sched.c 171 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/suspend.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/acct.h>
  52. #include <linux/kprobes.h>
  53. #include <asm/tlb.h>
  54. #include <asm/unistd.h>
  55. /*
  56. * Convert user-nice values [ -20 ... 0 ... 19 ]
  57. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  58. * and back.
  59. */
  60. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  61. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  62. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  63. /*
  64. * 'User priority' is the nice value converted to something we
  65. * can work with better when scaling various scheduler parameters,
  66. * it's a [ 0 ... 39 ] range.
  67. */
  68. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  69. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  70. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  71. /*
  72. * Some helpers for converting nanosecond timing to jiffy resolution
  73. */
  74. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  75. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  76. /*
  77. * These are the 'tuning knobs' of the scheduler:
  78. *
  79. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  80. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  81. * Timeslices get refilled after they expire.
  82. */
  83. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  84. #define DEF_TIMESLICE (100 * HZ / 1000)
  85. #define ON_RUNQUEUE_WEIGHT 30
  86. #define CHILD_PENALTY 95
  87. #define PARENT_PENALTY 100
  88. #define EXIT_WEIGHT 3
  89. #define PRIO_BONUS_RATIO 25
  90. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  91. #define INTERACTIVE_DELTA 2
  92. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  93. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  94. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  95. /*
  96. * If a task is 'interactive' then we reinsert it in the active
  97. * array after it has expired its current timeslice. (it will not
  98. * continue to run immediately, it will still roundrobin with
  99. * other interactive tasks.)
  100. *
  101. * This part scales the interactivity limit depending on niceness.
  102. *
  103. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  104. * Here are a few examples of different nice levels:
  105. *
  106. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  107. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  108. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  109. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  110. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  111. *
  112. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  113. * priority range a task can explore, a value of '1' means the
  114. * task is rated interactive.)
  115. *
  116. * Ie. nice +19 tasks can never get 'interactive' enough to be
  117. * reinserted into the active array. And only heavily CPU-hog nice -20
  118. * tasks will be expired. Default nice 0 tasks are somewhere between,
  119. * it takes some effort for them to get interactive, but it's not
  120. * too hard.
  121. */
  122. #define CURRENT_BONUS(p) \
  123. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  124. MAX_SLEEP_AVG)
  125. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  126. #ifdef CONFIG_SMP
  127. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  128. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  129. num_online_cpus())
  130. #else
  131. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  132. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  133. #endif
  134. #define SCALE(v1,v1_max,v2_max) \
  135. (v1) * (v2_max) / (v1_max)
  136. #define DELTA(p) \
  137. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  138. INTERACTIVE_DELTA)
  139. #define TASK_INTERACTIVE(p) \
  140. ((p)->prio <= (p)->static_prio - DELTA(p))
  141. #define INTERACTIVE_SLEEP(p) \
  142. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  143. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  144. #define TASK_PREEMPTS_CURR(p, rq) \
  145. ((p)->prio < (rq)->curr->prio)
  146. /*
  147. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  148. * to time slice values: [800ms ... 100ms ... 5ms]
  149. *
  150. * The higher a thread's priority, the bigger timeslices
  151. * it gets during one round of execution. But even the lowest
  152. * priority thread gets MIN_TIMESLICE worth of execution time.
  153. */
  154. #define SCALE_PRIO(x, prio) \
  155. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  156. static unsigned int static_prio_timeslice(int static_prio)
  157. {
  158. if (static_prio < NICE_TO_PRIO(0))
  159. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  160. else
  161. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  162. }
  163. static inline unsigned int task_timeslice(struct task_struct *p)
  164. {
  165. return static_prio_timeslice(p->static_prio);
  166. }
  167. /*
  168. * These are the runqueue data structures:
  169. */
  170. struct prio_array {
  171. unsigned int nr_active;
  172. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  173. struct list_head queue[MAX_PRIO];
  174. };
  175. /*
  176. * This is the main, per-CPU runqueue data structure.
  177. *
  178. * Locking rule: those places that want to lock multiple runqueues
  179. * (such as the load balancing or the thread migration code), lock
  180. * acquire operations must be ordered by ascending &runqueue.
  181. */
  182. struct rq {
  183. spinlock_t lock;
  184. /*
  185. * nr_running and cpu_load should be in the same cacheline because
  186. * remote CPUs use both these fields when doing load calculation.
  187. */
  188. unsigned long nr_running;
  189. unsigned long raw_weighted_load;
  190. #ifdef CONFIG_SMP
  191. unsigned long cpu_load[3];
  192. #endif
  193. unsigned long long nr_switches;
  194. /*
  195. * This is part of a global counter where only the total sum
  196. * over all CPUs matters. A task can increase this counter on
  197. * one CPU and if it got migrated afterwards it may decrease
  198. * it on another CPU. Always updated under the runqueue lock:
  199. */
  200. unsigned long nr_uninterruptible;
  201. unsigned long expired_timestamp;
  202. unsigned long long timestamp_last_tick;
  203. struct task_struct *curr, *idle;
  204. struct mm_struct *prev_mm;
  205. struct prio_array *active, *expired, arrays[2];
  206. int best_expired_prio;
  207. atomic_t nr_iowait;
  208. #ifdef CONFIG_SMP
  209. struct sched_domain *sd;
  210. /* For active balancing */
  211. int active_balance;
  212. int push_cpu;
  213. struct task_struct *migration_thread;
  214. struct list_head migration_queue;
  215. #endif
  216. #ifdef CONFIG_SCHEDSTATS
  217. /* latency stats */
  218. struct sched_info rq_sched_info;
  219. /* sys_sched_yield() stats */
  220. unsigned long yld_exp_empty;
  221. unsigned long yld_act_empty;
  222. unsigned long yld_both_empty;
  223. unsigned long yld_cnt;
  224. /* schedule() stats */
  225. unsigned long sched_switch;
  226. unsigned long sched_cnt;
  227. unsigned long sched_goidle;
  228. /* try_to_wake_up() stats */
  229. unsigned long ttwu_cnt;
  230. unsigned long ttwu_local;
  231. #endif
  232. struct lock_class_key rq_lock_key;
  233. };
  234. static DEFINE_PER_CPU(struct rq, runqueues);
  235. /*
  236. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  237. * See detach_destroy_domains: synchronize_sched for details.
  238. *
  239. * The domain tree of any CPU may only be accessed from within
  240. * preempt-disabled sections.
  241. */
  242. #define for_each_domain(cpu, __sd) \
  243. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  244. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  245. #define this_rq() (&__get_cpu_var(runqueues))
  246. #define task_rq(p) cpu_rq(task_cpu(p))
  247. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  248. #ifndef prepare_arch_switch
  249. # define prepare_arch_switch(next) do { } while (0)
  250. #endif
  251. #ifndef finish_arch_switch
  252. # define finish_arch_switch(prev) do { } while (0)
  253. #endif
  254. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  255. static inline int task_running(struct rq *rq, struct task_struct *p)
  256. {
  257. return rq->curr == p;
  258. }
  259. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  260. {
  261. }
  262. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  263. {
  264. #ifdef CONFIG_DEBUG_SPINLOCK
  265. /* this is a valid case when another task releases the spinlock */
  266. rq->lock.owner = current;
  267. #endif
  268. /*
  269. * If we are tracking spinlock dependencies then we have to
  270. * fix up the runqueue lock - which gets 'carried over' from
  271. * prev into current:
  272. */
  273. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  274. spin_unlock_irq(&rq->lock);
  275. }
  276. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  277. static inline int task_running(struct rq *rq, struct task_struct *p)
  278. {
  279. #ifdef CONFIG_SMP
  280. return p->oncpu;
  281. #else
  282. return rq->curr == p;
  283. #endif
  284. }
  285. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  286. {
  287. #ifdef CONFIG_SMP
  288. /*
  289. * We can optimise this out completely for !SMP, because the
  290. * SMP rebalancing from interrupt is the only thing that cares
  291. * here.
  292. */
  293. next->oncpu = 1;
  294. #endif
  295. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  296. spin_unlock_irq(&rq->lock);
  297. #else
  298. spin_unlock(&rq->lock);
  299. #endif
  300. }
  301. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  302. {
  303. #ifdef CONFIG_SMP
  304. /*
  305. * After ->oncpu is cleared, the task can be moved to a different CPU.
  306. * We must ensure this doesn't happen until the switch is completely
  307. * finished.
  308. */
  309. smp_wmb();
  310. prev->oncpu = 0;
  311. #endif
  312. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  313. local_irq_enable();
  314. #endif
  315. }
  316. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  317. /*
  318. * __task_rq_lock - lock the runqueue a given task resides on.
  319. * Must be called interrupts disabled.
  320. */
  321. static inline struct rq *__task_rq_lock(struct task_struct *p)
  322. __acquires(rq->lock)
  323. {
  324. struct rq *rq;
  325. repeat_lock_task:
  326. rq = task_rq(p);
  327. spin_lock(&rq->lock);
  328. if (unlikely(rq != task_rq(p))) {
  329. spin_unlock(&rq->lock);
  330. goto repeat_lock_task;
  331. }
  332. return rq;
  333. }
  334. /*
  335. * task_rq_lock - lock the runqueue a given task resides on and disable
  336. * interrupts. Note the ordering: we can safely lookup the task_rq without
  337. * explicitly disabling preemption.
  338. */
  339. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  340. __acquires(rq->lock)
  341. {
  342. struct rq *rq;
  343. repeat_lock_task:
  344. local_irq_save(*flags);
  345. rq = task_rq(p);
  346. spin_lock(&rq->lock);
  347. if (unlikely(rq != task_rq(p))) {
  348. spin_unlock_irqrestore(&rq->lock, *flags);
  349. goto repeat_lock_task;
  350. }
  351. return rq;
  352. }
  353. static inline void __task_rq_unlock(struct rq *rq)
  354. __releases(rq->lock)
  355. {
  356. spin_unlock(&rq->lock);
  357. }
  358. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  359. __releases(rq->lock)
  360. {
  361. spin_unlock_irqrestore(&rq->lock, *flags);
  362. }
  363. #ifdef CONFIG_SCHEDSTATS
  364. /*
  365. * bump this up when changing the output format or the meaning of an existing
  366. * format, so that tools can adapt (or abort)
  367. */
  368. #define SCHEDSTAT_VERSION 12
  369. static int show_schedstat(struct seq_file *seq, void *v)
  370. {
  371. int cpu;
  372. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  373. seq_printf(seq, "timestamp %lu\n", jiffies);
  374. for_each_online_cpu(cpu) {
  375. struct rq *rq = cpu_rq(cpu);
  376. #ifdef CONFIG_SMP
  377. struct sched_domain *sd;
  378. int dcnt = 0;
  379. #endif
  380. /* runqueue-specific stats */
  381. seq_printf(seq,
  382. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  383. cpu, rq->yld_both_empty,
  384. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  385. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  386. rq->ttwu_cnt, rq->ttwu_local,
  387. rq->rq_sched_info.cpu_time,
  388. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  389. seq_printf(seq, "\n");
  390. #ifdef CONFIG_SMP
  391. /* domain-specific stats */
  392. preempt_disable();
  393. for_each_domain(cpu, sd) {
  394. enum idle_type itype;
  395. char mask_str[NR_CPUS];
  396. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  397. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  398. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  399. itype++) {
  400. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  401. sd->lb_cnt[itype],
  402. sd->lb_balanced[itype],
  403. sd->lb_failed[itype],
  404. sd->lb_imbalance[itype],
  405. sd->lb_gained[itype],
  406. sd->lb_hot_gained[itype],
  407. sd->lb_nobusyq[itype],
  408. sd->lb_nobusyg[itype]);
  409. }
  410. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  411. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  412. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  413. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  414. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  415. }
  416. preempt_enable();
  417. #endif
  418. }
  419. return 0;
  420. }
  421. static int schedstat_open(struct inode *inode, struct file *file)
  422. {
  423. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  424. char *buf = kmalloc(size, GFP_KERNEL);
  425. struct seq_file *m;
  426. int res;
  427. if (!buf)
  428. return -ENOMEM;
  429. res = single_open(file, show_schedstat, NULL);
  430. if (!res) {
  431. m = file->private_data;
  432. m->buf = buf;
  433. m->size = size;
  434. } else
  435. kfree(buf);
  436. return res;
  437. }
  438. struct file_operations proc_schedstat_operations = {
  439. .open = schedstat_open,
  440. .read = seq_read,
  441. .llseek = seq_lseek,
  442. .release = single_release,
  443. };
  444. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  445. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  446. #else /* !CONFIG_SCHEDSTATS */
  447. # define schedstat_inc(rq, field) do { } while (0)
  448. # define schedstat_add(rq, field, amt) do { } while (0)
  449. #endif
  450. /*
  451. * rq_lock - lock a given runqueue and disable interrupts.
