x86.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm.h"
  17. #include "x86.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/fs.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/module.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/msr.h>
  27. #define MAX_IO_MSRS 256
  28. #define CR0_RESERVED_BITS \
  29. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  30. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  31. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  32. #define CR4_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  34. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  35. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  36. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  37. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  38. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  39. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  40. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  41. struct kvm_x86_ops *kvm_x86_ops;
  42. struct kvm_stats_debugfs_item debugfs_entries[] = {
  43. { "pf_fixed", VCPU_STAT(pf_fixed) },
  44. { "pf_guest", VCPU_STAT(pf_guest) },
  45. { "tlb_flush", VCPU_STAT(tlb_flush) },
  46. { "invlpg", VCPU_STAT(invlpg) },
  47. { "exits", VCPU_STAT(exits) },
  48. { "io_exits", VCPU_STAT(io_exits) },
  49. { "mmio_exits", VCPU_STAT(mmio_exits) },
  50. { "signal_exits", VCPU_STAT(signal_exits) },
  51. { "irq_window", VCPU_STAT(irq_window_exits) },
  52. { "halt_exits", VCPU_STAT(halt_exits) },
  53. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  54. { "request_irq", VCPU_STAT(request_irq_exits) },
  55. { "irq_exits", VCPU_STAT(irq_exits) },
  56. { "host_state_reload", VCPU_STAT(host_state_reload) },
  57. { "efer_reload", VCPU_STAT(efer_reload) },
  58. { "fpu_reload", VCPU_STAT(fpu_reload) },
  59. { "insn_emulation", VCPU_STAT(insn_emulation) },
  60. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  61. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  62. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  63. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  64. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  65. { "mmu_flooded", VM_STAT(mmu_flooded) },
  66. { "mmu_recycled", VM_STAT(mmu_recycled) },
  67. { NULL }
  68. };
  69. unsigned long segment_base(u16 selector)
  70. {
  71. struct descriptor_table gdt;
  72. struct segment_descriptor *d;
  73. unsigned long table_base;
  74. unsigned long v;
  75. if (selector == 0)
  76. return 0;
  77. asm("sgdt %0" : "=m"(gdt));
  78. table_base = gdt.base;
  79. if (selector & 4) { /* from ldt */
  80. u16 ldt_selector;
  81. asm("sldt %0" : "=g"(ldt_selector));
  82. table_base = segment_base(ldt_selector);
  83. }
  84. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  85. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  86. ((unsigned long)d->base_high << 24);
  87. #ifdef CONFIG_X86_64
  88. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  89. v |= ((unsigned long) \
  90. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  91. #endif
  92. return v;
  93. }
  94. EXPORT_SYMBOL_GPL(segment_base);
  95. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  96. {
  97. if (irqchip_in_kernel(vcpu->kvm))
  98. return vcpu->apic_base;
  99. else
  100. return vcpu->apic_base;
  101. }
  102. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  103. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  104. {
  105. /* TODO: reserve bits check */
  106. if (irqchip_in_kernel(vcpu->kvm))
  107. kvm_lapic_set_base(vcpu, data);
  108. else
  109. vcpu->apic_base = data;
  110. }
  111. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  112. static void inject_gp(struct kvm_vcpu *vcpu)
  113. {
  114. kvm_x86_ops->inject_gp(vcpu, 0);
  115. }
  116. /*
  117. * Load the pae pdptrs. Return true is they are all valid.
  118. */
  119. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  120. {
  121. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  122. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  123. int i;
  124. int ret;
  125. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  126. mutex_lock(&vcpu->kvm->lock);
  127. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  128. offset * sizeof(u64), sizeof(pdpte));
  129. if (ret < 0) {
  130. ret = 0;
  131. goto out;
  132. }
  133. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  134. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  135. ret = 0;
  136. goto out;
  137. }
  138. }
  139. ret = 1;
  140. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  141. out:
  142. mutex_unlock(&vcpu->kvm->lock);
  143. return ret;
  144. }
  145. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  146. {
  147. if (cr0 & CR0_RESERVED_BITS) {
  148. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  149. cr0, vcpu->cr0);
  150. inject_gp(vcpu);
  151. return;
  152. }
  153. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  154. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  155. inject_gp(vcpu);
  156. return;
  157. }
  158. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  159. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  160. "and a clear PE flag\n");
  161. inject_gp(vcpu);
  162. return;
  163. }
  164. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  165. #ifdef CONFIG_X86_64
  166. if ((vcpu->shadow_efer & EFER_LME)) {
  167. int cs_db, cs_l;
  168. if (!is_pae(vcpu)) {
  169. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  170. "in long mode while PAE is disabled\n");
  171. inject_gp(vcpu);
  172. return;
  173. }
  174. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  175. if (cs_l) {
  176. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  177. "in long mode while CS.L == 1\n");
  178. inject_gp(vcpu);
  179. return;
  180. }
  181. } else
  182. #endif
  183. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  184. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  185. "reserved bits\n");
  186. inject_gp(vcpu);
  187. return;
  188. }
  189. }
  190. kvm_x86_ops->set_cr0(vcpu, cr0);
  191. vcpu->cr0 = cr0;
  192. mutex_lock(&vcpu->kvm->lock);
  193. kvm_mmu_reset_context(vcpu);
  194. mutex_unlock(&vcpu->kvm->lock);
  195. return;
  196. }
  197. EXPORT_SYMBOL_GPL(set_cr0);
  198. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  199. {
  200. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  201. }
  202. EXPORT_SYMBOL_GPL(lmsw);
  203. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  204. {
  205. if (cr4 & CR4_RESERVED_BITS) {
  206. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  207. inject_gp(vcpu);
  208. return;
  209. }
  210. if (is_long_mode(vcpu)) {
  211. if (!(cr4 & X86_CR4_PAE)) {
  212. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  213. "in long mode\n");
  214. inject_gp(vcpu);
  215. return;
  216. }
  217. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  218. && !load_pdptrs(vcpu, vcpu->cr3)) {
  219. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  220. inject_gp(vcpu);
  221. return;
  222. }
  223. if (cr4 & X86_CR4_VMXE) {
  224. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  225. inject_gp(vcpu);
  226. return;
  227. }
  228. kvm_x86_ops->set_cr4(vcpu, cr4);
  229. vcpu->cr4 = cr4;
  230. mutex_lock(&vcpu->kvm->lock);
  231. kvm_mmu_reset_context(vcpu);
  232. mutex_unlock(&vcpu->kvm->lock);
  233. }
  234. EXPORT_SYMBOL_GPL(set_cr4);
  235. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  236. {
  237. if (is_long_mode(vcpu)) {
  238. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  239. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  240. inject_gp(vcpu);
  241. return;
  242. }
  243. } else {
  244. if (is_pae(vcpu)) {
  245. if (cr3 & CR3_PAE_RESERVED_BITS) {
  246. printk(KERN_DEBUG
  247. "set_cr3: #GP, reserved bits\n");
  248. inject_gp(vcpu);
  249. return;
  250. }
  251. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  252. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  253. "reserved bits\n");
  254. inject_gp(vcpu);
  255. return;
  256. }
  257. }
  258. /*
  259. * We don't check reserved bits in nonpae mode, because
  260. * this isn't enforced, and VMware depends on this.
  261. */
  262. }
  263. mutex_lock(&vcpu->kvm->lock);
  264. /*
  265. * Does the new cr3 value map to physical memory? (Note, we
  266. * catch an invalid cr3 even in real-mode, because it would
  267. * cause trouble later on when we turn on paging anyway.)
  268. *
  269. * A real CPU would silently accept an invalid cr3 and would
  270. * attempt to use it - with largely undefined (and often hard
  271. * to debug) behavior on the guest side.
  272. */
  273. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  274. inject_gp(vcpu);
  275. else {
  276. vcpu->cr3 = cr3;
  277. vcpu->mmu.new_cr3(vcpu);
  278. }
  279. mutex_unlock(&vcpu->kvm->lock);
  280. }
  281. EXPORT_SYMBOL_GPL(set_cr3);
  282. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  283. {
  284. if (cr8 & CR8_RESERVED_BITS) {
  285. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  286. inject_gp(vcpu);
  287. return;
  288. }
  289. if (irqchip_in_kernel(vcpu->kvm))
  290. kvm_lapic_set_tpr(vcpu, cr8);
  291. else
  292. vcpu->cr8 = cr8;
  293. }
  294. EXPORT_SYMBOL_GPL(set_cr8);
  295. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  296. {
  297. if (irqchip_in_kernel(vcpu->kvm))
  298. return kvm_lapic_get_cr8(vcpu);
  299. else
  300. return vcpu->cr8;
  301. }
  302. EXPORT_SYMBOL_GPL(get_cr8);
  303. /*
  304. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  305. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  306. *
  307. * This list is modified at module load time to reflect the
  308. * capabilities of the host cpu.
