commoncap.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. /* Common capabilities, needed by capability.o and root_plug.o
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. */
  9. #include <linux/capability.h>
  10. #include <linux/audit.h>
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/security.h>
  15. #include <linux/file.h>
  16. #include <linux/mm.h>
  17. #include <linux/mman.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/swap.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netlink.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/xattr.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/mount.h>
  26. #include <linux/sched.h>
  27. #include <linux/prctl.h>
  28. #include <linux/securebits.h>
  29. int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
  30. {
  31. NETLINK_CB(skb).eff_cap = current_cap();
  32. return 0;
  33. }
  34. int cap_netlink_recv(struct sk_buff *skb, int cap)
  35. {
  36. if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
  37. return -EPERM;
  38. return 0;
  39. }
  40. EXPORT_SYMBOL(cap_netlink_recv);
  41. /**
  42. * cap_capable - Determine whether a task has a particular effective capability
  43. * @tsk: The task to query
  44. * @cap: The capability to check for
  45. * @audit: Whether to write an audit message or not
  46. *
  47. * Determine whether the nominated task has the specified capability amongst
  48. * its effective set, returning 0 if it does, -ve if it does not.
  49. *
  50. * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
  51. * function. That is, it has the reverse semantics: cap_capable() returns 0
  52. * when a task has a capability, but the kernel's capable() returns 1 for this
  53. * case.
  54. */
  55. int cap_capable(struct task_struct *tsk, int cap, int audit)
  56. {
  57. __u32 cap_raised;
  58. /* Derived from include/linux/sched.h:capable. */
  59. rcu_read_lock();
  60. cap_raised = cap_raised(__task_cred(tsk)->cap_effective, cap);
  61. rcu_read_unlock();
  62. return cap_raised ? 0 : -EPERM;
  63. }
  64. /**
  65. * cap_settime - Determine whether the current process may set the system clock
  66. * @ts: The time to set
  67. * @tz: The timezone to set
  68. *
  69. * Determine whether the current process may set the system clock and timezone
  70. * information, returning 0 if permission granted, -ve if denied.
  71. */
  72. int cap_settime(struct timespec *ts, struct timezone *tz)
  73. {
  74. if (!capable(CAP_SYS_TIME))
  75. return -EPERM;
  76. return 0;
  77. }
  78. /**
  79. * cap_ptrace_may_access - Determine whether the current process may access
  80. * another
  81. * @child: The process to be accessed
  82. * @mode: The mode of attachment.
  83. *
  84. * Determine whether a process may access another, returning 0 if permission
  85. * granted, -ve if denied.
  86. */
  87. int cap_ptrace_may_access(struct task_struct *child, unsigned int mode)
  88. {
  89. int ret = 0;
  90. rcu_read_lock();
  91. if (!cap_issubset(__task_cred(child)->cap_permitted,
  92. current_cred()->cap_permitted) &&
  93. !capable(CAP_SYS_PTRACE))
  94. ret = -EPERM;
  95. rcu_read_unlock();
  96. return ret;
  97. }
  98. /**
  99. * cap_ptrace_traceme - Determine whether another process may trace the current
  100. * @parent: The task proposed to be the tracer
  101. *
  102. * Determine whether the nominated task is permitted to trace the current
  103. * process, returning 0 if permission is granted, -ve if denied.
  104. */
  105. int cap_ptrace_traceme(struct task_struct *parent)
  106. {
  107. int ret = 0;
  108. rcu_read_lock();
  109. if (!cap_issubset(current_cred()->cap_permitted,
  110. __task_cred(parent)->cap_permitted) &&
  111. !has_capability(parent, CAP_SYS_PTRACE))
  112. ret = -EPERM;
  113. rcu_read_unlock();
  114. return ret;
  115. }
  116. /**
  117. * cap_capget - Retrieve a task's capability sets
  118. * @target: The task from which to retrieve the capability sets
  119. * @effective: The place to record the effective set
  120. * @inheritable: The place to record the inheritable set
  121. * @permitted: The place to record the permitted set
  122. *
  123. * This function retrieves the capabilities of the nominated task and returns
  124. * them to the caller.
