4775. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4776. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4777. np->msi_flags |= 0x0003;
  4778. } else {
  4779. np->irqmask = NVREG_IRQMASK_CPU;
  4780. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4781. np->msi_flags |= 0x0001;
  4782. }
  4783. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4784. np->irqmask |= NVREG_IRQ_TIMER;
  4785. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4786. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4787. np->need_linktimer = 1;
  4788. np->link_timeout = jiffies + LINK_TIMEOUT;
  4789. } else {
  4790. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4791. np->need_linktimer = 0;
  4792. }
  4793. /* Limit the number of tx's outstanding for hw bug */
  4794. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  4795. np->tx_limit = 1;
  4796. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  4797. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  4798. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  4799. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  4800. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  4801. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  4802. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  4803. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  4804. pci_dev->revision >= 0xA2)
  4805. np->tx_limit = 0;
  4806. }
  4807. /* clear phy state and temporarily halt phy interrupts */
  4808. writel(0, base + NvRegMIIMask);
  4809. phystate = readl(base + NvRegAdapterControl);
  4810. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4811. phystate_orig = 1;
  4812. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4813. writel(phystate, base + NvRegAdapterControl);
  4814. }
  4815. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4816. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4817. /* management unit running on the mac? */
  4818. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4819. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4820. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4821. if (nv_mgmt_acquire_sema(dev)) {
  4822. /* management unit setup the phy already? */
  4823. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4824. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4825. /* phy is inited by mgmt unit */
  4826. phyinitialized = 1;
  4827. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4828. } else {
  4829. /* we need to init the phy */
  4830. }
  4831. }
  4832. }
  4833. }
  4834. /* find a suitable phy */
  4835. for (i = 1; i <= 32; i++) {
  4836. int id1, id2;
  4837. int phyaddr = i & 0x1F;
  4838. spin_lock_irq(&np->lock);
  4839. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4840. spin_unlock_irq(&np->lock);
  4841. if (id1 < 0 || id1 == 0xffff)
  4842. continue;
  4843. spin_lock_irq(&np->lock);
  4844. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4845. spin_unlock_irq(&np->lock);
  4846. if (id2 < 0 || id2 == 0xffff)
  4847. continue;
  4848. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4849. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4850. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4851. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4852. pci_name(pci_dev), id1, id2, phyaddr);
  4853. np->phyaddr = phyaddr;
  4854. np->phy_oui = id1 | id2;
  4855. break;
  4856. }
  4857. if (i == 33) {
  4858. dev_printk(KERN_INFO, &pci_dev->dev,
  4859. "open: Could not find a valid PHY.\n");
  4860. goto out_error;
  4861. }
  4862. if (!phyinitialized) {
  4863. /* reset it */
  4864. phy_init(dev);
  4865. } else {
  4866. /* see if it is a gigabit phy */
  4867. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4868. if (mii_status & PHY_GIGABIT) {
  4869. np->gigabit = PHY_GIGABIT;
  4870. }
  4871. }
  4872. /* set default link speed settings */
  4873. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4874. np->duplex = 0;
  4875. np->autoneg = 1;
  4876. err = register_netdev(dev);
  4877. if (err) {
  4878. dev_printk(KERN_INFO, &pci_dev->dev,
  4879. "unable to register netdev: %d\n", err);
  4880. goto out_error;
  4881. }
  4882. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4883. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4884. dev->name,
  4885. np->phy_oui,
  4886. np->phyaddr,
  4887. dev->dev_addr[0],
  4888. dev->dev_addr[1],
  4889. dev->dev_addr[2],
  4890. dev->dev_addr[3],
  4891. dev->dev_addr[4],
  4892. dev->dev_addr[5]);
  4893. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4894. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4895. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4896. "csum " : "",
  4897. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4898. "vlan " : "",
  4899. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4900. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4901. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4902. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4903. np->need_linktimer ? "lnktim " : "",
  4904. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4905. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4906. np->desc_ver);
  4907. return 0;
  4908. out_error:
  4909. if (phystate_orig)
  4910. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4911. pci_set_drvdata(pci_dev, NULL);
  4912. out_freering:
  4913. free_rings(dev);
  4914. out_unmap:
  4915. iounmap(get_hwbase(dev));
  4916. out_relreg:
  4917. pci_release_regions(pci_dev);
  4918. out_disable:
  4919. pci_disable_device(pci_dev);
  4920. out_free:
  4921. free_netdev(dev);
  4922. out:
  4923. return err;
  4924. }
  4925. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4926. {
  4927. struct net_device *dev = pci_get_drvdata(pci_dev);
  4928. struct fe_priv *np = netdev_priv(dev);
  4929. u8 __iomem *base = get_hwbase(dev);
  4930. unregister_netdev(dev);
  4931. /* special op: write back the misordered MAC address - otherwise
  4932. * the next nv_probe would see a wrong address.
  4933. */
  4934. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4935. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4936. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  4937. base + NvRegTransmitPoll);
  4938. /* free all structures */
  4939. free_rings(dev);
  4940. iounmap(get_hwbase(dev));
  4941. pci_release_regions(pci_dev);
  4942. pci_disable_device(pci_dev);
  4943. free_netdev(dev);
  4944. pci_set_drvdata(pci_dev, NULL);
  4945. }
  4946. #ifdef CONFIG_PM
  4947. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4948. {
  4949. struct net_device *dev = pci_get_drvdata(pdev);
  4950. struct fe_priv *np = netdev_priv(dev);
  4951. if (!netif_running(dev))
  4952. goto out;
  4953. netif_device_detach(dev);
  4954. // Gross.
