mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <linux/sort.h>
  18. #include <asm/cputype.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/mach/arch.h>
  27. #include <asm/mach/map.h>
  28. #include "mm.h"
  29. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  30. /*
  31. * empty_zero_page is a special page that is used for
  32. * zero-initialized data and COW.
  33. */
  34. struct page *empty_zero_page;
  35. EXPORT_SYMBOL(empty_zero_page);
  36. /*
  37. * The pmd table for the upper-most set of pages.
  38. */
  39. pmd_t *top_pmd;
  40. #define CPOLICY_UNCACHED 0
  41. #define CPOLICY_BUFFERED 1
  42. #define CPOLICY_WRITETHROUGH 2
  43. #define CPOLICY_WRITEBACK 3
  44. #define CPOLICY_WRITEALLOC 4
  45. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  46. static unsigned int ecc_mask __initdata = 0;
  47. pgprot_t pgprot_user;
  48. pgprot_t pgprot_kernel;
  49. EXPORT_SYMBOL(pgprot_user);
  50. EXPORT_SYMBOL(pgprot_kernel);
  51. struct cachepolicy {
  52. const char policy[16];
  53. unsigned int cr_mask;
  54. unsigned int pmd;
  55. unsigned int pte;
  56. };
  57. static struct cachepolicy cache_policies[] __initdata = {
  58. {
  59. .policy = "uncached",
  60. .cr_mask = CR_W|CR_C,
  61. .pmd = PMD_SECT_UNCACHED,
  62. .pte = L_PTE_MT_UNCACHED,
  63. }, {
  64. .policy = "buffered",
  65. .cr_mask = CR_C,
  66. .pmd = PMD_SECT_BUFFERED,
  67. .pte = L_PTE_MT_BUFFERABLE,
  68. }, {
  69. .policy = "writethrough",
  70. .cr_mask = 0,
  71. .pmd = PMD_SECT_WT,
  72. .pte = L_PTE_MT_WRITETHROUGH,
  73. }, {
  74. .policy = "writeback",
  75. .cr_mask = 0,
  76. .pmd = PMD_SECT_WB,
  77. .pte = L_PTE_MT_WRITEBACK,
  78. }, {
  79. .policy = "writealloc",
  80. .cr_mask = 0,
  81. .pmd = PMD_SECT_WBWA,
  82. .pte = L_PTE_MT_WRITEALLOC,
  83. }
  84. };
  85. /*
  86. * These are useful for identifying cache coherency
  87. * problems by allowing the cache or the cache and
  88. * writebuffer to be turned off. (Note: the write
  89. * buffer should not be on and the cache off).
  90. */
  91. static int __init early_cachepolicy(char *p)
  92. {
  93. int i;
  94. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  95. int len = strlen(cache_policies[i].policy);
  96. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  97. cachepolicy = i;
  98. cr_alignment &= ~cache_policies[i].cr_mask;
  99. cr_no_alignment &= ~cache_policies[i].cr_mask;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. /*
  106. * This restriction is partly to do with the way we boot; it is
  107. * unpredictable to have memory mapped using two different sets of
  108. * memory attributes (shared, type, and cache attribs). We can not
  109. * change these attributes once the initial assembly has setup the
  110. * page tables.