  309. */
  310. static u32 msrs_to_save[] = {
  311. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  312. MSR_K6_STAR,
  313. #ifdef CONFIG_X86_64
  314. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  315. #endif
  316. MSR_IA32_TIME_STAMP_COUNTER,
  317. };
  318. static unsigned num_msrs_to_save;
  319. static u32 emulated_msrs[] = {
  320. MSR_IA32_MISC_ENABLE,
  321. };
  322. #ifdef CONFIG_X86_64
  323. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  324. {
  325. if (efer & EFER_RESERVED_BITS) {
  326. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  327. efer);
  328. inject_gp(vcpu);
  329. return;
  330. }
  331. if (is_paging(vcpu)
  332. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  333. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  334. inject_gp(vcpu);
  335. return;
  336. }
  337. kvm_x86_ops->set_efer(vcpu, efer);
  338. efer &= ~EFER_LMA;
  339. efer |= vcpu->shadow_efer & EFER_LMA;
  340. vcpu->shadow_efer = efer;
  341. }
  342. #endif
  343. /*
  344. * Writes msr value into into the appropriate "register".
  345. * Returns 0 on success, non-0 otherwise.
  346. * Assumes vcpu_load() was already called.
  347. */
  348. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  349. {
  350. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  351. }
  352. /*
  353. * Adapt set_msr() to msr_io()'s calling convention
  354. */
  355. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  356. {
  357. return kvm_set_msr(vcpu, index, *data);
  358. }
  359. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  360. {
  361. switch (msr) {
  362. #ifdef CONFIG_X86_64
  363. case MSR_EFER:
  364. set_efer(vcpu, data);
  365. break;
  366. #endif
  367. case MSR_IA32_MC0_STATUS:
  368. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  369. __FUNCTION__, data);
  370. break;
  371. case MSR_IA32_MCG_STATUS:
  372. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  373. __FUNCTION__, data);
  374. break;
  375. case MSR_IA32_UCODE_REV:
  376. case MSR_IA32_UCODE_WRITE:
  377. case 0x200 ... 0x2ff: /* MTRRs */
  378. break;
  379. case MSR_IA32_APICBASE:
  380. kvm_set_apic_base(vcpu, data);
  381. break;
  382. case MSR_IA32_MISC_ENABLE:
  383. vcpu->ia32_misc_enable_msr = data;
  384. break;
  385. default:
  386. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  387. return 1;
  388. }
  389. return 0;
  390. }
  391. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  392. /*
  393. * Reads an msr value (of 'msr_index') into 'pdata'.
  394. * Returns 0 on success, non-0 otherwise.
  395. * Assumes vcpu_load() was already called.
  396. */
  397. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  398. {
  399. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  400. }
  401. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  402. {
  403. u64 data;
  404. switch (msr) {
  405. case 0xc0010010: /* SYSCFG */
  406. case 0xc0010015: /* HWCR */
  407. case MSR_IA32_PLATFORM_ID:
  408. case MSR_IA32_P5_MC_ADDR:
  409. case MSR_IA32_P5_MC_TYPE:
  410. case MSR_IA32_MC0_CTL:
  411. case MSR_IA32_MCG_STATUS:
  412. case MSR_IA32_MCG_CAP:
  413. case MSR_IA32_MC0_MISC:
  414. case MSR_IA32_MC0_MISC+4:
  415. case MSR_IA32_MC0_MISC+8:
  416. case MSR_IA32_MC0_MISC+12:
  417. case MSR_IA32_MC0_MISC+16:
  418. case MSR_IA32_UCODE_REV:
  419. case MSR_IA32_PERF_STATUS:
  420. case MSR_IA32_EBL_CR_POWERON:
  421. /* MTRR registers */
  422. case 0xfe:
  423. case 0x200 ... 0x2ff:
  424. data = 0;
  425. break;
  426. case 0xcd: /* fsb frequency */
  427. data = 3;
  428. break;
  429. case MSR_IA32_APICBASE:
  430. data = kvm_get_apic_base(vcpu);
  431. break;
  432. case MSR_IA32_MISC_ENABLE:
  433. data = vcpu->ia32_misc_enable_msr;
  434. break;
  435. #ifdef CONFIG_X86_64
  436. case MSR_EFER:
  437. data = vcpu->shadow_efer;
  438. break;
  439. #endif
  440. default:
  441. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  442. return 1;
  443. }
  444. *pdata = data;
  445. return 0;
  446. }
  447. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  448. /*
  449. * Read or write a bunch of msrs. All parameters are kernel addresses.
  450. *
  451. * @return number of msrs set successfully.
  452. */
  453. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  454. struct kvm_msr_entry *entries,
  455. int (*do_msr)(struct kvm_vcpu *vcpu,
  456. unsigned index, u64 *data))
  457. {
  458. int i;
  459. vcpu_load(vcpu);
  460. for (i = 0; i < msrs->nmsrs; ++i)
  461. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  462. break;
  463. vcpu_put(vcpu);
  464. return i;
  465. }
  466. /*
  467. * Read or write a bunch of msrs. Parameters are user addresses.
  468. *
  469. * @return number of msrs set successfully.
  470. */
  471. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  472. int (*do_msr)(struct kvm_vcpu *vcpu,
  473. unsigned index, u64 *data),
  474. int writeback)
  475. {
  476. struct kvm_msrs msrs;
  477. struct kvm_msr_entry *entries;
  478. int r, n;
  479. unsigned size;
  480. r = -EFAULT;
  481. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  482. goto out;
  483. r = -E2BIG;
  484. if (msrs.nmsrs >= MAX_IO_MSRS)
  485. goto out;
  486. r = -ENOMEM;
  487. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  488. entries = vmalloc(size);
  489. if (!entries)
  490. goto out;
  491. r = -EFAULT;
  492. if (copy_from_user(entries, user_msrs->entries, size))
  493. goto out_free;
  494. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  495. if (r < 0)
  496. goto out_free;
  497. r = -EFAULT;
  498. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  499. goto out_free;
  500. r = n;
  501. out_free:
  502. vfree(entries);
  503. out:
  504. return r;
  505. }
  506. /*
  507. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  508. * cached on it.
  509. */
  510. void decache_vcpus_on_cpu(int cpu)
  511. {
  512. struct kvm *vm;
  513. struct kvm_vcpu *vcpu;
  514. int i;
  515. spin_lock(&kvm_lock);
  516. list_for_each_entry(vm, &vm_list, vm_list)
  517. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  518. vcpu = vm->vcpus[i];
  519. if (!vcpu)
  520. continue;
  521. /*
  522. * If the vcpu is locked, then it is running on some
  523. * other cpu and therefore it is not cached on the
  524. * cpu in question.
  525. *
  526. * If it's not locked, check the last cpu it executed
  527. * on.
