forcedeth.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. *
  111. * Known bugs:
  112. * We suspect that on some hardware no TX done interrupts are generated.
  113. * This means recovery from netif_stop_queue only happens if the hw timer
  114. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  115. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  116. * If your hardware reliably generates tx done interrupts, then you can remove
  117. * DEV_NEED_TIMERIRQ from the driver_data flags.
  118. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  119. * superfluous timer interrupts from the nic.
  120. */
  121. #define FORCEDETH_VERSION "0.54"
  122. #define DRV_NAME "forcedeth"
  123. #include <linux/module.h>
  124. #include <linux/types.h>
  125. #include <linux/pci.h>
  126. #include <linux/interrupt.h>
  127. #include <linux/netdevice.h>
  128. #include <linux/etherdevice.h>
  129. #include <linux/delay.h>
  130. #include <linux/spinlock.h>
  131. #include <linux/ethtool.h>
  132. #include <linux/timer.h>
  133. #include <linux/skbuff.h>
  134. #include <linux/mii.h>
  135. #include <linux/random.h>
  136. #include <linux/init.h>
  137. #include <linux/if_vlan.h>
  138. #include <linux/dma-mapping.h>
  139. #include <asm/irq.h>
  140. #include <asm/io.h>
  141. #include <asm/uaccess.h>
  142. #include <asm/system.h>
  143. #if 0
  144. #define dprintk printk
  145. #else
  146. #define dprintk(x...) do { } while (0)
  147. #endif
  148. /*
  149. * Hardware access:
  150. */
  151. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  152. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  153. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  154. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  155. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  156. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  157. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  158. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  159. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  160. enum {
  161. NvRegIrqStatus = 0x000,
  162. #define NVREG_IRQSTAT_MIIEVENT 0x040
  163. #define NVREG_IRQSTAT_MASK 0x1ff
  164. NvRegIrqMask = 0x004,
  165. #define NVREG_IRQ_RX_ERROR 0x0001
  166. #define NVREG_IRQ_RX 0x0002
  167. #define NVREG_IRQ_RX_NOBUF 0x0004
  168. #define NVREG_IRQ_TX_ERR 0x0008
  169. #define NVREG_IRQ_TX_OK 0x0010
  170. #define NVREG_IRQ_TIMER 0x0020
  171. #define NVREG_IRQ_LINK 0x0040
  172. #define NVREG_IRQ_RX_FORCED 0x0080
  173. #define NVREG_IRQ_TX_FORCED 0x0100
  174. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  175. #define NVREG_IRQMASK_CPU 0x0040
  176. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  177. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  178. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  179. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  180. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  181. NVREG_IRQ_TX_FORCED))
  182. NvRegUnknownSetupReg6 = 0x008,
  183. #define NVREG_UNKSETUP6_VAL 3
  184. /*
  185. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  186. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  187. */
  188. NvRegPollingInterval = 0x00c,
  189. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  190. #define NVREG_POLL_DEFAULT_CPU 13
  191. NvRegMSIMap0 = 0x020,
  192. NvRegMSIMap1 = 0x024,
  193. NvRegMSIIrqMask = 0x030,
  194. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  195. NvRegMisc1 = 0x080,
  196. #define NVREG_MISC1_HD 0x02
  197. #define NVREG_MISC1_FORCE 0x3b0f3c
  198. NvRegMacReset = 0x3c,
  199. #define NVREG_MAC_RESET_ASSERT 0x0F3
  200. NvRegTransmitterControl = 0x084,
  201. #define NVREG_XMITCTL_START 0x01
  202. NvRegTransmitterStatus = 0x088,
  203. #define NVREG_XMITSTAT_BUSY 0x01
  204. NvRegPacketFilterFlags = 0x8c,
  205. #define NVREG_PFF_ALWAYS 0x7F0008
  206. #define NVREG_PFF_PROMISC 0x80
  207. #define NVREG_PFF_MYADDR 0x20
  208. NvRegOffloadConfig = 0x90,
  209. #define NVREG_OFFLOAD_HOMEPHY 0x601
  210. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  211. NvRegReceiverControl = 0x094,
  212. #define NVREG_RCVCTL_START 0x01
  213. NvRegReceiverStatus = 0x98,
  214. #define NVREG_RCVSTAT_BUSY 0x01
  215. NvRegRandomSeed = 0x9c,
  216. #define NVREG_RNDSEED_MASK 0x00ff
  217. #define NVREG_RNDSEED_FORCE 0x7f00
  218. #define NVREG_RNDSEED_FORCE2 0x2d00
  219. #define NVREG_RNDSEED_FORCE3 0x7400
  220. NvRegUnknownSetupReg1 = 0xA0,
  221. #define NVREG_UNKSETUP1_VAL 0x16070f
  222. NvRegUnknownSetupReg2 = 0xA4,
  223. #define NVREG_UNKSETUP2_VAL 0x16
  224. NvRegMacAddrA = 0xA8,
  225. NvRegMacAddrB = 0xAC,
  226. NvRegMulticastAddrA = 0xB0,
  227. #define NVREG_MCASTADDRA_FORCE 0x01
  228. NvRegMulticastAddrB = 0xB4,
  229. NvRegMulticastMaskA = 0xB8,
  230. NvRegMulticastMaskB = 0xBC,
  231. NvRegPhyInterface = 0xC0,
  232. #define PHY_RGMII 0x10000000
  233. NvRegTxRingPhysAddr = 0x100,
  234. NvRegRxRingPhysAddr = 0x104,
  235. NvRegRingSizes = 0x108,
  236. #define NVREG_RINGSZ_TXSHIFT 0
  237. #define NVREG_RINGSZ_RXSHIFT 16
  238. NvRegUnknownTransmitterReg = 0x10c,
  239. NvRegLinkSpeed = 0x110,
  240. #define NVREG_LINKSPEED_FORCE 0x10000
  241. #define NVREG_LINKSPEED_10 1000
  242. #define NVREG_LINKSPEED_100 100
  243. #define NVREG_LINKSPEED_1000 50
  244. #define NVREG_LINKSPEED_MASK (0xFFF)
  245. NvRegUnknownSetupReg5 = 0x130,
  246. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  247. NvRegUnknownSetupReg3 = 0x13c,
  248. #define NVREG_UNKSETUP3_VAL1 0x200010
  249. NvRegTxRxControl = 0x144,
  250. #define NVREG_TXRXCTL_KICK 0x0001
  251. #define NVREG_TXRXCTL_BIT1 0x0002
  252. #define NVREG_TXRXCTL_BIT2 0x0004
  253. #define NVREG_TXRXCTL_IDLE 0x0008
  254. #define NVREG_TXRXCTL_RESET 0x0010
  255. #define NVREG_TXRXCTL_RXCHECK 0x0400
  256. #define NVREG_TXRXCTL_DESC_1 0
  257. #define NVREG_TXRXCTL_DESC_2 0x02100
  258. #define NVREG_TXRXCTL_DESC_3 0x02200
  259. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  260. #define NVREG_TXRXCTL_VLANINS 0x00080
  261. NvRegTxRingPhysAddrHigh = 0x148,
  262. NvRegRxRingPhysAddrHigh = 0x14C,
  263. NvRegMIIStatus = 0x180,
  264. #define NVREG_MIISTAT_ERROR 0x0001
  265. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  266. #define NVREG_MIISTAT_MASK 0x000f
  267. #define NVREG_MIISTAT_MASK2 0x000f
  268. NvRegUnknownSetupReg4 = 0x184,
  269. #define NVREG_UNKSETUP4_VAL 8
  270. NvRegAdapterControl = 0x188,
  271. #define NVREG_ADAPTCTL_START 0x02
  272. #define NVREG_ADAPTCTL_LINKUP 0x04
  273. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  274. #define NVREG_ADAPTCTL_RUNNING 0x100000
  275. #define NVREG_ADAPTCTL_PHYSHIFT 24
  276. NvRegMIISpeed = 0x18c,
  277. #define NVREG_MIISPEED_BIT8 (1<<8)
  278. #define NVREG_MIIDELAY 5
  279. NvRegMIIControl = 0x190,
  280. #define NVREG_MIICTL_INUSE 0x08000
  281. #define NVREG_MIICTL_WRITE 0x00400
  282. #define NVREG_MIICTL_ADDRSHIFT 5
  283. NvRegMIIData = 0x194,
  284. NvRegWakeUpFlags = 0x200,
  285. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  286. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  287. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  288. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  289. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  290. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  291. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  292. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  293. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  294. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  295. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  296. NvRegPatternCRC = 0x204,
  297. NvRegPatternMask = 0x208,
  298. NvRegPowerCap = 0x268,
  299. #define NVREG_POWERCAP_D3SUPP (1<<30)
  300. #define NVREG_POWERCAP_D2SUPP (1<<26)
  301. #define NVREG_POWERCAP_D1SUPP (1<<25)
  302. NvRegPowerState = 0x26c,
  303. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  304. #define NVREG_POWERSTATE_VALID 0x0100
  305. #define NVREG_POWERSTATE_MASK 0x0003
  306. #define NVREG_POWERSTATE_D0 0x0000
  307. #define NVREG_POWERSTATE_D1 0x0001
  308. #define NVREG_POWERSTATE_D2 0x0002
  309. #define NVREG_POWERSTATE_D3 0x0003
  310. NvRegVlanControl = 0x300,
  311. #define NVREG_VLANCONTROL_ENABLE 0x2000
  312. NvRegMSIXMap0 = 0x3e0,
  313. NvRegMSIXMap1 = 0x3e4,
  314. NvRegMSIXIrqStatus = 0x3f0,
  315. NvRegPowerState2 = 0x600,
  316. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  317. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  318. };
  319. /* Big endian: should work, but is untested */
  320. struct ring_desc {
  321. u32 PacketBuffer;
  322. u32 FlagLen;
  323. };
  324. struct ring_desc_ex {
  325. u32 PacketBufferHigh;
  326. u32 PacketBufferLow;
  327. u32 TxVlan;
  328. u32 FlagLen;
  329. };
  330. typedef union _ring_type {
  331. struct ring_desc* orig;
  332. struct ring_desc_ex* ex;
  333. } ring_type;
  334. #define FLAG_MASK_V1 0xffff0000
  335. #define FLAG_MASK_V2 0xffffc000
  336. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  337. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  338. #define NV_TX_LASTPACKET (1<<16)
  339. #define NV_TX_RETRYERROR (1<<19)
  340. #define NV_TX_FORCED_INTERRUPT (1<<24)
  341. #define NV_TX_DEFERRED (1<<26)
  342. #define NV_TX_CARRIERLOST (1<<27)
  343. #define NV_TX_LATECOLLISION (1<<28)
  344. #define NV_TX_UNDERFLOW (1<<29)
  345. #define NV_TX_ERROR (1<<30)
  346. #define NV_TX_VALID (1<<31)
  347. #define NV_TX2_LASTPACKET (1<<29)
  348. #define NV_TX2_RETRYERROR (1<<18)
  349. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  350. #define NV_TX2_DEFERRED (1<<25)
  351. #define NV_TX2_CARRIERLOST (1<<26)
  352. #define NV_TX2_LATECOLLISION (1<<27)
  353. #define NV_TX2_UNDERFLOW (1<<28)
  354. /* error and valid are the same for both */
  355. #define NV_TX2_ERROR (1<<30)
  356. #define NV_TX2_VALID (1<<31)
  357. #define NV_TX2_TSO (1<<28)
  358. #define NV_TX2_TSO_SHIFT 14
  359. #define NV_TX2_TSO_MAX_SHIFT 14
  360. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  361. #define NV_TX2_CHECKSUM_L3 (1<<27)
  362. #define NV_TX2_CHECKSUM_L4 (1<<26)
  363. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  364. #define NV_RX_DESCRIPTORVALID (1<<16)
  365. #define NV_RX_MISSEDFRAME (1<<17)
  366. #define NV_RX_SUBSTRACT1 (1<<18)
  367. #define NV_RX_ERROR1 (1<<23)
  368. #define NV_RX_ERROR2 (1<<24)
  369. #define NV_RX_ERROR3 (1<<25)
  370. #define NV_RX_ERROR4 (1<<26)
  371. #define NV_RX_CRCERR (1<<27)
  372. #define NV_RX_OVERFLOW (1<<28)
  373. #define NV_RX_FRAMINGERR (1<<29)
  374. #define NV_RX_ERROR (1<<30)
  375. #define NV_RX_AVAIL (1<<31)
  376. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  377. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  378. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  379. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  380. #define NV_RX2_DESCRIPTORVALID (1<<29)
  381. #define NV_RX2_SUBSTRACT1 (1<<25)
  382. #define NV_RX2_ERROR1 (1<<18)
  383. #define NV_RX2_ERROR2 (1<<19)
  384. #define NV_RX2_ERROR3 (1<<20)
  385. #define NV_RX2_ERROR4 (1<<21)
  386. #define NV_RX2_CRCERR (1<<22)
  387. #define NV_RX2_OVERFLOW (1<<23)
  388. #define NV_RX2_FRAMINGERR (1<<24)
  389. /* error and avail are the same for both */
  390. #define NV_RX2_ERROR (1<<30)
  391. #define NV_RX2_AVAIL (1<<31)
  392. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  393. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  394. /* Miscelaneous hardware related defines: */
  395. #define NV_PCI_REGSZ_VER1 0x270
  396. #define NV_PCI_REGSZ_VER2 0x604
  397. /* various timeout delays: all in usec */
  398. #define NV_TXRX_RESET_DELAY 4
  399. #define NV_TXSTOP_DELAY1 10
  400. #define NV_TXSTOP_DELAY1MAX 500000
  401. #define NV_TXSTOP_DELAY2 100
  402. #define NV_RXSTOP_DELAY1 10
  403. #define NV_RXSTOP_DELAY1MAX 500000
  404. #define NV_RXSTOP_DELAY2 100
  405. #define NV_SETUP5_DELAY 5
  406. #define NV_SETUP5_DELAYMAX 50000
  407. #define NV_POWERUP_DELAY 5
  408. #define NV_POWERUP_DELAYMAX 5000
  409. #define NV_MIIBUSY_DELAY 50
  410. #define NV_MIIPHY_DELAY 10
  411. #define NV_MIIPHY_DELAYMAX 10000
  412. #define NV_MAC_RESET_DELAY 64
  413. #define NV_WAKEUPPATTERNS 5
  414. #define NV_WAKEUPMASKENTRIES 4
  415. /* General driver defaults */
  416. #define NV_WATCHDOG_TIMEO (5*HZ)
  417. #define RX_RING 128
  418. #define TX_RING 256
  419. /*
  420. * If your nic mysteriously hangs then try to reduce the limits
  421. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  422. * last valid ring entry. But this would be impossible to
  423. * implement - probably a disassembly error.
