xmit.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  31. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  32. static u16 bits_per_symbol[][2] = {
  33. /* 20MHz 40MHz */
  34. { 26, 54 }, /* 0: BPSK */
  35. { 52, 108 }, /* 1: QPSK 1/2 */
  36. { 78, 162 }, /* 2: QPSK 3/4 */
  37. { 104, 216 }, /* 3: 16-QAM 1/2 */
  38. { 156, 324 }, /* 4: 16-QAM 3/4 */
  39. { 208, 432 }, /* 5: 64-QAM 2/3 */
  40. { 234, 486 }, /* 6: 64-QAM 3/4 */
  41. { 260, 540 }, /* 7: 64-QAM 5/6 */
  42. };
  43. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  44. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  45. struct ath_atx_tid *tid, struct sk_buff *skb);
  46. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  47. int tx_flags, struct ath_txq *txq);
  48. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  49. struct ath_txq *txq, struct list_head *bf_q,
  50. struct ath_tx_status *ts, int txok);
  51. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  52. struct list_head *head, bool internal);
  53. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  54. struct ath_tx_status *ts, int nframes, int nbad,
  55. int txok);
  56. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  57. int seqno);
  58. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  59. struct ath_txq *txq,
  60. struct ath_atx_tid *tid,
  61. struct sk_buff *skb);
  62. enum {
  63. MCS_HT20,
  64. MCS_HT20_SGI,
  65. MCS_HT40,
  66. MCS_HT40_SGI,
  67. };
  68. static int ath_max_4ms_framelen[4][32] = {
  69. [MCS_HT20] = {
  70. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  71. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  72. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  73. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  74. },
  75. [MCS_HT20_SGI] = {
  76. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  77. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  78. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  79. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  80. },
  81. [MCS_HT40] = {
  82. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  83. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  84. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  85. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  86. },
  87. [MCS_HT40_SGI] = {
  88. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  89. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  90. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  91. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  92. }
  93. };
  94. /*********************/
  95. /* Aggregation logic */
  96. /*********************/
  97. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  98. {
  99. struct ath_atx_ac *ac = tid->ac;
  100. if (tid->paused)
  101. return;
  102. if (tid->sched)
  103. return;
  104. tid->sched = true;
  105. list_add_tail(&tid->list, &ac->tid_q);
  106. if (ac->sched)
  107. return;
  108. ac->sched = true;
  109. list_add_tail(&ac->list, &txq->axq_acq);
  110. }
  111. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  112. {
  113. struct ath_txq *txq = tid->ac->txq;
  114. WARN_ON(!tid->paused);
  115. spin_lock_bh(&txq->axq_lock);
  116. tid->paused = false;
  117. if (skb_queue_empty(&tid->buf_q))
  118. goto unlock;
  119. ath_tx_queue_tid(txq, tid);
  120. ath_txq_schedule(sc, txq);
  121. unlock:
  122. spin_unlock_bh(&txq->axq_lock);
  123. }
  124. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  125. {
  126. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  127. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  128. sizeof(tx_info->rate_driver_data));
  129. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  130. }
  131. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  132. {
  133. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  134. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  135. }
  136. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  137. {
  138. struct ath_txq *txq = tid->ac->txq;
  139. struct sk_buff *skb;
  140. struct ath_buf *bf;
  141. struct list_head bf_head;
  142. struct ath_tx_status ts;
  143. struct ath_frame_info *fi;
  144. bool sendbar = false;
  145. INIT_LIST_HEAD(&bf_head);
  146. memset(&ts, 0, sizeof(ts));
  147. while ((skb = __skb_dequeue(&tid->buf_q))) {
  148. fi = get_frame_info(skb);
  149. bf = fi->bf;
  150. if (bf && fi->retries) {
  151. list_add_tail(&bf->list, &bf_head);
  152. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  153. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  154. sendbar = true;
  155. } else {
  156. ath_tx_send_normal(sc, txq, NULL, skb);
  157. }
  158. }
  159. if (tid->baw_head == tid->baw_tail) {
  160. tid->state &= ~AGGR_ADDBA_COMPLETE;
  161. tid->state &= ~AGGR_CLEANUP;
  162. }
  163. if (sendbar)
  164. ath_send_bar(tid, tid->seq_start);
  165. }
  166. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  167. int seqno)
  168. {
  169. int index, cindex;
  170. index = ATH_BA_INDEX(tid->seq_start, seqno);
  171. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  172. __clear_bit(cindex, tid->tx_buf);
  173. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  174. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  175. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  176. }
  177. }
  178. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  179. u16 seqno)
  180. {
  181. int index, cindex;
  182. index = ATH_BA_INDEX(tid->seq_start, seqno);
  183. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  184. __set_bit(cindex, tid->tx_buf);
  185. if (index >= ((tid->baw_tail - tid->baw_head) &
  186. (ATH_TID_MAX_BUFS - 1))) {
  187. tid->baw_tail = cindex;
  188. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  189. }
  190. }
  191. /*
  192. * TODO: For frame(s) that are in the retry state, we will reuse the
  193. * sequence number(s) without setting the retry bit. The
  194. * alternative is to give up on these and BAR the receiver's window
  195. * forward.
  196. */
  197. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  198. struct ath_atx_tid *tid)
  199. {
  200. struct sk_buff *skb;
  201. struct ath_buf *bf;
  202. struct list_head bf_head;
  203. struct ath_tx_status ts;
  204. struct ath_frame_info *fi;
  205. memset(&ts, 0, sizeof(ts));
  206. INIT_LIST_HEAD(&bf_head);
  207. while ((skb = __skb_dequeue(&tid->buf_q))) {
  208. fi = get_frame_info(skb);
  209. bf = fi->bf;
  210. if (!bf) {
  211. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  212. continue;
  213. }
  214. list_add_tail(&bf->list, &bf_head);
  215. if (fi->retries)
  216. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  217. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  218. }
  219. tid->seq_next = tid->seq_start;
  220. tid->baw_tail = tid->baw_head;
  221. }
  222. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  223. struct sk_buff *skb, int count)
  224. {
  225. struct ath_frame_info *fi = get_frame_info(skb);
  226. struct ath_buf *bf = fi->bf;
  227. struct ieee80211_hdr *hdr;
  228. int prev = fi->retries;
  229. TX_STAT_INC(txq->axq_qnum, a_retries);
  230. fi->retries += count;
  231. if (prev > 0)
  232. return;
  233. hdr = (struct ieee80211_hdr *)skb->data;
  234. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  235. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  236. sizeof(*hdr), DMA_TO_DEVICE);
  237. }
  238. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  239. {
  240. struct ath_buf *bf = NULL;
  241. spin_lock_bh(&sc->tx.txbuflock);
  242. if (unlikely(list_empty(&sc->tx.txbuf))) {
  243. spin_unlock_bh(&sc->tx.txbuflock);
  244. return NULL;
  245. }
  246. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  247. list_del(&bf->list);
  248. spin_unlock_bh(&sc->tx.txbuflock);
  249. return bf;
  250. }
  251. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  252. {
  253. spin_lock_bh(&sc->tx.txbuflock);
  254. list_add_tail(&bf->list, &sc->tx.txbuf);
  255. spin_unlock_bh(&sc->tx.txbuflock);
  256. }
  257. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  258. {
  259. struct ath_buf *tbf;
  260. tbf = ath_tx_get_buffer(sc);
  261. if (WARN_ON(!tbf))
  262. return NULL;
  263. ATH_TXBUF_RESET(tbf);
  264. tbf->bf_mpdu = bf->bf_mpdu;
  265. tbf->bf_buf_addr = bf->bf_buf_addr;
  266. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  267. tbf->bf_state = bf->bf_state;
  268. return tbf;
  269. }
  270. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  271. struct ath_tx_status *ts, int txok,
  272. int *nframes, int *nbad)
  273. {
  274. struct ath_frame_info *fi;
  275. u16 seq_st = 0;
  276. u32 ba[WME_BA_BMP_SIZE >> 5];
  277. int ba_index;
  278. int isaggr = 0;
  279. *nbad = 0;
  280. *nframes = 0;
  281. isaggr = bf_isaggr(bf);
  282. if (isaggr) {
  283. seq_st = ts->ts_seqnum;
  284. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  285. }
  286. while (bf) {
  287. fi = get_frame_info(bf->bf_mpdu);
  288. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  289. (*nframes)++;
  290. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  291. (*nbad)++;
  292. bf = bf->bf_next;
  293. }
  294. }
  295. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  296. struct ath_buf *bf, struct list_head *bf_q,
  297. struct ath_tx_status *ts, int txok, bool retry)
  298. {
  299. struct ath_node *an = NULL;
  300. struct sk_buff *skb;
  301. struct ieee80211_sta *sta;
  302. struct ieee80211_hw *hw = sc->hw;
  303. struct ieee80211_hdr *hdr;
  304. struct ieee80211_tx_info *tx_info;
  305. struct ath_atx_tid *tid = NULL;
  306. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  307. struct list_head bf_head;
  308. struct sk_buff_head bf_pending;
  309. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  310. u32 ba[WME_BA_BMP_SIZE >> 5];
  311. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  312. bool rc_update = true;
  313. struct ieee80211_tx_rate rates[4];
  314. struct ath_frame_info *fi;
  315. int nframes;
  316. u8 tidno;
  317. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  318. int i, retries;
  319. int bar_index = -1;
  320. skb = bf->bf_mpdu;
  321. hdr = (struct ieee80211_hdr *)skb->data;
  322. tx_info = IEEE80211_SKB_CB(skb);
  323. memcpy(rates, tx_info->control.rates, sizeof(rates));
  324. retries = ts->ts_longretry + 1;
  325. for (i = 0; i < ts->ts_rateindex; i++)
  326. retries += rates[i].count;
  327. rcu_read_lock();
  328. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  329. if (!sta) {
  330. rcu_read_unlock();
  331. INIT_LIST_HEAD(&bf_head);
  332. while (bf) {
  333. bf_next = bf->bf_next;
  334. if (!bf->bf_stale || bf_next != NULL)
  335. list_move_tail(&bf->list, &bf_head);
  336. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  337. bf = bf_next;
  338. }
  339. return;
  340. }
  341. an = (struct ath_node *)sta->drv_priv;
  342. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  343. tid = ATH_AN_2_TID(an, tidno);
  344. seq_first = tid->seq_start;
  345. /*
  346. * The hardware occasionally sends a tx status for the wrong TID.
