elevator.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. /*
  2. * linux/drivers/block/elevator.c
  3. *
  4. * Block device elevator/IO-scheduler.
  5. *
  6. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. *
  8. * 30042000 Jens Axboe <axboe@suse.de> :
  9. *
  10. * Split the elevator a bit so that it is possible to choose a different
  11. * one or even write a new "plug in". There are three pieces:
  12. * - elevator_fn, inserts a new request in the queue list
  13. * - elevator_merge_fn, decides whether a new buffer can be merged with
  14. * an existing request
  15. * - elevator_dequeue_fn, called when a request is taken off the active list
  16. *
  17. * 20082000 Dave Jones <davej@suse.de> :
  18. * Removed tests for max-bomb-segments, which was breaking elvtune
  19. * when run without -bN
  20. *
  21. * Jens:
  22. * - Rework again to work with bio instead of buffer_heads
  23. * - loose bi_dev comparisons, partition handling is right now
  24. * - completely modularize elevator setup and teardown
  25. *
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/fs.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/elevator.h>
  31. #include <linux/bio.h>
  32. #include <linux/config.h>
  33. #include <linux/module.h>
  34. #include <linux/slab.h>
  35. #include <linux/init.h>
  36. #include <linux/compiler.h>
  37. #include <linux/delay.h>
  38. #include <asm/uaccess.h>
  39. static DEFINE_SPINLOCK(elv_list_lock);
  40. static LIST_HEAD(elv_list);
  41. /*
  42. * can we safely merge with this request?
  43. */
  44. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  45. {
  46. if (!rq_mergeable(rq))
  47. return 0;
  48. /*
  49. * different data direction or already started, don't merge
  50. */
  51. if (bio_data_dir(bio) != rq_data_dir(rq))
  52. return 0;
  53. /*
  54. * same device and no special stuff set, merge is ok
  55. */
  56. if (rq->rq_disk == bio->bi_bdev->bd_disk &&
  57. !rq->waiting && !rq->special)
  58. return 1;
  59. return 0;
  60. }
  61. EXPORT_SYMBOL(elv_rq_merge_ok);
  62. inline int elv_try_merge(struct request *__rq, struct bio *bio)
  63. {
  64. int ret = ELEVATOR_NO_MERGE;
  65. /*
  66. * we can merge and sequence is ok, check if it's possible
  67. */
  68. if (elv_rq_merge_ok(__rq, bio)) {
  69. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  70. ret = ELEVATOR_BACK_MERGE;
  71. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  72. ret = ELEVATOR_FRONT_MERGE;
  73. }
  74. return ret;
  75. }
  76. EXPORT_SYMBOL(elv_try_merge);
  77. static struct elevator_type *elevator_find(const char *name)
  78. {
  79. struct elevator_type *e = NULL;
  80. struct list_head *entry;
  81. list_for_each(entry, &elv_list) {
  82. struct elevator_type *__e;
  83. __e = list_entry(entry, struct elevator_type, list);
  84. if (!strcmp(__e->elevator_name, name)) {
  85. e = __e;
  86. break;
  87. }
  88. }
  89. return e;
  90. }
  91. static void elevator_put(struct elevator_type *e)
  92. {
  93. module_put(e->elevator_owner);
  94. }
  95. static struct elevator_type *elevator_get(const char *name)
  96. {
  97. struct elevator_type *e;
  98. spin_lock_irq(&elv_list_lock);
  99. e = elevator_find(name);
  100. if (e && !try_module_get(e->elevator_owner))
  101. e = NULL;
  102. spin_unlock_irq(&elv_list_lock);
  103. return e;
  104. }
  105. static int elevator_attach(request_queue_t *q, struct elevator_type *e,
  106. struct elevator_queue *eq)
  107. {
  108. int ret = 0;
  109. memset(eq, 0, sizeof(*eq));
  110. eq->ops = &e->ops;
  111. eq->elevator_type = e;
  112. q->elevator = eq;
  113. if (eq->ops->elevator_init_fn)
  114. ret = eq->ops->elevator_init_fn(q, eq);
  115. return ret;
  116. }
  117. static char chosen_elevator[16];
  118. static void elevator_setup_default(void)
  119. {
  120. struct elevator_type *e;
  121. /*
  122. * If default has not been set, use the compiled-in selection.
  123. */
  124. if (!chosen_elevator[0])
  125. strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED);
  126. /*
  127. * If the given scheduler is not available, fall back to no-op.