  125. */
  126. int cap_capget(struct task_struct *target, kernel_cap_t *effective,
  127. kernel_cap_t *inheritable, kernel_cap_t *permitted)
  128. {
  129. const struct cred *cred;
  130. /* Derived from kernel/capability.c:sys_capget. */
  131. rcu_read_lock();
  132. cred = __task_cred(target);
  133. *effective = cred->cap_effective;
  134. *inheritable = cred->cap_inheritable;
  135. *permitted = cred->cap_permitted;
  136. rcu_read_unlock();
  137. return 0;
  138. }
  139. /*
  140. * Determine whether the inheritable capabilities are limited to the old
  141. * permitted set. Returns 1 if they are limited, 0 if they are not.
  142. */
  143. static inline int cap_inh_is_capped(void)
  144. {
  145. #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
  146. /* they are so limited unless the current task has the CAP_SETPCAP
  147. * capability
  148. */
  149. if (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
  150. return 0;
  151. #endif
  152. return 1;
  153. }
  154. /**
  155. * cap_capset - Validate and apply proposed changes to current's capabilities
  156. * @new: The proposed new credentials; alterations should be made here
  157. * @old: The current task's current credentials
  158. * @effective: A pointer to the proposed new effective capabilities set
  159. * @inheritable: A pointer to the proposed new inheritable capabilities set
  160. * @permitted: A pointer to the proposed new permitted capabilities set
  161. *
  162. * This function validates and applies a proposed mass change to the current
  163. * process's capability sets. The changes are made to the proposed new
  164. * credentials, and assuming no error, will be committed by the caller of LSM.
  165. */
  166. int cap_capset(struct cred *new,
  167. const struct cred *old,
  168. const kernel_cap_t *effective,
  169. const kernel_cap_t *inheritable,
  170. const kernel_cap_t *permitted)
  171. {
  172. if (cap_inh_is_capped() &&
  173. !cap_issubset(*inheritable,
  174. cap_combine(old->cap_inheritable,
  175. old->cap_permitted)))
  176. /* incapable of using this inheritable set */
  177. return -EPERM;
  178. if (!cap_issubset(*inheritable,
  179. cap_combine(old->cap_inheritable,
  180. old->cap_bset)))
  181. /* no new pI capabilities outside bounding set */
  182. return -EPERM;
  183. /* verify restrictions on target's new Permitted set */
  184. if (!cap_issubset(*permitted, old->cap_permitted))
  185. return -EPERM;
  186. /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
  187. if (!cap_issubset(*effective, *permitted))
  188. return -EPERM;
  189. new->cap_effective = *effective;
  190. new->cap_inheritable = *inheritable;
  191. new->cap_permitted = *permitted;
  192. return 0;
  193. }
  194. /*
  195. * Clear proposed capability sets for execve().
  196. */
  197. static inline void bprm_clear_caps(struct linux_binprm *bprm)
  198. {
  199. cap_clear(bprm->cred->cap_permitted);
  200. bprm->cap_effective = false;
  201. }
  202. #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
  203. /**
  204. * cap_inode_need_killpriv - Determine if inode change affects privileges
  205. * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
  206. *
  207. * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
  208. * affects the security markings on that inode, and if it is, should
  209. * inode_killpriv() be invoked or the change rejected?
  210. *
  211. * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
  212. * -ve to deny the change.
  213. */
  214. int cap_inode_need_killpriv(struct dentry *dentry)
  215. {
  216. struct inode *inode = dentry->d_inode;
  217. int error;
  218. if (!inode->i_op || !inode->i_op->getxattr)
  219. return 0;
  220. error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
  221. if (error <= 0)
  222. return 0;
  223. return 1;
  224. }
  225. /**
  226. * cap_inode_killpriv - Erase the security markings on an inode
  227. * @dentry: The inode/dentry to alter
  228. *
  229. * Erase the privilege-enhancing security markings on an inode.
  230. *
  231. * Returns 0 if successful, -ve on error.
  232. */
  233. int cap_inode_killpriv(struct dentry *dentry)
  234. {
  235. struct inode *inode = dentry->d_inode;
  236. if (!inode->i_op || !inode->i_op->removexattr)
  237. return 0;
  238. return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
  239. }
  240. /*
  241. * Calculate the new process capability sets from the capability sets attached
  242. * to a file.
