intelfbhw.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/config.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/errno.h>
  24. #include <linux/string.h>
  25. #include <linux/mm.h>
  26. #include <linux/tty.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fb.h>
  30. #include <linux/ioport.h>
  31. #include <linux/init.h>
  32. #include <linux/pci.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/pagemap.h>
  35. #include <asm/io.h>
  36. #include "intelfb.h"
  37. #include "intelfbhw.h"
  38. struct pll_min_max {
  39. int min_m, max_m;
  40. int min_m1, max_m1;
  41. int min_m2, max_m2;
  42. int min_n, max_n;
  43. int min_p, max_p;
  44. int min_p1, max_p1;
  45. int min_vco, max_vco;
  46. int p_transition_clk, ref_clk;
  47. int p_inc_lo, p_inc_hi;
  48. };
  49. #define PLLS_I8xx 0
  50. #define PLLS_I9xx 1
  51. #define PLLS_MAX 2
  52. static struct pll_min_max plls[PLLS_MAX] = {
  53. { 108, 140, 18, 26, 6, 16, 3, 16, 4, 128, 0, 31, 930000, 1400000, 165000, 48000, 4, 22 }, //I8xx
  54. { 75, 120, 10, 20, 5, 9, 4, 7, 5, 80, 1, 8, 930000, 2800000, 200000, 96000, 10, 5 } //I9xx
  55. };
  56. int
  57. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  58. {
  59. u32 tmp;
  60. if (!pdev || !dinfo)
  61. return 1;
  62. switch (pdev->device) {
  63. case PCI_DEVICE_ID_INTEL_830M:
  64. dinfo->name = "Intel(R) 830M";
  65. dinfo->chipset = INTEL_830M;
  66. dinfo->mobile = 1;
  67. dinfo->pll_index = PLLS_I8xx;
  68. return 0;
  69. case PCI_DEVICE_ID_INTEL_845G:
  70. dinfo->name = "Intel(R) 845G";
  71. dinfo->chipset = INTEL_845G;
  72. dinfo->mobile = 0;
  73. dinfo->pll_index = PLLS_I8xx;
  74. return 0;
  75. case PCI_DEVICE_ID_INTEL_85XGM:
  76. tmp = 0;
  77. dinfo->mobile = 1;
  78. dinfo->pll_index = PLLS_I8xx;
  79. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  80. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  81. INTEL_85X_VARIANT_MASK) {
  82. case INTEL_VAR_855GME:
  83. dinfo->name = "Intel(R) 855GME";
  84. dinfo->chipset = INTEL_855GME;
  85. return 0;
  86. case INTEL_VAR_855GM:
  87. dinfo->name = "Intel(R) 855GM";
  88. dinfo->chipset = INTEL_855GM;
  89. return 0;
  90. case INTEL_VAR_852GME:
  91. dinfo->name = "Intel(R) 852GME";
  92. dinfo->chipset = INTEL_852GME;
  93. return 0;
  94. case INTEL_VAR_852GM:
  95. dinfo->name = "Intel(R) 852GM";
  96. dinfo->chipset = INTEL_852GM;
  97. return 0;
  98. default:
  99. dinfo->name = "Intel(R) 852GM/855GM";
  100. dinfo->chipset = INTEL_85XGM;
  101. return 0;
  102. }
  103. break;
  104. case PCI_DEVICE_ID_INTEL_865G:
  105. dinfo->name = "Intel(R) 865G";
  106. dinfo->chipset = INTEL_865G;
  107. dinfo->mobile = 0;
  108. dinfo->pll_index = PLLS_I8xx;
  109. return 0;
  110. case PCI_DEVICE_ID_INTEL_915G:
  111. dinfo->name = "Intel(R) 915G";
  112. dinfo->chipset = INTEL_915G;
  113. dinfo->mobile = 0;
  114. dinfo->pll_index = PLLS_I9xx;
  115. return 0;
  116. case PCI_DEVICE_ID_INTEL_915GM:
  117. dinfo->name = "Intel(R) 915GM";
  118. dinfo->chipset = INTEL_915GM;
  119. dinfo->mobile = 1;
  120. dinfo->pll_index = PLLS_I9xx;
  121. return 0;
  122. case PCI_DEVICE_ID_INTEL_945G:
  123. dinfo->name = "Intel(R) 945G";
  124. dinfo->chipset = INTEL_945G;
  125. dinfo->mobile = 0;
  126. dinfo->pll_index = PLLS_I9xx;
  127. return 0;
  128. case PCI_DEVICE_ID_INTEL_945GM:
  129. dinfo->name = "Intel(R) 945GM";
  130. dinfo->chipset = INTEL_945GM;
  131. dinfo->mobile = 1;
  132. dinfo->pll_index = PLLS_I9xx;
  133. return 0;
  134. default:
  135. return 1;
  136. }
  137. }
  138. int
  139. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  140. int *stolen_size)
  141. {
  142. struct pci_dev *bridge_dev;
  143. u16 tmp;
  144. if (!pdev || !aperture_size || !stolen_size)
  145. return 1;
  146. /* Find the bridge device. It is always 0:0.0 */
  147. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  148. ERR_MSG("cannot find bridge device\n");
  149. return 1;
  150. }
  151. /* Get the fb aperture size and "stolen" memory amount. */
  152. tmp = 0;
  153. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  154. switch (pdev->device) {
  155. case PCI_DEVICE_ID_INTEL_830M:
  156. case PCI_DEVICE_ID_INTEL_845G:
  157. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  158. *aperture_size = MB(64);
  159. else
  160. *aperture_size = MB(128);
  161. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  162. case INTEL_830_GMCH_GMS_STOLEN_512:
  163. *stolen_size = KB(512) - KB(132);
  164. return 0;
  165. case INTEL_830_GMCH_GMS_STOLEN_1024:
  166. *stolen_size = MB(1) - KB(132);
  167. return 0;
  168. case INTEL_830_GMCH_GMS_STOLEN_8192:
  169. *stolen_size = MB(8) - KB(132);
  170. return 0;
  171. case INTEL_830_GMCH_GMS_LOCAL:
  172. ERR_MSG("only local memory found\n");
  173. return 1;
  174. case INTEL_830_GMCH_GMS_DISABLED:
  175. ERR_MSG("video memory is disabled\n");
  176. return 1;
  177. default:
  178. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  179. tmp & INTEL_830_GMCH_GMS_MASK);
  180. return 1;
  181. }
  182. break;
  183. default:
  184. *aperture_size = MB(128);
  185. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  186. case INTEL_855_GMCH_GMS_STOLEN_1M:
  187. *stolen_size = MB(1) - KB(132);
  188. return 0;
  189. case INTEL_855_GMCH_GMS_STOLEN_4M:
  190. *stolen_size = MB(4) - KB(132);
  191. return 0;
  192. case INTEL_855_GMCH_GMS_STOLEN_8M:
  193. *stolen_size = MB(8) - KB(132);
  194. return 0;
  195. case INTEL_855_GMCH_GMS_STOLEN_16M:
  196. *stolen_size = MB(16) - KB(132);
  197. return 0;
  198. case INTEL_855_GMCH_GMS_STOLEN_32M:
  199. *stolen_size = MB(32) - KB(132);
  200. return 0;
  201. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  202. *stolen_size = MB(48) - KB(132);
  203. return 0;
  204. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  205. *stolen_size = MB(64) - KB(132);
  206. return 0;
  207. case INTEL_855_GMCH_GMS_DISABLED:
  208. ERR_MSG("video memory is disabled\n");
  209. return 0;
  210. default:
  211. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  212. tmp & INTEL_855_GMCH_GMS_MASK);
  213. return 1;
  214. }
  215. }
  216. }
  217. int
  218. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  219. {
  220. int dvo = 0;
  221. if (INREG(LVDS) & PORT_ENABLE)
  222. dvo |= LVDS_PORT;
  223. if (INREG(DVOA) & PORT_ENABLE)
  224. dvo |= DVOA_PORT;
  225. if (INREG(DVOB) & PORT_ENABLE)
  226. dvo |= DVOB_PORT;
  227. if (INREG(DVOC) & PORT_ENABLE)
  228. dvo |= DVOC_PORT;
  229. return dvo;
  230. }
  231. const char *
  232. intelfbhw_dvo_to_string(int dvo)
  233. {
  234. if (dvo & DVOA_PORT)
  235. return "DVO port A";
  236. else if (dvo & DVOB_PORT)
  237. return "DVO port B";
  238. else if (dvo & DVOC_PORT)
  239. return "DVO port C";
  240. else if (dvo & LVDS_PORT)
  241. return "LVDS port";
  242. else
  243. return NULL;
  244. }
  245. int
  246. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  247. struct fb_var_screeninfo *var)
  248. {
  249. int bytes_per_pixel;
  250. int tmp;
  251. #if VERBOSE > 0
  252. DBG_MSG("intelfbhw_validate_mode\n");
  253. #endif
  254. bytes_per_pixel = var->bits_per_pixel / 8;
  255. if (bytes_per_pixel == 3)
  256. bytes_per_pixel = 4;
  257. /* Check if enough video memory. */
  258. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  259. if (tmp > dinfo->fb.size) {
