sh_mmcif.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/mmc/card.h>
  24. #include <linux/mmc/core.h>
  25. #include <linux/mmc/host.h>
  26. #include <linux/mmc/mmc.h>
  27. #include <linux/mmc/sdio.h>
  28. #include <linux/mmc/sh_mmcif.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/spinlock.h>
  32. #define DRIVER_NAME "sh_mmcif"
  33. #define DRIVER_VERSION "2010-04-28"
  34. /* CE_CMD_SET */
  35. #define CMD_MASK 0x3f000000
  36. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  37. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  38. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  39. #define CMD_SET_RBSY (1 << 21) /* R1b */
  40. #define CMD_SET_CCSEN (1 << 20)
  41. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  42. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  43. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  44. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  45. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  46. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  47. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  48. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  49. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  50. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  51. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  52. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  53. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  54. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  55. #define CMD_SET_CCSH (1 << 5)
  56. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  57. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  58. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  59. /* CE_CMD_CTRL */
  60. #define CMD_CTRL_BREAK (1 << 0)
  61. /* CE_BLOCK_SET */
  62. #define BLOCK_SIZE_MASK 0x0000ffff
  63. /* CE_INT */
  64. #define INT_CCSDE (1 << 29)
  65. #define INT_CMD12DRE (1 << 26)
  66. #define INT_CMD12RBE (1 << 25)
  67. #define INT_CMD12CRE (1 << 24)
  68. #define INT_DTRANE (1 << 23)
  69. #define INT_BUFRE (1 << 22)
  70. #define INT_BUFWEN (1 << 21)
  71. #define INT_BUFREN (1 << 20)
  72. #define INT_CCSRCV (1 << 19)
  73. #define INT_RBSYE (1 << 17)
  74. #define INT_CRSPE (1 << 16)
  75. #define INT_CMDVIO (1 << 15)
  76. #define INT_BUFVIO (1 << 14)
  77. #define INT_WDATERR (1 << 11)
  78. #define INT_RDATERR (1 << 10)
  79. #define INT_RIDXERR (1 << 9)
  80. #define INT_RSPERR (1 << 8)
  81. #define INT_CCSTO (1 << 5)
  82. #define INT_CRCSTO (1 << 4)
  83. #define INT_WDATTO (1 << 3)
  84. #define INT_RDATTO (1 << 2)
  85. #define INT_RBSYTO (1 << 1)
  86. #define INT_RSPTO (1 << 0)
  87. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  88. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  89. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  90. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  91. /* CE_INT_MASK */
  92. #define MASK_ALL 0x00000000
  93. #define MASK_MCCSDE (1 << 29)
  94. #define MASK_MCMD12DRE (1 << 26)
  95. #define MASK_MCMD12RBE (1 << 25)
  96. #define MASK_MCMD12CRE (1 << 24)
  97. #define MASK_MDTRANE (1 << 23)
  98. #define MASK_MBUFRE (1 << 22)
  99. #define MASK_MBUFWEN (1 << 21)
  100. #define MASK_MBUFREN (1 << 20)
  101. #define MASK_MCCSRCV (1 << 19)
  102. #define MASK_MRBSYE (1 << 17)
  103. #define MASK_MCRSPE (1 << 16)
  104. #define MASK_MCMDVIO (1 << 15)
  105. #define MASK_MBUFVIO (1 << 14)
  106. #define MASK_MWDATERR (1 << 11)
  107. #define MASK_MRDATERR (1 << 10)
  108. #define MASK_MRIDXERR (1 << 9)
  109. #define MASK_MRSPERR (1 << 8)
  110. #define MASK_MCCSTO (1 << 5)
  111. #define MASK_MCRCSTO (1 << 4)
  112. #define MASK_MWDATTO (1 << 3)
  113. #define MASK_MRDATTO (1 << 2)
  114. #define MASK_MRBSYTO (1 << 1)
  115. #define MASK_MRSPTO (1 << 0)
  116. /* CE_HOST_STS1 */
  117. #define STS1_CMDSEQ (1 << 31)
  118. /* CE_HOST_STS2 */
  119. #define STS2_CRCSTE (1 << 31)
  120. #define STS2_CRC16E (1 << 30)
  121. #define STS2_AC12CRCE (1 << 29)
  122. #define STS2_RSPCRC7E (1 << 28)
  123. #define STS2_CRCSTEBE (1 << 27)
  124. #define STS2_RDATEBE (1 << 26)
  125. #define STS2_AC12REBE (1 << 25)
  126. #define STS2_RSPEBE (1 << 24)
  127. #define STS2_AC12IDXE (1 << 23)
  128. #define STS2_RSPIDXE (1 << 22)