  243. */
  244. static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
  245. struct linux_binprm *bprm,
  246. bool *effective)
  247. {
  248. struct cred *new = bprm->cred;
  249. unsigned i;
  250. int ret = 0;
  251. if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
  252. *effective = true;
  253. CAP_FOR_EACH_U32(i) {
  254. __u32 permitted = caps->permitted.cap[i];
  255. __u32 inheritable = caps->inheritable.cap[i];
  256. /*
  257. * pP' = (X & fP) | (pI & fI)
  258. */
  259. new->cap_permitted.cap[i] =
  260. (new->cap_bset.cap[i] & permitted) |
  261. (new->cap_inheritable.cap[i] & inheritable);
  262. if (permitted & ~new->cap_permitted.cap[i])
  263. /* insufficient to execute correctly */
  264. ret = -EPERM;
  265. }
  266. /*
  267. * For legacy apps, with no internal support for recognizing they
  268. * do not have enough capabilities, we return an error if they are
  269. * missing some "forced" (aka file-permitted) capabilities.
  270. */
  271. return *effective ? ret : 0;
  272. }
  273. /*
  274. * Extract the on-exec-apply capability sets for an executable file.
  275. */
  276. int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
  277. {
  278. struct inode *inode = dentry->d_inode;
  279. __u32 magic_etc;
  280. unsigned tocopy, i;
  281. int size;
  282. struct vfs_cap_data caps;
  283. memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
  284. if (!inode || !inode->i_op || !inode->i_op->getxattr)
  285. return -ENODATA;
  286. size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
  287. XATTR_CAPS_SZ);
  288. if (size == -ENODATA || size == -EOPNOTSUPP)
  289. /* no data, that's ok */
  290. return -ENODATA;
  291. if (size < 0)
  292. return size;
  293. if (size < sizeof(magic_etc))
  294. return -EINVAL;
  295. cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
  296. switch (magic_etc & VFS_CAP_REVISION_MASK) {
  297. case VFS_CAP_REVISION_1:
  298. if (size != XATTR_CAPS_SZ_1)
  299. return -EINVAL;
  300. tocopy = VFS_CAP_U32_1;
  301. break;
  302. case VFS_CAP_REVISION_2:
  303. if (size != XATTR_CAPS_SZ_2)
  304. return -EINVAL;
  305. tocopy = VFS_CAP_U32_2;
  306. break;
  307. default:
  308. return -EINVAL;
  309. }
  310. CAP_FOR_EACH_U32(i) {
  311. if (i >= tocopy)
  312. break;
  313. cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
  314. cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
  315. }
  316. return 0;
  317. }
  318. /*
  319. * Attempt to get the on-exec apply capability sets for an executable file from
  320. * its xattrs and, if present, apply them to the proposed credentials being
  321. * constructed by execve().
  322. */
  323. static int get_file_caps(struct linux_binprm *bprm, bool *effective)
  324. {
  325. struct dentry *dentry;
  326. int rc = 0;
  327. struct cpu_vfs_cap_data vcaps;
  328. bprm_clear_caps(bprm);
  329. if (!file_caps_enabled)
  330. return 0;
  331. if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
  332. return 0;
  333. dentry = dget(bprm->file->f_dentry);
  334. rc = get_vfs_caps_from_disk(dentry, &vcaps);
  335. if (rc < 0) {
  336. if (rc == -EINVAL)
  337. printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
  338. __func__, rc, bprm->filename);
  339. else if (rc == -ENODATA)
  340. rc = 0;
  341. goto out;
  342. }
  343. rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
  344. if (rc == -EINVAL)
  345. printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
  346. __func__, rc, bprm->filename);
  347. out:
  348. dput(dentry);
  349. if (rc)
  350. bprm_clear_caps(bprm);
  351. return rc;
  352. }
  353. #else
  354. int cap_inode_need_killpriv(struct dentry *dentry)
  355. {
  356. return 0;
  357. }
  358. int cap_inode_killpriv(struct dentry *dentry)
  359. {
  360. return 0;
  361. }
  362. static inline int get_file_caps(struct linux_binprm *bprm, bool *effective)
  363. {
  364. bprm_clear_caps(bprm);
  365. return 0;
  366. }
  367. #endif
  368. /*
  369. * Determine whether a exec'ing process's new permitted capabilities should be
  370. * limited to just what it already has.
  371. *
  372. * This prevents processes that are being ptraced from gaining access to
  373. * CAP_SETPCAP, unless the process they're tracing already has it, and the
  374. * binary they're executing has filecaps that elevate it.