  452. */
  453. static inline struct rq *this_rq_lock(void)
  454. __acquires(rq->lock)
  455. {
  456. struct rq *rq;
  457. local_irq_disable();
  458. rq = this_rq();
  459. spin_lock(&rq->lock);
  460. return rq;
  461. }
  462. #ifdef CONFIG_SCHEDSTATS
  463. /*
  464. * Called when a process is dequeued from the active array and given
  465. * the cpu. We should note that with the exception of interactive
  466. * tasks, the expired queue will become the active queue after the active
  467. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  468. * expired queue. (Interactive tasks may be requeued directly to the
  469. * active queue, thus delaying tasks in the expired queue from running;
  470. * see scheduler_tick()).
  471. *
  472. * This function is only called from sched_info_arrive(), rather than
  473. * dequeue_task(). Even though a task may be queued and dequeued multiple
  474. * times as it is shuffled about, we're really interested in knowing how
  475. * long it was from the *first* time it was queued to the time that it
  476. * finally hit a cpu.
  477. */
  478. static inline void sched_info_dequeued(struct task_struct *t)
  479. {
  480. t->sched_info.last_queued = 0;
  481. }
  482. /*
  483. * Called when a task finally hits the cpu. We can now calculate how
  484. * long it was waiting to run. We also note when it began so that we
  485. * can keep stats on how long its timeslice is.
  486. */
  487. static void sched_info_arrive(struct task_struct *t)
  488. {
  489. unsigned long now = jiffies, diff = 0;
  490. struct rq *rq = task_rq(t);
  491. if (t->sched_info.last_queued)
  492. diff = now - t->sched_info.last_queued;
  493. sched_info_dequeued(t);
  494. t->sched_info.run_delay += diff;
  495. t->sched_info.last_arrival = now;
  496. t->sched_info.pcnt++;
  497. if (!rq)
  498. return;
  499. rq->rq_sched_info.run_delay += diff;
  500. rq->rq_sched_info.pcnt++;
  501. }
  502. /*
  503. * Called when a process is queued into either the active or expired
  504. * array. The time is noted and later used to determine how long we
  505. * had to wait for us to reach the cpu. Since the expired queue will
  506. * become the active queue after active queue is empty, without dequeuing
  507. * and requeuing any tasks, we are interested in queuing to either. It
  508. * is unusual but not impossible for tasks to be dequeued and immediately
  509. * requeued in the same or another array: this can happen in sched_yield(),
  510. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  511. * to runqueue.
  512. *
  513. * This function is only called from enqueue_task(), but also only updates
  514. * the timestamp if it is already not set. It's assumed that
  515. * sched_info_dequeued() will clear that stamp when appropriate.
  516. */
  517. static inline void sched_info_queued(struct task_struct *t)
  518. {
  519. if (!t->sched_info.last_queued)
  520. t->sched_info.last_queued = jiffies;
  521. }
  522. /*
  523. * Called when a process ceases being the active-running process, either
  524. * voluntarily or involuntarily. Now we can calculate how long we ran.
  525. */
  526. static inline void sched_info_depart(struct task_struct *t)
  527. {
  528. struct rq *rq = task_rq(t);
  529. unsigned long diff = jiffies - t->sched_info.last_arrival;
  530. t->sched_info.cpu_time += diff;
  531. if (rq)
  532. rq->rq_sched_info.cpu_time += diff;
  533. }
  534. /*
  535. * Called when tasks are switched involuntarily due, typically, to expiring
  536. * their time slice. (This may also be called when switching to or from
  537. * the idle task.) We are only called when prev != next.
  538. */
  539. static inline void
  540. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  541. {
  542. struct rq *rq = task_rq(prev);
  543. /*
  544. * prev now departs the cpu. It's not interesting to record
  545. * stats about how efficient we were at scheduling the idle
  546. * process, however.
  547. */
  548. if (prev != rq->idle)
  549. sched_info_depart(prev);
  550. if (next != rq->idle)
  551. sched_info_arrive(next);
  552. }
  553. #else
  554. #define sched_info_queued(t) do { } while (0)
  555. #define sched_info_switch(t, next) do { } while (0)
  556. #endif /* CONFIG_SCHEDSTATS */
  557. /*
  558. * Adding/removing a task to/from a priority array:
  559. */
  560. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  561. {
  562. array->nr_active--;
  563. list_del(&p->run_list);
  564. if (list_empty(array->queue + p->prio))
  565. __clear_bit(p->prio, array->bitmap);
  566. }
  567. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  568. {
  569. sched_info_queued(p);
  570. list_add_tail(&p->run_list, array->queue + p->prio);
  571. __set_bit(p->prio, array->bitmap);
  572. array->nr_active++;
  573. p->array = array;
  574. }
  575. /*
  576. * Put task to the end of the run list without the overhead of dequeue
  577. * followed by enqueue.
  578. */
  579. static void requeue_task(struct task_struct *p, struct prio_array *array)
  580. {
  581. list_move_tail(&p->run_list, array->queue + p->prio);
  582. }
  583. static inline void
  584. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  585. {
  586. list_add(&p->run_list, array->queue + p->prio);
  587. __set_bit(p->prio, array->bitmap);
  588. array->nr_active++;
  589. p->array = array;
  590. }
  591. /*
  592. * __normal_prio - return the priority that is based on the static
  593. * priority but is modified by bonuses/penalties.
  594. *
  595. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  596. * into the -5 ... 0 ... +5 bonus/penalty range.
  597. *
  598. * We use 25% of the full 0...39 priority range so that:
  599. *
  600. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  601. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  602. *
  603. * Both properties are important to certain workloads.
  604. */
  605. static inline int __normal_prio(struct task_struct *p)
  606. {
  607. int bonus, prio;
  608. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  609. prio = p->static_prio - bonus;
  610. if (prio < MAX_RT_PRIO)
  611. prio = MAX_RT_PRIO;
  612. if (prio > MAX_PRIO-1)
  613. prio = MAX_PRIO-1;
  614. return prio;
  615. }
  616. /*
  617. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  618. * of tasks with abnormal "nice" values across CPUs the contribution that
  619. * each task makes to its run queue's load is weighted according to its
  620. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  621. * scaled version of the new time slice allocation that they receive on time
  622. * slice expiry etc.
  623. */
  624. /*
  625. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  626. * If static_prio_timeslice() is ever changed to break this assumption then
  627. * this code will need modification
  628. */
  629. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  630. #define LOAD_WEIGHT(lp) \
  631. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  632. #define PRIO_TO_LOAD_WEIGHT(prio) \
  633. LOAD_WEIGHT(static_prio_timeslice(prio))
  634. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  635. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  636. static void set_load_weight(struct task_struct *p)
  637. {
  638. if (has_rt_policy(p)) {
  639. #ifdef CONFIG_SMP
  640. if (p == task_rq(p)->migration_thread)
  641. /*
  642. * The migration thread does the actual balancing.
  643. * Giving its load any weight will skew balancing
  644. * adversely.
  645. */
  646. p->load_weight = 0;
  647. else
  648. #endif
  649. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  650. } else
  651. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  652. }
  653. static inline void
  654. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  655. {
  656. rq->raw_weighted_load += p->load_weight;
  657. }
  658. static inline void
  659. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  660. {
  661. rq->raw_weighted_load -= p->load_weight;
  662. }
  663. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  664. {
  665. rq->nr_running++;
  666. inc_raw_weighted_load(rq, p);
  667. }
  668. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  669. {
  670. rq->nr_running--;
  671. dec_raw_weighted_load(rq, p);
  672. }
  673. /*
  674. * Calculate the expected normal priority: i.e. priority
  675. * without taking RT-inheritance into account. Might be
  676. * boosted by interactivity modifiers. Changes upon fork,
  677. * setprio syscalls, and whenever the interactivity
  678. * estimator recalculates.
  679. */
  680. static inline int normal_prio(struct task_struct *p)
  681. {
  682. int prio;
  683. if (has_rt_policy(p))
  684. prio = MAX_RT_PRIO-1 - p->rt_priority;
  685. else
  686. prio = __normal_prio(p);
  687. return prio;
  688. }
  689. /*
  690. * Calculate the current priority, i.e. the priority
  691. * taken into account by the scheduler. This value might
  692. * be boosted by RT tasks, or might be boosted by
  693. * interactivity modifiers. Will be RT if the task got
  694. * RT-boosted. If not then it returns p->normal_prio.
  695. */
  696. static int effective_prio(struct task_struct *p)
  697. {
  698. p->normal_prio = normal_prio(p);
  699. /*
  700. * If we are RT tasks or we were boosted to RT priority,
  701. * keep the priority unchanged. Otherwise, update priority
  702. * to the normal priority:
  703. */
  704. if (!rt_prio(p->prio))
  705. return p->normal_prio;
  706. return p->prio;
  707. }
  708. /*
  709. * __activate_task - move a task to the runqueue.
  710. */
  711. static void __activate_task(struct task_struct *p, struct rq *rq)
  712. {
  713. struct prio_array *target = rq->active;
  714. if (batch_task(p))
  715. target = rq->expired;
  716. enqueue_task(p, target);
  717. inc_nr_running(p, rq);
  718. }
  719. /*
  720. * __activate_idle_task - move idle task to the _front_ of runqueue.
  721. */
  722. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  723. {
  724. enqueue_task_head(p, rq->active);
  725. inc_nr_running(p, rq);
  726. }
  727. /*
  728. * Recalculate p->normal_prio and p->prio after having slept,
  729. * updating the sleep-average too:
  730. */
  731. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  732. {
  733. /* Caller must always ensure 'now >= p->timestamp' */
  734. unsigned long sleep_time = now - p->timestamp;
  735. if (batch_task(p))
  736. sleep_time = 0;
  737. if (likely(sleep_time > 0)) {
  738. /*
  739. * This ceiling is set to the lowest priority that would allow
  740. * a task to be reinserted into the active array on timeslice
  741. * completion.
  742. */
  743. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  744. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  745. /*
  746. * Prevents user tasks from achieving best priority
  747. * with one single large enough sleep.
  748. */
  749. p->sleep_avg = ceiling;
  750. /*
  751. * Using INTERACTIVE_SLEEP() as a ceiling places a
  752. * nice(0) task 1ms sleep away from promotion, and
  753. * gives it 700ms to round-robin with no chance of
  754. * being demoted. This is more than generous, so
  755. * mark this sleep as non-interactive to prevent the
  756. * on-runqueue bonus logic from intervening should
  757. * this task not receive cpu immediately.
