xhci.c 147 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/pci.h>
  23. #include <linux/irq.h>
  24. #include <linux/log2.h>
  25. #include <linux/module.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/slab.h>
  28. #include <linux/dmi.h>
  29. #include "xhci.h"
  30. #include "xhci-trace.h"
  31. #define DRIVER_AUTHOR "Sarah Sharp"
  32. #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  33. /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  34. static int link_quirk;
  35. module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  36. MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  37. /* TODO: copied from ehci-hcd.c - can this be refactored? */
  38. /*
  39. * xhci_handshake - spin reading hc until handshake completes or fails
  40. * @ptr: address of hc register to be read
  41. * @mask: bits to look at in result of read
  42. * @done: value of those bits when handshake succeeds
  43. * @usec: timeout in microseconds
  44. *
  45. * Returns negative errno, or zero on success
  46. *
  47. * Success happens when the "mask" bits have the specified value (hardware
  48. * handshake done). There are two failure modes: "usec" have passed (major
  49. * hardware flakeout), or the register reads as all-ones (hardware removed).
  50. */
  51. int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  52. u32 mask, u32 done, int usec)
  53. {
  54. u32 result;
  55. do {
  56. result = xhci_readl(xhci, ptr);
  57. if (result == ~(u32)0) /* card removed */
  58. return -ENODEV;
  59. result &= mask;
  60. if (result == done)
  61. return 0;
  62. udelay(1);
  63. usec--;
  64. } while (usec > 0);
  65. return -ETIMEDOUT;
  66. }
  67. /*
  68. * Disable interrupts and begin the xHCI halting process.
  69. */
  70. void xhci_quiesce(struct xhci_hcd *xhci)
  71. {
  72. u32 halted;
  73. u32 cmd;
  74. u32 mask;
  75. mask = ~(XHCI_IRQS);
  76. halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  77. if (!halted)
  78. mask &= ~CMD_RUN;
  79. cmd = xhci_readl(xhci, &xhci->op_regs->command);
  80. cmd &= mask;
  81. xhci_writel(xhci, cmd, &xhci->op_regs->command);
  82. }
  83. /*
  84. * Force HC into halt state.
  85. *
  86. * Disable any IRQs and clear the run/stop bit.
  87. * HC will complete any current and actively pipelined transactions, and
  88. * should halt within 16 ms of the run/stop bit being cleared.
  89. * Read HC Halted bit in the status register to see when the HC is finished.
  90. */
  91. int xhci_halt(struct xhci_hcd *xhci)
  92. {
  93. int ret;
  94. xhci_dbg(xhci, "// Halt the HC\n");
  95. xhci_quiesce(xhci);
  96. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  97. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
  98. if (!ret) {
  99. xhci->xhc_state |= XHCI_STATE_HALTED;
  100. xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
  101. } else
  102. xhci_warn(xhci, "Host not halted after %u microseconds.\n",
  103. XHCI_MAX_HALT_USEC);
  104. return ret;
  105. }
  106. /*
  107. * Set the run bit and wait for the host to be running.
  108. */
  109. static int xhci_start(struct xhci_hcd *xhci)
  110. {
  111. u32 temp;
  112. int ret;
  113. temp = xhci_readl(xhci, &xhci->op_regs->command);
  114. temp |= (CMD_RUN);
  115. xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
  116. temp);
  117. xhci_writel(xhci, temp, &xhci->op_regs->command);
  118. /*
  119. * Wait for the HCHalted Status bit to be 0 to indicate the host is
  120. * running.
  121. */
  122. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  123. STS_HALT, 0, XHCI_MAX_HALT_USEC);
  124. if (ret == -ETIMEDOUT)
  125. xhci_err(xhci, "Host took too long to start, "
  126. "waited %u microseconds.\n",
  127. XHCI_MAX_HALT_USEC);
  128. if (!ret)
  129. xhci->xhc_state &= ~XHCI_STATE_HALTED;
  130. return ret;
  131. }
  132. /*
  133. * Reset a halted HC.
  134. *
  135. * This resets pipelines, timers, counters, state machines, etc.
  136. * Transactions will be terminated immediately, and operational registers
  137. * will be set to their defaults.
  138. */
  139. int xhci_reset(struct xhci_hcd *xhci)
  140. {
  141. u32 command;
  142. u32 state;
  143. int ret, i;
  144. state = xhci_readl(xhci, &xhci->op_regs->status);
  145. if ((state & STS_HALT) == 0) {
  146. xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
  147. return 0;
  148. }
  149. xhci_dbg(xhci, "// Reset the HC\n");
  150. command = xhci_readl(xhci, &xhci->op_regs->command);
  151. command |= CMD_RESET;
  152. xhci_writel(xhci, command, &xhci->op_regs->command);
  153. ret = xhci_handshake(xhci, &xhci->op_regs->command,
  154. CMD_RESET, 0, 10 * 1000 * 1000);
  155. if (ret)
  156. return ret;
  157. xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
  158. /*
  159. * xHCI cannot write to any doorbells or operational registers other
  160. * than status until the "Controller Not Ready" flag is cleared.
  161. */
  162. ret = xhci_handshake(xhci, &xhci->op_regs->status,
  163. STS_CNR, 0, 10 * 1000 * 1000);
  164. for (i = 0; i < 2; ++i) {
  165. xhci->bus_state[i].port_c_suspend = 0;
  166. xhci->bus_state[i].suspended_ports = 0;
  167. xhci->bus_state[i].resuming_ports = 0;
  168. }
  169. return ret;
  170. }
  171. #ifdef CONFIG_PCI
  172. static int xhci_free_msi(struct xhci_hcd *xhci)
  173. {
  174. int i;
  175. if (!xhci->msix_entries)
  176. return -EINVAL;
  177. for (i = 0; i < xhci->msix_count; i++)
  178. if (xhci->msix_entries[i].vector)
  179. free_irq(xhci->msix_entries[i].vector,
  180. xhci_to_hcd(xhci));
  181. return 0;
  182. }
  183. /*
  184. * Set up MSI
  185. */
  186. static int xhci_setup_msi(struct xhci_hcd *xhci)
  187. {
  188. int ret;
  189. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  190. ret = pci_enable_msi(pdev);
  191. if (ret) {
  192. xhci_dbg(xhci, "failed to allocate MSI entry\n");
  193. return ret;
  194. }
  195. ret = request_irq(pdev->irq, xhci_msi_irq,
  196. 0, "xhci_hcd", xhci_to_hcd(xhci));
  197. if (ret) {
  198. xhci_dbg(xhci, "disable MSI interrupt\n");
  199. pci_disable_msi(pdev);
  200. }
  201. return ret;
  202. }
  203. /*
  204. * Free IRQs
  205. * free all IRQs request
  206. */
  207. static void xhci_free_irq(struct xhci_hcd *xhci)
  208. {
  209. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  210. int ret;
  211. /* return if using legacy interrupt */
  212. if (xhci_to_hcd(xhci)->irq > 0)
  213. return;
  214. ret = xhci_free_msi(xhci);
  215. if (!ret)
  216. return;
  217. if (pdev->irq > 0)
  218. free_irq(pdev->irq, xhci_to_hcd(xhci));
  219. return;
  220. }
  221. /*
  222. * Set up MSI-X
  223. */
  224. static int xhci_setup_msix(struct xhci_hcd *xhci)
  225. {
  226. int i, ret = 0;
  227. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  228. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  229. /*
  230. * calculate number of msi-x vectors supported.
  231. * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
  232. * with max number of interrupters based on the xhci HCSPARAMS1.
  233. * - num_online_cpus: maximum msi-x vectors per CPUs core.
  234. * Add additional 1 vector to ensure always available interrupt.
  235. */
  236. xhci->msix_count = min(num_online_cpus() + 1,
  237. HCS_MAX_INTRS(xhci->hcs_params1));
  238. xhci->msix_entries =
  239. kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
  240. GFP_KERNEL);
  241. if (!xhci->msix_entries) {
  242. xhci_err(xhci, "Failed to allocate MSI-X entries\n");
  243. return -ENOMEM;
  244. }
  245. for (i = 0; i < xhci->msix_count; i++) {
  246. xhci->msix_entries[i].entry = i;
  247. xhci->msix_entries[i].vector = 0;
  248. }
  249. ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
  250. if (ret) {
  251. xhci_dbg(xhci, "Failed to enable MSI-X\n");
  252. goto free_entries;
  253. }
  254. for (i = 0; i < xhci->msix_count; i++) {
  255. ret = request_irq(xhci->msix_entries[i].vector,
  256. xhci_msi_irq,
  257. 0, "xhci_hcd", xhci_to_hcd(xhci));
  258. if (ret)
  259. goto disable_msix;
  260. }
  261. hcd->msix_enabled = 1;
  262. return ret;
  263. disable_msix:
  264. xhci_dbg(xhci, "disable MSI-X interrupt\n");
  265. xhci_free_irq(xhci);
  266. pci_disable_msix(pdev);
  267. free_entries:
  268. kfree(xhci->msix_entries);
  269. xhci->msix_entries = NULL;
  270. return ret;
  271. }
  272. /* Free any IRQs and disable MSI-X */
  273. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  274. {
  275. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  276. struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
  277. xhci_free_irq(xhci);
  278. if (xhci->msix_entries) {
  279. pci_disable_msix(pdev);
  280. kfree(xhci->msix_entries);
  281. xhci->msix_entries = NULL;
  282. } else {
  283. pci_disable_msi(pdev);
  284. }
  285. hcd->msix_enabled = 0;
  286. return;
  287. }
  288. static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  289. {
  290. int i;
  291. if (xhci->msix_entries) {
  292. for (i = 0; i < xhci->msix_count; i++)
  293. synchronize_irq(xhci->msix_entries[i].vector);
  294. }
  295. }
  296. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  297. {
  298. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  299. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  300. int ret;
  301. /*
  302. * Some Fresco Logic host controllers advertise MSI, but fail to
  303. * generate interrupts. Don't even try to enable MSI.
  304. */
  305. if (xhci->quirks & XHCI_BROKEN_MSI)
  306. goto legacy_irq;
  307. /* unregister the legacy interrupt */
  308. if (hcd->irq)
  309. free_irq(hcd->irq, hcd);
  310. hcd->irq = 0;
  311. ret = xhci_setup_msix(xhci);
  312. if (ret)
  313. /* fall back to msi*/
  314. ret = xhci_setup_msi(xhci);
  315. if (!ret)
  316. /* hcd->irq is 0, we have MSI */
  317. return 0;
  318. if (!pdev->irq) {
  319. xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
  320. return -EINVAL;
  321. }
  322. legacy_irq:
  323. /* fall back to legacy interrupt*/
  324. ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
  325. hcd->irq_descr, hcd);
  326. if (ret) {
  327. xhci_err(xhci, "request interrupt %d failed\n",
  328. pdev->irq);
  329. return ret;
  330. }
  331. hcd->irq = pdev->irq;
  332. return 0;
  333. }
  334. #else
  335. static int xhci_try_enable_msi(struct usb_hcd *hcd)
  336. {
  337. return 0;
  338. }
  339. static void xhci_cleanup_msix(struct xhci_hcd *xhci)
  340. {
  341. }
  342. static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
  343. {
  344. }
  345. #endif
  346. static void compliance_mode_recovery(unsigned long arg)
  347. {
  348. struct xhci_hcd *xhci;
  349. struct usb_hcd *hcd;
  350. u32 temp;
  351. int i;
  352. xhci = (struct xhci_hcd *)arg;
  353. for (i = 0; i < xhci->num_usb3_ports; i++) {
  354. temp = xhci_readl(xhci, xhci->usb3_ports[i]);
  355. if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
  356. /*
  357. * Compliance Mode Detected. Letting USB Core
  358. * handle the Warm Reset
  359. */
  360. xhci_dbg(xhci, "Compliance mode detected->port %d\n",
  361. i + 1);
  362. xhci_dbg(xhci, "Attempting compliance mode recovery\n");
  363. hcd = xhci->shared_hcd;
  364. if (hcd->state == HC_STATE_SUSPENDED)
  365. usb_hcd_resume_root_hub(hcd);
  366. usb_hcd_poll_rh_status(hcd);
  367. }
  368. }
  369. if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
  370. mod_timer(&xhci->comp_mode_recovery_timer,
  371. jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  372. }
  373. /*
  374. * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
  375. * that causes ports behind that hardware to enter compliance mode sometimes.
  376. * The quirk creates a timer that polls every 2 seconds the link state of
  377. * each host controller's port and recovers it by issuing a Warm reset
  378. * if Compliance mode is detected, otherwise the port will become "dead" (no
  379. * device connections or disconnections will be detected anymore). Becasue no
  380. * status event is generated when entering compliance mode (per xhci spec),
  381. * this quirk is needed on systems that have the failing hardware installed.
  382. */
  383. static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
  384. {
  385. xhci->port_status_u0 = 0;
  386. init_timer(&xhci->comp_mode_recovery_timer);
  387. xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
  388. xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
  389. xhci->comp_mode_recovery_timer.expires = jiffies +
  390. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
  391. set_timer_slack(&xhci->comp_mode_recovery_timer,
  392. msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
  393. add_timer(&xhci->comp_mode_recovery_timer);
  394. xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
  395. }
  396. /*
  397. * This function identifies the systems that have installed the SN65LVPE502CP
  398. * USB3.0 re-driver and that need the Compliance Mode Quirk.
  399. * Systems:
  400. * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
  401. */
  402. bool xhci_compliance_mode_recovery_timer_quirk_check(void)
  403. {
  404. const char *dmi_product_name, *dmi_sys_vendor;
  405. dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
  406. dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
  407. if (!dmi_product_name || !dmi_sys_vendor)
  408. return false;
  409. if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
  410. return false;
  411. if (strstr(dmi_product_name, "Z420") ||
  412. strstr(dmi_product_name, "Z620") ||
  413. strstr(dmi_product_name, "Z820") ||
  414. strstr(dmi_product_name, "Z1 Workstation"))
  415. return true;
  416. return false;
  417. }
  418. static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
  419. {
  420. return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
  421. }
  422. /*
  423. * Initialize memory for HCD and xHC (one-time init).
  424. *
  425. * Program the PAGESIZE register, initialize the device context array, create
  426. * device contexts (?), set up a command ring segment (or two?), create event
  427. * ring (one for now).
  428. */
  429. int xhci_init(struct usb_hcd *hcd)
  430. {
  431. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  432. int retval = 0;
  433. xhci_dbg(xhci, "xhci_init\n");
  434. spin_lock_init(&xhci->lock);
  435. if (xhci->hci_version == 0x95 && link_quirk) {
  436. xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
  437. xhci->quirks |= XHCI_LINK_TRB_QUIRK;
  438. } else {
  439. xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
  440. }
  441. retval = xhci_mem_init(xhci, GFP_KERNEL);
  442. xhci_dbg(xhci, "Finished xhci_init\n");
  443. /* Initializing Compliance Mode Recovery Data If Needed */
  444. if (xhci_compliance_mode_recovery_timer_quirk_check()) {
  445. xhci->quirks |= XHCI_COMP_MODE_QUIRK;
  446. compliance_mode_recovery_timer_init(xhci);
  447. }
  448. return retval;
  449. }
  450. /*-------------------------------------------------------------------------*/
  451. static int xhci_run_finished(struct xhci_hcd *xhci)
  452. {
  453. if (xhci_start(xhci)) {
  454. xhci_halt(xhci);
  455. return -ENODEV;
  456. }
  457. xhci->shared_hcd->state = HC_STATE_RUNNING;
  458. xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
  459. if (xhci->quirks & XHCI_NEC_HOST)
  460. xhci_ring_cmd_db(xhci);
  461. xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
  462. return 0;
  463. }
  464. /*
  465. * Start the HC after it was halted.
  466. *
  467. * This function is called by the USB core when the HC driver is added.
  468. * Its opposite is xhci_stop().
  469. *
  470. * xhci_init() must be called once before this function can be called.
  471. * Reset the HC, enable device slot contexts, program DCBAAP, and
  472. * set command ring pointer and event ring pointer.
  473. *
  474. * Setup MSI-X vectors and enable interrupts.
  475. */
  476. int xhci_run(struct usb_hcd *hcd)
  477. {
  478. u32 temp;
  479. u64 temp_64;
  480. int ret;
  481. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  482. /* Start the xHCI host controller running only after the USB 2.0 roothub
  483. * is setup.
  484. */
  485. hcd->uses_new_polling = 1;
  486. if (!usb_hcd_is_primary_hcd(hcd))
  487. return xhci_run_finished(xhci);
  488. xhci_dbg(xhci, "xhci_run\n");
  489. ret = xhci_try_enable_msi(hcd);
  490. if (ret)
  491. return ret;
  492. xhci_dbg(xhci, "Command ring memory map follows:\n");
  493. xhci_debug_ring(xhci, xhci->cmd_ring);
  494. xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
  495. xhci_dbg_cmd_ptrs(xhci);
  496. xhci_dbg(xhci, "ERST memory map follows:\n");
  497. xhci_dbg_erst(xhci, &xhci->erst);
  498. xhci_dbg(xhci, "Event ring:\n");
  499. xhci_debug_ring(xhci, xhci->event_ring);
  500. xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
  501. temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  502. temp_64 &= ~ERST_PTR_MASK;
  503. xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
  504. xhci_dbg(xhci, "// Set the interrupt modulation register\n");
  505. temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
  506. temp &= ~ER_IRQ_INTERVAL_MASK;
  507. temp |= (u32) 160;
  508. xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
  509. /* Set the HCD state before we enable the irqs */
  510. temp = xhci_readl(xhci, &xhci->op_regs->command);
  511. temp |= (CMD_EIE);
  512. xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
  513. temp);
  514. xhci_writel(xhci, temp, &xhci->op_regs->command);
  515. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  516. xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
  517. xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
  518. xhci_writel(xhci, ER_IRQ_ENABLE(temp),
  519. &xhci->ir_set->irq_pending);
  520. xhci_print_ir_set(xhci, 0);
  521. if (xhci->quirks & XHCI_NEC_HOST)
  522. xhci_queue_vendor_command(xhci, 0, 0, 0,
  523. TRB_TYPE(TRB_NEC_GET_FW));
  524. xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
  525. return 0;
  526. }
  527. static void xhci_only_stop_hcd(struct usb_hcd *hcd)
  528. {
  529. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  530. spin_lock_irq(&xhci->lock);
  531. xhci_halt(xhci);
  532. /* The shared_hcd is going to be deallocated shortly (the USB core only
  533. * calls this function when allocation fails in usb_add_hcd(), or
  534. * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
  535. */
  536. xhci->shared_hcd = NULL;
  537. spin_unlock_irq(&xhci->lock);
  538. }
  539. /*
  540. * Stop xHCI driver.
  541. *
  542. * This function is called by the USB core when the HC driver is removed.
  543. * Its opposite is xhci_run().
  544. *
  545. * Disable device contexts, disable IRQs, and quiesce the HC.
  546. * Reset the HC, finish any completed transactions, and cleanup memory.
  547. */
  548. void xhci_stop(struct usb_hcd *hcd)
  549. {
  550. u32 temp;
  551. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  552. if (!usb_hcd_is_primary_hcd(hcd)) {
  553. xhci_only_stop_hcd(xhci->shared_hcd);
  554. return;
  555. }
  556. spin_lock_irq(&xhci->lock);
  557. /* Make sure the xHC is halted for a USB3 roothub
  558. * (xhci_stop() could be called as part of failed init).
  559. */
  560. xhci_halt(xhci);
  561. xhci_reset(xhci);
  562. spin_unlock_irq(&xhci->lock);
  563. xhci_cleanup_msix(xhci);
  564. /* Deleting Compliance Mode Recovery Timer */
  565. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  566. (!(xhci_all_ports_seen_u0(xhci)))) {
  567. del_timer_sync(&xhci->comp_mode_recovery_timer);
  568. xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
  569. __func__);
  570. }
  571. if (xhci->quirks & XHCI_AMD_PLL_FIX)
  572. usb_amd_dev_put();
  573. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  574. temp = xhci_readl(xhci, &xhci->op_regs->status);
  575. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  576. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  577. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  578. &xhci->ir_set->irq_pending);
  579. xhci_print_ir_set(xhci, 0);
  580. xhci_dbg(xhci, "cleaning up memory\n");
  581. xhci_mem_cleanup(xhci);
  582. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  583. xhci_readl(xhci, &xhci->op_regs->status));
  584. }
  585. /*
  586. * Shutdown HC (not bus-specific)
  587. *
  588. * This is called when the machine is rebooting or halting. We assume that the
  589. * machine will be powered off, and the HC's internal state will be reset.
  590. * Don't bother to free memory.
  591. *
  592. * This will only ever be called with the main usb_hcd (the USB3 roothub).