  111. */
  112. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  113. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  114. cachepolicy = CPOLICY_WRITEBACK;
  115. }
  116. flush_cache_all();
  117. set_cr(cr_alignment);
  118. return 0;
  119. }
  120. early_param("cachepolicy", early_cachepolicy);
  121. static int __init early_nocache(char *__unused)
  122. {
  123. char *p = "buffered";
  124. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  125. early_cachepolicy(p);
  126. return 0;
  127. }
  128. early_param("nocache", early_nocache);
  129. static int __init early_nowrite(char *__unused)
  130. {
  131. char *p = "uncached";
  132. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  133. early_cachepolicy(p);
  134. return 0;
  135. }
  136. early_param("nowb", early_nowrite);
  137. static int __init early_ecc(char *p)
  138. {
  139. if (memcmp(p, "on", 2) == 0)
  140. ecc_mask = PMD_PROTECTION;
  141. else if (memcmp(p, "off", 3) == 0)
  142. ecc_mask = 0;
  143. return 0;
  144. }
  145. early_param("ecc", early_ecc);
  146. static int __init noalign_setup(char *__unused)
  147. {
  148. cr_alignment &= ~CR_A;
  149. cr_no_alignment &= ~CR_A;
  150. set_cr(cr_alignment);
  151. return 1;
  152. }
  153. __setup("noalign", noalign_setup);
  154. #ifndef CONFIG_SMP
  155. void adjust_cr(unsigned long mask, unsigned long set)
  156. {
  157. unsigned long flags;
  158. mask &= ~CR_A;
  159. set &= mask;
  160. local_irq_save(flags);
  161. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  162. cr_alignment = (cr_alignment & ~mask) | set;
  163. set_cr((get_cr() & ~mask) | set);
  164. local_irq_restore(flags);
  165. }
  166. #endif
  167. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  168. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  169. static struct mem_type mem_types[] = {
  170. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  171. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  172. L_PTE_SHARED,
  173. .prot_l1 = PMD_TYPE_TABLE,
  174. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  175. .domain = DOMAIN_IO,
  176. },
  177. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  178. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  179. .prot_l1 = PMD_TYPE_TABLE,
  180. .prot_sect = PROT_SECT_DEVICE,
  181. .domain = DOMAIN_IO,
  182. },
  183. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  184. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  185. .prot_l1 = PMD_TYPE_TABLE,
  186. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  187. .domain = DOMAIN_IO,
  188. },
  189. [MT_DEVICE_WC] = { /* ioremap_wc */
  190. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  191. .prot_l1 = PMD_TYPE_TABLE,
  192. .prot_sect = PROT_SECT_DEVICE,
  193. .domain = DOMAIN_IO,
  194. },
  195. [MT_UNCACHED] = {
  196. .prot_pte = PROT_PTE_DEVICE,
  197. .prot_l1 = PMD_TYPE_TABLE,
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  199. .domain = DOMAIN_IO,
  200. },
  201. [MT_CACHECLEAN] = {
  202. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  203. .domain = DOMAIN_KERNEL,
  204. },
  205. [MT_MINICLEAN] = {
  206. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  207. .domain = DOMAIN_KERNEL,
  208. },
  209. [MT_LOW_VECTORS] = {
  210. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  211. L_PTE_EXEC,
  212. .prot_l1 = PMD_TYPE_TABLE,
  213. .domain = DOMAIN_USER,
  214. },
  215. [MT_HIGH_VECTORS] = {
  216. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  217. L_PTE_USER | L_PTE_EXEC,
  218. .prot_l1 = PMD_TYPE_TABLE,
  219. .domain = DOMAIN_USER,
  220. },
  221. [MT_MEMORY] = {
  222. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  223. .domain = DOMAIN_KERNEL,
  224. },
  225. [MT_ROM] = {
  226. .prot_sect = PMD_TYPE_SECT,
  227. .domain = DOMAIN_KERNEL,
  228. },
  229. [MT_MEMORY_NONCACHED] = {
  230. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  231. .domain = DOMAIN_KERNEL,
  232. },
  233. };
  234. const struct mem_type *get_mem_type(unsigned int type)
  235. {
  236. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  237. }
  238. EXPORT_SYMBOL(get_mem_type);
  239. /*
  240. * Adjust the PMD section entries according to the CPU in use.