  758. */
  759. p->sleep_type = SLEEP_NONINTERACTIVE;
  760. } else {
  761. /*
  762. * Tasks waking from uninterruptible sleep are
  763. * limited in their sleep_avg rise as they
  764. * are likely to be waiting on I/O
  765. */
  766. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  767. if (p->sleep_avg >= ceiling)
  768. sleep_time = 0;
  769. else if (p->sleep_avg + sleep_time >=
  770. ceiling) {
  771. p->sleep_avg = ceiling;
  772. sleep_time = 0;
  773. }
  774. }
  775. /*
  776. * This code gives a bonus to interactive tasks.
  777. *
  778. * The boost works by updating the 'average sleep time'
  779. * value here, based on ->timestamp. The more time a
  780. * task spends sleeping, the higher the average gets -
  781. * and the higher the priority boost gets as well.
  782. */
  783. p->sleep_avg += sleep_time;
  784. }
  785. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  786. p->sleep_avg = NS_MAX_SLEEP_AVG;
  787. }
  788. return effective_prio(p);
  789. }
  790. /*
  791. * activate_task - move a task to the runqueue and do priority recalculation
  792. *
  793. * Update all the scheduling statistics stuff. (sleep average
  794. * calculation, priority modifiers, etc.)
  795. */
  796. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  797. {
  798. unsigned long long now;
  799. now = sched_clock();
  800. #ifdef CONFIG_SMP
  801. if (!local) {
  802. /* Compensate for drifting sched_clock */
  803. struct rq *this_rq = this_rq();
  804. now = (now - this_rq->timestamp_last_tick)
  805. + rq->timestamp_last_tick;
  806. }
  807. #endif
  808. if (!rt_task(p))
  809. p->prio = recalc_task_prio(p, now);
  810. /*
  811. * This checks to make sure it's not an uninterruptible task
  812. * that is now waking up.
  813. */
  814. if (p->sleep_type == SLEEP_NORMAL) {
  815. /*
  816. * Tasks which were woken up by interrupts (ie. hw events)
  817. * are most likely of interactive nature. So we give them
  818. * the credit of extending their sleep time to the period
  819. * of time they spend on the runqueue, waiting for execution
  820. * on a CPU, first time around:
  821. */
  822. if (in_interrupt())
  823. p->sleep_type = SLEEP_INTERRUPTED;
  824. else {
  825. /*
  826. * Normal first-time wakeups get a credit too for
  827. * on-runqueue time, but it will be weighted down:
  828. */
  829. p->sleep_type = SLEEP_INTERACTIVE;
  830. }
  831. }
  832. p->timestamp = now;
  833. __activate_task(p, rq);
  834. }
  835. /*
  836. * deactivate_task - remove a task from the runqueue.
  837. */
  838. static void deactivate_task(struct task_struct *p, struct rq *rq)
  839. {
  840. dec_nr_running(p, rq);
  841. dequeue_task(p, p->array);
  842. p->array = NULL;
  843. }
  844. /*
  845. * resched_task - mark a task 'to be rescheduled now'.
  846. *
  847. * On UP this means the setting of the need_resched flag, on SMP it
  848. * might also involve a cross-CPU call to trigger the scheduler on
  849. * the target CPU.
  850. */
  851. #ifdef CONFIG_SMP
  852. #ifndef tsk_is_polling
  853. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  854. #endif
  855. static void resched_task(struct task_struct *p)
  856. {
  857. int cpu;
  858. assert_spin_locked(&task_rq(p)->lock);
  859. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  860. return;
  861. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  862. cpu = task_cpu(p);
  863. if (cpu == smp_processor_id())
  864. return;
  865. /* NEED_RESCHED must be visible before we test polling */
  866. smp_mb();
  867. if (!tsk_is_polling(p))
  868. smp_send_reschedule(cpu);
  869. }
  870. #else
  871. static inline void resched_task(struct task_struct *p)
  872. {
  873. assert_spin_locked(&task_rq(p)->lock);
  874. set_tsk_need_resched(p);
  875. }
  876. #endif
  877. /**
  878. * task_curr - is this task currently executing on a CPU?
  879. * @p: the task in question.
  880. */
  881. inline int task_curr(const struct task_struct *p)
  882. {
  883. return cpu_curr(task_cpu(p)) == p;
  884. }
  885. /* Used instead of source_load when we know the type == 0 */
  886. unsigned long weighted_cpuload(const int cpu)
  887. {
  888. return cpu_rq(cpu)->raw_weighted_load;
  889. }
  890. #ifdef CONFIG_SMP
  891. struct migration_req {
  892. struct list_head list;
  893. struct task_struct *task;
  894. int dest_cpu;
  895. struct completion done;
  896. };
  897. /*
  898. * The task's runqueue lock must be held.
  899. * Returns true if you have to wait for migration thread.
  900. */
  901. static int
  902. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  903. {
  904. struct rq *rq = task_rq(p);
  905. /*
  906. * If the task is not on a runqueue (and not running), then
  907. * it is sufficient to simply update the task's cpu field.
  908. */
  909. if (!p->array && !task_running(rq, p)) {
  910. set_task_cpu(p, dest_cpu);
  911. return 0;
  912. }
  913. init_completion(&req->done);
  914. req->task = p;
  915. req->dest_cpu = dest_cpu;
  916. list_add(&req->list, &rq->migration_queue);
  917. return 1;
  918. }
  919. /*
  920. * wait_task_inactive - wait for a thread to unschedule.
  921. *
  922. * The caller must ensure that the task *will* unschedule sometime soon,
  923. * else this function might spin for a *long* time. This function can't
  924. * be called with interrupts off, or it may introduce deadlock with
  925. * smp_call_function() if an IPI is sent by the same process we are
  926. * waiting to become inactive.
  927. */
  928. void wait_task_inactive(struct task_struct *p)
  929. {
  930. unsigned long flags;
  931. struct rq *rq;
  932. int preempted;
  933. repeat:
  934. rq = task_rq_lock(p, &flags);
  935. /* Must be off runqueue entirely, not preempted. */
  936. if (unlikely(p->array || task_running(rq, p))) {
  937. /* If it's preempted, we yield. It could be a while. */
  938. preempted = !task_running(rq, p);
  939. task_rq_unlock(rq, &flags);
  940. cpu_relax();
  941. if (preempted)
  942. yield();
  943. goto repeat;
  944. }
  945. task_rq_unlock(rq, &flags);
  946. }
  947. /***
  948. * kick_process - kick a running thread to enter/exit the kernel
  949. * @p: the to-be-kicked thread
  950. *
  951. * Cause a process which is running on another CPU to enter
  952. * kernel-mode, without any delay. (to get signals handled.)
  953. *
  954. * NOTE: this function doesnt have to take the runqueue lock,
  955. * because all it wants to ensure is that the remote task enters
  956. * the kernel. If the IPI races and the task has been migrated
  957. * to another CPU then no harm is done and the purpose has been
  958. * achieved as well.
  959. */
  960. void kick_process(struct task_struct *p)
  961. {
  962. int cpu;
  963. preempt_disable();
  964. cpu = task_cpu(p);
  965. if ((cpu != smp_processor_id()) && task_curr(p))
  966. smp_send_reschedule(cpu);
  967. preempt_enable();
  968. }
  969. /*
  970. * Return a low guess at the load of a migration-source cpu weighted
  971. * according to the scheduling class and "nice" value.
  972. *
  973. * We want to under-estimate the load of migration sources, to
  974. * balance conservatively.
  975. */
  976. static inline unsigned long source_load(int cpu, int type)
  977. {
  978. struct rq *rq = cpu_rq(cpu);
  979. if (type == 0)
  980. return rq->raw_weighted_load;
  981. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  982. }
  983. /*
  984. * Return a high guess at the load of a migration-target cpu weighted
  985. * according to the scheduling class and "nice" value.
  986. */
  987. static inline unsigned long target_load(int cpu, int type)
  988. {
  989. struct rq *rq = cpu_rq(cpu);
  990. if (type == 0)
  991. return rq->raw_weighted_load;
  992. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  993. }
  994. /*
  995. * Return the average load per task on the cpu's run queue
  996. */
  997. static inline unsigned long cpu_avg_load_per_task(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. unsigned long n = rq->nr_running;
  1001. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1002. }
  1003. /*
  1004. * find_idlest_group finds and returns the least busy CPU group within the
  1005. * domain.
  1006. */
  1007. static struct sched_group *
  1008. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1009. {
  1010. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1011. unsigned long min_load = ULONG_MAX, this_load = 0;
  1012. int load_idx = sd->forkexec_idx;
  1013. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1014. do {
  1015. unsigned long load, avg_load;
  1016. int local_group;
  1017. int i;
  1018. /* Skip over this group if it has no CPUs allowed */
  1019. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1020. goto nextgroup;
  1021. local_group = cpu_isset(this_cpu, group->cpumask);
  1022. /* Tally up the load of all CPUs in the group */
  1023. avg_load = 0;
  1024. for_each_cpu_mask(i, group->cpumask) {
  1025. /* Bias balancing toward cpus of our domain */
  1026. if (local_group)
  1027. load = source_load(i, load_idx);
  1028. else
  1029. load = target_load(i, load_idx);
  1030. avg_load += load;
  1031. }
  1032. /* Adjust by relative CPU power of the group */
  1033. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1034. if (local_group) {
  1035. this_load = avg_load;
  1036. this = group;
  1037. } else if (avg_load < min_load) {
  1038. min_load = avg_load;
  1039. idlest = group;
  1040. }
  1041. nextgroup:
  1042. group = group->next;
  1043. } while (group != sd->groups);
  1044. if (!idlest || 100*this_load < imbalance*min_load)
  1045. return NULL;
  1046. return idlest;
  1047. }
  1048. /*
  1049. * find_idlest_queue - find the idlest runqueue among the cpus in group.
  1050. */
  1051. static int
  1052. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1053. {
  1054. cpumask_t tmp;
  1055. unsigned long load, min_load = ULONG_MAX;
  1056. int idlest = -1;
  1057. int i;
  1058. /* Traverse only the allowed CPUs */
  1059. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1060. for_each_cpu_mask(i, tmp) {
  1061. load = weighted_cpuload(i);
  1062. if (load < min_load || (load == min_load && i == this_cpu)) {
  1063. min_load = load;
  1064. idlest = i;
  1065. }
  1066. }
  1067. return idlest;
  1068. }
  1069. /*
  1070. * sched_balance_self: balance the current task (running on cpu) in domains
  1071. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1072. * SD_BALANCE_EXEC.
  1073. *
  1074. * Balance, ie. select the least loaded group.
  1075. *
  1076. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1077. *
  1078. * preempt must be disabled.
  1079. */
  1080. static int sched_balance_self(int cpu, int flag)
  1081. {
  1082. struct task_struct *t = current;
  1083. struct sched_domain *tmp, *sd = NULL;
  1084. for_each_domain(cpu, tmp) {
  1085. /*
  1086. * If power savings logic is enabled for a domain, stop there.