  528. */
  529. if (mutex_trylock(&vcpu->mutex)) {
  530. if (vcpu->cpu == cpu) {
  531. kvm_x86_ops->vcpu_decache(vcpu);
  532. vcpu->cpu = -1;
  533. }
  534. mutex_unlock(&vcpu->mutex);
  535. }
  536. }
  537. spin_unlock(&kvm_lock);
  538. }
  539. int kvm_dev_ioctl_check_extension(long ext)
  540. {
  541. int r;
  542. switch (ext) {
  543. case KVM_CAP_IRQCHIP:
  544. case KVM_CAP_HLT:
  545. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  546. case KVM_CAP_USER_MEMORY:
  547. case KVM_CAP_SET_TSS_ADDR:
  548. r = 1;
  549. break;
  550. default:
  551. r = 0;
  552. break;
  553. }
  554. return r;
  555. }
  556. long kvm_arch_dev_ioctl(struct file *filp,
  557. unsigned int ioctl, unsigned long arg)
  558. {
  559. void __user *argp = (void __user *)arg;
  560. long r;
  561. switch (ioctl) {
  562. case KVM_GET_MSR_INDEX_LIST: {
  563. struct kvm_msr_list __user *user_msr_list = argp;
  564. struct kvm_msr_list msr_list;
  565. unsigned n;
  566. r = -EFAULT;
  567. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  568. goto out;
  569. n = msr_list.nmsrs;
  570. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  571. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  572. goto out;
  573. r = -E2BIG;
  574. if (n < num_msrs_to_save)
  575. goto out;
  576. r = -EFAULT;
  577. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  578. num_msrs_to_save * sizeof(u32)))
  579. goto out;
  580. if (copy_to_user(user_msr_list->indices
  581. + num_msrs_to_save * sizeof(u32),
  582. &emulated_msrs,
  583. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  584. goto out;
  585. r = 0;
  586. break;
  587. }
  588. default:
  589. r = -EINVAL;
  590. }
  591. out:
  592. return r;
  593. }
  594. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  595. {
  596. kvm_x86_ops->vcpu_load(vcpu, cpu);
  597. }
  598. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  599. {
  600. kvm_x86_ops->vcpu_put(vcpu);
  601. kvm_put_guest_fpu(vcpu);
  602. }
  603. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  604. {
  605. u64 efer;
  606. int i;
  607. struct kvm_cpuid_entry *e, *entry;
  608. rdmsrl(MSR_EFER, efer);
  609. entry = NULL;
  610. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  611. e = &vcpu->cpuid_entries[i];
  612. if (e->function == 0x80000001) {
  613. entry = e;
  614. break;
  615. }
  616. }
  617. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  618. entry->edx &= ~(1 << 20);
  619. printk(KERN_INFO "kvm: guest NX capability removed\n");
  620. }
  621. }
  622. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  623. struct kvm_cpuid *cpuid,
  624. struct kvm_cpuid_entry __user *entries)
  625. {
  626. int r;
  627. r = -E2BIG;
  628. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  629. goto out;
  630. r = -EFAULT;
  631. if (copy_from_user(&vcpu->cpuid_entries, entries,
  632. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  633. goto out;
  634. vcpu->cpuid_nent = cpuid->nent;
  635. cpuid_fix_nx_cap(vcpu);
  636. return 0;
  637. out:
  638. return r;
  639. }
  640. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  641. struct kvm_lapic_state *s)
  642. {
  643. vcpu_load(vcpu);
  644. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  645. vcpu_put(vcpu);
  646. return 0;
  647. }
  648. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  649. struct kvm_lapic_state *s)
  650. {
  651. vcpu_load(vcpu);
  652. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  653. kvm_apic_post_state_restore(vcpu);
  654. vcpu_put(vcpu);
  655. return 0;
  656. }
  657. long kvm_arch_vcpu_ioctl(struct file *filp,
  658. unsigned int ioctl, unsigned long arg)
  659. {
  660. struct kvm_vcpu *vcpu = filp->private_data;
  661. void __user *argp = (void __user *)arg;
  662. int r;
  663. switch (ioctl) {
  664. case KVM_GET_LAPIC: {
  665. struct kvm_lapic_state lapic;
  666. memset(&lapic, 0, sizeof lapic);
  667. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  668. if (r)
  669. goto out;
  670. r = -EFAULT;
  671. if (copy_to_user(argp, &lapic, sizeof lapic))
  672. goto out;
  673. r = 0;
  674. break;
  675. }
  676. case KVM_SET_LAPIC: {
  677. struct kvm_lapic_state lapic;
  678. r = -EFAULT;
  679. if (copy_from_user(&lapic, argp, sizeof lapic))
  680. goto out;
  681. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  682. if (r)
  683. goto out;
  684. r = 0;
  685. break;
  686. }
  687. case KVM_SET_CPUID: {
  688. struct kvm_cpuid __user *cpuid_arg = argp;
  689. struct kvm_cpuid cpuid;
  690. r = -EFAULT;
  691. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  692. goto out;
  693. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  694. if (r)
  695. goto out;
  696. break;
  697. }
  698. case KVM_GET_MSRS:
  699. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  700. break;
  701. case KVM_SET_MSRS:
  702. r = msr_io(vcpu, argp, do_set_msr, 0);
  703. break;
  704. default:
  705. r = -EINVAL;
  706. }
  707. out:
  708. return r;
  709. }
  710. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  711. {
  712. int ret;
  713. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  714. return -1;
  715. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  716. return ret;
  717. }
  718. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  719. u32 kvm_nr_mmu_pages)
  720. {
  721. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  722. return -EINVAL;
  723. mutex_lock(&kvm->lock);
  724. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  725. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  726. mutex_unlock(&kvm->lock);
  727. return 0;
  728. }
  729. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  730. {
  731. return kvm->n_alloc_mmu_pages;
  732. }
  733. /*
  734. * Set a new alias region. Aliases map a portion of physical memory into
  735. * another portion. This is useful for memory windows, for example the PC
  736. * VGA region.
  737. */
  738. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  739. struct kvm_memory_alias *alias)
  740. {
  741. int r, n;
  742. struct kvm_mem_alias *p;
  743. r = -EINVAL;
  744. /* General sanity checks */
  745. if (alias->memory_size & (PAGE_SIZE - 1))
  746. goto out;
  747. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  748. goto out;
  749. if (alias->slot >= KVM_ALIAS_SLOTS)
  750. goto out;
  751. if (alias->guest_phys_addr + alias->memory_size
  752. < alias->guest_phys_addr)
  753. goto out;
  754. if (alias->target_phys_addr + alias->memory_size
  755. < alias->target_phys_addr)
  756. goto out;
  757. mutex_lock(&kvm->lock);
  758. p = &kvm->aliases[alias->slot];
  759. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  760. p->npages = alias->memory_size >> PAGE_SHIFT;
  761. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  762. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  763. if (kvm->aliases[n - 1].npages)
  764. break;
  765. kvm->naliases = n;
  766. kvm_mmu_zap_all(kvm);
  767. mutex_unlock(&kvm->lock);
  768. return 0;
  769. out:
  770. return r;
  771. }
  772. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  773. {
  774. int r;
  775. r = 0;
  776. switch (chip->chip_id) {
  777. case KVM_IRQCHIP_PIC_MASTER:
  778. memcpy(&chip->chip.pic,
  779. &pic_irqchip(kvm)->pics[0],
  780. sizeof(struct kvm_pic_state));
  781. break;
  782. case KVM_IRQCHIP_PIC_SLAVE:
  783. memcpy(&chip->chip.pic,
  784. &pic_irqchip(kvm)->pics[1],
  785. sizeof(struct kvm_pic_state));
  786. break;
  787. case KVM_IRQCHIP_IOAPIC:
  788. memcpy(&chip->chip.ioapic,
  789. ioapic_irqchip(kvm),
  790. sizeof(struct kvm_ioapic_state));
  791. break;
  792. default:
  793. r = -EINVAL;
  794. break;
  795. }
  796. return r;
  797. }
  798. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  799. {
  800. int r;
  801. r = 0;
  802. switch (chip->chip_id) {
  803. case KVM_IRQCHIP_PIC_MASTER:
  804. memcpy(&pic_irqchip(kvm)->pics[0],
  805. &chip->chip.pic,
  806. sizeof(struct kvm_pic_state));
  807. break;
  808. case KVM_IRQCHIP_PIC_SLAVE:
  809. memcpy(&pic_irqchip(kvm)->pics[1],
  810. &chip->chip.pic,
  811. sizeof(struct kvm_pic_state));
  812. break;
  813. case KVM_IRQCHIP_IOAPIC:
  814. memcpy(ioapic_irqchip(kvm),
  815. &chip->chip.ioapic,
  816. sizeof(struct kvm_ioapic_state));
  817. break;
  818. default:
  819. r = -EINVAL;
  820. break;
  821. }
  822. kvm_pic_update_irq(pic_irqchip(kvm));
  823. return r;
  824. }
  825. /*
  826. * Get (and clear) the dirty memory log for a memory slot.