  241. */
  242. static void __init build_mem_type_table(void)
  243. {
  244. struct cachepolicy *cp;
  245. unsigned int cr = get_cr();
  246. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  247. int cpu_arch = cpu_architecture();
  248. int i;
  249. if (cpu_arch < CPU_ARCH_ARMv6) {
  250. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  251. if (cachepolicy > CPOLICY_BUFFERED)
  252. cachepolicy = CPOLICY_BUFFERED;
  253. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  254. if (cachepolicy > CPOLICY_WRITETHROUGH)
  255. cachepolicy = CPOLICY_WRITETHROUGH;
  256. #endif
  257. }
  258. if (cpu_arch < CPU_ARCH_ARMv5) {
  259. if (cachepolicy >= CPOLICY_WRITEALLOC)
  260. cachepolicy = CPOLICY_WRITEBACK;
  261. ecc_mask = 0;
  262. }
  263. #ifdef CONFIG_SMP
  264. cachepolicy = CPOLICY_WRITEALLOC;
  265. #endif
  266. /*
  267. * Strip out features not present on earlier architectures.
  268. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  269. * without extended page tables don't have the 'Shared' bit.
  270. */
  271. if (cpu_arch < CPU_ARCH_ARMv5)
  272. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  273. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  274. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  275. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  276. mem_types[i].prot_sect &= ~PMD_SECT_S;
  277. /*
  278. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  279. * "update-able on write" bit on ARM610). However, Xscale and
  280. * Xscale3 require this bit to be cleared.
  281. */
  282. if (cpu_is_xscale() || cpu_is_xsc3()) {
  283. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  284. mem_types[i].prot_sect &= ~PMD_BIT4;
  285. mem_types[i].prot_l1 &= ~PMD_BIT4;
  286. }
  287. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  288. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  289. if (mem_types[i].prot_l1)
  290. mem_types[i].prot_l1 |= PMD_BIT4;
  291. if (mem_types[i].prot_sect)
  292. mem_types[i].prot_sect |= PMD_BIT4;
  293. }
  294. }
  295. /*
  296. * Mark the device areas according to the CPU/architecture.
  297. */
  298. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  299. if (!cpu_is_xsc3()) {
  300. /*
  301. * Mark device regions on ARMv6+ as execute-never
  302. * to prevent speculative instruction fetches.
  303. */
  304. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  305. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  306. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  307. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  308. }
  309. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  310. /*
  311. * For ARMv7 with TEX remapping,
  312. * - shared device is SXCB=1100
  313. * - nonshared device is SXCB=0100
  314. * - write combine device mem is SXCB=0001
  315. * (Uncached Normal memory)
  316. */
  317. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  318. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  319. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  320. } else if (cpu_is_xsc3()) {
  321. /*
  322. * For Xscale3,
  323. * - shared device is TEXCB=00101
  324. * - nonshared device is TEXCB=01000
  325. * - write combine device mem is TEXCB=00100
  326. * (Inner/Outer Uncacheable in xsc3 parlance)
  327. */
  328. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  329. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  330. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  331. } else {
  332. /*
  333. * For ARMv6 and ARMv7 without TEX remapping,
  334. * - shared device is TEXCB=00001
  335. * - nonshared device is TEXCB=01000
  336. * - write combine device mem is TEXCB=00100
  337. * (Uncached Normal in ARMv6 parlance).
  338. */
  339. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  340. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  341. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  342. }
  343. } else {
  344. /*
  345. * On others, write combining is "Uncached/Buffered"
  346. */
  347. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  348. }
  349. /*
  350. * Now deal with the memory-type mappings
  351. */
  352. cp = &cache_policies[cachepolicy];
  353. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  354. #ifndef CONFIG_SMP
  355. /*
  356. * Only use write-through for non-SMP systems
  357. */
  358. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  359. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  360. #endif
  361. /*
  362. * Enable CPU-specific coherency if supported.
  363. * (Only available on XSC3 at the moment.)
  364. */
  365. if (arch_is_coherent() && cpu_is_xsc3())
  366. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  367. /*
  368. * ARMv6 and above have extended page tables.