  347. * In this case, the BA status cannot be considered valid and all
  348. * subframes need to be retransmitted
  349. */
  350. if (tidno != ts->tid)
  351. txok = false;
  352. isaggr = bf_isaggr(bf);
  353. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  354. if (isaggr && txok) {
  355. if (ts->ts_flags & ATH9K_TX_BA) {
  356. seq_st = ts->ts_seqnum;
  357. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  358. } else {
  359. /*
  360. * AR5416 can become deaf/mute when BA
  361. * issue happens. Chip needs to be reset.
  362. * But AP code may have sychronization issues
  363. * when perform internal reset in this routine.
  364. * Only enable reset in STA mode for now.
  365. */
  366. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  367. needreset = 1;
  368. }
  369. }
  370. __skb_queue_head_init(&bf_pending);
  371. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  372. while (bf) {
  373. u16 seqno = bf->bf_state.seqno;
  374. txfail = txpending = sendbar = 0;
  375. bf_next = bf->bf_next;
  376. skb = bf->bf_mpdu;
  377. tx_info = IEEE80211_SKB_CB(skb);
  378. fi = get_frame_info(skb);
  379. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  380. /* transmit completion, subframe is
  381. * acked by block ack */
  382. acked_cnt++;
  383. } else if (!isaggr && txok) {
  384. /* transmit completion */
  385. acked_cnt++;
  386. } else if ((tid->state & AGGR_CLEANUP) || !retry) {
  387. /*
  388. * cleanup in progress, just fail
  389. * the un-acked sub-frames
  390. */
  391. txfail = 1;
  392. } else if (flush) {
  393. txpending = 1;
  394. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  395. if (txok || !an->sleeping)
  396. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  397. retries);
  398. txpending = 1;
  399. } else {
  400. txfail = 1;
  401. txfail_cnt++;
  402. bar_index = max_t(int, bar_index,
  403. ATH_BA_INDEX(seq_first, seqno));
  404. }
  405. /*
  406. * Make sure the last desc is reclaimed if it
  407. * not a holding desc.
  408. */
  409. INIT_LIST_HEAD(&bf_head);
  410. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  411. bf_next != NULL || !bf_last->bf_stale)
  412. list_move_tail(&bf->list, &bf_head);
  413. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  414. /*
  415. * complete the acked-ones/xretried ones; update
  416. * block-ack window
  417. */
  418. ath_tx_update_baw(sc, tid, seqno);
  419. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  420. memcpy(tx_info->control.rates, rates, sizeof(rates));
  421. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  422. rc_update = false;
  423. }
  424. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  425. !txfail);
  426. } else {
  427. /* retry the un-acked ones */
  428. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  429. bf->bf_next == NULL && bf_last->bf_stale) {
  430. struct ath_buf *tbf;
  431. tbf = ath_clone_txbuf(sc, bf_last);
  432. /*
  433. * Update tx baw and complete the
  434. * frame with failed status if we
  435. * run out of tx buf.
  436. */
  437. if (!tbf) {
  438. ath_tx_update_baw(sc, tid, seqno);
  439. ath_tx_complete_buf(sc, bf, txq,
  440. &bf_head, ts, 0);
  441. bar_index = max_t(int, bar_index,
  442. ATH_BA_INDEX(seq_first, seqno));
  443. break;
  444. }
  445. fi->bf = tbf;
  446. }
  447. /*
  448. * Put this buffer to the temporary pending
  449. * queue to retain ordering
  450. */
  451. __skb_queue_tail(&bf_pending, skb);
  452. }
  453. bf = bf_next;
  454. }
  455. if (bar_index >= 0)
  456. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  457. /* prepend un-acked frames to the beginning of the pending frame queue */
  458. if (!skb_queue_empty(&bf_pending)) {
  459. if (an->sleeping)
  460. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  461. skb_queue_splice(&bf_pending, &tid->buf_q);
  462. if (!an->sleeping) {
  463. ath_tx_queue_tid(txq, tid);
  464. if (ts->ts_status & ATH9K_TXERR_FILT)
  465. tid->ac->clear_ps_filter = true;
  466. }
  467. }
  468. if (tid->state & AGGR_CLEANUP)
  469. ath_tx_flush_tid(sc, tid);
  470. rcu_read_unlock();
  471. if (needreset) {
  472. RESET_STAT_INC(sc, RESET_TYPE_TX_ERROR);
  473. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  474. }
  475. }
  476. static bool ath_lookup_legacy(struct ath_buf *bf)
  477. {
  478. struct sk_buff *skb;
  479. struct ieee80211_tx_info *tx_info;
  480. struct ieee80211_tx_rate *rates;
  481. int i;
  482. skb = bf->bf_mpdu;
  483. tx_info = IEEE80211_SKB_CB(skb);
  484. rates = tx_info->control.rates;
  485. for (i = 0; i < 4; i++) {
  486. if (!rates[i].count || rates[i].idx < 0)
  487. break;
  488. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  489. return true;
  490. }
  491. return false;
  492. }
  493. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  494. struct ath_atx_tid *tid)
  495. {
  496. struct sk_buff *skb;
  497. struct ieee80211_tx_info *tx_info;
  498. struct ieee80211_tx_rate *rates;
  499. struct ath_mci_profile *mci = &sc->btcoex.mci;
  500. u32 max_4ms_framelen, frmlen;
  501. u16 aggr_limit, legacy = 0;
  502. int i;
  503. skb = bf->bf_mpdu;
  504. tx_info = IEEE80211_SKB_CB(skb);
  505. rates = tx_info->control.rates;
  506. /*
  507. * Find the lowest frame length among the rate series that will have a
  508. * 4ms transmit duration.
  509. * TODO - TXOP limit needs to be considered.
  510. */
  511. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  512. for (i = 0; i < 4; i++) {
  513. int modeidx;
  514. if (!rates[i].count)
  515. continue;
  516. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  517. legacy = 1;
  518. break;
  519. }
  520. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  521. modeidx = MCS_HT40;
  522. else
  523. modeidx = MCS_HT20;
  524. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  525. modeidx++;
  526. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  527. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  528. }
  529. /*
  530. * limit aggregate size by the minimum rate if rate selected is
  531. * not a probe rate, if rate selected is a probe rate then
  532. * avoid aggregation of this packet.