  593. */
  594. void xhci_shutdown(struct usb_hcd *hcd)
  595. {
  596. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  597. if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
  598. usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
  599. spin_lock_irq(&xhci->lock);
  600. xhci_halt(xhci);
  601. spin_unlock_irq(&xhci->lock);
  602. xhci_cleanup_msix(xhci);
  603. xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
  604. xhci_readl(xhci, &xhci->op_regs->status));
  605. }
  606. #ifdef CONFIG_PM
  607. static void xhci_save_registers(struct xhci_hcd *xhci)
  608. {
  609. xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
  610. xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
  611. xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  612. xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
  613. xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
  614. xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  615. xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  616. xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  617. xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
  618. }
  619. static void xhci_restore_registers(struct xhci_hcd *xhci)
  620. {
  621. xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
  622. xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
  623. xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
  624. xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
  625. xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
  626. xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
  627. xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
  628. xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
  629. xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
  630. }
  631. static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
  632. {
  633. u64 val_64;
  634. /* step 2: initialize command ring buffer */
  635. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  636. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  637. (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
  638. xhci->cmd_ring->dequeue) &
  639. (u64) ~CMD_RING_RSVD_BITS) |
  640. xhci->cmd_ring->cycle_state;
  641. xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
  642. (long unsigned long) val_64);
  643. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  644. }
  645. /*
  646. * The whole command ring must be cleared to zero when we suspend the host.
  647. *
  648. * The host doesn't save the command ring pointer in the suspend well, so we
  649. * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
  650. * aligned, because of the reserved bits in the command ring dequeue pointer
  651. * register. Therefore, we can't just set the dequeue pointer back in the
  652. * middle of the ring (TRBs are 16-byte aligned).
  653. */
  654. static void xhci_clear_command_ring(struct xhci_hcd *xhci)
  655. {
  656. struct xhci_ring *ring;
  657. struct xhci_segment *seg;
  658. ring = xhci->cmd_ring;
  659. seg = ring->deq_seg;
  660. do {
  661. memset(seg->trbs, 0,
  662. sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
  663. seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
  664. cpu_to_le32(~TRB_CYCLE);
  665. seg = seg->next;
  666. } while (seg != ring->deq_seg);
  667. /* Reset the software enqueue and dequeue pointers */
  668. ring->deq_seg = ring->first_seg;
  669. ring->dequeue = ring->first_seg->trbs;
  670. ring->enq_seg = ring->deq_seg;
  671. ring->enqueue = ring->dequeue;
  672. ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
  673. /*
  674. * Ring is now zeroed, so the HW should look for change of ownership
  675. * when the cycle bit is set to 1.
  676. */
  677. ring->cycle_state = 1;
  678. /*
  679. * Reset the hardware dequeue pointer.
  680. * Yes, this will need to be re-written after resume, but we're paranoid
  681. * and want to make sure the hardware doesn't access bogus memory
  682. * because, say, the BIOS or an SMI started the host without changing
  683. * the command ring pointers.
  684. */
  685. xhci_set_cmd_ring_deq(xhci);
  686. }
  687. /*
  688. * Stop HC (not bus-specific)
  689. *
  690. * This is called when the machine transition into S3/S4 mode.
  691. *
  692. */
  693. int xhci_suspend(struct xhci_hcd *xhci)
  694. {
  695. int rc = 0;
  696. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  697. u32 command;
  698. if (hcd->state != HC_STATE_SUSPENDED ||
  699. xhci->shared_hcd->state != HC_STATE_SUSPENDED)
  700. return -EINVAL;
  701. /* Don't poll the roothubs on bus suspend. */
  702. xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
  703. clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  704. del_timer_sync(&hcd->rh_timer);
  705. spin_lock_irq(&xhci->lock);
  706. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  707. clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  708. /* step 1: stop endpoint */
  709. /* skipped assuming that port suspend has done */
  710. /* step 2: clear Run/Stop bit */
  711. command = xhci_readl(xhci, &xhci->op_regs->command);
  712. command &= ~CMD_RUN;
  713. xhci_writel(xhci, command, &xhci->op_regs->command);
  714. if (xhci_handshake(xhci, &xhci->op_regs->status,
  715. STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
  716. xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
  717. spin_unlock_irq(&xhci->lock);
  718. return -ETIMEDOUT;
  719. }
  720. xhci_clear_command_ring(xhci);
  721. /* step 3: save registers */
  722. xhci_save_registers(xhci);
  723. /* step 4: set CSS flag */
  724. command = xhci_readl(xhci, &xhci->op_regs->command);
  725. command |= CMD_CSS;
  726. xhci_writel(xhci, command, &xhci->op_regs->command);
  727. if (xhci_handshake(xhci, &xhci->op_regs->status,
  728. STS_SAVE, 0, 10 * 1000)) {
  729. xhci_warn(xhci, "WARN: xHC save state timeout\n");
  730. spin_unlock_irq(&xhci->lock);
  731. return -ETIMEDOUT;
  732. }
  733. spin_unlock_irq(&xhci->lock);
  734. /*
  735. * Deleting Compliance Mode Recovery Timer because the xHCI Host
  736. * is about to be suspended.
  737. */
  738. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  739. (!(xhci_all_ports_seen_u0(xhci)))) {
  740. del_timer_sync(&xhci->comp_mode_recovery_timer);
  741. xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
  742. __func__);
  743. }
  744. /* step 5: remove core well power */
  745. /* synchronize irq when using MSI-X */
  746. xhci_msix_sync_irqs(xhci);
  747. return rc;
  748. }
  749. /*
  750. * start xHC (not bus-specific)
  751. *
  752. * This is called when the machine transition from S3/S4 mode.
  753. *
  754. */
  755. int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
  756. {
  757. u32 command, temp = 0;
  758. struct usb_hcd *hcd = xhci_to_hcd(xhci);
  759. struct usb_hcd *secondary_hcd;
  760. int retval = 0;
  761. bool comp_timer_running = false;
  762. /* Wait a bit if either of the roothubs need to settle from the
  763. * transition into bus suspend.
  764. */
  765. if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
  766. time_before(jiffies,
  767. xhci->bus_state[1].next_statechange))
  768. msleep(100);
  769. set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
  770. set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
  771. spin_lock_irq(&xhci->lock);
  772. if (xhci->quirks & XHCI_RESET_ON_RESUME)
  773. hibernated = true;
  774. if (!hibernated) {
  775. /* step 1: restore register */
  776. xhci_restore_registers(xhci);
  777. /* step 2: initialize command ring buffer */
  778. xhci_set_cmd_ring_deq(xhci);
  779. /* step 3: restore state and start state*/
  780. /* step 3: set CRS flag */
  781. command = xhci_readl(xhci, &xhci->op_regs->command);
  782. command |= CMD_CRS;
  783. xhci_writel(xhci, command, &xhci->op_regs->command);
  784. if (xhci_handshake(xhci, &xhci->op_regs->status,
  785. STS_RESTORE, 0, 10 * 1000)) {
  786. xhci_warn(xhci, "WARN: xHC restore state timeout\n");
  787. spin_unlock_irq(&xhci->lock);
  788. return -ETIMEDOUT;
  789. }
  790. temp = xhci_readl(xhci, &xhci->op_regs->status);
  791. }
  792. /* If restore operation fails, re-initialize the HC during resume */
  793. if ((temp & STS_SRE) || hibernated) {
  794. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
  795. !(xhci_all_ports_seen_u0(xhci))) {
  796. del_timer_sync(&xhci->comp_mode_recovery_timer);
  797. xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
  798. }
  799. /* Let the USB core know _both_ roothubs lost power. */
  800. usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
  801. usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
  802. xhci_dbg(xhci, "Stop HCD\n");
  803. xhci_halt(xhci);
  804. xhci_reset(xhci);
  805. spin_unlock_irq(&xhci->lock);
  806. xhci_cleanup_msix(xhci);
  807. xhci_dbg(xhci, "// Disabling event ring interrupts\n");
  808. temp = xhci_readl(xhci, &xhci->op_regs->status);
  809. xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
  810. temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
  811. xhci_writel(xhci, ER_IRQ_DISABLE(temp),
  812. &xhci->ir_set->irq_pending);
  813. xhci_print_ir_set(xhci, 0);
  814. xhci_dbg(xhci, "cleaning up memory\n");
  815. xhci_mem_cleanup(xhci);
  816. xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
  817. xhci_readl(xhci, &xhci->op_regs->status));
  818. /* USB core calls the PCI reinit and start functions twice:
  819. * first with the primary HCD, and then with the secondary HCD.
  820. * If we don't do the same, the host will never be started.
  821. */
  822. if (!usb_hcd_is_primary_hcd(hcd))
  823. secondary_hcd = hcd;
  824. else
  825. secondary_hcd = xhci->shared_hcd;
  826. xhci_dbg(xhci, "Initialize the xhci_hcd\n");
  827. retval = xhci_init(hcd->primary_hcd);
  828. if (retval)
  829. return retval;
  830. comp_timer_running = true;
  831. xhci_dbg(xhci, "Start the primary HCD\n");
  832. retval = xhci_run(hcd->primary_hcd);
  833. if (!retval) {
  834. xhci_dbg(xhci, "Start the secondary HCD\n");
  835. retval = xhci_run(secondary_hcd);
  836. }
  837. hcd->state = HC_STATE_SUSPENDED;
  838. xhci->shared_hcd->state = HC_STATE_SUSPENDED;
  839. goto done;
  840. }
  841. /* step 4: set Run/Stop bit */
  842. command = xhci_readl(xhci, &xhci->op_regs->command);
  843. command |= CMD_RUN;
  844. xhci_writel(xhci, command, &xhci->op_regs->command);
  845. xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
  846. 0, 250 * 1000);
  847. /* step 5: walk topology and initialize portsc,
  848. * portpmsc and portli
  849. */
  850. /* this is done in bus_resume */
  851. /* step 6: restart each of the previously
  852. * Running endpoints by ringing their doorbells
  853. */
  854. spin_unlock_irq(&xhci->lock);
  855. done:
  856. if (retval == 0) {
  857. usb_hcd_resume_root_hub(hcd);
  858. usb_hcd_resume_root_hub(xhci->shared_hcd);
  859. }
  860. /*
  861. * If system is subject to the Quirk, Compliance Mode Timer needs to
  862. * be re-initialized Always after a system resume. Ports are subject
  863. * to suffer the Compliance Mode issue again. It doesn't matter if
  864. * ports have entered previously to U0 before system's suspension.
  865. */
  866. if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
  867. compliance_mode_recovery_timer_init(xhci);
  868. /* Re-enable port polling. */
  869. xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
  870. set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
  871. usb_hcd_poll_rh_status(hcd);
  872. return retval;
  873. }
  874. #endif /* CONFIG_PM */
  875. /*-------------------------------------------------------------------------*/
  876. /**
  877. * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
  878. * HCDs. Find the index for an endpoint given its descriptor. Use the return
  879. * value to right shift 1 for the bitmask.
  880. *
  881. * Index = (epnum * 2) + direction - 1,
  882. * where direction = 0 for OUT, 1 for IN.
  883. * For control endpoints, the IN index is used (OUT index is unused), so
  884. * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
  885. */
  886. unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
  887. {
  888. unsigned int index;
  889. if (usb_endpoint_xfer_control(desc))
  890. index = (unsigned int) (usb_endpoint_num(desc)*2);
  891. else
  892. index = (unsigned int) (usb_endpoint_num(desc)*2) +
  893. (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
  894. return index;
  895. }
  896. /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
  897. * address from the XHCI endpoint index.
  898. */
  899. unsigned int xhci_get_endpoint_address(unsigned int ep_index)
  900. {
  901. unsigned int number = DIV_ROUND_UP(ep_index, 2);
  902. unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
  903. return direction | number;
  904. }
  905. /* Find the flag for this endpoint (for use in the control context). Use the
  906. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  907. * bit 1, etc.
  908. */
  909. unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
  910. {
  911. return 1 << (xhci_get_endpoint_index(desc) + 1);
  912. }
  913. /* Find the flag for this endpoint (for use in the control context). Use the
  914. * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
  915. * bit 1, etc.
  916. */
  917. unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
  918. {
  919. return 1 << (ep_index + 1);
  920. }
  921. /* Compute the last valid endpoint context index. Basically, this is the
  922. * endpoint index plus one. For slot contexts with more than valid endpoint,
  923. * we find the most significant bit set in the added contexts flags.
  924. * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
  925. * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
  926. */
  927. unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
  928. {
  929. return fls(added_ctxs) - 1;
  930. }
  931. /* Returns 1 if the arguments are OK;
  932. * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
  933. */
  934. static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
  935. struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
  936. const char *func) {
  937. struct xhci_hcd *xhci;
  938. struct xhci_virt_device *virt_dev;
  939. if (!hcd || (check_ep && !ep) || !udev) {
  940. pr_debug("xHCI %s called with invalid args\n", func);
  941. return -EINVAL;
  942. }
  943. if (!udev->parent) {
  944. pr_debug("xHCI %s called for root hub\n", func);
  945. return 0;
  946. }
  947. xhci = hcd_to_xhci(hcd);
  948. if (check_virt_dev) {
  949. if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
  950. xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
  951. func);
  952. return -EINVAL;
  953. }
  954. virt_dev = xhci->devs[udev->slot_id];
  955. if (virt_dev->udev != udev) {
  956. xhci_dbg(xhci, "xHCI %s called with udev and "
  957. "virt_dev does not match\n", func);
  958. return -EINVAL;
  959. }
  960. }
  961. if (xhci->xhc_state & XHCI_STATE_HALTED)
  962. return -ENODEV;
  963. return 1;
  964. }
  965. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  966. struct usb_device *udev, struct xhci_command *command,
  967. bool ctx_change, bool must_succeed);
  968. /*
  969. * Full speed devices may have a max packet size greater than 8 bytes, but the
  970. * USB core doesn't know that until it reads the first 8 bytes of the
  971. * descriptor. If the usb_device's max packet size changes after that point,
  972. * we need to issue an evaluate context command and wait on it.
  973. */
  974. static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
  975. unsigned int ep_index, struct urb *urb)
  976. {
  977. struct xhci_container_ctx *in_ctx;
  978. struct xhci_container_ctx *out_ctx;
  979. struct xhci_input_control_ctx *ctrl_ctx;
  980. struct xhci_ep_ctx *ep_ctx;
  981. int max_packet_size;
  982. int hw_max_packet_size;
  983. int ret = 0;
  984. out_ctx = xhci->devs[slot_id]->out_ctx;
  985. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  986. hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
  987. max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
  988. if (hw_max_packet_size != max_packet_size) {
  989. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  990. "Max Packet Size for ep 0 changed.");
  991. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  992. "Max packet size in usb_device = %d",
  993. max_packet_size);
  994. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  995. "Max packet size in xHCI HW = %d",
  996. hw_max_packet_size);
  997. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  998. "Issuing evaluate context command.");
  999. /* Set up the input context flags for the command */
  1000. /* FIXME: This won't work if a non-default control endpoint
  1001. * changes max packet sizes.
  1002. */
  1003. in_ctx = xhci->devs[slot_id]->in_ctx;
  1004. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1005. if (!ctrl_ctx) {
  1006. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1007. __func__);
  1008. return -ENOMEM;
  1009. }
  1010. /* Set up the modified control endpoint 0 */
  1011. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  1012. xhci->devs[slot_id]->out_ctx, ep_index);
  1013. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1014. ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
  1015. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
  1016. ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
  1017. ctrl_ctx->drop_flags = 0;
  1018. xhci_dbg(xhci, "Slot %d input context\n", slot_id);
  1019. xhci_dbg_ctx(xhci, in_ctx, ep_index);
  1020. xhci_dbg(xhci, "Slot %d output context\n", slot_id);
  1021. xhci_dbg_ctx(xhci, out_ctx, ep_index);
  1022. ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
  1023. true, false);
  1024. /* Clean up the input context for later use by bandwidth
  1025. * functions.
  1026. */
  1027. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
  1028. }
  1029. return ret;
  1030. }
  1031. /*
  1032. * non-error returns are a promise to giveback() the urb later
  1033. * we drop ownership so next owner (or urb unlink) can get it
  1034. */
  1035. int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
  1036. {
  1037. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  1038. struct xhci_td *buffer;
  1039. unsigned long flags;
  1040. int ret = 0;
  1041. unsigned int slot_id, ep_index;
  1042. struct urb_priv *urb_priv;
  1043. int size, i;
  1044. if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
  1045. true, true, __func__) <= 0)
  1046. return -EINVAL;
  1047. slot_id = urb->dev->slot_id;
  1048. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1049. if (!HCD_HW_ACCESSIBLE(hcd)) {
  1050. if (!in_interrupt())
  1051. xhci_dbg(xhci, "urb submitted during PCI suspend\n");
  1052. ret = -ESHUTDOWN;
  1053. goto exit;
  1054. }
  1055. if (usb_endpoint_xfer_isoc(&urb->ep->desc))
  1056. size = urb->number_of_packets;
  1057. else
  1058. size = 1;
  1059. urb_priv = kzalloc(sizeof(struct urb_priv) +
  1060. size * sizeof(struct xhci_td *), mem_flags);
  1061. if (!urb_priv)
  1062. return -ENOMEM;
  1063. buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
  1064. if (!buffer) {
  1065. kfree(urb_priv);
  1066. return -ENOMEM;
  1067. }
  1068. for (i = 0; i < size; i++) {
  1069. urb_priv->td[i] = buffer;
  1070. buffer++;
  1071. }
  1072. urb_priv->length = size;
  1073. urb_priv->td_cnt = 0;
  1074. urb->hcpriv = urb_priv;
  1075. if (usb_endpoint_xfer_control(&urb->ep->desc)) {
  1076. /* Check to see if the max packet size for the default control
  1077. * endpoint changed during FS device enumeration
  1078. */
  1079. if (urb->dev->speed == USB_SPEED_FULL) {
  1080. ret = xhci_check_maxpacket(xhci, slot_id,
  1081. ep_index, urb);
  1082. if (ret < 0) {
  1083. xhci_urb_free_priv(xhci, urb_priv);
  1084. urb->hcpriv = NULL;
  1085. return ret;
  1086. }
  1087. }
  1088. /* We have a spinlock and interrupts disabled, so we must pass
  1089. * atomic context to this function, which may allocate memory.
  1090. */
  1091. spin_lock_irqsave(&xhci->lock, flags);
  1092. if (xhci->xhc_state & XHCI_STATE_DYING)
  1093. goto dying;
  1094. ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
  1095. slot_id, ep_index);
  1096. if (ret)
  1097. goto free_priv;
  1098. spin_unlock_irqrestore(&xhci->lock, flags);
  1099. } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
  1100. spin_lock_irqsave(&xhci->lock, flags);
  1101. if (xhci->xhc_state & XHCI_STATE_DYING)
  1102. goto dying;
  1103. if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1104. EP_GETTING_STREAMS) {
  1105. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1106. "is transitioning to using streams.\n");
  1107. ret = -EINVAL;
  1108. } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
  1109. EP_GETTING_NO_STREAMS) {
  1110. xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
  1111. "is transitioning to "
  1112. "not having streams.\n");
  1113. ret = -EINVAL;
  1114. } else {
  1115. ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
  1116. slot_id, ep_index);
  1117. }
  1118. if (ret)
  1119. goto free_priv;
  1120. spin_unlock_irqrestore(&xhci->lock, flags);
  1121. } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
  1122. spin_lock_irqsave(&xhci->lock, flags);
  1123. if (xhci->xhc_state & XHCI_STATE_DYING)
  1124. goto dying;
  1125. ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
  1126. slot_id, ep_index);
  1127. if (ret)
  1128. goto free_priv;
  1129. spin_unlock_irqrestore(&xhci->lock, flags);
  1130. } else {
  1131. spin_lock_irqsave(&xhci->lock, flags);
  1132. if (xhci->xhc_state & XHCI_STATE_DYING)
  1133. goto dying;
  1134. ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
  1135. slot_id, ep_index);
  1136. if (ret)
  1137. goto free_priv;
  1138. spin_unlock_irqrestore(&xhci->lock, flags);
  1139. }
  1140. exit:
  1141. return ret;
  1142. dying:
  1143. xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
  1144. "non-responsive xHCI host.\n",
  1145. urb->ep->desc.bEndpointAddress, urb);
  1146. ret = -ESHUTDOWN;
  1147. free_priv:
  1148. xhci_urb_free_priv(xhci, urb_priv);
  1149. urb->hcpriv = NULL;
  1150. spin_unlock_irqrestore(&xhci->lock, flags);
  1151. return ret;
  1152. }
  1153. /* Get the right ring for the given URB.
  1154. * If the endpoint supports streams, boundary check the URB's stream ID.
  1155. * If the endpoint doesn't support streams, return the singular endpoint ring.