  128. */
  129. if (!(e = elevator_find(chosen_elevator)))
  130. strcpy(chosen_elevator, "noop");
  131. elevator_put(e);
  132. }
  133. static int __init elevator_setup(char *str)
  134. {
  135. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  136. return 0;
  137. }
  138. __setup("elevator=", elevator_setup);
  139. int elevator_init(request_queue_t *q, char *name)
  140. {
  141. struct elevator_type *e = NULL;
  142. struct elevator_queue *eq;
  143. int ret = 0;
  144. INIT_LIST_HEAD(&q->queue_head);
  145. q->last_merge = NULL;
  146. q->end_sector = 0;
  147. q->boundary_rq = NULL;
  148. elevator_setup_default();
  149. if (!name)
  150. name = chosen_elevator;
  151. e = elevator_get(name);
  152. if (!e)
  153. return -EINVAL;
  154. eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
  155. if (!eq) {
  156. elevator_put(e->elevator_type);
  157. return -ENOMEM;
  158. }
  159. ret = elevator_attach(q, e, eq);
  160. if (ret) {
  161. kfree(eq);
  162. elevator_put(e->elevator_type);
  163. }
  164. return ret;
  165. }
  166. void elevator_exit(elevator_t *e)
  167. {
  168. if (e->ops->elevator_exit_fn)
  169. e->ops->elevator_exit_fn(e);
  170. elevator_put(e->elevator_type);
  171. e->elevator_type = NULL;
  172. kfree(e);
  173. }
  174. /*
  175. * Insert rq into dispatch queue of q. Queue lock must be held on
  176. * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be
  177. * appended to the dispatch queue. To be used by specific elevators.
  178. */
  179. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  180. {
  181. sector_t boundary;
  182. struct list_head *entry;
  183. if (q->last_merge == rq)
  184. q->last_merge = NULL;
  185. boundary = q->end_sector;
  186. list_for_each_prev(entry, &q->queue_head) {
  187. struct request *pos = list_entry_rq(entry);
  188. if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  189. break;
  190. if (rq->sector >= boundary) {
  191. if (pos->sector < boundary)
  192. continue;
  193. } else {
  194. if (pos->sector >= boundary)
  195. break;
  196. }
  197. if (rq->sector >= pos->sector)
  198. break;
  199. }
  200. list_add(&rq->queuelist, entry);
  201. }
  202. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  203. {
  204. elevator_t *e = q->elevator;
  205. int ret;
  206. if (q->last_merge) {
  207. ret = elv_try_merge(q->last_merge, bio);
  208. if (ret != ELEVATOR_NO_MERGE) {
  209. *req = q->last_merge;
  210. return ret;
  211. }
  212. }
  213. if (e->ops->elevator_merge_fn)
  214. return e->ops->elevator_merge_fn(q, req, bio);
  215. return ELEVATOR_NO_MERGE;
  216. }
  217. void elv_merged_request(request_queue_t *q, struct request *rq)
  218. {
  219. elevator_t *e = q->elevator;
  220. if (e->ops->elevator_merged_fn)
  221. e->ops->elevator_merged_fn(q, rq);
  222. q->last_merge = rq;
  223. }
  224. void elv_merge_requests(request_queue_t *q, struct request *rq,
  225. struct request *next)
  226. {
  227. elevator_t *e = q->elevator;
  228. if (e->ops->elevator_merge_req_fn)
  229. e->ops->elevator_merge_req_fn(q, rq, next);
  230. q->last_merge = rq;
  231. }
  232. void elv_requeue_request(request_queue_t *q, struct request *rq)
  233. {
  234. elevator_t *e = q->elevator;
  235. /*
  236. * it already went through dequeue, we need to decrement the
  237. * in_flight count again
  238. */
  239. if (blk_account_rq(rq)) {
  240. q->in_flight--;
  241. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  242. e->ops->elevator_deactivate_req_fn(q, rq);
  243. }
  244. rq->flags &= ~REQ_STARTED;
  245. /*
  246. * if this is the flush, requeue the original instead and drop the flush
  247. */
  248. if (rq->flags & REQ_BAR_FLUSH) {
  249. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  250. rq = rq->end_io_data;
  251. }
  252. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  253. }
  254. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  255. int plug)
  256. {
  257. if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  258. /*
  259. * barriers implicitly indicate back insertion
  260. */
  261. if (where == ELEVATOR_INSERT_SORT)
  262. where = ELEVATOR_INSERT_BACK;
  263. /*
  264. * this request is scheduling boundary, update end_sector
  265. */
  266. if (blk_fs_request(rq)) {
  267. q->end_sector = rq_end_sector(rq);
  268. q->boundary_rq = rq;
  269. }
  270. } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  271. where = ELEVATOR_INSERT_BACK;
  272. if (plug)
  273. blk_plug_device(q);
  274. rq->q = q;
  275. switch (where) {
  276. case ELEVATOR_INSERT_FRONT:
  277. rq->flags |= REQ_SOFTBARRIER;
  278. list_add(&rq->queuelist, &q->queue_head);
  279. break;
  280. case ELEVATOR_INSERT_BACK:
  281. rq->flags |= REQ_SOFTBARRIER;
  282. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  283. ;
  284. list_add_tail(&rq->queuelist, &q->queue_head);
  285. /*
  286. * We kick the queue here for the following reasons.
