kvm_main.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. #include <asm/pgtable.h>
  47. MODULE_AUTHOR("Qumranet");
  48. MODULE_LICENSE("GPL");
  49. DEFINE_SPINLOCK(kvm_lock);
  50. LIST_HEAD(vm_list);
  51. static cpumask_t cpus_hardware_enabled;
  52. struct kmem_cache *kvm_vcpu_cache;
  53. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  54. static __read_mostly struct preempt_ops kvm_preempt_ops;
  55. static struct dentry *debugfs_dir;
  56. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  57. unsigned long arg);
  58. static inline int valid_vcpu(int n)
  59. {
  60. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  61. }
  62. /*
  63. * Switches to specified vcpu, until a matching vcpu_put()
  64. */
  65. void vcpu_load(struct kvm_vcpu *vcpu)
  66. {
  67. int cpu;
  68. mutex_lock(&vcpu->mutex);
  69. cpu = get_cpu();
  70. preempt_notifier_register(&vcpu->preempt_notifier);
  71. kvm_arch_vcpu_load(vcpu, cpu);
  72. put_cpu();
  73. }
  74. void vcpu_put(struct kvm_vcpu *vcpu)
  75. {
  76. preempt_disable();
  77. kvm_arch_vcpu_put(vcpu);
  78. preempt_notifier_unregister(&vcpu->preempt_notifier);
  79. preempt_enable();
  80. mutex_unlock(&vcpu->mutex);
  81. }
  82. static void ack_flush(void *_completed)
  83. {
  84. }
  85. void kvm_flush_remote_tlbs(struct kvm *kvm)
  86. {
  87. int i, cpu;
  88. cpumask_t cpus;
  89. struct kvm_vcpu *vcpu;
  90. cpus_clear(cpus);
  91. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  92. vcpu = kvm->vcpus[i];
  93. if (!vcpu)
  94. continue;
  95. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  96. continue;
  97. cpu = vcpu->cpu;
  98. if (cpu != -1 && cpu != raw_smp_processor_id())
  99. cpu_set(cpu, cpus);
  100. }
  101. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  102. }
  103. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  104. {
  105. struct page *page;
  106. int r;
  107. mutex_init(&vcpu->mutex);
  108. vcpu->cpu = -1;
  109. vcpu->kvm = kvm;
  110. vcpu->vcpu_id = id;
  111. init_waitqueue_head(&vcpu->wq);
  112. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  113. if (!page) {
  114. r = -ENOMEM;
  115. goto fail;
  116. }
  117. vcpu->run = page_address(page);
  118. r = kvm_arch_vcpu_init(vcpu);
  119. if (r < 0)
  120. goto fail_free_run;
  121. return 0;
  122. fail_free_run:
  123. free_page((unsigned long)vcpu->run);
  124. fail:
  125. return r;
  126. }
  127. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  128. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  129. {
  130. kvm_arch_vcpu_uninit(vcpu);
  131. free_page((unsigned long)vcpu->run);
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  134. static struct kvm *kvm_create_vm(void)
  135. {
  136. struct kvm *kvm = kvm_arch_create_vm();
  137. if (IS_ERR(kvm))
  138. goto out;
  139. kvm_io_bus_init(&kvm->pio_bus);
  140. mutex_init(&kvm->lock);
  141. kvm_io_bus_init(&kvm->mmio_bus);
  142. spin_lock(&kvm_lock);
  143. list_add(&kvm->vm_list, &vm_list);
  144. spin_unlock(&kvm_lock);
  145. out:
  146. return kvm;
  147. }
  148. /*
  149. * Free any memory in @free but not in @dont.
  150. */
  151. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  152. struct kvm_memory_slot *dont)
  153. {
  154. if (!dont || free->rmap != dont->rmap)
  155. vfree(free->rmap);
  156. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  157. vfree(free->dirty_bitmap);
  158. free->npages = 0;
  159. free->dirty_bitmap = NULL;
  160. free->rmap = NULL;
  161. }
  162. void kvm_free_physmem(struct kvm *kvm)
  163. {
  164. int i;
  165. for (i = 0; i < kvm->nmemslots; ++i)
  166. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  167. }
  168. static void kvm_destroy_vm(struct kvm *kvm)
  169. {
  170. spin_lock(&kvm_lock);
  171. list_del(&kvm->vm_list);
  172. spin_unlock(&kvm_lock);
  173. kvm_io_bus_destroy(&kvm->pio_bus);
  174. kvm_io_bus_destroy(&kvm->mmio_bus);
  175. kvm_arch_destroy_vm(kvm);
  176. }
  177. static int kvm_vm_release(struct inode *inode, struct file *filp)
  178. {
  179. struct kvm *kvm = filp->private_data;
  180. kvm_destroy_vm(kvm);
  181. return 0;
  182. }
  183. /*
  184. * Allocate some memory and give it an address in the guest physical address
  185. * space.