  129. #define STS2_CCSTO (1 << 15)
  130. #define STS2_RDATTO (1 << 14)
  131. #define STS2_DATBSYTO (1 << 13)
  132. #define STS2_CRCSTTO (1 << 12)
  133. #define STS2_AC12BSYTO (1 << 11)
  134. #define STS2_RSPBSYTO (1 << 10)
  135. #define STS2_AC12RSPTO (1 << 9)
  136. #define STS2_RSPTO (1 << 8)
  137. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  138. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  139. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  140. STS2_DATBSYTO | STS2_CRCSTTO | \
  141. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  142. STS2_AC12RSPTO | STS2_RSPTO)
  143. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  144. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  145. #define CLKDEV_INIT 400000 /* 400 KHz */
  146. enum mmcif_state {
  147. STATE_IDLE,
  148. STATE_REQUEST,
  149. STATE_IOS,
  150. };
  151. struct sh_mmcif_host {
  152. struct mmc_host *mmc;
  153. struct mmc_data *data;
  154. struct platform_device *pd;
  155. struct clk *hclk;
  156. unsigned int clk;
  157. int bus_width;
  158. bool sd_error;
  159. long timeout;
  160. void __iomem *addr;
  161. struct completion intr_wait;
  162. enum mmcif_state state;
  163. spinlock_t lock;
  164. /* DMA support */
  165. struct dma_chan *chan_rx;
  166. struct dma_chan *chan_tx;
  167. struct completion dma_complete;
  168. bool dma_active;
  169. };
  170. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  171. unsigned int reg, u32 val)
  172. {
  173. writel(val | readl(host->addr + reg), host->addr + reg);
  174. }
  175. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  176. unsigned int reg, u32 val)
  177. {
  178. writel(~val & readl(host->addr + reg), host->addr + reg);
  179. }
  180. static void mmcif_dma_complete(void *arg)
  181. {
  182. struct sh_mmcif_host *host = arg;
  183. dev_dbg(&host->pd->dev, "Command completed\n");
  184. if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
  185. dev_name(&host->pd->dev)))
  186. return;
  187. if (host->data->flags & MMC_DATA_READ)
  188. dma_unmap_sg(host->chan_rx->device->dev,
  189. host->data->sg, host->data->sg_len,
  190. DMA_FROM_DEVICE);
  191. else
  192. dma_unmap_sg(host->chan_tx->device->dev,
  193. host->data->sg, host->data->sg_len,
  194. DMA_TO_DEVICE);
  195. complete(&host->dma_complete);
  196. }
  197. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  198. {
  199. struct scatterlist *sg = host->data->sg;
  200. struct dma_async_tx_descriptor *desc = NULL;
  201. struct dma_chan *chan = host->chan_rx;
  202. dma_cookie_t cookie = -EINVAL;
  203. int ret;
  204. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  205. DMA_FROM_DEVICE);
  206. if (ret > 0) {
  207. host->dma_active = true;
  208. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  209. DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  210. }
  211. if (desc) {
  212. desc->callback = mmcif_dma_complete;
  213. desc->callback_param = host;
  214. cookie = dmaengine_submit(desc);
  215. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  216. dma_async_issue_pending(chan);
  217. }
  218. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  219. __func__, host->data->sg_len, ret, cookie);
  220. if (!desc) {
  221. /* DMA failed, fall back to PIO */
  222. if (ret >= 0)
  223. ret = -EIO;
  224. host->chan_rx = NULL;
  225. host->dma_active = false;
  226. dma_release_channel(chan);
  227. /* Free the Tx channel too */
  228. chan = host->chan_tx;
  229. if (chan) {
  230. host->chan_tx = NULL;
  231. dma_release_channel(chan);
  232. }
  233. dev_warn(&host->pd->dev,
  234. "DMA failed: %d, falling back to PIO\n", ret);
  235. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  236. }
  237. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  238. desc, cookie, host->data->sg_len);
  239. }
  240. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  241. {
  242. struct scatterlist *sg = host->data->sg;
  243. struct dma_async_tx_descriptor *desc = NULL;
  244. struct dma_chan *chan = host->chan_tx;
  245. dma_cookie_t cookie = -EINVAL;
  246. int ret;
  247. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  248. DMA_TO_DEVICE);
  249. if (ret > 0) {
  250. host->dma_active = true;