  1087. */
  1088. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1089. break;
  1090. if (tmp->flags & flag)
  1091. sd = tmp;
  1092. }
  1093. while (sd) {
  1094. cpumask_t span;
  1095. struct sched_group *group;
  1096. int new_cpu;
  1097. int weight;
  1098. span = sd->span;
  1099. group = find_idlest_group(sd, t, cpu);
  1100. if (!group)
  1101. goto nextlevel;
  1102. new_cpu = find_idlest_cpu(group, t, cpu);
  1103. if (new_cpu == -1 || new_cpu == cpu)
  1104. goto nextlevel;
  1105. /* Now try balancing at a lower domain level */
  1106. cpu = new_cpu;
  1107. nextlevel:
  1108. sd = NULL;
  1109. weight = cpus_weight(span);
  1110. for_each_domain(cpu, tmp) {
  1111. if (weight <= cpus_weight(tmp->span))
  1112. break;
  1113. if (tmp->flags & flag)
  1114. sd = tmp;
  1115. }
  1116. /* while loop will break here if sd == NULL */
  1117. }
  1118. return cpu;
  1119. }
  1120. #endif /* CONFIG_SMP */
  1121. /*
  1122. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1123. * not idle and an idle cpu is available. The span of cpus to
  1124. * search starts with cpus closest then further out as needed,
  1125. * so we always favor a closer, idle cpu.
  1126. *
  1127. * Returns the CPU we should wake onto.
  1128. */
  1129. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1130. static int wake_idle(int cpu, struct task_struct *p)
  1131. {
  1132. cpumask_t tmp;
  1133. struct sched_domain *sd;
  1134. int i;
  1135. if (idle_cpu(cpu))
  1136. return cpu;
  1137. for_each_domain(cpu, sd) {
  1138. if (sd->flags & SD_WAKE_IDLE) {
  1139. cpus_and(tmp, sd->span, p->cpus_allowed);
  1140. for_each_cpu_mask(i, tmp) {
  1141. if (idle_cpu(i))
  1142. return i;
  1143. }
  1144. }
  1145. else
  1146. break;
  1147. }
  1148. return cpu;
  1149. }
  1150. #else
  1151. static inline int wake_idle(int cpu, struct task_struct *p)
  1152. {
  1153. return cpu;
  1154. }
  1155. #endif
  1156. /***
  1157. * try_to_wake_up - wake up a thread
  1158. * @p: the to-be-woken-up thread
  1159. * @state: the mask of task states that can be woken
  1160. * @sync: do a synchronous wakeup?
  1161. *
  1162. * Put it on the run-queue if it's not already there. The "current"
  1163. * thread is always on the run-queue (except when the actual
  1164. * re-schedule is in progress), and as such you're allowed to do
  1165. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1166. * runnable without the overhead of this.
  1167. *
  1168. * returns failure only if the task is already active.
  1169. */
  1170. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1171. {
  1172. int cpu, this_cpu, success = 0;
  1173. unsigned long flags;
  1174. long old_state;
  1175. struct rq *rq;
  1176. #ifdef CONFIG_SMP
  1177. struct sched_domain *sd, *this_sd = NULL;
  1178. unsigned long load, this_load;
  1179. int new_cpu;
  1180. #endif
  1181. rq = task_rq_lock(p, &flags);
  1182. old_state = p->state;
  1183. if (!(old_state & state))
  1184. goto out;
  1185. if (p->array)
  1186. goto out_running;
  1187. cpu = task_cpu(p);
  1188. this_cpu = smp_processor_id();
  1189. #ifdef CONFIG_SMP
  1190. if (unlikely(task_running(rq, p)))
  1191. goto out_activate;
  1192. new_cpu = cpu;
  1193. schedstat_inc(rq, ttwu_cnt);
  1194. if (cpu == this_cpu) {
  1195. schedstat_inc(rq, ttwu_local);
  1196. goto out_set_cpu;
  1197. }
  1198. for_each_domain(this_cpu, sd) {
  1199. if (cpu_isset(cpu, sd->span)) {
  1200. schedstat_inc(sd, ttwu_wake_remote);
  1201. this_sd = sd;
  1202. break;
  1203. }
  1204. }
  1205. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1206. goto out_set_cpu;
  1207. /*
  1208. * Check for affine wakeup and passive balancing possibilities.
  1209. */
  1210. if (this_sd) {
  1211. int idx = this_sd->wake_idx;
  1212. unsigned int imbalance;
  1213. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1214. load = source_load(cpu, idx);
  1215. this_load = target_load(this_cpu, idx);
  1216. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1217. if (this_sd->flags & SD_WAKE_AFFINE) {
  1218. unsigned long tl = this_load;
  1219. unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
  1220. /*
  1221. * If sync wakeup then subtract the (maximum possible)
  1222. * effect of the currently running task from the load
  1223. * of the current CPU:
  1224. */
  1225. if (sync)
  1226. tl -= current->load_weight;
  1227. if ((tl <= load &&
  1228. tl + target_load(cpu, idx) <= tl_per_task) ||
  1229. 100*(tl + p->load_weight) <= imbalance*load) {
  1230. /*
  1231. * This domain has SD_WAKE_AFFINE and
  1232. * p is cache cold in this domain, and
  1233. * there is no bad imbalance.
  1234. */
  1235. schedstat_inc(this_sd, ttwu_move_affine);
  1236. goto out_set_cpu;
  1237. }
  1238. }
  1239. /*
  1240. * Start passive balancing when half the imbalance_pct
  1241. * limit is reached.
  1242. */
  1243. if (this_sd->flags & SD_WAKE_BALANCE) {
  1244. if (imbalance*this_load <= 100*load) {
  1245. schedstat_inc(this_sd, ttwu_move_balance);
  1246. goto out_set_cpu;
  1247. }
  1248. }
  1249. }
  1250. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1251. out_set_cpu:
  1252. new_cpu = wake_idle(new_cpu, p);
  1253. if (new_cpu != cpu) {
  1254. set_task_cpu(p, new_cpu);
  1255. task_rq_unlock(rq, &flags);
  1256. /* might preempt at this point */
  1257. rq = task_rq_lock(p, &flags);
  1258. old_state = p->state;
  1259. if (!(old_state & state))
  1260. goto out;
  1261. if (p->array)
  1262. goto out_running;
  1263. this_cpu = smp_processor_id();
  1264. cpu = task_cpu(p);
  1265. }
  1266. out_activate:
  1267. #endif /* CONFIG_SMP */
  1268. if (old_state == TASK_UNINTERRUPTIBLE) {
  1269. rq->nr_uninterruptible--;
  1270. /*
  1271. * Tasks on involuntary sleep don't earn
  1272. * sleep_avg beyond just interactive state.
  1273. */
  1274. p->sleep_type = SLEEP_NONINTERACTIVE;
  1275. } else
  1276. /*
  1277. * Tasks that have marked their sleep as noninteractive get
  1278. * woken up with their sleep average not weighted in an
  1279. * interactive way.
  1280. */
  1281. if (old_state & TASK_NONINTERACTIVE)
  1282. p->sleep_type = SLEEP_NONINTERACTIVE;
  1283. activate_task(p, rq, cpu == this_cpu);
  1284. /*
  1285. * Sync wakeups (i.e. those types of wakeups where the waker
  1286. * has indicated that it will leave the CPU in short order)
  1287. * don't trigger a preemption, if the woken up task will run on
  1288. * this cpu. (in this case the 'I will reschedule' promise of
  1289. * the waker guarantees that the freshly woken up task is going
  1290. * to be considered on this CPU.)
  1291. */
  1292. if (!sync || cpu != this_cpu) {
  1293. if (TASK_PREEMPTS_CURR(p, rq))
  1294. resched_task(rq->curr);
  1295. }
  1296. success = 1;
  1297. out_running:
  1298. p->state = TASK_RUNNING;
  1299. out:
  1300. task_rq_unlock(rq, &flags);
  1301. return success;
  1302. }
  1303. int fastcall wake_up_process(struct task_struct *p)
  1304. {
  1305. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1306. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1307. }
  1308. EXPORT_SYMBOL(wake_up_process);
  1309. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1310. {
  1311. return try_to_wake_up(p, state, 0);
  1312. }
  1313. /*
  1314. * Perform scheduler related setup for a newly forked process p.
  1315. * p is forked by current.
  1316. */
  1317. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1318. {
  1319. int cpu = get_cpu();
  1320. #ifdef CONFIG_SMP
  1321. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1322. #endif
  1323. set_task_cpu(p, cpu);
  1324. /*
  1325. * We mark the process as running here, but have not actually
  1326. * inserted it onto the runqueue yet. This guarantees that
  1327. * nobody will actually run it, and a signal or other external
  1328. * event cannot wake it up and insert it on the runqueue either.
  1329. */
  1330. p->state = TASK_RUNNING;
  1331. /*
  1332. * Make sure we do not leak PI boosting priority to the child:
  1333. */
  1334. p->prio = current->normal_prio;
  1335. INIT_LIST_HEAD(&p->run_list);
  1336. p->array = NULL;
  1337. #ifdef CONFIG_SCHEDSTATS
  1338. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1339. #endif
  1340. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1341. p->oncpu = 0;
  1342. #endif
  1343. #ifdef CONFIG_PREEMPT
  1344. /* Want to start with kernel preemption disabled. */
  1345. task_thread_info(p)->preempt_count = 1;
  1346. #endif
  1347. /*
  1348. * Share the timeslice between parent and child, thus the
  1349. * total amount of pending timeslices in the system doesn't change,
  1350. * resulting in more scheduling fairness.
  1351. */
  1352. local_irq_disable();
  1353. p->time_slice = (current->time_slice + 1) >> 1;
  1354. /*
  1355. * The remainder of the first timeslice might be recovered by
  1356. * the parent if the child exits early enough.
  1357. */
  1358. p->first_time_slice = 1;
  1359. current->time_slice >>= 1;
  1360. p->timestamp = sched_clock();
  1361. if (unlikely(!current->time_slice)) {
  1362. /*
  1363. * This case is rare, it happens when the parent has only
  1364. * a single jiffy left from its timeslice. Taking the
  1365. * runqueue lock is not a problem.
  1366. */
  1367. current->time_slice = 1;
  1368. scheduler_tick();
  1369. }
  1370. local_irq_enable();
  1371. put_cpu();
  1372. }
  1373. /*
  1374. * wake_up_new_task - wake up a newly created task for the first time.
  1375. *
  1376. * This function will do some initial scheduler statistics housekeeping
  1377. * that must be done for every newly created context, then puts the task
  1378. * on the runqueue and wakes it.
  1379. */
  1380. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1381. {
  1382. struct rq *rq, *this_rq;
  1383. unsigned long flags;
  1384. int this_cpu, cpu;
  1385. rq = task_rq_lock(p, &flags);
  1386. BUG_ON(p->state != TASK_RUNNING);
  1387. this_cpu = smp_processor_id();
  1388. cpu = task_cpu(p);
  1389. /*
  1390. * We decrease the sleep average of forking parents
  1391. * and children as well, to keep max-interactive tasks
  1392. * from forking tasks that are max-interactive. The parent
  1393. * (current) is done further down, under its lock.
  1394. */
  1395. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1396. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1397. p->prio = effective_prio(p);
  1398. if (likely(cpu == this_cpu)) {
  1399. if (!(clone_flags & CLONE_VM)) {
  1400. /*
  1401. * The VM isn't cloned, so we're in a good position to
  1402. * do child-runs-first in anticipation of an exec. This
  1403. * usually avoids a lot of COW overhead.