  287. * - The elevator might have returned NULL previously
  288. * to delay requests and returned them now. As the
  289. * queue wasn't empty before this request, ll_rw_blk
  290. * won't run the queue on return, resulting in hang.
  291. * - Usually, back inserted requests won't be merged
  292. * with anything. There's no point in delaying queue
  293. * processing.
  294. */
  295. blk_remove_plug(q);
  296. q->request_fn(q);
  297. break;
  298. case ELEVATOR_INSERT_SORT:
  299. BUG_ON(!blk_fs_request(rq));
  300. rq->flags |= REQ_SORTED;
  301. if (q->last_merge == NULL && rq_mergeable(rq))
  302. q->last_merge = rq;
  303. /*
  304. * Some ioscheds (cfq) run q->request_fn directly, so
  305. * rq cannot be accessed after calling
  306. * elevator_add_req_fn.
  307. */
  308. q->elevator->ops->elevator_add_req_fn(q, rq);
  309. break;
  310. default:
  311. printk(KERN_ERR "%s: bad insertion point %d\n",
  312. __FUNCTION__, where);
  313. BUG();
  314. }
  315. if (blk_queue_plugged(q)) {
  316. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  317. - q->in_flight;
  318. if (nrq >= q->unplug_thresh)
  319. __generic_unplug_device(q);
  320. }
  321. }
  322. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  323. int plug)
  324. {
  325. unsigned long flags;
  326. spin_lock_irqsave(q->queue_lock, flags);
  327. __elv_add_request(q, rq, where, plug);
  328. spin_unlock_irqrestore(q->queue_lock, flags);
  329. }
  330. static inline struct request *__elv_next_request(request_queue_t *q)
  331. {
  332. struct request *rq;
  333. if (unlikely(list_empty(&q->queue_head) &&
  334. !q->elevator->ops->elevator_dispatch_fn(q, 0)))
  335. return NULL;
  336. rq = list_entry_rq(q->queue_head.next);
  337. /*
  338. * if this is a barrier write and the device has to issue a
  339. * flush sequence to support it, check how far we are
  340. */
  341. if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
  342. BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
  343. if (q->ordered == QUEUE_ORDERED_FLUSH &&
  344. !blk_barrier_preflush(rq))
  345. rq = blk_start_pre_flush(q, rq);
  346. }
  347. return rq;
  348. }
  349. struct request *elv_next_request(request_queue_t *q)
  350. {
  351. struct request *rq;
  352. int ret;
  353. while ((rq = __elv_next_request(q)) != NULL) {
  354. if (!(rq->flags & REQ_STARTED)) {
  355. elevator_t *e = q->elevator;
  356. /*
  357. * This is the first time the device driver
  358. * sees this request (possibly after
  359. * requeueing). Notify IO scheduler.
  360. */
  361. if (blk_sorted_rq(rq) &&
  362. e->ops->elevator_activate_req_fn)
  363. e->ops->elevator_activate_req_fn(q, rq);
  364. /*
  365. * just mark as started even if we don't start
  366. * it, a request that has been delayed should
  367. * not be passed by new incoming requests
  368. */
  369. rq->flags |= REQ_STARTED;
  370. }
  371. if (!q->boundary_rq || q->boundary_rq == rq) {
  372. q->end_sector = rq_end_sector(rq);
  373. q->boundary_rq = NULL;
  374. }
  375. if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
  376. break;
  377. ret = q->prep_rq_fn(q, rq);
  378. if (ret == BLKPREP_OK) {
  379. break;
  380. } else if (ret == BLKPREP_DEFER) {
  381. /*
  382. * the request may have been (partially) prepped.
  383. * we need to keep this request in the front to
  384. * avoid resource deadlock. REQ_STARTED will
  385. * prevent other fs requests from passing this one.