  424. */
  425. #define TX_LIMIT_STOP 255
  426. #define TX_LIMIT_START 254
  427. /* rx/tx mac addr + type + vlan + align + slack*/
  428. #define NV_RX_HEADERS (64)
  429. /* even more slack. */
  430. #define NV_RX_ALLOC_PAD (64)
  431. /* maximum mtu size */
  432. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  433. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  434. #define OOM_REFILL (1+HZ/20)
  435. #define POLL_WAIT (1+HZ/100)
  436. #define LINK_TIMEOUT (3*HZ)
  437. /*
  438. * desc_ver values:
  439. * The nic supports three different descriptor types:
  440. * - DESC_VER_1: Original
  441. * - DESC_VER_2: support for jumbo frames.
  442. * - DESC_VER_3: 64-bit format.
  443. */
  444. #define DESC_VER_1 1
  445. #define DESC_VER_2 2
  446. #define DESC_VER_3 3
  447. /* PHY defines */
  448. #define PHY_OUI_MARVELL 0x5043
  449. #define PHY_OUI_CICADA 0x03f1
  450. #define PHYID1_OUI_MASK 0x03ff
  451. #define PHYID1_OUI_SHFT 6
  452. #define PHYID2_OUI_MASK 0xfc00
  453. #define PHYID2_OUI_SHFT 10
  454. #define PHY_INIT1 0x0f000
  455. #define PHY_INIT2 0x0e00
  456. #define PHY_INIT3 0x01000
  457. #define PHY_INIT4 0x0200
  458. #define PHY_INIT5 0x0004
  459. #define PHY_INIT6 0x02000
  460. #define PHY_GIGABIT 0x0100
  461. #define PHY_TIMEOUT 0x1
  462. #define PHY_ERROR 0x2
  463. #define PHY_100 0x1
  464. #define PHY_1000 0x2
  465. #define PHY_HALF 0x100
  466. /* FIXME: MII defines that should be added to <linux/mii.h> */
  467. #define MII_1000BT_CR 0x09
  468. #define MII_1000BT_SR 0x0a
  469. #define ADVERTISE_1000FULL 0x0200
  470. #define ADVERTISE_1000HALF 0x0100
  471. #define LPA_1000FULL 0x0800
  472. #define LPA_1000HALF 0x0400
  473. /* MSI/MSI-X defines */
  474. #define NV_MSI_X_MAX_VECTORS 8
  475. #define NV_MSI_X_VECTORS_MASK 0x000f
  476. #define NV_MSI_CAPABLE 0x0010
  477. #define NV_MSI_X_CAPABLE 0x0020
  478. #define NV_MSI_ENABLED 0x0040
  479. #define NV_MSI_X_ENABLED 0x0080
  480. #define NV_MSI_X_VECTOR_ALL 0x0
  481. #define NV_MSI_X_VECTOR_RX 0x0
  482. #define NV_MSI_X_VECTOR_TX 0x1
  483. #define NV_MSI_X_VECTOR_OTHER 0x2
  484. /*
  485. * SMP locking:
  486. * All hardware access under dev->priv->lock, except the performance
  487. * critical parts:
  488. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  489. * by the arch code for interrupts.
  490. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  491. * needs dev->priv->lock :-(
  492. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  493. */
  494. /* in dev: base, irq */
  495. struct fe_priv {
  496. spinlock_t lock;
  497. /* General data:
  498. * Locking: spin_lock(&np->lock); */
  499. struct net_device_stats stats;
  500. int in_shutdown;
  501. u32 linkspeed;
  502. int duplex;
  503. int autoneg;
  504. int fixed_mode;
  505. int phyaddr;
  506. int wolenabled;
  507. unsigned int phy_oui;
  508. u16 gigabit;
  509. /* General data: RO fields */
  510. dma_addr_t ring_addr;
  511. struct pci_dev *pci_dev;
  512. u32 orig_mac[2];
  513. u32 irqmask;
  514. u32 desc_ver;
  515. u32 txrxctl_bits;
  516. u32 vlanctl_bits;
  517. u32 driver_data;
  518. u32 register_size;
  519. void __iomem *base;
  520. /* rx specific fields.
  521. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  522. */
  523. ring_type rx_ring;
  524. unsigned int cur_rx, refill_rx;
  525. struct sk_buff *rx_skbuff[RX_RING];
  526. dma_addr_t rx_dma[RX_RING];
  527. unsigned int rx_buf_sz;
  528. unsigned int pkt_limit;
  529. struct timer_list oom_kick;
  530. struct timer_list nic_poll;
  531. u32 nic_poll_irq;
  532. /* media detection workaround.
  533. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  534. */
  535. int need_linktimer;
  536. unsigned long link_timeout;
  537. /*
  538. * tx specific fields.
  539. */
  540. ring_type tx_ring;
  541. unsigned int next_tx, nic_tx;
  542. struct sk_buff *tx_skbuff[TX_RING];
  543. dma_addr_t tx_dma[TX_RING];
  544. unsigned int tx_dma_len[TX_RING];
  545. u32 tx_flags;
  546. /* vlan fields */
  547. struct vlan_group *vlangrp;
  548. /* msi/msi-x fields */
  549. u32 msi_flags;
  550. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  551. };
  552. /*
  553. * Maximum number of loops until we assume that a bit in the irq mask
  554. * is stuck. Overridable with module param.
  555. */
  556. static int max_interrupt_work = 5;
  557. /*
  558. * Optimization can be either throuput mode or cpu mode
  559. *
  560. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  561. * CPU Mode: Interrupts are controlled by a timer.
  562. */
  563. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  564. #define NV_OPTIMIZATION_MODE_CPU 1
  565. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  566. /*
  567. * Poll interval for timer irq
  568. *
  569. * This interval determines how frequent an interrupt is generated.
  570. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  571. * Min = 0, and Max = 65535
  572. */
  573. static int poll_interval = -1;
  574. /*
  575. * Disable MSI interrupts
  576. */
  577. static int disable_msi = 0;
  578. /*
  579. * Disable MSIX interrupts
  580. */
  581. static int disable_msix = 0;
  582. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  583. {
  584. return netdev_priv(dev);
  585. }
  586. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  587. {
  588. return ((struct fe_priv *)netdev_priv(dev))->base;
  589. }
  590. static inline void pci_push(u8 __iomem *base)
  591. {
  592. /* force out pending posted writes */
  593. readl(base);
  594. }
  595. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  596. {
  597. return le32_to_cpu(prd->FlagLen)
  598. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  599. }
  600. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  601. {
  602. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  603. }
  604. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  605. int delay, int delaymax, const char *msg)
  606. {
  607. u8 __iomem *base = get_hwbase(dev);
  608. pci_push(base);
  609. do {
  610. udelay(delay);
  611. delaymax -= delay;
  612. if (delaymax < 0) {
  613. if (msg)
  614. printk(msg);
  615. return 1;
  616. }
  617. } while ((readl(base + offset) & mask) != target);
  618. return 0;
  619. }
  620. #define NV_SETUP_RX_RING 0x01
  621. #define NV_SETUP_TX_RING 0x02
  622. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  623. {
  624. struct fe_priv *np = get_nvpriv(dev);
  625. u8 __iomem *base = get_hwbase(dev);
  626. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  627. if (rxtx_flags & NV_SETUP_RX_RING) {
  628. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  629. }
  630. if (rxtx_flags & NV_SETUP_TX_RING) {
  631. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  632. }
  633. } else {
  634. if (rxtx_flags & NV_SETUP_RX_RING) {
  635. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  636. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  637. }
  638. if (rxtx_flags & NV_SETUP_TX_RING) {
  639. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  640. writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  641. }
  642. }
  643. }
  644. static int using_multi_irqs(struct net_device *dev)
  645. {
  646. struct fe_priv *np = get_nvpriv(dev);
  647. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  648. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  649. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  650. return 0;
  651. else
  652. return 1;
  653. }
  654. static void nv_enable_irq(struct net_device *dev)
  655. {
  656. struct fe_priv *np = get_nvpriv(dev);
  657. if (!using_multi_irqs(dev)) {
  658. if (np->msi_flags & NV_MSI_X_ENABLED)
  659. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  660. else
  661. enable_irq(dev->irq);
  662. } else {
  663. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  664. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  665. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  666. }
  667. }
  668. static void nv_disable_irq(struct net_device *dev)
  669. {
  670. struct fe_priv *np = get_nvpriv(dev);
  671. if (!using_multi_irqs(dev)) {
  672. if (np->msi_flags & NV_MSI_X_ENABLED)
  673. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  674. else
  675. disable_irq(dev->irq);
  676. } else {
  677. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  678. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  679. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  680. }
  681. }
  682. /* In MSIX mode, a write to irqmask behaves as XOR */
  683. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  684. {
  685. u8 __iomem *base = get_hwbase(dev);
  686. writel(mask, base + NvRegIrqMask);
  687. }
  688. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  689. {
  690. struct fe_priv *np = get_nvpriv(dev);
  691. u8 __iomem *base = get_hwbase(dev);
  692. if (np->msi_flags & NV_MSI_X_ENABLED) {
  693. writel(mask, base + NvRegIrqMask);
  694. } else {
  695. if (np->msi_flags & NV_MSI_ENABLED)
  696. writel(0, base + NvRegMSIIrqMask);
  697. writel(0, base + NvRegIrqMask);
  698. }
  699. }
  700. #define MII_READ (-1)
  701. /* mii_rw: read/write a register on the PHY.