  260. WRN_MSG("Not enough video ram for mode "
  261. "(%d KByte vs %d KByte).\n",
  262. BtoKB(tmp), BtoKB(dinfo->fb.size));
  263. return 1;
  264. }
  265. /* Check if x/y limits are OK. */
  266. if (var->xres - 1 > HACTIVE_MASK) {
  267. WRN_MSG("X resolution too large (%d vs %d).\n",
  268. var->xres, HACTIVE_MASK + 1);
  269. return 1;
  270. }
  271. if (var->yres - 1 > VACTIVE_MASK) {
  272. WRN_MSG("Y resolution too large (%d vs %d).\n",
  273. var->yres, VACTIVE_MASK + 1);
  274. return 1;
  275. }
  276. /* Check for interlaced/doublescan modes. */
  277. if (var->vmode & FB_VMODE_INTERLACED) {
  278. WRN_MSG("Mode is interlaced.\n");
  279. return 1;
  280. }
  281. if (var->vmode & FB_VMODE_DOUBLE) {
  282. WRN_MSG("Mode is double-scan.\n");
  283. return 1;
  284. }
  285. /* Check if clock is OK. */
  286. tmp = 1000000000 / var->pixclock;
  287. if (tmp < MIN_CLOCK) {
  288. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  289. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  290. return 1;
  291. }
  292. if (tmp > MAX_CLOCK) {
  293. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  294. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  295. return 1;
  296. }
  297. return 0;
  298. }
  299. int
  300. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  301. {
  302. struct intelfb_info *dinfo = GET_DINFO(info);
  303. u32 offset, xoffset, yoffset;
  304. #if VERBOSE > 0
  305. DBG_MSG("intelfbhw_pan_display\n");
  306. #endif
  307. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  308. yoffset = var->yoffset;
  309. if ((xoffset + var->xres > var->xres_virtual) ||
  310. (yoffset + var->yres > var->yres_virtual))
  311. return -EINVAL;
  312. offset = (yoffset * dinfo->pitch) +
  313. (xoffset * var->bits_per_pixel) / 8;
  314. offset += dinfo->fb.offset << 12;
  315. OUTREG(DSPABASE, offset);
  316. return 0;
  317. }
  318. /* Blank the screen. */
  319. void
  320. intelfbhw_do_blank(int blank, struct fb_info *info)
  321. {
  322. struct intelfb_info *dinfo = GET_DINFO(info);
  323. u32 tmp;
  324. #if VERBOSE > 0
  325. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  326. #endif
  327. /* Turn plane A on or off */
  328. tmp = INREG(DSPACNTR);
  329. if (blank)
  330. tmp &= ~DISPPLANE_PLANE_ENABLE;
  331. else
  332. tmp |= DISPPLANE_PLANE_ENABLE;
  333. OUTREG(DSPACNTR, tmp);
  334. /* Flush */
  335. tmp = INREG(DSPABASE);
  336. OUTREG(DSPABASE, tmp);
  337. /* Turn off/on the HW cursor */
  338. #if VERBOSE > 0
  339. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  340. #endif
  341. if (dinfo->cursor_on) {
  342. if (blank) {
  343. intelfbhw_cursor_hide(dinfo);
  344. } else {
  345. intelfbhw_cursor_show(dinfo);
  346. }
  347. dinfo->cursor_on = 1;
  348. }
  349. dinfo->cursor_blanked = blank;
  350. /* Set DPMS level */
  351. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  352. switch (blank) {
  353. case FB_BLANK_UNBLANK:
  354. case FB_BLANK_NORMAL:
  355. tmp |= ADPA_DPMS_D0;
  356. break;
  357. case FB_BLANK_VSYNC_SUSPEND:
  358. tmp |= ADPA_DPMS_D1;
  359. break;
  360. case FB_BLANK_HSYNC_SUSPEND:
  361. tmp |= ADPA_DPMS_D2;
  362. break;
  363. case FB_BLANK_POWERDOWN:
  364. tmp |= ADPA_DPMS_D3;
  365. break;
  366. }
  367. OUTREG(ADPA, tmp);
  368. return;
  369. }
  370. void
  371. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  372. unsigned red, unsigned green, unsigned blue,
  373. unsigned transp)
  374. {
  375. #if VERBOSE > 0
  376. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  377. regno, red, green, blue);
  378. #endif
  379. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  380. PALETTE_A : PALETTE_B;
  381. OUTREG(palette_reg + (regno << 2),
  382. (red << PALETTE_8_RED_SHIFT) |
  383. (green << PALETTE_8_GREEN_SHIFT) |
  384. (blue << PALETTE_8_BLUE_SHIFT));
  385. }
  386. int
  387. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  388. int flag)
  389. {
  390. int i;
  391. #if VERBOSE > 0
  392. DBG_MSG("intelfbhw_read_hw_state\n");
  393. #endif
  394. if (!hw || !dinfo)
  395. return -1;
  396. /* Read in as much of the HW state as possible. */
  397. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  398. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  399. hw->vga_pd = INREG(VGAPD);
  400. hw->dpll_a = INREG(DPLL_A);
  401. hw->dpll_b = INREG(DPLL_B);
  402. hw->fpa0 = INREG(FPA0);
  403. hw->fpa1 = INREG(FPA1);
  404. hw->fpb0 = INREG(FPB0);
  405. hw->fpb1 = INREG(FPB1);
  406. if (flag == 1)
  407. return flag;
  408. #if 0
  409. /* This seems to be a problem with the 852GM/855GM */
  410. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  411. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  412. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  413. }
  414. #endif
  415. if (flag == 2)
  416. return flag;
  417. hw->htotal_a = INREG(HTOTAL_A);
  418. hw->hblank_a = INREG(HBLANK_A);
  419. hw->hsync_a = INREG(HSYNC_A);
  420. hw->vtotal_a = INREG(VTOTAL_A);
  421. hw->vblank_a = INREG(VBLANK_A);
  422. hw->vsync_a = INREG(VSYNC_A);
  423. hw->src_size_a = INREG(SRC_SIZE_A);
  424. hw->bclrpat_a = INREG(BCLRPAT_A);
  425. hw->htotal_b = INREG(HTOTAL_B);
  426. hw->hblank_b = INREG(HBLANK_B);
  427. hw->hsync_b = INREG(HSYNC_B);
  428. hw->vtotal_b = INREG(VTOTAL_B);
  429. hw->vblank_b = INREG(VBLANK_B);
  430. hw->vsync_b = INREG(VSYNC_B);
  431. hw->src_size_b = INREG(SRC_SIZE_B);
  432. hw->bclrpat_b = INREG(BCLRPAT_B);
  433. if (flag == 3)
  434. return flag;
  435. hw->adpa = INREG(ADPA);
  436. hw->dvoa = INREG(DVOA);
  437. hw->dvob = INREG(DVOB);
  438. hw->dvoc = INREG(DVOC);
  439. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  440. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  441. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  442. hw->lvds = INREG(LVDS);
  443. if (flag == 4)
  444. return flag;
  445. hw->pipe_a_conf = INREG(PIPEACONF);
  446. hw->pipe_b_conf = INREG(PIPEBCONF);
  447. hw->disp_arb = INREG(DISPARB);
  448. if (flag == 5)
  449. return flag;
  450. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  451. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  452. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  453. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  454. if (flag == 6)
  455. return flag;
  456. for (i = 0; i < 4; i++) {
  457. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  458. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  459. }
  460. if (flag == 7)
  461. return flag;
  462. hw->cursor_size = INREG(CURSOR_SIZE);
  463. if (flag == 8)
  464. return flag;
  465. hw->disp_a_ctrl = INREG(DSPACNTR);
  466. hw->disp_b_ctrl = INREG(DSPBCNTR);
  467. hw->disp_a_base = INREG(DSPABASE);
  468. hw->disp_b_base = INREG(DSPBBASE);
  469. hw->disp_a_stride = INREG(DSPASTRIDE);
  470. hw->disp_b_stride = INREG(DSPBSTRIDE);
  471. if (flag == 9)
  472. return flag;
  473. hw->vgacntrl = INREG(VGACNTRL);
  474. if (flag == 10)
  475. return flag;
  476. hw->add_id = INREG(ADD_ID);
  477. if (flag == 11)
  478. return flag;
  479. for (i = 0; i < 7; i++) {
  480. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  481. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  482. if (i < 3)
  483. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  484. }