  186. *
  187. * Discontiguous memory is allowed, mostly for framebuffers.
  188. *
  189. * Must be called holding kvm->lock.
  190. */
  191. int __kvm_set_memory_region(struct kvm *kvm,
  192. struct kvm_userspace_memory_region *mem,
  193. int user_alloc)
  194. {
  195. int r;
  196. gfn_t base_gfn;
  197. unsigned long npages;
  198. unsigned long i;
  199. struct kvm_memory_slot *memslot;
  200. struct kvm_memory_slot old, new;
  201. r = -EINVAL;
  202. /* General sanity checks */
  203. if (mem->memory_size & (PAGE_SIZE - 1))
  204. goto out;
  205. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  206. goto out;
  207. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  208. goto out;
  209. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  210. goto out;
  211. memslot = &kvm->memslots[mem->slot];
  212. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  213. npages = mem->memory_size >> PAGE_SHIFT;
  214. if (!npages)
  215. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  216. new = old = *memslot;
  217. new.base_gfn = base_gfn;
  218. new.npages = npages;
  219. new.flags = mem->flags;
  220. /* Disallow changing a memory slot's size. */
  221. r = -EINVAL;
  222. if (npages && old.npages && npages != old.npages)
  223. goto out_free;
  224. /* Check for overlaps */
  225. r = -EEXIST;
  226. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  227. struct kvm_memory_slot *s = &kvm->memslots[i];
  228. if (s == memslot)
  229. continue;
  230. if (!((base_gfn + npages <= s->base_gfn) ||
  231. (base_gfn >= s->base_gfn + s->npages)))
  232. goto out_free;
  233. }
  234. /* Free page dirty bitmap if unneeded */
  235. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  236. new.dirty_bitmap = NULL;
  237. r = -ENOMEM;
  238. /* Allocate if a slot is being created */
  239. if (npages && !new.rmap) {
  240. new.rmap = vmalloc(npages * sizeof(struct page *));
  241. if (!new.rmap)
  242. goto out_free;
  243. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  244. new.user_alloc = user_alloc;
  245. if (user_alloc)
  246. new.userspace_addr = mem->userspace_addr;
  247. else {
  248. down_write(&current->mm->mmap_sem);
  249. new.userspace_addr = do_mmap(NULL, 0,
  250. npages * PAGE_SIZE,
  251. PROT_READ | PROT_WRITE,
  252. MAP_SHARED | MAP_ANONYMOUS,
  253. 0);
  254. up_write(&current->mm->mmap_sem);
  255. if (IS_ERR((void *)new.userspace_addr))
  256. goto out_free;
  257. }
  258. } else {
  259. if (!old.user_alloc && old.rmap) {
  260. int ret;
  261. down_write(&current->mm->mmap_sem);
  262. ret = do_munmap(current->mm, old.userspace_addr,
  263. old.npages * PAGE_SIZE);
  264. up_write(&current->mm->mmap_sem);
  265. if (ret < 0)
  266. printk(KERN_WARNING
  267. "kvm_vm_ioctl_set_memory_region: "
  268. "failed to munmap memory\n");
  269. }
  270. }
  271. /* Allocate page dirty bitmap if needed */
  272. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  273. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  274. new.dirty_bitmap = vmalloc(dirty_bytes);
  275. if (!new.dirty_bitmap)
  276. goto out_free;
  277. memset(new.dirty_bitmap, 0, dirty_bytes);
  278. }
  279. if (mem->slot >= kvm->nmemslots)
  280. kvm->nmemslots = mem->slot + 1;
  281. *memslot = new;
  282. if (!kvm->n_requested_mmu_pages) {
  283. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  284. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  285. }
  286. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  287. kvm_flush_remote_tlbs(kvm);
  288. kvm_free_physmem_slot(&old, &new);
  289. return 0;
  290. out_free:
  291. kvm_free_physmem_slot(&new, &old);
  292. out:
  293. return r;
  294. }
  295. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  296. int kvm_set_memory_region(struct kvm *kvm,
  297. struct kvm_userspace_memory_region *mem,
  298. int user_alloc)
  299. {
  300. int r;
  301. mutex_lock(&kvm->lock);
  302. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  303. mutex_unlock(&kvm->lock);
  304. return r;
  305. }
  306. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  307. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  308. struct
  309. kvm_userspace_memory_region *mem,
  310. int user_alloc)
  311. {
  312. if (mem->slot >= KVM_MEMORY_SLOTS)
  313. return -EINVAL;
  314. return kvm_set_memory_region(kvm, mem, user_alloc);
  315. }
  316. int kvm_get_dirty_log(struct kvm *kvm,
  317. struct kvm_dirty_log *log, int *is_dirty)
  318. {
  319. struct kvm_memory_slot *memslot;
  320. int r, i;
  321. int n;
  322. unsigned long any = 0;
  323. r = -EINVAL;
  324. if (log->slot >= KVM_MEMORY_SLOTS)
  325. goto out;
  326. memslot = &kvm->memslots[log->slot];
  327. r = -ENOENT;
  328. if (!memslot->dirty_bitmap)
  329. goto out;