  533. */
  534. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  535. return 0;
  536. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && mci->aggr_limit)
  537. aggr_limit = (max_4ms_framelen * mci->aggr_limit) >> 4;
  538. else if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  539. aggr_limit = min((max_4ms_framelen * 3) / 8,
  540. (u32)ATH_AMPDU_LIMIT_MAX);
  541. else
  542. aggr_limit = min(max_4ms_framelen,
  543. (u32)ATH_AMPDU_LIMIT_MAX);
  544. /*
  545. * h/w can accept aggregates up to 16 bit lengths (65535).
  546. * The IE, however can hold up to 65536, which shows up here
  547. * as zero. Ignore 65536 since we are constrained by hw.
  548. */
  549. if (tid->an->maxampdu)
  550. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  551. return aggr_limit;
  552. }
  553. /*
  554. * Returns the number of delimiters to be added to
  555. * meet the minimum required mpdudensity.
  556. */
  557. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  558. struct ath_buf *bf, u16 frmlen,
  559. bool first_subfrm)
  560. {
  561. #define FIRST_DESC_NDELIMS 60
  562. struct sk_buff *skb = bf->bf_mpdu;
  563. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  564. u32 nsymbits, nsymbols;
  565. u16 minlen;
  566. u8 flags, rix;
  567. int width, streams, half_gi, ndelim, mindelim;
  568. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  569. /* Select standard number of delimiters based on frame length alone */
  570. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  571. /*
  572. * If encryption enabled, hardware requires some more padding between
  573. * subframes.
  574. * TODO - this could be improved to be dependent on the rate.
  575. * The hardware can keep up at lower rates, but not higher rates
  576. */
  577. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  578. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  579. ndelim += ATH_AGGR_ENCRYPTDELIM;
  580. /*
  581. * Add delimiter when using RTS/CTS with aggregation
  582. * and non enterprise AR9003 card
  583. */
  584. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  585. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  586. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  587. /*
  588. * Convert desired mpdu density from microeconds to bytes based
  589. * on highest rate in rate series (i.e. first rate) to determine
  590. * required minimum length for subframe. Take into account
  591. * whether high rate is 20 or 40Mhz and half or full GI.
  592. *
  593. * If there is no mpdu density restriction, no further calculation
  594. * is needed.
  595. */
  596. if (tid->an->mpdudensity == 0)
  597. return ndelim;
  598. rix = tx_info->control.rates[0].idx;
  599. flags = tx_info->control.rates[0].flags;
  600. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  601. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  602. if (half_gi)
  603. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  604. else
  605. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  606. if (nsymbols == 0)
  607. nsymbols = 1;
  608. streams = HT_RC_2_STREAMS(rix);
  609. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  610. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  611. if (frmlen < minlen) {
  612. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  613. ndelim = max(mindelim, ndelim);
  614. }
  615. return ndelim;
  616. }
  617. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  618. struct ath_txq *txq,
  619. struct ath_atx_tid *tid,
  620. struct list_head *bf_q,
  621. int *aggr_len)
  622. {
  623. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  624. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  625. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  626. u16 aggr_limit = 0, al = 0, bpad = 0,
  627. al_delta, h_baw = tid->baw_size / 2;
  628. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  629. struct ieee80211_tx_info *tx_info;
  630. struct ath_frame_info *fi;
  631. struct sk_buff *skb;
  632. u16 seqno;
  633. do {
  634. skb = skb_peek(&tid->buf_q);
  635. fi = get_frame_info(skb);
  636. bf = fi->bf;
  637. if (!fi->bf)
  638. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  639. if (!bf)
  640. continue;
  641. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  642. seqno = bf->bf_state.seqno;
  643. if (!bf_first)
  644. bf_first = bf;
  645. /* do not step over block-ack window */
  646. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  647. status = ATH_AGGR_BAW_CLOSED;
  648. break;
  649. }
  650. if (!rl) {
  651. aggr_limit = ath_lookup_rate(sc, bf, tid);
  652. rl = 1;
  653. }
  654. /* do not exceed aggregation limit */
  655. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  656. if (nframes &&
  657. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  658. ath_lookup_legacy(bf))) {
  659. status = ATH_AGGR_LIMITED;
  660. break;
  661. }
  662. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  663. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  664. break;
  665. /* do not exceed subframe limit */
  666. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  667. status = ATH_AGGR_LIMITED;
  668. break;
  669. }
  670. /* add padding for previous frame to aggregation length */
  671. al += bpad + al_delta;
  672. /*
  673. * Get the delimiters needed to meet the MPDU
  674. * density for this node.
  675. */
  676. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  677. !nframes);
  678. bpad = PADBYTES(al_delta) + (ndelim << 2);
  679. nframes++;
  680. bf->bf_next = NULL;
  681. /* link buffers of this frame to the aggregate */
  682. if (!fi->retries)
  683. ath_tx_addto_baw(sc, tid, seqno);
  684. bf->bf_state.ndelim = ndelim;
  685. __skb_unlink(skb, &tid->buf_q);
  686. list_add_tail(&bf->list, bf_q);
  687. if (bf_prev)
  688. bf_prev->bf_next = bf;
  689. bf_prev = bf;
  690. } while (!skb_queue_empty(&tid->buf_q));
  691. *aggr_len = al;
  692. return status;
  693. #undef PADBYTES
  694. }
  695. /*
  696. * rix - rate index
  697. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  698. * width - 0 for 20 MHz, 1 for 40 MHz
  699. * half_gi - to use 4us v/s 3.6 us for symbol time
  700. */
  701. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  702. int width, int half_gi, bool shortPreamble)
  703. {
  704. u32 nbits, nsymbits, duration, nsymbols;
  705. int streams;
  706. /* find number of symbols: PLCP + data */
  707. streams = HT_RC_2_STREAMS(rix);
  708. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  709. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  710. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  711. if (!half_gi)
  712. duration = SYMBOL_TIME(nsymbols);
  713. else
  714. duration = SYMBOL_TIME_HALFGI(nsymbols);
  715. /* addup duration for legacy/ht training and signal fields */
  716. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  717. return duration;
  718. }
  719. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  720. struct ath_tx_info *info, int len)
  721. {
  722. struct ath_hw *ah = sc->sc_ah;
  723. struct sk_buff *skb;
  724. struct ieee80211_tx_info *tx_info;
  725. struct ieee80211_tx_rate *rates;
  726. const struct ieee80211_rate *rate;
  727. struct ieee80211_hdr *hdr;
  728. int i;
  729. u8 rix = 0;
  730. skb = bf->bf_mpdu;
  731. tx_info = IEEE80211_SKB_CB(skb);
  732. rates = tx_info->control.rates;
  733. hdr = (struct ieee80211_hdr *)skb->data;
  734. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  735. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  736. /*
  737. * We check if Short Preamble is needed for the CTS rate by
  738. * checking the BSS's global flag.
