bnx2.c 206 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2010 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/kernel.h>
  15. #include <linux/timer.h>
  16. #include <linux/errno.h>
  17. #include <linux/ioport.h>
  18. #include <linux/slab.h>
  19. #include <linux/vmalloc.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pci.h>
  22. #include <linux/init.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if_vlan.h>
  37. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  38. #define BCM_VLAN 1
  39. #endif
  40. #include <net/ip.h>
  41. #include <net/tcp.h>
  42. #include <net/checksum.h>
  43. #include <linux/workqueue.h>
  44. #include <linux/crc32.h>
  45. #include <linux/prefetch.h>
  46. #include <linux/cache.h>
  47. #include <linux/firmware.h>
  48. #include <linux/log2.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.0.8"
  57. #define DRV_MODULE_RELDATE "Feb 15, 2010"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j9.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] __devinitdata =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] __devinitdata = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  232. {
  233. u32 diff;
  234. smp_mb();
  235. /* The ring uses 256 indices for 255 entries, one of them
  236. * needs to be skipped.
  237. */
  238. diff = txr->tx_prod - txr->tx_cons;
  239. if (unlikely(diff >= TX_DESC_CNT)) {
  240. diff &= 0xffff;
  241. if (diff == TX_DESC_CNT)
  242. diff = MAX_TX_DESC_CNT;
  243. }
  244. return (bp->tx_ring_size - diff);
  245. }
  246. static u32
  247. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  248. {
  249. u32 val;
  250. spin_lock_bh(&bp->indirect_lock);
  251. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  252. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  253. spin_unlock_bh(&bp->indirect_lock);
  254. return val;
  255. }
  256. static void
  257. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  258. {
  259. spin_lock_bh(&bp->indirect_lock);
  260. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  262. spin_unlock_bh(&bp->indirect_lock);
  263. }
  264. static void
  265. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  266. {
  267. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  268. }
  269. static u32
  270. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  271. {
  272. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  273. }
  274. static void
  275. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  276. {
  277. offset += cid_addr;
  278. spin_lock_bh(&bp->indirect_lock);
  279. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  280. int i;
  281. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  282. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  283. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  284. for (i = 0; i < 5; i++) {
  285. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  286. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  287. break;
  288. udelay(5);
  289. }
  290. } else {
  291. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  292. REG_WR(bp, BNX2_CTX_DATA, val);
  293. }
  294. spin_unlock_bh(&bp->indirect_lock);
  295. }
  296. #ifdef BCM_CNIC
  297. static int
  298. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  299. {
  300. struct bnx2 *bp = netdev_priv(dev);
  301. struct drv_ctl_io *io = &info->data.io;
  302. switch (info->cmd) {
  303. case DRV_CTL_IO_WR_CMD:
  304. bnx2_reg_wr_ind(bp, io->offset, io->data);
  305. break;
  306. case DRV_CTL_IO_RD_CMD:
  307. io->data = bnx2_reg_rd_ind(bp, io->offset);
  308. break;
  309. case DRV_CTL_CTX_WR_CMD:
  310. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  311. break;
  312. default:
  313. return -EINVAL;
  314. }
  315. return 0;
  316. }
  317. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  318. {
  319. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  320. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  321. int sb_id;
  322. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  323. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  324. bnapi->cnic_present = 0;
  325. sb_id = bp->irq_nvecs;
  326. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  327. } else {
  328. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  329. bnapi->cnic_tag = bnapi->last_status_idx;
  330. bnapi->cnic_present = 1;
  331. sb_id = 0;
  332. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  333. }
  334. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  335. cp->irq_arr[0].status_blk = (void *)
  336. ((unsigned long) bnapi->status_blk.msi +
  337. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  338. cp->irq_arr[0].status_blk_num = sb_id;
  339. cp->num_irq = 1;
  340. }
  341. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  342. void *data)
  343. {
  344. struct bnx2 *bp = netdev_priv(dev);
  345. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  346. if (ops == NULL)
  347. return -EINVAL;
  348. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  349. return -EBUSY;
  350. bp->cnic_data = data;
  351. rcu_assign_pointer(bp->cnic_ops, ops);
  352. cp->num_irq = 0;
  353. cp->drv_state = CNIC_DRV_STATE_REGD;
  354. bnx2_setup_cnic_irq_info(bp);
  355. return 0;
  356. }
  357. static int bnx2_unregister_cnic(struct net_device *dev)
  358. {
  359. struct bnx2 *bp = netdev_priv(dev);
  360. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  361. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  362. mutex_lock(&bp->cnic_lock);
  363. cp->drv_state = 0;
  364. bnapi->cnic_present = 0;
  365. rcu_assign_pointer(bp->cnic_ops, NULL);
  366. mutex_unlock(&bp->cnic_lock);
  367. synchronize_rcu();
  368. return 0;
  369. }
  370. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  371. {
  372. struct bnx2 *bp = netdev_priv(dev);
  373. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  374. cp->drv_owner = THIS_MODULE;
  375. cp->chip_id = bp->chip_id;
  376. cp->pdev = bp->pdev;
  377. cp->io_base = bp->regview;
  378. cp->drv_ctl = bnx2_drv_ctl;
  379. cp->drv_register_cnic = bnx2_register_cnic;
  380. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  381. return cp;
  382. }
  383. EXPORT_SYMBOL(bnx2_cnic_probe);
  384. static void
  385. bnx2_cnic_stop(struct bnx2 *bp)
  386. {
  387. struct cnic_ops *c_ops;
  388. struct cnic_ctl_info info;
  389. mutex_lock(&bp->cnic_lock);
  390. c_ops = bp->cnic_ops;
  391. if (c_ops) {
  392. info.cmd = CNIC_CTL_STOP_CMD;
  393. c_ops->cnic_ctl(bp->cnic_data, &info);
  394. }
  395. mutex_unlock(&bp->cnic_lock);
  396. }
  397. static void
  398. bnx2_cnic_start(struct bnx2 *bp)
  399. {
  400. struct cnic_ops *c_ops;
  401. struct cnic_ctl_info info;
  402. mutex_lock(&bp->cnic_lock);
  403. c_ops = bp->cnic_ops;
  404. if (c_ops) {
  405. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  406. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  407. bnapi->cnic_tag = bnapi->last_status_idx;
  408. }
  409. info.cmd = CNIC_CTL_START_CMD;
  410. c_ops->cnic_ctl(bp->cnic_data, &info);
  411. }
  412. mutex_unlock(&bp->cnic_lock);
  413. }
  414. #else
  415. static void
  416. bnx2_cnic_stop(struct bnx2 *bp)
  417. {
  418. }
  419. static void
  420. bnx2_cnic_start(struct bnx2 *bp)
  421. {
  422. }
  423. #endif
  424. static int
  425. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  426. {
  427. u32 val1;
  428. int i, ret;
  429. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  430. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  431. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  432. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  433. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  434. udelay(40);
  435. }
  436. val1 = (bp->phy_addr << 21) | (reg << 16) |
  437. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  438. BNX2_EMAC_MDIO_COMM_START_BUSY;
  439. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  440. for (i = 0; i < 50; i++) {
  441. udelay(10);
  442. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  443. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  444. udelay(5);
  445. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  446. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  447. break;
  448. }
  449. }
  450. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  451. *val = 0x0;
  452. ret = -EBUSY;
  453. }
  454. else {
  455. *val = val1;
  456. ret = 0;
  457. }
  458. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  459. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  460. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  461. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  462. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  463. udelay(40);
  464. }
  465. return ret;
  466. }
  467. static int
  468. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  469. {
  470. u32 val1;
  471. int i, ret;
  472. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  473. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  474. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  475. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  476. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  477. udelay(40);
  478. }
  479. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  480. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  481. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  482. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  483. for (i = 0; i < 50; i++) {
  484. udelay(10);
  485. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  486. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  487. udelay(5);
  488. break;
  489. }
  490. }
  491. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  492. ret = -EBUSY;
  493. else
  494. ret = 0;
  495. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  496. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  497. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  498. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  499. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  500. udelay(40);
  501. }
  502. return ret;
  503. }
  504. static void
  505. bnx2_disable_int(struct bnx2 *bp)
  506. {
  507. int i;
  508. struct bnx2_napi *bnapi;
  509. for (i = 0; i < bp->irq_nvecs; i++) {
  510. bnapi = &bp->bnx2_napi[i];
  511. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  512. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  513. }
  514. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  515. }
  516. static void
  517. bnx2_enable_int(struct bnx2 *bp)
  518. {
  519. int i;
  520. struct bnx2_napi *bnapi;
  521. for (i = 0; i < bp->irq_nvecs; i++) {
  522. bnapi = &bp->bnx2_napi[i];
  523. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  524. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  525. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  526. bnapi->last_status_idx);
  527. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  528. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  529. bnapi->last_status_idx);
  530. }
  531. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  532. }
  533. static void
  534. bnx2_disable_int_sync(struct bnx2 *bp)
  535. {
  536. int i;
  537. atomic_inc(&bp->intr_sem);
  538. if (!netif_running(bp->dev))
  539. return;
  540. bnx2_disable_int(bp);
  541. for (i = 0; i < bp->irq_nvecs; i++)
  542. synchronize_irq(bp->irq_tbl[i].vector);
  543. }
  544. static void
  545. bnx2_napi_disable(struct bnx2 *bp)
  546. {
  547. int i;
  548. for (i = 0; i < bp->irq_nvecs; i++)
  549. napi_disable(&bp->bnx2_napi[i].napi);
  550. }
  551. static void
  552. bnx2_napi_enable(struct bnx2 *bp)
  553. {
  554. int i;
  555. for (i = 0; i < bp->irq_nvecs; i++)
  556. napi_enable(&bp->bnx2_napi[i].napi);
  557. }
  558. static void
  559. bnx2_netif_stop(struct bnx2 *bp)
  560. {
  561. bnx2_cnic_stop(bp);
  562. if (netif_running(bp->dev)) {
  563. int i;
  564. bnx2_napi_disable(bp);
  565. netif_tx_disable(bp->dev);
  566. /* prevent tx timeout */
  567. for (i = 0; i < bp->dev->num_tx_queues; i++) {
  568. struct netdev_queue *txq;
  569. txq = netdev_get_tx_queue(bp->dev, i);
  570. txq->trans_start = jiffies;
  571. }
  572. }
  573. bnx2_disable_int_sync(bp);
  574. }
  575. static void
  576. bnx2_netif_start(struct bnx2 *bp)
  577. {
  578. if (atomic_dec_and_test(&bp->intr_sem)) {
  579. if (netif_running(bp->dev)) {
  580. netif_tx_wake_all_queues(bp->dev);
  581. bnx2_napi_enable(bp);
  582. bnx2_enable_int(bp);
  583. bnx2_cnic_start(bp);
  584. }
  585. }
  586. }
  587. static void
  588. bnx2_free_tx_mem(struct bnx2 *bp)
  589. {
  590. int i;
  591. for (i = 0; i < bp->num_tx_rings; i++) {
  592. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  593. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  594. if (txr->tx_desc_ring) {
  595. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  596. txr->tx_desc_ring,
  597. txr->tx_desc_mapping);
  598. txr->tx_desc_ring = NULL;
  599. }
  600. kfree(txr->tx_buf_ring);
  601. txr->tx_buf_ring = NULL;
  602. }
  603. }
  604. static void
  605. bnx2_free_rx_mem(struct bnx2 *bp)
  606. {
  607. int i;
  608. for (i = 0; i < bp->num_rx_rings; i++) {
  609. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  610. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  611. int j;
  612. for (j = 0; j < bp->rx_max_ring; j++) {
  613. if (rxr->rx_desc_ring[j])
  614. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  615. rxr->rx_desc_ring[j],
  616. rxr->rx_desc_mapping[j]);
  617. rxr->rx_desc_ring[j] = NULL;
  618. }
  619. vfree(rxr->rx_buf_ring);
  620. rxr->rx_buf_ring = NULL;
  621. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  622. if (rxr->rx_pg_desc_ring[j])
  623. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  624. rxr->rx_pg_desc_ring[j],
  625. rxr->rx_pg_desc_mapping[j]);
  626. rxr->rx_pg_desc_ring[j] = NULL;
  627. }
  628. vfree(rxr->rx_pg_ring);
  629. rxr->rx_pg_ring = NULL;
  630. }
  631. }
  632. static int
  633. bnx2_alloc_tx_mem(struct bnx2 *bp)
  634. {
  635. int i;
  636. for (i = 0; i < bp->num_tx_rings; i++) {
  637. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  638. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  639. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  640. if (txr->tx_buf_ring == NULL)
  641. return -ENOMEM;
  642. txr->tx_desc_ring =
  643. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  644. &txr->tx_desc_mapping);
  645. if (txr->tx_desc_ring == NULL)
  646. return -ENOMEM;
  647. }
  648. return 0;
  649. }
  650. static int
  651. bnx2_alloc_rx_mem(struct bnx2 *bp)
  652. {
  653. int i;
  654. for (i = 0; i < bp->num_rx_rings; i++) {
  655. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  656. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  657. int j;
  658. rxr->rx_buf_ring =
  659. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  660. if (rxr->rx_buf_ring == NULL)
  661. return -ENOMEM;
  662. memset(rxr->rx_buf_ring, 0,
  663. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  664. for (j = 0; j < bp->rx_max_ring; j++) {
  665. rxr->rx_desc_ring[j] =
  666. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  667. &rxr->rx_desc_mapping[j]);
  668. if (rxr->rx_desc_ring[j] == NULL)
  669. return -ENOMEM;
  670. }
  671. if (bp->rx_pg_ring_size) {
  672. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  673. bp->rx_max_pg_ring);
  674. if (rxr->rx_pg_ring == NULL)
  675. return -ENOMEM;
  676. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  677. bp->rx_max_pg_ring);
  678. }
  679. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  680. rxr->rx_pg_desc_ring[j] =
  681. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  682. &rxr->rx_pg_desc_mapping[j]);
  683. if (rxr->rx_pg_desc_ring[j] == NULL)
  684. return -ENOMEM;
  685. }
  686. }
  687. return 0;
  688. }
  689. static void
  690. bnx2_free_mem(struct bnx2 *bp)
  691. {
  692. int i;
  693. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  694. bnx2_free_tx_mem(bp);
  695. bnx2_free_rx_mem(bp);
  696. for (i = 0; i < bp->ctx_pages; i++) {
  697. if (bp->ctx_blk[i]) {
  698. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  699. bp->ctx_blk[i],
  700. bp->ctx_blk_mapping[i]);
  701. bp->ctx_blk[i] = NULL;
  702. }
  703. }
  704. if (bnapi->status_blk.msi) {
  705. pci_free_consistent(bp->pdev, bp->status_stats_size,
  706. bnapi->status_blk.msi,
  707. bp->status_blk_mapping);
  708. bnapi->status_blk.msi = NULL;
  709. bp->stats_blk = NULL;
  710. }
  711. }
  712. static int
  713. bnx2_alloc_mem(struct bnx2 *bp)
  714. {
  715. int i, status_blk_size, err;
  716. struct bnx2_napi *bnapi;
  717. void *status_blk;
  718. /* Combine status and statistics blocks into one allocation. */
  719. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  720. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  721. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  722. BNX2_SBLK_MSIX_ALIGN_SIZE);
  723. bp->status_stats_size = status_blk_size +
  724. sizeof(struct statistics_block);
  725. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  726. &bp->status_blk_mapping);
  727. if (status_blk == NULL)
  728. goto alloc_mem_err;
  729. memset(status_blk, 0, bp->status_stats_size);
  730. bnapi = &bp->bnx2_napi[0];
  731. bnapi->status_blk.msi = status_blk;
  732. bnapi->hw_tx_cons_ptr =
  733. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  734. bnapi->hw_rx_cons_ptr =
  735. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  736. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  737. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  738. struct status_block_msix *sblk;
  739. bnapi = &bp->bnx2_napi[i];
  740. sblk = (void *) (status_blk +
  741. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  742. bnapi->status_blk.msix = sblk;
  743. bnapi->hw_tx_cons_ptr =
  744. &sblk->status_tx_quick_consumer_index;
  745. bnapi->hw_rx_cons_ptr =
  746. &sblk->status_rx_quick_consumer_index;
  747. bnapi->int_num = i << 24;
  748. }
  749. }
  750. bp->stats_blk = status_blk + status_blk_size;
  751. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  752. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  753. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  754. if (bp->ctx_pages == 0)
  755. bp->ctx_pages = 1;
  756. for (i = 0; i < bp->ctx_pages; i++) {
  757. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  758. BCM_PAGE_SIZE,
  759. &bp->ctx_blk_mapping[i]);
  760. if (bp->ctx_blk[i] == NULL)
  761. goto alloc_mem_err;
  762. }
  763. }
  764. err = bnx2_alloc_rx_mem(bp);
  765. if (err)
  766. goto alloc_mem_err;
  767. err = bnx2_alloc_tx_mem(bp);
  768. if (err)
  769. goto alloc_mem_err;
  770. return 0;
  771. alloc_mem_err:
  772. bnx2_free_mem(bp);
  773. return -ENOMEM;
  774. }
  775. static void
  776. bnx2_report_fw_link(struct bnx2 *bp)
  777. {
  778. u32 fw_link_status = 0;
  779. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  780. return;
  781. if (bp->link_up) {
  782. u32 bmsr;
  783. switch (bp->line_speed) {
  784. case SPEED_10:
  785. if (bp->duplex == DUPLEX_HALF)
  786. fw_link_status = BNX2_LINK_STATUS_10HALF;
  787. else
  788. fw_link_status = BNX2_LINK_STATUS_10FULL;
  789. break;
  790. case SPEED_100:
  791. if (bp->duplex == DUPLEX_HALF)
  792. fw_link_status = BNX2_LINK_STATUS_100HALF;
  793. else
  794. fw_link_status = BNX2_LINK_STATUS_100FULL;
  795. break;
  796. case SPEED_1000:
  797. if (bp->duplex == DUPLEX_HALF)
  798. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  799. else
  800. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  801. break;
  802. case SPEED_2500:
  803. if (bp->duplex == DUPLEX_HALF)
  804. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  805. else
  806. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  807. break;
  808. }
  809. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  810. if (bp->autoneg) {
  811. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  812. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  813. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  814. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  815. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  816. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  817. else
  818. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  819. }
  820. }
  821. else
  822. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  823. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  824. }
  825. static char *
  826. bnx2_xceiver_str(struct bnx2 *bp)
  827. {
  828. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  829. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  830. "Copper"));
  831. }
  832. static void
  833. bnx2_report_link(struct bnx2 *bp)
  834. {
  835. if (bp->link_up) {
  836. netif_carrier_on(bp->dev);
  837. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  838. bnx2_xceiver_str(bp),
  839. bp->line_speed,
  840. bp->duplex == DUPLEX_FULL ? "full" : "half");
  841. if (bp->flow_ctrl) {
  842. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  843. pr_cont(", receive ");
  844. if (bp->flow_ctrl & FLOW_CTRL_TX)
  845. pr_cont("& transmit ");
  846. }
  847. else {
  848. pr_cont(", transmit ");
  849. }
  850. pr_cont("flow control ON");
  851. }
  852. pr_cont("\n");
  853. } else {
  854. netif_carrier_off(bp->dev);
  855. netdev_err(bp->dev, "NIC %s Link is Down\n",
  856. bnx2_xceiver_str(bp));
  857. }
  858. bnx2_report_fw_link(bp);
  859. }
  860. static void
  861. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  862. {
  863. u32 local_adv, remote_adv;
  864. bp->flow_ctrl = 0;
  865. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  866. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  867. if (bp->duplex == DUPLEX_FULL) {
  868. bp->flow_ctrl = bp->req_flow_ctrl;
  869. }
  870. return;
  871. }
  872. if (bp->duplex != DUPLEX_FULL) {
  873. return;
  874. }
  875. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  876. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  877. u32 val;
  878. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  879. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  880. bp->flow_ctrl |= FLOW_CTRL_TX;
  881. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  882. bp->flow_ctrl |= FLOW_CTRL_RX;
  883. return;
  884. }
  885. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  886. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  887. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  888. u32 new_local_adv = 0;
  889. u32 new_remote_adv = 0;
  890. if (local_adv & ADVERTISE_1000XPAUSE)
  891. new_local_adv |= ADVERTISE_PAUSE_CAP;
  892. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  893. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  894. if (remote_adv & ADVERTISE_1000XPAUSE)
  895. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  896. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  897. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  898. local_adv = new_local_adv;
  899. remote_adv = new_remote_adv;
  900. }
  901. /* See Table 28B-3 of 802.3ab-1999 spec. */
  902. if (local_adv & ADVERTISE_PAUSE_CAP) {
  903. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  904. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  905. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  906. }
  907. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  908. bp->flow_ctrl = FLOW_CTRL_RX;
  909. }
  910. }
  911. else {
  912. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  913. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  914. }
  915. }
  916. }
  917. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  918. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  919. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  920. bp->flow_ctrl = FLOW_CTRL_TX;
  921. }
  922. }
  923. }
  924. static int
  925. bnx2_5709s_linkup(struct bnx2 *bp)
  926. {
  927. u32 val, speed;
  928. bp->link_up = 1;
  929. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  930. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  931. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  932. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  933. bp->line_speed = bp->req_line_speed;
  934. bp->duplex = bp->req_duplex;
  935. return 0;
  936. }
  937. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  938. switch (speed) {
  939. case MII_BNX2_GP_TOP_AN_SPEED_10:
  940. bp->line_speed = SPEED_10;
  941. break;
  942. case MII_BNX2_GP_TOP_AN_SPEED_100:
  943. bp->line_speed = SPEED_100;
  944. break;
  945. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  946. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  947. bp->line_speed = SPEED_1000;
  948. break;
  949. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  950. bp->line_speed = SPEED_2500;
  951. break;
  952. }
  953. if (val & MII_BNX2_GP_TOP_AN_FD)
  954. bp->duplex = DUPLEX_FULL;
  955. else
  956. bp->duplex = DUPLEX_HALF;
  957. return 0;
  958. }
  959. static int
  960. bnx2_5708s_linkup(struct bnx2 *bp)
  961. {
  962. u32 val;
  963. bp->link_up = 1;
  964. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  965. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  966. case BCM5708S_1000X_STAT1_SPEED_10:
  967. bp->line_speed = SPEED_10;
  968. break;
  969. case BCM5708S_1000X_STAT1_SPEED_100:
  970. bp->line_speed = SPEED_100;
  971. break;
  972. case BCM5708S_1000X_STAT1_SPEED_1G:
  973. bp->line_speed = SPEED_1000;
  974. break;
  975. case BCM5708S_1000X_STAT1_SPEED_2G5:
  976. bp->line_speed = SPEED_2500;
  977. break;
  978. }
  979. if (val & BCM5708S_1000X_STAT1_FD)
  980. bp->duplex = DUPLEX_FULL;
  981. else
  982. bp->duplex = DUPLEX_HALF;
  983. return 0;
  984. }
  985. static int
  986. bnx2_5706s_linkup(struct bnx2 *bp)
  987. {
  988. u32 bmcr, local_adv, remote_adv, common;
  989. bp->link_up = 1;
  990. bp->line_speed = SPEED_1000;
  991. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  992. if (bmcr & BMCR_FULLDPLX) {
  993. bp->duplex = DUPLEX_FULL;
  994. }
  995. else {
  996. bp->duplex = DUPLEX_HALF;
  997. }
  998. if (!(bmcr & BMCR_ANENABLE)) {
  999. return 0;
  1000. }
  1001. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1002. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1003. common = local_adv & remote_adv;
  1004. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1005. if (common & ADVERTISE_1000XFULL) {
  1006. bp->duplex = DUPLEX_FULL;
  1007. }
  1008. else {
  1009. bp->duplex = DUPLEX_HALF;
  1010. }
  1011. }
  1012. return 0;
  1013. }
  1014. static int
  1015. bnx2_copper_linkup(struct bnx2 *bp)
  1016. {
  1017. u32 bmcr;
  1018. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1019. if (bmcr & BMCR_ANENABLE) {
  1020. u32 local_adv, remote_adv, common;
  1021. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1022. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1023. common = local_adv & (remote_adv >> 2);
  1024. if (common & ADVERTISE_1000FULL) {
  1025. bp->line_speed = SPEED_1000;
  1026. bp->duplex = DUPLEX_FULL;
  1027. }
  1028. else if (common & ADVERTISE_1000HALF) {
  1029. bp->line_speed = SPEED_1000;
  1030. bp->duplex = DUPLEX_HALF;
  1031. }
  1032. else {
  1033. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1034. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1035. common = local_adv & remote_adv;
  1036. if (common & ADVERTISE_100FULL) {
  1037. bp->line_speed = SPEED_100;
  1038. bp->duplex = DUPLEX_FULL;
  1039. }
  1040. else if (common & ADVERTISE_100HALF) {
  1041. bp->line_speed = SPEED_100;
  1042. bp->duplex = DUPLEX_HALF;
  1043. }
  1044. else if (common & ADVERTISE_10FULL) {