  251. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  252. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  253. }
  254. if (desc) {
  255. desc->callback = mmcif_dma_complete;
  256. desc->callback_param = host;
  257. cookie = dmaengine_submit(desc);
  258. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  259. dma_async_issue_pending(chan);
  260. }
  261. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  262. __func__, host->data->sg_len, ret, cookie);
  263. if (!desc) {
  264. /* DMA failed, fall back to PIO */
  265. if (ret >= 0)
  266. ret = -EIO;
  267. host->chan_tx = NULL;
  268. host->dma_active = false;
  269. dma_release_channel(chan);
  270. /* Free the Rx channel too */
  271. chan = host->chan_rx;
  272. if (chan) {
  273. host->chan_rx = NULL;
  274. dma_release_channel(chan);
  275. }
  276. dev_warn(&host->pd->dev,
  277. "DMA failed: %d, falling back to PIO\n", ret);
  278. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  279. }
  280. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  281. desc, cookie);
  282. }
  283. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  284. {
  285. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  286. chan->private = arg;
  287. return true;
  288. }
  289. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  290. struct sh_mmcif_plat_data *pdata)
  291. {
  292. host->dma_active = false;
  293. /* We can only either use DMA for both Tx and Rx or not use it at all */
  294. if (pdata->dma) {
  295. dma_cap_mask_t mask;
  296. dma_cap_zero(mask);
  297. dma_cap_set(DMA_SLAVE, mask);
  298. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
  299. &pdata->dma->chan_priv_tx);
  300. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  301. host->chan_tx);
  302. if (!host->chan_tx)
  303. return;
  304. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
  305. &pdata->dma->chan_priv_rx);
  306. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  307. host->chan_rx);
  308. if (!host->chan_rx) {
  309. dma_release_channel(host->chan_tx);
  310. host->chan_tx = NULL;
  311. return;
  312. }
  313. init_completion(&host->dma_complete);
  314. }
  315. }
  316. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  317. {
  318. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  319. /* Descriptors are freed automatically */
  320. if (host->chan_tx) {
  321. struct dma_chan *chan = host->chan_tx;
  322. host->chan_tx = NULL;
  323. dma_release_channel(chan);
  324. }
  325. if (host->chan_rx) {
  326. struct dma_chan *chan = host->chan_rx;
  327. host->chan_rx = NULL;
  328. dma_release_channel(chan);
  329. }
  330. host->dma_active = false;
  331. }
  332. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  333. {
  334. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  335. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  336. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  337. if (!clk)
  338. return;
  339. if (p->sup_pclk && clk == host->clk)
  340. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  341. else
  342. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  343. (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
  344. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  345. }
  346. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  347. {
  348. u32 tmp;
  349. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  350. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  351. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  352. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  353. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  354. /* byte swap on */
  355. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  356. }
  357. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  358. {
  359. u32 state1, state2;
  360. int ret, timeout = 10000000;
  361. host->sd_error = false;
  362. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  363. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  364. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  365. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  366. if (state1 & STS1_CMDSEQ) {
  367. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  368. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  369. while (1) {
  370. timeout--;
  371. if (timeout < 0) {