  485. for (i = 0; i < 8; i++)
  486. hw->fence[i] = INREG(FENCE + (i << 2));
  487. hw->instpm = INREG(INSTPM);
  488. hw->mem_mode = INREG(MEM_MODE);
  489. hw->fw_blc_0 = INREG(FW_BLC_0);
  490. hw->fw_blc_1 = INREG(FW_BLC_1);
  491. return 0;
  492. }
  493. static int calc_vclock3(int index, int m, int n, int p)
  494. {
  495. if (p == 0 || n == 0)
  496. return 0;
  497. return plls[index].ref_clk * m / n / p;
  498. }
  499. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  500. {
  501. int p2_val;
  502. switch(index)
  503. {
  504. case PLLS_I9xx:
  505. if (p1 == 0)
  506. return 0;
  507. if (lvds)
  508. p2_val = p2 ? 7 : 14;
  509. else
  510. p2_val = p2 ? 5 : 10;
  511. return ((plls[index].ref_clk * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  512. ((p1)) * (p2_val)));
  513. case PLLS_I8xx:
  514. default:
  515. return ((plls[index].ref_clk * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) /
  516. ((p1+2) * (1 << (p2 + 1)))));
  517. }
  518. }
  519. void
  520. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  521. {
  522. #if REGDUMP
  523. int i, m1, m2, n, p1, p2;
  524. int index = dinfo->pll_index;
  525. DBG_MSG("intelfbhw_print_hw_state\n");
  526. if (!hw || !dinfo)
  527. return;
  528. /* Read in as much of the HW state as possible. */
  529. printk("hw state dump start\n");
  530. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  531. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  532. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  533. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  534. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  535. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  536. if (hw->vga_pd & VGAPD_0_P1_FORCE_DIV2)
  537. p1 = 0;
  538. else
  539. p1 = (hw->vga_pd >> VGAPD_0_P1_SHIFT) & DPLL_P1_MASK;
  540. p2 = (hw->vga_pd >> VGAPD_0_P2_SHIFT) & DPLL_P2_MASK;
  541. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  542. m1, m2, n, p1, p2);
  543. printk(" VGA0: clock is %d\n",
  544. calc_vclock(index, m1, m2, n, p1, p2, 0));
  545. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  546. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  547. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  548. if (hw->vga_pd & VGAPD_1_P1_FORCE_DIV2)
  549. p1 = 0;
  550. else
  551. p1 = (hw->vga_pd >> VGAPD_1_P1_SHIFT) & DPLL_P1_MASK;
  552. p2 = (hw->vga_pd >> VGAPD_1_P2_SHIFT) & DPLL_P2_MASK;
  553. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  554. m1, m2, n, p1, p2);
  555. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  556. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  557. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  558. printk(" FPA0: 0x%08x\n", hw->fpa0);
  559. printk(" FPA1: 0x%08x\n", hw->fpa1);
  560. printk(" FPB0: 0x%08x\n", hw->fpb0);
  561. printk(" FPB1: 0x%08x\n", hw->fpb1);
  562. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  563. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  564. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  565. if (IS_I9XX(dinfo)) {
  566. int tmpp1;
  567. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  568. p1 = 0;
  569. else
  570. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & 0xff;
  571. tmpp1 = p1;
  572. switch (tmpp1)
  573. {
  574. case 0x1: p1 = 1; break;
  575. case 0x2: p1 = 2; break;
  576. case 0x4: p1 = 3; break;
  577. case 0x8: p1 = 4; break;
  578. case 0x10: p1 = 5; break;
  579. case 0x20: p1 = 6; break;
  580. case 0x40: p1 = 7; break;
  581. case 0x80: p1 = 8; break;
  582. default: break;
  583. }
  584. p2 = (hw->dpll_a >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  585. } else {
  586. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  587. p1 = 0;
  588. else
  589. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  590. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  591. }
  592. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  593. m1, m2, n, p1, p2);
  594. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  595. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  596. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  597. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  598. if (IS_I9XX(dinfo)) {
  599. int tmpp1;
  600. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  601. p1 = 0;
  602. else
  603. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & 0xff;
  604. tmpp1 = p1;
  605. switch (tmpp1)
  606. {
  607. case 0x1: p1 = 1; break;
  608. case 0x2: p1 = 2; break;
  609. case 0x4: p1 = 3; break;
  610. case 0x8: p1 = 4; break;
  611. case 0x10: p1 = 5; break;
  612. case 0x20: p1 = 6; break;
  613. case 0x40: p1 = 7; break;
  614. case 0x80: p1 = 8; break;
  615. default: break;
  616. }
  617. p2 = (hw->dpll_a >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  618. } else {
  619. if (hw->dpll_a & DPLL_P1_FORCE_DIV2)
  620. p1 = 0;
  621. else
  622. p1 = (hw->dpll_a >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  623. p2 = (hw->dpll_a >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  624. }
  625. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  626. m1, m2, n, p1, p2);
  627. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  628. #if 0
  629. printk(" PALETTE_A:\n");
  630. for (i = 0; i < PALETTE_8_ENTRIES)
  631. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  632. printk(" PALETTE_B:\n");
  633. for (i = 0; i < PALETTE_8_ENTRIES)
  634. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  635. #endif
  636. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  637. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  638. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  639. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  640. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  641. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  642. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  643. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  644. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  645. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  646. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  647. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  648. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  649. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  650. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  651. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  652. printk(" ADPA: 0x%08x\n", hw->adpa);
  653. printk(" DVOA: 0x%08x\n", hw->dvoa);
  654. printk(" DVOB: 0x%08x\n", hw->dvob);
  655. printk(" DVOC: 0x%08x\n", hw->dvoc);
  656. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  657. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  658. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  659. printk(" LVDS: 0x%08x\n", hw->lvds);
  660. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  661. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  662. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  663. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  664. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  665. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  666. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  667. printk(" CURSOR_A_PALETTE: ");