  1045. bp->line_speed = SPEED_10;
  1046. bp->duplex = DUPLEX_FULL;
  1047. }
  1048. else if (common & ADVERTISE_10HALF) {
  1049. bp->line_speed = SPEED_10;
  1050. bp->duplex = DUPLEX_HALF;
  1051. }
  1052. else {
  1053. bp->line_speed = 0;
  1054. bp->link_up = 0;
  1055. }
  1056. }
  1057. }
  1058. else {
  1059. if (bmcr & BMCR_SPEED100) {
  1060. bp->line_speed = SPEED_100;
  1061. }
  1062. else {
  1063. bp->line_speed = SPEED_10;
  1064. }
  1065. if (bmcr & BMCR_FULLDPLX) {
  1066. bp->duplex = DUPLEX_FULL;
  1067. }
  1068. else {
  1069. bp->duplex = DUPLEX_HALF;
  1070. }
  1071. }
  1072. return 0;
  1073. }
  1074. static void
  1075. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1076. {
  1077. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1078. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1079. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1080. val |= 0x02 << 8;
  1081. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1082. u32 lo_water, hi_water;
  1083. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1084. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1085. else
  1086. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1087. if (lo_water >= bp->rx_ring_size)
  1088. lo_water = 0;
  1089. hi_water = min_t(int, bp->rx_ring_size / 4, lo_water + 16);
  1090. if (hi_water <= lo_water)
  1091. lo_water = 0;
  1092. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1093. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1094. if (hi_water > 0xf)
  1095. hi_water = 0xf;
  1096. else if (hi_water == 0)
  1097. lo_water = 0;
  1098. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1099. }
  1100. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1101. }
  1102. static void
  1103. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1104. {
  1105. int i;
  1106. u32 cid;
  1107. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1108. if (i == 1)
  1109. cid = RX_RSS_CID;
  1110. bnx2_init_rx_context(bp, cid);
  1111. }
  1112. }
  1113. static void
  1114. bnx2_set_mac_link(struct bnx2 *bp)
  1115. {
  1116. u32 val;
  1117. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1118. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1119. (bp->duplex == DUPLEX_HALF)) {
  1120. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1121. }
  1122. /* Configure the EMAC mode register. */
  1123. val = REG_RD(bp, BNX2_EMAC_MODE);
  1124. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1125. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1126. BNX2_EMAC_MODE_25G_MODE);
  1127. if (bp->link_up) {
  1128. switch (bp->line_speed) {
  1129. case SPEED_10:
  1130. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1131. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1132. break;
  1133. }
  1134. /* fall through */
  1135. case SPEED_100:
  1136. val |= BNX2_EMAC_MODE_PORT_MII;
  1137. break;
  1138. case SPEED_2500:
  1139. val |= BNX2_EMAC_MODE_25G_MODE;
  1140. /* fall through */
  1141. case SPEED_1000:
  1142. val |= BNX2_EMAC_MODE_PORT_GMII;
  1143. break;
  1144. }
  1145. }
  1146. else {
  1147. val |= BNX2_EMAC_MODE_PORT_GMII;
  1148. }
  1149. /* Set the MAC to operate in the appropriate duplex mode. */
  1150. if (bp->duplex == DUPLEX_HALF)
  1151. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1152. REG_WR(bp, BNX2_EMAC_MODE, val);
  1153. /* Enable/disable rx PAUSE. */
  1154. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1155. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1156. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1157. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1158. /* Enable/disable tx PAUSE. */
  1159. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1160. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1161. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1162. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1163. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1164. /* Acknowledge the interrupt. */
  1165. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1166. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1167. bnx2_init_all_rx_contexts(bp);
  1168. }
  1169. static void
  1170. bnx2_enable_bmsr1(struct bnx2 *bp)
  1171. {
  1172. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1173. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1174. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1175. MII_BNX2_BLK_ADDR_GP_STATUS);
  1176. }
  1177. static void
  1178. bnx2_disable_bmsr1(struct bnx2 *bp)
  1179. {
  1180. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1181. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1182. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1183. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1184. }
  1185. static int
  1186. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1187. {
  1188. u32 up1;
  1189. int ret = 1;
  1190. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1191. return 0;
  1192. if (bp->autoneg & AUTONEG_SPEED)
  1193. bp->advertising |= ADVERTISED_2500baseX_Full;
  1194. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1195. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1196. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1197. if (!(up1 & BCM5708S_UP1_2G5)) {
  1198. up1 |= BCM5708S_UP1_2G5;
  1199. bnx2_write_phy(bp, bp->mii_up1, up1);
  1200. ret = 0;
  1201. }
  1202. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1203. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1204. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1205. return ret;
  1206. }
  1207. static int
  1208. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1209. {
  1210. u32 up1;
  1211. int ret = 0;
  1212. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1213. return 0;
  1214. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1215. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1216. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1217. if (up1 & BCM5708S_UP1_2G5) {
  1218. up1 &= ~BCM5708S_UP1_2G5;
  1219. bnx2_write_phy(bp, bp->mii_up1, up1);
  1220. ret = 1;
  1221. }
  1222. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1223. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1224. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1225. return ret;
  1226. }
  1227. static void
  1228. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1229. {
  1230. u32 bmcr;
  1231. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1232. return;
  1233. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1234. u32 val;
  1235. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1236. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1237. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1238. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1239. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1240. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1241. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1242. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1243. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1244. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1245. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1246. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1247. } else {
  1248. return;
  1249. }
  1250. if (bp->autoneg & AUTONEG_SPEED) {
  1251. bmcr &= ~BMCR_ANENABLE;
  1252. if (bp->req_duplex == DUPLEX_FULL)
  1253. bmcr |= BMCR_FULLDPLX;
  1254. }
  1255. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1256. }
  1257. static void
  1258. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1259. {
  1260. u32 bmcr;
  1261. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1262. return;
  1263. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1264. u32 val;
  1265. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1266. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1267. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1268. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1269. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1270. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1271. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1272. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1273. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1274. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1275. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1276. } else {
  1277. return;
  1278. }
  1279. if (bp->autoneg & AUTONEG_SPEED)
  1280. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1281. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1282. }
  1283. static void
  1284. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1285. {
  1286. u32 val;
  1287. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1288. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1289. if (start)
  1290. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1291. else
  1292. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1293. }
  1294. static int
  1295. bnx2_set_link(struct bnx2 *bp)
  1296. {
  1297. u32 bmsr;
  1298. u8 link_up;
  1299. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1300. bp->link_up = 1;
  1301. return 0;
  1302. }
  1303. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1304. return 0;
  1305. link_up = bp->link_up;
  1306. bnx2_enable_bmsr1(bp);
  1307. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1308. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1309. bnx2_disable_bmsr1(bp);
  1310. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1311. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1312. u32 val, an_dbg;
  1313. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1314. bnx2_5706s_force_link_dn(bp, 0);
  1315. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1316. }
  1317. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1318. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1319. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1320. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1321. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1322. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1323. bmsr |= BMSR_LSTATUS;
  1324. else
  1325. bmsr &= ~BMSR_LSTATUS;
  1326. }
  1327. if (bmsr & BMSR_LSTATUS) {
  1328. bp->link_up = 1;
  1329. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1330. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1331. bnx2_5706s_linkup(bp);
  1332. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1333. bnx2_5708s_linkup(bp);
  1334. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1335. bnx2_5709s_linkup(bp);
  1336. }
  1337. else {
  1338. bnx2_copper_linkup(bp);
  1339. }
  1340. bnx2_resolve_flow_ctrl(bp);
  1341. }
  1342. else {
  1343. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1344. (bp->autoneg & AUTONEG_SPEED))
  1345. bnx2_disable_forced_2g5(bp);
  1346. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1347. u32 bmcr;
  1348. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1349. bmcr |= BMCR_ANENABLE;
  1350. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1351. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1352. }
  1353. bp->link_up = 0;
  1354. }
  1355. if (bp->link_up != link_up) {
  1356. bnx2_report_link(bp);
  1357. }
  1358. bnx2_set_mac_link(bp);
  1359. return 0;
  1360. }
  1361. static int
  1362. bnx2_reset_phy(struct bnx2 *bp)
  1363. {
  1364. int i;
  1365. u32 reg;
  1366. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1367. #define PHY_RESET_MAX_WAIT 100
  1368. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1369. udelay(10);
  1370. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1371. if (!(reg & BMCR_RESET)) {
  1372. udelay(20);
  1373. break;
  1374. }
  1375. }
  1376. if (i == PHY_RESET_MAX_WAIT) {
  1377. return -EBUSY;
  1378. }
  1379. return 0;
  1380. }
  1381. static u32
  1382. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1383. {
  1384. u32 adv = 0;
  1385. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1386. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1387. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1388. adv = ADVERTISE_1000XPAUSE;
  1389. }
  1390. else {
  1391. adv = ADVERTISE_PAUSE_CAP;
  1392. }
  1393. }
  1394. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1395. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1396. adv = ADVERTISE_1000XPSE_ASYM;
  1397. }
  1398. else {
  1399. adv = ADVERTISE_PAUSE_ASYM;
  1400. }
  1401. }
  1402. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1403. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1404. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1405. }
  1406. else {
  1407. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1408. }
  1409. }
  1410. return adv;
  1411. }
  1412. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1413. static int
  1414. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1415. __releases(&bp->phy_lock)
  1416. __acquires(&bp->phy_lock)
  1417. {
  1418. u32 speed_arg = 0, pause_adv;
  1419. pause_adv = bnx2_phy_get_pause_adv(bp);
  1420. if (bp->autoneg & AUTONEG_SPEED) {
  1421. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1422. if (bp->advertising & ADVERTISED_10baseT_Half)
  1423. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1424. if (bp->advertising & ADVERTISED_10baseT_Full)
  1425. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1426. if (bp->advertising & ADVERTISED_100baseT_Half)
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1428. if (bp->advertising & ADVERTISED_100baseT_Full)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1430. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1432. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1434. } else {
  1435. if (bp->req_line_speed == SPEED_2500)
  1436. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1437. else if (bp->req_line_speed == SPEED_1000)
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1439. else if (bp->req_line_speed == SPEED_100) {
  1440. if (bp->req_duplex == DUPLEX_FULL)
  1441. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1442. else
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1444. } else if (bp->req_line_speed == SPEED_10) {
  1445. if (bp->req_duplex == DUPLEX_FULL)
  1446. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1447. else
  1448. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1449. }
  1450. }
  1451. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1452. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1453. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1454. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1455. if (port == PORT_TP)
  1456. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1457. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1458. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1459. spin_unlock_bh(&bp->phy_lock);
  1460. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1461. spin_lock_bh(&bp->phy_lock);
  1462. return 0;
  1463. }
  1464. static int
  1465. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1466. __releases(&bp->phy_lock)
  1467. __acquires(&bp->phy_lock)
  1468. {
  1469. u32 adv, bmcr;
  1470. u32 new_adv = 0;
  1471. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1472. return (bnx2_setup_remote_phy(bp, port));
  1473. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1474. u32 new_bmcr;
  1475. int force_link_down = 0;
  1476. if (bp->req_line_speed == SPEED_2500) {
  1477. if (!bnx2_test_and_enable_2g5(bp))
  1478. force_link_down = 1;
  1479. } else if (bp->req_line_speed == SPEED_1000) {
  1480. if (bnx2_test_and_disable_2g5(bp))
  1481. force_link_down = 1;
  1482. }
  1483. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1484. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1485. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1486. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1487. new_bmcr |= BMCR_SPEED1000;
  1488. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1489. if (bp->req_line_speed == SPEED_2500)
  1490. bnx2_enable_forced_2g5(bp);
  1491. else if (bp->req_line_speed == SPEED_1000) {
  1492. bnx2_disable_forced_2g5(bp);
  1493. new_bmcr &= ~0x2000;
  1494. }
  1495. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1496. if (bp->req_line_speed == SPEED_2500)
  1497. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1498. else
  1499. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1500. }
  1501. if (bp->req_duplex == DUPLEX_FULL) {
  1502. adv |= ADVERTISE_1000XFULL;
  1503. new_bmcr |= BMCR_FULLDPLX;
  1504. }
  1505. else {
  1506. adv |= ADVERTISE_1000XHALF;
  1507. new_bmcr &= ~BMCR_FULLDPLX;
  1508. }
  1509. if ((new_bmcr != bmcr) || (force_link_down)) {
  1510. /* Force a link down visible on the other side */
  1511. if (bp->link_up) {
  1512. bnx2_write_phy(bp, bp->mii_adv, adv &
  1513. ~(ADVERTISE_1000XFULL |
  1514. ADVERTISE_1000XHALF));
  1515. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1516. BMCR_ANRESTART | BMCR_ANENABLE);
  1517. bp->link_up = 0;
  1518. netif_carrier_off(bp->dev);
  1519. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1520. bnx2_report_link(bp);
  1521. }
  1522. bnx2_write_phy(bp, bp->mii_adv, adv);
  1523. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1524. } else {
  1525. bnx2_resolve_flow_ctrl(bp);
  1526. bnx2_set_mac_link(bp);
  1527. }
  1528. return 0;
  1529. }
  1530. bnx2_test_and_enable_2g5(bp);
  1531. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1532. new_adv |= ADVERTISE_1000XFULL;
  1533. new_adv |= bnx2_phy_get_pause_adv(bp);
  1534. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1535. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1536. bp->serdes_an_pending = 0;
  1537. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1538. /* Force a link down visible on the other side */
  1539. if (bp->link_up) {
  1540. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1541. spin_unlock_bh(&bp->phy_lock);
  1542. msleep(20);
  1543. spin_lock_bh(&bp->phy_lock);
  1544. }
  1545. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1546. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1547. BMCR_ANENABLE);
  1548. /* Speed up link-up time when the link partner
  1549. * does not autonegotiate which is very common
  1550. * in blade servers. Some blade servers use
  1551. * IPMI for kerboard input and it's important
  1552. * to minimize link disruptions. Autoneg. involves
  1553. * exchanging base pages plus 3 next pages and
  1554. * normally completes in about 120 msec.
  1555. */
  1556. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1557. bp->serdes_an_pending = 1;
  1558. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1559. } else {
  1560. bnx2_resolve_flow_ctrl(bp);
  1561. bnx2_set_mac_link(bp);
  1562. }
  1563. return 0;
  1564. }
  1565. #define ETHTOOL_ALL_FIBRE_SPEED \
  1566. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1567. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1568. (ADVERTISED_1000baseT_Full)
  1569. #define ETHTOOL_ALL_COPPER_SPEED \
  1570. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1571. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1572. ADVERTISED_1000baseT_Full)
  1573. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1574. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1575. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1576. static void
  1577. bnx2_set_default_remote_link(struct bnx2 *bp)
  1578. {
  1579. u32 link;
  1580. if (bp->phy_port == PORT_TP)
  1581. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1582. else
  1583. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1584. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1585. bp->req_line_speed = 0;
  1586. bp->autoneg |= AUTONEG_SPEED;
  1587. bp->advertising = ADVERTISED_Autoneg;
  1588. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1589. bp->advertising |= ADVERTISED_10baseT_Half;
  1590. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1591. bp->advertising |= ADVERTISED_10baseT_Full;
  1592. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1593. bp->advertising |= ADVERTISED_100baseT_Half;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1595. bp->advertising |= ADVERTISED_100baseT_Full;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1597. bp->advertising |= ADVERTISED_1000baseT_Full;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1599. bp->advertising |= ADVERTISED_2500baseX_Full;
  1600. } else {
  1601. bp->autoneg = 0;
  1602. bp->advertising = 0;
  1603. bp->req_duplex = DUPLEX_FULL;
  1604. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1605. bp->req_line_speed = SPEED_10;
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1607. bp->req_duplex = DUPLEX_HALF;
  1608. }
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1610. bp->req_line_speed = SPEED_100;
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1612. bp->req_duplex = DUPLEX_HALF;
  1613. }
  1614. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1615. bp->req_line_speed = SPEED_1000;
  1616. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1617. bp->req_line_speed = SPEED_2500;
  1618. }
  1619. }
  1620. static void
  1621. bnx2_set_default_link(struct bnx2 *bp)
  1622. {
  1623. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1624. bnx2_set_default_remote_link(bp);
  1625. return;
  1626. }
  1627. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1628. bp->req_line_speed = 0;
  1629. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1630. u32 reg;
  1631. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1632. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1633. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1634. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1635. bp->autoneg = 0;
  1636. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1637. bp->req_duplex = DUPLEX_FULL;
  1638. }
  1639. } else
  1640. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1641. }
  1642. static void
  1643. bnx2_send_heart_beat(struct bnx2 *bp)
  1644. {
  1645. u32 msg;
  1646. u32 addr;
  1647. spin_lock(&bp->indirect_lock);
  1648. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1649. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1650. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1651. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1652. spin_unlock(&bp->indirect_lock);
  1653. }
  1654. static void
  1655. bnx2_remote_phy_event(struct bnx2 *bp)
  1656. {
  1657. u32 msg;
  1658. u8 link_up = bp->link_up;
  1659. u8 old_port;
  1660. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1661. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1662. bnx2_send_heart_beat(bp);
  1663. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1664. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1665. bp->link_up = 0;
  1666. else {
  1667. u32 speed;
  1668. bp->link_up = 1;
  1669. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1670. bp->duplex = DUPLEX_FULL;
  1671. switch (speed) {
  1672. case BNX2_LINK_STATUS_10HALF:
  1673. bp->duplex = DUPLEX_HALF;
  1674. case BNX2_LINK_STATUS_10FULL:
  1675. bp->line_speed = SPEED_10;
  1676. break;
  1677. case BNX2_LINK_STATUS_100HALF:
  1678. bp->duplex = DUPLEX_HALF;
  1679. case BNX2_LINK_STATUS_100BASE_T4:
  1680. case BNX2_LINK_STATUS_100FULL:
  1681. bp->line_speed = SPEED_100;
  1682. break;
  1683. case BNX2_LINK_STATUS_1000HALF:
  1684. bp->duplex = DUPLEX_HALF;
  1685. case BNX2_LINK_STATUS_1000FULL:
  1686. bp->line_speed = SPEED_1000;
  1687. break;
  1688. case BNX2_LINK_STATUS_2500HALF:
  1689. bp->duplex = DUPLEX_HALF;
  1690. case BNX2_LINK_STATUS_2500FULL:
  1691. bp->line_speed = SPEED_2500;
  1692. break;
  1693. default:
  1694. bp->line_speed = 0;
  1695. break;
  1696. }
  1697. bp->flow_ctrl = 0;
  1698. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1699. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1700. if (bp->duplex == DUPLEX_FULL)
  1701. bp->flow_ctrl = bp->req_flow_ctrl;
  1702. } else {
  1703. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1704. bp->flow_ctrl |= FLOW_CTRL_TX;
  1705. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1706. bp->flow_ctrl |= FLOW_CTRL_RX;
  1707. }
  1708. old_port = bp->phy_port;
  1709. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1710. bp->phy_port = PORT_FIBRE;
  1711. else
  1712. bp->phy_port = PORT_TP;
  1713. if (old_port != bp->phy_port)
  1714. bnx2_set_default_link(bp);
  1715. }
  1716. if (bp->link_up != link_up)
  1717. bnx2_report_link(bp);
  1718. bnx2_set_mac_link(bp);
  1719. }
  1720. static int
  1721. bnx2_set_remote_link(struct bnx2 *bp)
  1722. {
  1723. u32 evt_code;
  1724. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1725. switch (evt_code) {
  1726. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1727. bnx2_remote_phy_event(bp);
  1728. break;
  1729. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1730. default:
  1731. bnx2_send_heart_beat(bp);
  1732. break;
  1733. }
  1734. return 0;
  1735. }
  1736. static int
  1737. bnx2_setup_copper_phy(struct bnx2 *bp)
  1738. __releases(&bp->phy_lock)
  1739. __acquires(&bp->phy_lock)
  1740. {
  1741. u32 bmcr;
  1742. u32 new_bmcr;
  1743. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1744. if (bp->autoneg & AUTONEG_SPEED) {
  1745. u32 adv_reg, adv1000_reg;
  1746. u32 new_adv_reg = 0;
  1747. u32 new_adv1000_reg = 0;
  1748. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1749. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1750. ADVERTISE_PAUSE_ASYM);
  1751. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1752. adv1000_reg &= PHY_ALL_1000_SPEED;
  1753. if (bp->advertising & ADVERTISED_10baseT_Half)
  1754. new_adv_reg |= ADVERTISE_10HALF;
  1755. if (bp->advertising & ADVERTISED_10baseT_Full)
  1756. new_adv_reg |= ADVERTISE_10FULL;
  1757. if (bp->advertising & ADVERTISED_100baseT_Half)
  1758. new_adv_reg |= ADVERTISE_100HALF;
  1759. if (bp->advertising & ADVERTISED_100baseT_Full)
  1760. new_adv_reg |= ADVERTISE_100FULL;
  1761. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1762. new_adv1000_reg |= ADVERTISE_1000FULL;
  1763. new_adv_reg |= ADVERTISE_CSMA;
  1764. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1765. if ((adv1000_reg != new_adv1000_reg) ||
  1766. (adv_reg != new_adv_reg) ||
  1767. ((bmcr & BMCR_ANENABLE) == 0)) {
  1768. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1769. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1770. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1771. BMCR_ANENABLE);
  1772. }
  1773. else if (bp->link_up) {
  1774. /* Flow ctrl may have changed from auto to forced */
  1775. /* or vice-versa. */
  1776. bnx2_resolve_flow_ctrl(bp);
  1777. bnx2_set_mac_link(bp);
  1778. }
  1779. return 0;
  1780. }
  1781. new_bmcr = 0;
  1782. if (bp->req_line_speed == SPEED_100) {
  1783. new_bmcr |= BMCR_SPEED100;
  1784. }
  1785. if (bp->req_duplex == DUPLEX_FULL) {
  1786. new_bmcr |= BMCR_FULLDPLX;
  1787. }
  1788. if (new_bmcr != bmcr) {
  1789. u32 bmsr;
  1790. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1791. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1792. if (bmsr & BMSR_LSTATUS) {
  1793. /* Force link down */
  1794. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1795. spin_unlock_bh(&bp->phy_lock);
  1796. msleep(50);
  1797. spin_lock_bh(&bp->phy_lock);
  1798. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1799. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1800. }
  1801. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1802. /* Normally, the new speed is setup after the link has
  1803. * gone down and up again. In some cases, link will not go
  1804. * down so we need to set up the new speed here.