  702. *
  703. * Caller must guarantee serialization
  704. */
  705. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  706. {
  707. u8 __iomem *base = get_hwbase(dev);
  708. u32 reg;
  709. int retval;
  710. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  711. reg = readl(base + NvRegMIIControl);
  712. if (reg & NVREG_MIICTL_INUSE) {
  713. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  714. udelay(NV_MIIBUSY_DELAY);
  715. }
  716. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  717. if (value != MII_READ) {
  718. writel(value, base + NvRegMIIData);
  719. reg |= NVREG_MIICTL_WRITE;
  720. }
  721. writel(reg, base + NvRegMIIControl);
  722. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  723. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  724. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  725. dev->name, miireg, addr);
  726. retval = -1;
  727. } else if (value != MII_READ) {
  728. /* it was a write operation - fewer failures are detectable */
  729. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  730. dev->name, value, miireg, addr);
  731. retval = 0;
  732. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  733. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  734. dev->name, miireg, addr);
  735. retval = -1;
  736. } else {
  737. retval = readl(base + NvRegMIIData);
  738. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  739. dev->name, miireg, addr, retval);
  740. }
  741. return retval;
  742. }
  743. static int phy_reset(struct net_device *dev)
  744. {
  745. struct fe_priv *np = netdev_priv(dev);
  746. u32 miicontrol;
  747. unsigned int tries = 0;
  748. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  749. miicontrol |= BMCR_RESET;
  750. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  751. return -1;
  752. }
  753. /* wait for 500ms */
  754. msleep(500);
  755. /* must wait till reset is deasserted */
  756. while (miicontrol & BMCR_RESET) {
  757. msleep(10);
  758. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  759. /* FIXME: 100 tries seem excessive */
  760. if (tries++ > 100)
  761. return -1;
  762. }
  763. return 0;
  764. }
  765. static int phy_init(struct net_device *dev)
  766. {
  767. struct fe_priv *np = get_nvpriv(dev);
  768. u8 __iomem *base = get_hwbase(dev);
  769. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  770. /* set advertise register */
  771. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  772. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  773. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  774. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  775. return PHY_ERROR;
  776. }
  777. /* get phy interface type */
  778. phyinterface = readl(base + NvRegPhyInterface);
  779. /* see if gigabit phy */
  780. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  781. if (mii_status & PHY_GIGABIT) {
  782. np->gigabit = PHY_GIGABIT;
  783. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  784. mii_control_1000 &= ~ADVERTISE_1000HALF;
  785. if (phyinterface & PHY_RGMII)
  786. mii_control_1000 |= ADVERTISE_1000FULL;
  787. else
  788. mii_control_1000 &= ~ADVERTISE_1000FULL;
  789. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  790. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  791. return PHY_ERROR;
  792. }
  793. }
  794. else
  795. np->gigabit = 0;
  796. /* reset the phy */
  797. if (phy_reset(dev)) {
  798. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  799. return PHY_ERROR;
  800. }
  801. /* phy vendor specific configuration */
  802. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  803. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  804. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  805. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  806. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  807. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  808. return PHY_ERROR;
  809. }
  810. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  811. phy_reserved |= PHY_INIT5;
  812. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  813. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  814. return PHY_ERROR;
  815. }
  816. }
  817. if (np->phy_oui == PHY_OUI_CICADA) {
  818. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  819. phy_reserved |= PHY_INIT6;
  820. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  821. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  822. return PHY_ERROR;
  823. }
  824. }
  825. /* restart auto negotiation */
  826. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  827. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  828. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  829. return PHY_ERROR;
  830. }
  831. return 0;
  832. }
  833. static void nv_start_rx(struct net_device *dev)
  834. {
  835. struct fe_priv *np = netdev_priv(dev);
  836. u8 __iomem *base = get_hwbase(dev);
  837. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  838. /* Already running? Stop it. */
  839. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  840. writel(0, base + NvRegReceiverControl);
  841. pci_push(base);
  842. }
  843. writel(np->linkspeed, base + NvRegLinkSpeed);
  844. pci_push(base);
  845. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  846. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  847. dev->name, np->duplex, np->linkspeed);
  848. pci_push(base);
  849. }
  850. static void nv_stop_rx(struct net_device *dev)
  851. {
  852. u8 __iomem *base = get_hwbase(dev);
  853. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  854. writel(0, base + NvRegReceiverControl);
  855. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  856. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  857. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  858. udelay(NV_RXSTOP_DELAY2);
  859. writel(0, base + NvRegLinkSpeed);
  860. }
  861. static void nv_start_tx(struct net_device *dev)
  862. {
  863. u8 __iomem *base = get_hwbase(dev);
  864. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  865. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  866. pci_push(base);
  867. }
  868. static void nv_stop_tx(struct net_device *dev)
  869. {
  870. u8 __iomem *base = get_hwbase(dev);
  871. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  872. writel(0, base + NvRegTransmitterControl);
  873. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  874. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  875. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  876. udelay(NV_TXSTOP_DELAY2);
  877. writel(0, base + NvRegUnknownTransmitterReg);
  878. }
  879. static void nv_txrx_reset(struct net_device *dev)
  880. {
  881. struct fe_priv *np = netdev_priv(dev);
  882. u8 __iomem *base = get_hwbase(dev);
  883. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  884. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  885. pci_push(base);
  886. udelay(NV_TXRX_RESET_DELAY);
  887. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  888. pci_push(base);
  889. }
  890. static void nv_mac_reset(struct net_device *dev)
  891. {
  892. struct fe_priv *np = netdev_priv(dev);
  893. u8 __iomem *base = get_hwbase(dev);
  894. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  895. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  896. pci_push(base);
  897. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  898. pci_push(base);
  899. udelay(NV_MAC_RESET_DELAY);
  900. writel(0, base + NvRegMacReset);
  901. pci_push(base);
  902. udelay(NV_MAC_RESET_DELAY);
  903. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  904. pci_push(base);
  905. }
  906. /*
  907. * nv_get_stats: dev->get_stats function
  908. * Get latest stats value from the nic.
  909. * Called with read_lock(&dev_base_lock) held for read -
  910. * only synchronized against unregister_netdevice.
  911. */
  912. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  913. {
  914. struct fe_priv *np = netdev_priv(dev);
  915. /* It seems that the nic always generates interrupts and doesn't
  916. * accumulate errors internally. Thus the current values in np->stats
  917. * are already up to date.
  918. */
  919. return &np->stats;
  920. }
  921. /*
  922. * nv_alloc_rx: fill rx ring entries.
  923. * Return 1 if the allocations for the skbs failed and the
  924. * rx engine is without Available descriptors
  925. */
  926. static int nv_alloc_rx(struct net_device *dev)
  927. {
  928. struct fe_priv *np = netdev_priv(dev);
  929. unsigned int refill_rx = np->refill_rx;
  930. int nr;
  931. while (np->cur_rx != refill_rx) {
  932. struct sk_buff *skb;
  933. nr = refill_rx % RX_RING;
  934. if (np->rx_skbuff[nr] == NULL) {
  935. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  936. if (!skb)
  937. break;
  938. skb->dev = dev;
  939. np->rx_skbuff[nr] = skb;
  940. } else {
  941. skb = np->rx_skbuff[nr];
  942. }
  943. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  944. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  945. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  946. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  947. wmb();
  948. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  949. } else {
  950. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  951. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  952. wmb();
  953. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  954. }
  955. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  956. dev->name, refill_rx);
  957. refill_rx++;
  958. }
  959. np->refill_rx = refill_rx;
  960. if (np->cur_rx - refill_rx == RX_RING)
  961. return 1;
  962. return 0;
  963. }
  964. static void nv_do_rx_refill(unsigned long data)
  965. {
  966. struct net_device *dev = (struct net_device *) data;
  967. struct fe_priv *np = netdev_priv(dev);
  968. if (!using_multi_irqs(dev)) {
  969. if (np->msi_flags & NV_MSI_X_ENABLED)
  970. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  971. else
  972. disable_irq(dev->irq);
  973. } else {
  974. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  975. }
  976. if (nv_alloc_rx(dev)) {
  977. spin_lock_irq(&np->lock);
  978. if (!np->in_shutdown)
  979. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  980. spin_unlock_irq(&np->lock);
  981. }
  982. if (!using_multi_irqs(dev)) {
  983. if (np->msi_flags & NV_MSI_X_ENABLED)
  984. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  985. else
  986. enable_irq(dev->irq);
  987. } else {
  988. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  989. }
  990. }
  991. static void nv_init_rx(struct net_device *dev)
  992. {
  993. struct fe_priv *np = netdev_priv(dev);
  994. int i;
  995. np->cur_rx = RX_RING;
  996. np->refill_rx = 0;
  997. for (i = 0; i < RX_RING; i++)
  998. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  999. np->rx_ring.orig[i].FlagLen = 0;
  1000. else
  1001. np->rx_ring.ex[i].FlagLen = 0;
  1002. }
  1003. static void nv_init_tx(struct net_device *dev)
  1004. {
  1005. struct fe_priv *np = netdev_priv(dev);
  1006. int i;
  1007. np->next_tx = np->nic_tx = 0;
  1008. for (i = 0; i < TX_RING; i++) {
  1009. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1010. np->tx_ring.orig[i].FlagLen = 0;
  1011. else
  1012. np->tx_ring.ex[i].FlagLen = 0;
  1013. np->tx_skbuff[i] = NULL;
  1014. np->tx_dma[i] = 0;
  1015. }
  1016. }
  1017. static int nv_init_ring(struct net_device *dev)
  1018. {
  1019. nv_init_tx(dev);
  1020. nv_init_rx(dev);
  1021. return nv_alloc_rx(dev);
  1022. }
  1023. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1024. {
  1025. struct fe_priv *np = netdev_priv(dev);
  1026. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1027. dev->name, skbnr);
  1028. if (np->tx_dma[skbnr]) {
  1029. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1030. np->tx_dma_len[skbnr],
  1031. PCI_DMA_TODEVICE);
  1032. np->tx_dma[skbnr] = 0;
  1033. }
  1034. if (np->tx_skbuff[skbnr]) {
  1035. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1036. np->tx_skbuff[skbnr] = NULL;
  1037. return 1;
  1038. } else {
  1039. return 0;
  1040. }
  1041. }
  1042. static void nv_drain_tx(struct net_device *dev)
  1043. {
  1044. struct fe_priv *np = netdev_priv(dev);
  1045. unsigned int i;
  1046. for (i = 0; i < TX_RING; i++) {
  1047. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1048. np->tx_ring.orig[i].FlagLen = 0;
  1049. else
  1050. np->tx_ring.ex[i].FlagLen = 0;
  1051. if (nv_release_txskb(dev, i))
  1052. np->stats.tx_dropped++;
  1053. }
  1054. }
  1055. static void nv_drain_rx(struct net_device *dev)
  1056. {
  1057. struct fe_priv *np = netdev_priv(dev);
  1058. int i;
  1059. for (i = 0; i < RX_RING; i++) {
  1060. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1061. np->rx_ring.orig[i].FlagLen = 0;
  1062. else
  1063. np->rx_ring.ex[i].FlagLen = 0;
  1064. wmb();
  1065. if (np->rx_skbuff[i]) {
  1066. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1067. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1068. PCI_DMA_FROMDEVICE);
  1069. dev_kfree_skb(np->rx_skbuff[i]);
  1070. np->rx_skbuff[i] = NULL;
  1071. }
  1072. }
  1073. }
  1074. static void drain_ring(struct net_device *dev)
  1075. {
  1076. nv_drain_tx(dev);
  1077. nv_drain_rx(dev);
  1078. }
  1079. /*
  1080. * nv_start_xmit: dev->hard_start_xmit function
  1081. * Called with dev->xmit_lock held.