  827. */
  828. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  829. struct kvm_dirty_log *log)
  830. {
  831. int r;
  832. int n;
  833. struct kvm_memory_slot *memslot;
  834. int is_dirty = 0;
  835. mutex_lock(&kvm->lock);
  836. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  837. if (r)
  838. goto out;
  839. /* If nothing is dirty, don't bother messing with page tables. */
  840. if (is_dirty) {
  841. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  842. kvm_flush_remote_tlbs(kvm);
  843. memslot = &kvm->memslots[log->slot];
  844. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  845. memset(memslot->dirty_bitmap, 0, n);
  846. }
  847. r = 0;
  848. out:
  849. mutex_unlock(&kvm->lock);
  850. return r;
  851. }
  852. long kvm_arch_vm_ioctl(struct file *filp,
  853. unsigned int ioctl, unsigned long arg)
  854. {
  855. struct kvm *kvm = filp->private_data;
  856. void __user *argp = (void __user *)arg;
  857. int r = -EINVAL;
  858. switch (ioctl) {
  859. case KVM_SET_TSS_ADDR:
  860. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  861. if (r < 0)
  862. goto out;
  863. break;
  864. case KVM_SET_MEMORY_REGION: {
  865. struct kvm_memory_region kvm_mem;
  866. struct kvm_userspace_memory_region kvm_userspace_mem;
  867. r = -EFAULT;
  868. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  869. goto out;
  870. kvm_userspace_mem.slot = kvm_mem.slot;
  871. kvm_userspace_mem.flags = kvm_mem.flags;
  872. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  873. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  874. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  875. if (r)
  876. goto out;
  877. break;
  878. }
  879. case KVM_SET_NR_MMU_PAGES:
  880. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  881. if (r)
  882. goto out;
  883. break;
  884. case KVM_GET_NR_MMU_PAGES:
  885. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  886. break;
  887. case KVM_SET_MEMORY_ALIAS: {
  888. struct kvm_memory_alias alias;
  889. r = -EFAULT;
  890. if (copy_from_user(&alias, argp, sizeof alias))
  891. goto out;
  892. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  893. if (r)
  894. goto out;
  895. break;
  896. }
  897. case KVM_CREATE_IRQCHIP:
  898. r = -ENOMEM;
  899. kvm->vpic = kvm_create_pic(kvm);
  900. if (kvm->vpic) {
  901. r = kvm_ioapic_init(kvm);
  902. if (r) {
  903. kfree(kvm->vpic);
  904. kvm->vpic = NULL;
  905. goto out;
  906. }
  907. } else
  908. goto out;
  909. break;
  910. case KVM_IRQ_LINE: {
  911. struct kvm_irq_level irq_event;
  912. r = -EFAULT;
  913. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  914. goto out;
  915. if (irqchip_in_kernel(kvm)) {
  916. mutex_lock(&kvm->lock);
  917. if (irq_event.irq < 16)
  918. kvm_pic_set_irq(pic_irqchip(kvm),
  919. irq_event.irq,
  920. irq_event.level);
  921. kvm_ioapic_set_irq(kvm->vioapic,
  922. irq_event.irq,
  923. irq_event.level);
  924. mutex_unlock(&kvm->lock);
  925. r = 0;
  926. }
  927. break;
  928. }
  929. case KVM_GET_IRQCHIP: {
  930. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  931. struct kvm_irqchip chip;
  932. r = -EFAULT;
  933. if (copy_from_user(&chip, argp, sizeof chip))
  934. goto out;
  935. r = -ENXIO;
  936. if (!irqchip_in_kernel(kvm))
  937. goto out;
  938. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  939. if (r)
  940. goto out;
  941. r = -EFAULT;
  942. if (copy_to_user(argp, &chip, sizeof chip))
  943. goto out;
  944. r = 0;
  945. break;
  946. }
  947. case KVM_SET_IRQCHIP: {
  948. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  949. struct kvm_irqchip chip;
  950. r = -EFAULT;
  951. if (copy_from_user(&chip, argp, sizeof chip))
  952. goto out;
  953. r = -ENXIO;
  954. if (!irqchip_in_kernel(kvm))
  955. goto out;
  956. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  957. if (r)
  958. goto out;
  959. r = 0;
  960. break;
  961. }
  962. default:
  963. ;
  964. }
  965. out:
  966. return r;
  967. }
  968. static void kvm_init_msr_list(void)
  969. {
  970. u32 dummy[2];
  971. unsigned i, j;
  972. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  973. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  974. continue;
  975. if (j < i)
  976. msrs_to_save[j] = msrs_to_save[i];
  977. j++;
  978. }
  979. num_msrs_to_save = j;
  980. }
  981. /*
  982. * Only apic need an MMIO device hook, so shortcut now..
  983. */
  984. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  985. gpa_t addr)
  986. {
  987. struct kvm_io_device *dev;
  988. if (vcpu->apic) {
  989. dev = &vcpu->apic->dev;
  990. if (dev->in_range(dev, addr))
  991. return dev;
  992. }
  993. return NULL;
  994. }
  995. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  996. gpa_t addr)
  997. {
  998. struct kvm_io_device *dev;
  999. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1000. if (dev == NULL)
  1001. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1002. return dev;
  1003. }
  1004. int emulator_read_std(unsigned long addr,
  1005. void *val,
  1006. unsigned int bytes,
  1007. struct kvm_vcpu *vcpu)
  1008. {
  1009. void *data = val;
  1010. while (bytes) {
  1011. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1012. unsigned offset = addr & (PAGE_SIZE-1);
  1013. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1014. int ret;
  1015. if (gpa == UNMAPPED_GVA)
  1016. return X86EMUL_PROPAGATE_FAULT;
  1017. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1018. if (ret < 0)
  1019. return X86EMUL_UNHANDLEABLE;
  1020. bytes -= tocopy;
  1021. data += tocopy;
  1022. addr += tocopy;
  1023. }
  1024. return X86EMUL_CONTINUE;
  1025. }
  1026. EXPORT_SYMBOL_GPL(emulator_read_std);
  1027. static int emulator_read_emulated(unsigned long addr,
  1028. void *val,
  1029. unsigned int bytes,
  1030. struct kvm_vcpu *vcpu)
  1031. {
  1032. struct kvm_io_device *mmio_dev;
  1033. gpa_t gpa;
  1034. if (vcpu->mmio_read_completed) {
  1035. memcpy(val, vcpu->mmio_data, bytes);
  1036. vcpu->mmio_read_completed = 0;
  1037. return X86EMUL_CONTINUE;
  1038. }
  1039. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1040. /* For APIC access vmexit */
  1041. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1042. goto mmio;
  1043. if (emulator_read_std(addr, val, bytes, vcpu)
  1044. == X86EMUL_CONTINUE)
  1045. return X86EMUL_CONTINUE;
  1046. if (gpa == UNMAPPED_GVA)
  1047. return X86EMUL_PROPAGATE_FAULT;
  1048. mmio:
  1049. /*
  1050. * Is this MMIO handled locally?
  1051. */
  1052. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1053. if (mmio_dev) {
  1054. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1055. return X86EMUL_CONTINUE;
  1056. }
  1057. vcpu->mmio_needed = 1;
  1058. vcpu->mmio_phys_addr = gpa;
  1059. vcpu->mmio_size = bytes;
  1060. vcpu->mmio_is_write = 0;
  1061. return X86EMUL_UNHANDLEABLE;
  1062. }
  1063. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1064. const void *val, int bytes)
  1065. {
  1066. int ret;
  1067. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1068. if (ret < 0)
  1069. return 0;
  1070. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1071. return 1;
  1072. }
  1073. static int emulator_write_emulated_onepage(unsigned long addr,
  1074. const void *val,
  1075. unsigned int bytes,
  1076. struct kvm_vcpu *vcpu)
  1077. {
  1078. struct kvm_io_device *mmio_dev;
  1079. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1080. if (gpa == UNMAPPED_GVA) {
  1081. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1082. return X86EMUL_PROPAGATE_FAULT;
  1083. }
  1084. /* For APIC access vmexit */
  1085. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1086. goto mmio;
  1087. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1088. return X86EMUL_CONTINUE;
  1089. mmio:
  1090. /*
  1091. * Is this MMIO handled locally?
  1092. */
  1093. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1094. if (mmio_dev) {
  1095. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1096. return X86EMUL_CONTINUE;
  1097. }
  1098. vcpu->mmio_needed = 1;
  1099. vcpu->mmio_phys_addr = gpa;
  1100. vcpu->mmio_size = bytes;
  1101. vcpu->mmio_is_write = 1;
  1102. memcpy(vcpu->mmio_data, val, bytes);
  1103. return X86EMUL_CONTINUE;
  1104. }
  1105. int emulator_write_emulated(unsigned long addr,
  1106. const void *val,
  1107. unsigned int bytes,
  1108. struct kvm_vcpu *vcpu)
  1109. {
  1110. /* Crossing a page boundary? */
  1111. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1112. int rc, now;
  1113. now = -addr & ~PAGE_MASK;
  1114. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1115. if (rc != X86EMUL_CONTINUE)
  1116. return rc;
  1117. addr += now;
  1118. val += now;
  1119. bytes -= now;
  1120. }
  1121. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1122. }
  1123. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1124. static int emulator_cmpxchg_emulated(unsigned long addr,
  1125. const void *old,
  1126. const void *new,
  1127. unsigned int bytes,
  1128. struct kvm_vcpu *vcpu)
  1129. {
  1130. static int reported;
  1131. if (!reported) {
  1132. reported = 1;
  1133. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1134. }
  1135. return emulator_write_emulated(addr, new, bytes, vcpu);
  1136. }
  1137. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1138. {
  1139. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1140. }
  1141. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1142. {
  1143. return X86EMUL_CONTINUE;
  1144. }
  1145. int emulate_clts(struct kvm_vcpu *vcpu)
  1146. {
  1147. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1148. return X86EMUL_CONTINUE;
  1149. }
  1150. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1151. {
  1152. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1153. switch (dr) {