  1805. */
  1806. if (bmsr & BMSR_LSTATUS) {
  1807. bp->line_speed = bp->req_line_speed;
  1808. bp->duplex = bp->req_duplex;
  1809. bnx2_resolve_flow_ctrl(bp);
  1810. bnx2_set_mac_link(bp);
  1811. }
  1812. } else {
  1813. bnx2_resolve_flow_ctrl(bp);
  1814. bnx2_set_mac_link(bp);
  1815. }
  1816. return 0;
  1817. }
  1818. static int
  1819. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1820. __releases(&bp->phy_lock)
  1821. __acquires(&bp->phy_lock)
  1822. {
  1823. if (bp->loopback == MAC_LOOPBACK)
  1824. return 0;
  1825. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1826. return (bnx2_setup_serdes_phy(bp, port));
  1827. }
  1828. else {
  1829. return (bnx2_setup_copper_phy(bp));
  1830. }
  1831. }
  1832. static int
  1833. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1834. {
  1835. u32 val;
  1836. bp->mii_bmcr = MII_BMCR + 0x10;
  1837. bp->mii_bmsr = MII_BMSR + 0x10;
  1838. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1839. bp->mii_adv = MII_ADVERTISE + 0x10;
  1840. bp->mii_lpa = MII_LPA + 0x10;
  1841. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1842. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1843. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1844. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1845. if (reset_phy)
  1846. bnx2_reset_phy(bp);
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1848. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1849. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1850. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1851. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1852. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1853. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1854. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1855. val |= BCM5708S_UP1_2G5;
  1856. else
  1857. val &= ~BCM5708S_UP1_2G5;
  1858. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1859. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1860. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1861. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1862. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1863. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1864. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1865. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1866. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1867. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1868. return 0;
  1869. }
  1870. static int
  1871. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1872. {
  1873. u32 val;
  1874. if (reset_phy)
  1875. bnx2_reset_phy(bp);
  1876. bp->mii_up1 = BCM5708S_UP1;
  1877. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1878. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1879. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1880. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1881. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1882. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1883. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1884. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1885. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1886. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1887. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1888. val |= BCM5708S_UP1_2G5;
  1889. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1890. }
  1891. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1892. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1893. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1894. /* increase tx signal amplitude */
  1895. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1896. BCM5708S_BLK_ADDR_TX_MISC);
  1897. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1898. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1899. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1900. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1901. }
  1902. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1903. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1904. if (val) {
  1905. u32 is_backplane;
  1906. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1907. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1908. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1909. BCM5708S_BLK_ADDR_TX_MISC);
  1910. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1911. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1912. BCM5708S_BLK_ADDR_DIG);
  1913. }
  1914. }
  1915. return 0;
  1916. }
  1917. static int
  1918. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1919. {
  1920. if (reset_phy)
  1921. bnx2_reset_phy(bp);
  1922. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1923. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1924. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1925. if (bp->dev->mtu > 1500) {
  1926. u32 val;
  1927. /* Set extended packet length bit */
  1928. bnx2_write_phy(bp, 0x18, 0x7);
  1929. bnx2_read_phy(bp, 0x18, &val);
  1930. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1931. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1932. bnx2_read_phy(bp, 0x1c, &val);
  1933. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1934. }
  1935. else {
  1936. u32 val;
  1937. bnx2_write_phy(bp, 0x18, 0x7);
  1938. bnx2_read_phy(bp, 0x18, &val);
  1939. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1940. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1941. bnx2_read_phy(bp, 0x1c, &val);
  1942. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1943. }
  1944. return 0;
  1945. }
  1946. static int
  1947. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1948. {
  1949. u32 val;
  1950. if (reset_phy)
  1951. bnx2_reset_phy(bp);
  1952. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1953. bnx2_write_phy(bp, 0x18, 0x0c00);
  1954. bnx2_write_phy(bp, 0x17, 0x000a);
  1955. bnx2_write_phy(bp, 0x15, 0x310b);
  1956. bnx2_write_phy(bp, 0x17, 0x201f);
  1957. bnx2_write_phy(bp, 0x15, 0x9506);
  1958. bnx2_write_phy(bp, 0x17, 0x401f);
  1959. bnx2_write_phy(bp, 0x15, 0x14e2);
  1960. bnx2_write_phy(bp, 0x18, 0x0400);
  1961. }
  1962. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1963. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1964. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1965. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1966. val &= ~(1 << 8);
  1967. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1968. }
  1969. if (bp->dev->mtu > 1500) {
  1970. /* Set extended packet length bit */
  1971. bnx2_write_phy(bp, 0x18, 0x7);
  1972. bnx2_read_phy(bp, 0x18, &val);
  1973. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1974. bnx2_read_phy(bp, 0x10, &val);
  1975. bnx2_write_phy(bp, 0x10, val | 0x1);
  1976. }
  1977. else {
  1978. bnx2_write_phy(bp, 0x18, 0x7);
  1979. bnx2_read_phy(bp, 0x18, &val);
  1980. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1981. bnx2_read_phy(bp, 0x10, &val);
  1982. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1983. }
  1984. /* ethernet@wirespeed */
  1985. bnx2_write_phy(bp, 0x18, 0x7007);
  1986. bnx2_read_phy(bp, 0x18, &val);
  1987. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1988. return 0;
  1989. }
  1990. static int
  1991. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1992. __releases(&bp->phy_lock)
  1993. __acquires(&bp->phy_lock)
  1994. {
  1995. u32 val;
  1996. int rc = 0;
  1997. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1998. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1999. bp->mii_bmcr = MII_BMCR;
  2000. bp->mii_bmsr = MII_BMSR;
  2001. bp->mii_bmsr1 = MII_BMSR;
  2002. bp->mii_adv = MII_ADVERTISE;
  2003. bp->mii_lpa = MII_LPA;
  2004. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2005. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2006. goto setup_phy;
  2007. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2008. bp->phy_id = val << 16;
  2009. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2010. bp->phy_id |= val & 0xffff;
  2011. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2012. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2013. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2014. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2015. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2016. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2017. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2018. }
  2019. else {
  2020. rc = bnx2_init_copper_phy(bp, reset_phy);
  2021. }
  2022. setup_phy:
  2023. if (!rc)
  2024. rc = bnx2_setup_phy(bp, bp->phy_port);
  2025. return rc;
  2026. }
  2027. static int
  2028. bnx2_set_mac_loopback(struct bnx2 *bp)
  2029. {
  2030. u32 mac_mode;
  2031. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2032. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2033. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2034. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2035. bp->link_up = 1;
  2036. return 0;
  2037. }
  2038. static int bnx2_test_link(struct bnx2 *);
  2039. static int
  2040. bnx2_set_phy_loopback(struct bnx2 *bp)
  2041. {
  2042. u32 mac_mode;
  2043. int rc, i;
  2044. spin_lock_bh(&bp->phy_lock);
  2045. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2046. BMCR_SPEED1000);
  2047. spin_unlock_bh(&bp->phy_lock);
  2048. if (rc)
  2049. return rc;
  2050. for (i = 0; i < 10; i++) {
  2051. if (bnx2_test_link(bp) == 0)
  2052. break;
  2053. msleep(100);
  2054. }
  2055. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2056. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2057. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2058. BNX2_EMAC_MODE_25G_MODE);
  2059. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2060. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2061. bp->link_up = 1;
  2062. return 0;
  2063. }
  2064. static int
  2065. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2066. {
  2067. int i;
  2068. u32 val;
  2069. bp->fw_wr_seq++;
  2070. msg_data |= bp->fw_wr_seq;
  2071. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2072. if (!ack)
  2073. return 0;
  2074. /* wait for an acknowledgement. */
  2075. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2076. msleep(10);
  2077. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2078. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2079. break;
  2080. }
  2081. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2082. return 0;
  2083. /* If we timed out, inform the firmware that this is the case. */
  2084. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2085. if (!silent)
  2086. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2087. msg_data &= ~BNX2_DRV_MSG_CODE;
  2088. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2089. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2090. return -EBUSY;
  2091. }
  2092. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2093. return -EIO;
  2094. return 0;
  2095. }
  2096. static int
  2097. bnx2_init_5709_context(struct bnx2 *bp)
  2098. {
  2099. int i, ret = 0;
  2100. u32 val;
  2101. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2102. val |= (BCM_PAGE_BITS - 8) << 16;
  2103. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2104. for (i = 0; i < 10; i++) {
  2105. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2106. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2107. break;
  2108. udelay(2);
  2109. }
  2110. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2111. return -EBUSY;
  2112. for (i = 0; i < bp->ctx_pages; i++) {
  2113. int j;
  2114. if (bp->ctx_blk[i])
  2115. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2116. else
  2117. return -ENOMEM;
  2118. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2119. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2120. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2121. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2122. (u64) bp->ctx_blk_mapping[i] >> 32);
  2123. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2124. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2125. for (j = 0; j < 10; j++) {
  2126. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2127. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2128. break;
  2129. udelay(5);
  2130. }
  2131. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2132. ret = -EBUSY;
  2133. break;
  2134. }
  2135. }
  2136. return ret;
  2137. }
  2138. static void
  2139. bnx2_init_context(struct bnx2 *bp)
  2140. {
  2141. u32 vcid;
  2142. vcid = 96;
  2143. while (vcid) {
  2144. u32 vcid_addr, pcid_addr, offset;
  2145. int i;
  2146. vcid--;
  2147. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2148. u32 new_vcid;
  2149. vcid_addr = GET_PCID_ADDR(vcid);
  2150. if (vcid & 0x8) {
  2151. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2152. }
  2153. else {
  2154. new_vcid = vcid;
  2155. }
  2156. pcid_addr = GET_PCID_ADDR(new_vcid);
  2157. }
  2158. else {
  2159. vcid_addr = GET_CID_ADDR(vcid);
  2160. pcid_addr = vcid_addr;
  2161. }
  2162. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2163. vcid_addr += (i << PHY_CTX_SHIFT);
  2164. pcid_addr += (i << PHY_CTX_SHIFT);
  2165. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2166. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2167. /* Zero out the context. */
  2168. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2169. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2170. }
  2171. }
  2172. }
  2173. static int
  2174. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2175. {
  2176. u16 *good_mbuf;
  2177. u32 good_mbuf_cnt;
  2178. u32 val;
  2179. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2180. if (good_mbuf == NULL) {
  2181. pr_err("Failed to allocate memory in %s\n", __func__);
  2182. return -ENOMEM;
  2183. }
  2184. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2185. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2186. good_mbuf_cnt = 0;
  2187. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2188. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2189. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2190. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2191. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2192. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2193. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2194. /* The addresses with Bit 9 set are bad memory blocks. */
  2195. if (!(val & (1 << 9))) {
  2196. good_mbuf[good_mbuf_cnt] = (u16) val;
  2197. good_mbuf_cnt++;
  2198. }
  2199. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2200. }
  2201. /* Free the good ones back to the mbuf pool thus discarding
  2202. * all the bad ones. */
  2203. while (good_mbuf_cnt) {
  2204. good_mbuf_cnt--;
  2205. val = good_mbuf[good_mbuf_cnt];
  2206. val = (val << 9) | val | 1;
  2207. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2208. }
  2209. kfree(good_mbuf);
  2210. return 0;
  2211. }
  2212. static void
  2213. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2214. {
  2215. u32 val;
  2216. val = (mac_addr[0] << 8) | mac_addr[1];
  2217. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2218. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2219. (mac_addr[4] << 8) | mac_addr[5];
  2220. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2221. }
  2222. static inline int
  2223. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2224. {
  2225. dma_addr_t mapping;
  2226. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2227. struct rx_bd *rxbd =
  2228. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2229. struct page *page = alloc_page(GFP_ATOMIC);
  2230. if (!page)
  2231. return -ENOMEM;
  2232. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2233. PCI_DMA_FROMDEVICE);
  2234. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2235. __free_page(page);
  2236. return -EIO;
  2237. }
  2238. rx_pg->page = page;
  2239. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2240. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2241. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2242. return 0;
  2243. }
  2244. static void
  2245. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2246. {
  2247. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2248. struct page *page = rx_pg->page;
  2249. if (!page)
  2250. return;
  2251. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2252. PCI_DMA_FROMDEVICE);
  2253. __free_page(page);
  2254. rx_pg->page = NULL;
  2255. }
  2256. static inline int
  2257. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2258. {
  2259. struct sk_buff *skb;
  2260. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2261. dma_addr_t mapping;
  2262. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2263. unsigned long align;
  2264. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2265. if (skb == NULL) {
  2266. return -ENOMEM;
  2267. }
  2268. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2269. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2270. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2271. PCI_DMA_FROMDEVICE);
  2272. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2273. dev_kfree_skb(skb);
  2274. return -EIO;
  2275. }
  2276. rx_buf->skb = skb;
  2277. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2278. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2279. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2280. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2281. return 0;
  2282. }
  2283. static int
  2284. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2285. {
  2286. struct status_block *sblk = bnapi->status_blk.msi;
  2287. u32 new_link_state, old_link_state;
  2288. int is_set = 1;
  2289. new_link_state = sblk->status_attn_bits & event;
  2290. old_link_state = sblk->status_attn_bits_ack & event;
  2291. if (new_link_state != old_link_state) {
  2292. if (new_link_state)
  2293. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2294. else
  2295. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2296. } else
  2297. is_set = 0;
  2298. return is_set;
  2299. }
  2300. static void
  2301. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2302. {
  2303. spin_lock(&bp->phy_lock);
  2304. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2305. bnx2_set_link(bp);
  2306. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2307. bnx2_set_remote_link(bp);
  2308. spin_unlock(&bp->phy_lock);
  2309. }
  2310. static inline u16
  2311. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2312. {
  2313. u16 cons;
  2314. /* Tell compiler that status block fields can change. */
  2315. barrier();
  2316. cons = *bnapi->hw_tx_cons_ptr;
  2317. barrier();
  2318. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2319. cons++;
  2320. return cons;
  2321. }
  2322. static int
  2323. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2324. {
  2325. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2326. u16 hw_cons, sw_cons, sw_ring_cons;
  2327. int tx_pkt = 0, index;
  2328. struct netdev_queue *txq;
  2329. index = (bnapi - bp->bnx2_napi);
  2330. txq = netdev_get_tx_queue(bp->dev, index);
  2331. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2332. sw_cons = txr->tx_cons;
  2333. while (sw_cons != hw_cons) {
  2334. struct sw_tx_bd *tx_buf;
  2335. struct sk_buff *skb;
  2336. int i, last;
  2337. sw_ring_cons = TX_RING_IDX(sw_cons);
  2338. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2339. skb = tx_buf->skb;
  2340. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2341. prefetch(&skb->end);
  2342. /* partial BD completions possible with TSO packets */
  2343. if (tx_buf->is_gso) {
  2344. u16 last_idx, last_ring_idx;
  2345. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2346. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2347. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2348. last_idx++;
  2349. }
  2350. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2351. break;
  2352. }
  2353. }
  2354. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  2355. skb_headlen(skb), PCI_DMA_TODEVICE);
  2356. tx_buf->skb = NULL;
  2357. last = tx_buf->nr_frags;
  2358. for (i = 0; i < last; i++) {
  2359. sw_cons = NEXT_TX_BD(sw_cons);
  2360. pci_unmap_page(bp->pdev,
  2361. pci_unmap_addr(
  2362. &txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
  2363. mapping),
  2364. skb_shinfo(skb)->frags[i].size,
  2365. PCI_DMA_TODEVICE);
  2366. }
  2367. sw_cons = NEXT_TX_BD(sw_cons);
  2368. dev_kfree_skb(skb);
  2369. tx_pkt++;
  2370. if (tx_pkt == budget)
  2371. break;
  2372. if (hw_cons == sw_cons)
  2373. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2374. }
  2375. txr->hw_tx_cons = hw_cons;
  2376. txr->tx_cons = sw_cons;
  2377. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2378. * before checking for netif_tx_queue_stopped(). Without the
  2379. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2380. * will miss it and cause the queue to be stopped forever.
  2381. */
  2382. smp_mb();
  2383. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2384. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2385. __netif_tx_lock(txq, smp_processor_id());
  2386. if ((netif_tx_queue_stopped(txq)) &&
  2387. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2388. netif_tx_wake_queue(txq);
  2389. __netif_tx_unlock(txq);
  2390. }
  2391. return tx_pkt;
  2392. }
  2393. static void
  2394. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2395. struct sk_buff *skb, int count)
  2396. {
  2397. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2398. struct rx_bd *cons_bd, *prod_bd;
  2399. int i;
  2400. u16 hw_prod, prod;
  2401. u16 cons = rxr->rx_pg_cons;
  2402. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2403. /* The caller was unable to allocate a new page to replace the
  2404. * last one in the frags array, so we need to recycle that page
  2405. * and then free the skb.
  2406. */
  2407. if (skb) {
  2408. struct page *page;
  2409. struct skb_shared_info *shinfo;
  2410. shinfo = skb_shinfo(skb);
  2411. shinfo->nr_frags--;
  2412. page = shinfo->frags[shinfo->nr_frags].page;
  2413. shinfo->frags[shinfo->nr_frags].page = NULL;
  2414. cons_rx_pg->page = page;
  2415. dev_kfree_skb(skb);
  2416. }
  2417. hw_prod = rxr->rx_pg_prod;
  2418. for (i = 0; i < count; i++) {
  2419. prod = RX_PG_RING_IDX(hw_prod);
  2420. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2421. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2422. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2423. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2424. if (prod != cons) {
  2425. prod_rx_pg->page = cons_rx_pg->page;
  2426. cons_rx_pg->page = NULL;
  2427. pci_unmap_addr_set(prod_rx_pg, mapping,
  2428. pci_unmap_addr(cons_rx_pg, mapping));
  2429. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2430. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2431. }
  2432. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2433. hw_prod = NEXT_RX_BD(hw_prod);
  2434. }
  2435. rxr->rx_pg_prod = hw_prod;
  2436. rxr->rx_pg_cons = cons;
  2437. }
  2438. static inline void
  2439. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2440. struct sk_buff *skb, u16 cons, u16 prod)
  2441. {
  2442. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2443. struct rx_bd *cons_bd, *prod_bd;
  2444. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2445. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2446. pci_dma_sync_single_for_device(bp->pdev,
  2447. pci_unmap_addr(cons_rx_buf, mapping),
  2448. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2449. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2450. prod_rx_buf->skb = skb;
  2451. if (cons == prod)
  2452. return;
  2453. pci_unmap_addr_set(prod_rx_buf, mapping,
  2454. pci_unmap_addr(cons_rx_buf, mapping));
  2455. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2456. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2457. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2458. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2459. }
  2460. static int
  2461. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2462. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2463. u32 ring_idx)
  2464. {
  2465. int err;
  2466. u16 prod = ring_idx & 0xffff;
  2467. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2468. if (unlikely(err)) {
  2469. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2470. if (hdr_len) {
  2471. unsigned int raw_len = len + 4;
  2472. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2473. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2474. }
  2475. return err;
  2476. }
  2477. skb_reserve(skb, BNX2_RX_OFFSET);
  2478. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2479. PCI_DMA_FROMDEVICE);
  2480. if (hdr_len == 0) {
  2481. skb_put(skb, len);
  2482. return 0;
  2483. } else {
  2484. unsigned int i, frag_len, frag_size, pages;
  2485. struct sw_pg *rx_pg;
  2486. u16 pg_cons = rxr->rx_pg_cons;
  2487. u16 pg_prod = rxr->rx_pg_prod;
  2488. frag_size = len + 4 - hdr_len;
  2489. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2490. skb_put(skb, hdr_len);
  2491. for (i = 0; i < pages; i++) {
  2492. dma_addr_t mapping_old;
  2493. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2494. if (unlikely(frag_len <= 4)) {
  2495. unsigned int tail = 4 - frag_len;
  2496. rxr->rx_pg_cons = pg_cons;
  2497. rxr->rx_pg_prod = pg_prod;
  2498. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2499. pages - i);
  2500. skb->len -= tail;
  2501. if (i == 0) {
  2502. skb->tail -= tail;
  2503. } else {
  2504. skb_frag_t *frag =
  2505. &skb_shinfo(skb)->frags[i - 1];
  2506. frag->size -= tail;
  2507. skb->data_len -= tail;
  2508. skb->truesize -= tail;
  2509. }
  2510. return 0;
  2511. }
  2512. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2513. /* Don't unmap yet. If we're unable to allocate a new
  2514. * page, we need to recycle the page and the DMA addr.
  2515. */
  2516. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2517. if (i == pages - 1)
  2518. frag_len -= 4;
  2519. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2520. rx_pg->page = NULL;
  2521. err = bnx2_alloc_rx_page(bp, rxr,
  2522. RX_PG_RING_IDX(pg_prod));
  2523. if (unlikely(err)) {
  2524. rxr->rx_pg_cons = pg_cons;
  2525. rxr->rx_pg_prod = pg_prod;
  2526. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2527. pages - i);
  2528. return err;
  2529. }
  2530. pci_unmap_page(bp->pdev, mapping_old,
  2531. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2532. frag_size -= frag_len;
  2533. skb->data_len += frag_len;
  2534. skb->truesize += frag_len;
  2535. skb->len += frag_len;
  2536. pg_prod = NEXT_RX_BD(pg_prod);
  2537. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2538. }
  2539. rxr->rx_pg_prod = pg_prod;
  2540. rxr->rx_pg_cons = pg_cons;
  2541. }
  2542. return 0;
  2543. }
  2544. static inline u16
  2545. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2546. {
  2547. u16 cons;
  2548. /* Tell compiler that status block fields can change. */
  2549. barrier();
  2550. cons = *bnapi->hw_rx_cons_ptr;
  2551. barrier();
  2552. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2553. cons++;
  2554. return cons;
  2555. }
  2556. static int
  2557. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2558. {
  2559. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2560. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2561. struct l2_fhdr *rx_hdr;
  2562. int rx_pkt = 0, pg_ring_used = 0;
  2563. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2564. sw_cons = rxr->rx_cons;
  2565. sw_prod = rxr->rx_prod;
  2566. /* Memory barrier necessary as speculative reads of the rx
  2567. * buffer can be ahead of the index in the status block
  2568. */
  2569. rmb();
  2570. while (sw_cons != hw_cons) {
  2571. unsigned int len, hdr_len;
  2572. u32 status;
  2573. struct sw_bd *rx_buf;
  2574. struct sk_buff *skb;
  2575. dma_addr_t dma_addr;
  2576. u16 vtag = 0;
  2577. int hw_vlan __maybe_unused = 0;
  2578. sw_ring_cons = RX_RING_IDX(sw_cons);
  2579. sw_ring_prod = RX_RING_IDX(sw_prod);
  2580. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2581. skb = rx_buf->skb;
  2582. rx_buf->skb = NULL;
  2583. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2584. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2585. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2586. PCI_DMA_FROMDEVICE);
  2587. rx_hdr = (struct l2_fhdr *) skb->data;
  2588. len = rx_hdr->l2_fhdr_pkt_len;
  2589. status = rx_hdr->l2_fhdr_status;
  2590. hdr_len = 0;
  2591. if (status & L2_FHDR_STATUS_SPLIT) {
  2592. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2593. pg_ring_used = 1;
  2594. } else if (len > bp->rx_jumbo_thresh) {
  2595. hdr_len = bp->rx_jumbo_thresh;
  2596. pg_ring_used = 1;
  2597. }
  2598. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2599. L2_FHDR_ERRORS_PHY_DECODE |
  2600. L2_FHDR_ERRORS_ALIGNMENT |
  2601. L2_FHDR_ERRORS_TOO_SHORT |
  2602. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2603. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2604. sw_ring_prod);
  2605. if (pg_ring_used) {
  2606. int pages;
  2607. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2608. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2609. }
  2610. goto next_rx;
  2611. }
  2612. len -= 4;
  2613. if (len <= bp->rx_copy_thresh) {
  2614. struct sk_buff *new_skb;
  2615. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2616. if (new_skb == NULL) {
  2617. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2618. sw_ring_prod);
  2619. goto next_rx;
  2620. }
  2621. /* aligned copy */
  2622. skb_copy_from_linear_data_offset(skb,
  2623. BNX2_RX_OFFSET - 6,
  2624. new_skb->data, len + 6);
  2625. skb_reserve(new_skb, 6);
  2626. skb_put(new_skb, len);
  2627. bnx2_reuse_rx_skb(bp, rxr, skb,
  2628. sw_ring_cons, sw_ring_prod);
  2629. skb = new_skb;
  2630. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2631. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2632. goto next_rx;
  2633. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2634. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2635. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2636. #ifdef BCM_VLAN
  2637. if (bp->vlgrp)
  2638. hw_vlan = 1;
  2639. else
  2640. #endif
  2641. {
  2642. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2643. __skb_push(skb, 4);
  2644. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2645. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2646. ve->h_vlan_TCI = htons(vtag);
  2647. len += 4;
  2648. }
  2649. }
  2650. skb->protocol = eth_type_trans(skb, bp->dev);
  2651. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2652. (ntohs(skb->protocol) != 0x8100)) {
  2653. dev_kfree_skb(skb);
  2654. goto next_rx;
  2655. }
  2656. skb->ip_summed = CHECKSUM_NONE;
  2657. if (bp->rx_csum &&
  2658. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2659. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2660. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2661. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2662. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2663. }
  2664. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2665. #ifdef BCM_VLAN
  2666. if (hw_vlan)
  2667. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2668. else
  2669. #endif
  2670. netif_receive_skb(skb);
  2671. rx_pkt++;
  2672. next_rx:
  2673. sw_cons = NEXT_RX_BD(sw_cons);
  2674. sw_prod = NEXT_RX_BD(sw_prod);
  2675. if ((rx_pkt == budget))
  2676. break;
  2677. /* Refresh hw_cons to see if there is new work */
  2678. if (sw_cons == hw_cons) {
  2679. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2680. rmb();
  2681. }
  2682. }
  2683. rxr->rx_cons = sw_cons;
  2684. rxr->rx_prod = sw_prod;
  2685. if (pg_ring_used)
  2686. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2687. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2688. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2689. mmiowb();
  2690. return rx_pkt;
  2691. }
  2692. /* MSI ISR - The only difference between this and the INTx ISR
  2693. * is that the MSI interrupt is always serviced.
  2694. */
  2695. static irqreturn_t
  2696. bnx2_msi(int irq, void *dev_instance)
  2697. {
  2698. struct bnx2_napi *bnapi = dev_instance;
  2699. struct bnx2 *bp = bnapi->bp;
  2700. prefetch(bnapi->status_blk.msi);
  2701. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2702. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2703. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2704. /* Return here if interrupt is disabled. */
  2705. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2706. return IRQ_HANDLED;
  2707. napi_schedule(&bnapi->napi);
  2708. return IRQ_HANDLED;
  2709. }
  2710. static irqreturn_t
  2711. bnx2_msi_1shot(int irq, void *dev_instance)
  2712. {
  2713. struct bnx2_napi *bnapi = dev_instance;
  2714. struct bnx2 *bp = bnapi->bp;
  2715. prefetch(bnapi->status_blk.msi);
  2716. /* Return here if interrupt is disabled. */
  2717. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2718. return IRQ_HANDLED;
  2719. napi_schedule(&bnapi->napi);
  2720. return IRQ_HANDLED;
  2721. }
  2722. static irqreturn_t
  2723. bnx2_interrupt(int irq, void *dev_instance)
  2724. {
  2725. struct bnx2_napi *bnapi = dev_instance;
  2726. struct bnx2 *bp = bnapi->bp;
  2727. struct status_block *sblk = bnapi->status_blk.msi;
  2728. /* When using INTx, it is possible for the interrupt to arrive
  2729. * at the CPU before the status block posted prior to the
  2730. * interrupt. Reading a register will flush the status block.
  2731. * When using MSI, the MSI message will always complete after
  2732. * the status block write.
  2733. */
  2734. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2735. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2736. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2737. return IRQ_NONE;
  2738. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2739. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2740. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2741. /* Read back to deassert IRQ immediately to avoid too many
  2742. * spurious interrupts.
  2743. */
  2744. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2745. /* Return here if interrupt is shared and is disabled. */
  2746. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2747. return IRQ_HANDLED;
  2748. if (napi_schedule_prep(&bnapi->napi)) {
  2749. bnapi->last_status_idx = sblk->status_idx;
  2750. __napi_schedule(&bnapi->napi);
  2751. }
  2752. return IRQ_HANDLED;
  2753. }
  2754. static inline int
  2755. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2756. {
  2757. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2758. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2759. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2760. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2761. return 1;
  2762. return 0;
  2763. }
  2764. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2765. STATUS_ATTN_BITS_TIMER_ABORT)
  2766. static inline int
  2767. bnx2_has_work(struct bnx2_napi *bnapi)
  2768. {
  2769. struct status_block *sblk = bnapi->status_blk.msi;
  2770. if (bnx2_has_fast_work(bnapi))
  2771. return 1;
  2772. #ifdef BCM_CNIC
  2773. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2774. return 1;
  2775. #endif
  2776. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2777. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2778. return 1;
  2779. return 0;
  2780. }
  2781. static void
  2782. bnx2_chk_missed_msi(struct bnx2 *bp)
  2783. {
  2784. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2785. u32 msi_ctrl;
  2786. if (bnx2_has_work(bnapi)) {
  2787. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2788. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2789. return;
  2790. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2791. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2792. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2793. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2794. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2795. }
  2796. }
  2797. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2798. }
  2799. #ifdef BCM_CNIC
  2800. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2801. {
  2802. struct cnic_ops *c_ops;
  2803. if (!bnapi->cnic_present)
  2804. return;
  2805. rcu_read_lock();
  2806. c_ops = rcu_dereference(bp->cnic_ops);
  2807. if (c_ops)
  2808. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2809. bnapi->status_blk.msi);
  2810. rcu_read_unlock();
  2811. }
  2812. #endif
  2813. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2814. {
  2815. struct status_block *sblk = bnapi->status_blk.msi;
  2816. u32 status_attn_bits = sblk->status_attn_bits;
  2817. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2818. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2819. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2820. bnx2_phy_int(bp, bnapi);
  2821. /* This is needed to take care of transient status
  2822. * during link changes.
