smp.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. *
  15. * This does not handle HOTPLUG_CPU yet.
  16. */
  17. #include <linux/sched.h>
  18. #include <linux/err.h>
  19. #include <linux/smp.h>
  20. #include <asm/paravirt.h>
  21. #include <asm/desc.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/cpu.h>
  24. #include <xen/interface/xen.h>
  25. #include <xen/interface/vcpu.h>
  26. #include <asm/xen/interface.h>
  27. #include <asm/xen/hypercall.h>
  28. #include <xen/page.h>
  29. #include <xen/events.h>
  30. #include "xen-ops.h"
  31. #include "mmu.h"
  32. static cpumask_t xen_cpu_initialized_map;
  33. static DEFINE_PER_CPU(int, resched_irq);
  34. static DEFINE_PER_CPU(int, callfunc_irq);
  35. static DEFINE_PER_CPU(int, callfuncsingle_irq);
  36. static DEFINE_PER_CPU(int, debug_irq) = -1;
  37. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  38. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
  39. /*
  40. * Reschedule call back. Nothing to do,
  41. * all the work is done automatically when
  42. * we return from the interrupt.
  43. */
  44. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  45. {
  46. return IRQ_HANDLED;
  47. }
  48. static __cpuinit void cpu_bringup_and_idle(void)
  49. {
  50. int cpu = smp_processor_id();
  51. cpu_init();
  52. xen_enable_sysenter();
  53. preempt_disable();
  54. per_cpu(cpu_state, cpu) = CPU_ONLINE;
  55. xen_setup_cpu_clockevents();
  56. /* We can take interrupts now: we're officially "up". */
  57. local_irq_enable();
  58. wmb(); /* make sure everything is out */
  59. cpu_idle();
  60. }
  61. static int xen_smp_intr_init(unsigned int cpu)
  62. {
  63. int rc;
  64. const char *resched_name, *callfunc_name, *debug_name;
  65. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  66. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  67. cpu,
  68. xen_reschedule_interrupt,
  69. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  70. resched_name,
  71. NULL);
  72. if (rc < 0)
  73. goto fail;
  74. per_cpu(resched_irq, cpu) = rc;
  75. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  76. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  77. cpu,
  78. xen_call_function_interrupt,
  79. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  80. callfunc_name,
  81. NULL);
  82. if (rc < 0)
  83. goto fail;
  84. per_cpu(callfunc_irq, cpu) = rc;
  85. debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
  86. rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
  87. IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
  88. debug_name, NULL);
  89. if (rc < 0)
  90. goto fail;
  91. per_cpu(debug_irq, cpu) = rc;
  92. callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
  93. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
  94. cpu,
  95. xen_call_function_single_interrupt,
  96. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  97. callfunc_name,
  98. NULL);
  99. if (rc < 0)
  100. goto fail;
  101. per_cpu(callfuncsingle_irq, cpu) = rc;
  102. return 0;
  103. fail:
  104. if (per_cpu(resched_irq, cpu) >= 0)
  105. unbind_from_irqhandler(per_cpu(resched_irq, cpu), NULL);
  106. if (per_cpu(callfunc_irq, cpu) >= 0)
  107. unbind_from_irqhandler(per_cpu(callfunc_irq, cpu), NULL);
  108. if (per_cpu(debug_irq, cpu) >= 0)
  109. unbind_from_irqhandler(per_cpu(debug_irq, cpu), NULL);
  110. if (per_cpu(callfuncsingle_irq, cpu) >= 0)
  111. unbind_from_irqhandler(per_cpu(callfuncsingle_irq, cpu), NULL);
  112. return rc;
  113. }
  114. void __init xen_fill_possible_map(void)
  115. {
  116. int i, rc;
  117. for (i = 0; i < NR_CPUS; i++) {
  118. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  119. if (rc >= 0)
  120. cpu_set(i, cpu_possible_map);
  121. }
  122. }
  123. void __init xen_smp_prepare_boot_cpu(void)
  124. {
  125. int cpu;
  126. BUG_ON(smp_processor_id() != 0);
  127. native_smp_prepare_boot_cpu();
  128. /* We've switched to the "real" per-cpu gdt, so make sure the
  129. old memory can be recycled */
  130. make_lowmem_page_readwrite(&per_cpu__gdt_page);
  131. for_each_possible_cpu(cpu) {
  132. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  133. /*
  134. * cpu_core_map lives in a per cpu area that is cleared
  135. * when the per cpu array is allocated.
  136. *
  137. * cpus_clear(per_cpu(cpu_core_map, cpu));
  138. */
  139. }
  140. xen_setup_vcpu_info_placement();
  141. }
  142. void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  143. {
  144. unsigned cpu;
  145. for_each_possible_cpu(cpu) {
  146. cpus_clear(per_cpu(cpu_sibling_map, cpu));
  147. /*
  148. * cpu_core_ map will be zeroed when the per
  149. * cpu area is allocated.