  369. */
  370. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  371. /*
  372. * Mark cache clean areas and XIP ROM read only
  373. * from SVC mode and no access from userspace.
  374. */
  375. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  376. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  377. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  378. #ifdef CONFIG_SMP
  379. /*
  380. * Mark memory with the "shared" attribute for SMP systems
  381. */
  382. user_pgprot |= L_PTE_SHARED;
  383. kern_pgprot |= L_PTE_SHARED;
  384. vecs_pgprot |= L_PTE_SHARED;
  385. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  386. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  387. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  388. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  389. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  390. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  391. #endif
  392. }
  393. /*
  394. * Non-cacheable Normal - intended for memory areas that must
  395. * not cause dirty cache line writebacks when used
  396. */
  397. if (cpu_arch >= CPU_ARCH_ARMv6) {
  398. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  399. /* Non-cacheable Normal is XCB = 001 */
  400. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  401. PMD_SECT_BUFFERED;
  402. } else {
  403. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  404. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  405. PMD_SECT_TEX(1);
  406. }
  407. } else {
  408. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  409. }
  410. for (i = 0; i < 16; i++) {
  411. unsigned long v = pgprot_val(protection_map[i]);
  412. protection_map[i] = __pgprot(v | user_pgprot);
  413. }
  414. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  415. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  416. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  417. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  418. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  419. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  420. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  421. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  422. mem_types[MT_ROM].prot_sect |= cp->pmd;
  423. switch (cp->pmd) {
  424. case PMD_SECT_WT:
  425. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  426. break;
  427. case PMD_SECT_WB:
  428. case PMD_SECT_WBWA:
  429. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  430. break;
  431. }
  432. printk("Memory policy: ECC %sabled, Data cache %s\n",
  433. ecc_mask ? "en" : "dis", cp->policy);
  434. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  435. struct mem_type *t = &mem_types[i];
  436. if (t->prot_l1)
  437. t->prot_l1 |= PMD_DOMAIN(t->domain);
  438. if (t->prot_sect)
  439. t->prot_sect |= PMD_DOMAIN(t->domain);
  440. }
  441. }
  442. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  443. static void __init *early_alloc(unsigned long sz)
  444. {
  445. return alloc_bootmem_low_pages(sz);
  446. }
  447. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  448. unsigned long end, unsigned long pfn,
  449. const struct mem_type *type)
  450. {
  451. pte_t *pte;
  452. if (pmd_none(*pmd)) {
  453. pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
  454. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  455. }
  456. pte = pte_offset_kernel(pmd, addr);
  457. do {
  458. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  459. pfn++;
  460. } while (pte++, addr += PAGE_SIZE, addr != end);
  461. }
  462. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  463. unsigned long end, unsigned long phys,
  464. const struct mem_type *type)
  465. {
  466. pmd_t *pmd = pmd_offset(pgd, addr);
  467. /*
  468. * Try a section mapping - end, addr and phys must all be aligned
  469. * to a section boundary. Note that PMDs refer to the individual
  470. * L1 entries, whereas PGDs refer to a group of L1 entries making
  471. * up one logical pointer to an L2 table.
  472. */
  473. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  474. pmd_t *p = pmd;
  475. if (addr & SECTION_SIZE)
  476. pmd++;
  477. do {
  478. *pmd = __pmd(phys | type->prot_sect);
  479. phys += SECTION_SIZE;
  480. } while (pmd++, addr += SECTION_SIZE, addr != end);
  481. flush_pmd_entry(p);
  482. } else {
  483. /*
  484. * No need to loop; pte's aren't interested in the
  485. * individual L1 entries.