  739. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  740. */
  741. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  742. info->rtscts_rate = rate->hw_value;
  743. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  744. info->rtscts_rate |= rate->hw_value_short;
  745. for (i = 0; i < 4; i++) {
  746. bool is_40, is_sgi, is_sp;
  747. int phy;
  748. if (!rates[i].count || (rates[i].idx < 0))
  749. continue;
  750. rix = rates[i].idx;
  751. info->rates[i].Tries = rates[i].count;
  752. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  753. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  754. info->flags |= ATH9K_TXDESC_RTSENA;
  755. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  756. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  757. info->flags |= ATH9K_TXDESC_CTSENA;
  758. }
  759. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  760. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  761. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  762. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  763. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  764. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  765. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  766. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  767. /* MCS rates */
  768. info->rates[i].Rate = rix | 0x80;
  769. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  770. ah->txchainmask, info->rates[i].Rate);
  771. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  772. is_40, is_sgi, is_sp);
  773. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  774. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  775. continue;
  776. }
  777. /* legacy rates */
  778. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  779. !(rate->flags & IEEE80211_RATE_ERP_G))
  780. phy = WLAN_RC_PHY_CCK;
  781. else
  782. phy = WLAN_RC_PHY_OFDM;
  783. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  784. info->rates[i].Rate = rate->hw_value;
  785. if (rate->hw_value_short) {
  786. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  787. info->rates[i].Rate |= rate->hw_value_short;
  788. } else {
  789. is_sp = false;
  790. }
  791. if (bf->bf_state.bfs_paprd)
  792. info->rates[i].ChSel = ah->txchainmask;
  793. else
  794. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  795. ah->txchainmask, info->rates[i].Rate);
  796. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  797. phy, rate->bitrate * 100, len, rix, is_sp);
  798. }
  799. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  800. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  801. info->flags &= ~ATH9K_TXDESC_RTSENA;
  802. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  803. if (info->flags & ATH9K_TXDESC_RTSENA)
  804. info->flags &= ~ATH9K_TXDESC_CTSENA;
  805. }
  806. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  807. {
  808. struct ieee80211_hdr *hdr;
  809. enum ath9k_pkt_type htype;
  810. __le16 fc;
  811. hdr = (struct ieee80211_hdr *)skb->data;
  812. fc = hdr->frame_control;
  813. if (ieee80211_is_beacon(fc))
  814. htype = ATH9K_PKT_TYPE_BEACON;
  815. else if (ieee80211_is_probe_resp(fc))
  816. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  817. else if (ieee80211_is_atim(fc))
  818. htype = ATH9K_PKT_TYPE_ATIM;
  819. else if (ieee80211_is_pspoll(fc))
  820. htype = ATH9K_PKT_TYPE_PSPOLL;
  821. else
  822. htype = ATH9K_PKT_TYPE_NORMAL;
  823. return htype;
  824. }
  825. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  826. struct ath_txq *txq, int len)
  827. {
  828. struct ath_hw *ah = sc->sc_ah;
  829. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  830. struct ath_buf *bf_first = bf;
  831. struct ath_tx_info info;
  832. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  833. memset(&info, 0, sizeof(info));
  834. info.is_first = true;
  835. info.is_last = true;
  836. info.txpower = MAX_RATE_POWER;
  837. info.qcu = txq->axq_qnum;
  838. info.flags = ATH9K_TXDESC_INTREQ;
  839. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  840. info.flags |= ATH9K_TXDESC_NOACK;
  841. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  842. info.flags |= ATH9K_TXDESC_LDPC;
  843. ath_buf_set_rate(sc, bf, &info, len);
  844. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  845. info.flags |= ATH9K_TXDESC_CLRDMASK;
  846. if (bf->bf_state.bfs_paprd)
  847. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  848. while (bf) {
  849. struct sk_buff *skb = bf->bf_mpdu;
  850. struct ath_frame_info *fi = get_frame_info(skb);
  851. info.type = get_hw_packet_type(skb);
  852. if (bf->bf_next)
  853. info.link = bf->bf_next->bf_daddr;
  854. else
  855. info.link = 0;
  856. info.buf_addr[0] = bf->bf_buf_addr;
  857. info.buf_len[0] = skb->len;
  858. info.pkt_len = fi->framelen;
  859. info.keyix = fi->keyix;
  860. info.keytype = fi->keytype;
  861. if (aggr) {
  862. if (bf == bf_first)
  863. info.aggr = AGGR_BUF_FIRST;
  864. else if (!bf->bf_next)
  865. info.aggr = AGGR_BUF_LAST;
  866. else
  867. info.aggr = AGGR_BUF_MIDDLE;
  868. info.ndelim = bf->bf_state.ndelim;
  869. info.aggr_len = len;
  870. }
  871. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  872. bf = bf->bf_next;
  873. }
  874. }
  875. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  876. struct ath_atx_tid *tid)
  877. {
  878. struct ath_buf *bf;
  879. enum ATH_AGGR_STATUS status;
  880. struct ieee80211_tx_info *tx_info;
  881. struct list_head bf_q;
  882. int aggr_len;
  883. do {
  884. if (skb_queue_empty(&tid->buf_q))
  885. return;
  886. INIT_LIST_HEAD(&bf_q);
  887. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  888. /*
  889. * no frames picked up to be aggregated;
  890. * block-ack window is not open.
  891. */
  892. if (list_empty(&bf_q))
  893. break;
  894. bf = list_first_entry(&bf_q, struct ath_buf, list);
  895. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  896. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  897. if (tid->ac->clear_ps_filter) {
  898. tid->ac->clear_ps_filter = false;
  899. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  900. } else {
  901. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  902. }
  903. /* if only one frame, send as non-aggregate */
  904. if (bf == bf->bf_lastbf) {
  905. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  906. bf->bf_state.bf_type = BUF_AMPDU;
  907. } else {
  908. TX_STAT_INC(txq->axq_qnum, a_aggr);
  909. }
  910. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  911. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  912. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  913. status != ATH_AGGR_BAW_CLOSED);
  914. }
  915. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  916. u16 tid, u16 *ssn)
  917. {
  918. struct ath_atx_tid *txtid;
  919. struct ath_node *an;
  920. an = (struct ath_node *)sta->drv_priv;
  921. txtid = ATH_AN_2_TID(an, tid);
  922. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  923. return -EAGAIN;
  924. txtid->state |= AGGR_ADDBA_PROGRESS;
  925. txtid->paused = true;
  926. *ssn = txtid->seq_start = txtid->seq_next;
  927. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  928. txtid->baw_head = txtid->baw_tail = 0;
  929. return 0;
  930. }
  931. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  932. {
  933. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  934. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  935. struct ath_txq *txq = txtid->ac->txq;
  936. if (txtid->state & AGGR_CLEANUP)
  937. return;
  938. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  939. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  940. return;
  941. }
  942. spin_lock_bh(&txq->axq_lock);
  943. txtid->paused = true;
  944. /*
  945. * If frames are still being transmitted for this TID, they will be
  946. * cleaned up during tx completion. To prevent race conditions, this
  947. * TID can only be reused after all in-progress subframes have been
  948. * completed.
  949. */
  950. if (txtid->baw_head != txtid->baw_tail)
  951. txtid->state |= AGGR_CLEANUP;
  952. else
  953. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  954. ath_tx_flush_tid(sc, txtid);
  955. spin_unlock_bh(&txq->axq_lock);
  956. }
  957. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  958. struct ath_node *an)
  959. {
  960. struct ath_atx_tid *tid;
  961. struct ath_atx_ac *ac;
  962. struct ath_txq *txq;
  963. bool buffered;
  964. int tidno;
  965. for (tidno = 0, tid = &an->tid[tidno];
  966. tidno < WME_NUM_TID; tidno++, tid++) {
  967. if (!tid->sched)
  968. continue;
  969. ac = tid->ac;
  970. txq = ac->txq;
  971. spin_lock_bh(&txq->axq_lock);
  972. buffered = !skb_queue_empty(&tid->buf_q);
  973. tid->sched = false;
  974. list_del(&tid->list);
  975. if (ac->sched) {
  976. ac->sched = false;
  977. list_del(&ac->list);
  978. }
  979. spin_unlock_bh(&txq->axq_lock);
  980. ieee80211_sta_set_buffered(sta, tidno, buffered);
  981. }
  982. }
  983. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  984. {
  985. struct ath_atx_tid *tid;
  986. struct ath_atx_ac *ac;
  987. struct ath_txq *txq;
  988. int tidno;
  989. for (tidno = 0, tid = &an->tid[tidno];
  990. tidno < WME_NUM_TID; tidno++, tid++) {
  991. ac = tid->ac;
  992. txq = ac->txq;
  993. spin_lock_bh(&txq->axq_lock);
  994. ac->clear_ps_filter = true;
  995. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  996. ath_tx_queue_tid(txq, tid);
  997. ath_txq_schedule(sc, txq);
  998. }
  999. spin_unlock_bh(&txq->axq_lock);
  1000. }
  1001. }
  1002. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1003. {
  1004. struct ath_atx_tid *txtid;
  1005. struct ath_node *an;
  1006. an = (struct ath_node *)sta->drv_priv;
  1007. if (sc->sc_flags & SC_OP_TXAGGR) {
  1008. txtid = ATH_AN_2_TID(an, tid);
  1009. txtid->baw_size =
  1010. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1011. txtid->state |= AGGR_ADDBA_COMPLETE;
  1012. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  1013. ath_tx_resume_tid(sc, txtid);
  1014. }
  1015. }
  1016. /********************/
  1017. /* Queue Management */
  1018. /********************/
  1019. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  1020. struct ath_txq *txq)
  1021. {
  1022. struct ath_atx_ac *ac, *ac_tmp;
  1023. struct ath_atx_tid *tid, *tid_tmp;
  1024. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1025. list_del(&ac->list);
  1026. ac->sched = false;
  1027. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  1028. list_del(&tid->list);
  1029. tid->sched = false;
  1030. ath_tid_drain(sc, txq, tid);
  1031. }
  1032. }
  1033. }
  1034. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1035. {
  1036. struct ath_hw *ah = sc->sc_ah;
  1037. struct ath9k_tx_queue_info qi;
  1038. static const int subtype_txq_to_hwq[] = {
  1039. [WME_AC_BE] = ATH_TXQ_AC_BE,
  1040. [WME_AC_BK] = ATH_TXQ_AC_BK,
  1041. [WME_AC_VI] = ATH_TXQ_AC_VI,
  1042. [WME_AC_VO] = ATH_TXQ_AC_VO,
  1043. };
  1044. int axq_qnum, i;
  1045. memset(&qi, 0, sizeof(qi));
  1046. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1047. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1048. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1049. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1050. qi.tqi_physCompBuf = 0;
  1051. /*
  1052. * Enable interrupts only for EOL and DESC conditions.