  375. *
  376. * Returns 1 if they should be limited, 0 if they are not.
  377. */
  378. static inline int cap_limit_ptraced_target(void)
  379. {
  380. #ifndef CONFIG_SECURITY_FILE_CAPABILITIES
  381. if (capable(CAP_SETPCAP))
  382. return 0;
  383. #endif
  384. return 1;
  385. }
  386. /**
  387. * cap_bprm_set_creds - Set up the proposed credentials for execve().
  388. * @bprm: The execution parameters, including the proposed creds
  389. *
  390. * Set up the proposed credentials for a new execution context being
  391. * constructed by execve(). The proposed creds in @bprm->cred is altered,
  392. * which won't take effect immediately. Returns 0 if successful, -ve on error.
  393. */
  394. int cap_bprm_set_creds(struct linux_binprm *bprm)
  395. {
  396. const struct cred *old = current_cred();
  397. struct cred *new = bprm->cred;
  398. bool effective;
  399. int ret;
  400. effective = false;
  401. ret = get_file_caps(bprm, &effective);
  402. if (ret < 0)
  403. return ret;
  404. if (!issecure(SECURE_NOROOT)) {
  405. /*
  406. * To support inheritance of root-permissions and suid-root
  407. * executables under compatibility mode, we override the
  408. * capability sets for the file.
  409. *
  410. * If only the real uid is 0, we do not set the effective bit.
  411. */
  412. if (new->euid == 0 || new->uid == 0) {
  413. /* pP' = (cap_bset & ~0) | (pI & ~0) */
  414. new->cap_permitted = cap_combine(old->cap_bset,
  415. old->cap_inheritable);
  416. }
  417. if (new->euid == 0)
  418. effective = true;
  419. }
  420. /* Don't let someone trace a set[ug]id/setpcap binary with the revised
  421. * credentials unless they have the appropriate permit
  422. */
  423. if ((new->euid != old->uid ||
  424. new->egid != old->gid ||
  425. !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
  426. bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
  427. /* downgrade; they get no more than they had, and maybe less */
  428. if (!capable(CAP_SETUID)) {
  429. new->euid = new->uid;
  430. new->egid = new->gid;
  431. }
  432. if (cap_limit_ptraced_target())
  433. new->cap_permitted = cap_intersect(new->cap_permitted,
  434. old->cap_permitted);
  435. }
  436. new->suid = new->fsuid = new->euid;
  437. new->sgid = new->fsgid = new->egid;
  438. /* For init, we want to retain the capabilities set in the initial
  439. * task. Thus we skip the usual capability rules
  440. */
  441. if (!is_global_init(current)) {
  442. if (effective)
  443. new->cap_effective = new->cap_permitted;
  444. else
  445. cap_clear(new->cap_effective);
  446. }
  447. bprm->cap_effective = effective;
  448. /*
  449. * Audit candidate if current->cap_effective is set
  450. *
  451. * We do not bother to audit if 3 things are true:
  452. * 1) cap_effective has all caps
  453. * 2) we are root
  454. * 3) root is supposed to have all caps (SECURE_NOROOT)
  455. * Since this is just a normal root execing a process.
  456. *
  457. * Number 1 above might fail if you don't have a full bset, but I think
  458. * that is interesting information to audit.
  459. */
  460. if (!cap_isclear(new->cap_effective)) {
  461. if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
  462. new->euid != 0 || new->uid != 0 ||
  463. issecure(SECURE_NOROOT)) {
  464. ret = audit_log_bprm_fcaps(bprm, new, old);
  465. if (ret < 0)
  466. return ret;
  467. }
  468. }
  469. new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  470. return 0;
  471. }
  472. /**
  473. * cap_bprm_secureexec - Determine whether a secure execution is required
  474. * @bprm: The execution parameters
  475. *
  476. * Determine whether a secure execution is required, return 1 if it is, and 0
  477. * if it is not.
  478. *
  479. * The credentials have been committed by this point, and so are no longer
  480. * available through @bprm->cred.