  1154. case 0 ... 3:
  1155. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1156. return X86EMUL_CONTINUE;
  1157. default:
  1158. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1159. return X86EMUL_UNHANDLEABLE;
  1160. }
  1161. }
  1162. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1163. {
  1164. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1165. int exception;
  1166. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1167. if (exception) {
  1168. /* FIXME: better handling */
  1169. return X86EMUL_UNHANDLEABLE;
  1170. }
  1171. return X86EMUL_CONTINUE;
  1172. }
  1173. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1174. {
  1175. static int reported;
  1176. u8 opcodes[4];
  1177. unsigned long rip = vcpu->rip;
  1178. unsigned long rip_linear;
  1179. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1180. if (reported)
  1181. return;
  1182. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1183. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1184. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1185. reported = 1;
  1186. }
  1187. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1188. struct x86_emulate_ops emulate_ops = {
  1189. .read_std = emulator_read_std,
  1190. .read_emulated = emulator_read_emulated,
  1191. .write_emulated = emulator_write_emulated,
  1192. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1193. };
  1194. int emulate_instruction(struct kvm_vcpu *vcpu,
  1195. struct kvm_run *run,
  1196. unsigned long cr2,
  1197. u16 error_code,
  1198. int no_decode)
  1199. {
  1200. int r;
  1201. vcpu->mmio_fault_cr2 = cr2;
  1202. kvm_x86_ops->cache_regs(vcpu);
  1203. vcpu->mmio_is_write = 0;
  1204. vcpu->pio.string = 0;
  1205. if (!no_decode) {
  1206. int cs_db, cs_l;
  1207. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1208. vcpu->emulate_ctxt.vcpu = vcpu;
  1209. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1210. vcpu->emulate_ctxt.cr2 = cr2;
  1211. vcpu->emulate_ctxt.mode =
  1212. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1213. ? X86EMUL_MODE_REAL : cs_l
  1214. ? X86EMUL_MODE_PROT64 : cs_db
  1215. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1216. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1217. vcpu->emulate_ctxt.cs_base = 0;
  1218. vcpu->emulate_ctxt.ds_base = 0;
  1219. vcpu->emulate_ctxt.es_base = 0;
  1220. vcpu->emulate_ctxt.ss_base = 0;
  1221. } else {
  1222. vcpu->emulate_ctxt.cs_base =
  1223. get_segment_base(vcpu, VCPU_SREG_CS);
  1224. vcpu->emulate_ctxt.ds_base =
  1225. get_segment_base(vcpu, VCPU_SREG_DS);
  1226. vcpu->emulate_ctxt.es_base =
  1227. get_segment_base(vcpu, VCPU_SREG_ES);
  1228. vcpu->emulate_ctxt.ss_base =
  1229. get_segment_base(vcpu, VCPU_SREG_SS);
  1230. }
  1231. vcpu->emulate_ctxt.gs_base =
  1232. get_segment_base(vcpu, VCPU_SREG_GS);
  1233. vcpu->emulate_ctxt.fs_base =
  1234. get_segment_base(vcpu, VCPU_SREG_FS);
  1235. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1236. ++vcpu->stat.insn_emulation;
  1237. if (r) {
  1238. ++vcpu->stat.insn_emulation_fail;
  1239. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1240. return EMULATE_DONE;
  1241. return EMULATE_FAIL;
  1242. }
  1243. }
  1244. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1245. if (vcpu->pio.string)
  1246. return EMULATE_DO_MMIO;
  1247. if ((r || vcpu->mmio_is_write) && run) {
  1248. run->exit_reason = KVM_EXIT_MMIO;
  1249. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1250. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1251. run->mmio.len = vcpu->mmio_size;
  1252. run->mmio.is_write = vcpu->mmio_is_write;
  1253. }
  1254. if (r) {
  1255. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1256. return EMULATE_DONE;
  1257. if (!vcpu->mmio_needed) {
  1258. kvm_report_emulation_failure(vcpu, "mmio");
  1259. return EMULATE_FAIL;
  1260. }
  1261. return EMULATE_DO_MMIO;
  1262. }
  1263. kvm_x86_ops->decache_regs(vcpu);
  1264. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1265. if (vcpu->mmio_is_write) {
  1266. vcpu->mmio_needed = 0;
  1267. return EMULATE_DO_MMIO;
  1268. }
  1269. return EMULATE_DONE;
  1270. }
  1271. EXPORT_SYMBOL_GPL(emulate_instruction);
  1272. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1273. {
  1274. int i;
  1275. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  1276. if (vcpu->pio.guest_pages[i]) {
  1277. kvm_release_page_dirty(vcpu->pio.guest_pages[i]);
  1278. vcpu->pio.guest_pages[i] = NULL;
  1279. }
  1280. }
  1281. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1282. {
  1283. void *p = vcpu->pio_data;
  1284. void *q;
  1285. unsigned bytes;
  1286. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1287. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1288. PAGE_KERNEL);
  1289. if (!q) {
  1290. free_pio_guest_pages(vcpu);
  1291. return -ENOMEM;
  1292. }
  1293. q += vcpu->pio.guest_page_offset;
  1294. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1295. if (vcpu->pio.in)
  1296. memcpy(q, p, bytes);
  1297. else
  1298. memcpy(p, q, bytes);
  1299. q -= vcpu->pio.guest_page_offset;
  1300. vunmap(q);
  1301. free_pio_guest_pages(vcpu);
  1302. return 0;
  1303. }
  1304. int complete_pio(struct kvm_vcpu *vcpu)
  1305. {
  1306. struct kvm_pio_request *io = &vcpu->pio;
  1307. long delta;
  1308. int r;
  1309. kvm_x86_ops->cache_regs(vcpu);
  1310. if (!io->string) {
  1311. if (io->in)
  1312. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1313. io->size);
  1314. } else {
  1315. if (io->in) {
  1316. r = pio_copy_data(vcpu);
  1317. if (r) {
  1318. kvm_x86_ops->cache_regs(vcpu);
  1319. return r;
  1320. }
  1321. }
  1322. delta = 1;
  1323. if (io->rep) {
  1324. delta *= io->cur_count;
  1325. /*
  1326. * The size of the register should really depend on
  1327. * current address size.
  1328. */
  1329. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1330. }
  1331. if (io->down)
  1332. delta = -delta;
  1333. delta *= io->size;
  1334. if (io->in)
  1335. vcpu->regs[VCPU_REGS_RDI] += delta;
  1336. else
  1337. vcpu->regs[VCPU_REGS_RSI] += delta;
  1338. }
  1339. kvm_x86_ops->decache_regs(vcpu);
  1340. io->count -= io->cur_count;
  1341. io->cur_count = 0;
  1342. return 0;
  1343. }
  1344. static void kernel_pio(struct kvm_io_device *pio_dev,
  1345. struct kvm_vcpu *vcpu,
  1346. void *pd)
  1347. {
  1348. /* TODO: String I/O for in kernel device */
  1349. mutex_lock(&vcpu->kvm->lock);
  1350. if (vcpu->pio.in)
  1351. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1352. vcpu->pio.size,
  1353. pd);
  1354. else
  1355. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1356. vcpu->pio.size,
  1357. pd);
  1358. mutex_unlock(&vcpu->kvm->lock);
  1359. }
  1360. static void pio_string_write(struct kvm_io_device *pio_dev,
  1361. struct kvm_vcpu *vcpu)
  1362. {
  1363. struct kvm_pio_request *io = &vcpu->pio;
  1364. void *pd = vcpu->pio_data;
  1365. int i;
  1366. mutex_lock(&vcpu->kvm->lock);
  1367. for (i = 0; i < io->cur_count; i++) {
  1368. kvm_iodevice_write(pio_dev, io->port,
  1369. io->size,
  1370. pd);
  1371. pd += io->size;
  1372. }
  1373. mutex_unlock(&vcpu->kvm->lock);
  1374. }
  1375. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1376. gpa_t addr)
  1377. {
  1378. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1379. }
  1380. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1381. int size, unsigned port)
  1382. {
  1383. struct kvm_io_device *pio_dev;
  1384. vcpu->run->exit_reason = KVM_EXIT_IO;
  1385. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1386. vcpu->run->io.size = vcpu->pio.size = size;
  1387. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1388. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1389. vcpu->run->io.port = vcpu->pio.port = port;
  1390. vcpu->pio.in = in;
  1391. vcpu->pio.string = 0;
  1392. vcpu->pio.down = 0;
  1393. vcpu->pio.guest_page_offset = 0;
  1394. vcpu->pio.rep = 0;
  1395. kvm_x86_ops->cache_regs(vcpu);
  1396. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1397. kvm_x86_ops->decache_regs(vcpu);
  1398. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1399. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1400. if (pio_dev) {
  1401. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1402. complete_pio(vcpu);
  1403. return 1;
  1404. }
  1405. return 0;
  1406. }
  1407. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1408. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1409. int size, unsigned long count, int down,
  1410. gva_t address, int rep, unsigned port)
  1411. {
  1412. unsigned now, in_page;
  1413. int i, ret = 0;
  1414. int nr_pages = 1;
  1415. struct page *page;
  1416. struct kvm_io_device *pio_dev;
  1417. vcpu->run->exit_reason = KVM_EXIT_IO;
  1418. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1419. vcpu->run->io.size = vcpu->pio.size = size;
  1420. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1421. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1422. vcpu->run->io.port = vcpu->pio.port = port;
  1423. vcpu->pio.in = in;
  1424. vcpu->pio.string = 1;
  1425. vcpu->pio.down = down;
  1426. vcpu->pio.guest_page_offset = offset_in_page(address);
  1427. vcpu->pio.rep = rep;
  1428. if (!count) {
  1429. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1430. return 1;
  1431. }
  1432. if (!down)
  1433. in_page = PAGE_SIZE - offset_in_page(address);
  1434. else
  1435. in_page = offset_in_page(address) + size;
  1436. now = min(count, (unsigned long)in_page / size);
  1437. if (!now) {
  1438. /*
  1439. * String I/O straddles page boundary. Pin two guest pages
  1440. * so that we satisfy atomicity constraints. Do just one
  1441. * transaction to avoid complexity.