  1156. */
  1157. static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
  1158. struct urb *urb)
  1159. {
  1160. unsigned int slot_id;
  1161. unsigned int ep_index;
  1162. unsigned int stream_id;
  1163. struct xhci_virt_ep *ep;
  1164. slot_id = urb->dev->slot_id;
  1165. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1166. stream_id = urb->stream_id;
  1167. ep = &xhci->devs[slot_id]->eps[ep_index];
  1168. /* Common case: no streams */
  1169. if (!(ep->ep_state & EP_HAS_STREAMS))
  1170. return ep->ring;
  1171. if (stream_id == 0) {
  1172. xhci_warn(xhci,
  1173. "WARN: Slot ID %u, ep index %u has streams, "
  1174. "but URB has no stream ID.\n",
  1175. slot_id, ep_index);
  1176. return NULL;
  1177. }
  1178. if (stream_id < ep->stream_info->num_streams)
  1179. return ep->stream_info->stream_rings[stream_id];
  1180. xhci_warn(xhci,
  1181. "WARN: Slot ID %u, ep index %u has "
  1182. "stream IDs 1 to %u allocated, "
  1183. "but stream ID %u is requested.\n",
  1184. slot_id, ep_index,
  1185. ep->stream_info->num_streams - 1,
  1186. stream_id);
  1187. return NULL;
  1188. }
  1189. /*
  1190. * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
  1191. * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
  1192. * should pick up where it left off in the TD, unless a Set Transfer Ring
  1193. * Dequeue Pointer is issued.
  1194. *
  1195. * The TRBs that make up the buffers for the canceled URB will be "removed" from
  1196. * the ring. Since the ring is a contiguous structure, they can't be physically
  1197. * removed. Instead, there are two options:
  1198. *
  1199. * 1) If the HC is in the middle of processing the URB to be canceled, we
  1200. * simply move the ring's dequeue pointer past those TRBs using the Set
  1201. * Transfer Ring Dequeue Pointer command. This will be the common case,
  1202. * when drivers timeout on the last submitted URB and attempt to cancel.
  1203. *
  1204. * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
  1205. * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
  1206. * HC will need to invalidate the any TRBs it has cached after the stop
  1207. * endpoint command, as noted in the xHCI 0.95 errata.
  1208. *
  1209. * 3) The TD may have completed by the time the Stop Endpoint Command
  1210. * completes, so software needs to handle that case too.
  1211. *
  1212. * This function should protect against the TD enqueueing code ringing the
  1213. * doorbell while this code is waiting for a Stop Endpoint command to complete.
  1214. * It also needs to account for multiple cancellations on happening at the same
  1215. * time for the same endpoint.
  1216. *
  1217. * Note that this function can be called in any context, or so says
  1218. * usb_hcd_unlink_urb()
  1219. */
  1220. int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
  1221. {
  1222. unsigned long flags;
  1223. int ret, i;
  1224. u32 temp;
  1225. struct xhci_hcd *xhci;
  1226. struct urb_priv *urb_priv;
  1227. struct xhci_td *td;
  1228. unsigned int ep_index;
  1229. struct xhci_ring *ep_ring;
  1230. struct xhci_virt_ep *ep;
  1231. xhci = hcd_to_xhci(hcd);
  1232. spin_lock_irqsave(&xhci->lock, flags);
  1233. /* Make sure the URB hasn't completed or been unlinked already */
  1234. ret = usb_hcd_check_unlink_urb(hcd, urb, status);
  1235. if (ret || !urb->hcpriv)
  1236. goto done;
  1237. temp = xhci_readl(xhci, &xhci->op_regs->status);
  1238. if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1239. xhci_dbg(xhci, "HW died, freeing TD.\n");
  1240. urb_priv = urb->hcpriv;
  1241. for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
  1242. td = urb_priv->td[i];
  1243. if (!list_empty(&td->td_list))
  1244. list_del_init(&td->td_list);
  1245. if (!list_empty(&td->cancelled_td_list))
  1246. list_del_init(&td->cancelled_td_list);
  1247. }
  1248. usb_hcd_unlink_urb_from_ep(hcd, urb);
  1249. spin_unlock_irqrestore(&xhci->lock, flags);
  1250. usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
  1251. xhci_urb_free_priv(xhci, urb_priv);
  1252. return ret;
  1253. }
  1254. if ((xhci->xhc_state & XHCI_STATE_DYING) ||
  1255. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  1256. xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
  1257. "non-responsive xHCI host.\n",
  1258. urb->ep->desc.bEndpointAddress, urb);
  1259. /* Let the stop endpoint command watchdog timer (which set this
  1260. * state) finish cleaning up the endpoint TD lists. We must
  1261. * have caught it in the middle of dropping a lock and giving
  1262. * back an URB.
  1263. */
  1264. goto done;
  1265. }
  1266. ep_index = xhci_get_endpoint_index(&urb->ep->desc);
  1267. ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
  1268. ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
  1269. if (!ep_ring) {
  1270. ret = -EINVAL;
  1271. goto done;
  1272. }
  1273. urb_priv = urb->hcpriv;
  1274. i = urb_priv->td_cnt;
  1275. if (i < urb_priv->length)
  1276. xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
  1277. "starting at offset 0x%llx\n",
  1278. urb, urb->dev->devpath,
  1279. urb->ep->desc.bEndpointAddress,
  1280. (unsigned long long) xhci_trb_virt_to_dma(
  1281. urb_priv->td[i]->start_seg,
  1282. urb_priv->td[i]->first_trb));
  1283. for (; i < urb_priv->length; i++) {
  1284. td = urb_priv->td[i];
  1285. list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
  1286. }
  1287. /* Queue a stop endpoint command, but only if this is
  1288. * the first cancellation to be handled.
  1289. */
  1290. if (!(ep->ep_state & EP_HALT_PENDING)) {
  1291. ep->ep_state |= EP_HALT_PENDING;
  1292. ep->stop_cmds_pending++;
  1293. ep->stop_cmd_timer.expires = jiffies +
  1294. XHCI_STOP_EP_CMD_TIMEOUT * HZ;
  1295. add_timer(&ep->stop_cmd_timer);
  1296. xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
  1297. xhci_ring_cmd_db(xhci);
  1298. }
  1299. done:
  1300. spin_unlock_irqrestore(&xhci->lock, flags);
  1301. return ret;
  1302. }
  1303. /* Drop an endpoint from a new bandwidth configuration for this device.
  1304. * Only one call to this function is allowed per endpoint before
  1305. * check_bandwidth() or reset_bandwidth() must be called.
  1306. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1307. * add the endpoint to the schedule with possibly new parameters denoted by a
  1308. * different endpoint descriptor in usb_host_endpoint.
  1309. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1310. * not allowed.
  1311. *
  1312. * The USB core will not allow URBs to be queued to an endpoint that is being
  1313. * disabled, so there's no need for mutual exclusion to protect
  1314. * the xhci->devs[slot_id] structure.
  1315. */
  1316. int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1317. struct usb_host_endpoint *ep)
  1318. {
  1319. struct xhci_hcd *xhci;
  1320. struct xhci_container_ctx *in_ctx, *out_ctx;
  1321. struct xhci_input_control_ctx *ctrl_ctx;
  1322. struct xhci_slot_ctx *slot_ctx;
  1323. unsigned int last_ctx;
  1324. unsigned int ep_index;
  1325. struct xhci_ep_ctx *ep_ctx;
  1326. u32 drop_flag;
  1327. u32 new_add_flags, new_drop_flags, new_slot_info;
  1328. int ret;
  1329. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1330. if (ret <= 0)
  1331. return ret;
  1332. xhci = hcd_to_xhci(hcd);
  1333. if (xhci->xhc_state & XHCI_STATE_DYING)
  1334. return -ENODEV;
  1335. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  1336. drop_flag = xhci_get_endpoint_flag(&ep->desc);
  1337. if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
  1338. xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
  1339. __func__, drop_flag);
  1340. return 0;
  1341. }
  1342. in_ctx = xhci->devs[udev->slot_id]->in_ctx;
  1343. out_ctx = xhci->devs[udev->slot_id]->out_ctx;
  1344. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1345. if (!ctrl_ctx) {
  1346. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1347. __func__);
  1348. return 0;
  1349. }
  1350. ep_index = xhci_get_endpoint_index(&ep->desc);
  1351. ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1352. /* If the HC already knows the endpoint is disabled,
  1353. * or the HCD has noted it is disabled, ignore this request
  1354. */
  1355. if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
  1356. cpu_to_le32(EP_STATE_DISABLED)) ||
  1357. le32_to_cpu(ctrl_ctx->drop_flags) &
  1358. xhci_get_endpoint_flag(&ep->desc)) {
  1359. xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
  1360. __func__, ep);
  1361. return 0;
  1362. }
  1363. ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
  1364. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1365. ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
  1366. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1367. last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
  1368. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1369. /* Update the last valid endpoint context, if we deleted the last one */
  1370. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
  1371. LAST_CTX(last_ctx)) {
  1372. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1373. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1374. }
  1375. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1376. xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
  1377. xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1378. (unsigned int) ep->desc.bEndpointAddress,
  1379. udev->slot_id,
  1380. (unsigned int) new_drop_flags,
  1381. (unsigned int) new_add_flags,
  1382. (unsigned int) new_slot_info);
  1383. return 0;
  1384. }
  1385. /* Add an endpoint to a new possible bandwidth configuration for this device.
  1386. * Only one call to this function is allowed per endpoint before
  1387. * check_bandwidth() or reset_bandwidth() must be called.
  1388. * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
  1389. * add the endpoint to the schedule with possibly new parameters denoted by a
  1390. * different endpoint descriptor in usb_host_endpoint.
  1391. * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
  1392. * not allowed.
  1393. *
  1394. * The USB core will not allow URBs to be queued to an endpoint until the
  1395. * configuration or alt setting is installed in the device, so there's no need
  1396. * for mutual exclusion to protect the xhci->devs[slot_id] structure.
  1397. */
  1398. int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
  1399. struct usb_host_endpoint *ep)
  1400. {
  1401. struct xhci_hcd *xhci;
  1402. struct xhci_container_ctx *in_ctx, *out_ctx;
  1403. unsigned int ep_index;
  1404. struct xhci_slot_ctx *slot_ctx;
  1405. struct xhci_input_control_ctx *ctrl_ctx;
  1406. u32 added_ctxs;
  1407. unsigned int last_ctx;
  1408. u32 new_add_flags, new_drop_flags, new_slot_info;
  1409. struct xhci_virt_device *virt_dev;
  1410. int ret = 0;
  1411. ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
  1412. if (ret <= 0) {
  1413. /* So we won't queue a reset ep command for a root hub */
  1414. ep->hcpriv = NULL;
  1415. return ret;
  1416. }
  1417. xhci = hcd_to_xhci(hcd);
  1418. if (xhci->xhc_state & XHCI_STATE_DYING)
  1419. return -ENODEV;
  1420. added_ctxs = xhci_get_endpoint_flag(&ep->desc);
  1421. last_ctx = xhci_last_valid_endpoint(added_ctxs);
  1422. if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
  1423. /* FIXME when we have to issue an evaluate endpoint command to
  1424. * deal with ep0 max packet size changing once we get the
  1425. * descriptors
  1426. */
  1427. xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
  1428. __func__, added_ctxs);
  1429. return 0;
  1430. }
  1431. virt_dev = xhci->devs[udev->slot_id];
  1432. in_ctx = virt_dev->in_ctx;
  1433. out_ctx = virt_dev->out_ctx;
  1434. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  1435. if (!ctrl_ctx) {
  1436. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1437. __func__);
  1438. return 0;
  1439. }
  1440. ep_index = xhci_get_endpoint_index(&ep->desc);
  1441. /* If this endpoint is already in use, and the upper layers are trying
  1442. * to add it again without dropping it, reject the addition.
  1443. */
  1444. if (virt_dev->eps[ep_index].ring &&
  1445. !(le32_to_cpu(ctrl_ctx->drop_flags) &
  1446. xhci_get_endpoint_flag(&ep->desc))) {
  1447. xhci_warn(xhci, "Trying to add endpoint 0x%x "
  1448. "without dropping it.\n",
  1449. (unsigned int) ep->desc.bEndpointAddress);
  1450. return -EINVAL;
  1451. }
  1452. /* If the HCD has already noted the endpoint is enabled,
  1453. * ignore this request.
  1454. */
  1455. if (le32_to_cpu(ctrl_ctx->add_flags) &
  1456. xhci_get_endpoint_flag(&ep->desc)) {
  1457. xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
  1458. __func__, ep);
  1459. return 0;
  1460. }
  1461. /*
  1462. * Configuration and alternate setting changes must be done in
  1463. * process context, not interrupt context (or so documenation
  1464. * for usb_set_interface() and usb_set_configuration() claim).
  1465. */
  1466. if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
  1467. dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
  1468. __func__, ep->desc.bEndpointAddress);
  1469. return -ENOMEM;
  1470. }
  1471. ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
  1472. new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
  1473. /* If xhci_endpoint_disable() was called for this endpoint, but the
  1474. * xHC hasn't been notified yet through the check_bandwidth() call,
  1475. * this re-adds a new state for the endpoint from the new endpoint
  1476. * descriptors. We must drop and re-add this endpoint, so we leave the
  1477. * drop flags alone.
  1478. */
  1479. new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
  1480. slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1481. /* Update the last valid endpoint context, if we just added one past */
  1482. if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
  1483. LAST_CTX(last_ctx)) {
  1484. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1485. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
  1486. }
  1487. new_slot_info = le32_to_cpu(slot_ctx->dev_info);
  1488. /* Store the usb_device pointer for later use */
  1489. ep->hcpriv = udev;
  1490. xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
  1491. (unsigned int) ep->desc.bEndpointAddress,
  1492. udev->slot_id,
  1493. (unsigned int) new_drop_flags,
  1494. (unsigned int) new_add_flags,
  1495. (unsigned int) new_slot_info);
  1496. return 0;
  1497. }
  1498. static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
  1499. {
  1500. struct xhci_input_control_ctx *ctrl_ctx;
  1501. struct xhci_ep_ctx *ep_ctx;
  1502. struct xhci_slot_ctx *slot_ctx;
  1503. int i;
  1504. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  1505. if (!ctrl_ctx) {
  1506. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  1507. __func__);
  1508. return;
  1509. }
  1510. /* When a device's add flag and drop flag are zero, any subsequent
  1511. * configure endpoint command will leave that endpoint's state
  1512. * untouched. Make sure we don't leave any old state in the input
  1513. * endpoint contexts.
  1514. */
  1515. ctrl_ctx->drop_flags = 0;
  1516. ctrl_ctx->add_flags = 0;
  1517. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  1518. slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
  1519. /* Endpoint 0 is always valid */
  1520. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
  1521. for (i = 1; i < 31; ++i) {
  1522. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
  1523. ep_ctx->ep_info = 0;
  1524. ep_ctx->ep_info2 = 0;
  1525. ep_ctx->deq = 0;
  1526. ep_ctx->tx_info = 0;
  1527. }
  1528. }
  1529. static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
  1530. struct usb_device *udev, u32 *cmd_status)
  1531. {
  1532. int ret;
  1533. switch (*cmd_status) {
  1534. case COMP_ENOMEM:
  1535. dev_warn(&udev->dev, "Not enough host controller resources "
  1536. "for new device state.\n");
  1537. ret = -ENOMEM;
  1538. /* FIXME: can we allocate more resources for the HC? */
  1539. break;
  1540. case COMP_BW_ERR:
  1541. case COMP_2ND_BW_ERR:
  1542. dev_warn(&udev->dev, "Not enough bandwidth "
  1543. "for new device state.\n");
  1544. ret = -ENOSPC;
  1545. /* FIXME: can we go back to the old state? */
  1546. break;
  1547. case COMP_TRB_ERR:
  1548. /* the HCD set up something wrong */
  1549. dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
  1550. "add flag = 1, "
  1551. "and endpoint is not disabled.\n");
  1552. ret = -EINVAL;
  1553. break;
  1554. case COMP_DEV_ERR:
  1555. dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
  1556. "configure command.\n");
  1557. ret = -ENODEV;
  1558. break;
  1559. case COMP_SUCCESS:
  1560. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1561. "Successful Endpoint Configure command");
  1562. ret = 0;
  1563. break;
  1564. default:
  1565. xhci_err(xhci, "ERROR: unexpected command completion "
  1566. "code 0x%x.\n", *cmd_status);
  1567. ret = -EINVAL;
  1568. break;
  1569. }
  1570. return ret;
  1571. }
  1572. static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
  1573. struct usb_device *udev, u32 *cmd_status)
  1574. {
  1575. int ret;
  1576. struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
  1577. switch (*cmd_status) {
  1578. case COMP_EINVAL:
  1579. dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
  1580. "context command.\n");
  1581. ret = -EINVAL;
  1582. break;
  1583. case COMP_EBADSLT:
  1584. dev_warn(&udev->dev, "WARN: slot not enabled for"
  1585. "evaluate context command.\n");
  1586. ret = -EINVAL;
  1587. break;
  1588. case COMP_CTX_STATE:
  1589. dev_warn(&udev->dev, "WARN: invalid context state for "
  1590. "evaluate context command.\n");
  1591. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
  1592. ret = -EINVAL;
  1593. break;
  1594. case COMP_DEV_ERR:
  1595. dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
  1596. "context command.\n");
  1597. ret = -ENODEV;
  1598. break;
  1599. case COMP_MEL_ERR:
  1600. /* Max Exit Latency too large error */
  1601. dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
  1602. ret = -EINVAL;
  1603. break;
  1604. case COMP_SUCCESS:
  1605. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  1606. "Successful evaluate context command");
  1607. ret = 0;
  1608. break;
  1609. default:
  1610. xhci_err(xhci, "ERROR: unexpected command completion "
  1611. "code 0x%x.\n", *cmd_status);
  1612. ret = -EINVAL;
  1613. break;
  1614. }
  1615. return ret;
  1616. }
  1617. static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
  1618. struct xhci_input_control_ctx *ctrl_ctx)
  1619. {
  1620. u32 valid_add_flags;
  1621. u32 valid_drop_flags;
  1622. /* Ignore the slot flag (bit 0), and the default control endpoint flag
  1623. * (bit 1). The default control endpoint is added during the Address
  1624. * Device command and is never removed until the slot is disabled.
  1625. */
  1626. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1627. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1628. /* Use hweight32 to count the number of ones in the add flags, or
  1629. * number of endpoints added. Don't count endpoints that are changed
  1630. * (both added and dropped).
  1631. */
  1632. return hweight32(valid_add_flags) -
  1633. hweight32(valid_add_flags & valid_drop_flags);
  1634. }
  1635. static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
  1636. struct xhci_input_control_ctx *ctrl_ctx)
  1637. {
  1638. u32 valid_add_flags;
  1639. u32 valid_drop_flags;
  1640. valid_add_flags = ctrl_ctx->add_flags >> 2;
  1641. valid_drop_flags = ctrl_ctx->drop_flags >> 2;
  1642. return hweight32(valid_drop_flags) -
  1643. hweight32(valid_add_flags & valid_drop_flags);
  1644. }
  1645. /*
  1646. * We need to reserve the new number of endpoints before the configure endpoint
  1647. * command completes. We can't subtract the dropped endpoints from the number
  1648. * of active endpoints until the command completes because we can oversubscribe
  1649. * the host in this case:
  1650. *
  1651. * - the first configure endpoint command drops more endpoints than it adds
  1652. * - a second configure endpoint command that adds more endpoints is queued
  1653. * - the first configure endpoint command fails, so the config is unchanged
  1654. * - the second command may succeed, even though there isn't enough resources
  1655. *
  1656. * Must be called with xhci->lock held.
  1657. */
  1658. static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
  1659. struct xhci_input_control_ctx *ctrl_ctx)
  1660. {
  1661. u32 added_eps;
  1662. added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
  1663. if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
  1664. xhci_dbg(xhci, "Not enough ep ctxs: "
  1665. "%u active, need to add %u, limit is %u.\n",
  1666. xhci->num_active_eps, added_eps,
  1667. xhci->limit_active_eps);
  1668. return -ENOMEM;
  1669. }
  1670. xhci->num_active_eps += added_eps;
  1671. xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
  1672. xhci->num_active_eps);
  1673. return 0;
  1674. }
  1675. /*
  1676. * The configure endpoint was failed by the xHC for some other reason, so we
  1677. * need to revert the resources that failed configuration would have used.
  1678. *
  1679. * Must be called with xhci->lock held.
  1680. */
  1681. static void xhci_free_host_resources(struct xhci_hcd *xhci,
  1682. struct xhci_input_control_ctx *ctrl_ctx)
  1683. {
  1684. u32 num_failed_eps;
  1685. num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
  1686. xhci->num_active_eps -= num_failed_eps;
  1687. xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
  1688. num_failed_eps,
  1689. xhci->num_active_eps);
  1690. }
  1691. /*
  1692. * Now that the command has completed, clean up the active endpoint count by
  1693. * subtracting out the endpoints that were dropped (but not changed).
  1694. *
  1695. * Must be called with xhci->lock held.