  481. */
  482. int cap_bprm_secureexec(struct linux_binprm *bprm)
  483. {
  484. const struct cred *cred = current_cred();
  485. if (cred->uid != 0) {
  486. if (bprm->cap_effective)
  487. return 1;
  488. if (!cap_isclear(cred->cap_permitted))
  489. return 1;
  490. }
  491. return (cred->euid != cred->uid ||
  492. cred->egid != cred->gid);
  493. }
  494. /**
  495. * cap_inode_setxattr - Determine whether an xattr may be altered
  496. * @dentry: The inode/dentry being altered
  497. * @name: The name of the xattr to be changed
  498. * @value: The value that the xattr will be changed to
  499. * @size: The size of value
  500. * @flags: The replacement flag
  501. *
  502. * Determine whether an xattr may be altered or set on an inode, returning 0 if
  503. * permission is granted, -ve if denied.
  504. *
  505. * This is used to make sure security xattrs don't get updated or set by those
  506. * who aren't privileged to do so.
  507. */
  508. int cap_inode_setxattr(struct dentry *dentry, const char *name,
  509. const void *value, size_t size, int flags)
  510. {
  511. if (!strcmp(name, XATTR_NAME_CAPS)) {
  512. if (!capable(CAP_SETFCAP))
  513. return -EPERM;
  514. return 0;
  515. }
  516. if (!strncmp(name, XATTR_SECURITY_PREFIX,
  517. sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  518. !capable(CAP_SYS_ADMIN))
  519. return -EPERM;
  520. return 0;
  521. }
  522. /**
  523. * cap_inode_removexattr - Determine whether an xattr may be removed
  524. * @dentry: The inode/dentry being altered
  525. * @name: The name of the xattr to be changed
  526. *
  527. * Determine whether an xattr may be removed from an inode, returning 0 if
  528. * permission is granted, -ve if denied.
  529. *
  530. * This is used to make sure security xattrs don't get removed by those who
  531. * aren't privileged to remove them.
  532. */
  533. int cap_inode_removexattr(struct dentry *dentry, const char *name)
  534. {
  535. if (!strcmp(name, XATTR_NAME_CAPS)) {
  536. if (!capable(CAP_SETFCAP))
  537. return -EPERM;
  538. return 0;
  539. }
  540. if (!strncmp(name, XATTR_SECURITY_PREFIX,
  541. sizeof(XATTR_SECURITY_PREFIX) - 1) &&
  542. !capable(CAP_SYS_ADMIN))
  543. return -EPERM;
  544. return 0;
  545. }
  546. /*
  547. * cap_emulate_setxuid() fixes the effective / permitted capabilities of
  548. * a process after a call to setuid, setreuid, or setresuid.
  549. *
  550. * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
  551. * {r,e,s}uid != 0, the permitted and effective capabilities are
  552. * cleared.
  553. *
  554. * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
  555. * capabilities of the process are cleared.
  556. *
  557. * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
  558. * capabilities are set to the permitted capabilities.
  559. *
  560. * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
  561. * never happen.
  562. *
  563. * -astor
  564. *
  565. * cevans - New behaviour, Oct '99
  566. * A process may, via prctl(), elect to keep its capabilities when it
  567. * calls setuid() and switches away from uid==0. Both permitted and
  568. * effective sets will be retained.
  569. * Without this change, it was impossible for a daemon to drop only some
  570. * of its privilege. The call to setuid(!=0) would drop all privileges!
  571. * Keeping uid 0 is not an option because uid 0 owns too many vital
  572. * files..
  573. * Thanks to Olaf Kirch and Peter Benie for spotting this.
  574. */
  575. static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
  576. {
  577. if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
  578. (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
  579. !issecure(SECURE_KEEP_CAPS)) {
  580. cap_clear(new->cap_permitted);
  581. cap_clear(new->cap_effective);
  582. }
  583. if (old->euid == 0 && new->euid != 0)
  584. cap_clear(new->cap_effective);
  585. if (old->euid != 0 && new->euid == 0)
  586. new->cap_effective = new->cap_permitted;
  587. }
  588. /**
  589. * cap_task_fix_setuid - Fix up the results of setuid() call
  590. * @new: The proposed credentials
  591. * @old: The current task's current credentials
  592. * @flags: Indications of what has changed
  593. *
  594. * Fix up the results of setuid() call before the credential changes are
  595. * actually applied, returning 0 to grant the changes, -ve to deny them.