  330. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  331. for (i = 0; !any && i < n/sizeof(long); ++i)
  332. any = memslot->dirty_bitmap[i];
  333. r = -EFAULT;
  334. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  335. goto out;
  336. if (any)
  337. *is_dirty = 1;
  338. r = 0;
  339. out:
  340. return r;
  341. }
  342. int is_error_page(struct page *page)
  343. {
  344. return page == bad_page;
  345. }
  346. EXPORT_SYMBOL_GPL(is_error_page);
  347. static inline unsigned long bad_hva(void)
  348. {
  349. return PAGE_OFFSET;
  350. }
  351. int kvm_is_error_hva(unsigned long addr)
  352. {
  353. return addr == bad_hva();
  354. }
  355. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  356. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  357. {
  358. int i;
  359. struct kvm_mem_alias *alias;
  360. for (i = 0; i < kvm->naliases; ++i) {
  361. alias = &kvm->aliases[i];
  362. if (gfn >= alias->base_gfn
  363. && gfn < alias->base_gfn + alias->npages)
  364. return alias->target_gfn + gfn - alias->base_gfn;
  365. }
  366. return gfn;
  367. }
  368. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  369. {
  370. int i;
  371. for (i = 0; i < kvm->nmemslots; ++i) {
  372. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  373. if (gfn >= memslot->base_gfn
  374. && gfn < memslot->base_gfn + memslot->npages)
  375. return memslot;
  376. }
  377. return NULL;
  378. }
  379. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  380. {
  381. gfn = unalias_gfn(kvm, gfn);
  382. return __gfn_to_memslot(kvm, gfn);
  383. }
  384. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  385. {
  386. int i;
  387. gfn = unalias_gfn(kvm, gfn);
  388. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  389. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  390. if (gfn >= memslot->base_gfn
  391. && gfn < memslot->base_gfn + memslot->npages)
  392. return 1;
  393. }
  394. return 0;
  395. }
  396. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  397. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  398. {
  399. struct kvm_memory_slot *slot;
  400. gfn = unalias_gfn(kvm, gfn);
  401. slot = __gfn_to_memslot(kvm, gfn);
  402. if (!slot)
  403. return bad_hva();
  404. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  405. }
  406. /*
  407. * Requires current->mm->mmap_sem to be held
  408. */
  409. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  410. {
  411. struct page *page[1];
  412. unsigned long addr;
  413. int npages;
  414. might_sleep();
  415. addr = gfn_to_hva(kvm, gfn);
  416. if (kvm_is_error_hva(addr)) {
  417. get_page(bad_page);
  418. return bad_page;
  419. }
  420. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  421. NULL);
  422. if (npages != 1) {
  423. get_page(bad_page);
  424. return bad_page;
  425. }
  426. return page[0];
  427. }
  428. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  429. {
  430. struct page *page;
  431. down_read(&current->mm->mmap_sem);
  432. page = __gfn_to_page(kvm, gfn);
  433. up_read(&current->mm->mmap_sem);
  434. return page;
  435. }
  436. EXPORT_SYMBOL_GPL(gfn_to_page);
  437. void kvm_release_page_clean(struct page *page)
  438. {
  439. put_page(page);
  440. }
  441. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  442. void kvm_release_page_dirty(struct page *page)
  443. {
  444. if (!PageReserved(page))
  445. SetPageDirty(page);
  446. put_page(page);
  447. }
  448. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  449. static int next_segment(unsigned long len, int offset)
  450. {
  451. if (len > PAGE_SIZE - offset)
  452. return PAGE_SIZE - offset;
  453. else
  454. return len;
  455. }
  456. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  457. int len)
  458. {
  459. int r;
  460. unsigned long addr;
  461. addr = gfn_to_hva(kvm, gfn);
  462. if (kvm_is_error_hva(addr))
  463. return -EFAULT;
  464. r = copy_from_user(data, (void __user *)addr + offset, len);
  465. if (r)
  466. return -EFAULT;
  467. return 0;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  470. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  471. {
  472. gfn_t gfn = gpa >> PAGE_SHIFT;
  473. int seg;
  474. int offset = offset_in_page(gpa);
  475. int ret;
  476. while ((seg = next_segment(len, offset)) != 0) {
  477. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  478. if (ret < 0)
  479. return ret;
  480. offset = 0;
  481. len -= seg;
  482. data += seg;
  483. ++gfn;
  484. }
  485. return 0;
  486. }
  487. EXPORT_SYMBOL_GPL(kvm_read_guest);
  488. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  489. int offset, int len)
  490. {
  491. int r;
  492. unsigned long addr;
  493. addr = gfn_to_hva(kvm, gfn);
  494. if (kvm_is_error_hva(addr))
  495. return -EFAULT;