  486. */
  487. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  488. }
  489. }
  490. static void __init create_36bit_mapping(struct map_desc *md,
  491. const struct mem_type *type)
  492. {
  493. unsigned long phys, addr, length, end;
  494. pgd_t *pgd;
  495. addr = md->virtual;
  496. phys = (unsigned long)__pfn_to_phys(md->pfn);
  497. length = PAGE_ALIGN(md->length);
  498. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  499. printk(KERN_ERR "MM: CPU does not support supersection "
  500. "mapping for 0x%08llx at 0x%08lx\n",
  501. __pfn_to_phys((u64)md->pfn), addr);
  502. return;
  503. }
  504. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  505. * Since domain assignments can in fact be arbitrary, the
  506. * 'domain == 0' check below is required to insure that ARMv6
  507. * supersections are only allocated for domain 0 regardless
  508. * of the actual domain assignments in use.
  509. */
  510. if (type->domain) {
  511. printk(KERN_ERR "MM: invalid domain in supersection "
  512. "mapping for 0x%08llx at 0x%08lx\n",
  513. __pfn_to_phys((u64)md->pfn), addr);
  514. return;
  515. }
  516. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  517. printk(KERN_ERR "MM: cannot create mapping for "
  518. "0x%08llx at 0x%08lx invalid alignment\n",
  519. __pfn_to_phys((u64)md->pfn), addr);
  520. return;
  521. }
  522. /*
  523. * Shift bits [35:32] of address into bits [23:20] of PMD
  524. * (See ARMv6 spec).
  525. */
  526. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  527. pgd = pgd_offset_k(addr);
  528. end = addr + length;
  529. do {
  530. pmd_t *pmd = pmd_offset(pgd, addr);
  531. int i;
  532. for (i = 0; i < 16; i++)
  533. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  534. addr += SUPERSECTION_SIZE;
  535. phys += SUPERSECTION_SIZE;
  536. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  537. } while (addr != end);
  538. }
  539. /*
  540. * Create the page directory entries and any necessary
  541. * page tables for the mapping specified by `md'. We
  542. * are able to cope here with varying sizes and address
  543. * offsets, and we take full advantage of sections and
  544. * supersections.
  545. */
  546. static void __init create_mapping(struct map_desc *md)
  547. {
  548. unsigned long phys, addr, length, end;
  549. const struct mem_type *type;
  550. pgd_t *pgd;
  551. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  552. printk(KERN_WARNING "BUG: not creating mapping for "
  553. "0x%08llx at 0x%08lx in user region\n",
  554. __pfn_to_phys((u64)md->pfn), md->virtual);
  555. return;
  556. }
  557. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  558. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  559. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  560. "overlaps vmalloc space\n",
  561. __pfn_to_phys((u64)md->pfn), md->virtual);
  562. }
  563. type = &mem_types[md->type];
  564. /*
  565. * Catch 36-bit addresses
  566. */
  567. if (md->pfn >= 0x100000) {
  568. create_36bit_mapping(md, type);
  569. return;
  570. }
  571. addr = md->virtual & PAGE_MASK;
  572. phys = (unsigned long)__pfn_to_phys(md->pfn);
  573. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  574. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  575. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  576. "be mapped using pages, ignoring.\n",
  577. __pfn_to_phys(md->pfn), addr);
  578. return;
  579. }
  580. pgd = pgd_offset_k(addr);
  581. end = addr + length;
  582. do {
  583. unsigned long next = pgd_addr_end(addr, end);
  584. alloc_init_section(pgd, addr, next, phys, type);
  585. phys += next - addr;
  586. addr = next;
  587. } while (pgd++, addr != end);
  588. }
  589. /*
  590. * Create the architecture specific mappings
  591. */
  592. void __init iotable_init(struct map_desc *io_desc, int nr)
  593. {
  594. int i;
  595. for (i = 0; i < nr; i++)
  596. create_mapping(io_desc + i);
  597. }
  598. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  599. /*
  600. * vmalloc=size forces the vmalloc area to be exactly 'size'
  601. * bytes. This can be used to increase (or decrease) the vmalloc
  602. * area - the default is 128m.