  596. */
  597. int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
  598. {
  599. switch (flags) {
  600. case LSM_SETID_RE:
  601. case LSM_SETID_ID:
  602. case LSM_SETID_RES:
  603. /* juggle the capabilities to follow [RES]UID changes unless
  604. * otherwise suppressed */
  605. if (!issecure(SECURE_NO_SETUID_FIXUP))
  606. cap_emulate_setxuid(new, old);
  607. break;
  608. case LSM_SETID_FS:
  609. /* juggle the capabilties to follow FSUID changes, unless
  610. * otherwise suppressed
  611. *
  612. * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
  613. * if not, we might be a bit too harsh here.
  614. */
  615. if (!issecure(SECURE_NO_SETUID_FIXUP)) {
  616. if (old->fsuid == 0 && new->fsuid != 0)
  617. new->cap_effective =
  618. cap_drop_fs_set(new->cap_effective);
  619. if (old->fsuid != 0 && new->fsuid == 0)
  620. new->cap_effective =
  621. cap_raise_fs_set(new->cap_effective,
  622. new->cap_permitted);
  623. }
  624. break;
  625. default:
  626. return -EINVAL;
  627. }
  628. return 0;
  629. }
  630. #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
  631. /*
  632. * Rationale: code calling task_setscheduler, task_setioprio, and
  633. * task_setnice, assumes that
  634. * . if capable(cap_sys_nice), then those actions should be allowed
  635. * . if not capable(cap_sys_nice), but acting on your own processes,
  636. * then those actions should be allowed
  637. * This is insufficient now since you can call code without suid, but
  638. * yet with increased caps.
  639. * So we check for increased caps on the target process.
  640. */
  641. static int cap_safe_nice(struct task_struct *p)
  642. {
  643. int is_subset;
  644. rcu_read_lock();
  645. is_subset = cap_issubset(__task_cred(p)->cap_permitted,
  646. current_cred()->cap_permitted);
  647. rcu_read_unlock();
  648. if (!is_subset && !capable(CAP_SYS_NICE))
  649. return -EPERM;
  650. return 0;
  651. }
  652. /**
  653. * cap_task_setscheduler - Detemine if scheduler policy change is permitted
  654. * @p: The task to affect
  655. * @policy: The policy to effect
  656. * @lp: The parameters to the scheduling policy
  657. *
  658. * Detemine if the requested scheduler policy change is permitted for the
  659. * specified task, returning 0 if permission is granted, -ve if denied.
  660. */
  661. int cap_task_setscheduler(struct task_struct *p, int policy,
  662. struct sched_param *lp)
  663. {
  664. return cap_safe_nice(p);
  665. }
  666. /**
  667. * cap_task_ioprio - Detemine if I/O priority change is permitted
  668. * @p: The task to affect
  669. * @ioprio: The I/O priority to set
  670. *
  671. * Detemine if the requested I/O priority change is permitted for the specified
  672. * task, returning 0 if permission is granted, -ve if denied.
  673. */
  674. int cap_task_setioprio(struct task_struct *p, int ioprio)
  675. {
  676. return cap_safe_nice(p);
  677. }
  678. /**
  679. * cap_task_ioprio - Detemine if task priority change is permitted
  680. * @p: The task to affect
  681. * @nice: The nice value to set
  682. *
  683. * Detemine if the requested task priority change is permitted for the
  684. * specified task, returning 0 if permission is granted, -ve if denied.
  685. */
  686. int cap_task_setnice(struct task_struct *p, int nice)
  687. {
  688. return cap_safe_nice(p);
  689. }
  690. /*
  691. * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
  692. * the current task's bounding set. Returns 0 on success, -ve on error.
  693. */
  694. static long cap_prctl_drop(struct cred *new, unsigned long cap)
  695. {
  696. if (!capable(CAP_SETPCAP))
  697. return -EPERM;
  698. if (!cap_valid(cap))
  699. return -EINVAL;
  700. cap_lower(new->cap_bset, cap);
  701. return 0;
  702. }
  703. #else
  704. int cap_task_setscheduler (struct task_struct *p, int policy,
  705. struct sched_param *lp)
  706. {
  707. return 0;
  708. }
  709. int cap_task_setioprio (struct task_struct *p, int ioprio)
  710. {
  711. return 0;
  712. }
  713. int cap_task_setnice (struct task_struct *p, int nice)
  714. {
  715. return 0;
  716. }
  717. #endif
  718. /**
  719. * cap_task_prctl - Implement process control functions for this security module
  720. * @option: The process control function requested
  721. * @arg2, @arg3, @arg4, @arg5: The argument data for this function
  722. *
  723. * Allow process control functions (sys_prctl()) to alter capabilities; may
  724. * also deny access to other functions not otherwise implemented here.