  496. r = copy_to_user((void __user *)addr + offset, data, len);
  497. if (r)
  498. return -EFAULT;
  499. mark_page_dirty(kvm, gfn);
  500. return 0;
  501. }
  502. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  503. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  504. unsigned long len)
  505. {
  506. gfn_t gfn = gpa >> PAGE_SHIFT;
  507. int seg;
  508. int offset = offset_in_page(gpa);
  509. int ret;
  510. while ((seg = next_segment(len, offset)) != 0) {
  511. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  512. if (ret < 0)
  513. return ret;
  514. offset = 0;
  515. len -= seg;
  516. data += seg;
  517. ++gfn;
  518. }
  519. return 0;
  520. }
  521. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  522. {
  523. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  524. }
  525. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  526. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  527. {
  528. gfn_t gfn = gpa >> PAGE_SHIFT;
  529. int seg;
  530. int offset = offset_in_page(gpa);
  531. int ret;
  532. while ((seg = next_segment(len, offset)) != 0) {
  533. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  534. if (ret < 0)
  535. return ret;
  536. offset = 0;
  537. len -= seg;
  538. ++gfn;
  539. }
  540. return 0;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  543. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  544. {
  545. struct kvm_memory_slot *memslot;
  546. gfn = unalias_gfn(kvm, gfn);
  547. memslot = __gfn_to_memslot(kvm, gfn);
  548. if (memslot && memslot->dirty_bitmap) {
  549. unsigned long rel_gfn = gfn - memslot->base_gfn;
  550. /* avoid RMW */
  551. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  552. set_bit(rel_gfn, memslot->dirty_bitmap);
  553. }
  554. }
  555. /*
  556. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  557. */
  558. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  559. {
  560. DECLARE_WAITQUEUE(wait, current);
  561. add_wait_queue(&vcpu->wq, &wait);
  562. /*
  563. * We will block until either an interrupt or a signal wakes us up
  564. */
  565. while (!kvm_cpu_has_interrupt(vcpu)
  566. && !signal_pending(current)
  567. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  568. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  569. set_current_state(TASK_INTERRUPTIBLE);
  570. vcpu_put(vcpu);
  571. schedule();
  572. vcpu_load(vcpu);
  573. }
  574. __set_current_state(TASK_RUNNING);
  575. remove_wait_queue(&vcpu->wq, &wait);
  576. }
  577. void kvm_resched(struct kvm_vcpu *vcpu)
  578. {
  579. if (!need_resched())
  580. return;
  581. cond_resched();
  582. }
  583. EXPORT_SYMBOL_GPL(kvm_resched);
  584. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  585. struct kvm_interrupt *irq)
  586. {
  587. if (irq->irq < 0 || irq->irq >= 256)
  588. return -EINVAL;
  589. if (irqchip_in_kernel(vcpu->kvm))
  590. return -ENXIO;
  591. vcpu_load(vcpu);
  592. set_bit(irq->irq, vcpu->irq_pending);
  593. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  594. vcpu_put(vcpu);
  595. return 0;
  596. }
  597. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  598. unsigned long address,
  599. int *type)
  600. {
  601. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  602. unsigned long pgoff;
  603. struct page *page;
  604. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  605. if (pgoff == 0)
  606. page = virt_to_page(vcpu->run);
  607. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  608. page = virt_to_page(vcpu->pio_data);
  609. else
  610. return NOPAGE_SIGBUS;
  611. get_page(page);
  612. if (type != NULL)
  613. *type = VM_FAULT_MINOR;
  614. return page;
  615. }
  616. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  617. .nopage = kvm_vcpu_nopage,
  618. };
  619. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  620. {
  621. vma->vm_ops = &kvm_vcpu_vm_ops;
  622. return 0;
  623. }
  624. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  625. {
  626. struct kvm_vcpu *vcpu = filp->private_data;
  627. fput(vcpu->kvm->filp);
  628. return 0;
  629. }
  630. static struct file_operations kvm_vcpu_fops = {
  631. .release = kvm_vcpu_release,
  632. .unlocked_ioctl = kvm_vcpu_ioctl,
  633. .compat_ioctl = kvm_vcpu_ioctl,
  634. .mmap = kvm_vcpu_mmap,
  635. };
  636. /*
  637. * Allocates an inode for the vcpu.
  638. */
  639. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  640. {
  641. int fd, r;
  642. struct inode *inode;
  643. struct file *file;
  644. r = anon_inode_getfd(&fd, &inode, &file,
  645. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  646. if (r)
  647. return r;
  648. atomic_inc(&vcpu->kvm->filp->f_count);
  649. return fd;
  650. }
  651. /*
  652. * Creates some virtual cpus. Good luck creating more than one.