  1053. * We mark tx descriptors to receive a DESC interrupt
  1054. * when a tx queue gets deep; otherwise waiting for the
  1055. * EOL to reap descriptors. Note that this is done to
  1056. * reduce interrupt load and this only defers reaping
  1057. * descriptors, never transmitting frames. Aside from
  1058. * reducing interrupts this also permits more concurrency.
  1059. * The only potential downside is if the tx queue backs
  1060. * up in which case the top half of the kernel may backup
  1061. * due to a lack of tx descriptors.
  1062. *
  1063. * The UAPSD queue is an exception, since we take a desc-
  1064. * based intr on the EOSP frames.
  1065. */
  1066. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1067. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  1068. TXQ_FLAG_TXERRINT_ENABLE;
  1069. } else {
  1070. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1071. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1072. else
  1073. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1074. TXQ_FLAG_TXDESCINT_ENABLE;
  1075. }
  1076. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1077. if (axq_qnum == -1) {
  1078. /*
  1079. * NB: don't print a message, this happens
  1080. * normally on parts with too few tx queues
  1081. */
  1082. return NULL;
  1083. }
  1084. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1085. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1086. txq->axq_qnum = axq_qnum;
  1087. txq->mac80211_qnum = -1;
  1088. txq->axq_link = NULL;
  1089. INIT_LIST_HEAD(&txq->axq_q);
  1090. INIT_LIST_HEAD(&txq->axq_acq);
  1091. spin_lock_init(&txq->axq_lock);
  1092. txq->axq_depth = 0;
  1093. txq->axq_ampdu_depth = 0;
  1094. txq->axq_tx_inprogress = false;
  1095. sc->tx.txqsetup |= 1<<axq_qnum;
  1096. txq->txq_headidx = txq->txq_tailidx = 0;
  1097. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1098. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1099. }
  1100. return &sc->tx.txq[axq_qnum];
  1101. }
  1102. int ath_txq_update(struct ath_softc *sc, int qnum,
  1103. struct ath9k_tx_queue_info *qinfo)
  1104. {
  1105. struct ath_hw *ah = sc->sc_ah;
  1106. int error = 0;
  1107. struct ath9k_tx_queue_info qi;
  1108. if (qnum == sc->beacon.beaconq) {
  1109. /*
  1110. * XXX: for beacon queue, we just save the parameter.
  1111. * It will be picked up by ath_beaconq_config when
  1112. * it's necessary.
  1113. */
  1114. sc->beacon.beacon_qi = *qinfo;
  1115. return 0;
  1116. }
  1117. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1118. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1119. qi.tqi_aifs = qinfo->tqi_aifs;
  1120. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1121. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1122. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1123. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1124. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1125. ath_err(ath9k_hw_common(sc->sc_ah),
  1126. "Unable to update hardware queue %u!\n", qnum);
  1127. error = -EIO;
  1128. } else {
  1129. ath9k_hw_resettxqueue(ah, qnum);
  1130. }
  1131. return error;
  1132. }
  1133. int ath_cabq_update(struct ath_softc *sc)
  1134. {
  1135. struct ath9k_tx_queue_info qi;
  1136. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1137. int qnum = sc->beacon.cabq->axq_qnum;
  1138. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1139. /*
  1140. * Ensure the readytime % is within the bounds.
  1141. */
  1142. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1143. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1144. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1145. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1146. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1147. sc->config.cabqReadytime) / 100;
  1148. ath_txq_update(sc, qnum, &qi);
  1149. return 0;
  1150. }
  1151. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  1152. {
  1153. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1154. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  1155. }
  1156. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1157. struct list_head *list, bool retry_tx)
  1158. {
  1159. struct ath_buf *bf, *lastbf;
  1160. struct list_head bf_head;
  1161. struct ath_tx_status ts;
  1162. memset(&ts, 0, sizeof(ts));
  1163. ts.ts_status = ATH9K_TX_FLUSH;
  1164. INIT_LIST_HEAD(&bf_head);
  1165. while (!list_empty(list)) {
  1166. bf = list_first_entry(list, struct ath_buf, list);
  1167. if (bf->bf_stale) {
  1168. list_del(&bf->list);
  1169. ath_tx_return_buffer(sc, bf);
  1170. continue;
  1171. }
  1172. lastbf = bf->bf_lastbf;
  1173. list_cut_position(&bf_head, list, &lastbf->list);
  1174. txq->axq_depth--;
  1175. if (bf_is_ampdu_not_probing(bf))
  1176. txq->axq_ampdu_depth--;
  1177. if (bf_isampdu(bf))
  1178. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1179. retry_tx);
  1180. else
  1181. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  1182. }
  1183. }
  1184. /*
  1185. * Drain a given TX queue (could be Beacon or Data)
  1186. *
  1187. * This assumes output has been stopped and
  1188. * we do not need to block ath_tx_tasklet.
  1189. */
  1190. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  1191. {
  1192. spin_lock_bh(&txq->axq_lock);
  1193. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1194. int idx = txq->txq_tailidx;
  1195. while (!list_empty(&txq->txq_fifo[idx])) {
  1196. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
  1197. retry_tx);
  1198. INCR(idx, ATH_TXFIFO_DEPTH);
  1199. }
  1200. txq->txq_tailidx = idx;
  1201. }
  1202. txq->axq_link = NULL;
  1203. txq->axq_tx_inprogress = false;
  1204. ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
  1205. /* flush any pending frames if aggregation is enabled */
  1206. if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx)
  1207. ath_txq_drain_pending_buffers(sc, txq);
  1208. spin_unlock_bh(&txq->axq_lock);
  1209. }
  1210. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1211. {
  1212. struct ath_hw *ah = sc->sc_ah;
  1213. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1214. struct ath_txq *txq;
  1215. int i;
  1216. u32 npend = 0;
  1217. if (sc->sc_flags & SC_OP_INVALID)
  1218. return true;
  1219. ath9k_hw_abort_tx_dma(ah);
  1220. /* Check if any queue remains active */
  1221. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1222. if (!ATH_TXQ_SETUP(sc, i))
  1223. continue;
  1224. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1225. npend |= BIT(i);
  1226. }
  1227. if (npend)
  1228. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1229. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1230. if (!ATH_TXQ_SETUP(sc, i))
  1231. continue;
  1232. /*
  1233. * The caller will resume queues with ieee80211_wake_queues.
  1234. * Mark the queue as not stopped to prevent ath_tx_complete
  1235. * from waking the queue too early.
  1236. */
  1237. txq = &sc->tx.txq[i];
  1238. txq->stopped = false;
  1239. ath_draintxq(sc, txq, retry_tx);
  1240. }
  1241. return !npend;
  1242. }
  1243. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1244. {
  1245. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1246. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1247. }
  1248. /* For each axq_acq entry, for each tid, try to schedule packets
  1249. * for transmit until ampdu_depth has reached min Q depth.
  1250. */
  1251. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1252. {
  1253. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1254. struct ath_atx_tid *tid, *last_tid;
  1255. if (work_pending(&sc->hw_reset_work) || list_empty(&txq->axq_acq) ||
  1256. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1257. return;
  1258. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1259. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1260. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1261. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1262. list_del(&ac->list);
  1263. ac->sched = false;
  1264. while (!list_empty(&ac->tid_q)) {
  1265. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1266. list);
  1267. list_del(&tid->list);
  1268. tid->sched = false;
  1269. if (tid->paused)
  1270. continue;
  1271. ath_tx_sched_aggr(sc, txq, tid);
  1272. /*
  1273. * add tid to round-robin queue if more frames
  1274. * are pending for the tid
  1275. */
  1276. if (!skb_queue_empty(&tid->buf_q))
  1277. ath_tx_queue_tid(txq, tid);
  1278. if (tid == last_tid ||
  1279. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1280. break;
  1281. }
  1282. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1283. ac->sched = true;
  1284. list_add_tail(&ac->list, &txq->axq_acq);
  1285. }
  1286. if (ac == last_ac ||
  1287. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1288. return;
  1289. }
  1290. }
  1291. /***********/
  1292. /* TX, DMA */
  1293. /***********/
  1294. /*
  1295. * Insert a chain of ath_buf (descriptors) on a txq and
  1296. * assume the descriptors are already chained together by caller.