  386. */
  387. rq = NULL;
  388. break;
  389. } else if (ret == BLKPREP_KILL) {
  390. int nr_bytes = rq->hard_nr_sectors << 9;
  391. if (!nr_bytes)
  392. nr_bytes = rq->data_len;
  393. blkdev_dequeue_request(rq);
  394. rq->flags |= REQ_QUIET;
  395. end_that_request_chunk(rq, 0, nr_bytes);
  396. end_that_request_last(rq);
  397. } else {
  398. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  399. ret);
  400. break;
  401. }
  402. }
  403. return rq;
  404. }
  405. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  406. {
  407. BUG_ON(list_empty(&rq->queuelist));
  408. list_del_init(&rq->queuelist);
  409. /*
  410. * the time frame between a request being removed from the lists
  411. * and to it is freed is accounted as io that is in progress at
  412. * the driver side.
  413. */
  414. if (blk_account_rq(rq))
  415. q->in_flight++;
  416. }
  417. int elv_queue_empty(request_queue_t *q)
  418. {
  419. elevator_t *e = q->elevator;
  420. if (!list_empty(&q->queue_head))
  421. return 0;
  422. if (e->ops->elevator_queue_empty_fn)
  423. return e->ops->elevator_queue_empty_fn(q);
  424. return 1;
  425. }
  426. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  427. {
  428. struct list_head *next;
  429. elevator_t *e = q->elevator;
  430. if (e->ops->elevator_latter_req_fn)
  431. return e->ops->elevator_latter_req_fn(q, rq);
  432. next = rq->queuelist.next;
  433. if (next != &q->queue_head && next != &rq->queuelist)
  434. return list_entry_rq(next);
  435. return NULL;
  436. }
  437. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  438. {
  439. struct list_head *prev;
  440. elevator_t *e = q->elevator;
  441. if (e->ops->elevator_former_req_fn)
  442. return e->ops->elevator_former_req_fn(q, rq);
  443. prev = rq->queuelist.prev;
  444. if (prev != &q->queue_head && prev != &rq->queuelist)
  445. return list_entry_rq(prev);
  446. return NULL;
  447. }
  448. int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
  449. gfp_t gfp_mask)
  450. {
  451. elevator_t *e = q->elevator;
  452. if (e->ops->elevator_set_req_fn)
  453. return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
  454. rq->elevator_private = NULL;
  455. return 0;
  456. }
  457. void elv_put_request(request_queue_t *q, struct request *rq)
  458. {
  459. elevator_t *e = q->elevator;
  460. if (e->ops->elevator_put_req_fn)
  461. e->ops->elevator_put_req_fn(q, rq);
  462. }
  463. int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
  464. {
  465. elevator_t *e = q->elevator;
  466. if (e->ops->elevator_may_queue_fn)
  467. return e->ops->elevator_may_queue_fn(q, rw, bio);
  468. return ELV_MQUEUE_MAY;
  469. }
  470. void elv_completed_request(request_queue_t *q, struct request *rq)
  471. {
  472. elevator_t *e = q->elevator;
  473. /*
  474. * request is released from the driver, io must be done
  475. */
  476. if (blk_account_rq(rq)) {
  477. q->in_flight--;
  478. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  479. e->ops->elevator_completed_req_fn(q, rq);
  480. }
  481. }
  482. int elv_register_queue(struct request_queue *q)
  483. {
  484. elevator_t *e = q->elevator;
  485. e->kobj.parent = kobject_get(&q->kobj);
  486. if (!e->kobj.parent)
  487. return -EBUSY;
  488. snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  489. e->kobj.ktype = e->elevator_type->elevator_ktype;
  490. return kobject_register(&e->kobj);
  491. }
  492. void elv_unregister_queue(struct request_queue *q)
  493. {
  494. if (q) {
  495. elevator_t *e = q->elevator;
  496. kobject_unregister(&e->kobj);
  497. kobject_put(&q->kobj);
  498. }
  499. }
  500. int elv_register(struct elevator_type *e)
  501. {
  502. spin_lock_irq(&elv_list_lock);
  503. if (elevator_find(e->elevator_name))
  504. BUG();
  505. list_add_tail(&e->list, &elv_list);
  506. spin_unlock_irq(&elv_list_lock);
  507. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  508. if (!strcmp(e->elevator_name, chosen_elevator))
  509. printk(" (default)");
  510. printk("\n");
  511. return 0;
  512. }
  513. EXPORT_SYMBOL_GPL(elv_register);
  514. void elv_unregister(struct elevator_type *e)
  515. {
  516. struct task_struct *g, *p;
  517. /*
  518. * Iterate every thread in the process to remove the io contexts.
