memblock.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/poison.h>
  16. #include <linux/memblock.h>
  17. struct memblock memblock;
  18. static int memblock_debug;
  19. static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1];
  20. static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1];
  21. static int __init early_memblock(char *p)
  22. {
  23. if (p && strstr(p, "debug"))
  24. memblock_debug = 1;
  25. return 0;
  26. }
  27. early_param("memblock", early_memblock);
  28. static void memblock_dump(struct memblock_type *region, char *name)
  29. {
  30. unsigned long long base, size;
  31. int i;
  32. pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
  33. for (i = 0; i < region->cnt; i++) {
  34. base = region->regions[i].base;
  35. size = region->regions[i].size;
  36. pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
  37. name, i, base, base + size - 1, size);
  38. }
  39. }
  40. void memblock_dump_all(void)
  41. {
  42. if (!memblock_debug)
  43. return;
  44. pr_info("MEMBLOCK configuration:\n");
  45. pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
  46. memblock_dump(&memblock.memory, "memory");
  47. memblock_dump(&memblock.reserved, "reserved");
  48. }
  49. static unsigned long memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  50. phys_addr_t base2, phys_addr_t size2)
  51. {
  52. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  53. }
  54. static long memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
  55. phys_addr_t base2, phys_addr_t size2)
  56. {
  57. if (base2 == base1 + size1)
  58. return 1;
  59. else if (base1 == base2 + size2)
  60. return -1;
  61. return 0;
  62. }
  63. static long memblock_regions_adjacent(struct memblock_type *type,
  64. unsigned long r1, unsigned long r2)
  65. {
  66. phys_addr_t base1 = type->regions[r1].base;
  67. phys_addr_t size1 = type->regions[r1].size;
  68. phys_addr_t base2 = type->regions[r2].base;
  69. phys_addr_t size2 = type->regions[r2].size;
  70. return memblock_addrs_adjacent(base1, size1, base2, size2);
  71. }
  72. static void memblock_remove_region(struct memblock_type *type, unsigned long r)
  73. {
  74. unsigned long i;
  75. for (i = r; i < type->cnt - 1; i++) {
  76. type->regions[i].base = type->regions[i + 1].base;
  77. type->regions[i].size = type->regions[i + 1].size;
  78. }
  79. type->cnt--;
  80. }
  81. /* Assumption: base addr of region 1 < base addr of region 2 */
  82. static void memblock_coalesce_regions(struct memblock_type *type,
  83. unsigned long r1, unsigned long r2)
  84. {
  85. type->regions[r1].size += type->regions[r2].size;
  86. memblock_remove_region(type, r2);
  87. }
  88. void __init memblock_init(void)
  89. {
  90. /* Hookup the initial arrays */
  91. memblock.memory.regions = memblock_memory_init_regions;
  92. memblock.memory.max = INIT_MEMBLOCK_REGIONS;
  93. memblock.reserved.regions = memblock_reserved_init_regions;
  94. memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
  95. /* Write a marker in the unused last array entry */
  96. memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
  97. memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
  98. /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
  99. * This simplifies the memblock_add() code below...
  100. */
  101. memblock.memory.regions[0].base = 0;
  102. memblock.memory.regions[0].size = 0;
  103. memblock.memory.cnt = 1;
  104. /* Ditto. */
  105. memblock.reserved.regions[0].base = 0;
  106. memblock.reserved.regions[0].size = 0;
  107. memblock.reserved.cnt = 1;
  108. memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
  109. }
  110. void __init memblock_analyze(void)
  111. {
  112. int i;
  113. /* Check marker in the unused last array entry */
  114. WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
  115. != (phys_addr_t)RED_INACTIVE);
  116. WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
  117. != (phys_addr_t)RED_INACTIVE);
  118. memblock.memory_size = 0;
  119. for (i = 0; i < memblock.memory.cnt; i++)
  120. memblock.memory_size += memblock.memory.regions[i].size;
  121. }
  122. static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  123. {
  124. unsigned long coalesced = 0;
  125. long adjacent, i;
  126. if ((type->cnt == 1) && (type->regions[0].size == 0)) {
  127. type->regions[0].base = base;
  128. type->regions[0].size = size;
  129. return 0;
  130. }
  131. /* First try and coalesce this MEMBLOCK with another. */
  132. for (i = 0; i < type->cnt; i++) {
  133. phys_addr_t rgnbase = type->regions[i].base;
  134. phys_addr_t rgnsize = type->regions[i].size;
  135. if ((rgnbase == base) && (rgnsize == size))
  136. /* Already have this region, so we're done */
  137. return 0;
  138. adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
  139. if (adjacent > 0) {
  140. type->regions[i].base -= size;
  141. type->regions[i].size += size;
  142. coalesced++;
  143. break;