  668. for (i = 0; i < 4; i++) {
  669. printk("0x%08x", hw->cursor_a_palette[i]);
  670. if (i < 3)
  671. printk(", ");
  672. }
  673. printk("\n");
  674. printk(" CURSOR_B_PALETTE: ");
  675. for (i = 0; i < 4; i++) {
  676. printk("0x%08x", hw->cursor_b_palette[i]);
  677. if (i < 3)
  678. printk(", ");
  679. }
  680. printk("\n");
  681. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  682. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  683. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  684. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  685. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  686. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  687. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  688. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  689. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  690. for (i = 0; i < 7; i++) {
  691. printk(" SWF0%d 0x%08x\n", i,
  692. hw->swf0x[i]);
  693. }
  694. for (i = 0; i < 7; i++) {
  695. printk(" SWF1%d 0x%08x\n", i,
  696. hw->swf1x[i]);
  697. }
  698. for (i = 0; i < 3; i++) {
  699. printk(" SWF3%d 0x%08x\n", i,
  700. hw->swf3x[i]);
  701. }
  702. for (i = 0; i < 8; i++)
  703. printk(" FENCE%d 0x%08x\n", i,
  704. hw->fence[i]);
  705. printk(" INSTPM 0x%08x\n", hw->instpm);
  706. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  707. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  708. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  709. printk("hw state dump end\n");
  710. #endif
  711. }
  712. /* Split the M parameter into M1 and M2. */
  713. static int
  714. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  715. {
  716. int m1, m2;
  717. int testm;
  718. /* no point optimising too much - brute force m */
  719. for (m1 = plls[index].min_m1; m1 < plls[index].max_m1+1; m1++) {
  720. for (m2 = plls[index].min_m2; m2 < plls[index].max_m2+1; m2++) {
  721. testm = (5 * (m1 + 2)) + (m2 + 2);
  722. if (testm == m) {
  723. *retm1 = (unsigned int)m1;
  724. *retm2 = (unsigned int)m2;
  725. return 0;
  726. }
  727. }
  728. }
  729. return 1;
  730. }
  731. /* Split the P parameter into P1 and P2. */
  732. static int
  733. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  734. {
  735. int p1, p2;
  736. if (index == PLLS_I9xx) {
  737. p2 = 0; // for now
  738. p1 = p / (p2 ? 5 : 10);
  739. *retp1 = (unsigned int)p1;
  740. *retp2 = (unsigned int)p2;
  741. return 0;
  742. }
  743. if (index == PLLS_I8xx) {
  744. if (p % 4 == 0)
  745. p2 = 1;
  746. else
  747. p2 = 0;
  748. p1 = (p / (1 << (p2 + 1))) - 2;
  749. if (p % 4 == 0 && p1 < plls[index].min_p1) {
  750. p2 = 0;
  751. p1 = (p / (1 << (p2 + 1))) - 2;
  752. }
  753. if (p1 < plls[index].min_p1 ||
  754. p1 > plls[index].max_p1 ||
  755. (p1 + 2) * (1 << (p2 + 1)) != p) {
  756. return 1;
  757. } else {
  758. *retp1 = (unsigned int)p1;
  759. *retp2 = (unsigned int)p2;
  760. return 0;
  761. }
  762. }
  763. return 1;
  764. }
  765. static int
  766. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  767. u32 *retp2, u32 *retclock)
  768. {
  769. u32 m1, m2, n, p1, p2, n1, testm;
  770. u32 f_vco, p, p_best = 0, m, f_out = 0;
  771. u32 err_max, err_target, err_best = 10000000;
  772. u32 n_best = 0, m_best = 0, f_best, f_err;
  773. u32 p_min, p_max, p_inc, div_min, div_max;
  774. /* Accept 0.5% difference, but aim for 0.1% */
  775. err_max = 5 * clock / 1000;
  776. err_target = clock / 1000;
  777. DBG_MSG("Clock is %d\n", clock);
  778. div_max = plls[index].max_vco / clock;
  779. if (index == PLLS_I9xx)
  780. div_min = 5;
  781. else
  782. div_min = ROUND_UP_TO(plls[index].min_vco, clock) / clock;
  783. if (clock <= plls[index].p_transition_clk)
  784. p_inc = plls[index].p_inc_lo;
  785. else
  786. p_inc = plls[index].p_inc_hi;
  787. p_min = ROUND_UP_TO(div_min, p_inc);
  788. p_max = ROUND_DOWN_TO(div_max, p_inc);
  789. if (p_min < plls[index].min_p)
  790. p_min = plls[index].min_p;
  791. if (p_max > plls[index].max_p)
  792. p_max = plls[index].max_p;
  793. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  794. p = p_min;
  795. do {
  796. if (splitp(index, p, &p1, &p2)) {
  797. WRN_MSG("cannot split p = %d\n", p);
  798. p += p_inc;
  799. continue;
  800. }
  801. n = plls[index].min_n;
  802. f_vco = clock * p;
  803. do {
  804. m = ROUND_UP_TO(f_vco * n, plls[index].ref_clk) / plls[index].ref_clk;
  805. if (m < plls[index].min_m)
  806. m = plls[index].min_m + 1;
  807. if (m > plls[index].max_m)
  808. m = plls[index].max_m - 1;
  809. for (testm = m - 1; testm <= m; testm++) {
  810. f_out = calc_vclock3(index, m, n, p);
  811. if (splitm(index, m, &m1, &m2)) {
  812. WRN_MSG("cannot split m = %d\n", m);
  813. n++;
  814. continue;
  815. }
  816. if (clock > f_out)
  817. f_err = clock - f_out;
  818. else/* slightly bias the error for bigger clocks */
  819. f_err = f_out - clock + 1;
  820. if (f_err < err_best) {
  821. m_best = m;
  822. n_best = n;
  823. p_best = p;
  824. f_best = f_out;
  825. err_best = f_err;
  826. }
  827. }
  828. n++;
  829. } while ((n <= plls[index].max_n) && (f_out >= clock));
  830. p += p_inc;
  831. } while ((p <= p_max));
  832. if (!m_best) {
  833. WRN_MSG("cannot find parameters for clock %d\n", clock);
  834. return 1;
  835. }
  836. m = m_best;
  837. n = n_best;
  838. p = p_best;
  839. splitm(index, m, &m1, &m2);
  840. splitp(index, p, &p1, &p2);
  841. n1 = n - 2;
  842. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  843. "f: %d (%d), VCO: %d\n",
  844. m, m1, m2, n, n1, p, p1, p2,
  845. calc_vclock3(index, m, n, p),
  846. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  847. calc_vclock3(index, m, n, p) * p);
  848. *retm1 = m1;
  849. *retm2 = m2;
  850. *retn = n1;
  851. *retp1 = p1;
  852. *retp2 = p2;
  853. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  854. return 0;
  855. }
  856. static __inline__ int
  857. check_overflow(u32 value, u32 limit, const char *description)
  858. {
  859. if (value > limit) {
  860. WRN_MSG("%s value %d exceeds limit %d\n",
  861. description, value, limit);
  862. return 1;
  863. }
  864. return 0;
  865. }
  866. /* It is assumed that hw is filled in with the initial state information. */
  867. int
  868. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  869. struct fb_var_screeninfo *var)
  870. {
  871. int pipe = PIPE_A;
  872. u32 *dpll, *fp0, *fp1;
  873. u32 m1, m2, n, p1, p2, clock_target, clock;
  874. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  875. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  876. u32 vsync_pol, hsync_pol;
  877. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  878. DBG_MSG("intelfbhw_mode_to_hw\n");
  879. /* Disable VGA */
  880. hw->vgacntrl |= VGA_DISABLE;
  881. /* Check whether pipe A or pipe B is enabled. */
  882. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  883. pipe = PIPE_A;
  884. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  885. pipe = PIPE_B;
  886. /* Set which pipe's registers will be set. */
  887. if (pipe == PIPE_B) {
  888. dpll = &hw->dpll_b;
  889. fp0 = &hw->fpb0;
  890. fp1 = &hw->fpb1;
  891. hs = &hw->hsync_b;
  892. hb = &hw->hblank_b;
  893. ht = &hw->htotal_b;
  894. vs = &hw->vsync_b;
  895. vb = &hw->vblank_b;