  519. */
  520. read_lock(&tasklist_lock);
  521. do_each_thread(g, p) {
  522. struct io_context *ioc = p->io_context;
  523. if (ioc && ioc->cic) {
  524. ioc->cic->exit(ioc->cic);
  525. ioc->cic->dtor(ioc->cic);
  526. ioc->cic = NULL;
  527. }
  528. if (ioc && ioc->aic) {
  529. ioc->aic->exit(ioc->aic);
  530. ioc->aic->dtor(ioc->aic);
  531. ioc->aic = NULL;
  532. }
  533. } while_each_thread(g, p);
  534. read_unlock(&tasklist_lock);
  535. spin_lock_irq(&elv_list_lock);
  536. list_del_init(&e->list);
  537. spin_unlock_irq(&elv_list_lock);
  538. }
  539. EXPORT_SYMBOL_GPL(elv_unregister);
  540. /*
  541. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  542. * we don't free the old io scheduler, before we have allocated what we
  543. * need for the new one. this way we have a chance of going back to the old
  544. * one, if the new one fails init for some reason.
  545. */
  546. static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  547. {
  548. elevator_t *old_elevator, *e;
  549. /*
  550. * Allocate new elevator
  551. */
  552. e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  553. if (!e)
  554. goto error;
  555. /*
  556. * Turn on BYPASS and drain all requests w/ elevator private data
  557. */
  558. spin_lock_irq(q->queue_lock);
  559. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  560. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  561. ;
  562. while (q->rq.elvpriv) {
  563. spin_unlock_irq(q->queue_lock);
  564. msleep(10);
  565. spin_lock_irq(q->queue_lock);
  566. }
  567. spin_unlock_irq(q->queue_lock);
  568. /*
  569. * unregister old elevator data
  570. */
  571. elv_unregister_queue(q);
  572. old_elevator = q->elevator;
  573. /*
  574. * attach and start new elevator
  575. */
  576. if (elevator_attach(q, new_e, e))
  577. goto fail;
  578. if (elv_register_queue(q))
  579. goto fail_register;
  580. /*
  581. * finally exit old elevator and turn off BYPASS.
  582. */
  583. elevator_exit(old_elevator);
  584. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  585. return;
  586. fail_register:
  587. /*
  588. * switch failed, exit the new io scheduler and reattach the old
  589. * one again (along with re-adding the sysfs dir)
  590. */
  591. elevator_exit(e);
  592. e = NULL;
  593. fail:
  594. q->elevator = old_elevator;
  595. elv_register_queue(q);
  596. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  597. kfree(e);
  598. error:
  599. elevator_put(new_e);
  600. printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
  601. }
  602. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  603. {
  604. char elevator_name[ELV_NAME_MAX];
  605. struct elevator_type *e;
  606. memset(elevator_name, 0, sizeof(elevator_name));
  607. strncpy(elevator_name, name, sizeof(elevator_name));
  608. if (elevator_name[strlen(elevator_name) - 1] == '\n')
  609. elevator_name[strlen(elevator_name) - 1] = '\0';
  610. e = elevator_get(elevator_name);
  611. if (!e) {
  612. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  613. return -EINVAL;
  614. }
  615. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  616. elevator_put(e);
  617. return count;
  618. }
  619. elevator_switch(q, e);
  620. return count;
  621. }
  622. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  623. {
  624. elevator_t *e = q->elevator;
  625. struct elevator_type *elv = e->elevator_type;
  626. struct list_head *entry;
  627. int len = 0;
  628. spin_lock_irq(q->queue_lock);
  629. list_for_each(entry, &elv_list) {
  630. struct elevator_type *__e;
  631. __e = list_entry(entry, struct elevator_type, list);
  632. if (!strcmp(elv->elevator_name, __e->elevator_name))
  633. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  634. else
  635. len += sprintf(name+len, "%s ", __e->elevator_name);
  636. }
  637. spin_unlock_irq(q->queue_lock);
  638. len += sprintf(len+name, "\n");
  639. return len;
  640. }
  641. EXPORT_SYMBOL(elv_dispatch_sort);
  642. EXPORT_SYMBOL(elv_add_request);
  643. EXPORT_SYMBOL(__elv_add_request);
  644. EXPORT_SYMBOL(elv_requeue_request);
  645. EXPORT_SYMBOL(elv_next_request);
  646. EXPORT_SYMBOL(elv_dequeue_request);
  647. EXPORT_SYMBOL(elv_queue_empty);
  648. EXPORT_SYMBOL(elv_completed_request);
  649. EXPORT_SYMBOL(elevator_exit);
  650. EXPORT_SYMBOL(elevator_init);