  1082. */
  1083. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1084. {
  1085. struct fe_priv *np = netdev_priv(dev);
  1086. u32 tx_flags = 0;
  1087. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1088. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1089. unsigned int nr = (np->next_tx - 1) % TX_RING;
  1090. unsigned int start_nr = np->next_tx % TX_RING;
  1091. unsigned int i;
  1092. u32 offset = 0;
  1093. u32 bcnt;
  1094. u32 size = skb->len-skb->data_len;
  1095. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1096. u32 tx_flags_vlan = 0;
  1097. /* add fragments to entries count */
  1098. for (i = 0; i < fragments; i++) {
  1099. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1100. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1101. }
  1102. spin_lock_irq(&np->lock);
  1103. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  1104. spin_unlock_irq(&np->lock);
  1105. netif_stop_queue(dev);
  1106. return NETDEV_TX_BUSY;
  1107. }
  1108. /* setup the header buffer */
  1109. do {
  1110. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1111. nr = (nr + 1) % TX_RING;
  1112. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1113. PCI_DMA_TODEVICE);
  1114. np->tx_dma_len[nr] = bcnt;
  1115. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1116. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1117. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1118. } else {
  1119. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1120. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1121. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1122. }
  1123. tx_flags = np->tx_flags;
  1124. offset += bcnt;
  1125. size -= bcnt;
  1126. } while(size);
  1127. /* setup the fragments */
  1128. for (i = 0; i < fragments; i++) {
  1129. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1130. u32 size = frag->size;
  1131. offset = 0;
  1132. do {
  1133. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1134. nr = (nr + 1) % TX_RING;
  1135. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1136. PCI_DMA_TODEVICE);
  1137. np->tx_dma_len[nr] = bcnt;
  1138. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1139. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1140. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1141. } else {
  1142. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1143. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1144. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1145. }
  1146. offset += bcnt;
  1147. size -= bcnt;
  1148. } while (size);
  1149. }
  1150. /* set last fragment flag */
  1151. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1152. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1153. } else {
  1154. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1155. }
  1156. np->tx_skbuff[nr] = skb;
  1157. #ifdef NETIF_F_TSO
  1158. if (skb_shinfo(skb)->tso_size)
  1159. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1160. else
  1161. #endif
  1162. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1163. /* vlan tag */
  1164. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1165. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1166. }
  1167. /* set tx flags */
  1168. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1169. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1170. } else {
  1171. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1172. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1173. }
  1174. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1175. dev->name, np->next_tx, entries, tx_flags_extra);
  1176. {
  1177. int j;
  1178. for (j=0; j<64; j++) {
  1179. if ((j%16) == 0)
  1180. dprintk("\n%03x:", j);
  1181. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1182. }
  1183. dprintk("\n");
  1184. }
  1185. np->next_tx += entries;
  1186. dev->trans_start = jiffies;
  1187. spin_unlock_irq(&np->lock);
  1188. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1189. pci_push(get_hwbase(dev));
  1190. return NETDEV_TX_OK;
  1191. }
  1192. /*
  1193. * nv_tx_done: check for completed packets, release the skbs.
  1194. *
  1195. * Caller must own np->lock.
  1196. */
  1197. static void nv_tx_done(struct net_device *dev)
  1198. {
  1199. struct fe_priv *np = netdev_priv(dev);
  1200. u32 Flags;
  1201. unsigned int i;
  1202. struct sk_buff *skb;
  1203. while (np->nic_tx != np->next_tx) {
  1204. i = np->nic_tx % TX_RING;
  1205. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1206. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1207. else
  1208. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1209. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1210. dev->name, np->nic_tx, Flags);
  1211. if (Flags & NV_TX_VALID)
  1212. break;
  1213. if (np->desc_ver == DESC_VER_1) {
  1214. if (Flags & NV_TX_LASTPACKET) {
  1215. skb = np->tx_skbuff[i];
  1216. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1217. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1218. if (Flags & NV_TX_UNDERFLOW)
  1219. np->stats.tx_fifo_errors++;
  1220. if (Flags & NV_TX_CARRIERLOST)
  1221. np->stats.tx_carrier_errors++;
  1222. np->stats.tx_errors++;
  1223. } else {
  1224. np->stats.tx_packets++;
  1225. np->stats.tx_bytes += skb->len;
  1226. }
  1227. }
  1228. } else {
  1229. if (Flags & NV_TX2_LASTPACKET) {
  1230. skb = np->tx_skbuff[i];
  1231. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1232. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1233. if (Flags & NV_TX2_UNDERFLOW)
  1234. np->stats.tx_fifo_errors++;
  1235. if (Flags & NV_TX2_CARRIERLOST)
  1236. np->stats.tx_carrier_errors++;
  1237. np->stats.tx_errors++;
  1238. } else {
  1239. np->stats.tx_packets++;
  1240. np->stats.tx_bytes += skb->len;
  1241. }
  1242. }
  1243. }
  1244. nv_release_txskb(dev, i);
  1245. np->nic_tx++;
  1246. }
  1247. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1248. netif_wake_queue(dev);
  1249. }
  1250. /*
  1251. * nv_tx_timeout: dev->tx_timeout function
  1252. * Called with dev->xmit_lock held.
  1253. */
  1254. static void nv_tx_timeout(struct net_device *dev)
  1255. {
  1256. struct fe_priv *np = netdev_priv(dev);
  1257. u8 __iomem *base = get_hwbase(dev);
  1258. u32 status;
  1259. if (np->msi_flags & NV_MSI_X_ENABLED)
  1260. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1261. else
  1262. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1263. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1264. {
  1265. int i;
  1266. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1267. dev->name, (unsigned long)np->ring_addr,
  1268. np->next_tx, np->nic_tx);
  1269. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1270. for (i=0;i<=np->register_size;i+= 32) {
  1271. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1272. i,
  1273. readl(base + i + 0), readl(base + i + 4),
  1274. readl(base + i + 8), readl(base + i + 12),
  1275. readl(base + i + 16), readl(base + i + 20),
  1276. readl(base + i + 24), readl(base + i + 28));
  1277. }
  1278. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1279. for (i=0;i<TX_RING;i+= 4) {
  1280. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1281. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1282. i,
  1283. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1284. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1285. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1286. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1287. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1288. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1289. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1290. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1291. } else {
  1292. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1293. i,
  1294. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1295. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1296. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1297. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1298. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1299. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1300. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1301. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1302. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1303. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1304. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1305. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1306. }
  1307. }
  1308. }
  1309. spin_lock_irq(&np->lock);
  1310. /* 1) stop tx engine */
  1311. nv_stop_tx(dev);
  1312. /* 2) check that the packets were not sent already: */
  1313. nv_tx_done(dev);
  1314. /* 3) if there are dead entries: clear everything */
  1315. if (np->next_tx != np->nic_tx) {
  1316. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1317. nv_drain_tx(dev);
  1318. np->next_tx = np->nic_tx = 0;
  1319. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1320. netif_wake_queue(dev);
  1321. }
  1322. /* 4) restart tx engine */
  1323. nv_start_tx(dev);
  1324. spin_unlock_irq(&np->lock);
  1325. }
  1326. /*
  1327. * Called when the nic notices a mismatch between the actual data len on the
  1328. * wire and the len indicated in the 802 header
  1329. */
  1330. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1331. {
  1332. int hdrlen; /* length of the 802 header */
  1333. int protolen; /* length as stored in the proto field */
  1334. /* 1) calculate len according to header */
  1335. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1336. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1337. hdrlen = VLAN_HLEN;
  1338. } else {
  1339. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1340. hdrlen = ETH_HLEN;
  1341. }
  1342. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1343. dev->name, datalen, protolen, hdrlen);
  1344. if (protolen > ETH_DATA_LEN)
  1345. return datalen; /* Value in proto field not a len, no checks possible */
  1346. protolen += hdrlen;
  1347. /* consistency checks: */
  1348. if (datalen > ETH_ZLEN) {
  1349. if (datalen >= protolen) {
  1350. /* more data on wire than in 802 header, trim of
  1351. * additional data.
  1352. */
  1353. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1354. dev->name, protolen);
  1355. return protolen;
  1356. } else {
  1357. /* less data on wire than mentioned in header.
  1358. * Discard the packet.
  1359. */
  1360. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1361. dev->name);
  1362. return -1;
  1363. }
  1364. } else {
  1365. /* short packet. Accept only if 802 values are also short */
  1366. if (protolen > ETH_ZLEN) {
  1367. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1368. dev->name);
  1369. return -1;
  1370. }
  1371. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1372. dev->name, datalen);
  1373. return datalen;
  1374. }
  1375. }
  1376. static void nv_rx_process(struct net_device *dev)
  1377. {
  1378. struct fe_priv *np = netdev_priv(dev);
  1379. u32 Flags;
  1380. u32 vlanflags = 0;
  1381. for (;;) {
  1382. struct sk_buff *skb;
  1383. int len;
  1384. int i;
  1385. if (np->cur_rx - np->refill_rx >= RX_RING)
  1386. break; /* we scanned the whole ring - do not continue */
  1387. i = np->cur_rx % RX_RING;
  1388. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1389. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1390. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1391. } else {
  1392. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1393. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1394. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1395. }
  1396. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1397. dev->name, np->cur_rx, Flags);
  1398. if (Flags & NV_RX_AVAIL)
  1399. break; /* still owned by hardware, */
  1400. /*
  1401. * the packet is for us - immediately tear down the pci mapping.
  1402. * TODO: check if a prefetch of the first cacheline improves
  1403. * the performance.
  1404. */
  1405. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1406. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1407. PCI_DMA_FROMDEVICE);
  1408. {
  1409. int j;
  1410. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1411. for (j=0; j<64; j++) {
  1412. if ((j%16) == 0)
  1413. dprintk("\n%03x:", j);
  1414. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1415. }
  1416. dprintk("\n");
  1417. }
  1418. /* look at what we actually got: */
  1419. if (np->desc_ver == DESC_VER_1) {
  1420. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1421. goto next_pkt;
  1422. if (Flags & NV_RX_ERROR) {
  1423. if (Flags & NV_RX_MISSEDFRAME) {
  1424. np->stats.rx_missed_errors++;
  1425. np->stats.rx_errors++;
  1426. goto next_pkt;
  1427. }
  1428. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1429. np->stats.rx_errors++;
  1430. goto next_pkt;
  1431. }
  1432. if (Flags & NV_RX_CRCERR) {
  1433. np->stats.rx_crc_errors++;
  1434. np->stats.rx_errors++;
  1435. goto next_pkt;
  1436. }
  1437. if (Flags & NV_RX_OVERFLOW) {
  1438. np->stats.rx_over_errors++;
  1439. np->stats.rx_errors++;
  1440. goto next_pkt;
  1441. }
  1442. if (Flags & NV_RX_ERROR4) {
  1443. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1444. if (len < 0) {
  1445. np->stats.rx_errors++;
  1446. goto next_pkt;
  1447. }
  1448. }
  1449. /* framing errors are soft errors. */
  1450. if (Flags & NV_RX_FRAMINGERR) {
  1451. if (Flags & NV_RX_SUBSTRACT1) {
  1452. len--;
  1453. }
  1454. }
  1455. }
  1456. } else {
  1457. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1458. goto next_pkt;
  1459. if (Flags & NV_RX2_ERROR) {
  1460. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1461. np->stats.rx_errors++;
  1462. goto next_pkt;
  1463. }
  1464. if (Flags & NV_RX2_CRCERR) {
  1465. np->stats.rx_crc_errors++;
  1466. np->stats.rx_errors++;
  1467. goto next_pkt;
  1468. }
  1469. if (Flags & NV_RX2_OVERFLOW) {
  1470. np->stats.rx_over_errors++;
  1471. np->stats.rx_errors++;
  1472. goto next_pkt;
  1473. }
  1474. if (Flags & NV_RX2_ERROR4) {
  1475. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1476. if (len < 0) {
  1477. np->stats.rx_errors++;
  1478. goto next_pkt;
  1479. }
  1480. }
  1481. /* framing errors are soft errors */
  1482. if (Flags & NV_RX2_FRAMINGERR) {
  1483. if (Flags & NV_RX2_SUBSTRACT1) {
  1484. len--;
  1485. }
  1486. }
  1487. }
  1488. Flags &= NV_RX2_CHECKSUMMASK;
  1489. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1490. Flags == NV_RX2_CHECKSUMOK2 ||
  1491. Flags == NV_RX2_CHECKSUMOK3) {
  1492. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1493. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1494. } else {
  1495. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1496. }
  1497. }
  1498. /* got a valid packet - forward it to the network core */
  1499. skb = np->rx_skbuff[i];
  1500. np->rx_skbuff[i] = NULL;
  1501. skb_put(skb, len);
  1502. skb->protocol = eth_type_trans(skb, dev);
  1503. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1504. dev->name, np->cur_rx, len, skb->protocol);
  1505. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1506. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1507. } else {
  1508. netif_rx(skb);
  1509. }
  1510. dev->last_rx = jiffies;
  1511. np->stats.rx_packets++;
  1512. np->stats.rx_bytes += len;
  1513. next_pkt:
  1514. np->cur_rx++;
  1515. }
  1516. }
  1517. static void set_bufsize(struct net_device *dev)
  1518. {
  1519. struct fe_priv *np = netdev_priv(dev);
  1520. if (dev->mtu <= ETH_DATA_LEN)
  1521. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1522. else
  1523. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1524. }
  1525. /*
  1526. * nv_change_mtu: dev->change_mtu function
  1527. * Called with dev_base_lock held for read.