  1696. */
  1697. static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
  1698. struct xhci_input_control_ctx *ctrl_ctx)
  1699. {
  1700. u32 num_dropped_eps;
  1701. num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
  1702. xhci->num_active_eps -= num_dropped_eps;
  1703. if (num_dropped_eps)
  1704. xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
  1705. num_dropped_eps,
  1706. xhci->num_active_eps);
  1707. }
  1708. static unsigned int xhci_get_block_size(struct usb_device *udev)
  1709. {
  1710. switch (udev->speed) {
  1711. case USB_SPEED_LOW:
  1712. case USB_SPEED_FULL:
  1713. return FS_BLOCK;
  1714. case USB_SPEED_HIGH:
  1715. return HS_BLOCK;
  1716. case USB_SPEED_SUPER:
  1717. return SS_BLOCK;
  1718. case USB_SPEED_UNKNOWN:
  1719. case USB_SPEED_WIRELESS:
  1720. default:
  1721. /* Should never happen */
  1722. return 1;
  1723. }
  1724. }
  1725. static unsigned int
  1726. xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
  1727. {
  1728. if (interval_bw->overhead[LS_OVERHEAD_TYPE])
  1729. return LS_OVERHEAD;
  1730. if (interval_bw->overhead[FS_OVERHEAD_TYPE])
  1731. return FS_OVERHEAD;
  1732. return HS_OVERHEAD;
  1733. }
  1734. /* If we are changing a LS/FS device under a HS hub,
  1735. * make sure (if we are activating a new TT) that the HS bus has enough
  1736. * bandwidth for this new TT.
  1737. */
  1738. static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
  1739. struct xhci_virt_device *virt_dev,
  1740. int old_active_eps)
  1741. {
  1742. struct xhci_interval_bw_table *bw_table;
  1743. struct xhci_tt_bw_info *tt_info;
  1744. /* Find the bandwidth table for the root port this TT is attached to. */
  1745. bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
  1746. tt_info = virt_dev->tt_info;
  1747. /* If this TT already had active endpoints, the bandwidth for this TT
  1748. * has already been added. Removing all periodic endpoints (and thus
  1749. * making the TT enactive) will only decrease the bandwidth used.
  1750. */
  1751. if (old_active_eps)
  1752. return 0;
  1753. if (old_active_eps == 0 && tt_info->active_eps != 0) {
  1754. if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
  1755. return -ENOMEM;
  1756. return 0;
  1757. }
  1758. /* Not sure why we would have no new active endpoints...
  1759. *
  1760. * Maybe because of an Evaluate Context change for a hub update or a
  1761. * control endpoint 0 max packet size change?
  1762. * FIXME: skip the bandwidth calculation in that case.
  1763. */
  1764. return 0;
  1765. }
  1766. static int xhci_check_ss_bw(struct xhci_hcd *xhci,
  1767. struct xhci_virt_device *virt_dev)
  1768. {
  1769. unsigned int bw_reserved;
  1770. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
  1771. if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
  1772. return -ENOMEM;
  1773. bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
  1774. if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
  1775. return -ENOMEM;
  1776. return 0;
  1777. }
  1778. /*
  1779. * This algorithm is a very conservative estimate of the worst-case scheduling
  1780. * scenario for any one interval. The hardware dynamically schedules the
  1781. * packets, so we can't tell which microframe could be the limiting factor in
  1782. * the bandwidth scheduling. This only takes into account periodic endpoints.
  1783. *
  1784. * Obviously, we can't solve an NP complete problem to find the minimum worst
  1785. * case scenario. Instead, we come up with an estimate that is no less than
  1786. * the worst case bandwidth used for any one microframe, but may be an
  1787. * over-estimate.
  1788. *
  1789. * We walk the requirements for each endpoint by interval, starting with the
  1790. * smallest interval, and place packets in the schedule where there is only one
  1791. * possible way to schedule packets for that interval. In order to simplify
  1792. * this algorithm, we record the largest max packet size for each interval, and
  1793. * assume all packets will be that size.
  1794. *
  1795. * For interval 0, we obviously must schedule all packets for each interval.
  1796. * The bandwidth for interval 0 is just the amount of data to be transmitted
  1797. * (the sum of all max ESIT payload sizes, plus any overhead per packet times
  1798. * the number of packets).
  1799. *
  1800. * For interval 1, we have two possible microframes to schedule those packets
  1801. * in. For this algorithm, if we can schedule the same number of packets for
  1802. * each possible scheduling opportunity (each microframe), we will do so. The
  1803. * remaining number of packets will be saved to be transmitted in the gaps in
  1804. * the next interval's scheduling sequence.
  1805. *
  1806. * As we move those remaining packets to be scheduled with interval 2 packets,
  1807. * we have to double the number of remaining packets to transmit. This is
  1808. * because the intervals are actually powers of 2, and we would be transmitting
  1809. * the previous interval's packets twice in this interval. We also have to be
  1810. * sure that when we look at the largest max packet size for this interval, we
  1811. * also look at the largest max packet size for the remaining packets and take
  1812. * the greater of the two.
  1813. *
  1814. * The algorithm continues to evenly distribute packets in each scheduling
  1815. * opportunity, and push the remaining packets out, until we get to the last
  1816. * interval. Then those packets and their associated overhead are just added
  1817. * to the bandwidth used.
  1818. */
  1819. static int xhci_check_bw_table(struct xhci_hcd *xhci,
  1820. struct xhci_virt_device *virt_dev,
  1821. int old_active_eps)
  1822. {
  1823. unsigned int bw_reserved;
  1824. unsigned int max_bandwidth;
  1825. unsigned int bw_used;
  1826. unsigned int block_size;
  1827. struct xhci_interval_bw_table *bw_table;
  1828. unsigned int packet_size = 0;
  1829. unsigned int overhead = 0;
  1830. unsigned int packets_transmitted = 0;
  1831. unsigned int packets_remaining = 0;
  1832. unsigned int i;
  1833. if (virt_dev->udev->speed == USB_SPEED_SUPER)
  1834. return xhci_check_ss_bw(xhci, virt_dev);
  1835. if (virt_dev->udev->speed == USB_SPEED_HIGH) {
  1836. max_bandwidth = HS_BW_LIMIT;
  1837. /* Convert percent of bus BW reserved to blocks reserved */
  1838. bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
  1839. } else {
  1840. max_bandwidth = FS_BW_LIMIT;
  1841. bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
  1842. }
  1843. bw_table = virt_dev->bw_table;
  1844. /* We need to translate the max packet size and max ESIT payloads into
  1845. * the units the hardware uses.
  1846. */
  1847. block_size = xhci_get_block_size(virt_dev->udev);
  1848. /* If we are manipulating a LS/FS device under a HS hub, double check
  1849. * that the HS bus has enough bandwidth if we are activing a new TT.
  1850. */
  1851. if (virt_dev->tt_info) {
  1852. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1853. virt_dev->real_port);
  1854. if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
  1855. xhci_warn(xhci, "Not enough bandwidth on HS bus for "
  1856. "newly activated TT.\n");
  1857. return -ENOMEM;
  1858. }
  1859. xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
  1860. virt_dev->tt_info->slot_id,
  1861. virt_dev->tt_info->ttport);
  1862. } else {
  1863. xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
  1864. virt_dev->real_port);
  1865. }
  1866. /* Add in how much bandwidth will be used for interval zero, or the
  1867. * rounded max ESIT payload + number of packets * largest overhead.
  1868. */
  1869. bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
  1870. bw_table->interval_bw[0].num_packets *
  1871. xhci_get_largest_overhead(&bw_table->interval_bw[0]);
  1872. for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
  1873. unsigned int bw_added;
  1874. unsigned int largest_mps;
  1875. unsigned int interval_overhead;
  1876. /*
  1877. * How many packets could we transmit in this interval?
  1878. * If packets didn't fit in the previous interval, we will need
  1879. * to transmit that many packets twice within this interval.
  1880. */
  1881. packets_remaining = 2 * packets_remaining +
  1882. bw_table->interval_bw[i].num_packets;
  1883. /* Find the largest max packet size of this or the previous
  1884. * interval.
  1885. */
  1886. if (list_empty(&bw_table->interval_bw[i].endpoints))
  1887. largest_mps = 0;
  1888. else {
  1889. struct xhci_virt_ep *virt_ep;
  1890. struct list_head *ep_entry;
  1891. ep_entry = bw_table->interval_bw[i].endpoints.next;
  1892. virt_ep = list_entry(ep_entry,
  1893. struct xhci_virt_ep, bw_endpoint_list);
  1894. /* Convert to blocks, rounding up */
  1895. largest_mps = DIV_ROUND_UP(
  1896. virt_ep->bw_info.max_packet_size,
  1897. block_size);
  1898. }
  1899. if (largest_mps > packet_size)
  1900. packet_size = largest_mps;
  1901. /* Use the larger overhead of this or the previous interval. */
  1902. interval_overhead = xhci_get_largest_overhead(
  1903. &bw_table->interval_bw[i]);
  1904. if (interval_overhead > overhead)
  1905. overhead = interval_overhead;
  1906. /* How many packets can we evenly distribute across
  1907. * (1 << (i + 1)) possible scheduling opportunities?
  1908. */
  1909. packets_transmitted = packets_remaining >> (i + 1);
  1910. /* Add in the bandwidth used for those scheduled packets */
  1911. bw_added = packets_transmitted * (overhead + packet_size);
  1912. /* How many packets do we have remaining to transmit? */
  1913. packets_remaining = packets_remaining % (1 << (i + 1));
  1914. /* What largest max packet size should those packets have? */
  1915. /* If we've transmitted all packets, don't carry over the
  1916. * largest packet size.
  1917. */
  1918. if (packets_remaining == 0) {
  1919. packet_size = 0;
  1920. overhead = 0;
  1921. } else if (packets_transmitted > 0) {
  1922. /* Otherwise if we do have remaining packets, and we've
  1923. * scheduled some packets in this interval, take the
  1924. * largest max packet size from endpoints with this
  1925. * interval.
  1926. */
  1927. packet_size = largest_mps;
  1928. overhead = interval_overhead;
  1929. }
  1930. /* Otherwise carry over packet_size and overhead from the last
  1931. * time we had a remainder.
  1932. */
  1933. bw_used += bw_added;
  1934. if (bw_used > max_bandwidth) {
  1935. xhci_warn(xhci, "Not enough bandwidth. "
  1936. "Proposed: %u, Max: %u\n",
  1937. bw_used, max_bandwidth);
  1938. return -ENOMEM;
  1939. }
  1940. }
  1941. /*
  1942. * Ok, we know we have some packets left over after even-handedly
  1943. * scheduling interval 15. We don't know which microframes they will
  1944. * fit into, so we over-schedule and say they will be scheduled every
  1945. * microframe.
  1946. */
  1947. if (packets_remaining > 0)
  1948. bw_used += overhead + packet_size;
  1949. if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
  1950. unsigned int port_index = virt_dev->real_port - 1;
  1951. /* OK, we're manipulating a HS device attached to a
  1952. * root port bandwidth domain. Include the number of active TTs
  1953. * in the bandwidth used.
  1954. */
  1955. bw_used += TT_HS_OVERHEAD *
  1956. xhci->rh_bw[port_index].num_active_tts;
  1957. }
  1958. xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
  1959. "Available: %u " "percent\n",
  1960. bw_used, max_bandwidth, bw_reserved,
  1961. (max_bandwidth - bw_used - bw_reserved) * 100 /
  1962. max_bandwidth);
  1963. bw_used += bw_reserved;
  1964. if (bw_used > max_bandwidth) {
  1965. xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
  1966. bw_used, max_bandwidth);
  1967. return -ENOMEM;
  1968. }
  1969. bw_table->bw_used = bw_used;
  1970. return 0;
  1971. }
  1972. static bool xhci_is_async_ep(unsigned int ep_type)
  1973. {
  1974. return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1975. ep_type != ISOC_IN_EP &&
  1976. ep_type != INT_IN_EP);
  1977. }
  1978. static bool xhci_is_sync_in_ep(unsigned int ep_type)
  1979. {
  1980. return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
  1981. }
  1982. static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
  1983. {
  1984. unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
  1985. if (ep_bw->ep_interval == 0)
  1986. return SS_OVERHEAD_BURST +
  1987. (ep_bw->mult * ep_bw->num_packets *
  1988. (SS_OVERHEAD + mps));
  1989. return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
  1990. (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
  1991. 1 << ep_bw->ep_interval);
  1992. }
  1993. void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
  1994. struct xhci_bw_info *ep_bw,
  1995. struct xhci_interval_bw_table *bw_table,
  1996. struct usb_device *udev,
  1997. struct xhci_virt_ep *virt_ep,
  1998. struct xhci_tt_bw_info *tt_info)
  1999. {
  2000. struct xhci_interval_bw *interval_bw;
  2001. int normalized_interval;
  2002. if (xhci_is_async_ep(ep_bw->type))
  2003. return;
  2004. if (udev->speed == USB_SPEED_SUPER) {
  2005. if (xhci_is_sync_in_ep(ep_bw->type))
  2006. xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
  2007. xhci_get_ss_bw_consumed(ep_bw);
  2008. else
  2009. xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
  2010. xhci_get_ss_bw_consumed(ep_bw);
  2011. return;
  2012. }
  2013. /* SuperSpeed endpoints never get added to intervals in the table, so
  2014. * this check is only valid for HS/FS/LS devices.
  2015. */
  2016. if (list_empty(&virt_ep->bw_endpoint_list))
  2017. return;
  2018. /* For LS/FS devices, we need to translate the interval expressed in
  2019. * microframes to frames.
  2020. */
  2021. if (udev->speed == USB_SPEED_HIGH)
  2022. normalized_interval = ep_bw->ep_interval;
  2023. else
  2024. normalized_interval = ep_bw->ep_interval - 3;
  2025. if (normalized_interval == 0)
  2026. bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
  2027. interval_bw = &bw_table->interval_bw[normalized_interval];
  2028. interval_bw->num_packets -= ep_bw->num_packets;
  2029. switch (udev->speed) {
  2030. case USB_SPEED_LOW:
  2031. interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
  2032. break;
  2033. case USB_SPEED_FULL:
  2034. interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
  2035. break;
  2036. case USB_SPEED_HIGH:
  2037. interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
  2038. break;
  2039. case USB_SPEED_SUPER:
  2040. case USB_SPEED_UNKNOWN:
  2041. case USB_SPEED_WIRELESS:
  2042. /* Should never happen because only LS/FS/HS endpoints will get
  2043. * added to the endpoint list.
  2044. */
  2045. return;
  2046. }
  2047. if (tt_info)
  2048. tt_info->active_eps -= 1;
  2049. list_del_init(&virt_ep->bw_endpoint_list);
  2050. }
  2051. static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
  2052. struct xhci_bw_info *ep_bw,
  2053. struct xhci_interval_bw_table *bw_table,
  2054. struct usb_device *udev,
  2055. struct xhci_virt_ep *virt_ep,
  2056. struct xhci_tt_bw_info *tt_info)
  2057. {
  2058. struct xhci_interval_bw *interval_bw;
  2059. struct xhci_virt_ep *smaller_ep;
  2060. int normalized_interval;
  2061. if (xhci_is_async_ep(ep_bw->type))
  2062. return;
  2063. if (udev->speed == USB_SPEED_SUPER) {
  2064. if (xhci_is_sync_in_ep(ep_bw->type))
  2065. xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
  2066. xhci_get_ss_bw_consumed(ep_bw);
  2067. else
  2068. xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
  2069. xhci_get_ss_bw_consumed(ep_bw);
  2070. return;
  2071. }
  2072. /* For LS/FS devices, we need to translate the interval expressed in
  2073. * microframes to frames.
  2074. */
  2075. if (udev->speed == USB_SPEED_HIGH)
  2076. normalized_interval = ep_bw->ep_interval;
  2077. else
  2078. normalized_interval = ep_bw->ep_interval - 3;
  2079. if (normalized_interval == 0)
  2080. bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
  2081. interval_bw = &bw_table->interval_bw[normalized_interval];
  2082. interval_bw->num_packets += ep_bw->num_packets;
  2083. switch (udev->speed) {
  2084. case USB_SPEED_LOW:
  2085. interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
  2086. break;
  2087. case USB_SPEED_FULL:
  2088. interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
  2089. break;
  2090. case USB_SPEED_HIGH:
  2091. interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
  2092. break;
  2093. case USB_SPEED_SUPER:
  2094. case USB_SPEED_UNKNOWN:
  2095. case USB_SPEED_WIRELESS:
  2096. /* Should never happen because only LS/FS/HS endpoints will get
  2097. * added to the endpoint list.
  2098. */
  2099. return;
  2100. }
  2101. if (tt_info)
  2102. tt_info->active_eps += 1;
  2103. /* Insert the endpoint into the list, largest max packet size first. */
  2104. list_for_each_entry(smaller_ep, &interval_bw->endpoints,
  2105. bw_endpoint_list) {
  2106. if (ep_bw->max_packet_size >=
  2107. smaller_ep->bw_info.max_packet_size) {
  2108. /* Add the new ep before the smaller endpoint */
  2109. list_add_tail(&virt_ep->bw_endpoint_list,
  2110. &smaller_ep->bw_endpoint_list);
  2111. return;
  2112. }
  2113. }
  2114. /* Add the new endpoint at the end of the list. */
  2115. list_add_tail(&virt_ep->bw_endpoint_list,
  2116. &interval_bw->endpoints);
  2117. }
  2118. void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
  2119. struct xhci_virt_device *virt_dev,
  2120. int old_active_eps)
  2121. {
  2122. struct xhci_root_port_bw_info *rh_bw_info;
  2123. if (!virt_dev->tt_info)
  2124. return;
  2125. rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
  2126. if (old_active_eps == 0 &&
  2127. virt_dev->tt_info->active_eps != 0) {
  2128. rh_bw_info->num_active_tts += 1;
  2129. rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
  2130. } else if (old_active_eps != 0 &&
  2131. virt_dev->tt_info->active_eps == 0) {
  2132. rh_bw_info->num_active_tts -= 1;
  2133. rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
  2134. }
  2135. }
  2136. static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
  2137. struct xhci_virt_device *virt_dev,
  2138. struct xhci_container_ctx *in_ctx)
  2139. {
  2140. struct xhci_bw_info ep_bw_info[31];
  2141. int i;
  2142. struct xhci_input_control_ctx *ctrl_ctx;
  2143. int old_active_eps = 0;
  2144. if (virt_dev->tt_info)
  2145. old_active_eps = virt_dev->tt_info->active_eps;
  2146. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2147. if (!ctrl_ctx) {
  2148. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2149. __func__);
  2150. return -ENOMEM;
  2151. }
  2152. for (i = 0; i < 31; i++) {
  2153. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2154. continue;
  2155. /* Make a copy of the BW info in case we need to revert this */
  2156. memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
  2157. sizeof(ep_bw_info[i]));
  2158. /* Drop the endpoint from the interval table if the endpoint is
  2159. * being dropped or changed.
  2160. */
  2161. if (EP_IS_DROPPED(ctrl_ctx, i))
  2162. xhci_drop_ep_from_interval_table(xhci,
  2163. &virt_dev->eps[i].bw_info,
  2164. virt_dev->bw_table,
  2165. virt_dev->udev,
  2166. &virt_dev->eps[i],
  2167. virt_dev->tt_info);
  2168. }
  2169. /* Overwrite the information stored in the endpoints' bw_info */
  2170. xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
  2171. for (i = 0; i < 31; i++) {
  2172. /* Add any changed or added endpoints to the interval table */
  2173. if (EP_IS_ADDED(ctrl_ctx, i))
  2174. xhci_add_ep_to_interval_table(xhci,
  2175. &virt_dev->eps[i].bw_info,
  2176. virt_dev->bw_table,
  2177. virt_dev->udev,
  2178. &virt_dev->eps[i],
  2179. virt_dev->tt_info);
  2180. }
  2181. if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
  2182. /* Ok, this fits in the bandwidth we have.
  2183. * Update the number of active TTs.
  2184. */
  2185. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  2186. return 0;
  2187. }
  2188. /* We don't have enough bandwidth for this, revert the stored info. */
  2189. for (i = 0; i < 31; i++) {
  2190. if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
  2191. continue;
  2192. /* Drop the new copies of any added or changed endpoints from
  2193. * the interval table.
  2194. */
  2195. if (EP_IS_ADDED(ctrl_ctx, i)) {
  2196. xhci_drop_ep_from_interval_table(xhci,
  2197. &virt_dev->eps[i].bw_info,
  2198. virt_dev->bw_table,
  2199. virt_dev->udev,
  2200. &virt_dev->eps[i],
  2201. virt_dev->tt_info);
  2202. }
  2203. /* Revert the endpoint back to its old information */
  2204. memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
  2205. sizeof(ep_bw_info[i]));
  2206. /* Add any changed or dropped endpoints back into the table */
  2207. if (EP_IS_DROPPED(ctrl_ctx, i))
  2208. xhci_add_ep_to_interval_table(xhci,
  2209. &virt_dev->eps[i].bw_info,
  2210. virt_dev->bw_table,
  2211. virt_dev->udev,
  2212. &virt_dev->eps[i],
  2213. virt_dev->tt_info);
  2214. }
  2215. return -ENOMEM;
  2216. }
  2217. /* Issue a configure endpoint command or evaluate context command
  2218. * and wait for it to finish.