  603. */
  604. static int __init early_vmalloc(char *arg)
  605. {
  606. unsigned long vmalloc_reserve = memparse(arg, NULL);
  607. if (vmalloc_reserve < SZ_16M) {
  608. vmalloc_reserve = SZ_16M;
  609. printk(KERN_WARNING
  610. "vmalloc area too small, limiting to %luMB\n",
  611. vmalloc_reserve >> 20);
  612. }
  613. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  614. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  615. printk(KERN_WARNING
  616. "vmalloc area is too big, limiting to %luMB\n",
  617. vmalloc_reserve >> 20);
  618. }
  619. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  620. return 0;
  621. }
  622. early_param("vmalloc", early_vmalloc);
  623. static void __init sanity_check_meminfo(void)
  624. {
  625. int i, j, highmem = 0;
  626. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  627. struct membank *bank = &meminfo.bank[j];
  628. *bank = meminfo.bank[i];
  629. #ifdef CONFIG_HIGHMEM
  630. if (__va(bank->start) > vmalloc_min ||
  631. __va(bank->start) < (void *)PAGE_OFFSET)
  632. highmem = 1;
  633. bank->highmem = highmem;
  634. /*
  635. * Split those memory banks which are partially overlapping
  636. * the vmalloc area greatly simplifying things later.
  637. */
  638. if (__va(bank->start) < vmalloc_min &&
  639. bank->size > vmalloc_min - __va(bank->start)) {
  640. if (meminfo.nr_banks >= NR_BANKS) {
  641. printk(KERN_CRIT "NR_BANKS too low, "
  642. "ignoring high memory\n");
  643. } else {
  644. memmove(bank + 1, bank,
  645. (meminfo.nr_banks - i) * sizeof(*bank));
  646. meminfo.nr_banks++;
  647. i++;
  648. bank[1].size -= vmalloc_min - __va(bank->start);
  649. bank[1].start = __pa(vmalloc_min - 1) + 1;
  650. bank[1].highmem = highmem = 1;
  651. j++;
  652. }
  653. bank->size = vmalloc_min - __va(bank->start);
  654. }
  655. #else
  656. bank->highmem = highmem;
  657. /*
  658. * Check whether this memory bank would entirely overlap
  659. * the vmalloc area.
  660. */
  661. if (__va(bank->start) >= vmalloc_min ||
  662. __va(bank->start) < (void *)PAGE_OFFSET) {
  663. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  664. "(vmalloc region overlap).\n",
  665. bank->start, bank->start + bank->size - 1);
  666. continue;
  667. }
  668. /*
  669. * Check whether this memory bank would partially overlap
  670. * the vmalloc area.
  671. */
  672. if (__va(bank->start + bank->size) > vmalloc_min ||
  673. __va(bank->start + bank->size) < __va(bank->start)) {
  674. unsigned long newsize = vmalloc_min - __va(bank->start);
  675. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  676. "to -%.8lx (vmalloc region overlap).\n",
  677. bank->start, bank->start + bank->size - 1,
  678. bank->start + newsize - 1);
  679. bank->size = newsize;
  680. }
  681. #endif
  682. j++;
  683. }
  684. #ifdef CONFIG_HIGHMEM
  685. if (highmem) {
  686. const char *reason = NULL;
  687. if (cache_is_vipt_aliasing()) {
  688. /*
  689. * Interactions between kmap and other mappings
  690. * make highmem support with aliasing VIPT caches
  691. * rather difficult.