  1442. */
  1443. nr_pages = 2;
  1444. now = 1;
  1445. }
  1446. if (down) {
  1447. /*
  1448. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1449. */
  1450. pr_unimpl(vcpu, "guest string pio down\n");
  1451. inject_gp(vcpu);
  1452. return 1;
  1453. }
  1454. vcpu->run->io.count = now;
  1455. vcpu->pio.cur_count = now;
  1456. if (vcpu->pio.cur_count == vcpu->pio.count)
  1457. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1458. for (i = 0; i < nr_pages; ++i) {
  1459. mutex_lock(&vcpu->kvm->lock);
  1460. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1461. vcpu->pio.guest_pages[i] = page;
  1462. mutex_unlock(&vcpu->kvm->lock);
  1463. if (!page) {
  1464. inject_gp(vcpu);
  1465. free_pio_guest_pages(vcpu);
  1466. return 1;
  1467. }
  1468. }
  1469. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1470. if (!vcpu->pio.in) {
  1471. /* string PIO write */
  1472. ret = pio_copy_data(vcpu);
  1473. if (ret >= 0 && pio_dev) {
  1474. pio_string_write(pio_dev, vcpu);
  1475. complete_pio(vcpu);
  1476. if (vcpu->pio.count == 0)
  1477. ret = 1;
  1478. }
  1479. } else if (pio_dev)
  1480. pr_unimpl(vcpu, "no string pio read support yet, "
  1481. "port %x size %d count %ld\n",
  1482. port, size, count);
  1483. return ret;
  1484. }
  1485. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1486. int kvm_arch_init(void *opaque)
  1487. {
  1488. int r;
  1489. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  1490. r = kvm_mmu_module_init();
  1491. if (r)
  1492. goto out_fail;
  1493. kvm_init_msr_list();
  1494. if (kvm_x86_ops) {
  1495. printk(KERN_ERR "kvm: already loaded the other module\n");
  1496. r = -EEXIST;
  1497. goto out;
  1498. }
  1499. if (!ops->cpu_has_kvm_support()) {
  1500. printk(KERN_ERR "kvm: no hardware support\n");
  1501. r = -EOPNOTSUPP;
  1502. goto out;
  1503. }
  1504. if (ops->disabled_by_bios()) {
  1505. printk(KERN_ERR "kvm: disabled by bios\n");
  1506. r = -EOPNOTSUPP;
  1507. goto out;
  1508. }
  1509. kvm_x86_ops = ops;
  1510. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1511. return 0;
  1512. out:
  1513. kvm_mmu_module_exit();
  1514. out_fail:
  1515. return r;
  1516. }
  1517. void kvm_arch_exit(void)
  1518. {
  1519. kvm_x86_ops = NULL;
  1520. kvm_mmu_module_exit();
  1521. }
  1522. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1523. {
  1524. ++vcpu->stat.halt_exits;
  1525. if (irqchip_in_kernel(vcpu->kvm)) {
  1526. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1527. kvm_vcpu_block(vcpu);
  1528. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1529. return -EINTR;
  1530. return 1;
  1531. } else {
  1532. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1533. return 0;
  1534. }
  1535. }
  1536. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1537. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1538. {
  1539. unsigned long nr, a0, a1, a2, a3, ret;
  1540. kvm_x86_ops->cache_regs(vcpu);
  1541. nr = vcpu->regs[VCPU_REGS_RAX];
  1542. a0 = vcpu->regs[VCPU_REGS_RBX];
  1543. a1 = vcpu->regs[VCPU_REGS_RCX];
  1544. a2 = vcpu->regs[VCPU_REGS_RDX];
  1545. a3 = vcpu->regs[VCPU_REGS_RSI];
  1546. if (!is_long_mode(vcpu)) {
  1547. nr &= 0xFFFFFFFF;
  1548. a0 &= 0xFFFFFFFF;
  1549. a1 &= 0xFFFFFFFF;
  1550. a2 &= 0xFFFFFFFF;
  1551. a3 &= 0xFFFFFFFF;
  1552. }
  1553. switch (nr) {
  1554. default:
  1555. ret = -KVM_ENOSYS;
  1556. break;
  1557. }
  1558. vcpu->regs[VCPU_REGS_RAX] = ret;
  1559. kvm_x86_ops->decache_regs(vcpu);
  1560. return 0;
  1561. }
  1562. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1563. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1564. {
  1565. char instruction[3];
  1566. int ret = 0;
  1567. mutex_lock(&vcpu->kvm->lock);
  1568. /*
  1569. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1570. * to ensure that the updated hypercall appears atomically across all
  1571. * VCPUs.
  1572. */
  1573. kvm_mmu_zap_all(vcpu->kvm);
  1574. kvm_x86_ops->cache_regs(vcpu);
  1575. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1576. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1577. != X86EMUL_CONTINUE)
  1578. ret = -EFAULT;
  1579. mutex_unlock(&vcpu->kvm->lock);
  1580. return ret;
  1581. }
  1582. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1583. {
  1584. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1585. }
  1586. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1587. {
  1588. struct descriptor_table dt = { limit, base };
  1589. kvm_x86_ops->set_gdt(vcpu, &dt);
  1590. }
  1591. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1592. {
  1593. struct descriptor_table dt = { limit, base };
  1594. kvm_x86_ops->set_idt(vcpu, &dt);
  1595. }
  1596. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1597. unsigned long *rflags)
  1598. {
  1599. lmsw(vcpu, msw);
  1600. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1601. }
  1602. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1603. {
  1604. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1605. switch (cr) {
  1606. case 0:
  1607. return vcpu->cr0;
  1608. case 2:
  1609. return vcpu->cr2;
  1610. case 3:
  1611. return vcpu->cr3;
  1612. case 4:
  1613. return vcpu->cr4;
  1614. default:
  1615. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1616. return 0;
  1617. }
  1618. }
  1619. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1620. unsigned long *rflags)
  1621. {
  1622. switch (cr) {
  1623. case 0:
  1624. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1625. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1626. break;
  1627. case 2:
  1628. vcpu->cr2 = val;
  1629. break;
  1630. case 3:
  1631. set_cr3(vcpu, val);
  1632. break;
  1633. case 4:
  1634. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1635. break;
  1636. default:
  1637. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1638. }
  1639. }
  1640. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1641. {
  1642. int i;
  1643. u32 function;
  1644. struct kvm_cpuid_entry *e, *best;
  1645. kvm_x86_ops->cache_regs(vcpu);
  1646. function = vcpu->regs[VCPU_REGS_RAX];
  1647. vcpu->regs[VCPU_REGS_RAX] = 0;
  1648. vcpu->regs[VCPU_REGS_RBX] = 0;
  1649. vcpu->regs[VCPU_REGS_RCX] = 0;
  1650. vcpu->regs[VCPU_REGS_RDX] = 0;
  1651. best = NULL;
  1652. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1653. e = &vcpu->cpuid_entries[i];
  1654. if (e->function == function) {
  1655. best = e;
  1656. break;
  1657. }
  1658. /*
  1659. * Both basic or both extended?
  1660. */
  1661. if (((e->function ^ function) & 0x80000000) == 0)
  1662. if (!best || e->function > best->function)
  1663. best = e;
  1664. }
  1665. if (best) {
  1666. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1667. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1668. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1669. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1670. }
  1671. kvm_x86_ops->decache_regs(vcpu);
  1672. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1673. }
  1674. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1675. /*
  1676. * Check if userspace requested an interrupt window, and that the
  1677. * interrupt window is open.
  1678. *
  1679. * No need to exit to userspace if we already have an interrupt queued.