  896. vt = &hw->vtotal_b;
  897. ss = &hw->src_size_b;
  898. pipe_conf = &hw->pipe_b_conf;
  899. } else {
  900. dpll = &hw->dpll_a;
  901. fp0 = &hw->fpa0;
  902. fp1 = &hw->fpa1;
  903. hs = &hw->hsync_a;
  904. hb = &hw->hblank_a;
  905. ht = &hw->htotal_a;
  906. vs = &hw->vsync_a;
  907. vb = &hw->vblank_a;
  908. vt = &hw->vtotal_a;
  909. ss = &hw->src_size_a;
  910. pipe_conf = &hw->pipe_a_conf;
  911. }
  912. /* Use ADPA register for sync control. */
  913. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  914. /* sync polarity */
  915. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  916. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  917. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  918. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  919. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  920. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  921. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  922. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  923. /* Connect correct pipe to the analog port DAC */
  924. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  925. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  926. /* Set DPMS state to D0 (on) */
  927. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  928. hw->adpa |= ADPA_DPMS_D0;
  929. hw->adpa |= ADPA_DAC_ENABLE;
  930. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  931. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  932. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  933. /* Desired clock in kHz */
  934. clock_target = 1000000000 / var->pixclock;
  935. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  936. &n, &p1, &p2, &clock)) {
  937. WRN_MSG("calc_pll_params failed\n");
  938. return 1;
  939. }
  940. /* Check for overflow. */
  941. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  942. return 1;
  943. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  944. return 1;
  945. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  946. return 1;
  947. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  948. return 1;
  949. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  950. return 1;
  951. *dpll &= ~DPLL_P1_FORCE_DIV2;
  952. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  953. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  954. if (IS_I9XX(dinfo)) {
  955. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  956. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  957. } else {
  958. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  959. }
  960. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  961. (m1 << FP_M1_DIVISOR_SHIFT) |
  962. (m2 << FP_M2_DIVISOR_SHIFT);
  963. *fp1 = *fp0;
  964. hw->dvob &= ~PORT_ENABLE;
  965. hw->dvoc &= ~PORT_ENABLE;
  966. /* Use display plane A. */
  967. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  968. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  969. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  970. switch (intelfb_var_to_depth(var)) {
  971. case 8:
  972. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  973. break;
  974. case 15:
  975. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  976. break;
  977. case 16:
  978. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  979. break;
  980. case 24:
  981. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  982. break;
  983. }
  984. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  985. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  986. /* Set CRTC registers. */
  987. hactive = var->xres;
  988. hsync_start = hactive + var->right_margin;
  989. hsync_end = hsync_start + var->hsync_len;
  990. htotal = hsync_end + var->left_margin;
  991. hblank_start = hactive;
  992. hblank_end = htotal;
  993. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  994. hactive, hsync_start, hsync_end, htotal, hblank_start,
  995. hblank_end);
  996. vactive = var->yres;
  997. vsync_start = vactive + var->lower_margin;
  998. vsync_end = vsync_start + var->vsync_len;
  999. vtotal = vsync_end + var->upper_margin;
  1000. vblank_start = vactive;
  1001. vblank_end = vtotal;
  1002. vblank_end = vsync_end + 1;
  1003. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1004. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1005. vblank_end);
  1006. /* Adjust for register values, and check for overflow. */
  1007. hactive--;
  1008. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1009. return 1;
  1010. hsync_start--;
  1011. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1012. return 1;
  1013. hsync_end--;
  1014. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1015. return 1;
  1016. htotal--;
  1017. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1018. return 1;
  1019. hblank_start--;
  1020. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1021. return 1;
  1022. hblank_end--;
  1023. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1024. return 1;
  1025. vactive--;
  1026. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1027. return 1;
  1028. vsync_start--;
  1029. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1030. return 1;
  1031. vsync_end--;
  1032. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1033. return 1;
  1034. vtotal--;
  1035. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1036. return 1;
  1037. vblank_start--;
  1038. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1039. return 1;
  1040. vblank_end--;
  1041. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1042. return 1;
  1043. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1044. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1045. (hblank_end << HSYNCEND_SHIFT);
  1046. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1047. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1048. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1049. (vblank_end << VSYNCEND_SHIFT);
  1050. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1051. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1052. (vactive << SRC_SIZE_VERT_SHIFT);
  1053. hw->disp_a_stride = var->xres_virtual * var->bits_per_pixel / 8;
  1054. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1055. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1056. var->xoffset * var->bits_per_pixel / 8;
  1057. hw->disp_a_base += dinfo->fb.offset << 12;
  1058. /* Check stride alignment. */
  1059. if (hw->disp_a_stride % STRIDE_ALIGNMENT != 0) {
  1060. WRN_MSG("display stride %d has bad alignment %d\n",
  1061. hw->disp_a_stride, STRIDE_ALIGNMENT);
  1062. return 1;
  1063. }
  1064. /* Set the palette to 8-bit mode. */
  1065. *pipe_conf &= ~PIPECONF_GAMMA;
  1066. return 0;
  1067. }
  1068. /* Program a (non-VGA) video mode. */
  1069. int
  1070. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1071. const struct intelfb_hwstate *hw, int blank)
  1072. {
  1073. int pipe = PIPE_A;
  1074. u32 tmp;
  1075. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1076. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1077. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1078. u32 hsync_reg, htotal_reg, hblank_reg;
  1079. u32 vsync_reg, vtotal_reg, vblank_reg;
  1080. u32 src_size_reg;
  1081. u32 count, tmp_val[3];
  1082. /* Assume single pipe, display plane A, analog CRT. */