  144. } else if (adjacent < 0) {
  145. type->regions[i].size += size;
  146. coalesced++;
  147. break;
  148. }
  149. }
  150. if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
  151. memblock_coalesce_regions(type, i, i+1);
  152. coalesced++;
  153. }
  154. if (coalesced)
  155. return coalesced;
  156. if (type->cnt >= type->max)
  157. return -1;
  158. /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
  159. for (i = type->cnt - 1; i >= 0; i--) {
  160. if (base < type->regions[i].base) {
  161. type->regions[i+1].base = type->regions[i].base;
  162. type->regions[i+1].size = type->regions[i].size;
  163. } else {
  164. type->regions[i+1].base = base;
  165. type->regions[i+1].size = size;
  166. break;
  167. }
  168. }
  169. if (base < type->regions[0].base) {
  170. type->regions[0].base = base;
  171. type->regions[0].size = size;
  172. }
  173. type->cnt++;
  174. return 0;
  175. }
  176. long memblock_add(phys_addr_t base, phys_addr_t size)
  177. {
  178. return memblock_add_region(&memblock.memory, base, size);
  179. }
  180. static long __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  181. {
  182. phys_addr_t rgnbegin, rgnend;
  183. phys_addr_t end = base + size;
  184. int i;
  185. rgnbegin = rgnend = 0; /* supress gcc warnings */
  186. /* Find the region where (base, size) belongs to */
  187. for (i=0; i < type->cnt; i++) {
  188. rgnbegin = type->regions[i].base;
  189. rgnend = rgnbegin + type->regions[i].size;
  190. if ((rgnbegin <= base) && (end <= rgnend))
  191. break;
  192. }
  193. /* Didn't find the region */
  194. if (i == type->cnt)
  195. return -1;
  196. /* Check to see if we are removing entire region */
  197. if ((rgnbegin == base) && (rgnend == end)) {
  198. memblock_remove_region(type, i);
  199. return 0;
  200. }
  201. /* Check to see if region is matching at the front */
  202. if (rgnbegin == base) {
  203. type->regions[i].base = end;
  204. type->regions[i].size -= size;
  205. return 0;
  206. }
  207. /* Check to see if the region is matching at the end */
  208. if (rgnend == end) {
  209. type->regions[i].size -= size;
  210. return 0;
  211. }
  212. /*
  213. * We need to split the entry - adjust the current one to the
  214. * beginging of the hole and add the region after hole.
  215. */
  216. type->regions[i].size = base - type->regions[i].base;
  217. return memblock_add_region(type, end, rgnend - end);
  218. }
  219. long memblock_remove(phys_addr_t base, phys_addr_t size)
  220. {
  221. return __memblock_remove(&memblock.memory, base, size);
  222. }
  223. long __init memblock_free(phys_addr_t base, phys_addr_t size)
  224. {
  225. return __memblock_remove(&memblock.reserved, base, size);
  226. }
  227. long __init memblock_reserve(phys_addr_t base, phys_addr_t size)
  228. {
  229. struct memblock_type *_rgn = &memblock.reserved;
  230. BUG_ON(0 == size);
  231. return memblock_add_region(_rgn, base, size);
  232. }
  233. long memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
  234. {
  235. unsigned long i;
  236. for (i = 0; i < type->cnt; i++) {
  237. phys_addr_t rgnbase = type->regions[i].base;
  238. phys_addr_t rgnsize = type->regions[i].size;
  239. if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  240. break;
  241. }
  242. return (i < type->cnt) ? i : -1;
  243. }
  244. static phys_addr_t memblock_align_down(phys_addr_t addr, phys_addr_t size)
  245. {
  246. return addr & ~(size - 1);
  247. }
  248. static phys_addr_t memblock_align_up(phys_addr_t addr, phys_addr_t size)
  249. {
  250. return (addr + (size - 1)) & ~(size - 1);
  251. }
  252. static phys_addr_t __init memblock_find_region(phys_addr_t start, phys_addr_t end,
  253. phys_addr_t size, phys_addr_t align)
  254. {
  255. phys_addr_t base, res_base;
  256. long j;
  257. base = memblock_align_down((end - size), align);
  258. while (start <= base) {
  259. j = memblock_overlaps_region(&memblock.reserved, base, size);
  260. if (j < 0)
  261. return base;
  262. res_base = memblock.reserved.regions[j].base;
  263. if (res_base < size)
  264. break;
  265. base = memblock_align_down(res_base - size, align);
  266. }
  267. return ~(phys_addr_t)0;
  268. }
  269. phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
  270. {
  271. *nid = 0;
  272. return end;
  273. }
  274. static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
  275. phys_addr_t size,
  276. phys_addr_t align, int nid)
  277. {
  278. phys_addr_t start, end;
  279. start = mp->base;
  280. end = start + mp->size;
  281. start = memblock_align_up(start, align);
  282. while (start < end) {
  283. phys_addr_t this_end;
  284. int this_nid;
  285. this_end = memblock_nid_range(start, end, &this_nid);
  286. if (this_nid == nid) {
  287. phys_addr_t ret = memblock_find_region(start, this_end, size, align);
  288. if (ret != ~(phys_addr_t)0 &&
  289. memblock_add_region(&memblock.reserved, ret, size) >= 0)
  290. return ret;
  291. }
  292. start = this_end;