  653. */
  654. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  655. {
  656. int r;
  657. struct kvm_vcpu *vcpu;
  658. if (!valid_vcpu(n))
  659. return -EINVAL;
  660. vcpu = kvm_arch_vcpu_create(kvm, n);
  661. if (IS_ERR(vcpu))
  662. return PTR_ERR(vcpu);
  663. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  664. mutex_lock(&kvm->lock);
  665. if (kvm->vcpus[n]) {
  666. r = -EEXIST;
  667. mutex_unlock(&kvm->lock);
  668. goto vcpu_destroy;
  669. }
  670. kvm->vcpus[n] = vcpu;
  671. mutex_unlock(&kvm->lock);
  672. /* Now it's all set up, let userspace reach it */
  673. r = create_vcpu_fd(vcpu);
  674. if (r < 0)
  675. goto unlink;
  676. return r;
  677. unlink:
  678. mutex_lock(&kvm->lock);
  679. kvm->vcpus[n] = NULL;
  680. mutex_unlock(&kvm->lock);
  681. vcpu_destroy:
  682. kvm_arch_vcpu_destroy(vcpu);
  683. return r;
  684. }
  685. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  686. {
  687. if (sigset) {
  688. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  689. vcpu->sigset_active = 1;
  690. vcpu->sigset = *sigset;
  691. } else
  692. vcpu->sigset_active = 0;
  693. return 0;
  694. }
  695. static long kvm_vcpu_ioctl(struct file *filp,
  696. unsigned int ioctl, unsigned long arg)
  697. {
  698. struct kvm_vcpu *vcpu = filp->private_data;
  699. void __user *argp = (void __user *)arg;
  700. int r;
  701. switch (ioctl) {
  702. case KVM_RUN:
  703. r = -EINVAL;
  704. if (arg)
  705. goto out;
  706. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  707. break;
  708. case KVM_GET_REGS: {
  709. struct kvm_regs kvm_regs;
  710. memset(&kvm_regs, 0, sizeof kvm_regs);
  711. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  712. if (r)
  713. goto out;
  714. r = -EFAULT;
  715. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  716. goto out;
  717. r = 0;
  718. break;
  719. }
  720. case KVM_SET_REGS: {
  721. struct kvm_regs kvm_regs;
  722. r = -EFAULT;
  723. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  724. goto out;
  725. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  726. if (r)
  727. goto out;
  728. r = 0;
  729. break;
  730. }
  731. case KVM_GET_SREGS: {
  732. struct kvm_sregs kvm_sregs;
  733. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  734. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  735. if (r)
  736. goto out;
  737. r = -EFAULT;
  738. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  739. goto out;
  740. r = 0;
  741. break;
  742. }
  743. case KVM_SET_SREGS: {
  744. struct kvm_sregs kvm_sregs;
  745. r = -EFAULT;
  746. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  747. goto out;
  748. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  749. if (r)
  750. goto out;
  751. r = 0;
  752. break;
  753. }
  754. case KVM_TRANSLATE: {
  755. struct kvm_translation tr;
  756. r = -EFAULT;
  757. if (copy_from_user(&tr, argp, sizeof tr))
  758. goto out;
  759. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  760. if (r)
  761. goto out;
  762. r = -EFAULT;
  763. if (copy_to_user(argp, &tr, sizeof tr))
  764. goto out;
  765. r = 0;
  766. break;
  767. }
  768. case KVM_INTERRUPT: {
  769. struct kvm_interrupt irq;
  770. r = -EFAULT;
  771. if (copy_from_user(&irq, argp, sizeof irq))
  772. goto out;
  773. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  774. if (r)
  775. goto out;
  776. r = 0;
  777. break;
  778. }
  779. case KVM_DEBUG_GUEST: {
  780. struct kvm_debug_guest dbg;
  781. r = -EFAULT;
  782. if (copy_from_user(&dbg, argp, sizeof dbg))
  783. goto out;
  784. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  785. if (r)
  786. goto out;
  787. r = 0;
  788. break;
  789. }
  790. case KVM_SET_SIGNAL_MASK: {
  791. struct kvm_signal_mask __user *sigmask_arg = argp;
  792. struct kvm_signal_mask kvm_sigmask;
  793. sigset_t sigset, *p;
  794. p = NULL;
  795. if (argp) {
  796. r = -EFAULT;
  797. if (copy_from_user(&kvm_sigmask, argp,
  798. sizeof kvm_sigmask))
  799. goto out;
  800. r = -EINVAL;
  801. if (kvm_sigmask.len != sizeof sigset)
  802. goto out;
  803. r = -EFAULT;
  804. if (copy_from_user(&sigset, sigmask_arg->sigset,
  805. sizeof sigset))
  806. goto out;