  1404. */
  1405. if (unlikely(!current->array))
  1406. __activate_task(p, rq);
  1407. else {
  1408. p->prio = current->prio;
  1409. p->normal_prio = current->normal_prio;
  1410. list_add_tail(&p->run_list, &current->run_list);
  1411. p->array = current->array;
  1412. p->array->nr_active++;
  1413. inc_nr_running(p, rq);
  1414. }
  1415. set_need_resched();
  1416. } else
  1417. /* Run child last */
  1418. __activate_task(p, rq);
  1419. /*
  1420. * We skip the following code due to cpu == this_cpu
  1421. *
  1422. * task_rq_unlock(rq, &flags);
  1423. * this_rq = task_rq_lock(current, &flags);
  1424. */
  1425. this_rq = rq;
  1426. } else {
  1427. this_rq = cpu_rq(this_cpu);
  1428. /*
  1429. * Not the local CPU - must adjust timestamp. This should
  1430. * get optimised away in the !CONFIG_SMP case.
  1431. */
  1432. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1433. + rq->timestamp_last_tick;
  1434. __activate_task(p, rq);
  1435. if (TASK_PREEMPTS_CURR(p, rq))
  1436. resched_task(rq->curr);
  1437. /*
  1438. * Parent and child are on different CPUs, now get the
  1439. * parent runqueue to update the parent's ->sleep_avg:
  1440. */
  1441. task_rq_unlock(rq, &flags);
  1442. this_rq = task_rq_lock(current, &flags);
  1443. }
  1444. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1445. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1446. task_rq_unlock(this_rq, &flags);
  1447. }
  1448. /*
  1449. * Potentially available exiting-child timeslices are
  1450. * retrieved here - this way the parent does not get
  1451. * penalized for creating too many threads.
  1452. *
  1453. * (this cannot be used to 'generate' timeslices
  1454. * artificially, because any timeslice recovered here
  1455. * was given away by the parent in the first place.)
  1456. */
  1457. void fastcall sched_exit(struct task_struct *p)
  1458. {
  1459. unsigned long flags;
  1460. struct rq *rq;
  1461. /*
  1462. * If the child was a (relative-) CPU hog then decrease
  1463. * the sleep_avg of the parent as well.
  1464. */
  1465. rq = task_rq_lock(p->parent, &flags);
  1466. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1467. p->parent->time_slice += p->time_slice;
  1468. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1469. p->parent->time_slice = task_timeslice(p);
  1470. }
  1471. if (p->sleep_avg < p->parent->sleep_avg)
  1472. p->parent->sleep_avg = p->parent->sleep_avg /
  1473. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1474. (EXIT_WEIGHT + 1);
  1475. task_rq_unlock(rq, &flags);
  1476. }
  1477. /**
  1478. * prepare_task_switch - prepare to switch tasks
  1479. * @rq: the runqueue preparing to switch
  1480. * @next: the task we are going to switch to.
  1481. *
  1482. * This is called with the rq lock held and interrupts off. It must
  1483. * be paired with a subsequent finish_task_switch after the context
  1484. * switch.
  1485. *
  1486. * prepare_task_switch sets up locking and calls architecture specific
  1487. * hooks.
  1488. */
  1489. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1490. {
  1491. prepare_lock_switch(rq, next);
  1492. prepare_arch_switch(next);
  1493. }
  1494. /**
  1495. * finish_task_switch - clean up after a task-switch
  1496. * @rq: runqueue associated with task-switch
  1497. * @prev: the thread we just switched away from.
  1498. *
  1499. * finish_task_switch must be called after the context switch, paired
  1500. * with a prepare_task_switch call before the context switch.
  1501. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1502. * and do any other architecture-specific cleanup actions.
  1503. *
  1504. * Note that we may have delayed dropping an mm in context_switch(). If
  1505. * so, we finish that here outside of the runqueue lock. (Doing it
  1506. * with the lock held can cause deadlocks; see schedule() for
  1507. * details.)
  1508. */
  1509. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1510. __releases(rq->lock)
  1511. {
  1512. struct mm_struct *mm = rq->prev_mm;
  1513. unsigned long prev_task_flags;
  1514. rq->prev_mm = NULL;
  1515. /*
  1516. * A task struct has one reference for the use as "current".
  1517. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1518. * calls schedule one last time. The schedule call will never return,
  1519. * and the scheduled task must drop that reference.
  1520. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1521. * still held, otherwise prev could be scheduled on another cpu, die
  1522. * there before we look at prev->state, and then the reference would
  1523. * be dropped twice.
  1524. * Manfred Spraul <manfred@colorfullife.com>
  1525. */
  1526. prev_task_flags = prev->flags;
  1527. finish_arch_switch(prev);
  1528. finish_lock_switch(rq, prev);
  1529. if (mm)
  1530. mmdrop(mm);
  1531. if (unlikely(prev_task_flags & PF_DEAD)) {
  1532. /*
  1533. * Remove function-return probe instances associated with this
  1534. * task and put them back on the free list.
  1535. */
  1536. kprobe_flush_task(prev);
  1537. put_task_struct(prev);
  1538. }
  1539. }
  1540. /**
  1541. * schedule_tail - first thing a freshly forked thread must call.
  1542. * @prev: the thread we just switched away from.
  1543. */
  1544. asmlinkage void schedule_tail(struct task_struct *prev)
  1545. __releases(rq->lock)
  1546. {
  1547. struct rq *rq = this_rq();
  1548. finish_task_switch(rq, prev);
  1549. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1550. /* In this case, finish_task_switch does not reenable preemption */
  1551. preempt_enable();
  1552. #endif
  1553. if (current->set_child_tid)
  1554. put_user(current->pid, current->set_child_tid);
  1555. }
  1556. /*
  1557. * context_switch - switch to the new MM and the new
  1558. * thread's register state.
  1559. */
  1560. static inline struct task_struct *
  1561. context_switch(struct rq *rq, struct task_struct *prev,
  1562. struct task_struct *next)
  1563. {
  1564. struct mm_struct *mm = next->mm;
  1565. struct mm_struct *oldmm = prev->active_mm;
  1566. if (unlikely(!mm)) {
  1567. next->active_mm = oldmm;
  1568. atomic_inc(&oldmm->mm_count);
  1569. enter_lazy_tlb(oldmm, next);
  1570. } else
  1571. switch_mm(oldmm, mm, next);
  1572. if (unlikely(!prev->mm)) {
  1573. prev->active_mm = NULL;
  1574. WARN_ON(rq->prev_mm);
  1575. rq->prev_mm = oldmm;
  1576. }
  1577. /*
  1578. * Since the runqueue lock will be released by the next
  1579. * task (which is an invalid locking op but in the case
  1580. * of the scheduler it's an obvious special-case), so we
  1581. * do an early lockdep release here:
  1582. */
  1583. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1584. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1585. #endif
  1586. /* Here we just switch the register state and the stack. */
  1587. switch_to(prev, next, prev);
  1588. return prev;
  1589. }
  1590. /*
  1591. * nr_running, nr_uninterruptible and nr_context_switches:
  1592. *
  1593. * externally visible scheduler statistics: current number of runnable
  1594. * threads, current number of uninterruptible-sleeping threads, total
  1595. * number of context switches performed since bootup.
  1596. */
  1597. unsigned long nr_running(void)
  1598. {
  1599. unsigned long i, sum = 0;
  1600. for_each_online_cpu(i)
  1601. sum += cpu_rq(i)->nr_running;
  1602. return sum;
  1603. }
  1604. unsigned long nr_uninterruptible(void)
  1605. {
  1606. unsigned long i, sum = 0;
  1607. for_each_possible_cpu(i)
  1608. sum += cpu_rq(i)->nr_uninterruptible;
  1609. /*
  1610. * Since we read the counters lockless, it might be slightly
  1611. * inaccurate. Do not allow it to go below zero though:
  1612. */
  1613. if (unlikely((long)sum < 0))
  1614. sum = 0;
  1615. return sum;
  1616. }
  1617. unsigned long long nr_context_switches(void)
  1618. {
  1619. int i;
  1620. unsigned long long sum = 0;
  1621. for_each_possible_cpu(i)
  1622. sum += cpu_rq(i)->nr_switches;
  1623. return sum;
  1624. }
  1625. unsigned long nr_iowait(void)
  1626. {
  1627. unsigned long i, sum = 0;
  1628. for_each_possible_cpu(i)
  1629. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1630. return sum;
  1631. }
  1632. unsigned long nr_active(void)
  1633. {
  1634. unsigned long i, running = 0, uninterruptible = 0;
  1635. for_each_online_cpu(i) {
  1636. running += cpu_rq(i)->nr_running;
  1637. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1638. }
  1639. if (unlikely((long)uninterruptible < 0))
  1640. uninterruptible = 0;
  1641. return running + uninterruptible;
  1642. }
  1643. #ifdef CONFIG_SMP
  1644. /*
  1645. * Is this task likely cache-hot:
  1646. */
  1647. static inline int
  1648. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1649. {
  1650. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1651. }
  1652. /*
  1653. * double_rq_lock - safely lock two runqueues
  1654. *
  1655. * Note this does not disable interrupts like task_rq_lock,
  1656. * you need to do so manually before calling.
  1657. */
  1658. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1659. __acquires(rq1->lock)
  1660. __acquires(rq2->lock)
  1661. {
  1662. if (rq1 == rq2) {
  1663. spin_lock(&rq1->lock);
  1664. __acquire(rq2->lock); /* Fake it out ;) */
  1665. } else {
  1666. if (rq1 < rq2) {
  1667. spin_lock(&rq1->lock);
  1668. spin_lock(&rq2->lock);
  1669. } else {
  1670. spin_lock(&rq2->lock);
  1671. spin_lock(&rq1->lock);
  1672. }
  1673. }
  1674. }
  1675. /*
  1676. * double_rq_unlock - safely unlock two runqueues
  1677. *
  1678. * Note this does not restore interrupts like task_rq_unlock,
  1679. * you need to do so manually after calling.
  1680. */
  1681. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1682. __releases(rq1->lock)
  1683. __releases(rq2->lock)
  1684. {
  1685. spin_unlock(&rq1->lock);
  1686. if (rq1 != rq2)
  1687. spin_unlock(&rq2->lock);
  1688. else
  1689. __release(rq2->lock);
  1690. }
  1691. /*
  1692. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1693. */
  1694. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1695. __releases(this_rq->lock)
  1696. __acquires(busiest->lock)
  1697. __acquires(this_rq->lock)
  1698. {
  1699. if (unlikely(!spin_trylock(&busiest->lock))) {
  1700. if (busiest < this_rq) {
  1701. spin_unlock(&this_rq->lock);
  1702. spin_lock(&busiest->lock);
  1703. spin_lock(&this_rq->lock);
  1704. } else
  1705. spin_lock(&busiest->lock);
  1706. }
  1707. }
  1708. /*
  1709. * If dest_cpu is allowed for this process, migrate the task to it.
  1710. * This is accomplished by forcing the cpu_allowed mask to only
  1711. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1712. * the cpu_allowed mask is restored.
  1713. */
  1714. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1715. {
  1716. struct migration_req req;
  1717. unsigned long flags;
  1718. struct rq *rq;
  1719. rq = task_rq_lock(p, &flags);
  1720. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1721. || unlikely(cpu_is_offline(dest_cpu)))
  1722. goto out;
  1723. /* force the process onto the specified CPU */
  1724. if (migrate_task(p, dest_cpu, &req)) {
  1725. /* Need to wait for migration thread (might exit: take ref). */
  1726. struct task_struct *mt = rq->migration_thread;
  1727. get_task_struct(mt);
  1728. task_rq_unlock(rq, &flags);
  1729. wake_up_process(mt);
  1730. put_task_struct(mt);
  1731. wait_for_completion(&req.done);
  1732. return;
  1733. }
  1734. out:
  1735. task_rq_unlock(rq, &flags);
  1736. }
  1737. /*
  1738. * sched_exec - execve() is a valuable balancing opportunity, because at
  1739. * this point the task has the smallest effective memory and cache footprint.