  692. */
  693. reason = "with VIPT aliasing cache";
  694. #ifdef CONFIG_SMP
  695. } else if (tlb_ops_need_broadcast()) {
  696. /*
  697. * kmap_high needs to occasionally flush TLB entries,
  698. * however, if the TLB entries need to be broadcast
  699. * we may deadlock:
  700. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  701. * flush_tlb_kernel_range->smp_call_function_many
  702. * (must not be called with irqs off)
  703. */
  704. reason = "without hardware TLB ops broadcasting";
  705. #endif
  706. }
  707. if (reason) {
  708. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  709. reason);
  710. while (j > 0 && meminfo.bank[j - 1].highmem)
  711. j--;
  712. }
  713. }
  714. #endif
  715. meminfo.nr_banks = j;
  716. }
  717. static inline void prepare_page_table(void)
  718. {
  719. unsigned long addr;
  720. /*
  721. * Clear out all the mappings below the kernel image.
  722. */
  723. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  724. pmd_clear(pmd_off_k(addr));
  725. #ifdef CONFIG_XIP_KERNEL
  726. /* The XIP kernel is mapped in the module area -- skip over it */
  727. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  728. #endif
  729. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  730. pmd_clear(pmd_off_k(addr));
  731. /*
  732. * Clear out all the kernel space mappings, except for the first
  733. * memory bank, up to the end of the vmalloc region.
  734. */
  735. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  736. addr < VMALLOC_END; addr += PGDIR_SIZE)
  737. pmd_clear(pmd_off_k(addr));
  738. }
  739. /*
  740. * Reserve the various regions
  741. */
  742. void __init reserve_special_regions(void)
  743. {
  744. /*
  745. * Register the kernel text and data with bootmem.
  746. * Note that this can only be in node 0.
  747. */
  748. #ifdef CONFIG_XIP_KERNEL
  749. reserve_bootmem(__pa(_data), _end - _data, BOOTMEM_DEFAULT);
  750. #else
  751. reserve_bootmem(__pa(_stext), _end - _stext, BOOTMEM_DEFAULT);
  752. #endif
  753. /*
  754. * Reserve the page tables. These are already in use,
  755. * and can only be in node 0.
  756. */
  757. reserve_bootmem(__pa(swapper_pg_dir),
  758. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  759. #ifdef CONFIG_SA1111
  760. /*
  761. * Because of the SA1111 DMA bug, we want to preserve our
  762. * precious DMA-able memory...
  763. */
  764. reserve_bootmem(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET,
  765. BOOTMEM_DEFAULT);
  766. #endif
  767. }
  768. /*
  769. * Set up device the mappings. Since we clear out the page tables for all
  770. * mappings above VMALLOC_END, we will remove any debug device mappings.
  771. * This means you have to be careful how you debug this function, or any
  772. * called function. This means you can't use any function or debugging
  773. * method which may touch any device, otherwise the kernel _will_ crash.
  774. */
  775. static void __init devicemaps_init(struct machine_desc *mdesc)
  776. {
  777. struct map_desc map;
  778. unsigned long addr;
  779. void *vectors;
  780. /*
  781. * Allocate the vector page early.
  782. */
  783. vectors = early_alloc(PAGE_SIZE);
  784. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  785. pmd_clear(pmd_off_k(addr));
  786. /*
  787. * Map the kernel if it is XIP.
  788. * It is always first in the modulearea.
  789. */
  790. #ifdef CONFIG_XIP_KERNEL
  791. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  792. map.virtual = MODULES_VADDR;
  793. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  794. map.type = MT_ROM;
  795. create_mapping(&map);
  796. #endif
  797. /*
  798. * Map the cache flushing regions.
  799. */
  800. #ifdef FLUSH_BASE
  801. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  802. map.virtual = FLUSH_BASE;
  803. map.length = SZ_1M;
  804. map.type = MT_CACHECLEAN;
  805. create_mapping(&map);
  806. #endif
  807. #ifdef FLUSH_BASE_MINICACHE
  808. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  809. map.virtual = FLUSH_BASE_MINICACHE;
  810. map.length = SZ_1M;
  811. map.type = MT_MINICLEAN;
  812. create_mapping(&map);
  813. #endif
  814. /*
  815. * Create a mapping for the machine vectors at the high-vectors
  816. * location (0xffff0000). If we aren't using high-vectors, also
  817. * create a mapping at the low-vectors virtual address.