  807. p = &sigset;
  808. }
  809. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  810. break;
  811. }
  812. case KVM_GET_FPU: {
  813. struct kvm_fpu fpu;
  814. memset(&fpu, 0, sizeof fpu);
  815. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  816. if (r)
  817. goto out;
  818. r = -EFAULT;
  819. if (copy_to_user(argp, &fpu, sizeof fpu))
  820. goto out;
  821. r = 0;
  822. break;
  823. }
  824. case KVM_SET_FPU: {
  825. struct kvm_fpu fpu;
  826. r = -EFAULT;
  827. if (copy_from_user(&fpu, argp, sizeof fpu))
  828. goto out;
  829. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  830. if (r)
  831. goto out;
  832. r = 0;
  833. break;
  834. }
  835. default:
  836. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  837. }
  838. out:
  839. return r;
  840. }
  841. static long kvm_vm_ioctl(struct file *filp,
  842. unsigned int ioctl, unsigned long arg)
  843. {
  844. struct kvm *kvm = filp->private_data;
  845. void __user *argp = (void __user *)arg;
  846. int r;
  847. switch (ioctl) {
  848. case KVM_CREATE_VCPU:
  849. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  850. if (r < 0)
  851. goto out;
  852. break;
  853. case KVM_SET_USER_MEMORY_REGION: {
  854. struct kvm_userspace_memory_region kvm_userspace_mem;
  855. r = -EFAULT;
  856. if (copy_from_user(&kvm_userspace_mem, argp,
  857. sizeof kvm_userspace_mem))
  858. goto out;
  859. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  860. if (r)
  861. goto out;
  862. break;
  863. }
  864. case KVM_GET_DIRTY_LOG: {
  865. struct kvm_dirty_log log;
  866. r = -EFAULT;
  867. if (copy_from_user(&log, argp, sizeof log))
  868. goto out;
  869. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  870. if (r)
  871. goto out;
  872. break;
  873. }
  874. default:
  875. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  876. }
  877. out:
  878. return r;
  879. }
  880. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  881. unsigned long address,
  882. int *type)
  883. {
  884. struct kvm *kvm = vma->vm_file->private_data;
  885. unsigned long pgoff;
  886. struct page *page;
  887. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  888. if (!kvm_is_visible_gfn(kvm, pgoff))
  889. return NOPAGE_SIGBUS;
  890. /* current->mm->mmap_sem is already held so call lockless version */
  891. page = __gfn_to_page(kvm, pgoff);
  892. if (is_error_page(page)) {
  893. kvm_release_page_clean(page);
  894. return NOPAGE_SIGBUS;
  895. }
  896. if (type != NULL)
  897. *type = VM_FAULT_MINOR;
  898. return page;
  899. }
  900. static struct vm_operations_struct kvm_vm_vm_ops = {
  901. .nopage = kvm_vm_nopage,
  902. };
  903. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  904. {
  905. vma->vm_ops = &kvm_vm_vm_ops;
  906. return 0;
  907. }
  908. static struct file_operations kvm_vm_fops = {
  909. .release = kvm_vm_release,
  910. .unlocked_ioctl = kvm_vm_ioctl,
  911. .compat_ioctl = kvm_vm_ioctl,
  912. .mmap = kvm_vm_mmap,
  913. };
  914. static int kvm_dev_ioctl_create_vm(void)
  915. {
  916. int fd, r;
  917. struct inode *inode;
  918. struct file *file;
  919. struct kvm *kvm;
  920. kvm = kvm_create_vm();
  921. if (IS_ERR(kvm))
  922. return PTR_ERR(kvm);
  923. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  924. if (r) {
  925. kvm_destroy_vm(kvm);
  926. return r;
  927. }
  928. kvm->filp = file;
  929. return fd;
  930. }
  931. static long kvm_dev_ioctl(struct file *filp,
  932. unsigned int ioctl, unsigned long arg)
  933. {
  934. void __user *argp = (void __user *)arg;
  935. long r = -EINVAL;
  936. switch (ioctl) {
  937. case KVM_GET_API_VERSION:
  938. r = -EINVAL;
  939. if (arg)
  940. goto out;
  941. r = KVM_API_VERSION;
  942. break;
  943. case KVM_CREATE_VM:
  944. r = -EINVAL;
  945. if (arg)
  946. goto out;
  947. r = kvm_dev_ioctl_create_vm();
  948. break;
  949. case KVM_CHECK_EXTENSION:
  950. r = kvm_dev_ioctl_check_extension((long)argp);
  951. break;
  952. case KVM_GET_VCPU_MMAP_SIZE:
  953. r = -EINVAL;
  954. if (arg)
  955. goto out;
  956. r = 2 * PAGE_SIZE;
  957. break;
  958. default:
  959. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  960. }
  961. out:
  962. return r;
  963. }