  1083. #if VERBOSE > 0
  1084. DBG_MSG("intelfbhw_program_mode\n");
  1085. #endif
  1086. /* Disable VGA */
  1087. tmp = INREG(VGACNTRL);
  1088. tmp |= VGA_DISABLE;
  1089. OUTREG(VGACNTRL, tmp);
  1090. /* Check whether pipe A or pipe B is enabled. */
  1091. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1092. pipe = PIPE_A;
  1093. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1094. pipe = PIPE_B;
  1095. dinfo->pipe = pipe;
  1096. if (pipe == PIPE_B) {
  1097. dpll = &hw->dpll_b;
  1098. fp0 = &hw->fpb0;
  1099. fp1 = &hw->fpb1;
  1100. pipe_conf = &hw->pipe_b_conf;
  1101. hs = &hw->hsync_b;
  1102. hb = &hw->hblank_b;
  1103. ht = &hw->htotal_b;
  1104. vs = &hw->vsync_b;
  1105. vb = &hw->vblank_b;
  1106. vt = &hw->vtotal_b;
  1107. ss = &hw->src_size_b;
  1108. dpll_reg = DPLL_B;
  1109. fp0_reg = FPB0;
  1110. fp1_reg = FPB1;
  1111. pipe_conf_reg = PIPEBCONF;
  1112. hsync_reg = HSYNC_B;
  1113. htotal_reg = HTOTAL_B;
  1114. hblank_reg = HBLANK_B;
  1115. vsync_reg = VSYNC_B;
  1116. vtotal_reg = VTOTAL_B;
  1117. vblank_reg = VBLANK_B;
  1118. src_size_reg = SRC_SIZE_B;
  1119. } else {
  1120. dpll = &hw->dpll_a;
  1121. fp0 = &hw->fpa0;
  1122. fp1 = &hw->fpa1;
  1123. pipe_conf = &hw->pipe_a_conf;
  1124. hs = &hw->hsync_a;
  1125. hb = &hw->hblank_a;
  1126. ht = &hw->htotal_a;
  1127. vs = &hw->vsync_a;
  1128. vb = &hw->vblank_a;
  1129. vt = &hw->vtotal_a;
  1130. ss = &hw->src_size_a;
  1131. dpll_reg = DPLL_A;
  1132. fp0_reg = FPA0;
  1133. fp1_reg = FPA1;
  1134. pipe_conf_reg = PIPEACONF;
  1135. hsync_reg = HSYNC_A;
  1136. htotal_reg = HTOTAL_A;
  1137. hblank_reg = HBLANK_A;
  1138. vsync_reg = VSYNC_A;
  1139. vtotal_reg = VTOTAL_A;
  1140. vblank_reg = VBLANK_A;
  1141. src_size_reg = SRC_SIZE_A;
  1142. }
  1143. /* turn off pipe */
  1144. tmp = INREG(pipe_conf_reg);
  1145. tmp &= ~PIPECONF_ENABLE;
  1146. OUTREG(pipe_conf_reg, tmp);
  1147. count = 0;
  1148. do {
  1149. tmp_val[count%3] = INREG(0x70000);
  1150. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1151. break;
  1152. count++;
  1153. udelay(1);
  1154. if (count % 200 == 0) {
  1155. tmp = INREG(pipe_conf_reg);
  1156. tmp &= ~PIPECONF_ENABLE;
  1157. OUTREG(pipe_conf_reg, tmp);
  1158. }
  1159. } while(count < 2000);
  1160. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1161. /* Disable planes A and B. */
  1162. tmp = INREG(DSPACNTR);
  1163. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1164. OUTREG(DSPACNTR, tmp);
  1165. tmp = INREG(DSPBCNTR);
  1166. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1167. OUTREG(DSPBCNTR, tmp);
  1168. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1169. mdelay(20);
  1170. /* Disable Sync */
  1171. tmp = INREG(ADPA);
  1172. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1173. tmp |= ADPA_DPMS_D3;
  1174. OUTREG(ADPA, tmp);
  1175. /* do some funky magic - xyzzy */
  1176. OUTREG(0x61204, 0xabcd0000);
  1177. /* turn off PLL */
  1178. tmp = INREG(dpll_reg);
  1179. dpll_reg &= ~DPLL_VCO_ENABLE;
  1180. OUTREG(dpll_reg, tmp);
  1181. /* Set PLL parameters */
  1182. OUTREG(dpll_reg, *dpll & ~DPLL_VCO_ENABLE);
  1183. OUTREG(fp0_reg, *fp0);
  1184. OUTREG(fp1_reg, *fp1);
  1185. /* Enable PLL */
  1186. tmp = INREG(dpll_reg);
  1187. tmp |= DPLL_VCO_ENABLE;
  1188. OUTREG(dpll_reg, tmp);
  1189. /* Set DVOs B/C */
  1190. OUTREG(DVOB, hw->dvob);
  1191. OUTREG(DVOC, hw->dvoc);
  1192. /* undo funky magic */
  1193. OUTREG(0x61204, 0x00000000);
  1194. /* Set ADPA */
  1195. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1196. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1197. /* Set pipe parameters */
  1198. OUTREG(hsync_reg, *hs);
  1199. OUTREG(hblank_reg, *hb);
  1200. OUTREG(htotal_reg, *ht);
  1201. OUTREG(vsync_reg, *vs);
  1202. OUTREG(vblank_reg, *vb);
  1203. OUTREG(vtotal_reg, *vt);
  1204. OUTREG(src_size_reg, *ss);
  1205. /* Enable pipe */
  1206. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1207. /* Enable sync */
  1208. tmp = INREG(ADPA);
  1209. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1210. tmp |= ADPA_DPMS_D0;
  1211. OUTREG(ADPA, tmp);
  1212. /* setup display plane */
  1213. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1214. /*
  1215. * i830M errata: the display plane must be enabled
  1216. * to allow writes to the other bits in the plane
  1217. * control register.
  1218. */
  1219. tmp = INREG(DSPACNTR);
  1220. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1221. tmp |= DISPPLANE_PLANE_ENABLE;
  1222. OUTREG(DSPACNTR, tmp);
  1223. OUTREG(DSPACNTR,
  1224. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1225. mdelay(1);
  1226. }
  1227. }
  1228. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1229. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1230. OUTREG(DSPABASE, hw->disp_a_base);
  1231. /* Enable plane */
  1232. if (!blank) {
  1233. tmp = INREG(DSPACNTR);
  1234. tmp |= DISPPLANE_PLANE_ENABLE;
  1235. OUTREG(DSPACNTR, tmp);
  1236. OUTREG(DSPABASE, hw->disp_a_base);
  1237. }
  1238. return 0;
  1239. }
  1240. /* forward declarations */
  1241. static void refresh_ring(struct intelfb_info *dinfo);
  1242. static void reset_state(struct intelfb_info *dinfo);
  1243. static void do_flush(struct intelfb_info *dinfo);
  1244. static int
  1245. wait_ring(struct intelfb_info *dinfo, int n)
  1246. {
  1247. int i = 0;
  1248. unsigned long end;
  1249. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1250. #if VERBOSE > 0
  1251. DBG_MSG("wait_ring: %d\n", n);
  1252. #endif
  1253. end = jiffies + (HZ * 3);
  1254. while (dinfo->ring_space < n) {
  1255. dinfo->ring_head = (u8 __iomem *)(INREG(PRI_RING_HEAD) &
  1256. RING_HEAD_MASK);
  1257. if (dinfo->ring_tail + RING_MIN_FREE <
  1258. (u32 __iomem) dinfo->ring_head)
  1259. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1260. - (dinfo->ring_tail + RING_MIN_FREE);
  1261. else
  1262. dinfo->ring_space = (dinfo->ring.size +
  1263. (u32 __iomem) dinfo->ring_head)
  1264. - (dinfo->ring_tail + RING_MIN_FREE);
  1265. if ((u32 __iomem) dinfo->ring_head != last_head) {
  1266. end = jiffies + (HZ * 3);
  1267. last_head = (u32 __iomem) dinfo->ring_head;
  1268. }
  1269. i++;
  1270. if (time_before(end, jiffies)) {
  1271. if (!i) {
  1272. /* Try again */
  1273. reset_state(dinfo);
  1274. refresh_ring(dinfo);
  1275. do_flush(dinfo);
  1276. end = jiffies + (HZ * 3);
  1277. i = 1;
  1278. } else {
  1279. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1280. dinfo->ring_space, n);
  1281. WRN_MSG("lockup - turning off hardware "
  1282. "acceleration\n");
  1283. dinfo->ring_lockup = 1;
  1284. break;
  1285. }
  1286. }
  1287. udelay(1);
  1288. }
  1289. return i;
  1290. }
  1291. static void
  1292. do_flush(struct intelfb_info *dinfo) {
  1293. START_RING(2);
  1294. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1295. OUT_RING(MI_NOOP);
  1296. ADVANCE_RING();
  1297. }
  1298. void
  1299. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1300. {
  1301. #if VERBOSE > 0
  1302. DBG_MSG("intelfbhw_do_sync\n");
  1303. #endif
  1304. if (!dinfo->accel)
  1305. return;
  1306. /*
  1307. * Send a flush, then wait until the ring is empty. This is what
  1308. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1309. * than the recommended method (both have problems).