  2823. */
  2824. REG_WR(bp, BNX2_HC_COMMAND,
  2825. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2826. REG_RD(bp, BNX2_HC_COMMAND);
  2827. }
  2828. }
  2829. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2830. int work_done, int budget)
  2831. {
  2832. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2833. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2834. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2835. bnx2_tx_int(bp, bnapi, 0);
  2836. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2837. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2838. return work_done;
  2839. }
  2840. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2841. {
  2842. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2843. struct bnx2 *bp = bnapi->bp;
  2844. int work_done = 0;
  2845. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2846. while (1) {
  2847. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2848. if (unlikely(work_done >= budget))
  2849. break;
  2850. bnapi->last_status_idx = sblk->status_idx;
  2851. /* status idx must be read before checking for more work. */
  2852. rmb();
  2853. if (likely(!bnx2_has_fast_work(bnapi))) {
  2854. napi_complete(napi);
  2855. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2856. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2857. bnapi->last_status_idx);
  2858. break;
  2859. }
  2860. }
  2861. return work_done;
  2862. }
  2863. static int bnx2_poll(struct napi_struct *napi, int budget)
  2864. {
  2865. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2866. struct bnx2 *bp = bnapi->bp;
  2867. int work_done = 0;
  2868. struct status_block *sblk = bnapi->status_blk.msi;
  2869. while (1) {
  2870. bnx2_poll_link(bp, bnapi);
  2871. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2872. #ifdef BCM_CNIC
  2873. bnx2_poll_cnic(bp, bnapi);
  2874. #endif
  2875. /* bnapi->last_status_idx is used below to tell the hw how
  2876. * much work has been processed, so we must read it before
  2877. * checking for more work.
  2878. */
  2879. bnapi->last_status_idx = sblk->status_idx;
  2880. if (unlikely(work_done >= budget))
  2881. break;
  2882. rmb();
  2883. if (likely(!bnx2_has_work(bnapi))) {
  2884. napi_complete(napi);
  2885. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2886. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2887. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2888. bnapi->last_status_idx);
  2889. break;
  2890. }
  2891. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2892. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2893. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2894. bnapi->last_status_idx);
  2895. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2896. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2897. bnapi->last_status_idx);
  2898. break;
  2899. }
  2900. }
  2901. return work_done;
  2902. }
  2903. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2904. * from set_multicast.
  2905. */
  2906. static void
  2907. bnx2_set_rx_mode(struct net_device *dev)
  2908. {
  2909. struct bnx2 *bp = netdev_priv(dev);
  2910. u32 rx_mode, sort_mode;
  2911. struct netdev_hw_addr *ha;
  2912. int i;
  2913. if (!netif_running(dev))
  2914. return;
  2915. spin_lock_bh(&bp->phy_lock);
  2916. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2917. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2918. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2919. #ifdef BCM_VLAN
  2920. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2921. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2922. #else
  2923. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2924. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2925. #endif
  2926. if (dev->flags & IFF_PROMISC) {
  2927. /* Promiscuous mode. */
  2928. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2929. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2930. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2931. }
  2932. else if (dev->flags & IFF_ALLMULTI) {
  2933. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2934. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2935. 0xffffffff);
  2936. }
  2937. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2938. }
  2939. else {
  2940. /* Accept one or more multicast(s). */
  2941. struct dev_mc_list *mclist;
  2942. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2943. u32 regidx;
  2944. u32 bit;
  2945. u32 crc;
  2946. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2947. for (i = 0, mclist = dev->mc_list; mclist && i < netdev_mc_count(dev);
  2948. i++, mclist = mclist->next) {
  2949. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2950. bit = crc & 0xff;
  2951. regidx = (bit & 0xe0) >> 5;
  2952. bit &= 0x1f;
  2953. mc_filter[regidx] |= (1 << bit);
  2954. }
  2955. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2956. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2957. mc_filter[i]);
  2958. }
  2959. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2960. }
  2961. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2962. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2963. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2964. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2965. } else if (!(dev->flags & IFF_PROMISC)) {
  2966. /* Add all entries into to the match filter list */
  2967. i = 0;
  2968. netdev_for_each_uc_addr(ha, dev) {
  2969. bnx2_set_mac_addr(bp, ha->addr,
  2970. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2971. sort_mode |= (1 <<
  2972. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2973. i++;
  2974. }
  2975. }
  2976. if (rx_mode != bp->rx_mode) {
  2977. bp->rx_mode = rx_mode;
  2978. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2979. }
  2980. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2981. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2982. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2983. spin_unlock_bh(&bp->phy_lock);
  2984. }
  2985. static int __devinit
  2986. check_fw_section(const struct firmware *fw,
  2987. const struct bnx2_fw_file_section *section,
  2988. u32 alignment, bool non_empty)
  2989. {
  2990. u32 offset = be32_to_cpu(section->offset);
  2991. u32 len = be32_to_cpu(section->len);
  2992. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2993. return -EINVAL;
  2994. if ((non_empty && len == 0) || len > fw->size - offset ||
  2995. len & (alignment - 1))
  2996. return -EINVAL;
  2997. return 0;
  2998. }
  2999. static int __devinit
  3000. check_mips_fw_entry(const struct firmware *fw,
  3001. const struct bnx2_mips_fw_file_entry *entry)
  3002. {
  3003. if (check_fw_section(fw, &entry->text, 4, true) ||
  3004. check_fw_section(fw, &entry->data, 4, false) ||
  3005. check_fw_section(fw, &entry->rodata, 4, false))
  3006. return -EINVAL;
  3007. return 0;
  3008. }
  3009. static int __devinit
  3010. bnx2_request_firmware(struct bnx2 *bp)
  3011. {
  3012. const char *mips_fw_file, *rv2p_fw_file;
  3013. const struct bnx2_mips_fw_file *mips_fw;
  3014. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3015. int rc;
  3016. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3017. mips_fw_file = FW_MIPS_FILE_09;
  3018. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3019. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3020. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3021. else
  3022. rv2p_fw_file = FW_RV2P_FILE_09;
  3023. } else {
  3024. mips_fw_file = FW_MIPS_FILE_06;
  3025. rv2p_fw_file = FW_RV2P_FILE_06;
  3026. }
  3027. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3028. if (rc) {
  3029. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3030. return rc;
  3031. }
  3032. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3033. if (rc) {
  3034. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3035. return rc;
  3036. }
  3037. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3038. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3039. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3040. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3041. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3042. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3043. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3044. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3045. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3046. return -EINVAL;
  3047. }
  3048. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3049. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3050. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3051. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3052. return -EINVAL;
  3053. }
  3054. return 0;
  3055. }
  3056. static u32
  3057. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3058. {
  3059. switch (idx) {
  3060. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3061. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3062. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3063. break;
  3064. }
  3065. return rv2p_code;
  3066. }
  3067. static int
  3068. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3069. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3070. {
  3071. u32 rv2p_code_len, file_offset;
  3072. __be32 *rv2p_code;
  3073. int i;
  3074. u32 val, cmd, addr;
  3075. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3076. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3077. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3078. if (rv2p_proc == RV2P_PROC1) {
  3079. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3080. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3081. } else {
  3082. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3083. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3084. }
  3085. for (i = 0; i < rv2p_code_len; i += 8) {
  3086. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3087. rv2p_code++;
  3088. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3089. rv2p_code++;
  3090. val = (i / 8) | cmd;
  3091. REG_WR(bp, addr, val);
  3092. }
  3093. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3094. for (i = 0; i < 8; i++) {
  3095. u32 loc, code;
  3096. loc = be32_to_cpu(fw_entry->fixup[i]);
  3097. if (loc && ((loc * 4) < rv2p_code_len)) {
  3098. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3099. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3100. code = be32_to_cpu(*(rv2p_code + loc));
  3101. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3102. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3103. val = (loc / 2) | cmd;
  3104. REG_WR(bp, addr, val);
  3105. }
  3106. }
  3107. /* Reset the processor, un-stall is done later. */
  3108. if (rv2p_proc == RV2P_PROC1) {
  3109. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3110. }
  3111. else {
  3112. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3113. }
  3114. return 0;
  3115. }
  3116. static int
  3117. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3118. const struct bnx2_mips_fw_file_entry *fw_entry)
  3119. {
  3120. u32 addr, len, file_offset;
  3121. __be32 *data;
  3122. u32 offset;
  3123. u32 val;
  3124. /* Halt the CPU. */
  3125. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3126. val |= cpu_reg->mode_value_halt;
  3127. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3128. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3129. /* Load the Text area. */
  3130. addr = be32_to_cpu(fw_entry->text.addr);
  3131. len = be32_to_cpu(fw_entry->text.len);
  3132. file_offset = be32_to_cpu(fw_entry->text.offset);
  3133. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3134. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3135. if (len) {
  3136. int j;
  3137. for (j = 0; j < (len / 4); j++, offset += 4)
  3138. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3139. }
  3140. /* Load the Data area. */
  3141. addr = be32_to_cpu(fw_entry->data.addr);
  3142. len = be32_to_cpu(fw_entry->data.len);
  3143. file_offset = be32_to_cpu(fw_entry->data.offset);
  3144. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3145. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3146. if (len) {
  3147. int j;
  3148. for (j = 0; j < (len / 4); j++, offset += 4)
  3149. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3150. }
  3151. /* Load the Read-Only area. */
  3152. addr = be32_to_cpu(fw_entry->rodata.addr);
  3153. len = be32_to_cpu(fw_entry->rodata.len);
  3154. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3155. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3156. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3157. if (len) {
  3158. int j;
  3159. for (j = 0; j < (len / 4); j++, offset += 4)
  3160. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3161. }
  3162. /* Clear the pre-fetch instruction. */
  3163. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3164. val = be32_to_cpu(fw_entry->start_addr);
  3165. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3166. /* Start the CPU. */
  3167. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3168. val &= ~cpu_reg->mode_value_halt;
  3169. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3170. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3171. return 0;
  3172. }
  3173. static int
  3174. bnx2_init_cpus(struct bnx2 *bp)
  3175. {
  3176. const struct bnx2_mips_fw_file *mips_fw =
  3177. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3178. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3179. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3180. int rc;
  3181. /* Initialize the RV2P processor. */
  3182. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3183. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3184. /* Initialize the RX Processor. */
  3185. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3186. if (rc)
  3187. goto init_cpu_err;
  3188. /* Initialize the TX Processor. */
  3189. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3190. if (rc)
  3191. goto init_cpu_err;
  3192. /* Initialize the TX Patch-up Processor. */
  3193. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3194. if (rc)
  3195. goto init_cpu_err;
  3196. /* Initialize the Completion Processor. */
  3197. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3198. if (rc)
  3199. goto init_cpu_err;
  3200. /* Initialize the Command Processor. */
  3201. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3202. init_cpu_err:
  3203. return rc;
  3204. }
  3205. static int
  3206. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3207. {
  3208. u16 pmcsr;
  3209. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3210. switch (state) {
  3211. case PCI_D0: {
  3212. u32 val;
  3213. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3214. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3215. PCI_PM_CTRL_PME_STATUS);
  3216. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3217. /* delay required during transition out of D3hot */
  3218. msleep(20);
  3219. val = REG_RD(bp, BNX2_EMAC_MODE);
  3220. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3221. val &= ~BNX2_EMAC_MODE_MPKT;
  3222. REG_WR(bp, BNX2_EMAC_MODE, val);
  3223. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3224. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3225. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3226. break;
  3227. }
  3228. case PCI_D3hot: {
  3229. int i;
  3230. u32 val, wol_msg;
  3231. if (bp->wol) {
  3232. u32 advertising;
  3233. u8 autoneg;
  3234. autoneg = bp->autoneg;
  3235. advertising = bp->advertising;
  3236. if (bp->phy_port == PORT_TP) {
  3237. bp->autoneg = AUTONEG_SPEED;
  3238. bp->advertising = ADVERTISED_10baseT_Half |
  3239. ADVERTISED_10baseT_Full |
  3240. ADVERTISED_100baseT_Half |
  3241. ADVERTISED_100baseT_Full |
  3242. ADVERTISED_Autoneg;
  3243. }
  3244. spin_lock_bh(&bp->phy_lock);
  3245. bnx2_setup_phy(bp, bp->phy_port);
  3246. spin_unlock_bh(&bp->phy_lock);
  3247. bp->autoneg = autoneg;
  3248. bp->advertising = advertising;
  3249. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3250. val = REG_RD(bp, BNX2_EMAC_MODE);
  3251. /* Enable port mode. */
  3252. val &= ~BNX2_EMAC_MODE_PORT;
  3253. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3254. BNX2_EMAC_MODE_ACPI_RCVD |
  3255. BNX2_EMAC_MODE_MPKT;
  3256. if (bp->phy_port == PORT_TP)
  3257. val |= BNX2_EMAC_MODE_PORT_MII;
  3258. else {
  3259. val |= BNX2_EMAC_MODE_PORT_GMII;
  3260. if (bp->line_speed == SPEED_2500)
  3261. val |= BNX2_EMAC_MODE_25G_MODE;
  3262. }
  3263. REG_WR(bp, BNX2_EMAC_MODE, val);
  3264. /* receive all multicast */
  3265. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3266. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3267. 0xffffffff);
  3268. }
  3269. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3270. BNX2_EMAC_RX_MODE_SORT_MODE);
  3271. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3272. BNX2_RPM_SORT_USER0_MC_EN;
  3273. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3274. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3275. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3276. BNX2_RPM_SORT_USER0_ENA);
  3277. /* Need to enable EMAC and RPM for WOL. */
  3278. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3279. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3280. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3281. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3282. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3283. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3284. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3285. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3286. }
  3287. else {
  3288. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3289. }
  3290. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3291. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3292. 1, 0);
  3293. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3294. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3295. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3296. if (bp->wol)
  3297. pmcsr |= 3;
  3298. }
  3299. else {
  3300. pmcsr |= 3;
  3301. }
  3302. if (bp->wol) {
  3303. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3304. }
  3305. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3306. pmcsr);
  3307. /* No more memory access after this point until
  3308. * device is brought back to D0.
  3309. */
  3310. udelay(50);
  3311. break;
  3312. }
  3313. default:
  3314. return -EINVAL;
  3315. }
  3316. return 0;
  3317. }
  3318. static int
  3319. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3320. {
  3321. u32 val;
  3322. int j;
  3323. /* Request access to the flash interface. */
  3324. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3325. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3326. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3327. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3328. break;
  3329. udelay(5);
  3330. }
  3331. if (j >= NVRAM_TIMEOUT_COUNT)
  3332. return -EBUSY;
  3333. return 0;
  3334. }
  3335. static int
  3336. bnx2_release_nvram_lock(struct bnx2 *bp)
  3337. {
  3338. int j;
  3339. u32 val;
  3340. /* Relinquish nvram interface. */
  3341. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3342. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3343. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3344. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3345. break;
  3346. udelay(5);
  3347. }
  3348. if (j >= NVRAM_TIMEOUT_COUNT)
  3349. return -EBUSY;
  3350. return 0;
  3351. }
  3352. static int
  3353. bnx2_enable_nvram_write(struct bnx2 *bp)
  3354. {
  3355. u32 val;
  3356. val = REG_RD(bp, BNX2_MISC_CFG);
  3357. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3358. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3359. int j;
  3360. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3361. REG_WR(bp, BNX2_NVM_COMMAND,
  3362. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3363. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3364. udelay(5);
  3365. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3366. if (val & BNX2_NVM_COMMAND_DONE)
  3367. break;
  3368. }
  3369. if (j >= NVRAM_TIMEOUT_COUNT)
  3370. return -EBUSY;
  3371. }
  3372. return 0;
  3373. }
  3374. static void
  3375. bnx2_disable_nvram_write(struct bnx2 *bp)
  3376. {
  3377. u32 val;
  3378. val = REG_RD(bp, BNX2_MISC_CFG);
  3379. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3380. }
  3381. static void
  3382. bnx2_enable_nvram_access(struct bnx2 *bp)
  3383. {
  3384. u32 val;
  3385. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3386. /* Enable both bits, even on read. */
  3387. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3388. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3389. }
  3390. static void
  3391. bnx2_disable_nvram_access(struct bnx2 *bp)
  3392. {
  3393. u32 val;
  3394. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3395. /* Disable both bits, even after read. */
  3396. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3397. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3398. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3399. }
  3400. static int
  3401. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3402. {
  3403. u32 cmd;
  3404. int j;
  3405. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3406. /* Buffered flash, no erase needed */
  3407. return 0;
  3408. /* Build an erase command */
  3409. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3410. BNX2_NVM_COMMAND_DOIT;
  3411. /* Need to clear DONE bit separately. */
  3412. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3413. /* Address of the NVRAM to read from. */
  3414. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3415. /* Issue an erase command. */
  3416. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3417. /* Wait for completion. */
  3418. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3419. u32 val;
  3420. udelay(5);
  3421. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3422. if (val & BNX2_NVM_COMMAND_DONE)
  3423. break;
  3424. }
  3425. if (j >= NVRAM_TIMEOUT_COUNT)
  3426. return -EBUSY;
  3427. return 0;
  3428. }
  3429. static int
  3430. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3431. {
  3432. u32 cmd;
  3433. int j;
  3434. /* Build the command word. */
  3435. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3436. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3437. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3438. offset = ((offset / bp->flash_info->page_size) <<
  3439. bp->flash_info->page_bits) +
  3440. (offset % bp->flash_info->page_size);
  3441. }
  3442. /* Need to clear DONE bit separately. */
  3443. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3444. /* Address of the NVRAM to read from. */
  3445. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3446. /* Issue a read command. */
  3447. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3448. /* Wait for completion. */
  3449. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3450. u32 val;
  3451. udelay(5);
  3452. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3453. if (val & BNX2_NVM_COMMAND_DONE) {
  3454. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3455. memcpy(ret_val, &v, 4);
  3456. break;
  3457. }
  3458. }
  3459. if (j >= NVRAM_TIMEOUT_COUNT)
  3460. return -EBUSY;
  3461. return 0;
  3462. }
  3463. static int
  3464. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3465. {
  3466. u32 cmd;
  3467. __be32 val32;
  3468. int j;
  3469. /* Build the command word. */
  3470. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3471. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3472. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3473. offset = ((offset / bp->flash_info->page_size) <<
  3474. bp->flash_info->page_bits) +
  3475. (offset % bp->flash_info->page_size);
  3476. }
  3477. /* Need to clear DONE bit separately. */
  3478. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3479. memcpy(&val32, val, 4);
  3480. /* Write the data. */
  3481. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3482. /* Address of the NVRAM to write to. */
  3483. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3484. /* Issue the write command. */
  3485. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3486. /* Wait for completion. */
  3487. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3488. udelay(5);
  3489. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3490. break;
  3491. }
  3492. if (j >= NVRAM_TIMEOUT_COUNT)
  3493. return -EBUSY;
  3494. return 0;
  3495. }
  3496. static int
  3497. bnx2_init_nvram(struct bnx2 *bp)
  3498. {
  3499. u32 val;
  3500. int j, entry_count, rc = 0;
  3501. const struct flash_spec *flash;
  3502. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3503. bp->flash_info = &flash_5709;
  3504. goto get_flash_size;
  3505. }
  3506. /* Determine the selected interface. */
  3507. val = REG_RD(bp, BNX2_NVM_CFG1);
  3508. entry_count = ARRAY_SIZE(flash_table);
  3509. if (val & 0x40000000) {
  3510. /* Flash interface has been reconfigured */
  3511. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3512. j++, flash++) {
  3513. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3514. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3515. bp->flash_info = flash;
  3516. break;
  3517. }
  3518. }
  3519. }
  3520. else {
  3521. u32 mask;
  3522. /* Not yet been reconfigured */
  3523. if (val & (1 << 23))
  3524. mask = FLASH_BACKUP_STRAP_MASK;
  3525. else
  3526. mask = FLASH_STRAP_MASK;
  3527. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3528. j++, flash++) {
  3529. if ((val & mask) == (flash->strapping & mask)) {
  3530. bp->flash_info = flash;
  3531. /* Request access to the flash interface. */
  3532. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3533. return rc;
  3534. /* Enable access to flash interface */
  3535. bnx2_enable_nvram_access(bp);
  3536. /* Reconfigure the flash interface */
  3537. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3538. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3539. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3540. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3541. /* Disable access to flash interface */
  3542. bnx2_disable_nvram_access(bp);
  3543. bnx2_release_nvram_lock(bp);
  3544. break;
  3545. }
  3546. }
  3547. } /* if (val & 0x40000000) */
  3548. if (j == entry_count) {
  3549. bp->flash_info = NULL;
  3550. pr_alert("Unknown flash/EEPROM type\n");
  3551. return -ENODEV;
  3552. }
  3553. get_flash_size:
  3554. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3555. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3556. if (val)
  3557. bp->flash_size = val;
  3558. else
  3559. bp->flash_size = bp->flash_info->total_size;
  3560. return rc;
  3561. }
  3562. static int
  3563. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3564. int buf_size)
  3565. {
  3566. int rc = 0;
  3567. u32 cmd_flags, offset32, len32, extra;
  3568. if (buf_size == 0)
  3569. return 0;
  3570. /* Request access to the flash interface. */
  3571. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3572. return rc;
  3573. /* Enable access to flash interface */
  3574. bnx2_enable_nvram_access(bp);
  3575. len32 = buf_size;
  3576. offset32 = offset;
  3577. extra = 0;
  3578. cmd_flags = 0;
  3579. if (offset32 & 3) {
  3580. u8 buf[4];
  3581. u32 pre_len;
  3582. offset32 &= ~3;
  3583. pre_len = 4 - (offset & 3);
  3584. if (pre_len >= len32) {
  3585. pre_len = len32;
  3586. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3587. BNX2_NVM_COMMAND_LAST;
  3588. }
  3589. else {
  3590. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3591. }
  3592. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3593. if (rc)
  3594. return rc;
  3595. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3596. offset32 += 4;
  3597. ret_buf += pre_len;
  3598. len32 -= pre_len;
  3599. }
  3600. if (len32 & 3) {
  3601. extra = 4 - (len32 & 3);
  3602. len32 = (len32 + 4) & ~3;
  3603. }
  3604. if (len32 == 4) {
  3605. u8 buf[4];
  3606. if (cmd_flags)
  3607. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3608. else
  3609. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3610. BNX2_NVM_COMMAND_LAST;
  3611. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3612. memcpy(ret_buf, buf, 4 - extra);
  3613. }
  3614. else if (len32 > 0) {
  3615. u8 buf[4];
  3616. /* Read the first word. */
  3617. if (cmd_flags)
  3618. cmd_flags = 0;
  3619. else
  3620. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3621. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3622. /* Advance to the next dword. */
  3623. offset32 += 4;
  3624. ret_buf += 4;
  3625. len32 -= 4;
  3626. while (len32 > 4 && rc == 0) {
  3627. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3628. /* Advance to the next dword. */
  3629. offset32 += 4;
  3630. ret_buf += 4;
  3631. len32 -= 4;
  3632. }
  3633. if (rc)
  3634. return rc;
  3635. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3636. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3637. memcpy(ret_buf, buf, 4 - extra);
  3638. }
  3639. /* Disable access to flash interface */
  3640. bnx2_disable_nvram_access(bp);
  3641. bnx2_release_nvram_lock(bp);
  3642. return rc;
  3643. }
  3644. static int
  3645. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3646. int buf_size)
  3647. {
  3648. u32 written, offset32, len32;
  3649. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3650. int rc = 0;
  3651. int align_start, align_end;
  3652. buf = data_buf;
  3653. offset32 = offset;
  3654. len32 = buf_size;
  3655. align_start = align_end = 0;
  3656. if ((align_start = (offset32 & 3))) {
  3657. offset32 &= ~3;
  3658. len32 += align_start;
  3659. if (len32 < 4)
  3660. len32 = 4;
  3661. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3662. return rc;
  3663. }
  3664. if (len32 & 3) {
  3665. align_end = 4 - (len32 & 3);
  3666. len32 += align_end;
  3667. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3668. return rc;
  3669. }
  3670. if (align_start || align_end) {
  3671. align_buf = kmalloc(len32, GFP_KERNEL);
  3672. if (align_buf == NULL)
  3673. return -ENOMEM;
  3674. if (align_start) {
  3675. memcpy(align_buf, start, 4);
  3676. }
  3677. if (align_end) {
  3678. memcpy(align_buf + len32 - 4, end, 4);
  3679. }
  3680. memcpy(align_buf + align_start, data_buf, buf_size);
  3681. buf = align_buf;
  3682. }
  3683. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3684. flash_buffer = kmalloc(264, GFP_KERNEL);
  3685. if (flash_buffer == NULL) {
  3686. rc = -ENOMEM;
  3687. goto nvram_write_end;
  3688. }
  3689. }
  3690. written = 0;
  3691. while ((written < len32) && (rc == 0)) {
  3692. u32 page_start, page_end, data_start, data_end;
  3693. u32 addr, cmd_flags;
  3694. int i;
  3695. /* Find the page_start addr */
  3696. page_start = offset32 + written;
  3697. page_start -= (page_start % bp->flash_info->page_size);
  3698. /* Find the page_end addr */
  3699. page_end = page_start + bp->flash_info->page_size;
  3700. /* Find the data_start addr */
  3701. data_start = (written == 0) ? offset32 : page_start;
  3702. /* Find the data_end addr */
  3703. data_end = (page_end > offset32 + len32) ?