  1297. */
  1298. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1299. struct list_head *head, bool internal)
  1300. {
  1301. struct ath_hw *ah = sc->sc_ah;
  1302. struct ath_common *common = ath9k_hw_common(ah);
  1303. struct ath_buf *bf, *bf_last;
  1304. bool puttxbuf = false;
  1305. bool edma;
  1306. /*
  1307. * Insert the frame on the outbound list and
  1308. * pass it on to the hardware.
  1309. */
  1310. if (list_empty(head))
  1311. return;
  1312. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1313. bf = list_first_entry(head, struct ath_buf, list);
  1314. bf_last = list_entry(head->prev, struct ath_buf, list);
  1315. ath_dbg(common, ATH_DBG_QUEUE,
  1316. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1317. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1318. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1319. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1320. puttxbuf = true;
  1321. } else {
  1322. list_splice_tail_init(head, &txq->axq_q);
  1323. if (txq->axq_link) {
  1324. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1325. ath_dbg(common, ATH_DBG_XMIT,
  1326. "link[%u] (%p)=%llx (%p)\n",
  1327. txq->axq_qnum, txq->axq_link,
  1328. ito64(bf->bf_daddr), bf->bf_desc);
  1329. } else if (!edma)
  1330. puttxbuf = true;
  1331. txq->axq_link = bf_last->bf_desc;
  1332. }
  1333. if (puttxbuf) {
  1334. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1335. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1336. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1337. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1338. }
  1339. if (!edma) {
  1340. TX_STAT_INC(txq->axq_qnum, txstart);
  1341. ath9k_hw_txstart(ah, txq->axq_qnum);
  1342. }
  1343. if (!internal) {
  1344. txq->axq_depth++;
  1345. if (bf_is_ampdu_not_probing(bf))
  1346. txq->axq_ampdu_depth++;
  1347. }
  1348. }
  1349. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1350. struct sk_buff *skb, struct ath_tx_control *txctl)
  1351. {
  1352. struct ath_frame_info *fi = get_frame_info(skb);
  1353. struct list_head bf_head;
  1354. struct ath_buf *bf;
  1355. /*
  1356. * Do not queue to h/w when any of the following conditions is true:
  1357. * - there are pending frames in software queue
  1358. * - the TID is currently paused for ADDBA/BAR request
  1359. * - seqno is not within block-ack window
  1360. * - h/w queue depth exceeds low water mark
  1361. */
  1362. if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1363. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1364. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1365. /*
  1366. * Add this frame to software queue for scheduling later
  1367. * for aggregation.
  1368. */
  1369. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1370. __skb_queue_tail(&tid->buf_q, skb);
  1371. if (!txctl->an || !txctl->an->sleeping)
  1372. ath_tx_queue_tid(txctl->txq, tid);
  1373. return;
  1374. }
  1375. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1376. if (!bf)
  1377. return;
  1378. bf->bf_state.bf_type = BUF_AMPDU;
  1379. INIT_LIST_HEAD(&bf_head);
  1380. list_add(&bf->list, &bf_head);
  1381. /* Add sub-frame to BAW */
  1382. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1383. /* Queue to h/w without aggregation */
  1384. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1385. bf->bf_lastbf = bf;
  1386. ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
  1387. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
  1388. }
  1389. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1390. struct ath_atx_tid *tid, struct sk_buff *skb)
  1391. {
  1392. struct ath_frame_info *fi = get_frame_info(skb);
  1393. struct list_head bf_head;
  1394. struct ath_buf *bf;
  1395. bf = fi->bf;
  1396. if (!bf)
  1397. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1398. if (!bf)
  1399. return;
  1400. INIT_LIST_HEAD(&bf_head);
  1401. list_add_tail(&bf->list, &bf_head);
  1402. bf->bf_state.bf_type = 0;
  1403. bf->bf_lastbf = bf;
  1404. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1405. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1406. TX_STAT_INC(txq->axq_qnum, queued);
  1407. }
  1408. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1409. int framelen)
  1410. {
  1411. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1412. struct ieee80211_sta *sta = tx_info->control.sta;
  1413. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1414. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1415. struct ath_frame_info *fi = get_frame_info(skb);
  1416. struct ath_node *an = NULL;
  1417. enum ath9k_key_type keytype;
  1418. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1419. if (sta)
  1420. an = (struct ath_node *) sta->drv_priv;
  1421. memset(fi, 0, sizeof(*fi));
  1422. if (hw_key)
  1423. fi->keyix = hw_key->hw_key_idx;
  1424. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1425. fi->keyix = an->ps_key;
  1426. else
  1427. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1428. fi->keytype = keytype;
  1429. fi->framelen = framelen;
  1430. }
  1431. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1432. {
  1433. struct ath_hw *ah = sc->sc_ah;
  1434. struct ath9k_channel *curchan = ah->curchan;
  1435. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1436. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1437. (chainmask == 0x7) && (rate < 0x90))
  1438. return 0x3;
  1439. else
  1440. return chainmask;
  1441. }
  1442. /*
  1443. * Assign a descriptor (and sequence number if necessary,
  1444. * and map buffer for DMA. Frees skb on error
  1445. */
  1446. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1447. struct ath_txq *txq,
  1448. struct ath_atx_tid *tid,
  1449. struct sk_buff *skb)
  1450. {
  1451. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1452. struct ath_frame_info *fi = get_frame_info(skb);
  1453. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1454. struct ath_buf *bf;
  1455. u16 seqno;
  1456. bf = ath_tx_get_buffer(sc);
  1457. if (!bf) {
  1458. ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1459. goto error;
  1460. }
  1461. ATH_TXBUF_RESET(bf);
  1462. if (tid) {
  1463. seqno = tid->seq_next;
  1464. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1465. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1466. bf->bf_state.seqno = seqno;
  1467. }
  1468. bf->bf_mpdu = skb;
  1469. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1470. skb->len, DMA_TO_DEVICE);
  1471. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1472. bf->bf_mpdu = NULL;
  1473. bf->bf_buf_addr = 0;
  1474. ath_err(ath9k_hw_common(sc->sc_ah),
  1475. "dma_mapping_error() on TX\n");
  1476. ath_tx_return_buffer(sc, bf);
  1477. goto error;
  1478. }
  1479. fi->bf = bf;
  1480. return bf;
  1481. error:
  1482. dev_kfree_skb_any(skb);
  1483. return NULL;
  1484. }
  1485. /* FIXME: tx power */
  1486. static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
  1487. struct ath_tx_control *txctl)
  1488. {
  1489. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1490. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1491. struct ath_atx_tid *tid = NULL;
  1492. struct ath_buf *bf;
  1493. u8 tidno;
  1494. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1495. ieee80211_is_data_qos(hdr->frame_control)) {
  1496. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1497. IEEE80211_QOS_CTL_TID_MASK;
  1498. tid = ATH_AN_2_TID(txctl->an, tidno);
  1499. WARN_ON(tid->ac->txq != txctl->txq);
  1500. }
  1501. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1502. /*
  1503. * Try aggregation if it's a unicast data frame
  1504. * and the destination is HT capable.
  1505. */
  1506. ath_tx_send_ampdu(sc, tid, skb, txctl);
  1507. } else {
  1508. bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
  1509. if (!bf)
  1510. return;
  1511. bf->bf_state.bfs_paprd = txctl->paprd;
  1512. if (txctl->paprd)
  1513. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1514. ath_tx_send_normal(sc, txctl->txq, tid, skb);
  1515. }
  1516. }
  1517. /* Upon failure caller should free skb */
  1518. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1519. struct ath_tx_control *txctl)
  1520. {
  1521. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1522. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1523. struct ieee80211_sta *sta = info->control.sta;
  1524. struct ieee80211_vif *vif = info->control.vif;
  1525. struct ath_softc *sc = hw->priv;
  1526. struct ath_txq *txq = txctl->txq;
  1527. int padpos, padsize;
  1528. int frmlen = skb->len + FCS_LEN;
  1529. int q;
  1530. /* NOTE: sta can be NULL according to net/mac80211.h */
  1531. if (sta)
  1532. txctl->an = (struct ath_node *)sta->drv_priv;
  1533. if (info->control.hw_key)
  1534. frmlen += info->control.hw_key->icv_len;
  1535. /*
  1536. * As a temporary workaround, assign seq# here; this will likely need
  1537. * to be cleaned up to work better with Beacon transmission and virtual
  1538. * BSSes.