  1310. */
  1311. do_flush(dinfo);
  1312. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1313. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1314. }
  1315. static void
  1316. refresh_ring(struct intelfb_info *dinfo)
  1317. {
  1318. #if VERBOSE > 0
  1319. DBG_MSG("refresh_ring\n");
  1320. #endif
  1321. dinfo->ring_head = (u8 __iomem *) (INREG(PRI_RING_HEAD) &
  1322. RING_HEAD_MASK);
  1323. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1324. if (dinfo->ring_tail + RING_MIN_FREE < (u32 __iomem)dinfo->ring_head)
  1325. dinfo->ring_space = (u32 __iomem) dinfo->ring_head
  1326. - (dinfo->ring_tail + RING_MIN_FREE);
  1327. else
  1328. dinfo->ring_space = (dinfo->ring.size +
  1329. (u32 __iomem) dinfo->ring_head)
  1330. - (dinfo->ring_tail + RING_MIN_FREE);
  1331. }
  1332. static void
  1333. reset_state(struct intelfb_info *dinfo)
  1334. {
  1335. int i;
  1336. u32 tmp;
  1337. #if VERBOSE > 0
  1338. DBG_MSG("reset_state\n");
  1339. #endif
  1340. for (i = 0; i < FENCE_NUM; i++)
  1341. OUTREG(FENCE + (i << 2), 0);
  1342. /* Flush the ring buffer if it's enabled. */
  1343. tmp = INREG(PRI_RING_LENGTH);
  1344. if (tmp & RING_ENABLE) {
  1345. #if VERBOSE > 0
  1346. DBG_MSG("reset_state: ring was enabled\n");
  1347. #endif
  1348. refresh_ring(dinfo);
  1349. intelfbhw_do_sync(dinfo);
  1350. DO_RING_IDLE();
  1351. }
  1352. OUTREG(PRI_RING_LENGTH, 0);
  1353. OUTREG(PRI_RING_HEAD, 0);
  1354. OUTREG(PRI_RING_TAIL, 0);
  1355. OUTREG(PRI_RING_START, 0);
  1356. }
  1357. /* Stop the 2D engine, and turn off the ring buffer. */
  1358. void
  1359. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1360. {
  1361. #if VERBOSE > 0
  1362. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1363. dinfo->ring_active);
  1364. #endif
  1365. if (!dinfo->accel)
  1366. return;
  1367. dinfo->ring_active = 0;
  1368. reset_state(dinfo);
  1369. }
  1370. /*
  1371. * Enable the ring buffer, and initialise the 2D engine.
  1372. * It is assumed that the graphics engine has been stopped by previously
  1373. * calling intelfb_2d_stop().
  1374. */
  1375. void
  1376. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1377. {
  1378. #if VERBOSE > 0
  1379. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1380. dinfo->accel, dinfo->ring_active);
  1381. #endif
  1382. if (!dinfo->accel)
  1383. return;
  1384. /* Initialise the primary ring buffer. */
  1385. OUTREG(PRI_RING_LENGTH, 0);
  1386. OUTREG(PRI_RING_TAIL, 0);
  1387. OUTREG(PRI_RING_HEAD, 0);
  1388. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1389. OUTREG(PRI_RING_LENGTH,
  1390. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1391. RING_NO_REPORT | RING_ENABLE);
  1392. refresh_ring(dinfo);
  1393. dinfo->ring_active = 1;
  1394. }
  1395. /* 2D fillrect (solid fill or invert) */
  1396. void
  1397. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1398. u32 color, u32 pitch, u32 bpp, u32 rop)
  1399. {
  1400. u32 br00, br09, br13, br14, br16;
  1401. #if VERBOSE > 0
  1402. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1403. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1404. #endif
  1405. br00 = COLOR_BLT_CMD;
  1406. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1407. br13 = (rop << ROP_SHIFT) | pitch;
  1408. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1409. br16 = color;
  1410. switch (bpp) {
  1411. case 8:
  1412. br13 |= COLOR_DEPTH_8;
  1413. break;
  1414. case 16:
  1415. br13 |= COLOR_DEPTH_16;
  1416. break;
  1417. case 32:
  1418. br13 |= COLOR_DEPTH_32;
  1419. br00 |= WRITE_ALPHA | WRITE_RGB;
  1420. break;
  1421. }
  1422. START_RING(6);
  1423. OUT_RING(br00);
  1424. OUT_RING(br13);
  1425. OUT_RING(br14);
  1426. OUT_RING(br09);
  1427. OUT_RING(br16);
  1428. OUT_RING(MI_NOOP);
  1429. ADVANCE_RING();
  1430. #if VERBOSE > 0
  1431. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1432. dinfo->ring_tail, dinfo->ring_space);
  1433. #endif
  1434. }
  1435. void
  1436. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1437. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1438. {
  1439. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1440. #if VERBOSE > 0
  1441. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1442. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1443. #endif
  1444. br00 = XY_SRC_COPY_BLT_CMD;
  1445. br09 = dinfo->fb_start;
  1446. br11 = (pitch << PITCH_SHIFT);
  1447. br12 = dinfo->fb_start;
  1448. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1449. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1450. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1451. ((dsty + h) << HEIGHT_SHIFT);
  1452. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1453. switch (bpp) {
  1454. case 8:
  1455. br13 |= COLOR_DEPTH_8;
  1456. break;
  1457. case 16:
  1458. br13 |= COLOR_DEPTH_16;
  1459. break;
  1460. case 32:
  1461. br13 |= COLOR_DEPTH_32;
  1462. br00 |= WRITE_ALPHA | WRITE_RGB;
  1463. break;
  1464. }
  1465. START_RING(8);
  1466. OUT_RING(br00);
  1467. OUT_RING(br13);
  1468. OUT_RING(br22);
  1469. OUT_RING(br23);
  1470. OUT_RING(br09);
  1471. OUT_RING(br26);
  1472. OUT_RING(br11);
  1473. OUT_RING(br12);
  1474. ADVANCE_RING();
  1475. }
  1476. int
  1477. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1478. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1479. {
  1480. int nbytes, ndwords, pad, tmp;
  1481. u32 br00, br09, br13, br18, br19, br22, br23;
  1482. int dat, ix, iy, iw;
  1483. int i, j;
  1484. #if VERBOSE > 0
  1485. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1486. #endif
  1487. /* size in bytes of a padded scanline */
  1488. nbytes = ROUND_UP_TO(w, 16) / 8;
  1489. /* Total bytes of padded scanline data to write out. */
  1490. nbytes = nbytes * h;
  1491. /*
  1492. * Check if the glyph data exceeds the immediate mode limit.