  150. *
  151. * cpus_clear(per_cpu(cpu_core_map, cpu));
  152. */
  153. }
  154. smp_store_cpu_info(0);
  155. set_cpu_sibling_map(0);
  156. if (xen_smp_intr_init(0))
  157. BUG();
  158. xen_cpu_initialized_map = cpumask_of_cpu(0);
  159. /* Restrict the possible_map according to max_cpus. */
  160. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  161. for (cpu = NR_CPUS - 1; !cpu_possible(cpu); cpu--)
  162. continue;
  163. cpu_clear(cpu, cpu_possible_map);
  164. }
  165. for_each_possible_cpu (cpu) {
  166. struct task_struct *idle;
  167. if (cpu == 0)
  168. continue;
  169. idle = fork_idle(cpu);
  170. if (IS_ERR(idle))
  171. panic("failed fork for CPU %d", cpu);
  172. cpu_set(cpu, cpu_present_map);
  173. }
  174. //init_xenbus_allowed_cpumask();
  175. }
  176. static __cpuinit int
  177. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  178. {
  179. struct vcpu_guest_context *ctxt;
  180. struct gdt_page *gdt = &per_cpu(gdt_page, cpu);
  181. if (cpu_test_and_set(cpu, xen_cpu_initialized_map))
  182. return 0;
  183. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  184. if (ctxt == NULL)
  185. return -ENOMEM;
  186. ctxt->flags = VGCF_IN_KERNEL;
  187. ctxt->user_regs.ds = __USER_DS;
  188. ctxt->user_regs.es = __USER_DS;
  189. ctxt->user_regs.fs = __KERNEL_PERCPU;
  190. ctxt->user_regs.gs = 0;
  191. ctxt->user_regs.ss = __KERNEL_DS;
  192. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  193. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  194. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  195. xen_copy_trap_info(ctxt->trap_ctxt);
  196. ctxt->ldt_ents = 0;
  197. BUG_ON((unsigned long)gdt->gdt & ~PAGE_MASK);
  198. make_lowmem_page_readonly(gdt->gdt);
  199. ctxt->gdt_frames[0] = virt_to_mfn(gdt->gdt);
  200. ctxt->gdt_ents = ARRAY_SIZE(gdt->gdt);
  201. ctxt->user_regs.cs = __KERNEL_CS;
  202. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  203. ctxt->kernel_ss = __KERNEL_DS;
  204. ctxt->kernel_sp = idle->thread.sp0;
  205. ctxt->event_callback_cs = __KERNEL_CS;
  206. ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
  207. ctxt->failsafe_callback_cs = __KERNEL_CS;
  208. ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
  209. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  210. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
  211. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  212. BUG();
  213. kfree(ctxt);
  214. return 0;
  215. }
  216. int __cpuinit xen_cpu_up(unsigned int cpu)
  217. {
  218. struct task_struct *idle = idle_task(cpu);
  219. int rc;
  220. #if 0
  221. rc = cpu_up_check(cpu);
  222. if (rc)
  223. return rc;
  224. #endif
  225. init_gdt(cpu);
  226. per_cpu(current_task, cpu) = idle;
  227. irq_ctx_init(cpu);
  228. xen_setup_timer(cpu);
  229. /* make sure interrupts start blocked */
  230. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  231. rc = cpu_initialize_context(cpu, idle);
  232. if (rc)
  233. return rc;
  234. if (num_online_cpus() == 1)
  235. alternatives_smp_switch(1);
  236. rc = xen_smp_intr_init(cpu);
  237. if (rc)
  238. return rc;
  239. smp_store_cpu_info(cpu);
  240. set_cpu_sibling_map(cpu);
  241. /* This must be done before setting cpu_online_map */
  242. wmb();
  243. cpu_set(cpu, cpu_online_map);
  244. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  245. BUG_ON(rc);
  246. return 0;
  247. }
  248. void xen_smp_cpus_done(unsigned int max_cpus)
  249. {
  250. }
  251. static void stop_self(void *v)
  252. {
  253. int cpu = smp_processor_id();
  254. /* make sure we're not pinning something down */
  255. load_cr3(swapper_pg_dir);
  256. /* should set up a minimal gdt */
  257. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  258. BUG();
  259. }
  260. void xen_smp_send_stop(void)
  261. {
  262. smp_call_function(stop_self, NULL, 0, 0);
  263. }
  264. void xen_smp_send_reschedule(int cpu)
  265. {
  266. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  267. }
  268. static void xen_send_IPI_mask(cpumask_t mask, enum ipi_vector vector)
  269. {
  270. unsigned cpu;
  271. cpus_and(mask, mask, cpu_online_map);
  272. for_each_cpu_mask(cpu, mask)
  273. xen_send_IPI_one(cpu, vector);
  274. }
  275. void xen_smp_send_call_function_ipi(cpumask_t mask)
  276. {
  277. int cpu;
  278. xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  279. /* Make sure other vcpus get a chance to run if they need to. */
  280. for_each_cpu_mask(cpu, mask) {
  281. if (xen_vcpu_stolen(cpu)) {
  282. HYPERVISOR_sched_op(SCHEDOP_yield, 0);
  283. break;
  284. }
  285. }
  286. }
  287. void xen_smp_send_call_function_single_ipi(int cpu)
  288. {
  289. xen_send_IPI_mask(cpumask_of_cpu(cpu), XEN_CALL_FUNCTION_SINGLE_VECTOR);
  290. }
  291. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  292. {
  293. irq_enter();
  294. generic_smp_call_function_interrupt();
  295. __get_cpu_var(irq_stat).irq_call_count++;
  296. irq_exit();
  297. return IRQ_HANDLED;
  298. }
  299. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
  300. {
  301. irq_enter();
  302. generic_smp_call_function_single_interrupt();
  303. __get_cpu_var(irq_stat).irq_call_count++;
  304. irq_exit();
  305. return IRQ_HANDLED;
  306. }