  372. dev_err(&host->pd->dev,
  373. "Forceed end of command sequence timeout err\n");
  374. return -EIO;
  375. }
  376. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  377. & STS1_CMDSEQ))
  378. break;
  379. mdelay(1);
  380. }
  381. sh_mmcif_sync_reset(host);
  382. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  383. return -EIO;
  384. }
  385. if (state2 & STS2_CRC_ERR) {
  386. dev_dbg(&host->pd->dev, ": Happened CRC error\n");
  387. ret = -EIO;
  388. } else if (state2 & STS2_TIMEOUT_ERR) {
  389. dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
  390. ret = -ETIMEDOUT;
  391. } else {
  392. dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
  393. ret = -EIO;
  394. }
  395. return ret;
  396. }
  397. static int sh_mmcif_single_read(struct sh_mmcif_host *host,
  398. struct mmc_request *mrq)
  399. {
  400. struct mmc_data *data = mrq->data;
  401. long time;
  402. u32 blocksize, i, *p = sg_virt(data->sg);
  403. /* buf read enable */
  404. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  405. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  406. host->timeout);
  407. if (time <= 0 || host->sd_error)
  408. return sh_mmcif_error_manage(host);
  409. blocksize = (BLOCK_SIZE_MASK &
  410. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  411. for (i = 0; i < blocksize / 4; i++)
  412. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  413. /* buffer read end */
  414. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  415. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  416. host->timeout);
  417. if (time <= 0 || host->sd_error)
  418. return sh_mmcif_error_manage(host);
  419. return 0;
  420. }
  421. static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
  422. struct mmc_request *mrq)
  423. {
  424. struct mmc_data *data = mrq->data;
  425. long time;
  426. u32 blocksize, i, j, sec, *p;
  427. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  428. MMCIF_CE_BLOCK_SET);
  429. for (j = 0; j < data->sg_len; j++) {
  430. p = sg_virt(data->sg);
  431. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  432. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  433. /* buf read enable */
  434. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  435. host->timeout);
  436. if (time <= 0 || host->sd_error)
  437. return sh_mmcif_error_manage(host);
  438. for (i = 0; i < blocksize / 4; i++)
  439. *p++ = sh_mmcif_readl(host->addr,
  440. MMCIF_CE_DATA);
  441. }
  442. if (j < data->sg_len - 1)
  443. data->sg++;
  444. }
  445. return 0;
  446. }
  447. static int sh_mmcif_single_write(struct sh_mmcif_host *host,
  448. struct mmc_request *mrq)
  449. {
  450. struct mmc_data *data = mrq->data;
  451. long time;
  452. u32 blocksize, i, *p = sg_virt(data->sg);
  453. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  454. /* buf write enable */
  455. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  456. host->timeout);
  457. if (time <= 0 || host->sd_error)
  458. return sh_mmcif_error_manage(host);
  459. blocksize = (BLOCK_SIZE_MASK &
  460. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  461. for (i = 0; i < blocksize / 4; i++)
  462. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  463. /* buffer write end */
  464. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  465. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  466. host->timeout);
  467. if (time <= 0 || host->sd_error)
  468. return sh_mmcif_error_manage(host);
  469. return 0;
  470. }
  471. static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
  472. struct mmc_request *mrq)
  473. {
  474. struct mmc_data *data = mrq->data;
  475. long time;
  476. u32 i, sec, j, blocksize, *p;
  477. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  478. MMCIF_CE_BLOCK_SET);
  479. for (j = 0; j < data->sg_len; j++) {
  480. p = sg_virt(data->sg);
  481. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  482. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  483. /* buf write enable*/
  484. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  485. host->timeout);
  486. if (time <= 0 || host->sd_error)
  487. return sh_mmcif_error_manage(host);
  488. for (i = 0; i < blocksize / 4; i++)
  489. sh_mmcif_writel(host->addr,