  1528. */
  1529. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1530. {
  1531. struct fe_priv *np = netdev_priv(dev);
  1532. int old_mtu;
  1533. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1534. return -EINVAL;
  1535. old_mtu = dev->mtu;
  1536. dev->mtu = new_mtu;
  1537. /* return early if the buffer sizes will not change */
  1538. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1539. return 0;
  1540. if (old_mtu == new_mtu)
  1541. return 0;
  1542. /* synchronized against open : rtnl_lock() held by caller */
  1543. if (netif_running(dev)) {
  1544. u8 __iomem *base = get_hwbase(dev);
  1545. /*
  1546. * It seems that the nic preloads valid ring entries into an
  1547. * internal buffer. The procedure for flushing everything is
  1548. * guessed, there is probably a simpler approach.
  1549. * Changing the MTU is a rare event, it shouldn't matter.
  1550. */
  1551. nv_disable_irq(dev);
  1552. spin_lock_bh(&dev->xmit_lock);
  1553. spin_lock(&np->lock);
  1554. /* stop engines */
  1555. nv_stop_rx(dev);
  1556. nv_stop_tx(dev);
  1557. nv_txrx_reset(dev);
  1558. /* drain rx queue */
  1559. nv_drain_rx(dev);
  1560. nv_drain_tx(dev);
  1561. /* reinit driver view of the rx queue */
  1562. nv_init_rx(dev);
  1563. nv_init_tx(dev);
  1564. /* alloc new rx buffers */
  1565. set_bufsize(dev);
  1566. if (nv_alloc_rx(dev)) {
  1567. if (!np->in_shutdown)
  1568. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1569. }
  1570. /* reinit nic view of the rx queue */
  1571. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1572. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1573. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1574. base + NvRegRingSizes);
  1575. pci_push(base);
  1576. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1577. pci_push(base);
  1578. /* restart rx engine */
  1579. nv_start_rx(dev);
  1580. nv_start_tx(dev);
  1581. spin_unlock(&np->lock);
  1582. spin_unlock_bh(&dev->xmit_lock);
  1583. nv_enable_irq(dev);
  1584. }
  1585. return 0;
  1586. }
  1587. static void nv_copy_mac_to_hw(struct net_device *dev)
  1588. {
  1589. u8 __iomem *base = get_hwbase(dev);
  1590. u32 mac[2];
  1591. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1592. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1593. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1594. writel(mac[0], base + NvRegMacAddrA);
  1595. writel(mac[1], base + NvRegMacAddrB);
  1596. }
  1597. /*
  1598. * nv_set_mac_address: dev->set_mac_address function
  1599. * Called with rtnl_lock() held.
  1600. */
  1601. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1602. {
  1603. struct fe_priv *np = netdev_priv(dev);
  1604. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1605. if(!is_valid_ether_addr(macaddr->sa_data))
  1606. return -EADDRNOTAVAIL;
  1607. /* synchronized against open : rtnl_lock() held by caller */
  1608. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1609. if (netif_running(dev)) {
  1610. spin_lock_bh(&dev->xmit_lock);
  1611. spin_lock_irq(&np->lock);
  1612. /* stop rx engine */
  1613. nv_stop_rx(dev);
  1614. /* set mac address */
  1615. nv_copy_mac_to_hw(dev);
  1616. /* restart rx engine */
  1617. nv_start_rx(dev);
  1618. spin_unlock_irq(&np->lock);
  1619. spin_unlock_bh(&dev->xmit_lock);
  1620. } else {
  1621. nv_copy_mac_to_hw(dev);
  1622. }
  1623. return 0;
  1624. }
  1625. /*
  1626. * nv_set_multicast: dev->set_multicast function
  1627. * Called with dev->xmit_lock held.
  1628. */
  1629. static void nv_set_multicast(struct net_device *dev)
  1630. {
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. u8 __iomem *base = get_hwbase(dev);
  1633. u32 addr[2];
  1634. u32 mask[2];
  1635. u32 pff;
  1636. memset(addr, 0, sizeof(addr));
  1637. memset(mask, 0, sizeof(mask));
  1638. if (dev->flags & IFF_PROMISC) {
  1639. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1640. pff = NVREG_PFF_PROMISC;
  1641. } else {
  1642. pff = NVREG_PFF_MYADDR;
  1643. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1644. u32 alwaysOff[2];
  1645. u32 alwaysOn[2];
  1646. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1647. if (dev->flags & IFF_ALLMULTI) {
  1648. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1649. } else {
  1650. struct dev_mc_list *walk;
  1651. walk = dev->mc_list;
  1652. while (walk != NULL) {
  1653. u32 a, b;
  1654. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1655. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1656. alwaysOn[0] &= a;
  1657. alwaysOff[0] &= ~a;
  1658. alwaysOn[1] &= b;
  1659. alwaysOff[1] &= ~b;
  1660. walk = walk->next;
  1661. }
  1662. }
  1663. addr[0] = alwaysOn[0];
  1664. addr[1] = alwaysOn[1];
  1665. mask[0] = alwaysOn[0] | alwaysOff[0];
  1666. mask[1] = alwaysOn[1] | alwaysOff[1];
  1667. }
  1668. }
  1669. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1670. pff |= NVREG_PFF_ALWAYS;
  1671. spin_lock_irq(&np->lock);
  1672. nv_stop_rx(dev);
  1673. writel(addr[0], base + NvRegMulticastAddrA);
  1674. writel(addr[1], base + NvRegMulticastAddrB);
  1675. writel(mask[0], base + NvRegMulticastMaskA);
  1676. writel(mask[1], base + NvRegMulticastMaskB);
  1677. writel(pff, base + NvRegPacketFilterFlags);
  1678. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1679. dev->name);
  1680. nv_start_rx(dev);
  1681. spin_unlock_irq(&np->lock);
  1682. }
  1683. /**
  1684. * nv_update_linkspeed: Setup the MAC according to the link partner
  1685. * @dev: Network device to be configured
  1686. *
  1687. * The function queries the PHY and checks if there is a link partner.
  1688. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1689. * set to 10 MBit HD.
  1690. *
  1691. * The function returns 0 if there is no link partner and 1 if there is
  1692. * a good link partner.
  1693. */
  1694. static int nv_update_linkspeed(struct net_device *dev)
  1695. {
  1696. struct fe_priv *np = netdev_priv(dev);
  1697. u8 __iomem *base = get_hwbase(dev);
  1698. int adv, lpa;
  1699. int newls = np->linkspeed;
  1700. int newdup = np->duplex;
  1701. int mii_status;
  1702. int retval = 0;
  1703. u32 control_1000, status_1000, phyreg;
  1704. /* BMSR_LSTATUS is latched, read it twice:
  1705. * we want the current value.
  1706. */
  1707. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1708. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1709. if (!(mii_status & BMSR_LSTATUS)) {
  1710. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1711. dev->name);
  1712. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1713. newdup = 0;
  1714. retval = 0;
  1715. goto set_speed;
  1716. }
  1717. if (np->autoneg == 0) {
  1718. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1719. dev->name, np->fixed_mode);
  1720. if (np->fixed_mode & LPA_100FULL) {
  1721. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1722. newdup = 1;
  1723. } else if (np->fixed_mode & LPA_100HALF) {
  1724. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1725. newdup = 0;
  1726. } else if (np->fixed_mode & LPA_10FULL) {
  1727. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1728. newdup = 1;
  1729. } else {
  1730. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1731. newdup = 0;
  1732. }
  1733. retval = 1;
  1734. goto set_speed;
  1735. }
  1736. /* check auto negotiation is complete */
  1737. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1738. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1739. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1740. newdup = 0;
  1741. retval = 0;
  1742. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1743. goto set_speed;
  1744. }
  1745. retval = 1;
  1746. if (np->gigabit == PHY_GIGABIT) {
  1747. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1748. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1749. if ((control_1000 & ADVERTISE_1000FULL) &&
  1750. (status_1000 & LPA_1000FULL)) {
  1751. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1752. dev->name);
  1753. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1754. newdup = 1;
  1755. goto set_speed;
  1756. }
  1757. }
  1758. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1759. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1760. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1761. dev->name, adv, lpa);
  1762. /* FIXME: handle parallel detection properly */
  1763. lpa = lpa & adv;
  1764. if (lpa & LPA_100FULL) {
  1765. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1766. newdup = 1;
  1767. } else if (lpa & LPA_100HALF) {
  1768. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1769. newdup = 0;
  1770. } else if (lpa & LPA_10FULL) {
  1771. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1772. newdup = 1;
  1773. } else if (lpa & LPA_10HALF) {
  1774. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1775. newdup = 0;
  1776. } else {
  1777. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1778. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1779. newdup = 0;
  1780. }
  1781. set_speed:
  1782. if (np->duplex == newdup && np->linkspeed == newls)
  1783. return retval;
  1784. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1785. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1786. np->duplex = newdup;
  1787. np->linkspeed = newls;
  1788. if (np->gigabit == PHY_GIGABIT) {
  1789. phyreg = readl(base + NvRegRandomSeed);
  1790. phyreg &= ~(0x3FF00);
  1791. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1792. phyreg |= NVREG_RNDSEED_FORCE3;
  1793. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1794. phyreg |= NVREG_RNDSEED_FORCE2;
  1795. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1796. phyreg |= NVREG_RNDSEED_FORCE;
  1797. writel(phyreg, base + NvRegRandomSeed);
  1798. }
  1799. phyreg = readl(base + NvRegPhyInterface);
  1800. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1801. if (np->duplex == 0)
  1802. phyreg |= PHY_HALF;
  1803. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1804. phyreg |= PHY_100;
  1805. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1806. phyreg |= PHY_1000;
  1807. writel(phyreg, base + NvRegPhyInterface);
  1808. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1809. base + NvRegMisc1);
  1810. pci_push(base);
  1811. writel(np->linkspeed, base + NvRegLinkSpeed);
  1812. pci_push(base);
  1813. return retval;
  1814. }
  1815. static void nv_linkchange(struct net_device *dev)
  1816. {
  1817. if (nv_update_linkspeed(dev)) {
  1818. if (!netif_carrier_ok(dev)) {
  1819. netif_carrier_on(dev);
  1820. printk(KERN_INFO "%s: link up.\n", dev->name);
  1821. nv_start_rx(dev);
  1822. }
  1823. } else {
  1824. if (netif_carrier_ok(dev)) {
  1825. netif_carrier_off(dev);
  1826. printk(KERN_INFO "%s: link down.\n", dev->name);
  1827. nv_stop_rx(dev);
  1828. }
  1829. }
  1830. }
  1831. static void nv_link_irq(struct net_device *dev)
  1832. {
  1833. u8 __iomem *base = get_hwbase(dev);
  1834. u32 miistat;
  1835. miistat = readl(base + NvRegMIIStatus);
  1836. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1837. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1838. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1839. nv_linkchange(dev);
  1840. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1841. }
  1842. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1843. {
  1844. struct net_device *dev = (struct net_device *) data;
  1845. struct fe_priv *np = netdev_priv(dev);
  1846. u8 __iomem *base = get_hwbase(dev);
  1847. u32 events;
  1848. int i;
  1849. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1850. for (i=0; ; i++) {
  1851. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  1852. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1853. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1854. } else {
  1855. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1856. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  1857. }
  1858. pci_push(base);
  1859. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1860. if (!(events & np->irqmask))
  1861. break;
  1862. spin_lock(&np->lock);
  1863. nv_tx_done(dev);
  1864. spin_unlock(&np->lock);
  1865. nv_rx_process(dev);
  1866. if (nv_alloc_rx(dev)) {
  1867. spin_lock(&np->lock);
  1868. if (!np->in_shutdown)
  1869. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1870. spin_unlock(&np->lock);
  1871. }
  1872. if (events & NVREG_IRQ_LINK) {
  1873. spin_lock(&np->lock);
  1874. nv_link_irq(dev);
  1875. spin_unlock(&np->lock);
  1876. }
  1877. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1878. spin_lock(&np->lock);
  1879. nv_linkchange(dev);
  1880. spin_unlock(&np->lock);
  1881. np->link_timeout = jiffies + LINK_TIMEOUT;
  1882. }
  1883. if (events & (NVREG_IRQ_TX_ERR)) {
  1884. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1885. dev->name, events);
  1886. }
  1887. if (events & (NVREG_IRQ_UNKNOWN)) {
  1888. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1889. dev->name, events);
  1890. }
  1891. if (i > max_interrupt_work) {
  1892. spin_lock(&np->lock);
  1893. /* disable interrupts on the nic */
  1894. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  1895. writel(0, base + NvRegIrqMask);
  1896. else
  1897. writel(np->irqmask, base + NvRegIrqMask);
  1898. pci_push(base);
  1899. if (!np->in_shutdown) {
  1900. np->nic_poll_irq = np->irqmask;
  1901. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1902. }