  2219. */
  2220. static int xhci_configure_endpoint(struct xhci_hcd *xhci,
  2221. struct usb_device *udev,
  2222. struct xhci_command *command,
  2223. bool ctx_change, bool must_succeed)
  2224. {
  2225. int ret;
  2226. int timeleft;
  2227. unsigned long flags;
  2228. struct xhci_container_ctx *in_ctx;
  2229. struct xhci_input_control_ctx *ctrl_ctx;
  2230. struct completion *cmd_completion;
  2231. u32 *cmd_status;
  2232. struct xhci_virt_device *virt_dev;
  2233. union xhci_trb *cmd_trb;
  2234. spin_lock_irqsave(&xhci->lock, flags);
  2235. virt_dev = xhci->devs[udev->slot_id];
  2236. if (command)
  2237. in_ctx = command->in_ctx;
  2238. else
  2239. in_ctx = virt_dev->in_ctx;
  2240. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2241. if (!ctrl_ctx) {
  2242. spin_unlock_irqrestore(&xhci->lock, flags);
  2243. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2244. __func__);
  2245. return -ENOMEM;
  2246. }
  2247. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
  2248. xhci_reserve_host_resources(xhci, ctrl_ctx)) {
  2249. spin_unlock_irqrestore(&xhci->lock, flags);
  2250. xhci_warn(xhci, "Not enough host resources, "
  2251. "active endpoint contexts = %u\n",
  2252. xhci->num_active_eps);
  2253. return -ENOMEM;
  2254. }
  2255. if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
  2256. xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
  2257. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2258. xhci_free_host_resources(xhci, ctrl_ctx);
  2259. spin_unlock_irqrestore(&xhci->lock, flags);
  2260. xhci_warn(xhci, "Not enough bandwidth\n");
  2261. return -ENOMEM;
  2262. }
  2263. if (command) {
  2264. cmd_completion = command->completion;
  2265. cmd_status = &command->status;
  2266. command->command_trb = xhci->cmd_ring->enqueue;
  2267. /* Enqueue pointer can be left pointing to the link TRB,
  2268. * we must handle that
  2269. */
  2270. if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
  2271. command->command_trb =
  2272. xhci->cmd_ring->enq_seg->next->trbs;
  2273. list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
  2274. } else {
  2275. cmd_completion = &virt_dev->cmd_completion;
  2276. cmd_status = &virt_dev->cmd_status;
  2277. }
  2278. init_completion(cmd_completion);
  2279. cmd_trb = xhci->cmd_ring->dequeue;
  2280. if (!ctx_change)
  2281. ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
  2282. udev->slot_id, must_succeed);
  2283. else
  2284. ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
  2285. udev->slot_id, must_succeed);
  2286. if (ret < 0) {
  2287. if (command)
  2288. list_del(&command->cmd_list);
  2289. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
  2290. xhci_free_host_resources(xhci, ctrl_ctx);
  2291. spin_unlock_irqrestore(&xhci->lock, flags);
  2292. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  2293. "FIXME allocate a new ring segment");
  2294. return -ENOMEM;
  2295. }
  2296. xhci_ring_cmd_db(xhci);
  2297. spin_unlock_irqrestore(&xhci->lock, flags);
  2298. /* Wait for the configure endpoint command to complete */
  2299. timeleft = wait_for_completion_interruptible_timeout(
  2300. cmd_completion,
  2301. XHCI_CMD_DEFAULT_TIMEOUT);
  2302. if (timeleft <= 0) {
  2303. xhci_warn(xhci, "%s while waiting for %s command\n",
  2304. timeleft == 0 ? "Timeout" : "Signal",
  2305. ctx_change == 0 ?
  2306. "configure endpoint" :
  2307. "evaluate context");
  2308. /* cancel the configure endpoint command */
  2309. ret = xhci_cancel_cmd(xhci, command, cmd_trb);
  2310. if (ret < 0)
  2311. return ret;
  2312. return -ETIME;
  2313. }
  2314. if (!ctx_change)
  2315. ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
  2316. else
  2317. ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
  2318. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  2319. spin_lock_irqsave(&xhci->lock, flags);
  2320. /* If the command failed, remove the reserved resources.
  2321. * Otherwise, clean up the estimate to include dropped eps.
  2322. */
  2323. if (ret)
  2324. xhci_free_host_resources(xhci, ctrl_ctx);
  2325. else
  2326. xhci_finish_resource_reservation(xhci, ctrl_ctx);
  2327. spin_unlock_irqrestore(&xhci->lock, flags);
  2328. }
  2329. return ret;
  2330. }
  2331. /* Called after one or more calls to xhci_add_endpoint() or
  2332. * xhci_drop_endpoint(). If this call fails, the USB core is expected
  2333. * to call xhci_reset_bandwidth().
  2334. *
  2335. * Since we are in the middle of changing either configuration or
  2336. * installing a new alt setting, the USB core won't allow URBs to be
  2337. * enqueued for any endpoint on the old config or interface. Nothing
  2338. * else should be touching the xhci->devs[slot_id] structure, so we
  2339. * don't need to take the xhci->lock for manipulating that.
  2340. */
  2341. int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2342. {
  2343. int i;
  2344. int ret = 0;
  2345. struct xhci_hcd *xhci;
  2346. struct xhci_virt_device *virt_dev;
  2347. struct xhci_input_control_ctx *ctrl_ctx;
  2348. struct xhci_slot_ctx *slot_ctx;
  2349. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2350. if (ret <= 0)
  2351. return ret;
  2352. xhci = hcd_to_xhci(hcd);
  2353. if (xhci->xhc_state & XHCI_STATE_DYING)
  2354. return -ENODEV;
  2355. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2356. virt_dev = xhci->devs[udev->slot_id];
  2357. /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
  2358. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  2359. if (!ctrl_ctx) {
  2360. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2361. __func__);
  2362. return -ENOMEM;
  2363. }
  2364. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2365. ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
  2366. ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
  2367. /* Don't issue the command if there's no endpoints to update. */
  2368. if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
  2369. ctrl_ctx->drop_flags == 0)
  2370. return 0;
  2371. xhci_dbg(xhci, "New Input Control Context:\n");
  2372. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  2373. xhci_dbg_ctx(xhci, virt_dev->in_ctx,
  2374. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2375. ret = xhci_configure_endpoint(xhci, udev, NULL,
  2376. false, false);
  2377. if (ret) {
  2378. /* Callee should call reset_bandwidth() */
  2379. return ret;
  2380. }
  2381. xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
  2382. xhci_dbg_ctx(xhci, virt_dev->out_ctx,
  2383. LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
  2384. /* Free any rings that were dropped, but not changed. */
  2385. for (i = 1; i < 31; ++i) {
  2386. if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
  2387. !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
  2388. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2389. }
  2390. xhci_zero_in_ctx(xhci, virt_dev);
  2391. /*
  2392. * Install any rings for completely new endpoints or changed endpoints,
  2393. * and free or cache any old rings from changed endpoints.
  2394. */
  2395. for (i = 1; i < 31; ++i) {
  2396. if (!virt_dev->eps[i].new_ring)
  2397. continue;
  2398. /* Only cache or free the old ring if it exists.
  2399. * It may not if this is the first add of an endpoint.
  2400. */
  2401. if (virt_dev->eps[i].ring) {
  2402. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  2403. }
  2404. virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
  2405. virt_dev->eps[i].new_ring = NULL;
  2406. }
  2407. return ret;
  2408. }
  2409. void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
  2410. {
  2411. struct xhci_hcd *xhci;
  2412. struct xhci_virt_device *virt_dev;
  2413. int i, ret;
  2414. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  2415. if (ret <= 0)
  2416. return;
  2417. xhci = hcd_to_xhci(hcd);
  2418. xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
  2419. virt_dev = xhci->devs[udev->slot_id];
  2420. /* Free any rings allocated for added endpoints */
  2421. for (i = 0; i < 31; ++i) {
  2422. if (virt_dev->eps[i].new_ring) {
  2423. xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
  2424. virt_dev->eps[i].new_ring = NULL;
  2425. }
  2426. }
  2427. xhci_zero_in_ctx(xhci, virt_dev);
  2428. }
  2429. static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
  2430. struct xhci_container_ctx *in_ctx,
  2431. struct xhci_container_ctx *out_ctx,
  2432. struct xhci_input_control_ctx *ctrl_ctx,
  2433. u32 add_flags, u32 drop_flags)
  2434. {
  2435. ctrl_ctx->add_flags = cpu_to_le32(add_flags);
  2436. ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
  2437. xhci_slot_copy(xhci, in_ctx, out_ctx);
  2438. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  2439. xhci_dbg(xhci, "Input Context:\n");
  2440. xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
  2441. }
  2442. static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
  2443. unsigned int slot_id, unsigned int ep_index,
  2444. struct xhci_dequeue_state *deq_state)
  2445. {
  2446. struct xhci_input_control_ctx *ctrl_ctx;
  2447. struct xhci_container_ctx *in_ctx;
  2448. struct xhci_ep_ctx *ep_ctx;
  2449. u32 added_ctxs;
  2450. dma_addr_t addr;
  2451. in_ctx = xhci->devs[slot_id]->in_ctx;
  2452. ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
  2453. if (!ctrl_ctx) {
  2454. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2455. __func__);
  2456. return;
  2457. }
  2458. xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
  2459. xhci->devs[slot_id]->out_ctx, ep_index);
  2460. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  2461. addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
  2462. deq_state->new_deq_ptr);
  2463. if (addr == 0) {
  2464. xhci_warn(xhci, "WARN Cannot submit config ep after "
  2465. "reset ep command\n");
  2466. xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
  2467. deq_state->new_deq_seg,
  2468. deq_state->new_deq_ptr);
  2469. return;
  2470. }
  2471. ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
  2472. added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
  2473. xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
  2474. xhci->devs[slot_id]->out_ctx, ctrl_ctx,
  2475. added_ctxs, added_ctxs);
  2476. }
  2477. void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
  2478. struct usb_device *udev, unsigned int ep_index)
  2479. {
  2480. struct xhci_dequeue_state deq_state;
  2481. struct xhci_virt_ep *ep;
  2482. xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
  2483. ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2484. /* We need to move the HW's dequeue pointer past this TD,
  2485. * or it will attempt to resend it on the next doorbell ring.
  2486. */
  2487. xhci_find_new_dequeue_state(xhci, udev->slot_id,
  2488. ep_index, ep->stopped_stream, ep->stopped_td,
  2489. &deq_state);
  2490. /* HW with the reset endpoint quirk will use the saved dequeue state to
  2491. * issue a configure endpoint command later.
  2492. */
  2493. if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
  2494. xhci_dbg(xhci, "Queueing new dequeue state\n");
  2495. xhci_queue_new_dequeue_state(xhci, udev->slot_id,
  2496. ep_index, ep->stopped_stream, &deq_state);
  2497. } else {
  2498. /* Better hope no one uses the input context between now and the
  2499. * reset endpoint completion!
  2500. * XXX: No idea how this hardware will react when stream rings
  2501. * are enabled.
  2502. */
  2503. xhci_dbg(xhci, "Setting up input context for "
  2504. "configure endpoint command\n");
  2505. xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
  2506. ep_index, &deq_state);
  2507. }
  2508. }
  2509. /* Deal with stalled endpoints. The core should have sent the control message
  2510. * to clear the halt condition. However, we need to make the xHCI hardware
  2511. * reset its sequence number, since a device will expect a sequence number of
  2512. * zero after the halt condition is cleared.
  2513. * Context: in_interrupt
  2514. */
  2515. void xhci_endpoint_reset(struct usb_hcd *hcd,
  2516. struct usb_host_endpoint *ep)
  2517. {
  2518. struct xhci_hcd *xhci;
  2519. struct usb_device *udev;
  2520. unsigned int ep_index;
  2521. unsigned long flags;
  2522. int ret;
  2523. struct xhci_virt_ep *virt_ep;
  2524. xhci = hcd_to_xhci(hcd);
  2525. udev = (struct usb_device *) ep->hcpriv;
  2526. /* Called with a root hub endpoint (or an endpoint that wasn't added
  2527. * with xhci_add_endpoint()
  2528. */
  2529. if (!ep->hcpriv)
  2530. return;
  2531. ep_index = xhci_get_endpoint_index(&ep->desc);
  2532. virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
  2533. if (!virt_ep->stopped_td) {
  2534. xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
  2535. ep->desc.bEndpointAddress);
  2536. return;
  2537. }
  2538. if (usb_endpoint_xfer_control(&ep->desc)) {
  2539. xhci_dbg(xhci, "Control endpoint stall already handled.\n");
  2540. return;
  2541. }
  2542. xhci_dbg(xhci, "Queueing reset endpoint command\n");
  2543. spin_lock_irqsave(&xhci->lock, flags);
  2544. ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
  2545. /*
  2546. * Can't change the ring dequeue pointer until it's transitioned to the
  2547. * stopped state, which is only upon a successful reset endpoint
  2548. * command. Better hope that last command worked!
  2549. */
  2550. if (!ret) {
  2551. xhci_cleanup_stalled_ring(xhci, udev, ep_index);
  2552. kfree(virt_ep->stopped_td);
  2553. xhci_ring_cmd_db(xhci);
  2554. }
  2555. virt_ep->stopped_td = NULL;
  2556. virt_ep->stopped_trb = NULL;
  2557. virt_ep->stopped_stream = 0;
  2558. spin_unlock_irqrestore(&xhci->lock, flags);
  2559. if (ret)
  2560. xhci_warn(xhci, "FIXME allocate a new ring segment\n");
  2561. }
  2562. static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
  2563. struct usb_device *udev, struct usb_host_endpoint *ep,
  2564. unsigned int slot_id)
  2565. {
  2566. int ret;
  2567. unsigned int ep_index;
  2568. unsigned int ep_state;
  2569. if (!ep)
  2570. return -EINVAL;
  2571. ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
  2572. if (ret <= 0)
  2573. return -EINVAL;
  2574. if (ep->ss_ep_comp.bmAttributes == 0) {
  2575. xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
  2576. " descriptor for ep 0x%x does not support streams\n",
  2577. ep->desc.bEndpointAddress);
  2578. return -EINVAL;
  2579. }
  2580. ep_index = xhci_get_endpoint_index(&ep->desc);
  2581. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2582. if (ep_state & EP_HAS_STREAMS ||
  2583. ep_state & EP_GETTING_STREAMS) {
  2584. xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
  2585. "already has streams set up.\n",
  2586. ep->desc.bEndpointAddress);
  2587. xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
  2588. "dynamic stream context array reallocation.\n");
  2589. return -EINVAL;
  2590. }
  2591. if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
  2592. xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
  2593. "endpoint 0x%x; URBs are pending.\n",
  2594. ep->desc.bEndpointAddress);
  2595. return -EINVAL;
  2596. }
  2597. return 0;
  2598. }
  2599. static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
  2600. unsigned int *num_streams, unsigned int *num_stream_ctxs)
  2601. {
  2602. unsigned int max_streams;
  2603. /* The stream context array size must be a power of two */
  2604. *num_stream_ctxs = roundup_pow_of_two(*num_streams);
  2605. /*
  2606. * Find out how many primary stream array entries the host controller
  2607. * supports. Later we may use secondary stream arrays (similar to 2nd
  2608. * level page entries), but that's an optional feature for xHCI host
  2609. * controllers. xHCs must support at least 4 stream IDs.
  2610. */
  2611. max_streams = HCC_MAX_PSA(xhci->hcc_params);
  2612. if (*num_stream_ctxs > max_streams) {
  2613. xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
  2614. max_streams);
  2615. *num_stream_ctxs = max_streams;
  2616. *num_streams = max_streams;
  2617. }
  2618. }
  2619. /* Returns an error code if one of the endpoint already has streams.
  2620. * This does not change any data structures, it only checks and gathers
  2621. * information.
  2622. */
  2623. static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
  2624. struct usb_device *udev,
  2625. struct usb_host_endpoint **eps, unsigned int num_eps,
  2626. unsigned int *num_streams, u32 *changed_ep_bitmask)
  2627. {
  2628. unsigned int max_streams;
  2629. unsigned int endpoint_flag;
  2630. int i;
  2631. int ret;
  2632. for (i = 0; i < num_eps; i++) {
  2633. ret = xhci_check_streams_endpoint(xhci, udev,
  2634. eps[i], udev->slot_id);
  2635. if (ret < 0)
  2636. return ret;
  2637. max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
  2638. if (max_streams < (*num_streams - 1)) {
  2639. xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
  2640. eps[i]->desc.bEndpointAddress,
  2641. max_streams);
  2642. *num_streams = max_streams+1;
  2643. }
  2644. endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
  2645. if (*changed_ep_bitmask & endpoint_flag)
  2646. return -EINVAL;
  2647. *changed_ep_bitmask |= endpoint_flag;
  2648. }
  2649. return 0;
  2650. }
  2651. static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
  2652. struct usb_device *udev,
  2653. struct usb_host_endpoint **eps, unsigned int num_eps)
  2654. {
  2655. u32 changed_ep_bitmask = 0;
  2656. unsigned int slot_id;
  2657. unsigned int ep_index;
  2658. unsigned int ep_state;
  2659. int i;
  2660. slot_id = udev->slot_id;
  2661. if (!xhci->devs[slot_id])
  2662. return 0;
  2663. for (i = 0; i < num_eps; i++) {
  2664. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2665. ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
  2666. /* Are streams already being freed for the endpoint? */
  2667. if (ep_state & EP_GETTING_NO_STREAMS) {
  2668. xhci_warn(xhci, "WARN Can't disable streams for "
  2669. "endpoint 0x%x, "
  2670. "streams are being disabled already\n",
  2671. eps[i]->desc.bEndpointAddress);
  2672. return 0;
  2673. }
  2674. /* Are there actually any streams to free? */
  2675. if (!(ep_state & EP_HAS_STREAMS) &&
  2676. !(ep_state & EP_GETTING_STREAMS)) {
  2677. xhci_warn(xhci, "WARN Can't disable streams for "
  2678. "endpoint 0x%x, "
  2679. "streams are already disabled!\n",
  2680. eps[i]->desc.bEndpointAddress);
  2681. xhci_warn(xhci, "WARN xhci_free_streams() called "
  2682. "with non-streams endpoint\n");
  2683. return 0;
  2684. }
  2685. changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
  2686. }
  2687. return changed_ep_bitmask;
  2688. }
  2689. /*
  2690. * The USB device drivers use this function (though the HCD interface in USB
  2691. * core) to prepare a set of bulk endpoints to use streams. Streams are used to
  2692. * coordinate mass storage command queueing across multiple endpoints (basically
  2693. * a stream ID == a task ID).
  2694. *
  2695. * Setting up streams involves allocating the same size stream context array
  2696. * for each endpoint and issuing a configure endpoint command for all endpoints.
  2697. *
  2698. * Don't allow the call to succeed if one endpoint only supports one stream
  2699. * (which means it doesn't support streams at all).
  2700. *
  2701. * Drivers may get less stream IDs than they asked for, if the host controller
  2702. * hardware or endpoints claim they can't support the number of requested
  2703. * stream IDs.
  2704. */
  2705. int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2706. struct usb_host_endpoint **eps, unsigned int num_eps,
  2707. unsigned int num_streams, gfp_t mem_flags)
  2708. {
  2709. int i, ret;
  2710. struct xhci_hcd *xhci;
  2711. struct xhci_virt_device *vdev;
  2712. struct xhci_command *config_cmd;
  2713. struct xhci_input_control_ctx *ctrl_ctx;
  2714. unsigned int ep_index;
  2715. unsigned int num_stream_ctxs;
  2716. unsigned long flags;
  2717. u32 changed_ep_bitmask = 0;
  2718. if (!eps)
  2719. return -EINVAL;
  2720. /* Add one to the number of streams requested to account for
  2721. * stream 0 that is reserved for xHCI usage.
  2722. */
  2723. num_streams += 1;
  2724. xhci = hcd_to_xhci(hcd);
  2725. xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
  2726. num_streams);
  2727. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  2728. if (!config_cmd) {
  2729. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  2730. return -ENOMEM;
  2731. }
  2732. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  2733. if (!ctrl_ctx) {
  2734. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2735. __func__);
  2736. xhci_free_command(xhci, config_cmd);
  2737. return -ENOMEM;
  2738. }
  2739. /* Check to make sure all endpoints are not already configured for
  2740. * streams. While we're at it, find the maximum number of streams that
  2741. * all the endpoints will support and check for duplicate endpoints.