  3704. (offset32 + len32) : page_end;
  3705. /* Request access to the flash interface. */
  3706. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3707. goto nvram_write_end;
  3708. /* Enable access to flash interface */
  3709. bnx2_enable_nvram_access(bp);
  3710. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3711. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3712. int j;
  3713. /* Read the whole page into the buffer
  3714. * (non-buffer flash only) */
  3715. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3716. if (j == (bp->flash_info->page_size - 4)) {
  3717. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3718. }
  3719. rc = bnx2_nvram_read_dword(bp,
  3720. page_start + j,
  3721. &flash_buffer[j],
  3722. cmd_flags);
  3723. if (rc)
  3724. goto nvram_write_end;
  3725. cmd_flags = 0;
  3726. }
  3727. }
  3728. /* Enable writes to flash interface (unlock write-protect) */
  3729. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3730. goto nvram_write_end;
  3731. /* Loop to write back the buffer data from page_start to
  3732. * data_start */
  3733. i = 0;
  3734. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3735. /* Erase the page */
  3736. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3737. goto nvram_write_end;
  3738. /* Re-enable the write again for the actual write */
  3739. bnx2_enable_nvram_write(bp);
  3740. for (addr = page_start; addr < data_start;
  3741. addr += 4, i += 4) {
  3742. rc = bnx2_nvram_write_dword(bp, addr,
  3743. &flash_buffer[i], cmd_flags);
  3744. if (rc != 0)
  3745. goto nvram_write_end;
  3746. cmd_flags = 0;
  3747. }
  3748. }
  3749. /* Loop to write the new data from data_start to data_end */
  3750. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3751. if ((addr == page_end - 4) ||
  3752. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3753. (addr == data_end - 4))) {
  3754. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3755. }
  3756. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3757. cmd_flags);
  3758. if (rc != 0)
  3759. goto nvram_write_end;
  3760. cmd_flags = 0;
  3761. buf += 4;
  3762. }
  3763. /* Loop to write back the buffer data from data_end
  3764. * to page_end */
  3765. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3766. for (addr = data_end; addr < page_end;
  3767. addr += 4, i += 4) {
  3768. if (addr == page_end-4) {
  3769. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3770. }
  3771. rc = bnx2_nvram_write_dword(bp, addr,
  3772. &flash_buffer[i], cmd_flags);
  3773. if (rc != 0)
  3774. goto nvram_write_end;
  3775. cmd_flags = 0;
  3776. }
  3777. }
  3778. /* Disable writes to flash interface (lock write-protect) */
  3779. bnx2_disable_nvram_write(bp);
  3780. /* Disable access to flash interface */
  3781. bnx2_disable_nvram_access(bp);
  3782. bnx2_release_nvram_lock(bp);
  3783. /* Increment written */
  3784. written += data_end - data_start;
  3785. }
  3786. nvram_write_end:
  3787. kfree(flash_buffer);
  3788. kfree(align_buf);
  3789. return rc;
  3790. }
  3791. static void
  3792. bnx2_init_fw_cap(struct bnx2 *bp)
  3793. {
  3794. u32 val, sig = 0;
  3795. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3796. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3797. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3798. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3799. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3800. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3801. return;
  3802. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3803. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3804. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3805. }
  3806. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3807. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3808. u32 link;
  3809. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3810. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3811. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3812. bp->phy_port = PORT_FIBRE;
  3813. else
  3814. bp->phy_port = PORT_TP;
  3815. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3816. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3817. }
  3818. if (netif_running(bp->dev) && sig)
  3819. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3820. }
  3821. static void
  3822. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3823. {
  3824. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3825. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3826. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3827. }
  3828. static int
  3829. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3830. {
  3831. u32 val;
  3832. int i, rc = 0;
  3833. u8 old_port;
  3834. /* Wait for the current PCI transaction to complete before
  3835. * issuing a reset. */
  3836. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3837. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3838. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3839. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3840. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3841. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3842. udelay(5);
  3843. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3844. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3845. /* Deposit a driver reset signature so the firmware knows that
  3846. * this is a soft reset. */
  3847. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3848. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3849. /* Do a dummy read to force the chip to complete all current transaction
  3850. * before we issue a reset. */
  3851. val = REG_RD(bp, BNX2_MISC_ID);
  3852. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3853. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3854. REG_RD(bp, BNX2_MISC_COMMAND);
  3855. udelay(5);
  3856. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3857. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3858. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3859. } else {
  3860. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3861. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3862. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3863. /* Chip reset. */
  3864. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3865. /* Reading back any register after chip reset will hang the
  3866. * bus on 5706 A0 and A1. The msleep below provides plenty
  3867. * of margin for write posting.
  3868. */
  3869. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3870. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3871. msleep(20);
  3872. /* Reset takes approximate 30 usec */
  3873. for (i = 0; i < 10; i++) {
  3874. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3875. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3876. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3877. break;
  3878. udelay(10);
  3879. }
  3880. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3881. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3882. pr_err("Chip reset did not complete\n");
  3883. return -EBUSY;
  3884. }
  3885. }
  3886. /* Make sure byte swapping is properly configured. */
  3887. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3888. if (val != 0x01020304) {
  3889. pr_err("Chip not in correct endian mode\n");
  3890. return -ENODEV;
  3891. }
  3892. /* Wait for the firmware to finish its initialization. */
  3893. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3894. if (rc)
  3895. return rc;
  3896. spin_lock_bh(&bp->phy_lock);
  3897. old_port = bp->phy_port;
  3898. bnx2_init_fw_cap(bp);
  3899. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3900. old_port != bp->phy_port)
  3901. bnx2_set_default_remote_link(bp);
  3902. spin_unlock_bh(&bp->phy_lock);
  3903. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3904. /* Adjust the voltage regular to two steps lower. The default
  3905. * of this register is 0x0000000e. */
  3906. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3907. /* Remove bad rbuf memory from the free pool. */
  3908. rc = bnx2_alloc_bad_rbuf(bp);
  3909. }
  3910. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3911. bnx2_setup_msix_tbl(bp);
  3912. return rc;
  3913. }
  3914. static int
  3915. bnx2_init_chip(struct bnx2 *bp)
  3916. {
  3917. u32 val, mtu;
  3918. int rc, i;
  3919. /* Make sure the interrupt is not active. */
  3920. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3921. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3922. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3923. #ifdef __BIG_ENDIAN
  3924. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3925. #endif
  3926. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3927. DMA_READ_CHANS << 12 |
  3928. DMA_WRITE_CHANS << 16;
  3929. val |= (0x2 << 20) | (1 << 11);
  3930. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3931. val |= (1 << 23);
  3932. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3933. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3934. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3935. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3936. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3937. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3938. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3939. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3940. }
  3941. if (bp->flags & BNX2_FLAG_PCIX) {
  3942. u16 val16;
  3943. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3944. &val16);
  3945. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3946. val16 & ~PCI_X_CMD_ERO);
  3947. }
  3948. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3949. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3950. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3951. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3952. /* Initialize context mapping and zero out the quick contexts. The
  3953. * context block must have already been enabled. */
  3954. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3955. rc = bnx2_init_5709_context(bp);
  3956. if (rc)
  3957. return rc;
  3958. } else
  3959. bnx2_init_context(bp);
  3960. if ((rc = bnx2_init_cpus(bp)) != 0)
  3961. return rc;
  3962. bnx2_init_nvram(bp);
  3963. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3964. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3965. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3966. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3967. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3968. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3969. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3970. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3971. }
  3972. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3973. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3974. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3975. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3976. val = (BCM_PAGE_BITS - 8) << 24;
  3977. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3978. /* Configure page size. */
  3979. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3980. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3981. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3982. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3983. val = bp->mac_addr[0] +
  3984. (bp->mac_addr[1] << 8) +
  3985. (bp->mac_addr[2] << 16) +
  3986. bp->mac_addr[3] +
  3987. (bp->mac_addr[4] << 8) +
  3988. (bp->mac_addr[5] << 16);
  3989. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3990. /* Program the MTU. Also include 4 bytes for CRC32. */
  3991. mtu = bp->dev->mtu;
  3992. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3993. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3994. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3995. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3996. if (mtu < 1500)
  3997. mtu = 1500;
  3998. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3999. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4000. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4001. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4002. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4003. bp->bnx2_napi[i].last_status_idx = 0;
  4004. bp->idle_chk_status_idx = 0xffff;
  4005. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4006. /* Set up how to generate a link change interrupt. */
  4007. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4008. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4009. (u64) bp->status_blk_mapping & 0xffffffff);
  4010. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4011. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4012. (u64) bp->stats_blk_mapping & 0xffffffff);
  4013. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4014. (u64) bp->stats_blk_mapping >> 32);
  4015. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4016. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4017. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4018. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4019. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4020. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4021. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4022. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4023. REG_WR(bp, BNX2_HC_COM_TICKS,
  4024. (bp->com_ticks_int << 16) | bp->com_ticks);
  4025. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4026. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4027. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4028. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4029. else
  4030. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4031. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4032. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4033. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4034. else {
  4035. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4036. BNX2_HC_CONFIG_COLLECT_STATS;
  4037. }
  4038. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4039. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4040. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4041. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4042. }
  4043. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4044. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4045. REG_WR(bp, BNX2_HC_CONFIG, val);
  4046. for (i = 1; i < bp->irq_nvecs; i++) {
  4047. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4048. BNX2_HC_SB_CONFIG_1;
  4049. REG_WR(bp, base,
  4050. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4051. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4052. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4053. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4054. (bp->tx_quick_cons_trip_int << 16) |
  4055. bp->tx_quick_cons_trip);
  4056. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4057. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4058. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4059. (bp->rx_quick_cons_trip_int << 16) |
  4060. bp->rx_quick_cons_trip);
  4061. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4062. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4063. }
  4064. /* Clear internal stats counters. */
  4065. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4066. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4067. /* Initialize the receive filter. */
  4068. bnx2_set_rx_mode(bp->dev);
  4069. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4070. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4071. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4072. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4073. }
  4074. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4075. 1, 0);
  4076. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4077. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4078. udelay(20);
  4079. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4080. return rc;
  4081. }
  4082. static void
  4083. bnx2_clear_ring_states(struct bnx2 *bp)
  4084. {
  4085. struct bnx2_napi *bnapi;
  4086. struct bnx2_tx_ring_info *txr;
  4087. struct bnx2_rx_ring_info *rxr;
  4088. int i;
  4089. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4090. bnapi = &bp->bnx2_napi[i];
  4091. txr = &bnapi->tx_ring;
  4092. rxr = &bnapi->rx_ring;
  4093. txr->tx_cons = 0;
  4094. txr->hw_tx_cons = 0;
  4095. rxr->rx_prod_bseq = 0;
  4096. rxr->rx_prod = 0;
  4097. rxr->rx_cons = 0;
  4098. rxr->rx_pg_prod = 0;
  4099. rxr->rx_pg_cons = 0;
  4100. }
  4101. }
  4102. static void
  4103. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4104. {
  4105. u32 val, offset0, offset1, offset2, offset3;
  4106. u32 cid_addr = GET_CID_ADDR(cid);
  4107. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4108. offset0 = BNX2_L2CTX_TYPE_XI;
  4109. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4110. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4111. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4112. } else {
  4113. offset0 = BNX2_L2CTX_TYPE;
  4114. offset1 = BNX2_L2CTX_CMD_TYPE;
  4115. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4116. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4117. }
  4118. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4119. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4120. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4121. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4122. val = (u64) txr->tx_desc_mapping >> 32;
  4123. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4124. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4125. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4126. }
  4127. static void
  4128. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4129. {
  4130. struct tx_bd *txbd;
  4131. u32 cid = TX_CID;
  4132. struct bnx2_napi *bnapi;
  4133. struct bnx2_tx_ring_info *txr;
  4134. bnapi = &bp->bnx2_napi[ring_num];
  4135. txr = &bnapi->tx_ring;
  4136. if (ring_num == 0)
  4137. cid = TX_CID;
  4138. else
  4139. cid = TX_TSS_CID + ring_num - 1;
  4140. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4141. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4142. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4143. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4144. txr->tx_prod = 0;
  4145. txr->tx_prod_bseq = 0;
  4146. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4147. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4148. bnx2_init_tx_context(bp, cid, txr);
  4149. }
  4150. static void
  4151. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4152. int num_rings)
  4153. {
  4154. int i;
  4155. struct rx_bd *rxbd;
  4156. for (i = 0; i < num_rings; i++) {
  4157. int j;
  4158. rxbd = &rx_ring[i][0];
  4159. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4160. rxbd->rx_bd_len = buf_size;
  4161. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4162. }
  4163. if (i == (num_rings - 1))
  4164. j = 0;
  4165. else
  4166. j = i + 1;
  4167. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4168. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4169. }
  4170. }
  4171. static void
  4172. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4173. {
  4174. int i;
  4175. u16 prod, ring_prod;
  4176. u32 cid, rx_cid_addr, val;
  4177. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4178. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4179. if (ring_num == 0)
  4180. cid = RX_CID;
  4181. else
  4182. cid = RX_RSS_CID + ring_num - 1;
  4183. rx_cid_addr = GET_CID_ADDR(cid);
  4184. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4185. bp->rx_buf_use_size, bp->rx_max_ring);
  4186. bnx2_init_rx_context(bp, cid);
  4187. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4188. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4189. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4190. }
  4191. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4192. if (bp->rx_pg_ring_size) {
  4193. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4194. rxr->rx_pg_desc_mapping,
  4195. PAGE_SIZE, bp->rx_max_pg_ring);
  4196. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4197. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4198. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4199. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4200. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4201. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4202. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4203. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4204. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4205. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4206. }
  4207. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4208. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4209. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4210. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4211. ring_prod = prod = rxr->rx_pg_prod;
  4212. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4213. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0) {
  4214. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4215. ring_num, i, bp->rx_pg_ring_size);
  4216. break;
  4217. }
  4218. prod = NEXT_RX_BD(prod);
  4219. ring_prod = RX_PG_RING_IDX(prod);
  4220. }
  4221. rxr->rx_pg_prod = prod;
  4222. ring_prod = prod = rxr->rx_prod;
  4223. for (i = 0; i < bp->rx_ring_size; i++) {
  4224. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0) {
  4225. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4226. ring_num, i, bp->rx_ring_size);
  4227. break;
  4228. }
  4229. prod = NEXT_RX_BD(prod);
  4230. ring_prod = RX_RING_IDX(prod);
  4231. }
  4232. rxr->rx_prod = prod;
  4233. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4234. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4235. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4236. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4237. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4238. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4239. }
  4240. static void
  4241. bnx2_init_all_rings(struct bnx2 *bp)
  4242. {
  4243. int i;
  4244. u32 val;
  4245. bnx2_clear_ring_states(bp);
  4246. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4247. for (i = 0; i < bp->num_tx_rings; i++)
  4248. bnx2_init_tx_ring(bp, i);
  4249. if (bp->num_tx_rings > 1)
  4250. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4251. (TX_TSS_CID << 7));
  4252. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4253. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4254. for (i = 0; i < bp->num_rx_rings; i++)
  4255. bnx2_init_rx_ring(bp, i);
  4256. if (bp->num_rx_rings > 1) {
  4257. u32 tbl_32;
  4258. u8 *tbl = (u8 *) &tbl_32;
  4259. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4260. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4261. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4262. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4263. if ((i % 4) == 3)
  4264. bnx2_reg_wr_ind(bp,
  4265. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4266. cpu_to_be32(tbl_32));
  4267. }
  4268. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4269. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4270. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4271. }
  4272. }
  4273. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4274. {
  4275. u32 max, num_rings = 1;
  4276. while (ring_size > MAX_RX_DESC_CNT) {
  4277. ring_size -= MAX_RX_DESC_CNT;
  4278. num_rings++;
  4279. }
  4280. /* round to next power of 2 */
  4281. max = max_size;
  4282. while ((max & num_rings) == 0)
  4283. max >>= 1;
  4284. if (num_rings != max)
  4285. max <<= 1;
  4286. return max;
  4287. }
  4288. static void
  4289. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4290. {
  4291. u32 rx_size, rx_space, jumbo_size;
  4292. /* 8 for CRC and VLAN */
  4293. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4294. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4295. sizeof(struct skb_shared_info);
  4296. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4297. bp->rx_pg_ring_size = 0;
  4298. bp->rx_max_pg_ring = 0;
  4299. bp->rx_max_pg_ring_idx = 0;
  4300. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4301. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4302. jumbo_size = size * pages;
  4303. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4304. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4305. bp->rx_pg_ring_size = jumbo_size;
  4306. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4307. MAX_RX_PG_RINGS);
  4308. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4309. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4310. bp->rx_copy_thresh = 0;
  4311. }
  4312. bp->rx_buf_use_size = rx_size;
  4313. /* hw alignment */
  4314. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4315. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4316. bp->rx_ring_size = size;
  4317. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4318. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4319. }
  4320. static void
  4321. bnx2_free_tx_skbs(struct bnx2 *bp)
  4322. {
  4323. int i;
  4324. for (i = 0; i < bp->num_tx_rings; i++) {
  4325. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4326. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4327. int j;
  4328. if (txr->tx_buf_ring == NULL)
  4329. continue;
  4330. for (j = 0; j < TX_DESC_CNT; ) {
  4331. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4332. struct sk_buff *skb = tx_buf->skb;
  4333. int k, last;
  4334. if (skb == NULL) {
  4335. j++;
  4336. continue;
  4337. }
  4338. pci_unmap_single(bp->pdev,
  4339. pci_unmap_addr(tx_buf, mapping),
  4340. skb_headlen(skb),
  4341. PCI_DMA_TODEVICE);
  4342. tx_buf->skb = NULL;
  4343. last = tx_buf->nr_frags;
  4344. j++;
  4345. for (k = 0; k < last; k++, j++) {
  4346. tx_buf = &txr->tx_buf_ring[TX_RING_IDX(j)];
  4347. pci_unmap_page(bp->pdev,
  4348. pci_unmap_addr(tx_buf, mapping),
  4349. skb_shinfo(skb)->frags[k].size,
  4350. PCI_DMA_TODEVICE);
  4351. }
  4352. dev_kfree_skb(skb);
  4353. }
  4354. }
  4355. }
  4356. static void
  4357. bnx2_free_rx_skbs(struct bnx2 *bp)
  4358. {
  4359. int i;
  4360. for (i = 0; i < bp->num_rx_rings; i++) {
  4361. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4362. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4363. int j;
  4364. if (rxr->rx_buf_ring == NULL)
  4365. return;
  4366. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4367. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4368. struct sk_buff *skb = rx_buf->skb;
  4369. if (skb == NULL)
  4370. continue;
  4371. pci_unmap_single(bp->pdev,
  4372. pci_unmap_addr(rx_buf, mapping),
  4373. bp->rx_buf_use_size,
  4374. PCI_DMA_FROMDEVICE);
  4375. rx_buf->skb = NULL;
  4376. dev_kfree_skb(skb);
  4377. }
  4378. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4379. bnx2_free_rx_page(bp, rxr, j);
  4380. }
  4381. }
  4382. static void
  4383. bnx2_free_skbs(struct bnx2 *bp)
  4384. {
  4385. bnx2_free_tx_skbs(bp);
  4386. bnx2_free_rx_skbs(bp);
  4387. }
  4388. static int
  4389. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4390. {
  4391. int rc;
  4392. rc = bnx2_reset_chip(bp, reset_code);
  4393. bnx2_free_skbs(bp);
  4394. if (rc)
  4395. return rc;
  4396. if ((rc = bnx2_init_chip(bp)) != 0)
  4397. return rc;
  4398. bnx2_init_all_rings(bp);
  4399. return 0;
  4400. }
  4401. static int
  4402. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4403. {
  4404. int rc;
  4405. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4406. return rc;
  4407. spin_lock_bh(&bp->phy_lock);
  4408. bnx2_init_phy(bp, reset_phy);
  4409. bnx2_set_link(bp);
  4410. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4411. bnx2_remote_phy_event(bp);
  4412. spin_unlock_bh(&bp->phy_lock);
  4413. return 0;
  4414. }
  4415. static int
  4416. bnx2_shutdown_chip(struct bnx2 *bp)
  4417. {
  4418. u32 reset_code;
  4419. if (bp->flags & BNX2_FLAG_NO_WOL)
  4420. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4421. else if (bp->wol)
  4422. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4423. else
  4424. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4425. return bnx2_reset_chip(bp, reset_code);
  4426. }
  4427. static int
  4428. bnx2_test_registers(struct bnx2 *bp)
  4429. {
  4430. int ret;
  4431. int i, is_5709;
  4432. static const struct {
  4433. u16 offset;
  4434. u16 flags;
  4435. #define BNX2_FL_NOT_5709 1
  4436. u32 rw_mask;
  4437. u32 ro_mask;
  4438. } reg_tbl[] = {
  4439. { 0x006c, 0, 0x00000000, 0x0000003f },
  4440. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4441. { 0x0094, 0, 0x00000000, 0x00000000 },
  4442. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4443. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4444. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4445. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4446. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4447. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4448. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4449. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4450. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4451. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4452. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4453. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4454. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4455. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4456. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4457. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4458. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4459. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4460. { 0x1000, 0, 0x00000000, 0x00000001 },
  4461. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4462. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4463. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4464. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4465. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4466. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4467. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4468. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4469. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4470. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4471. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4472. { 0x1800, 0, 0x00000000, 0x00000001 },
  4473. { 0x1804, 0, 0x00000000, 0x00000003 },
  4474. { 0x2800, 0, 0x00000000, 0x00000001 },
  4475. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4476. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4477. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4478. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4479. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4480. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4481. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4482. { 0x2840, 0, 0x00000000, 0xffffffff },
  4483. { 0x2844, 0, 0x00000000, 0xffffffff },
  4484. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4485. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4486. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4487. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4488. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4489. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4490. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4491. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4492. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4493. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4494. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4495. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4496. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4497. { 0x5004, 0, 0x00000000, 0x0000007f },
  4498. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4499. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4500. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4501. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4502. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4503. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4504. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4505. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4506. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4507. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4508. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4509. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4510. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4511. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4512. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4513. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4514. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4515. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4516. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4517. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4518. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4519. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4520. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4521. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4522. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4523. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4524. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4525. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4526. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4527. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4528. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4529. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4530. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4531. { 0xffff, 0, 0x00000000, 0x00000000 },