  490. MMCIF_CE_DATA, *p++);
  491. }
  492. if (j < data->sg_len - 1)
  493. data->sg++;
  494. }
  495. return 0;
  496. }
  497. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  498. struct mmc_command *cmd)
  499. {
  500. if (cmd->flags & MMC_RSP_136) {
  501. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  502. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  503. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  504. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  505. } else
  506. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  507. }
  508. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  509. struct mmc_command *cmd)
  510. {
  511. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  512. }
  513. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  514. struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
  515. {
  516. u32 tmp = 0;
  517. /* Response Type check */
  518. switch (mmc_resp_type(cmd)) {
  519. case MMC_RSP_NONE:
  520. tmp |= CMD_SET_RTYP_NO;
  521. break;
  522. case MMC_RSP_R1:
  523. case MMC_RSP_R1B:
  524. case MMC_RSP_R3:
  525. tmp |= CMD_SET_RTYP_6B;
  526. break;
  527. case MMC_RSP_R2:
  528. tmp |= CMD_SET_RTYP_17B;
  529. break;
  530. default:
  531. dev_err(&host->pd->dev, "Unsupported response type.\n");
  532. break;
  533. }
  534. switch (opc) {
  535. /* RBSY */
  536. case MMC_SWITCH:
  537. case MMC_STOP_TRANSMISSION:
  538. case MMC_SET_WRITE_PROT:
  539. case MMC_CLR_WRITE_PROT:
  540. case MMC_ERASE:
  541. case MMC_GEN_CMD:
  542. tmp |= CMD_SET_RBSY;
  543. break;
  544. }
  545. /* WDAT / DATW */
  546. if (host->data) {
  547. tmp |= CMD_SET_WDAT;
  548. switch (host->bus_width) {
  549. case MMC_BUS_WIDTH_1:
  550. tmp |= CMD_SET_DATW_1;
  551. break;
  552. case MMC_BUS_WIDTH_4:
  553. tmp |= CMD_SET_DATW_4;
  554. break;
  555. case MMC_BUS_WIDTH_8:
  556. tmp |= CMD_SET_DATW_8;
  557. break;
  558. default:
  559. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  560. break;
  561. }
  562. }
  563. /* DWEN */
  564. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  565. tmp |= CMD_SET_DWEN;
  566. /* CMLTE/CMD12EN */
  567. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  568. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  569. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  570. mrq->data->blocks << 16);
  571. }
  572. /* RIDXC[1:0] check bits */
  573. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  574. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  575. tmp |= CMD_SET_RIDXC_BITS;
  576. /* RCRC7C[1:0] check bits */
  577. if (opc == MMC_SEND_OP_COND)
  578. tmp |= CMD_SET_CRC7C_BITS;
  579. /* RCRC7C[1:0] internal CRC7 */
  580. if (opc == MMC_ALL_SEND_CID ||
  581. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  582. tmp |= CMD_SET_CRC7C_INTERNAL;
  583. return opc = ((opc << 24) | tmp);
  584. }
  585. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  586. struct mmc_request *mrq, u32 opc)
  587. {
  588. int ret;
  589. switch (opc) {
  590. case MMC_READ_MULTIPLE_BLOCK:
  591. ret = sh_mmcif_multi_read(host, mrq);
  592. break;
  593. case MMC_WRITE_MULTIPLE_BLOCK:
  594. ret = sh_mmcif_multi_write(host, mrq);
  595. break;
  596. case MMC_WRITE_BLOCK:
  597. ret = sh_mmcif_single_write(host, mrq);
  598. break;
  599. case MMC_READ_SINGLE_BLOCK:
  600. case MMC_SEND_EXT_CSD:
  601. ret = sh_mmcif_single_read(host, mrq);
  602. break;
  603. default:
  604. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  605. ret = -EINVAL;
  606. break;
  607. }
  608. return ret;
  609. }
  610. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  611. struct mmc_request *mrq, struct mmc_command *cmd)
  612. {
  613. long time;
  614. int ret = 0, mask = 0;
  615. u32 opc = cmd->opcode;
  616. switch (opc) {
  617. /* respons busy check */
  618. case MMC_SWITCH:
  619. case MMC_STOP_TRANSMISSION:
  620. case MMC_SET_WRITE_PROT:
  621. case MMC_CLR_WRITE_PROT:
  622. case MMC_ERASE:
  623. case MMC_GEN_CMD:
  624. mask = MASK_MRBSYE;
  625. break;
  626. default:
  627. mask = MASK_MCRSPE;
  628. break;
  629. }
  630. mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
  631. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
  632. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