  2742. */
  2743. spin_lock_irqsave(&xhci->lock, flags);
  2744. ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
  2745. num_eps, &num_streams, &changed_ep_bitmask);
  2746. if (ret < 0) {
  2747. xhci_free_command(xhci, config_cmd);
  2748. spin_unlock_irqrestore(&xhci->lock, flags);
  2749. return ret;
  2750. }
  2751. if (num_streams <= 1) {
  2752. xhci_warn(xhci, "WARN: endpoints can't handle "
  2753. "more than one stream.\n");
  2754. xhci_free_command(xhci, config_cmd);
  2755. spin_unlock_irqrestore(&xhci->lock, flags);
  2756. return -EINVAL;
  2757. }
  2758. vdev = xhci->devs[udev->slot_id];
  2759. /* Mark each endpoint as being in transition, so
  2760. * xhci_urb_enqueue() will reject all URBs.
  2761. */
  2762. for (i = 0; i < num_eps; i++) {
  2763. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2764. vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
  2765. }
  2766. spin_unlock_irqrestore(&xhci->lock, flags);
  2767. /* Setup internal data structures and allocate HW data structures for
  2768. * streams (but don't install the HW structures in the input context
  2769. * until we're sure all memory allocation succeeded).
  2770. */
  2771. xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
  2772. xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
  2773. num_stream_ctxs, num_streams);
  2774. for (i = 0; i < num_eps; i++) {
  2775. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2776. vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
  2777. num_stream_ctxs,
  2778. num_streams, mem_flags);
  2779. if (!vdev->eps[ep_index].stream_info)
  2780. goto cleanup;
  2781. /* Set maxPstreams in endpoint context and update deq ptr to
  2782. * point to stream context array. FIXME
  2783. */
  2784. }
  2785. /* Set up the input context for a configure endpoint command. */
  2786. for (i = 0; i < num_eps; i++) {
  2787. struct xhci_ep_ctx *ep_ctx;
  2788. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2789. ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
  2790. xhci_endpoint_copy(xhci, config_cmd->in_ctx,
  2791. vdev->out_ctx, ep_index);
  2792. xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
  2793. vdev->eps[ep_index].stream_info);
  2794. }
  2795. /* Tell the HW to drop its old copy of the endpoint context info
  2796. * and add the updated copy from the input context.
  2797. */
  2798. xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
  2799. vdev->out_ctx, ctrl_ctx,
  2800. changed_ep_bitmask, changed_ep_bitmask);
  2801. /* Issue and wait for the configure endpoint command */
  2802. ret = xhci_configure_endpoint(xhci, udev, config_cmd,
  2803. false, false);
  2804. /* xHC rejected the configure endpoint command for some reason, so we
  2805. * leave the old ring intact and free our internal streams data
  2806. * structure.
  2807. */
  2808. if (ret < 0)
  2809. goto cleanup;
  2810. spin_lock_irqsave(&xhci->lock, flags);
  2811. for (i = 0; i < num_eps; i++) {
  2812. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2813. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2814. xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
  2815. udev->slot_id, ep_index);
  2816. vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
  2817. }
  2818. xhci_free_command(xhci, config_cmd);
  2819. spin_unlock_irqrestore(&xhci->lock, flags);
  2820. /* Subtract 1 for stream 0, which drivers can't use */
  2821. return num_streams - 1;
  2822. cleanup:
  2823. /* If it didn't work, free the streams! */
  2824. for (i = 0; i < num_eps; i++) {
  2825. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2826. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2827. vdev->eps[ep_index].stream_info = NULL;
  2828. /* FIXME Unset maxPstreams in endpoint context and
  2829. * update deq ptr to point to normal string ring.
  2830. */
  2831. vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
  2832. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2833. xhci_endpoint_zero(xhci, vdev, eps[i]);
  2834. }
  2835. xhci_free_command(xhci, config_cmd);
  2836. return -ENOMEM;
  2837. }
  2838. /* Transition the endpoint from using streams to being a "normal" endpoint
  2839. * without streams.
  2840. *
  2841. * Modify the endpoint context state, submit a configure endpoint command,
  2842. * and free all endpoint rings for streams if that completes successfully.
  2843. */
  2844. int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
  2845. struct usb_host_endpoint **eps, unsigned int num_eps,
  2846. gfp_t mem_flags)
  2847. {
  2848. int i, ret;
  2849. struct xhci_hcd *xhci;
  2850. struct xhci_virt_device *vdev;
  2851. struct xhci_command *command;
  2852. struct xhci_input_control_ctx *ctrl_ctx;
  2853. unsigned int ep_index;
  2854. unsigned long flags;
  2855. u32 changed_ep_bitmask;
  2856. xhci = hcd_to_xhci(hcd);
  2857. vdev = xhci->devs[udev->slot_id];
  2858. /* Set up a configure endpoint command to remove the streams rings */
  2859. spin_lock_irqsave(&xhci->lock, flags);
  2860. changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
  2861. udev, eps, num_eps);
  2862. if (changed_ep_bitmask == 0) {
  2863. spin_unlock_irqrestore(&xhci->lock, flags);
  2864. return -EINVAL;
  2865. }
  2866. /* Use the xhci_command structure from the first endpoint. We may have
  2867. * allocated too many, but the driver may call xhci_free_streams() for
  2868. * each endpoint it grouped into one call to xhci_alloc_streams().
  2869. */
  2870. ep_index = xhci_get_endpoint_index(&eps[0]->desc);
  2871. command = vdev->eps[ep_index].stream_info->free_streams_command;
  2872. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  2873. if (!ctrl_ctx) {
  2874. spin_unlock_irqrestore(&xhci->lock, flags);
  2875. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  2876. __func__);
  2877. return -EINVAL;
  2878. }
  2879. for (i = 0; i < num_eps; i++) {
  2880. struct xhci_ep_ctx *ep_ctx;
  2881. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2882. ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
  2883. xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
  2884. EP_GETTING_NO_STREAMS;
  2885. xhci_endpoint_copy(xhci, command->in_ctx,
  2886. vdev->out_ctx, ep_index);
  2887. xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
  2888. &vdev->eps[ep_index]);
  2889. }
  2890. xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
  2891. vdev->out_ctx, ctrl_ctx,
  2892. changed_ep_bitmask, changed_ep_bitmask);
  2893. spin_unlock_irqrestore(&xhci->lock, flags);
  2894. /* Issue and wait for the configure endpoint command,
  2895. * which must succeed.
  2896. */
  2897. ret = xhci_configure_endpoint(xhci, udev, command,
  2898. false, true);
  2899. /* xHC rejected the configure endpoint command for some reason, so we
  2900. * leave the streams rings intact.
  2901. */
  2902. if (ret < 0)
  2903. return ret;
  2904. spin_lock_irqsave(&xhci->lock, flags);
  2905. for (i = 0; i < num_eps; i++) {
  2906. ep_index = xhci_get_endpoint_index(&eps[i]->desc);
  2907. xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
  2908. vdev->eps[ep_index].stream_info = NULL;
  2909. /* FIXME Unset maxPstreams in endpoint context and
  2910. * update deq ptr to point to normal string ring.
  2911. */
  2912. vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
  2913. vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
  2914. }
  2915. spin_unlock_irqrestore(&xhci->lock, flags);
  2916. return 0;
  2917. }
  2918. /*
  2919. * Deletes endpoint resources for endpoints that were active before a Reset
  2920. * Device command, or a Disable Slot command. The Reset Device command leaves
  2921. * the control endpoint intact, whereas the Disable Slot command deletes it.
  2922. *
  2923. * Must be called with xhci->lock held.
  2924. */
  2925. void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
  2926. struct xhci_virt_device *virt_dev, bool drop_control_ep)
  2927. {
  2928. int i;
  2929. unsigned int num_dropped_eps = 0;
  2930. unsigned int drop_flags = 0;
  2931. for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
  2932. if (virt_dev->eps[i].ring) {
  2933. drop_flags |= 1 << i;
  2934. num_dropped_eps++;
  2935. }
  2936. }
  2937. xhci->num_active_eps -= num_dropped_eps;
  2938. if (num_dropped_eps)
  2939. xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
  2940. "%u now active.\n",
  2941. num_dropped_eps, drop_flags,
  2942. xhci->num_active_eps);
  2943. }
  2944. /*
  2945. * This submits a Reset Device Command, which will set the device state to 0,
  2946. * set the device address to 0, and disable all the endpoints except the default
  2947. * control endpoint. The USB core should come back and call
  2948. * xhci_address_device(), and then re-set up the configuration. If this is
  2949. * called because of a usb_reset_and_verify_device(), then the old alternate
  2950. * settings will be re-installed through the normal bandwidth allocation
  2951. * functions.
  2952. *
  2953. * Wait for the Reset Device command to finish. Remove all structures
  2954. * associated with the endpoints that were disabled. Clear the input device
  2955. * structure? Cache the rings? Reset the control endpoint 0 max packet size?
  2956. *
  2957. * If the virt_dev to be reset does not exist or does not match the udev,
  2958. * it means the device is lost, possibly due to the xHC restore error and
  2959. * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
  2960. * re-allocate the device.
  2961. */
  2962. int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
  2963. {
  2964. int ret, i;
  2965. unsigned long flags;
  2966. struct xhci_hcd *xhci;
  2967. unsigned int slot_id;
  2968. struct xhci_virt_device *virt_dev;
  2969. struct xhci_command *reset_device_cmd;
  2970. int timeleft;
  2971. int last_freed_endpoint;
  2972. struct xhci_slot_ctx *slot_ctx;
  2973. int old_active_eps = 0;
  2974. ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
  2975. if (ret <= 0)
  2976. return ret;
  2977. xhci = hcd_to_xhci(hcd);
  2978. slot_id = udev->slot_id;
  2979. virt_dev = xhci->devs[slot_id];
  2980. if (!virt_dev) {
  2981. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2982. "not exist. Re-allocate the device\n", slot_id);
  2983. ret = xhci_alloc_dev(hcd, udev);
  2984. if (ret == 1)
  2985. return 0;
  2986. else
  2987. return -EINVAL;
  2988. }
  2989. if (virt_dev->udev != udev) {
  2990. /* If the virt_dev and the udev does not match, this virt_dev
  2991. * may belong to another udev.
  2992. * Re-allocate the device.
  2993. */
  2994. xhci_dbg(xhci, "The device to be reset with slot ID %u does "
  2995. "not match the udev. Re-allocate the device\n",
  2996. slot_id);
  2997. ret = xhci_alloc_dev(hcd, udev);
  2998. if (ret == 1)
  2999. return 0;
  3000. else
  3001. return -EINVAL;
  3002. }
  3003. /* If device is not setup, there is no point in resetting it */
  3004. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3005. if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
  3006. SLOT_STATE_DISABLED)
  3007. return 0;
  3008. xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
  3009. /* Allocate the command structure that holds the struct completion.
  3010. * Assume we're in process context, since the normal device reset
  3011. * process has to wait for the device anyway. Storage devices are
  3012. * reset as part of error handling, so use GFP_NOIO instead of
  3013. * GFP_KERNEL.
  3014. */
  3015. reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
  3016. if (!reset_device_cmd) {
  3017. xhci_dbg(xhci, "Couldn't allocate command structure.\n");
  3018. return -ENOMEM;
  3019. }
  3020. /* Attempt to submit the Reset Device command to the command ring */
  3021. spin_lock_irqsave(&xhci->lock, flags);
  3022. reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
  3023. /* Enqueue pointer can be left pointing to the link TRB,
  3024. * we must handle that
  3025. */
  3026. if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
  3027. reset_device_cmd->command_trb =
  3028. xhci->cmd_ring->enq_seg->next->trbs;
  3029. list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
  3030. ret = xhci_queue_reset_device(xhci, slot_id);
  3031. if (ret) {
  3032. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3033. list_del(&reset_device_cmd->cmd_list);
  3034. spin_unlock_irqrestore(&xhci->lock, flags);
  3035. goto command_cleanup;
  3036. }
  3037. xhci_ring_cmd_db(xhci);
  3038. spin_unlock_irqrestore(&xhci->lock, flags);
  3039. /* Wait for the Reset Device command to finish */
  3040. timeleft = wait_for_completion_interruptible_timeout(
  3041. reset_device_cmd->completion,
  3042. USB_CTRL_SET_TIMEOUT);
  3043. if (timeleft <= 0) {
  3044. xhci_warn(xhci, "%s while waiting for reset device command\n",
  3045. timeleft == 0 ? "Timeout" : "Signal");
  3046. spin_lock_irqsave(&xhci->lock, flags);
  3047. /* The timeout might have raced with the event ring handler, so
  3048. * only delete from the list if the item isn't poisoned.
  3049. */
  3050. if (reset_device_cmd->cmd_list.next != LIST_POISON1)
  3051. list_del(&reset_device_cmd->cmd_list);
  3052. spin_unlock_irqrestore(&xhci->lock, flags);
  3053. ret = -ETIME;
  3054. goto command_cleanup;
  3055. }
  3056. /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
  3057. * unless we tried to reset a slot ID that wasn't enabled,
  3058. * or the device wasn't in the addressed or configured state.
  3059. */
  3060. ret = reset_device_cmd->status;
  3061. switch (ret) {
  3062. case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
  3063. case COMP_CTX_STATE: /* 0.96 completion code for same thing */
  3064. xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
  3065. slot_id,
  3066. xhci_get_slot_state(xhci, virt_dev->out_ctx));
  3067. xhci_dbg(xhci, "Not freeing device rings.\n");
  3068. /* Don't treat this as an error. May change my mind later. */
  3069. ret = 0;
  3070. goto command_cleanup;
  3071. case COMP_SUCCESS:
  3072. xhci_dbg(xhci, "Successful reset device command.\n");
  3073. break;
  3074. default:
  3075. if (xhci_is_vendor_info_code(xhci, ret))
  3076. break;
  3077. xhci_warn(xhci, "Unknown completion code %u for "
  3078. "reset device command.\n", ret);
  3079. ret = -EINVAL;
  3080. goto command_cleanup;
  3081. }
  3082. /* Free up host controller endpoint resources */
  3083. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3084. spin_lock_irqsave(&xhci->lock, flags);
  3085. /* Don't delete the default control endpoint resources */
  3086. xhci_free_device_endpoint_resources(xhci, virt_dev, false);
  3087. spin_unlock_irqrestore(&xhci->lock, flags);
  3088. }
  3089. /* Everything but endpoint 0 is disabled, so free or cache the rings. */
  3090. last_freed_endpoint = 1;
  3091. for (i = 1; i < 31; ++i) {
  3092. struct xhci_virt_ep *ep = &virt_dev->eps[i];
  3093. if (ep->ep_state & EP_HAS_STREAMS) {
  3094. xhci_free_stream_info(xhci, ep->stream_info);
  3095. ep->stream_info = NULL;
  3096. ep->ep_state &= ~EP_HAS_STREAMS;
  3097. }
  3098. if (ep->ring) {
  3099. xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
  3100. last_freed_endpoint = i;
  3101. }
  3102. if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
  3103. xhci_drop_ep_from_interval_table(xhci,
  3104. &virt_dev->eps[i].bw_info,
  3105. virt_dev->bw_table,
  3106. udev,
  3107. &virt_dev->eps[i],
  3108. virt_dev->tt_info);
  3109. xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
  3110. }
  3111. /* If necessary, update the number of active TTs on this root port */
  3112. xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
  3113. xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
  3114. xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
  3115. ret = 0;
  3116. command_cleanup:
  3117. xhci_free_command(xhci, reset_device_cmd);
  3118. return ret;
  3119. }
  3120. /*
  3121. * At this point, the struct usb_device is about to go away, the device has
  3122. * disconnected, and all traffic has been stopped and the endpoints have been
  3123. * disabled. Free any HC data structures associated with that device.
  3124. */
  3125. void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3126. {
  3127. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3128. struct xhci_virt_device *virt_dev;
  3129. unsigned long flags;
  3130. u32 state;
  3131. int i, ret;
  3132. ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
  3133. /* If the host is halted due to driver unload, we still need to free the
  3134. * device.
  3135. */
  3136. if (ret <= 0 && ret != -ENODEV)
  3137. return;
  3138. virt_dev = xhci->devs[udev->slot_id];
  3139. /* Stop any wayward timer functions (which may grab the lock) */
  3140. for (i = 0; i < 31; ++i) {
  3141. virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
  3142. del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
  3143. }
  3144. if (udev->usb2_hw_lpm_enabled) {
  3145. xhci_set_usb2_hardware_lpm(hcd, udev, 0);
  3146. udev->usb2_hw_lpm_enabled = 0;
  3147. }
  3148. spin_lock_irqsave(&xhci->lock, flags);
  3149. /* Don't disable the slot if the host controller is dead. */
  3150. state = xhci_readl(xhci, &xhci->op_regs->status);
  3151. if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
  3152. (xhci->xhc_state & XHCI_STATE_HALTED)) {
  3153. xhci_free_virt_device(xhci, udev->slot_id);
  3154. spin_unlock_irqrestore(&xhci->lock, flags);
  3155. return;
  3156. }
  3157. if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
  3158. spin_unlock_irqrestore(&xhci->lock, flags);
  3159. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3160. return;
  3161. }
  3162. xhci_ring_cmd_db(xhci);
  3163. spin_unlock_irqrestore(&xhci->lock, flags);
  3164. /*
  3165. * Event command completion handler will free any data structures
  3166. * associated with the slot. XXX Can free sleep?
  3167. */
  3168. }
  3169. /*
  3170. * Checks if we have enough host controller resources for the default control
  3171. * endpoint.
  3172. *
  3173. * Must be called with xhci->lock held.
  3174. */
  3175. static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
  3176. {
  3177. if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
  3178. xhci_dbg(xhci, "Not enough ep ctxs: "
  3179. "%u active, need to add 1, limit is %u.\n",
  3180. xhci->num_active_eps, xhci->limit_active_eps);
  3181. return -ENOMEM;
  3182. }
  3183. xhci->num_active_eps += 1;
  3184. xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
  3185. xhci->num_active_eps);
  3186. return 0;
  3187. }
  3188. /*
  3189. * Returns 0 if the xHC ran out of device slots, the Enable Slot command
  3190. * timed out, or allocating memory failed. Returns 1 on success.
  3191. */
  3192. int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
  3193. {
  3194. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3195. unsigned long flags;
  3196. int timeleft;
  3197. int ret;
  3198. union xhci_trb *cmd_trb;
  3199. spin_lock_irqsave(&xhci->lock, flags);
  3200. cmd_trb = xhci->cmd_ring->dequeue;
  3201. ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
  3202. if (ret) {
  3203. spin_unlock_irqrestore(&xhci->lock, flags);
  3204. xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
  3205. return 0;
  3206. }
  3207. xhci_ring_cmd_db(xhci);
  3208. spin_unlock_irqrestore(&xhci->lock, flags);
  3209. /* XXX: how much time for xHC slot assignment? */
  3210. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3211. XHCI_CMD_DEFAULT_TIMEOUT);
  3212. if (timeleft <= 0) {
  3213. xhci_warn(xhci, "%s while waiting for a slot\n",
  3214. timeleft == 0 ? "Timeout" : "Signal");
  3215. /* cancel the enable slot request */
  3216. return xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3217. }
  3218. if (!xhci->slot_id) {
  3219. xhci_err(xhci, "Error while assigning device slot ID\n");
  3220. return 0;
  3221. }
  3222. if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
  3223. spin_lock_irqsave(&xhci->lock, flags);
  3224. ret = xhci_reserve_host_control_ep_resources(xhci);
  3225. if (ret) {
  3226. spin_unlock_irqrestore(&xhci->lock, flags);
  3227. xhci_warn(xhci, "Not enough host resources, "
  3228. "active endpoint contexts = %u\n",
  3229. xhci->num_active_eps);
  3230. goto disable_slot;
  3231. }
  3232. spin_unlock_irqrestore(&xhci->lock, flags);
  3233. }
  3234. /* Use GFP_NOIO, since this function can be called from
  3235. * xhci_discover_or_reset_device(), which may be called as part of
  3236. * mass storage driver error handling.
  3237. */
  3238. if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
  3239. xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
  3240. goto disable_slot;
  3241. }
  3242. udev->slot_id = xhci->slot_id;
  3243. /* Is this a LS or FS device under a HS hub? */
  3244. /* Hub or peripherial? */
  3245. return 1;
  3246. disable_slot:
  3247. /* Disable slot, if we can do it without mem alloc */
  3248. spin_lock_irqsave(&xhci->lock, flags);
  3249. if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
  3250. xhci_ring_cmd_db(xhci);
  3251. spin_unlock_irqrestore(&xhci->lock, flags);
  3252. return 0;
  3253. }
  3254. /*
  3255. * Issue an Address Device command (which will issue a SetAddress request to
  3256. * the device).