  1903. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1904. spin_unlock(&np->lock);
  1905. break;
  1906. }
  1907. }
  1908. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1909. return IRQ_RETVAL(i);
  1910. }
  1911. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  1912. {
  1913. struct net_device *dev = (struct net_device *) data;
  1914. struct fe_priv *np = netdev_priv(dev);
  1915. u8 __iomem *base = get_hwbase(dev);
  1916. u32 events;
  1917. int i;
  1918. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  1919. for (i=0; ; i++) {
  1920. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  1921. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  1922. pci_push(base);
  1923. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  1924. if (!(events & np->irqmask))
  1925. break;
  1926. spin_lock_irq(&np->lock);
  1927. nv_tx_done(dev);
  1928. spin_unlock_irq(&np->lock);
  1929. if (events & (NVREG_IRQ_TX_ERR)) {
  1930. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1931. dev->name, events);
  1932. }
  1933. if (i > max_interrupt_work) {
  1934. spin_lock_irq(&np->lock);
  1935. /* disable interrupts on the nic */
  1936. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  1937. pci_push(base);
  1938. if (!np->in_shutdown) {
  1939. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  1940. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1941. }
  1942. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  1943. spin_unlock_irq(&np->lock);
  1944. break;
  1945. }
  1946. }
  1947. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  1948. return IRQ_RETVAL(i);
  1949. }
  1950. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  1951. {
  1952. struct net_device *dev = (struct net_device *) data;
  1953. struct fe_priv *np = netdev_priv(dev);
  1954. u8 __iomem *base = get_hwbase(dev);
  1955. u32 events;
  1956. int i;
  1957. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  1958. for (i=0; ; i++) {
  1959. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  1960. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  1961. pci_push(base);
  1962. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  1963. if (!(events & np->irqmask))
  1964. break;
  1965. nv_rx_process(dev);
  1966. if (nv_alloc_rx(dev)) {
  1967. spin_lock_irq(&np->lock);
  1968. if (!np->in_shutdown)
  1969. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1970. spin_unlock_irq(&np->lock);
  1971. }
  1972. if (i > max_interrupt_work) {
  1973. spin_lock_irq(&np->lock);
  1974. /* disable interrupts on the nic */
  1975. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  1976. pci_push(base);
  1977. if (!np->in_shutdown) {
  1978. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  1979. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1980. }
  1981. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  1982. spin_unlock_irq(&np->lock);
  1983. break;
  1984. }
  1985. }
  1986. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  1987. return IRQ_RETVAL(i);
  1988. }
  1989. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  1990. {
  1991. struct net_device *dev = (struct net_device *) data;
  1992. struct fe_priv *np = netdev_priv(dev);
  1993. u8 __iomem *base = get_hwbase(dev);
  1994. u32 events;
  1995. int i;
  1996. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  1997. for (i=0; ; i++) {
  1998. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  1999. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2000. pci_push(base);
  2001. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2002. if (!(events & np->irqmask))
  2003. break;
  2004. if (events & NVREG_IRQ_LINK) {
  2005. spin_lock_irq(&np->lock);
  2006. nv_link_irq(dev);
  2007. spin_unlock_irq(&np->lock);
  2008. }
  2009. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2010. spin_lock_irq(&np->lock);
  2011. nv_linkchange(dev);
  2012. spin_unlock_irq(&np->lock);
  2013. np->link_timeout = jiffies + LINK_TIMEOUT;
  2014. }
  2015. if (events & (NVREG_IRQ_UNKNOWN)) {
  2016. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2017. dev->name, events);
  2018. }
  2019. if (i > max_interrupt_work) {
  2020. spin_lock_irq(&np->lock);
  2021. /* disable interrupts on the nic */
  2022. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2023. pci_push(base);
  2024. if (!np->in_shutdown) {
  2025. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2026. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2027. }
  2028. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2029. spin_unlock_irq(&np->lock);
  2030. break;
  2031. }
  2032. }
  2033. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2034. return IRQ_RETVAL(i);
  2035. }
  2036. static void nv_do_nic_poll(unsigned long data)
  2037. {
  2038. struct net_device *dev = (struct net_device *) data;
  2039. struct fe_priv *np = netdev_priv(dev);
  2040. u8 __iomem *base = get_hwbase(dev);
  2041. u32 mask = 0;
  2042. /*
  2043. * First disable irq(s) and then
  2044. * reenable interrupts on the nic, we have to do this before calling
  2045. * nv_nic_irq because that may decide to do otherwise
  2046. */
  2047. if (!using_multi_irqs(dev)) {
  2048. if (np->msi_flags & NV_MSI_X_ENABLED)
  2049. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2050. else
  2051. disable_irq(dev->irq);
  2052. mask = np->irqmask;
  2053. } else {
  2054. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2055. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2056. mask |= NVREG_IRQ_RX_ALL;
  2057. }
  2058. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2059. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2060. mask |= NVREG_IRQ_TX_ALL;
  2061. }
  2062. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2063. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2064. mask |= NVREG_IRQ_OTHER;
  2065. }
  2066. }
  2067. np->nic_poll_irq = 0;
  2068. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2069. writel(mask, base + NvRegIrqMask);
  2070. pci_push(base);
  2071. if (!using_multi_irqs(dev)) {
  2072. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2073. if (np->msi_flags & NV_MSI_X_ENABLED)
  2074. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2075. else
  2076. enable_irq(dev->irq);
  2077. } else {
  2078. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2079. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2080. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2081. }
  2082. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2083. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2084. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2085. }
  2086. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2087. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2088. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2089. }
  2090. }
  2091. }
  2092. #ifdef CONFIG_NET_POLL_CONTROLLER
  2093. static void nv_poll_controller(struct net_device *dev)
  2094. {
  2095. nv_do_nic_poll((unsigned long) dev);
  2096. }
  2097. #endif
  2098. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2099. {
  2100. struct fe_priv *np = netdev_priv(dev);
  2101. strcpy(info->driver, "forcedeth");
  2102. strcpy(info->version, FORCEDETH_VERSION);
  2103. strcpy(info->bus_info, pci_name(np->pci_dev));
  2104. }
  2105. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2106. {
  2107. struct fe_priv *np = netdev_priv(dev);
  2108. wolinfo->supported = WAKE_MAGIC;
  2109. spin_lock_irq(&np->lock);
  2110. if (np->wolenabled)
  2111. wolinfo->wolopts = WAKE_MAGIC;
  2112. spin_unlock_irq(&np->lock);
  2113. }
  2114. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2115. {
  2116. struct fe_priv *np = netdev_priv(dev);
  2117. u8 __iomem *base = get_hwbase(dev);
  2118. spin_lock_irq(&np->lock);
  2119. if (wolinfo->wolopts == 0) {
  2120. writel(0, base + NvRegWakeUpFlags);
  2121. np->wolenabled = 0;
  2122. }
  2123. if (wolinfo->wolopts & WAKE_MAGIC) {
  2124. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  2125. np->wolenabled = 1;
  2126. }
  2127. spin_unlock_irq(&np->lock);
  2128. return 0;
  2129. }
  2130. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2131. {
  2132. struct fe_priv *np = netdev_priv(dev);
  2133. int adv;
  2134. spin_lock_irq(&np->lock);
  2135. ecmd->port = PORT_MII;
  2136. if (!netif_running(dev)) {
  2137. /* We do not track link speed / duplex setting if the
  2138. * interface is disabled. Force a link check */
  2139. nv_update_linkspeed(dev);
  2140. }
  2141. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2142. case NVREG_LINKSPEED_10:
  2143. ecmd->speed = SPEED_10;
  2144. break;
  2145. case NVREG_LINKSPEED_100:
  2146. ecmd->speed = SPEED_100;
  2147. break;
  2148. case NVREG_LINKSPEED_1000:
  2149. ecmd->speed = SPEED_1000;
  2150. break;
  2151. }
  2152. ecmd->duplex = DUPLEX_HALF;
  2153. if (np->duplex)
  2154. ecmd->duplex = DUPLEX_FULL;
  2155. ecmd->autoneg = np->autoneg;
  2156. ecmd->advertising = ADVERTISED_MII;
  2157. if (np->autoneg) {
  2158. ecmd->advertising |= ADVERTISED_Autoneg;
  2159. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2160. } else {
  2161. adv = np->fixed_mode;
  2162. }
  2163. if (adv & ADVERTISE_10HALF)
  2164. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2165. if (adv & ADVERTISE_10FULL)
  2166. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2167. if (adv & ADVERTISE_100HALF)
  2168. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2169. if (adv & ADVERTISE_100FULL)
  2170. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2171. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  2172. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2173. if (adv & ADVERTISE_1000FULL)
  2174. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2175. }
  2176. ecmd->supported = (SUPPORTED_Autoneg |
  2177. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2178. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2179. SUPPORTED_MII);
  2180. if (np->gigabit == PHY_GIGABIT)
  2181. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2182. ecmd->phy_address = np->phyaddr;
  2183. ecmd->transceiver = XCVR_EXTERNAL;
  2184. /* ignore maxtxpkt, maxrxpkt for now */
  2185. spin_unlock_irq(&np->lock);
  2186. return 0;
  2187. }
  2188. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2189. {
  2190. struct fe_priv *np = netdev_priv(dev);
  2191. if (ecmd->port != PORT_MII)
  2192. return -EINVAL;
  2193. if (ecmd->transceiver != XCVR_EXTERNAL)
  2194. return -EINVAL;
  2195. if (ecmd->phy_address != np->phyaddr) {
  2196. /* TODO: support switching between multiple phys. Should be
  2197. * trivial, but not enabled due to lack of test hardware. */
  2198. return -EINVAL;
  2199. }
  2200. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2201. u32 mask;
  2202. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2203. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2204. if (np->gigabit == PHY_GIGABIT)
  2205. mask |= ADVERTISED_1000baseT_Full;
  2206. if ((ecmd->advertising & mask) == 0)
  2207. return -EINVAL;
  2208. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2209. /* Note: autonegotiation disable, speed 1000 intentionally
  2210. * forbidden - noone should need that. */
  2211. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2212. return -EINVAL;
  2213. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2214. return -EINVAL;
  2215. } else {
  2216. return -EINVAL;
  2217. }
  2218. spin_lock_irq(&np->lock);
  2219. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2220. int adv, bmcr;
  2221. np->autoneg = 1;
  2222. /* advertise only what has been requested */
  2223. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2224. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2225. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2226. adv |= ADVERTISE_10HALF;
  2227. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2228. adv |= ADVERTISE_10FULL;
  2229. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2230. adv |= ADVERTISE_100HALF;
  2231. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2232. adv |= ADVERTISE_100FULL;
  2233. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2234. if (np->gigabit == PHY_GIGABIT) {
  2235. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2236. adv &= ~ADVERTISE_1000FULL;
  2237. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2238. adv |= ADVERTISE_1000FULL;
  2239. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2240. }
  2241. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2242. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2243. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2244. } else {
  2245. int adv, bmcr;
  2246. np->autoneg = 0;
  2247. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2248. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  2249. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2250. adv |= ADVERTISE_10HALF;
  2251. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2252. adv |= ADVERTISE_10FULL;
  2253. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2254. adv |= ADVERTISE_100HALF;
  2255. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2256. adv |= ADVERTISE_100FULL;
  2257. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2258. np->fixed_mode = adv;
  2259. if (np->gigabit == PHY_GIGABIT) {
  2260. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  2261. adv &= ~ADVERTISE_1000FULL;