  633. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
  634. if (host->data) {
  635. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  636. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  637. mrq->data->blksz);
  638. }
  639. opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
  640. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  641. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  642. /* set arg */
  643. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  644. /* set cmd */
  645. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  646. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  647. host->timeout);
  648. if (time <= 0) {
  649. cmd->error = sh_mmcif_error_manage(host);
  650. return;
  651. }
  652. if (host->sd_error) {
  653. switch (cmd->opcode) {
  654. case MMC_ALL_SEND_CID:
  655. case MMC_SELECT_CARD:
  656. case MMC_APP_CMD:
  657. cmd->error = -ETIMEDOUT;
  658. break;
  659. default:
  660. dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
  661. cmd->opcode);
  662. cmd->error = sh_mmcif_error_manage(host);
  663. break;
  664. }
  665. host->sd_error = false;
  666. return;
  667. }
  668. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  669. cmd->error = 0;
  670. return;
  671. }
  672. sh_mmcif_get_response(host, cmd);
  673. if (host->data) {
  674. if (!host->dma_active) {
  675. ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
  676. } else {
  677. long time =
  678. wait_for_completion_interruptible_timeout(&host->dma_complete,
  679. host->timeout);
  680. if (!time)
  681. ret = -ETIMEDOUT;
  682. else if (time < 0)
  683. ret = time;
  684. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  685. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  686. host->dma_active = false;
  687. }
  688. if (ret < 0)
  689. mrq->data->bytes_xfered = 0;
  690. else
  691. mrq->data->bytes_xfered =
  692. mrq->data->blocks * mrq->data->blksz;
  693. }
  694. cmd->error = ret;
  695. }
  696. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  697. struct mmc_request *mrq, struct mmc_command *cmd)
  698. {
  699. long time;
  700. if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
  701. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  702. else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
  703. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  704. else {
  705. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  706. cmd->error = sh_mmcif_error_manage(host);
  707. return;
  708. }
  709. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  710. host->timeout);
  711. if (time <= 0 || host->sd_error) {
  712. cmd->error = sh_mmcif_error_manage(host);
  713. return;
  714. }
  715. sh_mmcif_get_cmd12response(host, cmd);
  716. cmd->error = 0;
  717. }
  718. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  719. {
  720. struct sh_mmcif_host *host = mmc_priv(mmc);
  721. unsigned long flags;
  722. spin_lock_irqsave(&host->lock, flags);
  723. if (host->state != STATE_IDLE) {
  724. spin_unlock_irqrestore(&host->lock, flags);
  725. mrq->cmd->error = -EAGAIN;
  726. mmc_request_done(mmc, mrq);
  727. return;
  728. }
  729. host->state = STATE_REQUEST;
  730. spin_unlock_irqrestore(&host->lock, flags);
  731. switch (mrq->cmd->opcode) {
  732. /* MMCIF does not support SD/SDIO command */
  733. case SD_IO_SEND_OP_COND:
  734. case MMC_APP_CMD:
  735. host->state = STATE_IDLE;
  736. mrq->cmd->error = -ETIMEDOUT;
  737. mmc_request_done(mmc, mrq);
  738. return;
  739. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  740. if (!mrq->data) {
  741. /* send_if_cond cmd (not support) */
  742. host->state = STATE_IDLE;
  743. mrq->cmd->error = -ETIMEDOUT;
  744. mmc_request_done(mmc, mrq);
  745. return;
  746. }
  747. break;
  748. default:
  749. break;
  750. }
  751. host->data = mrq->data;
  752. if (mrq->data) {
  753. if (mrq->data->flags & MMC_DATA_READ) {
  754. if (host->chan_rx)
  755. sh_mmcif_start_dma_rx(host);
  756. } else {
  757. if (host->chan_tx)
  758. sh_mmcif_start_dma_tx(host);
  759. }
  760. }
  761. sh_mmcif_start_cmd(host, mrq, mrq->cmd);
  762. host->data = NULL;
  763. if (!mrq->cmd->error && mrq->stop)
  764. sh_mmcif_stop_cmd(host, mrq, mrq->stop);
  765. host->state = STATE_IDLE;