  3257. * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
  3258. * we should only issue and wait on one address command at the same time.
  3259. *
  3260. * We add one to the device address issued by the hardware because the USB core
  3261. * uses address 1 for the root hubs (even though they're not really devices).
  3262. */
  3263. int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
  3264. {
  3265. unsigned long flags;
  3266. int timeleft;
  3267. struct xhci_virt_device *virt_dev;
  3268. int ret = 0;
  3269. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3270. struct xhci_slot_ctx *slot_ctx;
  3271. struct xhci_input_control_ctx *ctrl_ctx;
  3272. u64 temp_64;
  3273. union xhci_trb *cmd_trb;
  3274. if (!udev->slot_id) {
  3275. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3276. "Bad Slot ID %d", udev->slot_id);
  3277. return -EINVAL;
  3278. }
  3279. virt_dev = xhci->devs[udev->slot_id];
  3280. if (WARN_ON(!virt_dev)) {
  3281. /*
  3282. * In plug/unplug torture test with an NEC controller,
  3283. * a zero-dereference was observed once due to virt_dev = 0.
  3284. * Print useful debug rather than crash if it is observed again!
  3285. */
  3286. xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
  3287. udev->slot_id);
  3288. return -EINVAL;
  3289. }
  3290. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
  3291. ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
  3292. if (!ctrl_ctx) {
  3293. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  3294. __func__);
  3295. return -EINVAL;
  3296. }
  3297. /*
  3298. * If this is the first Set Address since device plug-in or
  3299. * virt_device realloaction after a resume with an xHCI power loss,
  3300. * then set up the slot context.
  3301. */
  3302. if (!slot_ctx->dev_info)
  3303. xhci_setup_addressable_virt_dev(xhci, udev);
  3304. /* Otherwise, update the control endpoint ring enqueue pointer. */
  3305. else
  3306. xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
  3307. ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
  3308. ctrl_ctx->drop_flags = 0;
  3309. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3310. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3311. spin_lock_irqsave(&xhci->lock, flags);
  3312. cmd_trb = xhci->cmd_ring->dequeue;
  3313. ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
  3314. udev->slot_id);
  3315. if (ret) {
  3316. spin_unlock_irqrestore(&xhci->lock, flags);
  3317. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3318. "FIXME: allocate a command ring segment");
  3319. return ret;
  3320. }
  3321. xhci_ring_cmd_db(xhci);
  3322. spin_unlock_irqrestore(&xhci->lock, flags);
  3323. /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
  3324. timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
  3325. XHCI_CMD_DEFAULT_TIMEOUT);
  3326. /* FIXME: From section 4.3.4: "Software shall be responsible for timing
  3327. * the SetAddress() "recovery interval" required by USB and aborting the
  3328. * command on a timeout.
  3329. */
  3330. if (timeleft <= 0) {
  3331. xhci_warn(xhci, "%s while waiting for address device command\n",
  3332. timeleft == 0 ? "Timeout" : "Signal");
  3333. /* cancel the address device command */
  3334. ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
  3335. if (ret < 0)
  3336. return ret;
  3337. return -ETIME;
  3338. }
  3339. switch (virt_dev->cmd_status) {
  3340. case COMP_CTX_STATE:
  3341. case COMP_EBADSLT:
  3342. xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
  3343. udev->slot_id);
  3344. ret = -EINVAL;
  3345. break;
  3346. case COMP_TX_ERR:
  3347. dev_warn(&udev->dev, "Device not responding to set address.\n");
  3348. ret = -EPROTO;
  3349. break;
  3350. case COMP_DEV_ERR:
  3351. dev_warn(&udev->dev, "ERROR: Incompatible device for address "
  3352. "device command.\n");
  3353. ret = -ENODEV;
  3354. break;
  3355. case COMP_SUCCESS:
  3356. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3357. "Successful Address Device command");
  3358. break;
  3359. default:
  3360. xhci_err(xhci, "ERROR: unexpected command completion "
  3361. "code 0x%x.\n", virt_dev->cmd_status);
  3362. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3363. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3364. ret = -EINVAL;
  3365. break;
  3366. }
  3367. if (ret) {
  3368. return ret;
  3369. }
  3370. temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
  3371. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3372. "Op regs DCBAA ptr = %#016llx", temp_64);
  3373. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3374. "Slot ID %d dcbaa entry @%p = %#016llx",
  3375. udev->slot_id,
  3376. &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
  3377. (unsigned long long)
  3378. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
  3379. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3380. "Output Context DMA address = %#08llx",
  3381. (unsigned long long)virt_dev->out_ctx->dma);
  3382. xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
  3383. xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
  3384. xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
  3385. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
  3386. /*
  3387. * USB core uses address 1 for the roothubs, so we add one to the
  3388. * address given back to us by the HC.
  3389. */
  3390. slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
  3391. /* Use kernel assigned address for devices; store xHC assigned
  3392. * address locally. */
  3393. virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
  3394. + 1;
  3395. /* Zero the input context control for later use */
  3396. ctrl_ctx->add_flags = 0;
  3397. ctrl_ctx->drop_flags = 0;
  3398. xhci_dbg_trace(xhci, trace_xhci_dbg_address,
  3399. "Internal device address = %d", virt_dev->address);
  3400. return 0;
  3401. }
  3402. /*
  3403. * Transfer the port index into real index in the HW port status
  3404. * registers. Caculate offset between the port's PORTSC register
  3405. * and port status base. Divide the number of per port register
  3406. * to get the real index. The raw port number bases 1.
  3407. */
  3408. int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
  3409. {
  3410. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3411. __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
  3412. __le32 __iomem *addr;
  3413. int raw_port;
  3414. if (hcd->speed != HCD_USB3)
  3415. addr = xhci->usb2_ports[port1 - 1];
  3416. else
  3417. addr = xhci->usb3_ports[port1 - 1];
  3418. raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
  3419. return raw_port;
  3420. }
  3421. /*
  3422. * Issue an Evaluate Context command to change the Maximum Exit Latency in the
  3423. * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
  3424. */
  3425. static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
  3426. struct usb_device *udev, u16 max_exit_latency)
  3427. {
  3428. struct xhci_virt_device *virt_dev;
  3429. struct xhci_command *command;
  3430. struct xhci_input_control_ctx *ctrl_ctx;
  3431. struct xhci_slot_ctx *slot_ctx;
  3432. unsigned long flags;
  3433. int ret;
  3434. spin_lock_irqsave(&xhci->lock, flags);
  3435. if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
  3436. spin_unlock_irqrestore(&xhci->lock, flags);
  3437. return 0;
  3438. }
  3439. /* Attempt to issue an Evaluate Context command to change the MEL. */
  3440. virt_dev = xhci->devs[udev->slot_id];
  3441. command = xhci->lpm_command;
  3442. ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
  3443. if (!ctrl_ctx) {
  3444. spin_unlock_irqrestore(&xhci->lock, flags);
  3445. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  3446. __func__);
  3447. return -ENOMEM;
  3448. }
  3449. xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
  3450. spin_unlock_irqrestore(&xhci->lock, flags);
  3451. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  3452. slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
  3453. slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
  3454. slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
  3455. xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
  3456. "Set up evaluate context for LPM MEL change.");
  3457. xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
  3458. xhci_dbg_ctx(xhci, command->in_ctx, 0);
  3459. /* Issue and wait for the evaluate context command. */
  3460. ret = xhci_configure_endpoint(xhci, udev, command,
  3461. true, true);
  3462. xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
  3463. xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
  3464. if (!ret) {
  3465. spin_lock_irqsave(&xhci->lock, flags);
  3466. virt_dev->current_mel = max_exit_latency;
  3467. spin_unlock_irqrestore(&xhci->lock, flags);
  3468. }
  3469. return ret;
  3470. }
  3471. #ifdef CONFIG_PM_RUNTIME
  3472. /* BESL to HIRD Encoding array for USB2 LPM */
  3473. static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
  3474. 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
  3475. /* Calculate HIRD/BESL for USB2 PORTPMSC*/
  3476. static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
  3477. struct usb_device *udev)
  3478. {
  3479. int u2del, besl, besl_host;
  3480. int besl_device = 0;
  3481. u32 field;
  3482. u2del = HCS_U2_LATENCY(xhci->hcs_params3);
  3483. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3484. if (field & USB_BESL_SUPPORT) {
  3485. for (besl_host = 0; besl_host < 16; besl_host++) {
  3486. if (xhci_besl_encoding[besl_host] >= u2del)
  3487. break;
  3488. }
  3489. /* Use baseline BESL value as default */
  3490. if (field & USB_BESL_BASELINE_VALID)
  3491. besl_device = USB_GET_BESL_BASELINE(field);
  3492. else if (field & USB_BESL_DEEP_VALID)
  3493. besl_device = USB_GET_BESL_DEEP(field);
  3494. } else {
  3495. if (u2del <= 50)
  3496. besl_host = 0;
  3497. else
  3498. besl_host = (u2del - 51) / 75 + 1;
  3499. }
  3500. besl = besl_host + besl_device;
  3501. if (besl > 15)
  3502. besl = 15;
  3503. return besl;
  3504. }
  3505. /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
  3506. static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
  3507. {
  3508. u32 field;
  3509. int l1;
  3510. int besld = 0;
  3511. int hirdm = 0;
  3512. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3513. /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
  3514. l1 = udev->l1_params.timeout / 256;
  3515. /* device has preferred BESLD */
  3516. if (field & USB_BESL_DEEP_VALID) {
  3517. besld = USB_GET_BESL_DEEP(field);
  3518. hirdm = 1;
  3519. }
  3520. return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
  3521. }
  3522. static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
  3523. struct usb_device *udev)
  3524. {
  3525. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3526. struct dev_info *dev_info;
  3527. __le32 __iomem **port_array;
  3528. __le32 __iomem *addr, *pm_addr;
  3529. u32 temp, dev_id;
  3530. unsigned int port_num;
  3531. unsigned long flags;
  3532. int hird;
  3533. int ret;
  3534. if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
  3535. !udev->lpm_capable)
  3536. return -EINVAL;
  3537. /* we only support lpm for non-hub device connected to root hub yet */
  3538. if (!udev->parent || udev->parent->parent ||
  3539. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3540. return -EINVAL;
  3541. spin_lock_irqsave(&xhci->lock, flags);
  3542. /* Look for devices in lpm_failed_devs list */
  3543. dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
  3544. le16_to_cpu(udev->descriptor.idProduct);
  3545. list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
  3546. if (dev_info->dev_id == dev_id) {
  3547. ret = -EINVAL;
  3548. goto finish;
  3549. }
  3550. }
  3551. port_array = xhci->usb2_ports;
  3552. port_num = udev->portnum - 1;
  3553. if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
  3554. xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
  3555. ret = -EINVAL;
  3556. goto finish;
  3557. }
  3558. /*
  3559. * Test USB 2.0 software LPM.
  3560. * FIXME: some xHCI 1.0 hosts may implement a new register to set up
  3561. * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
  3562. * in the June 2011 errata release.
  3563. */
  3564. xhci_dbg(xhci, "test port %d software LPM\n", port_num);
  3565. /*
  3566. * Set L1 Device Slot and HIRD/BESL.
  3567. * Check device's USB 2.0 extension descriptor to determine whether
  3568. * HIRD or BESL shoule be used. See USB2.0 LPM errata.
  3569. */
  3570. pm_addr = port_array[port_num] + PORTPMSC;
  3571. hird = xhci_calculate_hird_besl(xhci, udev);
  3572. temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
  3573. xhci_writel(xhci, temp, pm_addr);
  3574. /* Set port link state to U2(L1) */
  3575. addr = port_array[port_num];
  3576. xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
  3577. /* wait for ACK */
  3578. spin_unlock_irqrestore(&xhci->lock, flags);
  3579. msleep(10);
  3580. spin_lock_irqsave(&xhci->lock, flags);
  3581. /* Check L1 Status */
  3582. ret = xhci_handshake(xhci, pm_addr,
  3583. PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
  3584. if (ret != -ETIMEDOUT) {
  3585. /* enter L1 successfully */
  3586. temp = xhci_readl(xhci, addr);
  3587. xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
  3588. port_num, temp);
  3589. ret = 0;
  3590. } else {
  3591. temp = xhci_readl(xhci, pm_addr);
  3592. xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
  3593. port_num, temp & PORT_L1S_MASK);
  3594. ret = -EINVAL;
  3595. }
  3596. /* Resume the port */
  3597. xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
  3598. spin_unlock_irqrestore(&xhci->lock, flags);
  3599. msleep(10);
  3600. spin_lock_irqsave(&xhci->lock, flags);
  3601. /* Clear PLC */
  3602. xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
  3603. /* Check PORTSC to make sure the device is in the right state */
  3604. if (!ret) {
  3605. temp = xhci_readl(xhci, addr);
  3606. xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
  3607. if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
  3608. (temp & PORT_PLS_MASK) != XDEV_U0) {
  3609. xhci_dbg(xhci, "port L1 resume fail\n");
  3610. ret = -EINVAL;
  3611. }
  3612. }
  3613. if (ret) {
  3614. /* Insert dev to lpm_failed_devs list */
  3615. xhci_warn(xhci, "device LPM test failed, may disconnect and "
  3616. "re-enumerate\n");
  3617. dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
  3618. if (!dev_info) {
  3619. ret = -ENOMEM;
  3620. goto finish;
  3621. }
  3622. dev_info->dev_id = dev_id;
  3623. INIT_LIST_HEAD(&dev_info->list);
  3624. list_add(&dev_info->list, &xhci->lpm_failed_devs);
  3625. } else {
  3626. xhci_ring_device(xhci, udev->slot_id);
  3627. }
  3628. finish:
  3629. spin_unlock_irqrestore(&xhci->lock, flags);
  3630. return ret;
  3631. }
  3632. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3633. struct usb_device *udev, int enable)
  3634. {
  3635. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3636. __le32 __iomem **port_array;
  3637. __le32 __iomem *pm_addr, *hlpm_addr;
  3638. u32 pm_val, hlpm_val, field;
  3639. unsigned int port_num;
  3640. unsigned long flags;
  3641. int hird, exit_latency;
  3642. int ret;
  3643. if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
  3644. !udev->lpm_capable)
  3645. return -EPERM;
  3646. if (!udev->parent || udev->parent->parent ||
  3647. udev->descriptor.bDeviceClass == USB_CLASS_HUB)
  3648. return -EPERM;
  3649. if (udev->usb2_hw_lpm_capable != 1)
  3650. return -EPERM;
  3651. spin_lock_irqsave(&xhci->lock, flags);
  3652. port_array = xhci->usb2_ports;
  3653. port_num = udev->portnum - 1;
  3654. pm_addr = port_array[port_num] + PORTPMSC;
  3655. pm_val = xhci_readl(xhci, pm_addr);
  3656. hlpm_addr = port_array[port_num] + PORTHLPMC;
  3657. field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
  3658. xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
  3659. enable ? "enable" : "disable", port_num);
  3660. if (enable) {
  3661. /* Host supports BESL timeout instead of HIRD */
  3662. if (udev->usb2_hw_lpm_besl_capable) {
  3663. /* if device doesn't have a preferred BESL value use a
  3664. * default one which works with mixed HIRD and BESL
  3665. * systems. See XHCI_DEFAULT_BESL definition in xhci.h
  3666. */
  3667. if ((field & USB_BESL_SUPPORT) &&
  3668. (field & USB_BESL_BASELINE_VALID))
  3669. hird = USB_GET_BESL_BASELINE(field);
  3670. else
  3671. hird = udev->l1_params.besl;
  3672. exit_latency = xhci_besl_encoding[hird];
  3673. spin_unlock_irqrestore(&xhci->lock, flags);
  3674. /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
  3675. * input context for link powermanagement evaluate
  3676. * context commands. It is protected by hcd->bandwidth
  3677. * mutex and is shared by all devices. We need to set
  3678. * the max ext latency in USB 2 BESL LPM as well, so
  3679. * use the same mutex and xhci_change_max_exit_latency()
  3680. */
  3681. mutex_lock(hcd->bandwidth_mutex);
  3682. ret = xhci_change_max_exit_latency(xhci, udev,
  3683. exit_latency);
  3684. mutex_unlock(hcd->bandwidth_mutex);
  3685. if (ret < 0)
  3686. return ret;
  3687. spin_lock_irqsave(&xhci->lock, flags);
  3688. hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
  3689. xhci_writel(xhci, hlpm_val, hlpm_addr);
  3690. /* flush write */
  3691. xhci_readl(xhci, hlpm_addr);
  3692. } else {
  3693. hird = xhci_calculate_hird_besl(xhci, udev);
  3694. }
  3695. pm_val &= ~PORT_HIRD_MASK;
  3696. pm_val |= PORT_HIRD(hird) | PORT_RWE;
  3697. xhci_writel(xhci, pm_val, pm_addr);
  3698. pm_val = xhci_readl(xhci, pm_addr);
  3699. pm_val |= PORT_HLE;
  3700. xhci_writel(xhci, pm_val, pm_addr);
  3701. /* flush write */
  3702. xhci_readl(xhci, pm_addr);
  3703. } else {
  3704. pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
  3705. xhci_writel(xhci, pm_val, pm_addr);
  3706. /* flush write */
  3707. xhci_readl(xhci, pm_addr);
  3708. if (udev->usb2_hw_lpm_besl_capable) {
  3709. spin_unlock_irqrestore(&xhci->lock, flags);
  3710. mutex_lock(hcd->bandwidth_mutex);
  3711. xhci_change_max_exit_latency(xhci, udev, 0);
  3712. mutex_unlock(hcd->bandwidth_mutex);
  3713. return 0;
  3714. }
  3715. }
  3716. spin_unlock_irqrestore(&xhci->lock, flags);
  3717. return 0;
  3718. }
  3719. /* check if a usb2 port supports a given extened capability protocol
  3720. * only USB2 ports extended protocol capability values are cached.
  3721. * Return 1 if capability is supported
  3722. */
  3723. static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
  3724. unsigned capability)
  3725. {
  3726. u32 port_offset, port_count;
  3727. int i;
  3728. for (i = 0; i < xhci->num_ext_caps; i++) {
  3729. if (xhci->ext_caps[i] & capability) {
  3730. /* port offsets starts at 1 */
  3731. port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
  3732. port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
  3733. if (port >= port_offset &&
  3734. port < port_offset + port_count)
  3735. return 1;
  3736. }
  3737. }
  3738. return 0;
  3739. }
  3740. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3741. {
  3742. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3743. int ret;
  3744. int portnum = udev->portnum - 1;
  3745. ret = xhci_usb2_software_lpm_test(hcd, udev);
  3746. if (!ret) {
  3747. xhci_dbg(xhci, "software LPM test succeed\n");
  3748. if (xhci->hw_lpm_support == 1 &&
  3749. xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
  3750. udev->usb2_hw_lpm_capable = 1;
  3751. udev->l1_params.timeout = XHCI_L1_TIMEOUT;
  3752. udev->l1_params.besl = XHCI_DEFAULT_BESL;
  3753. if (xhci_check_usb2_port_capability(xhci, portnum,
  3754. XHCI_BLC))
  3755. udev->usb2_hw_lpm_besl_capable = 1;
  3756. ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
  3757. if (!ret)
  3758. udev->usb2_hw_lpm_enabled = 1;
  3759. }
  3760. }
  3761. return 0;
  3762. }
  3763. #else
  3764. int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
  3765. struct usb_device *udev, int enable)
  3766. {
  3767. return 0;
  3768. }
  3769. int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
  3770. {
  3771. return 0;
  3772. }
  3773. #endif /* CONFIG_PM_RUNTIME */
  3774. /*---------------------- USB 3.0 Link PM functions ------------------------*/
  3775. #ifdef CONFIG_PM
  3776. /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
  3777. static unsigned long long xhci_service_interval_to_ns(
  3778. struct usb_endpoint_descriptor *desc)
  3779. {
  3780. return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
  3781. }
  3782. static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
  3783. enum usb3_link_state state)
  3784. {
  3785. unsigned long long sel;
  3786. unsigned long long pel;
  3787. unsigned int max_sel_pel;
  3788. char *state_name;
  3789. switch (state) {
  3790. case USB3_LPM_U1:
  3791. /* Convert SEL and PEL stored in nanoseconds to microseconds */
  3792. sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
  3793. pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
  3794. max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
  3795. state_name = "U1";
  3796. break;
  3797. case USB3_LPM_U2:
  3798. sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
  3799. pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
  3800. max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
  3801. state_name = "U2";
  3802. break;
  3803. default:
  3804. dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
  3805. __func__);
  3806. return USB3_LPM_DISABLED;
  3807. }
  3808. if (sel <= max_sel_pel && pel <= max_sel_pel)
  3809. return USB3_LPM_DEVICE_INITIATED;
  3810. if (sel > max_sel_pel)
  3811. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3812. "due to long SEL %llu ms\n",
  3813. state_name, sel);
  3814. else
  3815. dev_dbg(&udev->dev, "Device-initiated %s disabled "
  3816. "due to long PEL %llu ms\n",
  3817. state_name, pel);
  3818. return USB3_LPM_DISABLED;
  3819. }
  3820. /* Returns the hub-encoded U1 timeout value.