  1680. */
  1681. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1682. struct kvm_run *kvm_run)
  1683. {
  1684. return (!vcpu->irq_summary &&
  1685. kvm_run->request_interrupt_window &&
  1686. vcpu->interrupt_window_open &&
  1687. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1688. }
  1689. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1690. struct kvm_run *kvm_run)
  1691. {
  1692. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1693. kvm_run->cr8 = get_cr8(vcpu);
  1694. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1695. if (irqchip_in_kernel(vcpu->kvm))
  1696. kvm_run->ready_for_interrupt_injection = 1;
  1697. else
  1698. kvm_run->ready_for_interrupt_injection =
  1699. (vcpu->interrupt_window_open &&
  1700. vcpu->irq_summary == 0);
  1701. }
  1702. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1703. {
  1704. int r;
  1705. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1706. pr_debug("vcpu %d received sipi with vector # %x\n",
  1707. vcpu->vcpu_id, vcpu->sipi_vector);
  1708. kvm_lapic_reset(vcpu);
  1709. r = kvm_x86_ops->vcpu_reset(vcpu);
  1710. if (r)
  1711. return r;
  1712. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1713. }
  1714. preempted:
  1715. if (vcpu->guest_debug.enabled)
  1716. kvm_x86_ops->guest_debug_pre(vcpu);
  1717. again:
  1718. r = kvm_mmu_reload(vcpu);
  1719. if (unlikely(r))
  1720. goto out;
  1721. kvm_inject_pending_timer_irqs(vcpu);
  1722. preempt_disable();
  1723. kvm_x86_ops->prepare_guest_switch(vcpu);
  1724. kvm_load_guest_fpu(vcpu);
  1725. local_irq_disable();
  1726. if (signal_pending(current)) {
  1727. local_irq_enable();
  1728. preempt_enable();
  1729. r = -EINTR;
  1730. kvm_run->exit_reason = KVM_EXIT_INTR;
  1731. ++vcpu->stat.signal_exits;
  1732. goto out;
  1733. }
  1734. if (irqchip_in_kernel(vcpu->kvm))
  1735. kvm_x86_ops->inject_pending_irq(vcpu);
  1736. else if (!vcpu->mmio_read_completed)
  1737. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1738. vcpu->guest_mode = 1;
  1739. kvm_guest_enter();
  1740. if (vcpu->requests)
  1741. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1742. kvm_x86_ops->tlb_flush(vcpu);
  1743. kvm_x86_ops->run(vcpu, kvm_run);
  1744. vcpu->guest_mode = 0;
  1745. local_irq_enable();
  1746. ++vcpu->stat.exits;
  1747. /*
  1748. * We must have an instruction between local_irq_enable() and
  1749. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1750. * the interrupt shadow. The stat.exits increment will do nicely.
  1751. * But we need to prevent reordering, hence this barrier():
  1752. */
  1753. barrier();
  1754. kvm_guest_exit();
  1755. preempt_enable();
  1756. /*
  1757. * Profile KVM exit RIPs:
  1758. */
  1759. if (unlikely(prof_on == KVM_PROFILING)) {
  1760. kvm_x86_ops->cache_regs(vcpu);
  1761. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1762. }
  1763. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1764. if (r > 0) {
  1765. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1766. r = -EINTR;
  1767. kvm_run->exit_reason = KVM_EXIT_INTR;
  1768. ++vcpu->stat.request_irq_exits;
  1769. goto out;
  1770. }
  1771. if (!need_resched())
  1772. goto again;
  1773. }
  1774. out:
  1775. if (r > 0) {
  1776. kvm_resched(vcpu);
  1777. goto preempted;
  1778. }
  1779. post_kvm_run_save(vcpu, kvm_run);
  1780. return r;
  1781. }
  1782. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1783. {
  1784. int r;
  1785. sigset_t sigsaved;
  1786. vcpu_load(vcpu);
  1787. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1788. kvm_vcpu_block(vcpu);
  1789. vcpu_put(vcpu);
  1790. return -EAGAIN;
  1791. }
  1792. if (vcpu->sigset_active)
  1793. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1794. /* re-sync apic's tpr */
  1795. if (!irqchip_in_kernel(vcpu->kvm))
  1796. set_cr8(vcpu, kvm_run->cr8);
  1797. if (vcpu->pio.cur_count) {
  1798. r = complete_pio(vcpu);
  1799. if (r)
  1800. goto out;
  1801. }
  1802. #if CONFIG_HAS_IOMEM
  1803. if (vcpu->mmio_needed) {
  1804. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1805. vcpu->mmio_read_completed = 1;
  1806. vcpu->mmio_needed = 0;
  1807. r = emulate_instruction(vcpu, kvm_run,
  1808. vcpu->mmio_fault_cr2, 0, 1);
  1809. if (r == EMULATE_DO_MMIO) {
  1810. /*
  1811. * Read-modify-write. Back to userspace.
  1812. */
  1813. r = 0;
  1814. goto out;
  1815. }
  1816. }
  1817. #endif
  1818. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1819. kvm_x86_ops->cache_regs(vcpu);
  1820. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1821. kvm_x86_ops->decache_regs(vcpu);
  1822. }
  1823. r = __vcpu_run(vcpu, kvm_run);
  1824. out:
  1825. if (vcpu->sigset_active)
  1826. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1827. vcpu_put(vcpu);
  1828. return r;
  1829. }
  1830. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1831. {
  1832. vcpu_load(vcpu);
  1833. kvm_x86_ops->cache_regs(vcpu);
  1834. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1835. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1836. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1837. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1838. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1839. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1840. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1841. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1842. #ifdef CONFIG_X86_64
  1843. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1844. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1845. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1846. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1847. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1848. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1849. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1850. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1851. #endif
  1852. regs->rip = vcpu->rip;
  1853. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1854. /*
  1855. * Don't leak debug flags in case they were set for guest debugging
  1856. */
  1857. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1858. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1859. vcpu_put(vcpu);
  1860. return 0;
  1861. }
  1862. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1863. {
  1864. vcpu_load(vcpu);
  1865. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1866. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1867. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1868. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1869. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1870. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1871. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1872. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1873. #ifdef CONFIG_X86_64
  1874. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1875. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1876. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1877. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1878. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1879. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1880. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1881. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1882. #endif
  1883. vcpu->rip = regs->rip;
  1884. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1885. kvm_x86_ops->decache_regs(vcpu);
  1886. vcpu_put(vcpu);
  1887. return 0;
  1888. }
  1889. static void get_segment(struct kvm_vcpu *vcpu,
  1890. struct kvm_segment *var, int seg)
  1891. {
  1892. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1893. }
  1894. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1895. {
  1896. struct kvm_segment cs;
  1897. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1898. *db = cs.db;
  1899. *l = cs.l;
  1900. }
  1901. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1902. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1903. struct kvm_sregs *sregs)
  1904. {
  1905. struct descriptor_table dt;
  1906. int pending_vec;
  1907. vcpu_load(vcpu);
  1908. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1909. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1910. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1911. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1912. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1913. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1914. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1915. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1916. kvm_x86_ops->get_idt(vcpu, &dt);
  1917. sregs->idt.limit = dt.limit;
  1918. sregs->idt.base = dt.base;
  1919. kvm_x86_ops->get_gdt(vcpu, &dt);
  1920. sregs->gdt.limit = dt.limit;
  1921. sregs->gdt.base = dt.base;
  1922. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1923. sregs->cr0 = vcpu->cr0;
  1924. sregs->cr2 = vcpu->cr2;
  1925. sregs->cr3 = vcpu->cr3;
  1926. sregs->cr4 = vcpu->cr4;
  1927. sregs->cr8 = get_cr8(vcpu);
  1928. sregs->efer = vcpu->shadow_efer;
  1929. sregs->apic_base = kvm_get_apic_base(vcpu);
  1930. if (irqchip_in_kernel(vcpu->kvm)) {
  1931. memset(sregs->interrupt_bitmap, 0,
  1932. sizeof sregs->interrupt_bitmap);
  1933. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1934. if (pending_vec >= 0)
  1935. set_bit(pending_vec,
  1936. (unsigned long *)sregs->interrupt_bitmap);
  1937. } else
  1938. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1939. sizeof sregs->interrupt_bitmap);
  1940. vcpu_put(vcpu);
  1941. return 0;
  1942. }
  1943. static void set_segment(struct kvm_vcpu *vcpu,
  1944. struct kvm_segment *var, int seg)
  1945. {
  1946. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1947. }
  1948. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1949. struct kvm_sregs *sregs)
  1950. {
  1951. int mmu_reset_needed = 0;
  1952. int i, pending_vec, max_bits;
  1953. struct descriptor_table dt;
  1954. vcpu_load(vcpu);
  1955. dt.limit = sregs->idt.limit;
  1956. dt.base = sregs->idt.base;
  1957. kvm_x86_ops->set_idt(vcpu, &dt);
  1958. dt.limit = sregs->gdt.limit;
  1959. dt.base = sregs->gdt.base;
  1960. kvm_x86_ops->set_gdt(vcpu, &dt);
  1961. vcpu->cr2 = sregs->cr2;
  1962. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1963. vcpu->cr3 = sregs->cr3;
  1964. set_cr8(vcpu, sregs->cr8);
  1965. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1966. #ifdef CONFIG_X86_64
  1967. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1968. #endif
  1969. kvm_set_apic_base(vcpu, sregs->apic_base);
  1970. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1971. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1972. vcpu->cr0 = sregs->cr0;
  1973. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1974. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1975. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1976. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1977. load_pdptrs(vcpu, vcpu->cr3);
  1978. if (mmu_reset_needed)
  1979. kvm_mmu_reset_context(vcpu);
  1980. if (!irqchip_in_kernel(vcpu->kvm)) {
  1981. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1982. sizeof vcpu->irq_pending);
  1983. vcpu->irq_summary = 0;
  1984. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1985. if (vcpu->irq_pending[i])
  1986. __set_bit(i, &vcpu->irq_summary);
  1987. } else {
  1988. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1989. pending_vec = find_first_bit(
  1990. (const unsigned long *)sregs->interrupt_bitmap,
  1991. max_bits);
  1992. /* Only pending external irq is handled here */
  1993. if (pending_vec < max_bits) {
  1994. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1995. pr_debug("Set back pending irq %d\n",
  1996. pending_vec);
  1997. }
  1998. }
  1999. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2000. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2001. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2002. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2003. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2004. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2005. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2006. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2007. vcpu_put(vcpu);
  2008. return 0;
  2009. }
  2010. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2011. struct kvm_debug_guest *dbg)
  2012. {
  2013. int r;
  2014. vcpu_load(vcpu);
  2015. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2016. vcpu_put(vcpu);
  2017. return r;
  2018. }
  2019. /*
  2020. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2021. * we have asm/x86/processor.h
  2022. */
  2023. struct fxsave {
  2024. u16 cwd;
  2025. u16 swd;
  2026. u16 twd;
  2027. u16 fop;
  2028. u64 rip;
  2029. u64 rdp;
  2030. u32 mxcsr;
  2031. u32 mxcsr_mask;
  2032. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2033. #ifdef CONFIG_X86_64
  2034. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2035. #else
  2036. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2037. #endif
  2038. };
  2039. /*
  2040. * Translate a guest virtual address to a guest physical address.