  964. static struct file_operations kvm_chardev_ops = {
  965. .unlocked_ioctl = kvm_dev_ioctl,
  966. .compat_ioctl = kvm_dev_ioctl,
  967. };
  968. static struct miscdevice kvm_dev = {
  969. KVM_MINOR,
  970. "kvm",
  971. &kvm_chardev_ops,
  972. };
  973. static void hardware_enable(void *junk)
  974. {
  975. int cpu = raw_smp_processor_id();
  976. if (cpu_isset(cpu, cpus_hardware_enabled))
  977. return;
  978. cpu_set(cpu, cpus_hardware_enabled);
  979. kvm_arch_hardware_enable(NULL);
  980. }
  981. static void hardware_disable(void *junk)
  982. {
  983. int cpu = raw_smp_processor_id();
  984. if (!cpu_isset(cpu, cpus_hardware_enabled))
  985. return;
  986. cpu_clear(cpu, cpus_hardware_enabled);
  987. decache_vcpus_on_cpu(cpu);
  988. kvm_arch_hardware_disable(NULL);
  989. }
  990. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  991. void *v)
  992. {
  993. int cpu = (long)v;
  994. val &= ~CPU_TASKS_FROZEN;
  995. switch (val) {
  996. case CPU_DYING:
  997. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  998. cpu);
  999. hardware_disable(NULL);
  1000. break;
  1001. case CPU_UP_CANCELED:
  1002. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1003. cpu);
  1004. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1005. break;
  1006. case CPU_ONLINE:
  1007. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1008. cpu);
  1009. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1010. break;
  1011. }
  1012. return NOTIFY_OK;
  1013. }
  1014. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1015. void *v)
  1016. {
  1017. if (val == SYS_RESTART) {
  1018. /*
  1019. * Some (well, at least mine) BIOSes hang on reboot if
  1020. * in vmx root mode.
  1021. */
  1022. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1023. on_each_cpu(hardware_disable, NULL, 0, 1);
  1024. }
  1025. return NOTIFY_OK;
  1026. }
  1027. static struct notifier_block kvm_reboot_notifier = {
  1028. .notifier_call = kvm_reboot,
  1029. .priority = 0,
  1030. };
  1031. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1032. {
  1033. memset(bus, 0, sizeof(*bus));
  1034. }
  1035. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1036. {
  1037. int i;
  1038. for (i = 0; i < bus->dev_count; i++) {
  1039. struct kvm_io_device *pos = bus->devs[i];
  1040. kvm_iodevice_destructor(pos);
  1041. }
  1042. }
  1043. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1044. {
  1045. int i;
  1046. for (i = 0; i < bus->dev_count; i++) {
  1047. struct kvm_io_device *pos = bus->devs[i];
  1048. if (pos->in_range(pos, addr))
  1049. return pos;
  1050. }
  1051. return NULL;
  1052. }
  1053. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1054. {
  1055. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1056. bus->devs[bus->dev_count++] = dev;
  1057. }
  1058. static struct notifier_block kvm_cpu_notifier = {
  1059. .notifier_call = kvm_cpu_hotplug,
  1060. .priority = 20, /* must be > scheduler priority */
  1061. };
  1062. static u64 vm_stat_get(void *_offset)
  1063. {
  1064. unsigned offset = (long)_offset;
  1065. u64 total = 0;
  1066. struct kvm *kvm;
  1067. spin_lock(&kvm_lock);
  1068. list_for_each_entry(kvm, &vm_list, vm_list)
  1069. total += *(u32 *)((void *)kvm + offset);
  1070. spin_unlock(&kvm_lock);
  1071. return total;
  1072. }
  1073. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1074. static u64 vcpu_stat_get(void *_offset)
  1075. {
  1076. unsigned offset = (long)_offset;
  1077. u64 total = 0;
  1078. struct kvm *kvm;
  1079. struct kvm_vcpu *vcpu;
  1080. int i;
  1081. spin_lock(&kvm_lock);
  1082. list_for_each_entry(kvm, &vm_list, vm_list)
  1083. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1084. vcpu = kvm->vcpus[i];
  1085. if (vcpu)
  1086. total += *(u32 *)((void *)vcpu + offset);
  1087. }
  1088. spin_unlock(&kvm_lock);
  1089. return total;
  1090. }
  1091. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1092. static struct file_operations *stat_fops[] = {
  1093. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1094. [KVM_STAT_VM] = &vm_stat_fops,
  1095. };
  1096. static void kvm_init_debug(void)
  1097. {
  1098. struct kvm_stats_debugfs_item *p;