  4532. };
  4533. ret = 0;
  4534. is_5709 = 0;
  4535. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4536. is_5709 = 1;
  4537. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4538. u32 offset, rw_mask, ro_mask, save_val, val;
  4539. u16 flags = reg_tbl[i].flags;
  4540. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4541. continue;
  4542. offset = (u32) reg_tbl[i].offset;
  4543. rw_mask = reg_tbl[i].rw_mask;
  4544. ro_mask = reg_tbl[i].ro_mask;
  4545. save_val = readl(bp->regview + offset);
  4546. writel(0, bp->regview + offset);
  4547. val = readl(bp->regview + offset);
  4548. if ((val & rw_mask) != 0) {
  4549. goto reg_test_err;
  4550. }
  4551. if ((val & ro_mask) != (save_val & ro_mask)) {
  4552. goto reg_test_err;
  4553. }
  4554. writel(0xffffffff, bp->regview + offset);
  4555. val = readl(bp->regview + offset);
  4556. if ((val & rw_mask) != rw_mask) {
  4557. goto reg_test_err;
  4558. }
  4559. if ((val & ro_mask) != (save_val & ro_mask)) {
  4560. goto reg_test_err;
  4561. }
  4562. writel(save_val, bp->regview + offset);
  4563. continue;
  4564. reg_test_err:
  4565. writel(save_val, bp->regview + offset);
  4566. ret = -ENODEV;
  4567. break;
  4568. }
  4569. return ret;
  4570. }
  4571. static int
  4572. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4573. {
  4574. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4575. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4576. int i;
  4577. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4578. u32 offset;
  4579. for (offset = 0; offset < size; offset += 4) {
  4580. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4581. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4582. test_pattern[i]) {
  4583. return -ENODEV;
  4584. }
  4585. }
  4586. }
  4587. return 0;
  4588. }
  4589. static int
  4590. bnx2_test_memory(struct bnx2 *bp)
  4591. {
  4592. int ret = 0;
  4593. int i;
  4594. static struct mem_entry {
  4595. u32 offset;
  4596. u32 len;
  4597. } mem_tbl_5706[] = {
  4598. { 0x60000, 0x4000 },
  4599. { 0xa0000, 0x3000 },
  4600. { 0xe0000, 0x4000 },
  4601. { 0x120000, 0x4000 },
  4602. { 0x1a0000, 0x4000 },
  4603. { 0x160000, 0x4000 },
  4604. { 0xffffffff, 0 },
  4605. },
  4606. mem_tbl_5709[] = {
  4607. { 0x60000, 0x4000 },
  4608. { 0xa0000, 0x3000 },
  4609. { 0xe0000, 0x4000 },
  4610. { 0x120000, 0x4000 },
  4611. { 0x1a0000, 0x4000 },
  4612. { 0xffffffff, 0 },
  4613. };
  4614. struct mem_entry *mem_tbl;
  4615. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4616. mem_tbl = mem_tbl_5709;
  4617. else
  4618. mem_tbl = mem_tbl_5706;
  4619. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4620. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4621. mem_tbl[i].len)) != 0) {
  4622. return ret;
  4623. }
  4624. }
  4625. return ret;
  4626. }
  4627. #define BNX2_MAC_LOOPBACK 0
  4628. #define BNX2_PHY_LOOPBACK 1
  4629. static int
  4630. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4631. {
  4632. unsigned int pkt_size, num_pkts, i;
  4633. struct sk_buff *skb, *rx_skb;
  4634. unsigned char *packet;
  4635. u16 rx_start_idx, rx_idx;
  4636. dma_addr_t map;
  4637. struct tx_bd *txbd;
  4638. struct sw_bd *rx_buf;
  4639. struct l2_fhdr *rx_hdr;
  4640. int ret = -ENODEV;
  4641. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4642. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4643. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4644. tx_napi = bnapi;
  4645. txr = &tx_napi->tx_ring;
  4646. rxr = &bnapi->rx_ring;
  4647. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4648. bp->loopback = MAC_LOOPBACK;
  4649. bnx2_set_mac_loopback(bp);
  4650. }
  4651. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4652. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4653. return 0;
  4654. bp->loopback = PHY_LOOPBACK;
  4655. bnx2_set_phy_loopback(bp);
  4656. }
  4657. else
  4658. return -EINVAL;
  4659. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4660. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4661. if (!skb)
  4662. return -ENOMEM;
  4663. packet = skb_put(skb, pkt_size);
  4664. memcpy(packet, bp->dev->dev_addr, 6);
  4665. memset(packet + 6, 0x0, 8);
  4666. for (i = 14; i < pkt_size; i++)
  4667. packet[i] = (unsigned char) (i & 0xff);
  4668. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  4669. PCI_DMA_TODEVICE);
  4670. if (pci_dma_mapping_error(bp->pdev, map)) {
  4671. dev_kfree_skb(skb);
  4672. return -EIO;
  4673. }
  4674. REG_WR(bp, BNX2_HC_COMMAND,
  4675. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4676. REG_RD(bp, BNX2_HC_COMMAND);
  4677. udelay(5);
  4678. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4679. num_pkts = 0;
  4680. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4681. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4682. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4683. txbd->tx_bd_mss_nbytes = pkt_size;
  4684. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4685. num_pkts++;
  4686. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4687. txr->tx_prod_bseq += pkt_size;
  4688. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4689. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4690. udelay(100);
  4691. REG_WR(bp, BNX2_HC_COMMAND,
  4692. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4693. REG_RD(bp, BNX2_HC_COMMAND);
  4694. udelay(5);
  4695. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  4696. dev_kfree_skb(skb);
  4697. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4698. goto loopback_test_done;
  4699. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4700. if (rx_idx != rx_start_idx + num_pkts) {
  4701. goto loopback_test_done;
  4702. }
  4703. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4704. rx_skb = rx_buf->skb;
  4705. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4706. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4707. pci_dma_sync_single_for_cpu(bp->pdev,
  4708. pci_unmap_addr(rx_buf, mapping),
  4709. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4710. if (rx_hdr->l2_fhdr_status &
  4711. (L2_FHDR_ERRORS_BAD_CRC |
  4712. L2_FHDR_ERRORS_PHY_DECODE |
  4713. L2_FHDR_ERRORS_ALIGNMENT |
  4714. L2_FHDR_ERRORS_TOO_SHORT |
  4715. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4716. goto loopback_test_done;
  4717. }
  4718. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4719. goto loopback_test_done;
  4720. }
  4721. for (i = 14; i < pkt_size; i++) {
  4722. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4723. goto loopback_test_done;
  4724. }
  4725. }
  4726. ret = 0;
  4727. loopback_test_done:
  4728. bp->loopback = 0;
  4729. return ret;
  4730. }
  4731. #define BNX2_MAC_LOOPBACK_FAILED 1
  4732. #define BNX2_PHY_LOOPBACK_FAILED 2
  4733. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4734. BNX2_PHY_LOOPBACK_FAILED)
  4735. static int
  4736. bnx2_test_loopback(struct bnx2 *bp)
  4737. {
  4738. int rc = 0;
  4739. if (!netif_running(bp->dev))
  4740. return BNX2_LOOPBACK_FAILED;
  4741. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4742. spin_lock_bh(&bp->phy_lock);
  4743. bnx2_init_phy(bp, 1);
  4744. spin_unlock_bh(&bp->phy_lock);
  4745. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4746. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4747. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4748. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4749. return rc;
  4750. }
  4751. #define NVRAM_SIZE 0x200
  4752. #define CRC32_RESIDUAL 0xdebb20e3
  4753. static int
  4754. bnx2_test_nvram(struct bnx2 *bp)
  4755. {
  4756. __be32 buf[NVRAM_SIZE / 4];
  4757. u8 *data = (u8 *) buf;
  4758. int rc = 0;
  4759. u32 magic, csum;
  4760. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4761. goto test_nvram_done;
  4762. magic = be32_to_cpu(buf[0]);
  4763. if (magic != 0x669955aa) {
  4764. rc = -ENODEV;
  4765. goto test_nvram_done;
  4766. }
  4767. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4768. goto test_nvram_done;
  4769. csum = ether_crc_le(0x100, data);
  4770. if (csum != CRC32_RESIDUAL) {
  4771. rc = -ENODEV;
  4772. goto test_nvram_done;
  4773. }
  4774. csum = ether_crc_le(0x100, data + 0x100);
  4775. if (csum != CRC32_RESIDUAL) {
  4776. rc = -ENODEV;
  4777. }
  4778. test_nvram_done:
  4779. return rc;
  4780. }
  4781. static int
  4782. bnx2_test_link(struct bnx2 *bp)
  4783. {
  4784. u32 bmsr;
  4785. if (!netif_running(bp->dev))
  4786. return -ENODEV;
  4787. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4788. if (bp->link_up)
  4789. return 0;
  4790. return -ENODEV;
  4791. }
  4792. spin_lock_bh(&bp->phy_lock);
  4793. bnx2_enable_bmsr1(bp);
  4794. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4795. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4796. bnx2_disable_bmsr1(bp);
  4797. spin_unlock_bh(&bp->phy_lock);
  4798. if (bmsr & BMSR_LSTATUS) {
  4799. return 0;
  4800. }
  4801. return -ENODEV;
  4802. }
  4803. static int
  4804. bnx2_test_intr(struct bnx2 *bp)
  4805. {
  4806. int i;
  4807. u16 status_idx;
  4808. if (!netif_running(bp->dev))
  4809. return -ENODEV;
  4810. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4811. /* This register is not touched during run-time. */
  4812. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4813. REG_RD(bp, BNX2_HC_COMMAND);
  4814. for (i = 0; i < 10; i++) {
  4815. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4816. status_idx) {
  4817. break;
  4818. }
  4819. msleep_interruptible(10);
  4820. }
  4821. if (i < 10)
  4822. return 0;
  4823. return -ENODEV;
  4824. }
  4825. /* Determining link for parallel detection. */
  4826. static int
  4827. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4828. {
  4829. u32 mode_ctl, an_dbg, exp;
  4830. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4831. return 0;
  4832. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4833. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4834. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4835. return 0;
  4836. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4837. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4838. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4839. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4840. return 0;
  4841. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4842. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4843. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4844. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4845. return 0;
  4846. return 1;
  4847. }
  4848. static void
  4849. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4850. {
  4851. int check_link = 1;
  4852. spin_lock(&bp->phy_lock);
  4853. if (bp->serdes_an_pending) {
  4854. bp->serdes_an_pending--;
  4855. check_link = 0;
  4856. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4857. u32 bmcr;
  4858. bp->current_interval = BNX2_TIMER_INTERVAL;
  4859. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4860. if (bmcr & BMCR_ANENABLE) {
  4861. if (bnx2_5706_serdes_has_link(bp)) {
  4862. bmcr &= ~BMCR_ANENABLE;
  4863. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4864. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4865. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4866. }
  4867. }
  4868. }
  4869. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4870. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4871. u32 phy2;
  4872. bnx2_write_phy(bp, 0x17, 0x0f01);
  4873. bnx2_read_phy(bp, 0x15, &phy2);
  4874. if (phy2 & 0x20) {
  4875. u32 bmcr;
  4876. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4877. bmcr |= BMCR_ANENABLE;
  4878. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4879. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4880. }
  4881. } else
  4882. bp->current_interval = BNX2_TIMER_INTERVAL;
  4883. if (check_link) {
  4884. u32 val;
  4885. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4886. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4887. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4888. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4889. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4890. bnx2_5706s_force_link_dn(bp, 1);
  4891. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4892. } else
  4893. bnx2_set_link(bp);
  4894. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4895. bnx2_set_link(bp);
  4896. }
  4897. spin_unlock(&bp->phy_lock);
  4898. }
  4899. static void
  4900. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4901. {
  4902. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4903. return;
  4904. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4905. bp->serdes_an_pending = 0;
  4906. return;
  4907. }
  4908. spin_lock(&bp->phy_lock);
  4909. if (bp->serdes_an_pending)
  4910. bp->serdes_an_pending--;
  4911. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4912. u32 bmcr;
  4913. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4914. if (bmcr & BMCR_ANENABLE) {
  4915. bnx2_enable_forced_2g5(bp);
  4916. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4917. } else {
  4918. bnx2_disable_forced_2g5(bp);
  4919. bp->serdes_an_pending = 2;
  4920. bp->current_interval = BNX2_TIMER_INTERVAL;
  4921. }
  4922. } else
  4923. bp->current_interval = BNX2_TIMER_INTERVAL;
  4924. spin_unlock(&bp->phy_lock);
  4925. }
  4926. static void
  4927. bnx2_timer(unsigned long data)
  4928. {
  4929. struct bnx2 *bp = (struct bnx2 *) data;
  4930. if (!netif_running(bp->dev))
  4931. return;
  4932. if (atomic_read(&bp->intr_sem) != 0)
  4933. goto bnx2_restart_timer;
  4934. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4935. BNX2_FLAG_USING_MSI)
  4936. bnx2_chk_missed_msi(bp);
  4937. bnx2_send_heart_beat(bp);
  4938. bp->stats_blk->stat_FwRxDrop =
  4939. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4940. /* workaround occasional corrupted counters */
  4941. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4942. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4943. BNX2_HC_COMMAND_STATS_NOW);
  4944. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4945. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4946. bnx2_5706_serdes_timer(bp);
  4947. else
  4948. bnx2_5708_serdes_timer(bp);
  4949. }
  4950. bnx2_restart_timer:
  4951. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4952. }
  4953. static int
  4954. bnx2_request_irq(struct bnx2 *bp)
  4955. {
  4956. unsigned long flags;
  4957. struct bnx2_irq *irq;
  4958. int rc = 0, i;
  4959. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4960. flags = 0;
  4961. else
  4962. flags = IRQF_SHARED;
  4963. for (i = 0; i < bp->irq_nvecs; i++) {
  4964. irq = &bp->irq_tbl[i];
  4965. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4966. &bp->bnx2_napi[i]);
  4967. if (rc)
  4968. break;
  4969. irq->requested = 1;
  4970. }
  4971. return rc;
  4972. }
  4973. static void
  4974. bnx2_free_irq(struct bnx2 *bp)
  4975. {
  4976. struct bnx2_irq *irq;
  4977. int i;
  4978. for (i = 0; i < bp->irq_nvecs; i++) {
  4979. irq = &bp->irq_tbl[i];
  4980. if (irq->requested)
  4981. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4982. irq->requested = 0;
  4983. }
  4984. if (bp->flags & BNX2_FLAG_USING_MSI)
  4985. pci_disable_msi(bp->pdev);
  4986. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4987. pci_disable_msix(bp->pdev);
  4988. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4989. }
  4990. static void
  4991. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4992. {
  4993. int i, rc;
  4994. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4995. struct net_device *dev = bp->dev;
  4996. const int len = sizeof(bp->irq_tbl[0].name);
  4997. bnx2_setup_msix_tbl(bp);
  4998. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4999. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5000. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5001. /* Need to flush the previous three writes to ensure MSI-X
  5002. * is setup properly */
  5003. REG_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5004. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5005. msix_ent[i].entry = i;
  5006. msix_ent[i].vector = 0;
  5007. }
  5008. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  5009. if (rc != 0)
  5010. return;
  5011. bp->irq_nvecs = msix_vecs;
  5012. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5013. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5014. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5015. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5016. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5017. }
  5018. }
  5019. static void
  5020. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5021. {
  5022. int cpus = num_online_cpus();
  5023. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  5024. bp->irq_tbl[0].handler = bnx2_interrupt;
  5025. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5026. bp->irq_nvecs = 1;
  5027. bp->irq_tbl[0].vector = bp->pdev->irq;
  5028. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5029. bnx2_enable_msix(bp, msix_vecs);
  5030. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5031. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5032. if (pci_enable_msi(bp->pdev) == 0) {
  5033. bp->flags |= BNX2_FLAG_USING_MSI;
  5034. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5035. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5036. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5037. } else
  5038. bp->irq_tbl[0].handler = bnx2_msi;
  5039. bp->irq_tbl[0].vector = bp->pdev->irq;
  5040. }
  5041. }
  5042. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5043. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5044. bp->num_rx_rings = bp->irq_nvecs;
  5045. }
  5046. /* Called with rtnl_lock */
  5047. static int
  5048. bnx2_open(struct net_device *dev)
  5049. {
  5050. struct bnx2 *bp = netdev_priv(dev);
  5051. int rc;
  5052. netif_carrier_off(dev);
  5053. bnx2_set_power_state(bp, PCI_D0);
  5054. bnx2_disable_int(bp);
  5055. bnx2_setup_int_mode(bp, disable_msi);
  5056. bnx2_napi_enable(bp);
  5057. rc = bnx2_alloc_mem(bp);
  5058. if (rc)
  5059. goto open_err;
  5060. rc = bnx2_request_irq(bp);
  5061. if (rc)
  5062. goto open_err;
  5063. rc = bnx2_init_nic(bp, 1);
  5064. if (rc)
  5065. goto open_err;
  5066. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5067. atomic_set(&bp->intr_sem, 0);
  5068. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5069. bnx2_enable_int(bp);
  5070. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5071. /* Test MSI to make sure it is working
  5072. * If MSI test fails, go back to INTx mode
  5073. */
  5074. if (bnx2_test_intr(bp) != 0) {
  5075. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5076. bnx2_disable_int(bp);
  5077. bnx2_free_irq(bp);
  5078. bnx2_setup_int_mode(bp, 1);
  5079. rc = bnx2_init_nic(bp, 0);
  5080. if (!rc)
  5081. rc = bnx2_request_irq(bp);
  5082. if (rc) {
  5083. del_timer_sync(&bp->timer);
  5084. goto open_err;
  5085. }
  5086. bnx2_enable_int(bp);
  5087. }
  5088. }
  5089. if (bp->flags & BNX2_FLAG_USING_MSI)
  5090. netdev_info(dev, "using MSI\n");
  5091. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5092. netdev_info(dev, "using MSIX\n");
  5093. netif_tx_start_all_queues(dev);
  5094. return 0;
  5095. open_err:
  5096. bnx2_napi_disable(bp);
  5097. bnx2_free_skbs(bp);
  5098. bnx2_free_irq(bp);
  5099. bnx2_free_mem(bp);
  5100. return rc;
  5101. }
  5102. static void
  5103. bnx2_reset_task(struct work_struct *work)
  5104. {
  5105. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5106. rtnl_lock();
  5107. if (!netif_running(bp->dev)) {
  5108. rtnl_unlock();
  5109. return;
  5110. }
  5111. bnx2_netif_stop(bp);
  5112. bnx2_init_nic(bp, 1);
  5113. atomic_set(&bp->intr_sem, 1);
  5114. bnx2_netif_start(bp);
  5115. rtnl_unlock();
  5116. }
  5117. static void
  5118. bnx2_dump_state(struct bnx2 *bp)
  5119. {
  5120. struct net_device *dev = bp->dev;
  5121. netdev_err(dev, "DEBUG: intr_sem[%x]\n", atomic_read(&bp->intr_sem));
  5122. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] RPM_MGMT_PKT_CTRL[%08x]\n",
  5123. REG_RD(bp, BNX2_EMAC_TX_STATUS),
  5124. REG_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5125. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  5126. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P0),
  5127. bnx2_reg_rd_ind(bp, BNX2_MCP_STATE_P1));
  5128. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5129. REG_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5130. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5131. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5132. REG_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5133. }
  5134. static void
  5135. bnx2_tx_timeout(struct net_device *dev)
  5136. {
  5137. struct bnx2 *bp = netdev_priv(dev);
  5138. bnx2_dump_state(bp);
  5139. /* This allows the netif to be shutdown gracefully before resetting */
  5140. schedule_work(&bp->reset_task);
  5141. }
  5142. #ifdef BCM_VLAN
  5143. /* Called with rtnl_lock */
  5144. static void
  5145. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5146. {
  5147. struct bnx2 *bp = netdev_priv(dev);
  5148. if (netif_running(dev))
  5149. bnx2_netif_stop(bp);
  5150. bp->vlgrp = vlgrp;
  5151. if (!netif_running(dev))
  5152. return;
  5153. bnx2_set_rx_mode(dev);
  5154. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5155. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5156. bnx2_netif_start(bp);
  5157. }
  5158. #endif
  5159. /* Called with netif_tx_lock.
  5160. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5161. * netif_wake_queue().
  5162. */
  5163. static netdev_tx_t
  5164. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5165. {
  5166. struct bnx2 *bp = netdev_priv(dev);
  5167. dma_addr_t mapping;
  5168. struct tx_bd *txbd;
  5169. struct sw_tx_bd *tx_buf;
  5170. u32 len, vlan_tag_flags, last_frag, mss;
  5171. u16 prod, ring_prod;
  5172. int i;
  5173. struct bnx2_napi *bnapi;
  5174. struct bnx2_tx_ring_info *txr;
  5175. struct netdev_queue *txq;
  5176. /* Determine which tx ring we will be placed on */
  5177. i = skb_get_queue_mapping(skb);
  5178. bnapi = &bp->bnx2_napi[i];
  5179. txr = &bnapi->tx_ring;
  5180. txq = netdev_get_tx_queue(dev, i);
  5181. if (unlikely(bnx2_tx_avail(bp, txr) <
  5182. (skb_shinfo(skb)->nr_frags + 1))) {
  5183. netif_tx_stop_queue(txq);
  5184. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5185. return NETDEV_TX_BUSY;
  5186. }
  5187. len = skb_headlen(skb);
  5188. prod = txr->tx_prod;
  5189. ring_prod = TX_RING_IDX(prod);
  5190. vlan_tag_flags = 0;
  5191. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5192. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5193. }
  5194. #ifdef BCM_VLAN
  5195. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5196. vlan_tag_flags |=
  5197. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5198. }
  5199. #endif
  5200. if ((mss = skb_shinfo(skb)->gso_size)) {
  5201. u32 tcp_opt_len;
  5202. struct iphdr *iph;
  5203. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5204. tcp_opt_len = tcp_optlen(skb);
  5205. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5206. u32 tcp_off = skb_transport_offset(skb) -
  5207. sizeof(struct ipv6hdr) - ETH_HLEN;
  5208. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5209. TX_BD_FLAGS_SW_FLAGS;
  5210. if (likely(tcp_off == 0))
  5211. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5212. else {
  5213. tcp_off >>= 3;
  5214. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5215. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5216. ((tcp_off & 0x10) <<
  5217. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5218. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5219. }
  5220. } else {
  5221. iph = ip_hdr(skb);
  5222. if (tcp_opt_len || (iph->ihl > 5)) {
  5223. vlan_tag_flags |= ((iph->ihl - 5) +
  5224. (tcp_opt_len >> 2)) << 8;
  5225. }
  5226. }
  5227. } else
  5228. mss = 0;
  5229. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  5230. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  5231. dev_kfree_skb(skb);
  5232. return NETDEV_TX_OK;
  5233. }
  5234. tx_buf = &txr->tx_buf_ring[ring_prod];
  5235. tx_buf->skb = skb;
  5236. pci_unmap_addr_set(tx_buf, mapping, mapping);
  5237. txbd = &txr->tx_desc_ring[ring_prod];
  5238. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5239. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5240. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5241. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5242. last_frag = skb_shinfo(skb)->nr_frags;
  5243. tx_buf->nr_frags = last_frag;
  5244. tx_buf->is_gso = skb_is_gso(skb);
  5245. for (i = 0; i < last_frag; i++) {
  5246. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5247. prod = NEXT_TX_BD(prod);
  5248. ring_prod = TX_RING_IDX(prod);
  5249. txbd = &txr->tx_desc_ring[ring_prod];
  5250. len = frag->size;
  5251. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  5252. len, PCI_DMA_TODEVICE);
  5253. if (pci_dma_mapping_error(bp->pdev, mapping))
  5254. goto dma_error;
  5255. pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5256. mapping);
  5257. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5258. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5259. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5260. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5261. }
  5262. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5263. prod = NEXT_TX_BD(prod);
  5264. txr->tx_prod_bseq += skb->len;
  5265. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5266. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5267. mmiowb();
  5268. txr->tx_prod = prod;
  5269. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5270. netif_tx_stop_queue(txq);
  5271. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5272. netif_tx_wake_queue(txq);
  5273. }
  5274. return NETDEV_TX_OK;
  5275. dma_error:
  5276. /* save value of frag that failed */
  5277. last_frag = i;
  5278. /* start back at beginning and unmap skb */
  5279. prod = txr->tx_prod;
  5280. ring_prod = TX_RING_IDX(prod);
  5281. tx_buf = &txr->tx_buf_ring[ring_prod];
  5282. tx_buf->skb = NULL;
  5283. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5284. skb_headlen(skb), PCI_DMA_TODEVICE);
  5285. /* unmap remaining mapped pages */
  5286. for (i = 0; i < last_frag; i++) {
  5287. prod = NEXT_TX_BD(prod);
  5288. ring_prod = TX_RING_IDX(prod);
  5289. tx_buf = &txr->tx_buf_ring[ring_prod];
  5290. pci_unmap_page(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  5291. skb_shinfo(skb)->frags[i].size,
  5292. PCI_DMA_TODEVICE);
  5293. }
  5294. dev_kfree_skb(skb);
  5295. return NETDEV_TX_OK;
  5296. }
  5297. /* Called with rtnl_lock */
  5298. static int
  5299. bnx2_close(struct net_device *dev)
  5300. {
  5301. struct bnx2 *bp = netdev_priv(dev);
  5302. cancel_work_sync(&bp->reset_task);
  5303. bnx2_disable_int_sync(bp);
  5304. bnx2_napi_disable(bp);
  5305. del_timer_sync(&bp->timer);
  5306. bnx2_shutdown_chip(bp);
  5307. bnx2_free_irq(bp);
  5308. bnx2_free_skbs(bp);
  5309. bnx2_free_mem(bp);
  5310. bp->link_up = 0;
  5311. netif_carrier_off(bp->dev);
  5312. bnx2_set_power_state(bp, PCI_D3hot);
  5313. return 0;
  5314. }
  5315. static void
  5316. bnx2_save_stats(struct bnx2 *bp)
  5317. {
  5318. u32 *hw_stats = (u32 *) bp->stats_blk;
  5319. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5320. int i;
  5321. /* The 1st 10 counters are 64-bit counters */
  5322. for (i = 0; i < 20; i += 2) {
  5323. u32 hi;
  5324. u64 lo;
  5325. hi = temp_stats[i] + hw_stats[i];
  5326. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5327. if (lo > 0xffffffff)
  5328. hi++;
  5329. temp_stats[i] = hi;
  5330. temp_stats[i + 1] = lo & 0xffffffff;
  5331. }
  5332. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5333. temp_stats[i] += hw_stats[i];
  5334. }
  5335. #define GET_64BIT_NET_STATS64(ctr) \
  5336. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5337. (unsigned long) (ctr##_lo)
  5338. #define GET_64BIT_NET_STATS32(ctr) \
  5339. (ctr##_lo)
  5340. #if (BITS_PER_LONG == 64)
  5341. #define GET_64BIT_NET_STATS(ctr) \
  5342. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5343. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5344. #else
  5345. #define GET_64BIT_NET_STATS(ctr) \
  5346. GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
  5347. GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
  5348. #endif
  5349. #define GET_32BIT_NET_STATS(ctr) \
  5350. (unsigned long) (bp->stats_blk->ctr + \
  5351. bp->temp_stats_blk->ctr)
  5352. static struct net_device_stats *
  5353. bnx2_get_stats(struct net_device *dev)
  5354. {
  5355. struct bnx2 *bp = netdev_priv(dev);
  5356. struct net_device_stats *net_stats = &dev->stats;
  5357. if (bp->stats_blk == NULL) {
  5358. return net_stats;
  5359. }
  5360. net_stats->rx_packets =
  5361. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5362. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5363. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5364. net_stats->tx_packets =
  5365. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5366. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5367. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5368. net_stats->rx_bytes =
  5369. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5370. net_stats->tx_bytes =
  5371. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5372. net_stats->multicast =
  5373. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts);
  5374. net_stats->collisions =
  5375. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5376. net_stats->rx_length_errors =
  5377. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5378. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5379. net_stats->rx_over_errors =
  5380. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5381. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5382. net_stats->rx_frame_errors =
  5383. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5384. net_stats->rx_crc_errors =
  5385. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5386. net_stats->rx_errors = net_stats->rx_length_errors +
  5387. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5388. net_stats->rx_crc_errors;
  5389. net_stats->tx_aborted_errors =
  5390. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5391. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5392. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5393. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5394. net_stats->tx_carrier_errors = 0;
  5395. else {
  5396. net_stats->tx_carrier_errors =
  5397. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5398. }
  5399. net_stats->tx_errors =
  5400. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5401. net_stats->tx_aborted_errors +
  5402. net_stats->tx_carrier_errors;
  5403. net_stats->rx_missed_errors =
  5404. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5405. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5406. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5407. return net_stats;
  5408. }
  5409. /* All ethtool functions called with rtnl_lock */
  5410. static int
  5411. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5412. {
  5413. struct bnx2 *bp = netdev_priv(dev);
  5414. int support_serdes = 0, support_copper = 0;
  5415. cmd->supported = SUPPORTED_Autoneg;
  5416. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5417. support_serdes = 1;
  5418. support_copper = 1;
  5419. } else if (bp->phy_port == PORT_FIBRE)
  5420. support_serdes = 1;
  5421. else
  5422. support_copper = 1;
  5423. if (support_serdes) {
  5424. cmd->supported |= SUPPORTED_1000baseT_Full |
  5425. SUPPORTED_FIBRE;
  5426. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5427. cmd->supported |= SUPPORTED_2500baseX_Full;
  5428. }
  5429. if (support_copper) {
  5430. cmd->supported |= SUPPORTED_10baseT_Half |
  5431. SUPPORTED_10baseT_Full |
  5432. SUPPORTED_100baseT_Half |
  5433. SUPPORTED_100baseT_Full |
  5434. SUPPORTED_1000baseT_Full |
  5435. SUPPORTED_TP;
  5436. }
  5437. spin_lock_bh(&bp->phy_lock);
  5438. cmd->port = bp->phy_port;
  5439. cmd->advertising = bp->advertising;
  5440. if (bp->autoneg & AUTONEG_SPEED) {
  5441. cmd->autoneg = AUTONEG_ENABLE;
  5442. }
  5443. else {
  5444. cmd->autoneg = AUTONEG_DISABLE;
  5445. }
  5446. if (netif_carrier_ok(dev)) {
  5447. cmd->speed = bp->line_speed;
  5448. cmd->duplex = bp->duplex;
  5449. }
  5450. else {
  5451. cmd->speed = -1;
  5452. cmd->duplex = -1;
  5453. }
  5454. spin_unlock_bh(&bp->phy_lock);
  5455. cmd->transceiver = XCVR_INTERNAL;
  5456. cmd->phy_address = bp->phy_addr;
  5457. return 0;
  5458. }
  5459. static int
  5460. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5461. {
  5462. struct bnx2 *bp = netdev_priv(dev);
  5463. u8 autoneg = bp->autoneg;
  5464. u8 req_duplex = bp->req_duplex;
  5465. u16 req_line_speed = bp->req_line_speed;
  5466. u32 advertising = bp->advertising;
  5467. int err = -EINVAL;
  5468. spin_lock_bh(&bp->phy_lock);
  5469. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5470. goto err_out_unlock;
  5471. if (cmd->port != bp->phy_port &&
  5472. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5473. goto err_out_unlock;
  5474. /* If device is down, we can store the settings only if the user
  5475. * is setting the currently active port.