  1539. */
  1540. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1541. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1542. sc->tx.seq_no += 0x10;
  1543. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1544. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1545. }
  1546. /* Add the padding after the header if this is not already done */
  1547. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1548. padsize = padpos & 3;
  1549. if (padsize && skb->len > padpos) {
  1550. if (skb_headroom(skb) < padsize)
  1551. return -ENOMEM;
  1552. skb_push(skb, padsize);
  1553. memmove(skb->data, skb->data + padsize, padpos);
  1554. hdr = (struct ieee80211_hdr *) skb->data;
  1555. }
  1556. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1557. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1558. !ieee80211_is_data(hdr->frame_control))
  1559. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1560. setup_frame_info(hw, skb, frmlen);
  1561. /*
  1562. * At this point, the vif, hw_key and sta pointers in the tx control
  1563. * info are no longer valid (overwritten by the ath_frame_info data.
  1564. */
  1565. q = skb_get_queue_mapping(skb);
  1566. spin_lock_bh(&txq->axq_lock);
  1567. if (txq == sc->tx.txq_map[q] &&
  1568. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1569. ieee80211_stop_queue(sc->hw, q);
  1570. txq->stopped = 1;
  1571. }
  1572. ath_tx_start_dma(sc, skb, txctl);
  1573. spin_unlock_bh(&txq->axq_lock);
  1574. return 0;
  1575. }
  1576. /*****************/
  1577. /* TX Completion */
  1578. /*****************/
  1579. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1580. int tx_flags, struct ath_txq *txq)
  1581. {
  1582. struct ieee80211_hw *hw = sc->hw;
  1583. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1584. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1585. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1586. int q, padpos, padsize;
  1587. ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1588. if (!(tx_flags & ATH_TX_ERROR))
  1589. /* Frame was ACKed */
  1590. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1591. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1592. padsize = padpos & 3;
  1593. if (padsize && skb->len>padpos+padsize) {
  1594. /*
  1595. * Remove MAC header padding before giving the frame back to
  1596. * mac80211.
  1597. */
  1598. memmove(skb->data + padsize, skb->data, padpos);
  1599. skb_pull(skb, padsize);
  1600. }
  1601. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1602. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1603. ath_dbg(common, ATH_DBG_PS,
  1604. "Going back to sleep after having received TX status (0x%lx)\n",
  1605. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1606. PS_WAIT_FOR_CAB |
  1607. PS_WAIT_FOR_PSPOLL_DATA |
  1608. PS_WAIT_FOR_TX_ACK));
  1609. }
  1610. q = skb_get_queue_mapping(skb);
  1611. if (txq == sc->tx.txq_map[q]) {
  1612. if (WARN_ON(--txq->pending_frames < 0))
  1613. txq->pending_frames = 0;
  1614. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1615. ieee80211_wake_queue(sc->hw, q);
  1616. txq->stopped = 0;
  1617. }
  1618. }
  1619. ieee80211_tx_status(hw, skb);
  1620. }
  1621. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1622. struct ath_txq *txq, struct list_head *bf_q,
  1623. struct ath_tx_status *ts, int txok)
  1624. {
  1625. struct sk_buff *skb = bf->bf_mpdu;
  1626. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1627. unsigned long flags;
  1628. int tx_flags = 0;
  1629. if (!txok)
  1630. tx_flags |= ATH_TX_ERROR;
  1631. if (ts->ts_status & ATH9K_TXERR_FILT)
  1632. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1633. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1634. bf->bf_buf_addr = 0;
  1635. if (bf->bf_state.bfs_paprd) {
  1636. if (time_after(jiffies,
  1637. bf->bf_state.bfs_paprd_timestamp +
  1638. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1639. dev_kfree_skb_any(skb);
  1640. else
  1641. complete(&sc->paprd_complete);
  1642. } else {
  1643. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1644. ath_tx_complete(sc, skb, tx_flags, txq);
  1645. }
  1646. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1647. * accidentally reference it later.
  1648. */
  1649. bf->bf_mpdu = NULL;
  1650. /*
  1651. * Return the list of ath_buf of this mpdu to free queue
  1652. */
  1653. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1654. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1655. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1656. }
  1657. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1658. struct ath_tx_status *ts, int nframes, int nbad,
  1659. int txok)
  1660. {
  1661. struct sk_buff *skb = bf->bf_mpdu;
  1662. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1663. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1664. struct ieee80211_hw *hw = sc->hw;
  1665. struct ath_hw *ah = sc->sc_ah;
  1666. u8 i, tx_rateindex;
  1667. if (txok)
  1668. tx_info->status.ack_signal = ts->ts_rssi;
  1669. tx_rateindex = ts->ts_rateindex;
  1670. WARN_ON(tx_rateindex >= hw->max_rates);
  1671. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1672. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1673. BUG_ON(nbad > nframes);
  1674. }
  1675. tx_info->status.ampdu_len = nframes;
  1676. tx_info->status.ampdu_ack_len = nframes - nbad;
  1677. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1678. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1679. /*
  1680. * If an underrun error is seen assume it as an excessive
  1681. * retry only if max frame trigger level has been reached
  1682. * (2 KB for single stream, and 4 KB for dual stream).
  1683. * Adjust the long retry as if the frame was tried
  1684. * hw->max_rate_tries times to affect how rate control updates
  1685. * PER for the failed rate.
  1686. * In case of congestion on the bus penalizing this type of
  1687. * underruns should help hardware actually transmit new frames
  1688. * successfully by eventually preferring slower rates.
  1689. * This itself should also alleviate congestion on the bus.
  1690. */
  1691. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1692. ATH9K_TX_DELIM_UNDERRUN)) &&
  1693. ieee80211_is_data(hdr->frame_control) &&
  1694. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1695. tx_info->status.rates[tx_rateindex].count =
  1696. hw->max_rate_tries;
  1697. }
  1698. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1699. tx_info->status.rates[i].count = 0;
  1700. tx_info->status.rates[i].idx = -1;
  1701. }
  1702. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1703. }
  1704. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  1705. struct ath_tx_status *ts, struct ath_buf *bf,
  1706. struct list_head *bf_head)
  1707. {
  1708. int txok;
  1709. txq->axq_depth--;
  1710. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  1711. txq->axq_tx_inprogress = false;
  1712. if (bf_is_ampdu_not_probing(bf))
  1713. txq->axq_ampdu_depth--;
  1714. if (!bf_isampdu(bf)) {
  1715. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  1716. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  1717. } else
  1718. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
  1719. if (sc->sc_flags & SC_OP_TXAGGR)
  1720. ath_txq_schedule(sc, txq);
  1721. }
  1722. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1723. {
  1724. struct ath_hw *ah = sc->sc_ah;
  1725. struct ath_common *common = ath9k_hw_common(ah);
  1726. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1727. struct list_head bf_head;
  1728. struct ath_desc *ds;
  1729. struct ath_tx_status ts;
  1730. int status;
  1731. ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1732. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1733. txq->axq_link);
  1734. spin_lock_bh(&txq->axq_lock);
  1735. for (;;) {
  1736. if (work_pending(&sc->hw_reset_work))
  1737. break;
  1738. if (list_empty(&txq->axq_q)) {
  1739. txq->axq_link = NULL;
  1740. if (sc->sc_flags & SC_OP_TXAGGR)
  1741. ath_txq_schedule(sc, txq);
  1742. break;
  1743. }
  1744. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1745. /*
  1746. * There is a race condition that a BH gets scheduled
  1747. * after sw writes TxE and before hw re-load the last
  1748. * descriptor to get the newly chained one.
  1749. * Software must keep the last DONE descriptor as a
  1750. * holding descriptor - software does so by marking
  1751. * it with the STALE flag.
  1752. */
  1753. bf_held = NULL;
  1754. if (bf->bf_stale) {
  1755. bf_held = bf;
  1756. if (list_is_last(&bf_held->list, &txq->axq_q))
  1757. break;
  1758. bf = list_entry(bf_held->list.next, struct ath_buf,
  1759. list);
  1760. }
  1761. lastbf = bf->bf_lastbf;
  1762. ds = lastbf->bf_desc;
  1763. memset(&ts, 0, sizeof(ts));
  1764. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1765. if (status == -EINPROGRESS)
  1766. break;
  1767. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1768. /*
  1769. * Remove ath_buf's of the same transmit unit from txq,
  1770. * however leave the last descriptor back as the holding
  1771. * descriptor for hw.