  3821. * The U1 timeout should be the maximum of the following values:
  3822. * - For control endpoints, U1 system exit latency (SEL) * 3
  3823. * - For bulk endpoints, U1 SEL * 5
  3824. * - For interrupt endpoints:
  3825. * - Notification EPs, U1 SEL * 3
  3826. * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
  3827. * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
  3828. */
  3829. static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
  3830. struct usb_endpoint_descriptor *desc)
  3831. {
  3832. unsigned long long timeout_ns;
  3833. int ep_type;
  3834. int intr_type;
  3835. ep_type = usb_endpoint_type(desc);
  3836. switch (ep_type) {
  3837. case USB_ENDPOINT_XFER_CONTROL:
  3838. timeout_ns = udev->u1_params.sel * 3;
  3839. break;
  3840. case USB_ENDPOINT_XFER_BULK:
  3841. timeout_ns = udev->u1_params.sel * 5;
  3842. break;
  3843. case USB_ENDPOINT_XFER_INT:
  3844. intr_type = usb_endpoint_interrupt_type(desc);
  3845. if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
  3846. timeout_ns = udev->u1_params.sel * 3;
  3847. break;
  3848. }
  3849. /* Otherwise the calculation is the same as isoc eps */
  3850. case USB_ENDPOINT_XFER_ISOC:
  3851. timeout_ns = xhci_service_interval_to_ns(desc);
  3852. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
  3853. if (timeout_ns < udev->u1_params.sel * 2)
  3854. timeout_ns = udev->u1_params.sel * 2;
  3855. break;
  3856. default:
  3857. return 0;
  3858. }
  3859. /* The U1 timeout is encoded in 1us intervals. */
  3860. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
  3861. /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
  3862. if (timeout_ns == USB3_LPM_DISABLED)
  3863. timeout_ns++;
  3864. /* If the necessary timeout value is bigger than what we can set in the
  3865. * USB 3.0 hub, we have to disable hub-initiated U1.
  3866. */
  3867. if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
  3868. return timeout_ns;
  3869. dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
  3870. "due to long timeout %llu ms\n", timeout_ns);
  3871. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
  3872. }
  3873. /* Returns the hub-encoded U2 timeout value.
  3874. * The U2 timeout should be the maximum of:
  3875. * - 10 ms (to avoid the bandwidth impact on the scheduler)
  3876. * - largest bInterval of any active periodic endpoint (to avoid going
  3877. * into lower power link states between intervals).
  3878. * - the U2 Exit Latency of the device
  3879. */
  3880. static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
  3881. struct usb_endpoint_descriptor *desc)
  3882. {
  3883. unsigned long long timeout_ns;
  3884. unsigned long long u2_del_ns;
  3885. timeout_ns = 10 * 1000 * 1000;
  3886. if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
  3887. (xhci_service_interval_to_ns(desc) > timeout_ns))
  3888. timeout_ns = xhci_service_interval_to_ns(desc);
  3889. u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
  3890. if (u2_del_ns > timeout_ns)
  3891. timeout_ns = u2_del_ns;
  3892. /* The U2 timeout is encoded in 256us intervals */
  3893. timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
  3894. /* If the necessary timeout value is bigger than what we can set in the
  3895. * USB 3.0 hub, we have to disable hub-initiated U2.
  3896. */
  3897. if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
  3898. return timeout_ns;
  3899. dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
  3900. "due to long timeout %llu ms\n", timeout_ns);
  3901. return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
  3902. }
  3903. static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3904. struct usb_device *udev,
  3905. struct usb_endpoint_descriptor *desc,
  3906. enum usb3_link_state state,
  3907. u16 *timeout)
  3908. {
  3909. if (state == USB3_LPM_U1) {
  3910. if (xhci->quirks & XHCI_INTEL_HOST)
  3911. return xhci_calculate_intel_u1_timeout(udev, desc);
  3912. } else {
  3913. if (xhci->quirks & XHCI_INTEL_HOST)
  3914. return xhci_calculate_intel_u2_timeout(udev, desc);
  3915. }
  3916. return USB3_LPM_DISABLED;
  3917. }
  3918. static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
  3919. struct usb_device *udev,
  3920. struct usb_endpoint_descriptor *desc,
  3921. enum usb3_link_state state,
  3922. u16 *timeout)
  3923. {
  3924. u16 alt_timeout;
  3925. alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
  3926. desc, state, timeout);
  3927. /* If we found we can't enable hub-initiated LPM, or
  3928. * the U1 or U2 exit latency was too high to allow
  3929. * device-initiated LPM as well, just stop searching.
  3930. */
  3931. if (alt_timeout == USB3_LPM_DISABLED ||
  3932. alt_timeout == USB3_LPM_DEVICE_INITIATED) {
  3933. *timeout = alt_timeout;
  3934. return -E2BIG;
  3935. }
  3936. if (alt_timeout > *timeout)
  3937. *timeout = alt_timeout;
  3938. return 0;
  3939. }
  3940. static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
  3941. struct usb_device *udev,
  3942. struct usb_host_interface *alt,
  3943. enum usb3_link_state state,
  3944. u16 *timeout)
  3945. {
  3946. int j;
  3947. for (j = 0; j < alt->desc.bNumEndpoints; j++) {
  3948. if (xhci_update_timeout_for_endpoint(xhci, udev,
  3949. &alt->endpoint[j].desc, state, timeout))
  3950. return -E2BIG;
  3951. continue;
  3952. }
  3953. return 0;
  3954. }
  3955. static int xhci_check_intel_tier_policy(struct usb_device *udev,
  3956. enum usb3_link_state state)
  3957. {
  3958. struct usb_device *parent;
  3959. unsigned int num_hubs;
  3960. if (state == USB3_LPM_U2)
  3961. return 0;
  3962. /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
  3963. for (parent = udev->parent, num_hubs = 0; parent->parent;
  3964. parent = parent->parent)
  3965. num_hubs++;
  3966. if (num_hubs < 2)
  3967. return 0;
  3968. dev_dbg(&udev->dev, "Disabling U1 link state for device"
  3969. " below second-tier hub.\n");
  3970. dev_dbg(&udev->dev, "Plug device into first-tier hub "
  3971. "to decrease power consumption.\n");
  3972. return -E2BIG;
  3973. }
  3974. static int xhci_check_tier_policy(struct xhci_hcd *xhci,
  3975. struct usb_device *udev,
  3976. enum usb3_link_state state)
  3977. {
  3978. if (xhci->quirks & XHCI_INTEL_HOST)
  3979. return xhci_check_intel_tier_policy(udev, state);
  3980. return -EINVAL;
  3981. }
  3982. /* Returns the U1 or U2 timeout that should be enabled.
  3983. * If the tier check or timeout setting functions return with a non-zero exit
  3984. * code, that means the timeout value has been finalized and we shouldn't look
  3985. * at any more endpoints.
  3986. */
  3987. static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
  3988. struct usb_device *udev, enum usb3_link_state state)
  3989. {
  3990. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  3991. struct usb_host_config *config;
  3992. char *state_name;
  3993. int i;
  3994. u16 timeout = USB3_LPM_DISABLED;
  3995. if (state == USB3_LPM_U1)
  3996. state_name = "U1";
  3997. else if (state == USB3_LPM_U2)
  3998. state_name = "U2";
  3999. else {
  4000. dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
  4001. state);
  4002. return timeout;
  4003. }
  4004. if (xhci_check_tier_policy(xhci, udev, state) < 0)
  4005. return timeout;
  4006. /* Gather some information about the currently installed configuration
  4007. * and alternate interface settings.
  4008. */
  4009. if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
  4010. state, &timeout))
  4011. return timeout;
  4012. config = udev->actconfig;
  4013. if (!config)
  4014. return timeout;
  4015. for (i = 0; i < USB_MAXINTERFACES; i++) {
  4016. struct usb_driver *driver;
  4017. struct usb_interface *intf = config->interface[i];
  4018. if (!intf)
  4019. continue;
  4020. /* Check if any currently bound drivers want hub-initiated LPM
  4021. * disabled.
  4022. */
  4023. if (intf->dev.driver) {
  4024. driver = to_usb_driver(intf->dev.driver);
  4025. if (driver && driver->disable_hub_initiated_lpm) {
  4026. dev_dbg(&udev->dev, "Hub-initiated %s disabled "
  4027. "at request of driver %s\n",
  4028. state_name, driver->name);
  4029. return xhci_get_timeout_no_hub_lpm(udev, state);
  4030. }
  4031. }
  4032. /* Not sure how this could happen... */
  4033. if (!intf->cur_altsetting)
  4034. continue;
  4035. if (xhci_update_timeout_for_interface(xhci, udev,
  4036. intf->cur_altsetting,
  4037. state, &timeout))
  4038. return timeout;
  4039. }
  4040. return timeout;
  4041. }
  4042. static int calculate_max_exit_latency(struct usb_device *udev,
  4043. enum usb3_link_state state_changed,
  4044. u16 hub_encoded_timeout)
  4045. {
  4046. unsigned long long u1_mel_us = 0;
  4047. unsigned long long u2_mel_us = 0;
  4048. unsigned long long mel_us = 0;
  4049. bool disabling_u1;
  4050. bool disabling_u2;
  4051. bool enabling_u1;
  4052. bool enabling_u2;
  4053. disabling_u1 = (state_changed == USB3_LPM_U1 &&
  4054. hub_encoded_timeout == USB3_LPM_DISABLED);
  4055. disabling_u2 = (state_changed == USB3_LPM_U2 &&
  4056. hub_encoded_timeout == USB3_LPM_DISABLED);
  4057. enabling_u1 = (state_changed == USB3_LPM_U1 &&
  4058. hub_encoded_timeout != USB3_LPM_DISABLED);
  4059. enabling_u2 = (state_changed == USB3_LPM_U2 &&
  4060. hub_encoded_timeout != USB3_LPM_DISABLED);
  4061. /* If U1 was already enabled and we're not disabling it,
  4062. * or we're going to enable U1, account for the U1 max exit latency.
  4063. */
  4064. if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
  4065. enabling_u1)
  4066. u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
  4067. if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
  4068. enabling_u2)
  4069. u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
  4070. if (u1_mel_us > u2_mel_us)
  4071. mel_us = u1_mel_us;
  4072. else
  4073. mel_us = u2_mel_us;
  4074. /* xHCI host controller max exit latency field is only 16 bits wide. */
  4075. if (mel_us > MAX_EXIT) {
  4076. dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
  4077. "is too big.\n", mel_us);
  4078. return -E2BIG;
  4079. }
  4080. return mel_us;
  4081. }
  4082. /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
  4083. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4084. struct usb_device *udev, enum usb3_link_state state)
  4085. {
  4086. struct xhci_hcd *xhci;
  4087. u16 hub_encoded_timeout;
  4088. int mel;
  4089. int ret;
  4090. xhci = hcd_to_xhci(hcd);
  4091. /* The LPM timeout values are pretty host-controller specific, so don't
  4092. * enable hub-initiated timeouts unless the vendor has provided
  4093. * information about their timeout algorithm.
  4094. */
  4095. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  4096. !xhci->devs[udev->slot_id])
  4097. return USB3_LPM_DISABLED;
  4098. hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
  4099. mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
  4100. if (mel < 0) {
  4101. /* Max Exit Latency is too big, disable LPM. */
  4102. hub_encoded_timeout = USB3_LPM_DISABLED;
  4103. mel = 0;
  4104. }
  4105. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  4106. if (ret)
  4107. return ret;
  4108. return hub_encoded_timeout;
  4109. }
  4110. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4111. struct usb_device *udev, enum usb3_link_state state)
  4112. {
  4113. struct xhci_hcd *xhci;
  4114. u16 mel;
  4115. int ret;
  4116. xhci = hcd_to_xhci(hcd);
  4117. if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
  4118. !xhci->devs[udev->slot_id])
  4119. return 0;
  4120. mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
  4121. ret = xhci_change_max_exit_latency(xhci, udev, mel);
  4122. if (ret)
  4123. return ret;
  4124. return 0;
  4125. }
  4126. #else /* CONFIG_PM */
  4127. int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4128. struct usb_device *udev, enum usb3_link_state state)
  4129. {
  4130. return USB3_LPM_DISABLED;
  4131. }
  4132. int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
  4133. struct usb_device *udev, enum usb3_link_state state)
  4134. {
  4135. return 0;
  4136. }
  4137. #endif /* CONFIG_PM */
  4138. /*-------------------------------------------------------------------------*/
  4139. /* Once a hub descriptor is fetched for a device, we need to update the xHC's
  4140. * internal data structures for the device.
  4141. */
  4142. int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
  4143. struct usb_tt *tt, gfp_t mem_flags)
  4144. {
  4145. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4146. struct xhci_virt_device *vdev;
  4147. struct xhci_command *config_cmd;
  4148. struct xhci_input_control_ctx *ctrl_ctx;
  4149. struct xhci_slot_ctx *slot_ctx;
  4150. unsigned long flags;
  4151. unsigned think_time;
  4152. int ret;
  4153. /* Ignore root hubs */
  4154. if (!hdev->parent)
  4155. return 0;
  4156. vdev = xhci->devs[hdev->slot_id];
  4157. if (!vdev) {
  4158. xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
  4159. return -EINVAL;
  4160. }
  4161. config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
  4162. if (!config_cmd) {
  4163. xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
  4164. return -ENOMEM;
  4165. }
  4166. ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
  4167. if (!ctrl_ctx) {
  4168. xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
  4169. __func__);
  4170. xhci_free_command(xhci, config_cmd);
  4171. return -ENOMEM;
  4172. }
  4173. spin_lock_irqsave(&xhci->lock, flags);
  4174. if (hdev->speed == USB_SPEED_HIGH &&
  4175. xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
  4176. xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
  4177. xhci_free_command(xhci, config_cmd);
  4178. spin_unlock_irqrestore(&xhci->lock, flags);
  4179. return -ENOMEM;
  4180. }
  4181. xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
  4182. ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
  4183. slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
  4184. slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
  4185. if (tt->multi)
  4186. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  4187. if (xhci->hci_version > 0x95) {
  4188. xhci_dbg(xhci, "xHCI version %x needs hub "
  4189. "TT think time and number of ports\n",
  4190. (unsigned int) xhci->hci_version);
  4191. slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
  4192. /* Set TT think time - convert from ns to FS bit times.
  4193. * 0 = 8 FS bit times, 1 = 16 FS bit times,
  4194. * 2 = 24 FS bit times, 3 = 32 FS bit times.
  4195. *
  4196. * xHCI 1.0: this field shall be 0 if the device is not a
  4197. * High-spped hub.
  4198. */
  4199. think_time = tt->think_time;
  4200. if (think_time != 0)
  4201. think_time = (think_time / 666) - 1;
  4202. if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
  4203. slot_ctx->tt_info |=
  4204. cpu_to_le32(TT_THINK_TIME(think_time));
  4205. } else {
  4206. xhci_dbg(xhci, "xHCI version %x doesn't need hub "
  4207. "TT think time or number of ports\n",
  4208. (unsigned int) xhci->hci_version);
  4209. }
  4210. slot_ctx->dev_state = 0;
  4211. spin_unlock_irqrestore(&xhci->lock, flags);
  4212. xhci_dbg(xhci, "Set up %s for hub device.\n",
  4213. (xhci->hci_version > 0x95) ?
  4214. "configure endpoint" : "evaluate context");
  4215. xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
  4216. xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
  4217. /* Issue and wait for the configure endpoint or
  4218. * evaluate context command.
  4219. */
  4220. if (xhci->hci_version > 0x95)
  4221. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4222. false, false);
  4223. else
  4224. ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
  4225. true, false);
  4226. xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
  4227. xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
  4228. xhci_free_command(xhci, config_cmd);
  4229. return ret;
  4230. }
  4231. int xhci_get_frame(struct usb_hcd *hcd)
  4232. {
  4233. struct xhci_hcd *xhci = hcd_to_xhci(hcd);
  4234. /* EHCI mods by the periodic size. Why? */
  4235. return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
  4236. }
  4237. int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
  4238. {
  4239. struct xhci_hcd *xhci;
  4240. struct device *dev = hcd->self.controller;
  4241. int retval;
  4242. u32 temp;
  4243. /* Accept arbitrarily long scatter-gather lists */
  4244. hcd->self.sg_tablesize = ~0;
  4245. /* XHCI controllers don't stop the ep queue on short packets :| */
  4246. hcd->self.no_stop_on_short = 1;
  4247. if (usb_hcd_is_primary_hcd(hcd)) {
  4248. xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
  4249. if (!xhci)
  4250. return -ENOMEM;
  4251. *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
  4252. xhci->main_hcd = hcd;
  4253. /* Mark the first roothub as being USB 2.0.
  4254. * The xHCI driver will register the USB 3.0 roothub.
  4255. */
  4256. hcd->speed = HCD_USB2;
  4257. hcd->self.root_hub->speed = USB_SPEED_HIGH;
  4258. /*
  4259. * USB 2.0 roothub under xHCI has an integrated TT,
  4260. * (rate matching hub) as opposed to having an OHCI/UHCI
  4261. * companion controller.
  4262. */
  4263. hcd->has_tt = 1;
  4264. } else {
  4265. /* xHCI private pointer was set in xhci_pci_probe for the second
  4266. * registered roothub.
  4267. */
  4268. xhci = hcd_to_xhci(hcd);
  4269. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4270. if (HCC_64BIT_ADDR(temp)) {
  4271. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4272. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4273. } else {
  4274. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4275. }
  4276. return 0;
  4277. }
  4278. xhci->cap_regs = hcd->regs;
  4279. xhci->op_regs = hcd->regs +
  4280. HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
  4281. xhci->run_regs = hcd->regs +
  4282. (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
  4283. /* Cache read-only capability registers */
  4284. xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
  4285. xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
  4286. xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
  4287. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
  4288. xhci->hci_version = HC_VERSION(xhci->hcc_params);
  4289. xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4290. xhci_print_registers(xhci);
  4291. get_quirks(dev, xhci);
  4292. /* In xhci controllers which follow xhci 1.0 spec gives a spurious
  4293. * success event after a short transfer. This quirk will ignore such
  4294. * spurious event.
  4295. */
  4296. if (xhci->hci_version > 0x96)
  4297. xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
  4298. /* Make sure the HC is halted. */
  4299. retval = xhci_halt(xhci);
  4300. if (retval)
  4301. goto error;
  4302. xhci_dbg(xhci, "Resetting HCD\n");
  4303. /* Reset the internal HC memory state and registers. */
  4304. retval = xhci_reset(xhci);
  4305. if (retval)
  4306. goto error;
  4307. xhci_dbg(xhci, "Reset complete\n");
  4308. temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
  4309. if (HCC_64BIT_ADDR(temp)) {
  4310. xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
  4311. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
  4312. } else {
  4313. dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
  4314. }
  4315. xhci_dbg(xhci, "Calling HCD init\n");
  4316. /* Initialize HCD and host controller data structures. */
  4317. retval = xhci_init(hcd);
  4318. if (retval)
  4319. goto error;
  4320. xhci_dbg(xhci, "Called HCD init\n");
  4321. return 0;
  4322. error:
  4323. kfree(xhci);
  4324. return retval;
  4325. }
  4326. MODULE_DESCRIPTION(DRIVER_DESC);
  4327. MODULE_AUTHOR(DRIVER_AUTHOR);
  4328. MODULE_LICENSE("GPL");
  4329. static int __init xhci_hcd_init(void)
  4330. {
  4331. int retval;
  4332. retval = xhci_register_pci();
  4333. if (retval < 0) {
  4334. pr_debug("Problem registering PCI driver.\n");
  4335. return retval;
  4336. }
  4337. retval = xhci_register_plat();
  4338. if (retval < 0) {
  4339. pr_debug("Problem registering platform driver.\n");
  4340. goto unreg_pci;
  4341. }
  4342. /*
  4343. * Check the compiler generated sizes of structures that must be laid
  4344. * out in specific ways for hardware access.
  4345. */
  4346. BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
  4347. BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
  4348. BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
  4349. /* xhci_device_control has eight fields, and also
  4350. * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
  4351. */
  4352. BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
  4353. BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
  4354. BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
  4355. BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
  4356. BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
  4357. /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
  4358. BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
  4359. return 0;
  4360. unreg_pci:
  4361. xhci_unregister_pci();
  4362. return retval;
  4363. }
  4364. module_init(xhci_hcd_init);
  4365. static void __exit xhci_hcd_cleanup(void)
  4366. {
  4367. xhci_unregister_pci();
  4368. xhci_unregister_plat();
  4369. }
  4370. module_exit(xhci_hcd_cleanup);