  1740. */
  1741. void sched_exec(void)
  1742. {
  1743. int new_cpu, this_cpu = get_cpu();
  1744. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1745. put_cpu();
  1746. if (new_cpu != this_cpu)
  1747. sched_migrate_task(current, new_cpu);
  1748. }
  1749. /*
  1750. * pull_task - move a task from a remote runqueue to the local runqueue.
  1751. * Both runqueues must be locked.
  1752. */
  1753. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1754. struct task_struct *p, struct rq *this_rq,
  1755. struct prio_array *this_array, int this_cpu)
  1756. {
  1757. dequeue_task(p, src_array);
  1758. dec_nr_running(p, src_rq);
  1759. set_task_cpu(p, this_cpu);
  1760. inc_nr_running(p, this_rq);
  1761. enqueue_task(p, this_array);
  1762. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1763. + this_rq->timestamp_last_tick;
  1764. /*
  1765. * Note that idle threads have a prio of MAX_PRIO, for this test
  1766. * to be always true for them.
  1767. */
  1768. if (TASK_PREEMPTS_CURR(p, this_rq))
  1769. resched_task(this_rq->curr);
  1770. }
  1771. /*
  1772. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1773. */
  1774. static
  1775. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1776. struct sched_domain *sd, enum idle_type idle,
  1777. int *all_pinned)
  1778. {
  1779. /*
  1780. * We do not migrate tasks that are:
  1781. * 1) running (obviously), or
  1782. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1783. * 3) are cache-hot on their current CPU.
  1784. */
  1785. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1786. return 0;
  1787. *all_pinned = 0;
  1788. if (task_running(rq, p))
  1789. return 0;
  1790. /*
  1791. * Aggressive migration if:
  1792. * 1) task is cache cold, or
  1793. * 2) too many balance attempts have failed.
  1794. */
  1795. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1796. return 1;
  1797. if (task_hot(p, rq->timestamp_last_tick, sd))
  1798. return 0;
  1799. return 1;
  1800. }
  1801. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1802. /*
  1803. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1804. * load from busiest to this_rq, as part of a balancing operation within
  1805. * "domain". Returns the number of tasks moved.
  1806. *
  1807. * Called with both runqueues locked.
  1808. */
  1809. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1810. unsigned long max_nr_move, unsigned long max_load_move,
  1811. struct sched_domain *sd, enum idle_type idle,
  1812. int *all_pinned)
  1813. {
  1814. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1815. best_prio_seen, skip_for_load;
  1816. struct prio_array *array, *dst_array;
  1817. struct list_head *head, *curr;
  1818. struct task_struct *tmp;
  1819. long rem_load_move;
  1820. if (max_nr_move == 0 || max_load_move == 0)
  1821. goto out;
  1822. rem_load_move = max_load_move;
  1823. pinned = 1;
  1824. this_best_prio = rq_best_prio(this_rq);
  1825. best_prio = rq_best_prio(busiest);
  1826. /*
  1827. * Enable handling of the case where there is more than one task
  1828. * with the best priority. If the current running task is one
  1829. * of those with prio==best_prio we know it won't be moved
  1830. * and therefore it's safe to override the skip (based on load) of
  1831. * any task we find with that prio.
  1832. */
  1833. best_prio_seen = best_prio == busiest->curr->prio;
  1834. /*
  1835. * We first consider expired tasks. Those will likely not be
  1836. * executed in the near future, and they are most likely to
  1837. * be cache-cold, thus switching CPUs has the least effect
  1838. * on them.
  1839. */
  1840. if (busiest->expired->nr_active) {
  1841. array = busiest->expired;
  1842. dst_array = this_rq->expired;
  1843. } else {
  1844. array = busiest->active;
  1845. dst_array = this_rq->active;
  1846. }
  1847. new_array:
  1848. /* Start searching at priority 0: */
  1849. idx = 0;
  1850. skip_bitmap:
  1851. if (!idx)
  1852. idx = sched_find_first_bit(array->bitmap);
  1853. else
  1854. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1855. if (idx >= MAX_PRIO) {
  1856. if (array == busiest->expired && busiest->active->nr_active) {
  1857. array = busiest->active;
  1858. dst_array = this_rq->active;
  1859. goto new_array;
  1860. }
  1861. goto out;
  1862. }
  1863. head = array->queue + idx;
  1864. curr = head->prev;
  1865. skip_queue:
  1866. tmp = list_entry(curr, struct task_struct, run_list);
  1867. curr = curr->prev;
  1868. /*
  1869. * To help distribute high priority tasks accross CPUs we don't
  1870. * skip a task if it will be the highest priority task (i.e. smallest
  1871. * prio value) on its new queue regardless of its load weight
  1872. */
  1873. skip_for_load = tmp->load_weight > rem_load_move;
  1874. if (skip_for_load && idx < this_best_prio)
  1875. skip_for_load = !best_prio_seen && idx == best_prio;
  1876. if (skip_for_load ||
  1877. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1878. best_prio_seen |= idx == best_prio;
  1879. if (curr != head)
  1880. goto skip_queue;
  1881. idx++;
  1882. goto skip_bitmap;
  1883. }
  1884. #ifdef CONFIG_SCHEDSTATS
  1885. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1886. schedstat_inc(sd, lb_hot_gained[idle]);
  1887. #endif
  1888. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1889. pulled++;
  1890. rem_load_move -= tmp->load_weight;
  1891. /*
  1892. * We only want to steal up to the prescribed number of tasks
  1893. * and the prescribed amount of weighted load.
  1894. */
  1895. if (pulled < max_nr_move && rem_load_move > 0) {
  1896. if (idx < this_best_prio)
  1897. this_best_prio = idx;
  1898. if (curr != head)
  1899. goto skip_queue;
  1900. idx++;
  1901. goto skip_bitmap;
  1902. }
  1903. out:
  1904. /*
  1905. * Right now, this is the only place pull_task() is called,
  1906. * so we can safely collect pull_task() stats here rather than
  1907. * inside pull_task().
  1908. */
  1909. schedstat_add(sd, lb_gained[idle], pulled);
  1910. if (all_pinned)
  1911. *all_pinned = pinned;
  1912. return pulled;
  1913. }
  1914. /*
  1915. * find_busiest_group finds and returns the busiest CPU group within the
  1916. * domain. It calculates and returns the amount of weighted load which
  1917. * should be moved to restore balance via the imbalance parameter.
  1918. */
  1919. static struct sched_group *
  1920. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1921. unsigned long *imbalance, enum idle_type idle, int *sd_idle)
  1922. {
  1923. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1924. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1925. unsigned long max_pull;
  1926. unsigned long busiest_load_per_task, busiest_nr_running;
  1927. unsigned long this_load_per_task, this_nr_running;
  1928. int load_idx;
  1929. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1930. int power_savings_balance = 1;
  1931. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1932. unsigned long min_nr_running = ULONG_MAX;
  1933. struct sched_group *group_min = NULL, *group_leader = NULL;
  1934. #endif
  1935. max_load = this_load = total_load = total_pwr = 0;
  1936. busiest_load_per_task = busiest_nr_running = 0;
  1937. this_load_per_task = this_nr_running = 0;
  1938. if (idle == NOT_IDLE)
  1939. load_idx = sd->busy_idx;
  1940. else if (idle == NEWLY_IDLE)
  1941. load_idx = sd->newidle_idx;
  1942. else
  1943. load_idx = sd->idle_idx;
  1944. do {
  1945. unsigned long load, group_capacity;
  1946. int local_group;
  1947. int i;
  1948. unsigned long sum_nr_running, sum_weighted_load;
  1949. local_group = cpu_isset(this_cpu, group->cpumask);
  1950. /* Tally up the load of all CPUs in the group */
  1951. sum_weighted_load = sum_nr_running = avg_load = 0;
  1952. for_each_cpu_mask(i, group->cpumask) {
  1953. struct rq *rq = cpu_rq(i);
  1954. if (*sd_idle && !idle_cpu(i))
  1955. *sd_idle = 0;
  1956. /* Bias balancing toward cpus of our domain */
  1957. if (local_group)
  1958. load = target_load(i, load_idx);
  1959. else
  1960. load = source_load(i, load_idx);
  1961. avg_load += load;
  1962. sum_nr_running += rq->nr_running;
  1963. sum_weighted_load += rq->raw_weighted_load;
  1964. }
  1965. total_load += avg_load;
  1966. total_pwr += group->cpu_power;
  1967. /* Adjust by relative CPU power of the group */
  1968. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1969. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  1970. if (local_group) {
  1971. this_load = avg_load;
  1972. this = group;
  1973. this_nr_running = sum_nr_running;
  1974. this_load_per_task = sum_weighted_load;
  1975. } else if (avg_load > max_load &&
  1976. sum_nr_running > group_capacity) {
  1977. max_load = avg_load;
  1978. busiest = group;
  1979. busiest_nr_running = sum_nr_running;
  1980. busiest_load_per_task = sum_weighted_load;
  1981. }
  1982. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1983. /*
  1984. * Busy processors will not participate in power savings
  1985. * balance.
  1986. */
  1987. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1988. goto group_next;
  1989. /*
  1990. * If the local group is idle or completely loaded
  1991. * no need to do power savings balance at this domain
  1992. */
  1993. if (local_group && (this_nr_running >= group_capacity ||
  1994. !this_nr_running))
  1995. power_savings_balance = 0;
  1996. /*
  1997. * If a group is already running at full capacity or idle,
  1998. * don't include that group in power savings calculations
  1999. */
  2000. if (!power_savings_balance || sum_nr_running >= group_capacity
  2001. || !sum_nr_running)
  2002. goto group_next;
  2003. /*
  2004. * Calculate the group which has the least non-idle load.
  2005. * This is the group from where we need to pick up the load
  2006. * for saving power
  2007. */
  2008. if ((sum_nr_running < min_nr_running) ||
  2009. (sum_nr_running == min_nr_running &&
  2010. first_cpu(group->cpumask) <
  2011. first_cpu(group_min->cpumask))) {
  2012. group_min = group;
  2013. min_nr_running = sum_nr_running;
  2014. min_load_per_task = sum_weighted_load /
  2015. sum_nr_running;
  2016. }
  2017. /*
  2018. * Calculate the group which is almost near its
  2019. * capacity but still has some space to pick up some load
  2020. * from other group and save more power
  2021. */
  2022. if (sum_nr_running <= group_capacity - 1) {
  2023. if (sum_nr_running > leader_nr_running ||
  2024. (sum_nr_running == leader_nr_running &&
  2025. first_cpu(group->cpumask) >
  2026. first_cpu(group_leader->cpumask))) {
  2027. group_leader = group;
  2028. leader_nr_running = sum_nr_running;
  2029. }
  2030. }
  2031. group_next:
  2032. #endif
  2033. group = group->next;
  2034. } while (group != sd->groups);
  2035. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2036. goto out_balanced;
  2037. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2038. if (this_load >= avg_load ||
  2039. 100*max_load <= sd->imbalance_pct*this_load)
  2040. goto out_balanced;
  2041. busiest_load_per_task /= busiest_nr_running;
  2042. /*
  2043. * We're trying to get all the cpus to the average_load, so we don't
  2044. * want to push ourselves above the average load, nor do we wish to
  2045. * reduce the max loaded cpu below the average load, as either of these
  2046. * actions would just result in more rebalancing later, and ping-pong
  2047. * tasks around. Thus we look for the minimum possible imbalance.