  2262. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  2263. }
  2264. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2265. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  2266. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2267. bmcr |= BMCR_FULLDPLX;
  2268. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2269. bmcr |= BMCR_SPEED100;
  2270. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2271. if (netif_running(dev)) {
  2272. /* Wait a bit and then reconfigure the nic. */
  2273. udelay(10);
  2274. nv_linkchange(dev);
  2275. }
  2276. }
  2277. spin_unlock_irq(&np->lock);
  2278. return 0;
  2279. }
  2280. #define FORCEDETH_REGS_VER 1
  2281. static int nv_get_regs_len(struct net_device *dev)
  2282. {
  2283. struct fe_priv *np = netdev_priv(dev);
  2284. return np->register_size;
  2285. }
  2286. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2287. {
  2288. struct fe_priv *np = netdev_priv(dev);
  2289. u8 __iomem *base = get_hwbase(dev);
  2290. u32 *rbuf = buf;
  2291. int i;
  2292. regs->version = FORCEDETH_REGS_VER;
  2293. spin_lock_irq(&np->lock);
  2294. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2295. rbuf[i] = readl(base + i*sizeof(u32));
  2296. spin_unlock_irq(&np->lock);
  2297. }
  2298. static int nv_nway_reset(struct net_device *dev)
  2299. {
  2300. struct fe_priv *np = netdev_priv(dev);
  2301. int ret;
  2302. spin_lock_irq(&np->lock);
  2303. if (np->autoneg) {
  2304. int bmcr;
  2305. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2306. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2307. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2308. ret = 0;
  2309. } else {
  2310. ret = -EINVAL;
  2311. }
  2312. spin_unlock_irq(&np->lock);
  2313. return ret;
  2314. }
  2315. static struct ethtool_ops ops = {
  2316. .get_drvinfo = nv_get_drvinfo,
  2317. .get_link = ethtool_op_get_link,
  2318. .get_wol = nv_get_wol,
  2319. .set_wol = nv_set_wol,
  2320. .get_settings = nv_get_settings,
  2321. .set_settings = nv_set_settings,
  2322. .get_regs_len = nv_get_regs_len,
  2323. .get_regs = nv_get_regs,
  2324. .nway_reset = nv_nway_reset,
  2325. .get_perm_addr = ethtool_op_get_perm_addr,
  2326. };
  2327. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2328. {
  2329. struct fe_priv *np = get_nvpriv(dev);
  2330. spin_lock_irq(&np->lock);
  2331. /* save vlan group */
  2332. np->vlangrp = grp;
  2333. if (grp) {
  2334. /* enable vlan on MAC */
  2335. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2336. } else {
  2337. /* disable vlan on MAC */
  2338. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2339. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2340. }
  2341. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2342. spin_unlock_irq(&np->lock);
  2343. };
  2344. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2345. {
  2346. /* nothing to do */
  2347. };
  2348. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2349. {
  2350. u8 __iomem *base = get_hwbase(dev);
  2351. int i;
  2352. u32 msixmap = 0;
  2353. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2354. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2355. * the remaining 8 interrupts.
  2356. */
  2357. for (i = 0; i < 8; i++) {
  2358. if ((irqmask >> i) & 0x1) {
  2359. msixmap |= vector << (i << 2);
  2360. }
  2361. }
  2362. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2363. msixmap = 0;
  2364. for (i = 0; i < 8; i++) {
  2365. if ((irqmask >> (i + 8)) & 0x1) {
  2366. msixmap |= vector << (i << 2);
  2367. }
  2368. }
  2369. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2370. }
  2371. static int nv_request_irq(struct net_device *dev)
  2372. {
  2373. struct fe_priv *np = get_nvpriv(dev);
  2374. u8 __iomem *base = get_hwbase(dev);
  2375. int ret = 1;
  2376. int i;
  2377. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2378. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2379. np->msi_x_entry[i].entry = i;
  2380. }
  2381. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2382. np->msi_flags |= NV_MSI_X_ENABLED;
  2383. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2384. /* Request irq for rx handling */
  2385. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2386. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2387. pci_disable_msix(np->pci_dev);
  2388. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2389. goto out_err;
  2390. }
  2391. /* Request irq for tx handling */
  2392. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2393. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2394. pci_disable_msix(np->pci_dev);
  2395. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2396. goto out_free_rx;
  2397. }
  2398. /* Request irq for link and timer handling */
  2399. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  2400. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2401. pci_disable_msix(np->pci_dev);
  2402. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2403. goto out_free_tx;
  2404. }
  2405. /* map interrupts to their respective vector */
  2406. writel(0, base + NvRegMSIXMap0);
  2407. writel(0, base + NvRegMSIXMap1);
  2408. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2409. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2410. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2411. } else {
  2412. /* Request irq for all interrupts */
  2413. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2414. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2415. pci_disable_msix(np->pci_dev);
  2416. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2417. goto out_err;
  2418. }
  2419. /* map interrupts to vector 0 */
  2420. writel(0, base + NvRegMSIXMap0);
  2421. writel(0, base + NvRegMSIXMap1);
  2422. }
  2423. }
  2424. }
  2425. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2426. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2427. np->msi_flags |= NV_MSI_ENABLED;
  2428. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2429. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2430. pci_disable_msi(np->pci_dev);
  2431. np->msi_flags &= ~NV_MSI_ENABLED;
  2432. goto out_err;
  2433. }
  2434. /* map interrupts to vector 0 */
  2435. writel(0, base + NvRegMSIMap0);
  2436. writel(0, base + NvRegMSIMap1);
  2437. /* enable msi vector 0 */
  2438. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2439. }
  2440. }
  2441. if (ret != 0) {
  2442. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  2443. goto out_err;
  2444. }
  2445. return 0;
  2446. out_free_tx:
  2447. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2448. out_free_rx:
  2449. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2450. out_err:
  2451. return 1;
  2452. }
  2453. static void nv_free_irq(struct net_device *dev)
  2454. {
  2455. struct fe_priv *np = get_nvpriv(dev);
  2456. int i;
  2457. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2458. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2459. free_irq(np->msi_x_entry[i].vector, dev);
  2460. }
  2461. pci_disable_msix(np->pci_dev);
  2462. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2463. } else {
  2464. free_irq(np->pci_dev->irq, dev);
  2465. if (np->msi_flags & NV_MSI_ENABLED) {
  2466. pci_disable_msi(np->pci_dev);
  2467. np->msi_flags &= ~NV_MSI_ENABLED;
  2468. }
  2469. }
  2470. }
  2471. static int nv_open(struct net_device *dev)
  2472. {
  2473. struct fe_priv *np = netdev_priv(dev);
  2474. u8 __iomem *base = get_hwbase(dev);
  2475. int ret = 1;
  2476. int oom, i;
  2477. dprintk(KERN_DEBUG "nv_open: begin\n");
  2478. /* 1) erase previous misconfiguration */
  2479. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  2480. nv_mac_reset(dev);
  2481. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2482. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2483. writel(0, base + NvRegMulticastAddrB);
  2484. writel(0, base + NvRegMulticastMaskA);
  2485. writel(0, base + NvRegMulticastMaskB);
  2486. writel(0, base + NvRegPacketFilterFlags);
  2487. writel(0, base + NvRegTransmitterControl);
  2488. writel(0, base + NvRegReceiverControl);
  2489. writel(0, base + NvRegAdapterControl);
  2490. /* 2) initialize descriptor rings */
  2491. set_bufsize(dev);
  2492. oom = nv_init_ring(dev);
  2493. writel(0, base + NvRegLinkSpeed);
  2494. writel(0, base + NvRegUnknownTransmitterReg);
  2495. nv_txrx_reset(dev);
  2496. writel(0, base + NvRegUnknownSetupReg6);
  2497. np->in_shutdown = 0;
  2498. /* 3) set mac address */
  2499. nv_copy_mac_to_hw(dev);
  2500. /* 4) give hw rings */
  2501. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2502. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2503. base + NvRegRingSizes);
  2504. /* 5) continue setup */
  2505. writel(np->linkspeed, base + NvRegLinkSpeed);
  2506. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2507. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2508. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2509. pci_push(base);
  2510. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2511. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2512. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2513. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2514. writel(0, base + NvRegUnknownSetupReg4);
  2515. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2516. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2517. /* 6) continue setup */
  2518. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2519. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2520. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2521. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2522. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2523. get_random_bytes(&i, sizeof(i));
  2524. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2525. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2526. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2527. if (poll_interval == -1) {
  2528. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2529. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2530. else
  2531. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2532. }
  2533. else
  2534. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2535. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2536. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2537. base + NvRegAdapterControl);
  2538. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2539. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2540. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2541. i = readl(base + NvRegPowerState);
  2542. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2543. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2544. pci_push(base);
  2545. udelay(10);
  2546. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2547. nv_disable_hw_interrupts(dev, np->irqmask);
  2548. pci_push(base);
  2549. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2550. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2551. pci_push(base);
  2552. if (nv_request_irq(dev)) {
  2553. goto out_drain;
  2554. }
  2555. /* ask for interrupts */
  2556. nv_enable_hw_interrupts(dev, np->irqmask);
  2557. spin_lock_irq(&np->lock);
  2558. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2559. writel(0, base + NvRegMulticastAddrB);
  2560. writel(0, base + NvRegMulticastMaskA);
  2561. writel(0, base + NvRegMulticastMaskB);
  2562. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2563. /* One manual link speed update: Interrupts are enabled, future link
  2564. * speed changes cause interrupts and are handled by nv_link_irq().
  2565. */
  2566. {
  2567. u32 miistat;
  2568. miistat = readl(base + NvRegMIIStatus);
  2569. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2570. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2571. }
  2572. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2573. * to init hw */
  2574. np->linkspeed = 0;
  2575. ret = nv_update_linkspeed(dev);
  2576. nv_start_rx(dev);
  2577. nv_start_tx(dev);
  2578. netif_start_queue(dev);
  2579. if (ret) {
  2580. netif_carrier_on(dev);
  2581. } else {
  2582. printk("%s: no link during initialization.\n", dev->name);
  2583. netif_carrier_off(dev);
  2584. }
  2585. if (oom)
  2586. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2587. spin_unlock_irq(&np->lock);
  2588. return 0;
  2589. out_drain:
  2590. drain_ring(dev);
  2591. return ret;
  2592. }
  2593. static int nv_close(struct net_device *dev)
  2594. {
  2595. struct fe_priv *np = netdev_priv(dev);
  2596. u8 __iomem *base;
  2597. spin_lock_irq(&np->lock);
  2598. np->in_shutdown = 1;
  2599. spin_unlock_irq(&np->lock);
  2600. synchronize_irq(dev->irq);
  2601. del_timer_sync(&np->oom_kick);
  2602. del_timer_sync(&np->nic_poll);
  2603. netif_stop_queue(dev);
  2604. spin_lock_irq(&np->lock);
  2605. nv_stop_tx(dev);
  2606. nv_stop_rx(dev);
  2607. nv_txrx_reset(dev);
  2608. /* disable interrupts on the nic or we will lock up */
  2609. base = get_hwbase(dev);
  2610. nv_disable_hw_interrupts(dev, np->irqmask);
  2611. pci_push(base);
  2612. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2613. spin_unlock_irq(&np->lock);
  2614. nv_free_irq(dev);
  2615. drain_ring(dev);
  2616. if (np->wolenabled)
  2617. nv_start_rx(dev);
  2618. /* special op: write back the misordered MAC address - otherwise
  2619. * the next nv_probe would see a wrong address.