  1493. * It would take a large font (1K pixels) to hit this limit.
  1494. */
  1495. if (nbytes > MAX_MONO_IMM_SIZE)
  1496. return 0;
  1497. /* Src data is packaged a dword (32-bit) at a time. */
  1498. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1499. /*
  1500. * Ring has to be padded to a quad word. But because the command starts
  1501. with 7 bytes, pad only if there is an even number of ndwords
  1502. */
  1503. pad = !(ndwords % 2);
  1504. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1505. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1506. br09 = dinfo->fb_start;
  1507. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1508. br18 = bg;
  1509. br19 = fg;
  1510. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1511. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1512. switch (bpp) {
  1513. case 8:
  1514. br13 |= COLOR_DEPTH_8;
  1515. break;
  1516. case 16:
  1517. br13 |= COLOR_DEPTH_16;
  1518. break;
  1519. case 32:
  1520. br13 |= COLOR_DEPTH_32;
  1521. br00 |= WRITE_ALPHA | WRITE_RGB;
  1522. break;
  1523. }
  1524. START_RING(8 + ndwords);
  1525. OUT_RING(br00);
  1526. OUT_RING(br13);
  1527. OUT_RING(br22);
  1528. OUT_RING(br23);
  1529. OUT_RING(br09);
  1530. OUT_RING(br18);
  1531. OUT_RING(br19);
  1532. ix = iy = 0;
  1533. iw = ROUND_UP_TO(w, 8) / 8;
  1534. while (ndwords--) {
  1535. dat = 0;
  1536. for (j = 0; j < 2; ++j) {
  1537. for (i = 0; i < 2; ++i) {
  1538. if (ix != iw || i == 0)
  1539. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1540. }
  1541. if (ix == iw && iy != (h-1)) {
  1542. ix = 0;
  1543. ++iy;
  1544. }
  1545. }
  1546. OUT_RING(dat);
  1547. }
  1548. if (pad)
  1549. OUT_RING(MI_NOOP);
  1550. ADVANCE_RING();
  1551. return 1;
  1552. }
  1553. /* HW cursor functions. */
  1554. void
  1555. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1556. {
  1557. u32 tmp;
  1558. #if VERBOSE > 0
  1559. DBG_MSG("intelfbhw_cursor_init\n");
  1560. #endif
  1561. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1562. if (!dinfo->cursor.physical)
  1563. return;
  1564. tmp = INREG(CURSOR_A_CONTROL);
  1565. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1566. CURSOR_MEM_TYPE_LOCAL |
  1567. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1568. tmp |= CURSOR_MODE_DISABLE;
  1569. OUTREG(CURSOR_A_CONTROL, tmp);
  1570. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1571. } else {
  1572. tmp = INREG(CURSOR_CONTROL);
  1573. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1574. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1575. tmp = CURSOR_FORMAT_3C;
  1576. OUTREG(CURSOR_CONTROL, tmp);
  1577. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1578. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1579. (64 << CURSOR_SIZE_V_SHIFT);
  1580. OUTREG(CURSOR_SIZE, tmp);
  1581. }
  1582. }
  1583. void
  1584. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1585. {
  1586. u32 tmp;
  1587. #if VERBOSE > 0
  1588. DBG_MSG("intelfbhw_cursor_hide\n");
  1589. #endif
  1590. dinfo->cursor_on = 0;
  1591. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1592. if (!dinfo->cursor.physical)
  1593. return;
  1594. tmp = INREG(CURSOR_A_CONTROL);
  1595. tmp &= ~CURSOR_MODE_MASK;
  1596. tmp |= CURSOR_MODE_DISABLE;
  1597. OUTREG(CURSOR_A_CONTROL, tmp);
  1598. /* Flush changes */
  1599. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1600. } else {
  1601. tmp = INREG(CURSOR_CONTROL);
  1602. tmp &= ~CURSOR_ENABLE;
  1603. OUTREG(CURSOR_CONTROL, tmp);
  1604. }
  1605. }
  1606. void
  1607. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1608. {
  1609. u32 tmp;
  1610. #if VERBOSE > 0
  1611. DBG_MSG("intelfbhw_cursor_show\n");
  1612. #endif
  1613. dinfo->cursor_on = 1;
  1614. if (dinfo->cursor_blanked)
  1615. return;
  1616. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1617. if (!dinfo->cursor.physical)
  1618. return;
  1619. tmp = INREG(CURSOR_A_CONTROL);
  1620. tmp &= ~CURSOR_MODE_MASK;
  1621. tmp |= CURSOR_MODE_64_4C_AX;
  1622. OUTREG(CURSOR_A_CONTROL, tmp);
  1623. /* Flush changes */
  1624. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1625. } else {
  1626. tmp = INREG(CURSOR_CONTROL);
  1627. tmp |= CURSOR_ENABLE;
  1628. OUTREG(CURSOR_CONTROL, tmp);
  1629. }
  1630. }
  1631. void
  1632. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1633. {
  1634. u32 tmp;
  1635. #if VERBOSE > 0
  1636. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1637. #endif
  1638. /*
  1639. * Sets the position. The coordinates are assumed to already
  1640. * have any offset adjusted. Assume that the cursor is never
  1641. * completely off-screen, and that x, y are always >= 0.
  1642. */
  1643. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1644. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1645. OUTREG(CURSOR_A_POSITION, tmp);
  1646. if (IS_I9XX(dinfo)) {
  1647. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1648. }
  1649. }
  1650. void
  1651. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1652. {
  1653. #if VERBOSE > 0
  1654. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1655. #endif
  1656. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1657. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1658. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1659. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1660. }
  1661. void
  1662. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1663. u8 *data)
  1664. {
  1665. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1666. int i, j, w = width / 8;
  1667. int mod = width % 8, t_mask, d_mask;
  1668. #if VERBOSE > 0
  1669. DBG_MSG("intelfbhw_cursor_load\n");
  1670. #endif
  1671. if (!dinfo->cursor.virtual)
  1672. return;
  1673. t_mask = 0xff >> mod;
  1674. d_mask = ~(0xff >> mod);
  1675. for (i = height; i--; ) {
  1676. for (j = 0; j < w; j++) {
  1677. writeb(0x00, addr + j);
  1678. writeb(*(data++), addr + j+8);
  1679. }
  1680. if (mod) {
  1681. writeb(t_mask, addr + j);
  1682. writeb(*(data++) & d_mask, addr + j+8);
  1683. }
  1684. addr += 16;
  1685. }
  1686. }
  1687. void
  1688. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1689. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1690. int i, j;
  1691. #if VERBOSE > 0
  1692. DBG_MSG("intelfbhw_cursor_reset\n");
  1693. #endif
  1694. if (!dinfo->cursor.virtual)
  1695. return;
  1696. for (i = 64; i--; ) {
  1697. for (j = 0; j < 8; j++) {
  1698. writeb(0xff, addr + j+0);
  1699. writeb(0x00, addr + j+8);
  1700. }
  1701. addr += 16;
  1702. }
  1703. }