  2048. * Negative imbalances (*we* are more loaded than anyone else) will
  2049. * be counted as no imbalance for these purposes -- we can't fix that
  2050. * by pulling tasks to us. Be careful of negative numbers as they'll
  2051. * appear as very large values with unsigned longs.
  2052. */
  2053. if (max_load <= busiest_load_per_task)
  2054. goto out_balanced;
  2055. /*
  2056. * In the presence of smp nice balancing, certain scenarios can have
  2057. * max load less than avg load(as we skip the groups at or below
  2058. * its cpu_power, while calculating max_load..)
  2059. */
  2060. if (max_load < avg_load) {
  2061. *imbalance = 0;
  2062. goto small_imbalance;
  2063. }
  2064. /* Don't want to pull so many tasks that a group would go idle */
  2065. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2066. /* How much load to actually move to equalise the imbalance */
  2067. *imbalance = min(max_pull * busiest->cpu_power,
  2068. (avg_load - this_load) * this->cpu_power)
  2069. / SCHED_LOAD_SCALE;
  2070. /*
  2071. * if *imbalance is less than the average load per runnable task
  2072. * there is no gaurantee that any tasks will be moved so we'll have
  2073. * a think about bumping its value to force at least one task to be
  2074. * moved
  2075. */
  2076. if (*imbalance < busiest_load_per_task) {
  2077. unsigned long tmp, pwr_now, pwr_move;
  2078. unsigned int imbn;
  2079. small_imbalance:
  2080. pwr_move = pwr_now = 0;
  2081. imbn = 2;
  2082. if (this_nr_running) {
  2083. this_load_per_task /= this_nr_running;
  2084. if (busiest_load_per_task > this_load_per_task)
  2085. imbn = 1;
  2086. } else
  2087. this_load_per_task = SCHED_LOAD_SCALE;
  2088. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2089. *imbalance = busiest_load_per_task;
  2090. return busiest;
  2091. }
  2092. /*
  2093. * OK, we don't have enough imbalance to justify moving tasks,
  2094. * however we may be able to increase total CPU power used by
  2095. * moving them.
  2096. */
  2097. pwr_now += busiest->cpu_power *
  2098. min(busiest_load_per_task, max_load);
  2099. pwr_now += this->cpu_power *
  2100. min(this_load_per_task, this_load);
  2101. pwr_now /= SCHED_LOAD_SCALE;
  2102. /* Amount of load we'd subtract */
  2103. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
  2104. if (max_load > tmp)
  2105. pwr_move += busiest->cpu_power *
  2106. min(busiest_load_per_task, max_load - tmp);
  2107. /* Amount of load we'd add */
  2108. if (max_load*busiest->cpu_power <
  2109. busiest_load_per_task*SCHED_LOAD_SCALE)
  2110. tmp = max_load*busiest->cpu_power/this->cpu_power;
  2111. else
  2112. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
  2113. pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
  2114. pwr_move /= SCHED_LOAD_SCALE;
  2115. /* Move if we gain throughput */
  2116. if (pwr_move <= pwr_now)
  2117. goto out_balanced;
  2118. *imbalance = busiest_load_per_task;
  2119. }
  2120. return busiest;
  2121. out_balanced:
  2122. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2123. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2124. goto ret;
  2125. if (this == group_leader && group_leader != group_min) {
  2126. *imbalance = min_load_per_task;
  2127. return group_min;
  2128. }
  2129. ret:
  2130. #endif
  2131. *imbalance = 0;
  2132. return NULL;
  2133. }
  2134. /*
  2135. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2136. */
  2137. static struct rq *
  2138. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2139. unsigned long imbalance)
  2140. {
  2141. struct rq *busiest = NULL, *rq;
  2142. unsigned long max_load = 0;
  2143. int i;
  2144. for_each_cpu_mask(i, group->cpumask) {
  2145. rq = cpu_rq(i);
  2146. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2147. continue;
  2148. if (rq->raw_weighted_load > max_load) {
  2149. max_load = rq->raw_weighted_load;
  2150. busiest = rq;
  2151. }
  2152. }
  2153. return busiest;
  2154. }
  2155. /*
  2156. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2157. * so long as it is large enough.
  2158. */
  2159. #define MAX_PINNED_INTERVAL 512
  2160. static inline unsigned long minus_1_or_zero(unsigned long n)
  2161. {
  2162. return n > 0 ? n - 1 : 0;
  2163. }
  2164. /*
  2165. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2166. * tasks if there is an imbalance.
  2167. *
  2168. * Called with this_rq unlocked.
  2169. */
  2170. static int load_balance(int this_cpu, struct rq *this_rq,
  2171. struct sched_domain *sd, enum idle_type idle)
  2172. {
  2173. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2174. struct sched_group *group;
  2175. unsigned long imbalance;
  2176. struct rq *busiest;
  2177. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2178. !sched_smt_power_savings)
  2179. sd_idle = 1;
  2180. schedstat_inc(sd, lb_cnt[idle]);
  2181. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
  2182. if (!group) {
  2183. schedstat_inc(sd, lb_nobusyg[idle]);
  2184. goto out_balanced;
  2185. }
  2186. busiest = find_busiest_queue(group, idle, imbalance);
  2187. if (!busiest) {
  2188. schedstat_inc(sd, lb_nobusyq[idle]);
  2189. goto out_balanced;
  2190. }
  2191. BUG_ON(busiest == this_rq);
  2192. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2193. nr_moved = 0;
  2194. if (busiest->nr_running > 1) {
  2195. /*
  2196. * Attempt to move tasks. If find_busiest_group has found
  2197. * an imbalance but busiest->nr_running <= 1, the group is
  2198. * still unbalanced. nr_moved simply stays zero, so it is
  2199. * correctly treated as an imbalance.
  2200. */
  2201. double_rq_lock(this_rq, busiest);
  2202. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2203. minus_1_or_zero(busiest->nr_running),
  2204. imbalance, sd, idle, &all_pinned);
  2205. double_rq_unlock(this_rq, busiest);
  2206. /* All tasks on this runqueue were pinned by CPU affinity */
  2207. if (unlikely(all_pinned))
  2208. goto out_balanced;
  2209. }
  2210. if (!nr_moved) {
  2211. schedstat_inc(sd, lb_failed[idle]);
  2212. sd->nr_balance_failed++;
  2213. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2214. spin_lock(&busiest->lock);
  2215. /* don't kick the migration_thread, if the curr
  2216. * task on busiest cpu can't be moved to this_cpu
  2217. */
  2218. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2219. spin_unlock(&busiest->lock);
  2220. all_pinned = 1;
  2221. goto out_one_pinned;
  2222. }
  2223. if (!busiest->active_balance) {
  2224. busiest->active_balance = 1;
  2225. busiest->push_cpu = this_cpu;
  2226. active_balance = 1;
  2227. }
  2228. spin_unlock(&busiest->lock);
  2229. if (active_balance)
  2230. wake_up_process(busiest->migration_thread);
  2231. /*
  2232. * We've kicked active balancing, reset the failure
  2233. * counter.
  2234. */
  2235. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2236. }
  2237. } else
  2238. sd->nr_balance_failed = 0;
  2239. if (likely(!active_balance)) {
  2240. /* We were unbalanced, so reset the balancing interval */
  2241. sd->balance_interval = sd->min_interval;
  2242. } else {
  2243. /*
  2244. * If we've begun active balancing, start to back off. This
  2245. * case may not be covered by the all_pinned logic if there
  2246. * is only 1 task on the busy runqueue (because we don't call
  2247. * move_tasks).
  2248. */
  2249. if (sd->balance_interval < sd->max_interval)
  2250. sd->balance_interval *= 2;
  2251. }
  2252. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2253. !sched_smt_power_savings)
  2254. return -1;
  2255. return nr_moved;
  2256. out_balanced:
  2257. schedstat_inc(sd, lb_balanced[idle]);
  2258. sd->nr_balance_failed = 0;
  2259. out_one_pinned:
  2260. /* tune up the balancing interval */
  2261. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2262. (sd->balance_interval < sd->max_interval))
  2263. sd->balance_interval *= 2;
  2264. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2265. !sched_smt_power_savings)
  2266. return -1;
  2267. return 0;
  2268. }
  2269. /*
  2270. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2271. * tasks if there is an imbalance.
  2272. *
  2273. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2274. * this_rq is locked.
  2275. */
  2276. static int
  2277. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2278. {
  2279. struct sched_group *group;
  2280. struct rq *busiest = NULL;
  2281. unsigned long imbalance;
  2282. int nr_moved = 0;
  2283. int sd_idle = 0;
  2284. if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
  2285. sd_idle = 1;
  2286. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2287. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
  2288. if (!group) {
  2289. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2290. goto out_balanced;
  2291. }
  2292. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
  2293. if (!busiest) {
  2294. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2295. goto out_balanced;
  2296. }
  2297. BUG_ON(busiest == this_rq);
  2298. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2299. nr_moved = 0;
  2300. if (busiest->nr_running > 1) {
  2301. /* Attempt to move tasks */
  2302. double_lock_balance(this_rq, busiest);
  2303. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2304. minus_1_or_zero(busiest->nr_running),
  2305. imbalance, sd, NEWLY_IDLE, NULL);
  2306. spin_unlock(&busiest->lock);
  2307. }
  2308. if (!nr_moved) {
  2309. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2310. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2311. return -1;
  2312. } else
  2313. sd->nr_balance_failed = 0;
  2314. return nr_moved;
  2315. out_balanced:
  2316. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2317. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2318. !sched_smt_power_savings)
  2319. return -1;
  2320. sd->nr_balance_failed = 0;
  2321. return 0;
  2322. }
  2323. /*
  2324. * idle_balance is called by schedule() if this_cpu is about to become
  2325. * idle. Attempts to pull tasks from other CPUs.
  2326. */
  2327. static void idle_balance(int this_cpu, struct rq *this_rq)
  2328. {
  2329. struct sched_domain *sd;
  2330. for_each_domain(this_cpu, sd) {
  2331. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2332. /* If we've pulled tasks over stop searching: */
  2333. if (load_balance_newidle(this_cpu, this_rq, sd))
  2334. break;
  2335. }
  2336. }
  2337. }
  2338. /*
  2339. * active_load_balance is run by migration threads. It pushes running tasks
  2340. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2341. * running on each physical CPU where possible, and avoids physical /
  2342. * logical imbalances.
  2343. *
  2344. * Called with busiest_rq locked.
  2345. */
  2346. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2347. {
  2348. int target_cpu = busiest_rq->push_cpu;
  2349. struct sched_domain *sd;
  2350. struct rq *target_rq;
  2351. /* Is there any task to move? */
  2352. if (busiest_rq->nr_running <= 1)
  2353. return;
  2354. target_rq = cpu_rq(target_cpu);
  2355. /*
  2356. * This condition is "impossible", if it occurs
  2357. * we need to fix it. Originally reported by
  2358. * Bjorn Helgaas on a 128-cpu setup.
  2359. */
  2360. BUG_ON(busiest_rq == target_rq);
  2361. /* move a task from busiest_rq to target_rq */
  2362. double_lock_balance(busiest_rq, target_rq);
  2363. /* Search for an sd spanning us and the target CPU. */
  2364. for_each_domain(target_cpu, sd) {
  2365. if ((sd->flags & SD_LOAD_BALANCE) &&
  2366. cpu_isset(busiest_cpu, sd->span))
  2367. break;
  2368. }
  2369. if (likely(sd)) {
  2370. schedstat_inc(sd, alb_cnt);
  2371. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2372. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2373. NULL))
  2374. schedstat_inc(sd, alb_pushed);
  2375. else
  2376. schedstat_inc(sd, alb_failed);
  2377. }
  2378. spin_unlock(&target_rq->lock);
  2379. }
  2380. /*
  2381. * rebalance_tick will get called every timer tick, on every CPU.