  2620. */
  2621. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2622. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2623. /* FIXME: power down nic */
  2624. return 0;
  2625. }
  2626. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2627. {
  2628. struct net_device *dev;
  2629. struct fe_priv *np;
  2630. unsigned long addr;
  2631. u8 __iomem *base;
  2632. int err, i;
  2633. u32 powerstate;
  2634. dev = alloc_etherdev(sizeof(struct fe_priv));
  2635. err = -ENOMEM;
  2636. if (!dev)
  2637. goto out;
  2638. np = netdev_priv(dev);
  2639. np->pci_dev = pci_dev;
  2640. spin_lock_init(&np->lock);
  2641. SET_MODULE_OWNER(dev);
  2642. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2643. init_timer(&np->oom_kick);
  2644. np->oom_kick.data = (unsigned long) dev;
  2645. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2646. init_timer(&np->nic_poll);
  2647. np->nic_poll.data = (unsigned long) dev;
  2648. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2649. err = pci_enable_device(pci_dev);
  2650. if (err) {
  2651. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2652. err, pci_name(pci_dev));
  2653. goto out_free;
  2654. }
  2655. pci_set_master(pci_dev);
  2656. err = pci_request_regions(pci_dev, DRV_NAME);
  2657. if (err < 0)
  2658. goto out_disable;
  2659. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
  2660. np->register_size = NV_PCI_REGSZ_VER2;
  2661. else
  2662. np->register_size = NV_PCI_REGSZ_VER1;
  2663. err = -EINVAL;
  2664. addr = 0;
  2665. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2666. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2667. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2668. pci_resource_len(pci_dev, i),
  2669. pci_resource_flags(pci_dev, i));
  2670. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2671. pci_resource_len(pci_dev, i) >= np->register_size) {
  2672. addr = pci_resource_start(pci_dev, i);
  2673. break;
  2674. }
  2675. }
  2676. if (i == DEVICE_COUNT_RESOURCE) {
  2677. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2678. pci_name(pci_dev));
  2679. goto out_relreg;
  2680. }
  2681. /* copy of driver data */
  2682. np->driver_data = id->driver_data;
  2683. /* handle different descriptor versions */
  2684. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2685. /* packet format 3: supports 40-bit addressing */
  2686. np->desc_ver = DESC_VER_3;
  2687. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2688. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  2689. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2690. pci_name(pci_dev));
  2691. } else {
  2692. dev->features |= NETIF_F_HIGHDMA;
  2693. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  2694. }
  2695. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2696. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  2697. pci_name(pci_dev));
  2698. }
  2699. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2700. /* packet format 2: supports jumbo frames */
  2701. np->desc_ver = DESC_VER_2;
  2702. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2703. } else {
  2704. /* original packet format */
  2705. np->desc_ver = DESC_VER_1;
  2706. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2707. }
  2708. np->pkt_limit = NV_PKTLIMIT_1;
  2709. if (id->driver_data & DEV_HAS_LARGEDESC)
  2710. np->pkt_limit = NV_PKTLIMIT_2;
  2711. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2712. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2713. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2714. #ifdef NETIF_F_TSO
  2715. dev->features |= NETIF_F_TSO;
  2716. #endif
  2717. }
  2718. np->vlanctl_bits = 0;
  2719. if (id->driver_data & DEV_HAS_VLAN) {
  2720. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2721. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2722. dev->vlan_rx_register = nv_vlan_rx_register;
  2723. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2724. }
  2725. np->msi_flags = 0;
  2726. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  2727. np->msi_flags |= NV_MSI_CAPABLE;
  2728. }
  2729. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  2730. np->msi_flags |= NV_MSI_X_CAPABLE;
  2731. }
  2732. err = -ENOMEM;
  2733. np->base = ioremap(addr, np->register_size);
  2734. if (!np->base)
  2735. goto out_relreg;
  2736. dev->base_addr = (unsigned long)np->base;
  2737. dev->irq = pci_dev->irq;
  2738. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2739. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2740. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2741. &np->ring_addr);
  2742. if (!np->rx_ring.orig)
  2743. goto out_unmap;
  2744. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2745. } else {
  2746. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2747. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2748. &np->ring_addr);
  2749. if (!np->rx_ring.ex)
  2750. goto out_unmap;
  2751. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2752. }
  2753. dev->open = nv_open;
  2754. dev->stop = nv_close;
  2755. dev->hard_start_xmit = nv_start_xmit;
  2756. dev->get_stats = nv_get_stats;
  2757. dev->change_mtu = nv_change_mtu;
  2758. dev->set_mac_address = nv_set_mac_address;
  2759. dev->set_multicast_list = nv_set_multicast;
  2760. #ifdef CONFIG_NET_POLL_CONTROLLER
  2761. dev->poll_controller = nv_poll_controller;
  2762. #endif
  2763. SET_ETHTOOL_OPS(dev, &ops);
  2764. dev->tx_timeout = nv_tx_timeout;
  2765. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2766. pci_set_drvdata(pci_dev, dev);
  2767. /* read the mac address */
  2768. base = get_hwbase(dev);
  2769. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2770. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2771. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2772. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2773. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2774. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2775. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2776. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2777. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2778. if (!is_valid_ether_addr(dev->perm_addr)) {
  2779. /*
  2780. * Bad mac address. At least one bios sets the mac address
  2781. * to 01:23:45:67:89:ab
  2782. */
  2783. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2784. pci_name(pci_dev),
  2785. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2786. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2787. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2788. dev->dev_addr[0] = 0x00;
  2789. dev->dev_addr[1] = 0x00;
  2790. dev->dev_addr[2] = 0x6c;
  2791. get_random_bytes(&dev->dev_addr[3], 3);
  2792. }
  2793. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2794. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2795. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2796. /* disable WOL */
  2797. writel(0, base + NvRegWakeUpFlags);
  2798. np->wolenabled = 0;
  2799. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  2800. u8 revision_id;
  2801. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  2802. /* take phy and nic out of low power mode */
  2803. powerstate = readl(base + NvRegPowerState2);
  2804. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  2805. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  2806. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  2807. revision_id >= 0xA3)
  2808. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  2809. writel(powerstate, base + NvRegPowerState2);
  2810. }
  2811. if (np->desc_ver == DESC_VER_1) {
  2812. np->tx_flags = NV_TX_VALID;
  2813. } else {
  2814. np->tx_flags = NV_TX2_VALID;
  2815. }
  2816. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2817. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2818. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2819. np->msi_flags |= 0x0003;
  2820. } else {
  2821. np->irqmask = NVREG_IRQMASK_CPU;
  2822. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  2823. np->msi_flags |= 0x0001;
  2824. }
  2825. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2826. np->irqmask |= NVREG_IRQ_TIMER;
  2827. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2828. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2829. np->need_linktimer = 1;
  2830. np->link_timeout = jiffies + LINK_TIMEOUT;
  2831. } else {
  2832. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2833. np->need_linktimer = 0;
  2834. }
  2835. /* find a suitable phy */
  2836. for (i = 1; i <= 32; i++) {
  2837. int id1, id2;
  2838. int phyaddr = i & 0x1F;
  2839. spin_lock_irq(&np->lock);
  2840. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2841. spin_unlock_irq(&np->lock);
  2842. if (id1 < 0 || id1 == 0xffff)
  2843. continue;
  2844. spin_lock_irq(&np->lock);
  2845. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2846. spin_unlock_irq(&np->lock);
  2847. if (id2 < 0 || id2 == 0xffff)
  2848. continue;
  2849. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2850. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2851. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2852. pci_name(pci_dev), id1, id2, phyaddr);
  2853. np->phyaddr = phyaddr;
  2854. np->phy_oui = id1 | id2;
  2855. break;
  2856. }
  2857. if (i == 33) {
  2858. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2859. pci_name(pci_dev));
  2860. goto out_freering;
  2861. }
  2862. /* reset it */
  2863. phy_init(dev);
  2864. /* set default link speed settings */
  2865. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2866. np->duplex = 0;
  2867. np->autoneg = 1;
  2868. err = register_netdev(dev);
  2869. if (err) {
  2870. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2871. goto out_freering;
  2872. }
  2873. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2874. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2875. pci_name(pci_dev));
  2876. return 0;
  2877. out_freering:
  2878. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2879. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2880. np->rx_ring.orig, np->ring_addr);
  2881. else
  2882. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2883. np->rx_ring.ex, np->ring_addr);
  2884. pci_set_drvdata(pci_dev, NULL);
  2885. out_unmap:
  2886. iounmap(get_hwbase(dev));
  2887. out_relreg:
  2888. pci_release_regions(pci_dev);
  2889. out_disable:
  2890. pci_disable_device(pci_dev);
  2891. out_free:
  2892. free_netdev(dev);
  2893. out:
  2894. return err;
  2895. }
  2896. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2897. {
  2898. struct net_device *dev = pci_get_drvdata(pci_dev);
  2899. struct fe_priv *np = netdev_priv(dev);
  2900. unregister_netdev(dev);
  2901. /* free all structures */
  2902. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2903. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2904. else
  2905. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2906. iounmap(get_hwbase(dev));
  2907. pci_release_regions(pci_dev);
  2908. pci_disable_device(pci_dev);
  2909. free_netdev(dev);
  2910. pci_set_drvdata(pci_dev, NULL);
  2911. }
  2912. static struct pci_device_id pci_tbl[] = {
  2913. { /* nForce Ethernet Controller */
  2914. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2915. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2916. },
  2917. { /* nForce2 Ethernet Controller */
  2918. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2919. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2920. },
  2921. { /* nForce3 Ethernet Controller */
  2922. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2923. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2924. },
  2925. { /* nForce3 Ethernet Controller */
  2926. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2927. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2928. },
  2929. { /* nForce3 Ethernet Controller */
  2930. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2931. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2932. },
  2933. { /* nForce3 Ethernet Controller */
  2934. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2935. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2936. },
  2937. { /* nForce3 Ethernet Controller */
  2938. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2939. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2940. },
  2941. { /* CK804 Ethernet Controller */
  2942. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2943. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2944. },
  2945. { /* CK804 Ethernet Controller */
  2946. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2947. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2948. },
  2949. { /* MCP04 Ethernet Controller */
  2950. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2951. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2952. },
  2953. { /* MCP04 Ethernet Controller */
  2954. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2955. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2956. },
  2957. { /* MCP51 Ethernet Controller */
  2958. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2959. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  2960. },
  2961. { /* MCP51 Ethernet Controller */
  2962. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2963. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  2964. },
  2965. { /* MCP55 Ethernet Controller */
  2966. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2967. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
  2968. },
  2969. { /* MCP55 Ethernet Controller */
  2970. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2971. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL,
  2972. },
  2973. {0,},
  2974. };
  2975. static struct pci_driver driver = {
  2976. .name = "forcedeth",
  2977. .id_table = pci_tbl,
  2978. .probe = nv_probe,
  2979. .remove = __devexit_p(nv_remove),
  2980. };
  2981. static int __init init_nic(void)
  2982. {
  2983. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2984. return pci_module_init(&driver);
  2985. }
  2986. static void __exit exit_nic(void)
  2987. {
  2988. pci_unregister_driver(&driver);
  2989. }
  2990. module_param(max_interrupt_work, int, 0);
  2991. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  2992. module_param(optimization_mode, int, 0);
  2993. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  2994. module_param(poll_interval, int, 0);
  2995. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  2996. module_param(disable_msi, int, 0);
  2997. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  2998. module_param(disable_msix, int, 0);
  2999. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  3000. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  3001. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  3002. MODULE_LICENSE("GPL");
  3003. MODULE_DEVICE_TABLE(pci, pci_tbl);
  3004. module_init(init_nic);
  3005. module_exit(exit_nic);