  4955. nv_close(dev);
  4956. pci_save_state(pdev);
  4957. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4958. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4959. out:
  4960. return 0;
  4961. }
  4962. static int nv_resume(struct pci_dev *pdev)
  4963. {
  4964. struct net_device *dev = pci_get_drvdata(pdev);
  4965. int rc = 0;
  4966. if (!netif_running(dev))
  4967. goto out;
  4968. netif_device_attach(dev);
  4969. pci_set_power_state(pdev, PCI_D0);
  4970. pci_restore_state(pdev);
  4971. pci_enable_wake(pdev, PCI_D0, 0);
  4972. rc = nv_open(dev);
  4973. out:
  4974. return rc;
  4975. }
  4976. #else
  4977. #define nv_suspend NULL
  4978. #define nv_resume NULL
  4979. #endif /* CONFIG_PM */
  4980. static struct pci_device_id pci_tbl[] = {
  4981. { /* nForce Ethernet Controller */
  4982. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4983. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4984. },
  4985. { /* nForce2 Ethernet Controller */
  4986. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4987. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4988. },
  4989. { /* nForce3 Ethernet Controller */
  4990. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4991. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4992. },
  4993. { /* nForce3 Ethernet Controller */
  4994. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4995. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4996. },
  4997. { /* nForce3 Ethernet Controller */
  4998. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4999. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5000. },
  5001. { /* nForce3 Ethernet Controller */
  5002. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5003. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5004. },
  5005. { /* nForce3 Ethernet Controller */
  5006. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5007. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5008. },
  5009. { /* CK804 Ethernet Controller */
  5010. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5011. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5012. },
  5013. { /* CK804 Ethernet Controller */
  5014. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5015. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5016. },
  5017. { /* MCP04 Ethernet Controller */
  5018. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5019. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5020. },
  5021. { /* MCP04 Ethernet Controller */
  5022. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5023. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5024. },
  5025. { /* MCP51 Ethernet Controller */
  5026. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5027. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5028. },
  5029. { /* MCP51 Ethernet Controller */
  5030. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5031. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5032. },
  5033. { /* MCP55 Ethernet Controller */
  5034. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5035. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5036. },
  5037. { /* MCP55 Ethernet Controller */
  5038. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5039. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5040. },
  5041. { /* MCP61 Ethernet Controller */
  5042. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5043. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5044. },
  5045. { /* MCP61 Ethernet Controller */
  5046. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5047. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5048. },
  5049. { /* MCP61 Ethernet Controller */
  5050. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5051. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5052. },
  5053. { /* MCP61 Ethernet Controller */
  5054. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5055. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5056. },
  5057. { /* MCP65 Ethernet Controller */
  5058. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5059. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT,
  5060. },
  5061. { /* MCP65 Ethernet Controller */
  5062. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5063. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5064. },
  5065. { /* MCP65 Ethernet Controller */
  5066. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5067. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5068. },
  5069. { /* MCP65 Ethernet Controller */
  5070. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5071. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5072. },
  5073. { /* MCP67 Ethernet Controller */
  5074. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5075. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5076. },
  5077. { /* MCP67 Ethernet Controller */
  5078. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5079. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5080. },
  5081. { /* MCP67 Ethernet Controller */
  5082. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5083. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5084. },
  5085. { /* MCP67 Ethernet Controller */
  5086. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5087. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5088. },
  5089. { /* MCP73 Ethernet Controller */
  5090. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5091. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5092. },
  5093. { /* MCP73 Ethernet Controller */
  5094. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5095. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5096. },
  5097. { /* MCP73 Ethernet Controller */
  5098. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5099. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5100. },
  5101. { /* MCP73 Ethernet Controller */
  5102. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5103. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5104. },
  5105. { /* MCP77 Ethernet Controller */
  5106. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5107. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5108. },
  5109. { /* MCP77 Ethernet Controller */
  5110. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5111. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5112. },
  5113. { /* MCP77 Ethernet Controller */
  5114. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5115. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5116. },
  5117. { /* MCP77 Ethernet Controller */
  5118. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5119. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5120. },
  5121. { /* MCP79 Ethernet Controller */
  5122. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5123. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5124. },
  5125. { /* MCP79 Ethernet Controller */
  5126. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5127. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5128. },
  5129. { /* MCP79 Ethernet Controller */
  5130. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5131. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5132. },
  5133. { /* MCP79 Ethernet Controller */
  5134. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5135. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5136. },
  5137. {0,},
  5138. };
  5139. static struct pci_driver driver = {
  5140. .name = DRV_NAME,
  5141. .id_table = pci_tbl,
  5142. .probe = nv_probe,
  5143. .remove = __devexit_p(nv_remove),
  5144. .suspend = nv_suspend,
  5145. .resume = nv_resume,
  5146. };
  5147. static int __init init_nic(void)
  5148. {
  5149. return pci_register_driver(&driver);
  5150. }
  5151. static void __exit exit_nic(void)
  5152. {
  5153. pci_unregister_driver(&driver);
  5154. }
  5155. module_param(max_interrupt_work, int, 0);
  5156. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5157. module_param(optimization_mode, int, 0);
  5158. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5159. module_param(poll_interval, int, 0);
  5160. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5161. module_param(msi, int, 0);
  5162. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5163. module_param(msix, int, 0);
  5164. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5165. module_param(dma_64bit, int, 0);
  5166. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5167. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5168. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5169. MODULE_LICENSE("GPL");
  5170. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5171. module_init(init_nic);
  5172. module_exit(exit_nic);