  766. mmc_request_done(mmc, mrq);
  767. }
  768. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  769. {
  770. struct sh_mmcif_host *host = mmc_priv(mmc);
  771. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  772. unsigned long flags;
  773. spin_lock_irqsave(&host->lock, flags);
  774. if (host->state != STATE_IDLE) {
  775. spin_unlock_irqrestore(&host->lock, flags);
  776. return;
  777. }
  778. host->state = STATE_IOS;
  779. spin_unlock_irqrestore(&host->lock, flags);
  780. if (ios->power_mode == MMC_POWER_UP) {
  781. if (p->set_pwr)
  782. p->set_pwr(host->pd, ios->power_mode);
  783. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  784. /* clock stop */
  785. sh_mmcif_clock_control(host, 0);
  786. if (ios->power_mode == MMC_POWER_OFF && p->down_pwr)
  787. p->down_pwr(host->pd);
  788. host->state = STATE_IDLE;
  789. return;
  790. }
  791. if (ios->clock)
  792. sh_mmcif_clock_control(host, ios->clock);
  793. host->bus_width = ios->bus_width;
  794. host->state = STATE_IDLE;
  795. }
  796. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  797. {
  798. struct sh_mmcif_host *host = mmc_priv(mmc);
  799. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  800. if (!p->get_cd)
  801. return -ENOSYS;
  802. else
  803. return p->get_cd(host->pd);
  804. }
  805. static struct mmc_host_ops sh_mmcif_ops = {
  806. .request = sh_mmcif_request,
  807. .set_ios = sh_mmcif_set_ios,
  808. .get_cd = sh_mmcif_get_cd,
  809. };
  810. static void sh_mmcif_detect(struct mmc_host *mmc)
  811. {
  812. mmc_detect_change(mmc, 0);
  813. }
  814. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  815. {
  816. struct sh_mmcif_host *host = dev_id;
  817. u32 state;
  818. int err = 0;
  819. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  820. if (state & INT_RBSYE) {
  821. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  822. ~(INT_RBSYE | INT_CRSPE));
  823. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  824. } else if (state & INT_CRSPE) {
  825. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  826. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  827. } else if (state & INT_BUFREN) {
  828. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  829. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  830. } else if (state & INT_BUFWEN) {
  831. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  832. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  833. } else if (state & INT_CMD12DRE) {
  834. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  835. ~(INT_CMD12DRE | INT_CMD12RBE |
  836. INT_CMD12CRE | INT_BUFRE));
  837. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  838. } else if (state & INT_BUFRE) {
  839. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  840. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  841. } else if (state & INT_DTRANE) {
  842. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  843. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  844. } else if (state & INT_CMD12RBE) {
  845. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  846. ~(INT_CMD12RBE | INT_CMD12CRE));
  847. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  848. } else if (state & INT_ERR_STS) {
  849. /* err interrupts */
  850. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  851. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  852. err = 1;
  853. } else {
  854. dev_dbg(&host->pd->dev, "Not support int\n");
  855. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  856. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  857. err = 1;
  858. }
  859. if (err) {
  860. host->sd_error = true;
  861. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  862. }
  863. if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
  864. complete(&host->intr_wait);
  865. else
  866. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  867. return IRQ_HANDLED;
  868. }
  869. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  870. {
  871. int ret = 0, irq[2];
  872. struct mmc_host *mmc;
  873. struct sh_mmcif_host *host;
  874. struct sh_mmcif_plat_data *pd;
  875. struct resource *res;
  876. void __iomem *reg;
  877. char clk_name[8];
  878. irq[0] = platform_get_irq(pdev, 0);
  879. irq[1] = platform_get_irq(pdev, 1);