  818. */
  819. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  820. map.virtual = 0xffff0000;
  821. map.length = PAGE_SIZE;
  822. map.type = MT_HIGH_VECTORS;
  823. create_mapping(&map);
  824. if (!vectors_high()) {
  825. map.virtual = 0;
  826. map.type = MT_LOW_VECTORS;
  827. create_mapping(&map);
  828. }
  829. /*
  830. * Ask the machine support to map in the statically mapped devices.
  831. */
  832. if (mdesc->map_io)
  833. mdesc->map_io();
  834. /*
  835. * Finally flush the caches and tlb to ensure that we're in a
  836. * consistent state wrt the writebuffer. This also ensures that
  837. * any write-allocated cache lines in the vector page are written
  838. * back. After this point, we can start to touch devices again.
  839. */
  840. local_flush_tlb_all();
  841. flush_cache_all();
  842. }
  843. static void __init kmap_init(void)
  844. {
  845. #ifdef CONFIG_HIGHMEM
  846. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  847. pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
  848. BUG_ON(!pmd_none(*pmd) || !pte);
  849. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  850. pkmap_page_table = pte + PTRS_PER_PTE;
  851. #endif
  852. }
  853. static inline void map_memory_bank(struct membank *bank)
  854. {
  855. struct map_desc map;
  856. map.pfn = bank_pfn_start(bank);
  857. map.virtual = __phys_to_virt(bank_phys_start(bank));
  858. map.length = bank_phys_size(bank);
  859. map.type = MT_MEMORY;
  860. create_mapping(&map);
  861. }
  862. static void __init map_lowmem(void)
  863. {
  864. struct meminfo *mi = &meminfo;
  865. int i;
  866. /* Map all the lowmem memory banks. */
  867. for (i = 0; i < mi->nr_banks; i++) {
  868. struct membank *bank = &mi->bank[i];
  869. if (!bank->highmem)
  870. map_memory_bank(bank);
  871. }
  872. }
  873. static int __init meminfo_cmp(const void *_a, const void *_b)
  874. {
  875. const struct membank *a = _a, *b = _b;
  876. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  877. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  878. }
  879. /*
  880. * paging_init() sets up the page tables, initialises the zone memory
  881. * maps, and sets up the zero page, bad page and bad page tables.
  882. */
  883. void __init paging_init(struct machine_desc *mdesc)
  884. {
  885. void *zero_page;
  886. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  887. build_mem_type_table();
  888. sanity_check_meminfo();
  889. prepare_page_table();
  890. map_lowmem();
  891. bootmem_init(mdesc);
  892. devicemaps_init(mdesc);
  893. kmap_init();
  894. top_pmd = pmd_off_k(0xffff0000);
  895. /* allocate the zero page. */
  896. zero_page = early_alloc(PAGE_SIZE);
  897. empty_zero_page = virt_to_page(zero_page);
  898. __flush_dcache_page(NULL, empty_zero_page);
  899. }
  900. /*
  901. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  902. * the user-mode pages. This will then ensure that we have predictable
  903. * results when turning the mmu off
  904. */
  905. void setup_mm_for_reboot(char mode)
  906. {
  907. unsigned long base_pmdval;
  908. pgd_t *pgd;
  909. int i;
  910. /*
  911. * We need to access to user-mode page tables here. For kernel threads
  912. * we don't have any user-mode mappings so we use the context that we
  913. * "borrowed".
  914. */
  915. pgd = current->active_mm->pgd;
  916. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  917. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  918. base_pmdval |= PMD_BIT4;
  919. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  920. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  921. pmd_t *pmd;
  922. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  923. pmd[0] = __pmd(pmdval);
  924. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  925. flush_pmd_entry(pmd);
  926. }
  927. local_flush_tlb_all();
  928. }