  5476. */
  5477. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5478. goto err_out_unlock;
  5479. if (cmd->autoneg == AUTONEG_ENABLE) {
  5480. autoneg |= AUTONEG_SPEED;
  5481. advertising = cmd->advertising;
  5482. if (cmd->port == PORT_TP) {
  5483. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5484. if (!advertising)
  5485. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5486. } else {
  5487. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5488. if (!advertising)
  5489. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5490. }
  5491. advertising |= ADVERTISED_Autoneg;
  5492. }
  5493. else {
  5494. if (cmd->port == PORT_FIBRE) {
  5495. if ((cmd->speed != SPEED_1000 &&
  5496. cmd->speed != SPEED_2500) ||
  5497. (cmd->duplex != DUPLEX_FULL))
  5498. goto err_out_unlock;
  5499. if (cmd->speed == SPEED_2500 &&
  5500. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5501. goto err_out_unlock;
  5502. }
  5503. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5504. goto err_out_unlock;
  5505. autoneg &= ~AUTONEG_SPEED;
  5506. req_line_speed = cmd->speed;
  5507. req_duplex = cmd->duplex;
  5508. advertising = 0;
  5509. }
  5510. bp->autoneg = autoneg;
  5511. bp->advertising = advertising;
  5512. bp->req_line_speed = req_line_speed;
  5513. bp->req_duplex = req_duplex;
  5514. err = 0;
  5515. /* If device is down, the new settings will be picked up when it is
  5516. * brought up.
  5517. */
  5518. if (netif_running(dev))
  5519. err = bnx2_setup_phy(bp, cmd->port);
  5520. err_out_unlock:
  5521. spin_unlock_bh(&bp->phy_lock);
  5522. return err;
  5523. }
  5524. static void
  5525. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5526. {
  5527. struct bnx2 *bp = netdev_priv(dev);
  5528. strcpy(info->driver, DRV_MODULE_NAME);
  5529. strcpy(info->version, DRV_MODULE_VERSION);
  5530. strcpy(info->bus_info, pci_name(bp->pdev));
  5531. strcpy(info->fw_version, bp->fw_version);
  5532. }
  5533. #define BNX2_REGDUMP_LEN (32 * 1024)
  5534. static int
  5535. bnx2_get_regs_len(struct net_device *dev)
  5536. {
  5537. return BNX2_REGDUMP_LEN;
  5538. }
  5539. static void
  5540. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5541. {
  5542. u32 *p = _p, i, offset;
  5543. u8 *orig_p = _p;
  5544. struct bnx2 *bp = netdev_priv(dev);
  5545. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5546. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5547. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5548. 0x1040, 0x1048, 0x1080, 0x10a4,
  5549. 0x1400, 0x1490, 0x1498, 0x14f0,
  5550. 0x1500, 0x155c, 0x1580, 0x15dc,
  5551. 0x1600, 0x1658, 0x1680, 0x16d8,
  5552. 0x1800, 0x1820, 0x1840, 0x1854,
  5553. 0x1880, 0x1894, 0x1900, 0x1984,
  5554. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5555. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5556. 0x2000, 0x2030, 0x23c0, 0x2400,
  5557. 0x2800, 0x2820, 0x2830, 0x2850,
  5558. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5559. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5560. 0x4080, 0x4090, 0x43c0, 0x4458,
  5561. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5562. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5563. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5564. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5565. 0x6800, 0x6848, 0x684c, 0x6860,
  5566. 0x6888, 0x6910, 0x8000 };
  5567. regs->version = 0;
  5568. memset(p, 0, BNX2_REGDUMP_LEN);
  5569. if (!netif_running(bp->dev))
  5570. return;
  5571. i = 0;
  5572. offset = reg_boundaries[0];
  5573. p += offset;
  5574. while (offset < BNX2_REGDUMP_LEN) {
  5575. *p++ = REG_RD(bp, offset);
  5576. offset += 4;
  5577. if (offset == reg_boundaries[i + 1]) {
  5578. offset = reg_boundaries[i + 2];
  5579. p = (u32 *) (orig_p + offset);
  5580. i += 2;
  5581. }
  5582. }
  5583. }
  5584. static void
  5585. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5586. {
  5587. struct bnx2 *bp = netdev_priv(dev);
  5588. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5589. wol->supported = 0;
  5590. wol->wolopts = 0;
  5591. }
  5592. else {
  5593. wol->supported = WAKE_MAGIC;
  5594. if (bp->wol)
  5595. wol->wolopts = WAKE_MAGIC;
  5596. else
  5597. wol->wolopts = 0;
  5598. }
  5599. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5600. }
  5601. static int
  5602. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5603. {
  5604. struct bnx2 *bp = netdev_priv(dev);
  5605. if (wol->wolopts & ~WAKE_MAGIC)
  5606. return -EINVAL;
  5607. if (wol->wolopts & WAKE_MAGIC) {
  5608. if (bp->flags & BNX2_FLAG_NO_WOL)
  5609. return -EINVAL;
  5610. bp->wol = 1;
  5611. }
  5612. else {
  5613. bp->wol = 0;
  5614. }
  5615. return 0;
  5616. }
  5617. static int
  5618. bnx2_nway_reset(struct net_device *dev)
  5619. {
  5620. struct bnx2 *bp = netdev_priv(dev);
  5621. u32 bmcr;
  5622. if (!netif_running(dev))
  5623. return -EAGAIN;
  5624. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5625. return -EINVAL;
  5626. }
  5627. spin_lock_bh(&bp->phy_lock);
  5628. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5629. int rc;
  5630. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5631. spin_unlock_bh(&bp->phy_lock);
  5632. return rc;
  5633. }
  5634. /* Force a link down visible on the other side */
  5635. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5636. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5637. spin_unlock_bh(&bp->phy_lock);
  5638. msleep(20);
  5639. spin_lock_bh(&bp->phy_lock);
  5640. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5641. bp->serdes_an_pending = 1;
  5642. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5643. }
  5644. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5645. bmcr &= ~BMCR_LOOPBACK;
  5646. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5647. spin_unlock_bh(&bp->phy_lock);
  5648. return 0;
  5649. }
  5650. static u32
  5651. bnx2_get_link(struct net_device *dev)
  5652. {
  5653. struct bnx2 *bp = netdev_priv(dev);
  5654. return bp->link_up;
  5655. }
  5656. static int
  5657. bnx2_get_eeprom_len(struct net_device *dev)
  5658. {
  5659. struct bnx2 *bp = netdev_priv(dev);
  5660. if (bp->flash_info == NULL)
  5661. return 0;
  5662. return (int) bp->flash_size;
  5663. }
  5664. static int
  5665. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5666. u8 *eebuf)
  5667. {
  5668. struct bnx2 *bp = netdev_priv(dev);
  5669. int rc;
  5670. if (!netif_running(dev))
  5671. return -EAGAIN;
  5672. /* parameters already validated in ethtool_get_eeprom */
  5673. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5674. return rc;
  5675. }
  5676. static int
  5677. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5678. u8 *eebuf)
  5679. {
  5680. struct bnx2 *bp = netdev_priv(dev);
  5681. int rc;
  5682. if (!netif_running(dev))
  5683. return -EAGAIN;
  5684. /* parameters already validated in ethtool_set_eeprom */
  5685. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5686. return rc;
  5687. }
  5688. static int
  5689. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5690. {
  5691. struct bnx2 *bp = netdev_priv(dev);
  5692. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5693. coal->rx_coalesce_usecs = bp->rx_ticks;
  5694. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5695. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5696. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5697. coal->tx_coalesce_usecs = bp->tx_ticks;
  5698. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5699. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5700. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5701. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5702. return 0;
  5703. }
  5704. static int
  5705. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5706. {
  5707. struct bnx2 *bp = netdev_priv(dev);
  5708. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5709. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5710. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5711. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5712. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5713. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5714. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5715. if (bp->rx_quick_cons_trip_int > 0xff)
  5716. bp->rx_quick_cons_trip_int = 0xff;
  5717. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5718. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5719. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5720. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5721. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5722. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5723. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5724. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5725. 0xff;
  5726. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5727. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5728. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5729. bp->stats_ticks = USEC_PER_SEC;
  5730. }
  5731. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5732. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5733. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5734. if (netif_running(bp->dev)) {
  5735. bnx2_netif_stop(bp);
  5736. bnx2_init_nic(bp, 0);
  5737. bnx2_netif_start(bp);
  5738. }
  5739. return 0;
  5740. }
  5741. static void
  5742. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5743. {
  5744. struct bnx2 *bp = netdev_priv(dev);
  5745. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5746. ering->rx_mini_max_pending = 0;
  5747. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5748. ering->rx_pending = bp->rx_ring_size;
  5749. ering->rx_mini_pending = 0;
  5750. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5751. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5752. ering->tx_pending = bp->tx_ring_size;
  5753. }
  5754. static int
  5755. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5756. {
  5757. if (netif_running(bp->dev)) {
  5758. /* Reset will erase chipset stats; save them */
  5759. bnx2_save_stats(bp);
  5760. bnx2_netif_stop(bp);
  5761. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5762. bnx2_free_skbs(bp);
  5763. bnx2_free_mem(bp);
  5764. }
  5765. bnx2_set_rx_ring_size(bp, rx);
  5766. bp->tx_ring_size = tx;
  5767. if (netif_running(bp->dev)) {
  5768. int rc;
  5769. rc = bnx2_alloc_mem(bp);
  5770. if (!rc)
  5771. rc = bnx2_init_nic(bp, 0);
  5772. if (rc) {
  5773. bnx2_napi_enable(bp);
  5774. dev_close(bp->dev);
  5775. return rc;
  5776. }
  5777. #ifdef BCM_CNIC
  5778. mutex_lock(&bp->cnic_lock);
  5779. /* Let cnic know about the new status block. */
  5780. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5781. bnx2_setup_cnic_irq_info(bp);
  5782. mutex_unlock(&bp->cnic_lock);
  5783. #endif
  5784. bnx2_netif_start(bp);
  5785. }
  5786. return 0;
  5787. }
  5788. static int
  5789. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5790. {
  5791. struct bnx2 *bp = netdev_priv(dev);
  5792. int rc;
  5793. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5794. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5795. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5796. return -EINVAL;
  5797. }
  5798. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5799. return rc;
  5800. }
  5801. static void
  5802. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5803. {
  5804. struct bnx2 *bp = netdev_priv(dev);
  5805. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5806. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5807. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5808. }
  5809. static int
  5810. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5811. {
  5812. struct bnx2 *bp = netdev_priv(dev);
  5813. bp->req_flow_ctrl = 0;
  5814. if (epause->rx_pause)
  5815. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5816. if (epause->tx_pause)
  5817. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5818. if (epause->autoneg) {
  5819. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5820. }
  5821. else {
  5822. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5823. }
  5824. if (netif_running(dev)) {
  5825. spin_lock_bh(&bp->phy_lock);
  5826. bnx2_setup_phy(bp, bp->phy_port);
  5827. spin_unlock_bh(&bp->phy_lock);
  5828. }
  5829. return 0;
  5830. }
  5831. static u32
  5832. bnx2_get_rx_csum(struct net_device *dev)
  5833. {
  5834. struct bnx2 *bp = netdev_priv(dev);
  5835. return bp->rx_csum;
  5836. }
  5837. static int
  5838. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5839. {
  5840. struct bnx2 *bp = netdev_priv(dev);
  5841. bp->rx_csum = data;
  5842. return 0;
  5843. }
  5844. static int
  5845. bnx2_set_tso(struct net_device *dev, u32 data)
  5846. {
  5847. struct bnx2 *bp = netdev_priv(dev);
  5848. if (data) {
  5849. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5850. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5851. dev->features |= NETIF_F_TSO6;
  5852. } else
  5853. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5854. NETIF_F_TSO_ECN);
  5855. return 0;
  5856. }
  5857. static struct {
  5858. char string[ETH_GSTRING_LEN];
  5859. } bnx2_stats_str_arr[] = {
  5860. { "rx_bytes" },
  5861. { "rx_error_bytes" },
  5862. { "tx_bytes" },
  5863. { "tx_error_bytes" },
  5864. { "rx_ucast_packets" },
  5865. { "rx_mcast_packets" },
  5866. { "rx_bcast_packets" },
  5867. { "tx_ucast_packets" },
  5868. { "tx_mcast_packets" },
  5869. { "tx_bcast_packets" },
  5870. { "tx_mac_errors" },
  5871. { "tx_carrier_errors" },
  5872. { "rx_crc_errors" },
  5873. { "rx_align_errors" },
  5874. { "tx_single_collisions" },
  5875. { "tx_multi_collisions" },
  5876. { "tx_deferred" },
  5877. { "tx_excess_collisions" },
  5878. { "tx_late_collisions" },
  5879. { "tx_total_collisions" },
  5880. { "rx_fragments" },
  5881. { "rx_jabbers" },
  5882. { "rx_undersize_packets" },
  5883. { "rx_oversize_packets" },
  5884. { "rx_64_byte_packets" },
  5885. { "rx_65_to_127_byte_packets" },
  5886. { "rx_128_to_255_byte_packets" },
  5887. { "rx_256_to_511_byte_packets" },
  5888. { "rx_512_to_1023_byte_packets" },
  5889. { "rx_1024_to_1522_byte_packets" },
  5890. { "rx_1523_to_9022_byte_packets" },
  5891. { "tx_64_byte_packets" },
  5892. { "tx_65_to_127_byte_packets" },
  5893. { "tx_128_to_255_byte_packets" },
  5894. { "tx_256_to_511_byte_packets" },
  5895. { "tx_512_to_1023_byte_packets" },
  5896. { "tx_1024_to_1522_byte_packets" },
  5897. { "tx_1523_to_9022_byte_packets" },
  5898. { "rx_xon_frames" },
  5899. { "rx_xoff_frames" },
  5900. { "tx_xon_frames" },
  5901. { "tx_xoff_frames" },
  5902. { "rx_mac_ctrl_frames" },
  5903. { "rx_filtered_packets" },
  5904. { "rx_ftq_discards" },
  5905. { "rx_discards" },
  5906. { "rx_fw_discards" },
  5907. };
  5908. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5909. sizeof(bnx2_stats_str_arr[0]))
  5910. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5911. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5912. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5913. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5914. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5915. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5916. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5917. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5918. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5919. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5920. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5921. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5922. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5923. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5924. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5925. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5926. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5927. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5928. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5929. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5930. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5931. STATS_OFFSET32(stat_EtherStatsCollisions),
  5932. STATS_OFFSET32(stat_EtherStatsFragments),
  5933. STATS_OFFSET32(stat_EtherStatsJabbers),
  5934. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5935. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5936. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5937. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5938. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5939. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5940. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5941. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5942. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5943. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5944. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5945. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5946. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5947. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5948. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5949. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5950. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5951. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5952. STATS_OFFSET32(stat_OutXonSent),
  5953. STATS_OFFSET32(stat_OutXoffSent),
  5954. STATS_OFFSET32(stat_MacControlFramesReceived),
  5955. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5956. STATS_OFFSET32(stat_IfInFTQDiscards),
  5957. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5958. STATS_OFFSET32(stat_FwRxDrop),
  5959. };
  5960. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5961. * skipped because of errata.
  5962. */
  5963. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5964. 8,0,8,8,8,8,8,8,8,8,
  5965. 4,0,4,4,4,4,4,4,4,4,
  5966. 4,4,4,4,4,4,4,4,4,4,
  5967. 4,4,4,4,4,4,4,4,4,4,
  5968. 4,4,4,4,4,4,4,
  5969. };
  5970. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5971. 8,0,8,8,8,8,8,8,8,8,
  5972. 4,4,4,4,4,4,4,4,4,4,
  5973. 4,4,4,4,4,4,4,4,4,4,
  5974. 4,4,4,4,4,4,4,4,4,4,
  5975. 4,4,4,4,4,4,4,
  5976. };
  5977. #define BNX2_NUM_TESTS 6
  5978. static struct {
  5979. char string[ETH_GSTRING_LEN];
  5980. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5981. { "register_test (offline)" },
  5982. { "memory_test (offline)" },
  5983. { "loopback_test (offline)" },
  5984. { "nvram_test (online)" },
  5985. { "interrupt_test (online)" },
  5986. { "link_test (online)" },
  5987. };
  5988. static int
  5989. bnx2_get_sset_count(struct net_device *dev, int sset)
  5990. {
  5991. switch (sset) {
  5992. case ETH_SS_TEST:
  5993. return BNX2_NUM_TESTS;
  5994. case ETH_SS_STATS:
  5995. return BNX2_NUM_STATS;
  5996. default:
  5997. return -EOPNOTSUPP;
  5998. }
  5999. }
  6000. static void
  6001. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6002. {
  6003. struct bnx2 *bp = netdev_priv(dev);
  6004. bnx2_set_power_state(bp, PCI_D0);
  6005. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6006. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6007. int i;
  6008. bnx2_netif_stop(bp);
  6009. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6010. bnx2_free_skbs(bp);
  6011. if (bnx2_test_registers(bp) != 0) {
  6012. buf[0] = 1;
  6013. etest->flags |= ETH_TEST_FL_FAILED;
  6014. }
  6015. if (bnx2_test_memory(bp) != 0) {
  6016. buf[1] = 1;
  6017. etest->flags |= ETH_TEST_FL_FAILED;
  6018. }
  6019. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6020. etest->flags |= ETH_TEST_FL_FAILED;
  6021. if (!netif_running(bp->dev))
  6022. bnx2_shutdown_chip(bp);
  6023. else {
  6024. bnx2_init_nic(bp, 1);
  6025. bnx2_netif_start(bp);
  6026. }
  6027. /* wait for link up */
  6028. for (i = 0; i < 7; i++) {
  6029. if (bp->link_up)
  6030. break;
  6031. msleep_interruptible(1000);
  6032. }
  6033. }
  6034. if (bnx2_test_nvram(bp) != 0) {
  6035. buf[3] = 1;
  6036. etest->flags |= ETH_TEST_FL_FAILED;
  6037. }
  6038. if (bnx2_test_intr(bp) != 0) {
  6039. buf[4] = 1;
  6040. etest->flags |= ETH_TEST_FL_FAILED;
  6041. }
  6042. if (bnx2_test_link(bp) != 0) {
  6043. buf[5] = 1;
  6044. etest->flags |= ETH_TEST_FL_FAILED;
  6045. }
  6046. if (!netif_running(bp->dev))
  6047. bnx2_set_power_state(bp, PCI_D3hot);
  6048. }
  6049. static void
  6050. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6051. {
  6052. switch (stringset) {
  6053. case ETH_SS_STATS:
  6054. memcpy(buf, bnx2_stats_str_arr,
  6055. sizeof(bnx2_stats_str_arr));
  6056. break;
  6057. case ETH_SS_TEST:
  6058. memcpy(buf, bnx2_tests_str_arr,
  6059. sizeof(bnx2_tests_str_arr));
  6060. break;
  6061. }
  6062. }
  6063. static void
  6064. bnx2_get_ethtool_stats(struct net_device *dev,
  6065. struct ethtool_stats *stats, u64 *buf)
  6066. {
  6067. struct bnx2 *bp = netdev_priv(dev);
  6068. int i;
  6069. u32 *hw_stats = (u32 *) bp->stats_blk;
  6070. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6071. u8 *stats_len_arr = NULL;
  6072. if (hw_stats == NULL) {
  6073. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6074. return;
  6075. }
  6076. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  6077. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  6078. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  6079. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  6080. stats_len_arr = bnx2_5706_stats_len_arr;
  6081. else
  6082. stats_len_arr = bnx2_5708_stats_len_arr;
  6083. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6084. unsigned long offset;
  6085. if (stats_len_arr[i] == 0) {
  6086. /* skip this counter */
  6087. buf[i] = 0;
  6088. continue;
  6089. }
  6090. offset = bnx2_stats_offset_arr[i];
  6091. if (stats_len_arr[i] == 4) {
  6092. /* 4-byte counter */
  6093. buf[i] = (u64) *(hw_stats + offset) +
  6094. *(temp_stats + offset);
  6095. continue;
  6096. }
  6097. /* 8-byte counter */
  6098. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6099. *(hw_stats + offset + 1) +
  6100. (((u64) *(temp_stats + offset)) << 32) +
  6101. *(temp_stats + offset + 1);
  6102. }
  6103. }
  6104. static int
  6105. bnx2_phys_id(struct net_device *dev, u32 data)
  6106. {
  6107. struct bnx2 *bp = netdev_priv(dev);
  6108. int i;
  6109. u32 save;
  6110. bnx2_set_power_state(bp, PCI_D0);
  6111. if (data == 0)
  6112. data = 2;
  6113. save = REG_RD(bp, BNX2_MISC_CFG);
  6114. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6115. for (i = 0; i < (data * 2); i++) {
  6116. if ((i % 2) == 0) {
  6117. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6118. }
  6119. else {
  6120. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6121. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6122. BNX2_EMAC_LED_100MB_OVERRIDE |
  6123. BNX2_EMAC_LED_10MB_OVERRIDE |
  6124. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6125. BNX2_EMAC_LED_TRAFFIC);
  6126. }
  6127. msleep_interruptible(500);
  6128. if (signal_pending(current))
  6129. break;
  6130. }
  6131. REG_WR(bp, BNX2_EMAC_LED, 0);
  6132. REG_WR(bp, BNX2_MISC_CFG, save);
  6133. if (!netif_running(dev))
  6134. bnx2_set_power_state(bp, PCI_D3hot);
  6135. return 0;
  6136. }
  6137. static int
  6138. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6139. {
  6140. struct bnx2 *bp = netdev_priv(dev);
  6141. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6142. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6143. else
  6144. return (ethtool_op_set_tx_csum(dev, data));
  6145. }
  6146. static const struct ethtool_ops bnx2_ethtool_ops = {
  6147. .get_settings = bnx2_get_settings,
  6148. .set_settings = bnx2_set_settings,
  6149. .get_drvinfo = bnx2_get_drvinfo,
  6150. .get_regs_len = bnx2_get_regs_len,
  6151. .get_regs = bnx2_get_regs,
  6152. .get_wol = bnx2_get_wol,
  6153. .set_wol = bnx2_set_wol,
  6154. .nway_reset = bnx2_nway_reset,
  6155. .get_link = bnx2_get_link,
  6156. .get_eeprom_len = bnx2_get_eeprom_len,
  6157. .get_eeprom = bnx2_get_eeprom,
  6158. .set_eeprom = bnx2_set_eeprom,
  6159. .get_coalesce = bnx2_get_coalesce,
  6160. .set_coalesce = bnx2_set_coalesce,
  6161. .get_ringparam = bnx2_get_ringparam,
  6162. .set_ringparam = bnx2_set_ringparam,
  6163. .get_pauseparam = bnx2_get_pauseparam,
  6164. .set_pauseparam = bnx2_set_pauseparam,
  6165. .get_rx_csum = bnx2_get_rx_csum,
  6166. .set_rx_csum = bnx2_set_rx_csum,
  6167. .set_tx_csum = bnx2_set_tx_csum,
  6168. .set_sg = ethtool_op_set_sg,
  6169. .set_tso = bnx2_set_tso,
  6170. .self_test = bnx2_self_test,
  6171. .get_strings = bnx2_get_strings,
  6172. .phys_id = bnx2_phys_id,
  6173. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6174. .get_sset_count = bnx2_get_sset_count,
  6175. };
  6176. /* Called with rtnl_lock */
  6177. static int
  6178. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6179. {
  6180. struct mii_ioctl_data *data = if_mii(ifr);
  6181. struct bnx2 *bp = netdev_priv(dev);
  6182. int err;
  6183. switch(cmd) {
  6184. case SIOCGMIIPHY:
  6185. data->phy_id = bp->phy_addr;
  6186. /* fallthru */
  6187. case SIOCGMIIREG: {
  6188. u32 mii_regval;
  6189. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6190. return -EOPNOTSUPP;
  6191. if (!netif_running(dev))
  6192. return -EAGAIN;
  6193. spin_lock_bh(&bp->phy_lock);
  6194. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6195. spin_unlock_bh(&bp->phy_lock);
  6196. data->val_out = mii_regval;
  6197. return err;
  6198. }
  6199. case SIOCSMIIREG:
  6200. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6201. return -EOPNOTSUPP;
  6202. if (!netif_running(dev))
  6203. return -EAGAIN;
  6204. spin_lock_bh(&bp->phy_lock);
  6205. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6206. spin_unlock_bh(&bp->phy_lock);
  6207. return err;
  6208. default:
  6209. /* do nothing */
  6210. break;
  6211. }
  6212. return -EOPNOTSUPP;
  6213. }
  6214. /* Called with rtnl_lock */
  6215. static int
  6216. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6217. {
  6218. struct sockaddr *addr = p;
  6219. struct bnx2 *bp = netdev_priv(dev);
  6220. if (!is_valid_ether_addr(addr->sa_data))
  6221. return -EINVAL;
  6222. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6223. if (netif_running(dev))
  6224. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6225. return 0;
  6226. }
  6227. /* Called with rtnl_lock */
  6228. static int
  6229. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6230. {
  6231. struct bnx2 *bp = netdev_priv(dev);
  6232. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6233. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6234. return -EINVAL;
  6235. dev->mtu = new_mtu;
  6236. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6237. }
  6238. #ifdef CONFIG_NET_POLL_CONTROLLER
  6239. static void
  6240. poll_bnx2(struct net_device *dev)
  6241. {
  6242. struct bnx2 *bp = netdev_priv(dev);
  6243. int i;
  6244. for (i = 0; i < bp->irq_nvecs; i++) {
  6245. disable_irq(bp->irq_tbl[i].vector);
  6246. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6247. enable_irq(bp->irq_tbl[i].vector);
  6248. }
  6249. }
  6250. #endif
  6251. static void __devinit
  6252. bnx2_get_5709_media(struct bnx2 *bp)
  6253. {
  6254. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6255. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6256. u32 strap;
  6257. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6258. return;
  6259. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6260. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6261. return;
  6262. }
  6263. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6264. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6265. else
  6266. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6267. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6268. switch (strap) {
  6269. case 0x4:
  6270. case 0x5:
  6271. case 0x6:
  6272. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6273. return;
  6274. }
  6275. } else {
  6276. switch (strap) {
  6277. case 0x1:
  6278. case 0x2:
  6279. case 0x4:
  6280. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6281. return;
  6282. }
  6283. }
  6284. }
  6285. static void __devinit
  6286. bnx2_get_pci_speed(struct bnx2 *bp)
  6287. {
  6288. u32 reg;
  6289. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6290. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6291. u32 clkreg;
  6292. bp->flags |= BNX2_FLAG_PCIX;
  6293. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6294. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6295. switch (clkreg) {
  6296. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6297. bp->bus_speed_mhz = 133;
  6298. break;
  6299. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6300. bp->bus_speed_mhz = 100;
  6301. break;
  6302. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6303. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6304. bp->bus_speed_mhz = 66;
  6305. break;
  6306. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6307. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6308. bp->bus_speed_mhz = 50;
  6309. break;
  6310. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6311. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6312. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6313. bp->bus_speed_mhz = 33;
  6314. break;
  6315. }
  6316. }
  6317. else {
  6318. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6319. bp->bus_speed_mhz = 66;
  6320. else
  6321. bp->bus_speed_mhz = 33;
  6322. }
  6323. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6324. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6325. }
  6326. static void __devinit
  6327. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6328. {
  6329. int rc, i, v0_len = 0;
  6330. u8 *data;
  6331. u8 *v0_str = NULL;
  6332. bool mn_match = false;
  6333. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6334. #define BNX2_VPD_LEN 128
  6335. #define BNX2_MAX_VER_SLEN 30
  6336. data = kmalloc(256, GFP_KERNEL);
  6337. if (!data)
  6338. return;
  6339. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6340. BNX2_VPD_LEN);
  6341. if (rc)
  6342. goto vpd_done;
  6343. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6344. data[i] = data[i + BNX2_VPD_LEN + 3];
  6345. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6346. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6347. data[i + 3] = data[i + BNX2_VPD_LEN];
  6348. }
  6349. for (i = 0; i <= BNX2_VPD_LEN - 3; ) {
  6350. unsigned char val = data[i];
  6351. unsigned int block_end;
  6352. if (val == 0x82 || val == 0x91) {
  6353. i = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
  6354. continue;
  6355. }
  6356. if (val != 0x90)
  6357. goto vpd_done;
  6358. block_end = (i + 3 + (data[i + 1] + (data[i + 2] << 8)));
  6359. i += 3;
  6360. if (block_end > BNX2_VPD_LEN)
  6361. goto vpd_done;
  6362. while (i < (block_end - 2)) {
  6363. int len = data[i + 2];
  6364. if (i + 3 + len > block_end)
  6365. goto vpd_done;
  6366. if (data[i] == 'M' && data[i + 1] == 'N') {
  6367. if (len != 4 ||
  6368. memcmp(&data[i + 3], "1028", 4))
  6369. goto vpd_done;
  6370. mn_match = true;
  6371. } else if (data[i] == 'V' && data[i + 1] == '0') {
  6372. if (len > BNX2_MAX_VER_SLEN)
  6373. goto vpd_done;
  6374. v0_len = len;
  6375. v0_str = &data[i + 3];
  6376. }
  6377. i += 3 + len;
  6378. if (mn_match && v0_str) {
  6379. memcpy(bp->fw_version, v0_str, v0_len);
  6380. bp->fw_version[v0_len] = ' ';
  6381. goto vpd_done;
  6382. }
  6383. }
  6384. goto vpd_done;
  6385. }
  6386. vpd_done:
  6387. kfree(data);
  6388. }
  6389. static int __devinit
  6390. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6391. {
  6392. struct bnx2 *bp;
  6393. unsigned long mem_len;
  6394. int rc, i, j;
  6395. u32 reg;
  6396. u64 dma_mask, persist_dma_mask;
  6397. SET_NETDEV_DEV(dev, &pdev->dev);
  6398. bp = netdev_priv(dev);
  6399. bp->flags = 0;
  6400. bp->phy_flags = 0;
  6401. bp->temp_stats_blk =
  6402. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6403. if (bp->temp_stats_blk == NULL) {
  6404. rc = -ENOMEM;
  6405. goto err_out;
  6406. }
  6407. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6408. rc = pci_enable_device(pdev);
  6409. if (rc) {
  6410. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6411. goto err_out;
  6412. }
  6413. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6414. dev_err(&pdev->dev,
  6415. "Cannot find PCI device base address, aborting\n");
  6416. rc = -ENODEV;
  6417. goto err_out_disable;
  6418. }
  6419. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6420. if (rc) {
  6421. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6422. goto err_out_disable;
  6423. }
  6424. pci_set_master(pdev);
  6425. pci_save_state(pdev);
  6426. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6427. if (bp->pm_cap == 0) {
  6428. dev_err(&pdev->dev,
  6429. "Cannot find power management capability, aborting\n");
  6430. rc = -EIO;
  6431. goto err_out_release;
  6432. }
  6433. bp->dev = dev;
  6434. bp->pdev = pdev;
  6435. spin_lock_init(&bp->phy_lock);
  6436. spin_lock_init(&bp->indirect_lock);
  6437. #ifdef BCM_CNIC
  6438. mutex_init(&bp->cnic_lock);
  6439. #endif
  6440. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6441. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6442. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6443. dev->mem_end = dev->mem_start + mem_len;
  6444. dev->irq = pdev->irq;
  6445. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6446. if (!bp->regview) {
  6447. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6448. rc = -ENOMEM;
  6449. goto err_out_release;
  6450. }
  6451. /* Configure byte swap and enable write to the reg_window registers.