  880. if (irq[0] < 0 || irq[1] < 0) {
  881. dev_err(&pdev->dev, "Get irq error\n");
  882. return -ENXIO;
  883. }
  884. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  885. if (!res) {
  886. dev_err(&pdev->dev, "platform_get_resource error.\n");
  887. return -ENXIO;
  888. }
  889. reg = ioremap(res->start, resource_size(res));
  890. if (!reg) {
  891. dev_err(&pdev->dev, "ioremap error.\n");
  892. return -ENOMEM;
  893. }
  894. pd = pdev->dev.platform_data;
  895. if (!pd) {
  896. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  897. ret = -ENXIO;
  898. goto clean_up;
  899. }
  900. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  901. if (!mmc) {
  902. ret = -ENOMEM;
  903. goto clean_up;
  904. }
  905. host = mmc_priv(mmc);
  906. host->mmc = mmc;
  907. host->addr = reg;
  908. host->timeout = 1000;
  909. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  910. host->hclk = clk_get(&pdev->dev, clk_name);
  911. if (IS_ERR(host->hclk)) {
  912. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  913. ret = PTR_ERR(host->hclk);
  914. goto clean_up1;
  915. }
  916. clk_enable(host->hclk);
  917. host->clk = clk_get_rate(host->hclk);
  918. host->pd = pdev;
  919. init_completion(&host->intr_wait);
  920. spin_lock_init(&host->lock);
  921. mmc->ops = &sh_mmcif_ops;
  922. mmc->f_max = host->clk;
  923. /* close to 400KHz */
  924. if (mmc->f_max < 51200000)
  925. mmc->f_min = mmc->f_max / 128;
  926. else if (mmc->f_max < 102400000)
  927. mmc->f_min = mmc->f_max / 256;
  928. else
  929. mmc->f_min = mmc->f_max / 512;
  930. if (pd->ocr)
  931. mmc->ocr_avail = pd->ocr;
  932. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  933. if (pd->caps)
  934. mmc->caps |= pd->caps;
  935. mmc->max_segs = 32;
  936. mmc->max_blk_size = 512;
  937. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  938. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  939. mmc->max_seg_size = mmc->max_req_size;
  940. sh_mmcif_sync_reset(host);
  941. platform_set_drvdata(pdev, host);
  942. /* See if we also get DMA */
  943. sh_mmcif_request_dma(host, pd);
  944. mmc_add_host(mmc);
  945. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  946. ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
  947. if (ret) {
  948. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  949. goto clean_up2;
  950. }
  951. ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
  952. if (ret) {
  953. free_irq(irq[0], host);
  954. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  955. goto clean_up2;
  956. }
  957. sh_mmcif_detect(host->mmc);
  958. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  959. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  960. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  961. return ret;
  962. clean_up2:
  963. clk_disable(host->hclk);
  964. clean_up1:
  965. mmc_free_host(mmc);
  966. clean_up:
  967. if (reg)
  968. iounmap(reg);
  969. return ret;
  970. }
  971. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  972. {
  973. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  974. int irq[2];
  975. mmc_remove_host(host->mmc);
  976. sh_mmcif_release_dma(host);
  977. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  978. if (host->addr)
  979. iounmap(host->addr);
  980. irq[0] = platform_get_irq(pdev, 0);
  981. irq[1] = platform_get_irq(pdev, 1);
  982. free_irq(irq[0], host);
  983. free_irq(irq[1], host);
  984. platform_set_drvdata(pdev, NULL);
  985. clk_disable(host->hclk);
  986. mmc_free_host(host->mmc);
  987. return 0;
  988. }
  989. static struct platform_driver sh_mmcif_driver = {
  990. .probe = sh_mmcif_probe,
  991. .remove = sh_mmcif_remove,
  992. .driver = {
  993. .name = DRIVER_NAME,
  994. },
  995. };
  996. static int __init sh_mmcif_init(void)
  997. {
  998. return platform_driver_register(&sh_mmcif_driver);
  999. }
  1000. static void __exit sh_mmcif_exit(void)
  1001. {
  1002. platform_driver_unregister(&sh_mmcif_driver);
  1003. }
  1004. module_init(sh_mmcif_init);
  1005. module_exit(sh_mmcif_exit);
  1006. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1007. MODULE_LICENSE("GPL");
  1008. MODULE_ALIAS("platform:" DRIVER_NAME);
  1009. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");