  293. }
  294. return ~(phys_addr_t)0;
  295. }
  296. phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
  297. {
  298. struct memblock_type *mem = &memblock.memory;
  299. int i;
  300. BUG_ON(0 == size);
  301. /* We do a bottom-up search for a region with the right
  302. * nid since that's easier considering how memblock_nid_range()
  303. * works
  304. */
  305. size = memblock_align_up(size, align);
  306. for (i = 0; i < mem->cnt; i++) {
  307. phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
  308. size, align, nid);
  309. if (ret != ~(phys_addr_t)0)
  310. return ret;
  311. }
  312. return memblock_alloc(size, align);
  313. }
  314. phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
  315. {
  316. return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
  317. }
  318. phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  319. {
  320. phys_addr_t alloc;
  321. alloc = __memblock_alloc_base(size, align, max_addr);
  322. if (alloc == 0)
  323. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  324. (unsigned long long) size, (unsigned long long) max_addr);
  325. return alloc;
  326. }
  327. phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
  328. {
  329. long i;
  330. phys_addr_t base = 0;
  331. phys_addr_t res_base;
  332. BUG_ON(0 == size);
  333. size = memblock_align_up(size, align);
  334. /* Pump up max_addr */
  335. if (max_addr == MEMBLOCK_ALLOC_ACCESSIBLE)
  336. max_addr = memblock.current_limit;
  337. /* We do a top-down search, this tends to limit memory
  338. * fragmentation by keeping early boot allocs near the
  339. * top of memory
  340. */
  341. for (i = memblock.memory.cnt - 1; i >= 0; i--) {
  342. phys_addr_t memblockbase = memblock.memory.regions[i].base;
  343. phys_addr_t memblocksize = memblock.memory.regions[i].size;
  344. if (memblocksize < size)
  345. continue;
  346. base = min(memblockbase + memblocksize, max_addr);
  347. res_base = memblock_find_region(memblockbase, base, size, align);
  348. if (res_base != ~(phys_addr_t)0 &&
  349. memblock_add_region(&memblock.reserved, res_base, size) >= 0)
  350. return res_base;
  351. }
  352. return 0;
  353. }
  354. /* You must call memblock_analyze() before this. */
  355. phys_addr_t __init memblock_phys_mem_size(void)
  356. {
  357. return memblock.memory_size;
  358. }
  359. phys_addr_t memblock_end_of_DRAM(void)
  360. {
  361. int idx = memblock.memory.cnt - 1;
  362. return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
  363. }
  364. /* You must call memblock_analyze() after this. */
  365. void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
  366. {
  367. unsigned long i;
  368. phys_addr_t limit;
  369. struct memblock_region *p;
  370. if (!memory_limit)
  371. return;
  372. /* Truncate the memblock regions to satisfy the memory limit. */
  373. limit = memory_limit;
  374. for (i = 0; i < memblock.memory.cnt; i++) {
  375. if (limit > memblock.memory.regions[i].size) {
  376. limit -= memblock.memory.regions[i].size;
  377. continue;
  378. }
  379. memblock.memory.regions[i].size = limit;
  380. memblock.memory.cnt = i + 1;
  381. break;
  382. }
  383. memory_limit = memblock_end_of_DRAM();
  384. /* And truncate any reserves above the limit also. */
  385. for (i = 0; i < memblock.reserved.cnt; i++) {
  386. p = &memblock.reserved.regions[i];
  387. if (p->base > memory_limit)
  388. p->size = 0;
  389. else if ((p->base + p->size) > memory_limit)
  390. p->size = memory_limit - p->base;
  391. if (p->size == 0) {
  392. memblock_remove_region(&memblock.reserved, i);
  393. i--;
  394. }
  395. }
  396. }
  397. static int memblock_search(struct memblock_type *type, phys_addr_t addr)
  398. {
  399. unsigned int left = 0, right = type->cnt;
  400. do {
  401. unsigned int mid = (right + left) / 2;
  402. if (addr < type->regions[mid].base)
  403. right = mid;
  404. else if (addr >= (type->regions[mid].base +
  405. type->regions[mid].size))
  406. left = mid + 1;
  407. else
  408. return mid;
  409. } while (left < right);
  410. return -1;
  411. }
  412. int __init memblock_is_reserved(phys_addr_t addr)
  413. {
  414. return memblock_search(&memblock.reserved, addr) != -1;
  415. }
  416. int memblock_is_memory(phys_addr_t addr)
  417. {
  418. return memblock_search(&memblock.memory, addr) != -1;
  419. }
  420. int memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
  421. {
  422. int idx = memblock_search(&memblock.reserved, base);
  423. if (idx == -1)
  424. return 0;
  425. return memblock.reserved.regions[idx].base <= base &&
  426. (memblock.reserved.regions[idx].base +
  427. memblock.reserved.regions[idx].size) >= (base + size);
  428. }
  429. int memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
  430. {
  431. return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
  432. }
  433. void __init memblock_set_current_limit(phys_addr_t limit)
  434. {
  435. memblock.current_limit = limit;
  436. }