  725. *
  726. * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
  727. * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
  728. * modules will consider performing the function.
  729. */
  730. int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  731. unsigned long arg4, unsigned long arg5)
  732. {
  733. struct cred *new;
  734. long error = 0;
  735. new = prepare_creds();
  736. if (!new)
  737. return -ENOMEM;
  738. switch (option) {
  739. case PR_CAPBSET_READ:
  740. error = -EINVAL;
  741. if (!cap_valid(arg2))
  742. goto error;
  743. error = !!cap_raised(new->cap_bset, arg2);
  744. goto no_change;
  745. #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
  746. case PR_CAPBSET_DROP:
  747. error = cap_prctl_drop(new, arg2);
  748. if (error < 0)
  749. goto error;
  750. goto changed;
  751. /*
  752. * The next four prctl's remain to assist with transitioning a
  753. * system from legacy UID=0 based privilege (when filesystem
  754. * capabilities are not in use) to a system using filesystem
  755. * capabilities only - as the POSIX.1e draft intended.
  756. *
  757. * Note:
  758. *
  759. * PR_SET_SECUREBITS =
  760. * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
  761. * | issecure_mask(SECURE_NOROOT)
  762. * | issecure_mask(SECURE_NOROOT_LOCKED)
  763. * | issecure_mask(SECURE_NO_SETUID_FIXUP)
  764. * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
  765. *
  766. * will ensure that the current process and all of its
  767. * children will be locked into a pure
  768. * capability-based-privilege environment.
  769. */
  770. case PR_SET_SECUREBITS:
  771. error = -EPERM;
  772. if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
  773. & (new->securebits ^ arg2)) /*[1]*/
  774. || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
  775. || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
  776. || (cap_capable(current, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/
  777. /*
  778. * [1] no changing of bits that are locked
  779. * [2] no unlocking of locks
  780. * [3] no setting of unsupported bits
  781. * [4] doing anything requires privilege (go read about
  782. * the "sendmail capabilities bug")
  783. */
  784. )
  785. /* cannot change a locked bit */
  786. goto error;
  787. new->securebits = arg2;
  788. goto changed;
  789. case PR_GET_SECUREBITS:
  790. error = new->securebits;
  791. goto no_change;
  792. #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
  793. case PR_GET_KEEPCAPS:
  794. if (issecure(SECURE_KEEP_CAPS))
  795. error = 1;
  796. goto no_change;
  797. case PR_SET_KEEPCAPS:
  798. error = -EINVAL;
  799. if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
  800. goto error;
  801. error = -EPERM;
  802. if (issecure(SECURE_KEEP_CAPS_LOCKED))
  803. goto error;
  804. if (arg2)
  805. new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
  806. else
  807. new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
  808. goto changed;
  809. default:
  810. /* No functionality available - continue with default */
  811. error = -ENOSYS;
  812. goto error;
  813. }
  814. /* Functionality provided */
  815. changed:
  816. return commit_creds(new);
  817. no_change:
  818. error = 0;
  819. error:
  820. abort_creds(new);
  821. return error;
  822. }
  823. /**
  824. * cap_syslog - Determine whether syslog function is permitted
  825. * @type: Function requested
  826. *
  827. * Determine whether the current process is permitted to use a particular
  828. * syslog function, returning 0 if permission is granted, -ve if not.
  829. */
  830. int cap_syslog(int type)
  831. {
  832. if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
  833. return -EPERM;
  834. return 0;
  835. }
  836. /**
  837. * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
  838. * @mm: The VM space in which the new mapping is to be made
  839. * @pages: The size of the mapping
  840. *
  841. * Determine whether the allocation of a new virtual mapping by the current
  842. * task is permitted, returning 0 if permission is granted, -ve if not.
  843. */
  844. int cap_vm_enough_memory(struct mm_struct *mm, long pages)
  845. {
  846. int cap_sys_admin = 0;
  847. if (cap_capable(current, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0)
  848. cap_sys_admin = 1;
  849. return __vm_enough_memory(mm, pages, cap_sys_admin);
  850. }