  2041. */
  2042. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2043. struct kvm_translation *tr)
  2044. {
  2045. unsigned long vaddr = tr->linear_address;
  2046. gpa_t gpa;
  2047. vcpu_load(vcpu);
  2048. mutex_lock(&vcpu->kvm->lock);
  2049. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2050. tr->physical_address = gpa;
  2051. tr->valid = gpa != UNMAPPED_GVA;
  2052. tr->writeable = 1;
  2053. tr->usermode = 0;
  2054. mutex_unlock(&vcpu->kvm->lock);
  2055. vcpu_put(vcpu);
  2056. return 0;
  2057. }
  2058. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2059. {
  2060. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2061. vcpu_load(vcpu);
  2062. memcpy(fpu->fpr, fxsave->st_space, 128);
  2063. fpu->fcw = fxsave->cwd;
  2064. fpu->fsw = fxsave->swd;
  2065. fpu->ftwx = fxsave->twd;
  2066. fpu->last_opcode = fxsave->fop;
  2067. fpu->last_ip = fxsave->rip;
  2068. fpu->last_dp = fxsave->rdp;
  2069. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2070. vcpu_put(vcpu);
  2071. return 0;
  2072. }
  2073. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2074. {
  2075. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2076. vcpu_load(vcpu);
  2077. memcpy(fxsave->st_space, fpu->fpr, 128);
  2078. fxsave->cwd = fpu->fcw;
  2079. fxsave->swd = fpu->fsw;
  2080. fxsave->twd = fpu->ftwx;
  2081. fxsave->fop = fpu->last_opcode;
  2082. fxsave->rip = fpu->last_ip;
  2083. fxsave->rdp = fpu->last_dp;
  2084. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2085. vcpu_put(vcpu);
  2086. return 0;
  2087. }
  2088. void fx_init(struct kvm_vcpu *vcpu)
  2089. {
  2090. unsigned after_mxcsr_mask;
  2091. /* Initialize guest FPU by resetting ours and saving into guest's */
  2092. preempt_disable();
  2093. fx_save(&vcpu->host_fx_image);
  2094. fpu_init();
  2095. fx_save(&vcpu->guest_fx_image);
  2096. fx_restore(&vcpu->host_fx_image);
  2097. preempt_enable();
  2098. vcpu->cr0 |= X86_CR0_ET;
  2099. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  2100. vcpu->guest_fx_image.mxcsr = 0x1f80;
  2101. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  2102. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  2103. }
  2104. EXPORT_SYMBOL_GPL(fx_init);
  2105. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  2106. {
  2107. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  2108. return;
  2109. vcpu->guest_fpu_loaded = 1;
  2110. fx_save(&vcpu->host_fx_image);
  2111. fx_restore(&vcpu->guest_fx_image);
  2112. }
  2113. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  2114. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  2115. {
  2116. if (!vcpu->guest_fpu_loaded)
  2117. return;
  2118. vcpu->guest_fpu_loaded = 0;
  2119. fx_save(&vcpu->guest_fx_image);
  2120. fx_restore(&vcpu->host_fx_image);
  2121. ++vcpu->stat.fpu_reload;
  2122. }
  2123. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  2124. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  2125. {
  2126. kvm_x86_ops->vcpu_free(vcpu);
  2127. }
  2128. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  2129. unsigned int id)
  2130. {
  2131. int r;
  2132. struct kvm_vcpu *vcpu = kvm_x86_ops->vcpu_create(kvm, id);
  2133. if (IS_ERR(vcpu)) {
  2134. r = -ENOMEM;
  2135. goto fail;
  2136. }
  2137. /* We do fxsave: this must be aligned. */
  2138. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2139. vcpu_load(vcpu);
  2140. r = kvm_arch_vcpu_reset(vcpu);
  2141. if (r == 0)
  2142. r = kvm_mmu_setup(vcpu);
  2143. vcpu_put(vcpu);
  2144. if (r < 0)
  2145. goto free_vcpu;
  2146. return vcpu;
  2147. free_vcpu:
  2148. kvm_x86_ops->vcpu_free(vcpu);
  2149. fail:
  2150. return ERR_PTR(r);
  2151. }
  2152. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  2153. {
  2154. vcpu_load(vcpu);
  2155. kvm_mmu_unload(vcpu);
  2156. vcpu_put(vcpu);
  2157. kvm_x86_ops->vcpu_free(vcpu);
  2158. }
  2159. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  2160. {
  2161. return kvm_x86_ops->vcpu_reset(vcpu);
  2162. }
  2163. void kvm_arch_hardware_enable(void *garbage)
  2164. {
  2165. kvm_x86_ops->hardware_enable(garbage);
  2166. }
  2167. void kvm_arch_hardware_disable(void *garbage)
  2168. {
  2169. kvm_x86_ops->hardware_disable(garbage);
  2170. }
  2171. int kvm_arch_hardware_setup(void)
  2172. {
  2173. return kvm_x86_ops->hardware_setup();
  2174. }
  2175. void kvm_arch_hardware_unsetup(void)
  2176. {
  2177. kvm_x86_ops->hardware_unsetup();
  2178. }
  2179. void kvm_arch_check_processor_compat(void *rtn)
  2180. {
  2181. kvm_x86_ops->check_processor_compatibility(rtn);
  2182. }
  2183. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  2184. {
  2185. struct page *page;
  2186. struct kvm *kvm;
  2187. int r;
  2188. BUG_ON(vcpu->kvm == NULL);
  2189. kvm = vcpu->kvm;
  2190. vcpu->mmu.root_hpa = INVALID_PAGE;
  2191. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  2192. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  2193. else
  2194. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  2195. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2196. if (!page) {
  2197. r = -ENOMEM;
  2198. goto fail;
  2199. }
  2200. vcpu->pio_data = page_address(page);
  2201. r = kvm_mmu_create(vcpu);
  2202. if (r < 0)
  2203. goto fail_free_pio_data;
  2204. if (irqchip_in_kernel(kvm)) {
  2205. r = kvm_create_lapic(vcpu);
  2206. if (r < 0)
  2207. goto fail_mmu_destroy;
  2208. }
  2209. return 0;
  2210. fail_mmu_destroy:
  2211. kvm_mmu_destroy(vcpu);
  2212. fail_free_pio_data:
  2213. free_page((unsigned long)vcpu->pio_data);
  2214. fail:
  2215. return r;
  2216. }
  2217. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  2218. {
  2219. kvm_free_lapic(vcpu);
  2220. kvm_mmu_destroy(vcpu);
  2221. free_page((unsigned long)vcpu->pio_data);
  2222. }
  2223. struct kvm *kvm_arch_create_vm(void)
  2224. {
  2225. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  2226. if (!kvm)
  2227. return ERR_PTR(-ENOMEM);
  2228. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  2229. return kvm;
  2230. }
  2231. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  2232. {
  2233. vcpu_load(vcpu);
  2234. kvm_mmu_unload(vcpu);
  2235. vcpu_put(vcpu);
  2236. }
  2237. static void kvm_free_vcpus(struct kvm *kvm)
  2238. {
  2239. unsigned int i;
  2240. /*
  2241. * Unpin any mmu pages first.
  2242. */
  2243. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  2244. if (kvm->vcpus[i])
  2245. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  2246. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2247. if (kvm->vcpus[i]) {
  2248. kvm_arch_vcpu_free(kvm->vcpus[i]);
  2249. kvm->vcpus[i] = NULL;
  2250. }
  2251. }
  2252. }
  2253. void kvm_arch_destroy_vm(struct kvm *kvm)
  2254. {
  2255. kfree(kvm->vpic);
  2256. kfree(kvm->vioapic);
  2257. kvm_free_vcpus(kvm);
  2258. kvm_free_physmem(kvm);
  2259. kfree(kvm);
  2260. }