  6452. * Rely on CPU to do target byte swapping on big endian systems
  6453. * The chip's target access swapping will not swap all accesses
  6454. */
  6455. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6456. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6457. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6458. bnx2_set_power_state(bp, PCI_D0);
  6459. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6460. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6461. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6462. dev_err(&pdev->dev,
  6463. "Cannot find PCIE capability, aborting\n");
  6464. rc = -EIO;
  6465. goto err_out_unmap;
  6466. }
  6467. bp->flags |= BNX2_FLAG_PCIE;
  6468. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6469. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6470. } else {
  6471. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6472. if (bp->pcix_cap == 0) {
  6473. dev_err(&pdev->dev,
  6474. "Cannot find PCIX capability, aborting\n");
  6475. rc = -EIO;
  6476. goto err_out_unmap;
  6477. }
  6478. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6479. }
  6480. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6481. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6482. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6483. }
  6484. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6485. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6486. bp->flags |= BNX2_FLAG_MSI_CAP;
  6487. }
  6488. /* 5708 cannot support DMA addresses > 40-bit. */
  6489. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6490. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6491. else
  6492. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6493. /* Configure DMA attributes. */
  6494. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6495. dev->features |= NETIF_F_HIGHDMA;
  6496. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6497. if (rc) {
  6498. dev_err(&pdev->dev,
  6499. "pci_set_consistent_dma_mask failed, aborting\n");
  6500. goto err_out_unmap;
  6501. }
  6502. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6503. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6504. goto err_out_unmap;
  6505. }
  6506. if (!(bp->flags & BNX2_FLAG_PCIE))
  6507. bnx2_get_pci_speed(bp);
  6508. /* 5706A0 may falsely detect SERR and PERR. */
  6509. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6510. reg = REG_RD(bp, PCI_COMMAND);
  6511. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6512. REG_WR(bp, PCI_COMMAND, reg);
  6513. }
  6514. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6515. !(bp->flags & BNX2_FLAG_PCIX)) {
  6516. dev_err(&pdev->dev,
  6517. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6518. goto err_out_unmap;
  6519. }
  6520. bnx2_init_nvram(bp);
  6521. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6522. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6523. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6524. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6525. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6526. } else
  6527. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6528. /* Get the permanent MAC address. First we need to make sure the
  6529. * firmware is actually running.
  6530. */
  6531. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6532. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6533. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6534. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6535. rc = -ENODEV;
  6536. goto err_out_unmap;
  6537. }
  6538. bnx2_read_vpd_fw_ver(bp);
  6539. j = strlen(bp->fw_version);
  6540. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6541. for (i = 0; i < 3 && j < 24; i++) {
  6542. u8 num, k, skip0;
  6543. if (i == 0) {
  6544. bp->fw_version[j++] = 'b';
  6545. bp->fw_version[j++] = 'c';
  6546. bp->fw_version[j++] = ' ';
  6547. }
  6548. num = (u8) (reg >> (24 - (i * 8)));
  6549. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6550. if (num >= k || !skip0 || k == 1) {
  6551. bp->fw_version[j++] = (num / k) + '0';
  6552. skip0 = 0;
  6553. }
  6554. }
  6555. if (i != 2)
  6556. bp->fw_version[j++] = '.';
  6557. }
  6558. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6559. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6560. bp->wol = 1;
  6561. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6562. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6563. for (i = 0; i < 30; i++) {
  6564. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6565. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6566. break;
  6567. msleep(10);
  6568. }
  6569. }
  6570. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6571. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6572. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6573. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6574. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6575. if (j < 32)
  6576. bp->fw_version[j++] = ' ';
  6577. for (i = 0; i < 3 && j < 28; i++) {
  6578. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6579. reg = swab32(reg);
  6580. memcpy(&bp->fw_version[j], &reg, 4);
  6581. j += 4;
  6582. }
  6583. }
  6584. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6585. bp->mac_addr[0] = (u8) (reg >> 8);
  6586. bp->mac_addr[1] = (u8) reg;
  6587. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6588. bp->mac_addr[2] = (u8) (reg >> 24);
  6589. bp->mac_addr[3] = (u8) (reg >> 16);
  6590. bp->mac_addr[4] = (u8) (reg >> 8);
  6591. bp->mac_addr[5] = (u8) reg;
  6592. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6593. bnx2_set_rx_ring_size(bp, 255);
  6594. bp->rx_csum = 1;
  6595. bp->tx_quick_cons_trip_int = 2;
  6596. bp->tx_quick_cons_trip = 20;
  6597. bp->tx_ticks_int = 18;
  6598. bp->tx_ticks = 80;
  6599. bp->rx_quick_cons_trip_int = 2;
  6600. bp->rx_quick_cons_trip = 12;
  6601. bp->rx_ticks_int = 18;
  6602. bp->rx_ticks = 18;
  6603. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6604. bp->current_interval = BNX2_TIMER_INTERVAL;
  6605. bp->phy_addr = 1;
  6606. /* Disable WOL support if we are running on a SERDES chip. */
  6607. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6608. bnx2_get_5709_media(bp);
  6609. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6610. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6611. bp->phy_port = PORT_TP;
  6612. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6613. bp->phy_port = PORT_FIBRE;
  6614. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6615. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6616. bp->flags |= BNX2_FLAG_NO_WOL;
  6617. bp->wol = 0;
  6618. }
  6619. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6620. /* Don't do parallel detect on this board because of
  6621. * some board problems. The link will not go down
  6622. * if we do parallel detect.
  6623. */
  6624. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6625. pdev->subsystem_device == 0x310c)
  6626. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6627. } else {
  6628. bp->phy_addr = 2;
  6629. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6630. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6631. }
  6632. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6633. CHIP_NUM(bp) == CHIP_NUM_5708)
  6634. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6635. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6636. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6637. CHIP_REV(bp) == CHIP_REV_Bx))
  6638. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6639. bnx2_init_fw_cap(bp);
  6640. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6641. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6642. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6643. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6644. bp->flags |= BNX2_FLAG_NO_WOL;
  6645. bp->wol = 0;
  6646. }
  6647. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6648. bp->tx_quick_cons_trip_int =
  6649. bp->tx_quick_cons_trip;
  6650. bp->tx_ticks_int = bp->tx_ticks;
  6651. bp->rx_quick_cons_trip_int =
  6652. bp->rx_quick_cons_trip;
  6653. bp->rx_ticks_int = bp->rx_ticks;
  6654. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6655. bp->com_ticks_int = bp->com_ticks;
  6656. bp->cmd_ticks_int = bp->cmd_ticks;
  6657. }
  6658. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6659. *
  6660. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6661. * with byte enables disabled on the unused 32-bit word. This is legal
  6662. * but causes problems on the AMD 8132 which will eventually stop
  6663. * responding after a while.
  6664. *
  6665. * AMD believes this incompatibility is unique to the 5706, and
  6666. * prefers to locally disable MSI rather than globally disabling it.
  6667. */
  6668. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6669. struct pci_dev *amd_8132 = NULL;
  6670. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6671. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6672. amd_8132))) {
  6673. if (amd_8132->revision >= 0x10 &&
  6674. amd_8132->revision <= 0x13) {
  6675. disable_msi = 1;
  6676. pci_dev_put(amd_8132);
  6677. break;
  6678. }
  6679. }
  6680. }
  6681. bnx2_set_default_link(bp);
  6682. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6683. init_timer(&bp->timer);
  6684. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6685. bp->timer.data = (unsigned long) bp;
  6686. bp->timer.function = bnx2_timer;
  6687. return 0;
  6688. err_out_unmap:
  6689. if (bp->regview) {
  6690. iounmap(bp->regview);
  6691. bp->regview = NULL;
  6692. }
  6693. err_out_release:
  6694. pci_release_regions(pdev);
  6695. err_out_disable:
  6696. pci_disable_device(pdev);
  6697. pci_set_drvdata(pdev, NULL);
  6698. err_out:
  6699. return rc;
  6700. }
  6701. static char * __devinit
  6702. bnx2_bus_string(struct bnx2 *bp, char *str)
  6703. {
  6704. char *s = str;
  6705. if (bp->flags & BNX2_FLAG_PCIE) {
  6706. s += sprintf(s, "PCI Express");
  6707. } else {
  6708. s += sprintf(s, "PCI");
  6709. if (bp->flags & BNX2_FLAG_PCIX)
  6710. s += sprintf(s, "-X");
  6711. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6712. s += sprintf(s, " 32-bit");
  6713. else
  6714. s += sprintf(s, " 64-bit");
  6715. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6716. }
  6717. return str;
  6718. }
  6719. static void __devinit
  6720. bnx2_init_napi(struct bnx2 *bp)
  6721. {
  6722. int i;
  6723. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6724. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6725. int (*poll)(struct napi_struct *, int);
  6726. if (i == 0)
  6727. poll = bnx2_poll;
  6728. else
  6729. poll = bnx2_poll_msix;
  6730. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6731. bnapi->bp = bp;
  6732. }
  6733. }
  6734. static const struct net_device_ops bnx2_netdev_ops = {
  6735. .ndo_open = bnx2_open,
  6736. .ndo_start_xmit = bnx2_start_xmit,
  6737. .ndo_stop = bnx2_close,
  6738. .ndo_get_stats = bnx2_get_stats,
  6739. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6740. .ndo_do_ioctl = bnx2_ioctl,
  6741. .ndo_validate_addr = eth_validate_addr,
  6742. .ndo_set_mac_address = bnx2_change_mac_addr,
  6743. .ndo_change_mtu = bnx2_change_mtu,
  6744. .ndo_tx_timeout = bnx2_tx_timeout,
  6745. #ifdef BCM_VLAN
  6746. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6747. #endif
  6748. #ifdef CONFIG_NET_POLL_CONTROLLER
  6749. .ndo_poll_controller = poll_bnx2,
  6750. #endif
  6751. };
  6752. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6753. {
  6754. #ifdef BCM_VLAN
  6755. dev->vlan_features |= flags;
  6756. #endif
  6757. }
  6758. static int __devinit
  6759. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6760. {
  6761. static int version_printed = 0;
  6762. struct net_device *dev = NULL;
  6763. struct bnx2 *bp;
  6764. int rc;
  6765. char str[40];
  6766. if (version_printed++ == 0)
  6767. pr_info("%s", version);
  6768. /* dev zeroed in init_etherdev */
  6769. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6770. if (!dev)
  6771. return -ENOMEM;
  6772. rc = bnx2_init_board(pdev, dev);
  6773. if (rc < 0) {
  6774. free_netdev(dev);
  6775. return rc;
  6776. }
  6777. dev->netdev_ops = &bnx2_netdev_ops;
  6778. dev->watchdog_timeo = TX_TIMEOUT;
  6779. dev->ethtool_ops = &bnx2_ethtool_ops;
  6780. bp = netdev_priv(dev);
  6781. bnx2_init_napi(bp);
  6782. pci_set_drvdata(pdev, dev);
  6783. rc = bnx2_request_firmware(bp);
  6784. if (rc)
  6785. goto error;
  6786. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6787. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6788. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6789. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6790. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6791. dev->features |= NETIF_F_IPV6_CSUM;
  6792. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6793. }
  6794. #ifdef BCM_VLAN
  6795. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6796. #endif
  6797. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6798. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6799. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6800. dev->features |= NETIF_F_TSO6;
  6801. vlan_features_add(dev, NETIF_F_TSO6);
  6802. }
  6803. if ((rc = register_netdev(dev))) {
  6804. dev_err(&pdev->dev, "Cannot register net device\n");
  6805. goto error;
  6806. }
  6807. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
  6808. board_info[ent->driver_data].name,
  6809. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6810. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6811. bnx2_bus_string(bp, str),
  6812. dev->base_addr,
  6813. bp->pdev->irq, dev->dev_addr);
  6814. return 0;
  6815. error:
  6816. if (bp->mips_firmware)
  6817. release_firmware(bp->mips_firmware);
  6818. if (bp->rv2p_firmware)
  6819. release_firmware(bp->rv2p_firmware);
  6820. if (bp->regview)
  6821. iounmap(bp->regview);
  6822. pci_release_regions(pdev);
  6823. pci_disable_device(pdev);
  6824. pci_set_drvdata(pdev, NULL);
  6825. free_netdev(dev);
  6826. return rc;
  6827. }
  6828. static void __devexit
  6829. bnx2_remove_one(struct pci_dev *pdev)
  6830. {
  6831. struct net_device *dev = pci_get_drvdata(pdev);
  6832. struct bnx2 *bp = netdev_priv(dev);
  6833. flush_scheduled_work();
  6834. unregister_netdev(dev);
  6835. if (bp->mips_firmware)
  6836. release_firmware(bp->mips_firmware);
  6837. if (bp->rv2p_firmware)
  6838. release_firmware(bp->rv2p_firmware);
  6839. if (bp->regview)
  6840. iounmap(bp->regview);
  6841. kfree(bp->temp_stats_blk);
  6842. free_netdev(dev);
  6843. pci_release_regions(pdev);
  6844. pci_disable_device(pdev);
  6845. pci_set_drvdata(pdev, NULL);
  6846. }
  6847. static int
  6848. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6849. {
  6850. struct net_device *dev = pci_get_drvdata(pdev);
  6851. struct bnx2 *bp = netdev_priv(dev);
  6852. /* PCI register 4 needs to be saved whether netif_running() or not.
  6853. * MSI address and data need to be saved if using MSI and
  6854. * netif_running().
  6855. */
  6856. pci_save_state(pdev);
  6857. if (!netif_running(dev))
  6858. return 0;
  6859. flush_scheduled_work();
  6860. bnx2_netif_stop(bp);
  6861. netif_device_detach(dev);
  6862. del_timer_sync(&bp->timer);
  6863. bnx2_shutdown_chip(bp);
  6864. bnx2_free_skbs(bp);
  6865. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6866. return 0;
  6867. }
  6868. static int
  6869. bnx2_resume(struct pci_dev *pdev)
  6870. {
  6871. struct net_device *dev = pci_get_drvdata(pdev);
  6872. struct bnx2 *bp = netdev_priv(dev);
  6873. pci_restore_state(pdev);
  6874. if (!netif_running(dev))
  6875. return 0;
  6876. bnx2_set_power_state(bp, PCI_D0);
  6877. netif_device_attach(dev);
  6878. bnx2_init_nic(bp, 1);
  6879. bnx2_netif_start(bp);
  6880. return 0;
  6881. }
  6882. /**
  6883. * bnx2_io_error_detected - called when PCI error is detected
  6884. * @pdev: Pointer to PCI device
  6885. * @state: The current pci connection state
  6886. *
  6887. * This function is called after a PCI bus error affecting
  6888. * this device has been detected.
  6889. */
  6890. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6891. pci_channel_state_t state)
  6892. {
  6893. struct net_device *dev = pci_get_drvdata(pdev);
  6894. struct bnx2 *bp = netdev_priv(dev);
  6895. rtnl_lock();
  6896. netif_device_detach(dev);
  6897. if (state == pci_channel_io_perm_failure) {
  6898. rtnl_unlock();
  6899. return PCI_ERS_RESULT_DISCONNECT;
  6900. }
  6901. if (netif_running(dev)) {
  6902. bnx2_netif_stop(bp);
  6903. del_timer_sync(&bp->timer);
  6904. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6905. }
  6906. pci_disable_device(pdev);
  6907. rtnl_unlock();
  6908. /* Request a slot slot reset. */
  6909. return PCI_ERS_RESULT_NEED_RESET;
  6910. }
  6911. /**
  6912. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6913. * @pdev: Pointer to PCI device
  6914. *
  6915. * Restart the card from scratch, as if from a cold-boot.
  6916. */
  6917. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6918. {
  6919. struct net_device *dev = pci_get_drvdata(pdev);
  6920. struct bnx2 *bp = netdev_priv(dev);
  6921. rtnl_lock();
  6922. if (pci_enable_device(pdev)) {
  6923. dev_err(&pdev->dev,
  6924. "Cannot re-enable PCI device after reset\n");
  6925. rtnl_unlock();
  6926. return PCI_ERS_RESULT_DISCONNECT;
  6927. }
  6928. pci_set_master(pdev);
  6929. pci_restore_state(pdev);
  6930. pci_save_state(pdev);
  6931. if (netif_running(dev)) {
  6932. bnx2_set_power_state(bp, PCI_D0);
  6933. bnx2_init_nic(bp, 1);
  6934. }
  6935. rtnl_unlock();
  6936. return PCI_ERS_RESULT_RECOVERED;
  6937. }
  6938. /**
  6939. * bnx2_io_resume - called when traffic can start flowing again.
  6940. * @pdev: Pointer to PCI device
  6941. *
  6942. * This callback is called when the error recovery driver tells us that
  6943. * its OK to resume normal operation.
  6944. */
  6945. static void bnx2_io_resume(struct pci_dev *pdev)
  6946. {
  6947. struct net_device *dev = pci_get_drvdata(pdev);
  6948. struct bnx2 *bp = netdev_priv(dev);
  6949. rtnl_lock();
  6950. if (netif_running(dev))
  6951. bnx2_netif_start(bp);
  6952. netif_device_attach(dev);
  6953. rtnl_unlock();
  6954. }
  6955. static struct pci_error_handlers bnx2_err_handler = {
  6956. .error_detected = bnx2_io_error_detected,
  6957. .slot_reset = bnx2_io_slot_reset,
  6958. .resume = bnx2_io_resume,
  6959. };
  6960. static struct pci_driver bnx2_pci_driver = {
  6961. .name = DRV_MODULE_NAME,
  6962. .id_table = bnx2_pci_tbl,
  6963. .probe = bnx2_init_one,
  6964. .remove = __devexit_p(bnx2_remove_one),
  6965. .suspend = bnx2_suspend,
  6966. .resume = bnx2_resume,
  6967. .err_handler = &bnx2_err_handler,
  6968. };
  6969. static int __init bnx2_init(void)
  6970. {
  6971. return pci_register_driver(&bnx2_pci_driver);
  6972. }
  6973. static void __exit bnx2_cleanup(void)
  6974. {
  6975. pci_unregister_driver(&bnx2_pci_driver);
  6976. }
  6977. module_init(bnx2_init);
  6978. module_exit(bnx2_cleanup);