  1099. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1100. for (p = debugfs_entries; p->name; ++p)
  1101. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1102. (void *)(long)p->offset,
  1103. stat_fops[p->kind]);
  1104. }
  1105. static void kvm_exit_debug(void)
  1106. {
  1107. struct kvm_stats_debugfs_item *p;
  1108. for (p = debugfs_entries; p->name; ++p)
  1109. debugfs_remove(p->dentry);
  1110. debugfs_remove(debugfs_dir);
  1111. }
  1112. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1113. {
  1114. hardware_disable(NULL);
  1115. return 0;
  1116. }
  1117. static int kvm_resume(struct sys_device *dev)
  1118. {
  1119. hardware_enable(NULL);
  1120. return 0;
  1121. }
  1122. static struct sysdev_class kvm_sysdev_class = {
  1123. .name = "kvm",
  1124. .suspend = kvm_suspend,
  1125. .resume = kvm_resume,
  1126. };
  1127. static struct sys_device kvm_sysdev = {
  1128. .id = 0,
  1129. .cls = &kvm_sysdev_class,
  1130. };
  1131. struct page *bad_page;
  1132. static inline
  1133. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1134. {
  1135. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1136. }
  1137. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1138. {
  1139. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1140. kvm_arch_vcpu_load(vcpu, cpu);
  1141. }
  1142. static void kvm_sched_out(struct preempt_notifier *pn,
  1143. struct task_struct *next)
  1144. {
  1145. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1146. kvm_arch_vcpu_put(vcpu);
  1147. }
  1148. int kvm_init(void *opaque, unsigned int vcpu_size,
  1149. struct module *module)
  1150. {
  1151. int r;
  1152. int cpu;
  1153. kvm_init_debug();
  1154. r = kvm_arch_init(opaque);
  1155. if (r)
  1156. goto out4;
  1157. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1158. if (bad_page == NULL) {
  1159. r = -ENOMEM;
  1160. goto out;
  1161. }
  1162. r = kvm_arch_hardware_setup();
  1163. if (r < 0)
  1164. goto out;
  1165. for_each_online_cpu(cpu) {
  1166. smp_call_function_single(cpu,
  1167. kvm_arch_check_processor_compat,
  1168. &r, 0, 1);
  1169. if (r < 0)
  1170. goto out_free_0;
  1171. }
  1172. on_each_cpu(hardware_enable, NULL, 0, 1);
  1173. r = register_cpu_notifier(&kvm_cpu_notifier);
  1174. if (r)
  1175. goto out_free_1;
  1176. register_reboot_notifier(&kvm_reboot_notifier);
  1177. r = sysdev_class_register(&kvm_sysdev_class);
  1178. if (r)
  1179. goto out_free_2;
  1180. r = sysdev_register(&kvm_sysdev);
  1181. if (r)
  1182. goto out_free_3;
  1183. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1184. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1185. __alignof__(struct kvm_vcpu),
  1186. 0, NULL);
  1187. if (!kvm_vcpu_cache) {
  1188. r = -ENOMEM;
  1189. goto out_free_4;
  1190. }
  1191. kvm_chardev_ops.owner = module;
  1192. r = misc_register(&kvm_dev);
  1193. if (r) {
  1194. printk(KERN_ERR "kvm: misc device register failed\n");
  1195. goto out_free;
  1196. }
  1197. kvm_preempt_ops.sched_in = kvm_sched_in;
  1198. kvm_preempt_ops.sched_out = kvm_sched_out;
  1199. return 0;
  1200. out_free:
  1201. kmem_cache_destroy(kvm_vcpu_cache);
  1202. out_free_4:
  1203. sysdev_unregister(&kvm_sysdev);
  1204. out_free_3:
  1205. sysdev_class_unregister(&kvm_sysdev_class);
  1206. out_free_2:
  1207. unregister_reboot_notifier(&kvm_reboot_notifier);
  1208. unregister_cpu_notifier(&kvm_cpu_notifier);
  1209. out_free_1:
  1210. on_each_cpu(hardware_disable, NULL, 0, 1);
  1211. out_free_0:
  1212. kvm_arch_hardware_unsetup();
  1213. out:
  1214. kvm_arch_exit();
  1215. kvm_exit_debug();
  1216. out4:
  1217. return r;
  1218. }
  1219. EXPORT_SYMBOL_GPL(kvm_init);
  1220. void kvm_exit(void)
  1221. {
  1222. misc_deregister(&kvm_dev);
  1223. kmem_cache_destroy(kvm_vcpu_cache);
  1224. sysdev_unregister(&kvm_sysdev);
  1225. sysdev_class_unregister(&kvm_sysdev_class);
  1226. unregister_reboot_notifier(&kvm_reboot_notifier);
  1227. unregister_cpu_notifier(&kvm_cpu_notifier);
  1228. on_each_cpu(hardware_disable, NULL, 0, 1);
  1229. kvm_arch_hardware_unsetup();
  1230. kvm_arch_exit();
  1231. kvm_exit_debug();
  1232. __free_page(bad_page);
  1233. }
  1234. EXPORT_SYMBOL_GPL(kvm_exit);