  1772. */
  1773. lastbf->bf_stale = true;
  1774. INIT_LIST_HEAD(&bf_head);
  1775. if (!list_is_singular(&lastbf->list))
  1776. list_cut_position(&bf_head,
  1777. &txq->axq_q, lastbf->list.prev);
  1778. if (bf_held) {
  1779. list_del(&bf_held->list);
  1780. ath_tx_return_buffer(sc, bf_held);
  1781. }
  1782. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1783. }
  1784. spin_unlock_bh(&txq->axq_lock);
  1785. }
  1786. static void ath_tx_complete_poll_work(struct work_struct *work)
  1787. {
  1788. struct ath_softc *sc = container_of(work, struct ath_softc,
  1789. tx_complete_work.work);
  1790. struct ath_txq *txq;
  1791. int i;
  1792. bool needreset = false;
  1793. #ifdef CONFIG_ATH9K_DEBUGFS
  1794. sc->tx_complete_poll_work_seen++;
  1795. #endif
  1796. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1797. if (ATH_TXQ_SETUP(sc, i)) {
  1798. txq = &sc->tx.txq[i];
  1799. spin_lock_bh(&txq->axq_lock);
  1800. if (txq->axq_depth) {
  1801. if (txq->axq_tx_inprogress) {
  1802. needreset = true;
  1803. spin_unlock_bh(&txq->axq_lock);
  1804. break;
  1805. } else {
  1806. txq->axq_tx_inprogress = true;
  1807. }
  1808. }
  1809. spin_unlock_bh(&txq->axq_lock);
  1810. }
  1811. if (needreset) {
  1812. ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1813. "tx hung, resetting the chip\n");
  1814. RESET_STAT_INC(sc, RESET_TYPE_TX_HANG);
  1815. ieee80211_queue_work(sc->hw, &sc->hw_reset_work);
  1816. }
  1817. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1818. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1819. }
  1820. void ath_tx_tasklet(struct ath_softc *sc)
  1821. {
  1822. int i;
  1823. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1824. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1825. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1826. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1827. ath_tx_processq(sc, &sc->tx.txq[i]);
  1828. }
  1829. }
  1830. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1831. {
  1832. struct ath_tx_status ts;
  1833. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1834. struct ath_hw *ah = sc->sc_ah;
  1835. struct ath_txq *txq;
  1836. struct ath_buf *bf, *lastbf;
  1837. struct list_head bf_head;
  1838. int status;
  1839. for (;;) {
  1840. if (work_pending(&sc->hw_reset_work))
  1841. break;
  1842. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1843. if (status == -EINPROGRESS)
  1844. break;
  1845. if (status == -EIO) {
  1846. ath_dbg(common, ATH_DBG_XMIT,
  1847. "Error processing tx status\n");
  1848. break;
  1849. }
  1850. /* Skip beacon completions */
  1851. if (ts.qid == sc->beacon.beaconq)
  1852. continue;
  1853. txq = &sc->tx.txq[ts.qid];
  1854. spin_lock_bh(&txq->axq_lock);
  1855. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1856. spin_unlock_bh(&txq->axq_lock);
  1857. return;
  1858. }
  1859. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1860. struct ath_buf, list);
  1861. lastbf = bf->bf_lastbf;
  1862. INIT_LIST_HEAD(&bf_head);
  1863. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1864. &lastbf->list);
  1865. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1866. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1867. if (!list_empty(&txq->axq_q)) {
  1868. struct list_head bf_q;
  1869. INIT_LIST_HEAD(&bf_q);
  1870. txq->axq_link = NULL;
  1871. list_splice_tail_init(&txq->axq_q, &bf_q);
  1872. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1873. }
  1874. }
  1875. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1876. spin_unlock_bh(&txq->axq_lock);
  1877. }
  1878. }
  1879. /*****************/
  1880. /* Init, Cleanup */
  1881. /*****************/
  1882. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1883. {
  1884. struct ath_descdma *dd = &sc->txsdma;
  1885. u8 txs_len = sc->sc_ah->caps.txs_len;
  1886. dd->dd_desc_len = size * txs_len;
  1887. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1888. &dd->dd_desc_paddr, GFP_KERNEL);
  1889. if (!dd->dd_desc)
  1890. return -ENOMEM;
  1891. return 0;
  1892. }
  1893. static int ath_tx_edma_init(struct ath_softc *sc)
  1894. {
  1895. int err;
  1896. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1897. if (!err)
  1898. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1899. sc->txsdma.dd_desc_paddr,
  1900. ATH_TXSTATUS_RING_SIZE);
  1901. return err;
  1902. }
  1903. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1904. {
  1905. struct ath_descdma *dd = &sc->txsdma;
  1906. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1907. dd->dd_desc_paddr);
  1908. }
  1909. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1910. {
  1911. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1912. int error = 0;
  1913. spin_lock_init(&sc->tx.txbuflock);
  1914. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1915. "tx", nbufs, 1, 1);
  1916. if (error != 0) {
  1917. ath_err(common,
  1918. "Failed to allocate tx descriptors: %d\n", error);
  1919. goto err;
  1920. }
  1921. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1922. "beacon", ATH_BCBUF, 1, 1);
  1923. if (error != 0) {
  1924. ath_err(common,
  1925. "Failed to allocate beacon descriptors: %d\n", error);
  1926. goto err;
  1927. }
  1928. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1929. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1930. error = ath_tx_edma_init(sc);
  1931. if (error)
  1932. goto err;
  1933. }
  1934. err:
  1935. if (error != 0)
  1936. ath_tx_cleanup(sc);
  1937. return error;
  1938. }
  1939. void ath_tx_cleanup(struct ath_softc *sc)
  1940. {
  1941. if (sc->beacon.bdma.dd_desc_len != 0)
  1942. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1943. if (sc->tx.txdma.dd_desc_len != 0)
  1944. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1945. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1946. ath_tx_edma_cleanup(sc);
  1947. }
  1948. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1949. {
  1950. struct ath_atx_tid *tid;
  1951. struct ath_atx_ac *ac;
  1952. int tidno, acno;
  1953. for (tidno = 0, tid = &an->tid[tidno];
  1954. tidno < WME_NUM_TID;
  1955. tidno++, tid++) {
  1956. tid->an = an;
  1957. tid->tidno = tidno;
  1958. tid->seq_start = tid->seq_next = 0;
  1959. tid->baw_size = WME_MAX_BA;
  1960. tid->baw_head = tid->baw_tail = 0;
  1961. tid->sched = false;
  1962. tid->paused = false;
  1963. tid->state &= ~AGGR_CLEANUP;
  1964. __skb_queue_head_init(&tid->buf_q);
  1965. acno = TID_TO_WME_AC(tidno);
  1966. tid->ac = &an->ac[acno];
  1967. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1968. tid->state &= ~AGGR_ADDBA_PROGRESS;
  1969. }
  1970. for (acno = 0, ac = &an->ac[acno];
  1971. acno < WME_NUM_AC; acno++, ac++) {
  1972. ac->sched = false;
  1973. ac->txq = sc->tx.txq_map[acno];
  1974. INIT_LIST_HEAD(&ac->tid_q);
  1975. }
  1976. }
  1977. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1978. {
  1979. struct ath_atx_ac *ac;
  1980. struct ath_atx_tid *tid;
  1981. struct ath_txq *txq;
  1982. int tidno;
  1983. for (tidno = 0, tid = &an->tid[tidno];
  1984. tidno < WME_NUM_TID; tidno++, tid++) {
  1985. ac = tid->ac;
  1986. txq = ac->txq;
  1987. spin_lock_bh(&txq->axq_lock);
  1988. if (tid->sched) {
  1989. list_del(&tid->list);
  1990. tid->sched = false;
  1991. }
  1992. if (ac->sched) {
  1993. list_del(&ac->list);
  1994. tid->ac->sched = false;
  1995. }
  1996. ath_tid_drain(sc, txq, tid);
  1997. tid->state &= ~AGGR_ADDBA_COMPLETE;
  1998. tid->state &= ~AGGR_CLEANUP;
  1999. spin_unlock_bh(&txq->axq_lock);
  2000. }
  2001. }