  2382. *
  2383. * It checks each scheduling domain to see if it is due to be balanced,
  2384. * and initiates a balancing operation if so.
  2385. *
  2386. * Balancing parameters are set up in arch_init_sched_domains.
  2387. */
  2388. /* Don't have all balancing operations going off at once: */
  2389. static inline unsigned long cpu_offset(int cpu)
  2390. {
  2391. return jiffies + cpu * HZ / NR_CPUS;
  2392. }
  2393. static void
  2394. rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
  2395. {
  2396. unsigned long this_load, interval, j = cpu_offset(this_cpu);
  2397. struct sched_domain *sd;
  2398. int i, scale;
  2399. this_load = this_rq->raw_weighted_load;
  2400. /* Update our load: */
  2401. for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
  2402. unsigned long old_load, new_load;
  2403. old_load = this_rq->cpu_load[i];
  2404. new_load = this_load;
  2405. /*
  2406. * Round up the averaging division if load is increasing. This
  2407. * prevents us from getting stuck on 9 if the load is 10, for
  2408. * example.
  2409. */
  2410. if (new_load > old_load)
  2411. new_load += scale-1;
  2412. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2413. }
  2414. for_each_domain(this_cpu, sd) {
  2415. if (!(sd->flags & SD_LOAD_BALANCE))
  2416. continue;
  2417. interval = sd->balance_interval;
  2418. if (idle != SCHED_IDLE)
  2419. interval *= sd->busy_factor;
  2420. /* scale ms to jiffies */
  2421. interval = msecs_to_jiffies(interval);
  2422. if (unlikely(!interval))
  2423. interval = 1;
  2424. if (j - sd->last_balance >= interval) {
  2425. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2426. /*
  2427. * We've pulled tasks over so either we're no
  2428. * longer idle, or one of our SMT siblings is
  2429. * not idle.
  2430. */
  2431. idle = NOT_IDLE;
  2432. }
  2433. sd->last_balance += interval;
  2434. }
  2435. }
  2436. }
  2437. #else
  2438. /*
  2439. * on UP we do not need to balance between CPUs:
  2440. */
  2441. static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
  2442. {
  2443. }
  2444. static inline void idle_balance(int cpu, struct rq *rq)
  2445. {
  2446. }
  2447. #endif
  2448. static inline int wake_priority_sleeper(struct rq *rq)
  2449. {
  2450. int ret = 0;
  2451. #ifdef CONFIG_SCHED_SMT
  2452. spin_lock(&rq->lock);
  2453. /*
  2454. * If an SMT sibling task has been put to sleep for priority
  2455. * reasons reschedule the idle task to see if it can now run.
  2456. */
  2457. if (rq->nr_running) {
  2458. resched_task(rq->idle);
  2459. ret = 1;
  2460. }
  2461. spin_unlock(&rq->lock);
  2462. #endif
  2463. return ret;
  2464. }
  2465. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2466. EXPORT_PER_CPU_SYMBOL(kstat);
  2467. /*
  2468. * This is called on clock ticks and on context switches.
  2469. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2470. */
  2471. static inline void
  2472. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2473. {
  2474. p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
  2475. }
  2476. /*
  2477. * Return current->sched_time plus any more ns on the sched_clock
  2478. * that have not yet been banked.
  2479. */
  2480. unsigned long long current_sched_time(const struct task_struct *p)
  2481. {
  2482. unsigned long long ns;
  2483. unsigned long flags;
  2484. local_irq_save(flags);
  2485. ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
  2486. ns = p->sched_time + sched_clock() - ns;
  2487. local_irq_restore(flags);
  2488. return ns;
  2489. }
  2490. /*
  2491. * We place interactive tasks back into the active array, if possible.
  2492. *
  2493. * To guarantee that this does not starve expired tasks we ignore the
  2494. * interactivity of a task if the first expired task had to wait more
  2495. * than a 'reasonable' amount of time. This deadline timeout is
  2496. * load-dependent, as the frequency of array switched decreases with
  2497. * increasing number of running tasks. We also ignore the interactivity
  2498. * if a better static_prio task has expired:
  2499. */
  2500. static inline int expired_starving(struct rq *rq)
  2501. {
  2502. if (rq->curr->static_prio > rq->best_expired_prio)
  2503. return 1;
  2504. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2505. return 0;
  2506. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2507. return 1;
  2508. return 0;
  2509. }
  2510. /*
  2511. * Account user cpu time to a process.
  2512. * @p: the process that the cpu time gets accounted to
  2513. * @hardirq_offset: the offset to subtract from hardirq_count()
  2514. * @cputime: the cpu time spent in user space since the last update
  2515. */
  2516. void account_user_time(struct task_struct *p, cputime_t cputime)
  2517. {
  2518. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2519. cputime64_t tmp;
  2520. p->utime = cputime_add(p->utime, cputime);
  2521. /* Add user time to cpustat. */
  2522. tmp = cputime_to_cputime64(cputime);
  2523. if (TASK_NICE(p) > 0)
  2524. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2525. else
  2526. cpustat->user = cputime64_add(cpustat->user, tmp);
  2527. }
  2528. /*
  2529. * Account system cpu time to a process.
  2530. * @p: the process that the cpu time gets accounted to
  2531. * @hardirq_offset: the offset to subtract from hardirq_count()
  2532. * @cputime: the cpu time spent in kernel space since the last update
  2533. */
  2534. void account_system_time(struct task_struct *p, int hardirq_offset,
  2535. cputime_t cputime)
  2536. {
  2537. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2538. struct rq *rq = this_rq();
  2539. cputime64_t tmp;
  2540. p->stime = cputime_add(p->stime, cputime);
  2541. /* Add system time to cpustat. */
  2542. tmp = cputime_to_cputime64(cputime);
  2543. if (hardirq_count() - hardirq_offset)
  2544. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2545. else if (softirq_count())
  2546. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2547. else if (p != rq->idle)
  2548. cpustat->system = cputime64_add(cpustat->system, tmp);
  2549. else if (atomic_read(&rq->nr_iowait) > 0)
  2550. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2551. else
  2552. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2553. /* Account for system time used */
  2554. acct_update_integrals(p);
  2555. }
  2556. /*
  2557. * Account for involuntary wait time.
  2558. * @p: the process from which the cpu time has been stolen
  2559. * @steal: the cpu time spent in involuntary wait
  2560. */
  2561. void account_steal_time(struct task_struct *p, cputime_t steal)
  2562. {
  2563. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2564. cputime64_t tmp = cputime_to_cputime64(steal);
  2565. struct rq *rq = this_rq();
  2566. if (p == rq->idle) {
  2567. p->stime = cputime_add(p->stime, steal);
  2568. if (atomic_read(&rq->nr_iowait) > 0)
  2569. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2570. else
  2571. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2572. } else
  2573. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2574. }
  2575. /*
  2576. * This function gets called by the timer code, with HZ frequency.
  2577. * We call it with interrupts disabled.
  2578. *
  2579. * It also gets called by the fork code, when changing the parent's
  2580. * timeslices.
  2581. */
  2582. void scheduler_tick(void)
  2583. {
  2584. unsigned long long now = sched_clock();
  2585. struct task_struct *p = current;
  2586. int cpu = smp_processor_id();
  2587. struct rq *rq = cpu_rq(cpu);
  2588. update_cpu_clock(p, rq, now);
  2589. rq->timestamp_last_tick = now;
  2590. if (p == rq->idle) {
  2591. if (wake_priority_sleeper(rq))
  2592. goto out;
  2593. rebalance_tick(cpu, rq, SCHED_IDLE);
  2594. return;
  2595. }
  2596. /* Task might have expired already, but not scheduled off yet */
  2597. if (p->array != rq->active) {
  2598. set_tsk_need_resched(p);
  2599. goto out;
  2600. }
  2601. spin_lock(&rq->lock);
  2602. /*
  2603. * The task was running during this tick - update the
  2604. * time slice counter. Note: we do not update a thread's
  2605. * priority until it either goes to sleep or uses up its
  2606. * timeslice. This makes it possible for interactive tasks
  2607. * to use up their timeslices at their highest priority levels.
  2608. */
  2609. if (rt_task(p)) {
  2610. /*
  2611. * RR tasks need a special form of timeslice management.
  2612. * FIFO tasks have no timeslices.
  2613. */
  2614. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2615. p->time_slice = task_timeslice(p);
  2616. p->first_time_slice = 0;
  2617. set_tsk_need_resched(p);
  2618. /* put it at the end of the queue: */
  2619. requeue_task(p, rq->active);
  2620. }
  2621. goto out_unlock;
  2622. }
  2623. if (!--p->time_slice) {
  2624. dequeue_task(p, rq->active);
  2625. set_tsk_need_resched(p);
  2626. p->prio = effective_prio(p);
  2627. p->time_slice = task_timeslice(p);
  2628. p->first_time_slice = 0;
  2629. if (!rq->expired_timestamp)
  2630. rq->expired_timestamp = jiffies;
  2631. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2632. enqueue_task(p, rq->expired);
  2633. if (p->static_prio < rq->best_expired_prio)
  2634. rq->best_expired_prio = p->static_prio;
  2635. } else
  2636. enqueue_task(p, rq->active);
  2637. } else {
  2638. /*
  2639. * Prevent a too long timeslice allowing a task to monopolize
  2640. * the CPU. We do this by splitting up the timeslice into
  2641. * smaller pieces.
  2642. *
  2643. * Note: this does not mean the task's timeslices expire or
  2644. * get lost in any way, they just might be preempted by
  2645. * another task of equal priority. (one with higher
  2646. * priority would have preempted this task already.) We
  2647. * requeue this task to the end of the list on this priority
  2648. * level, which is in essence a round-robin of tasks with
  2649. * equal priority.
  2650. *
  2651. * This only applies to tasks in the interactive
  2652. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2653. */
  2654. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2655. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2656. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2657. (p->array == rq->active)) {
  2658. requeue_task(p, rq->active);
  2659. set_tsk_need_resched(p);
  2660. }
  2661. }
  2662. out_unlock:
  2663. spin_unlock(&rq->lock);
  2664. out:
  2665. rebalance_tick(cpu, rq, NOT_IDLE);
  2666. }
  2667. #ifdef CONFIG_SCHED_SMT
  2668. static inline void wakeup_busy_runqueue(struct rq *rq)
  2669. {
  2670. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2671. if (rq->curr == rq->idle && rq->nr_running)
  2672. resched_task(rq->idle);
  2673. }
  2674. /*
  2675. * Called with interrupt disabled and this_rq's runqueue locked.
  2676. */
  2677. static void wake_sleeping_dependent(int this_cpu)
  2678. {
  2679. struct sched_domain *tmp, *sd = NULL;
  2680. int i;
  2681. for_each_domain(this_cpu, tmp) {
  2682. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2683. sd = tmp;
  2684. break;
  2685. }
  2686. }
  2687. if (!sd)
  2688. return;
  2689. for_each_cpu_mask(i, sd->span) {
  2690. struct rq *smt_rq = cpu_rq(i);
  2691. if (i == this_cpu)
  2692. continue;
  2693. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2694. continue;
  2695. wakeup_busy_runqueue(smt_rq);
  2696. spin_unlock(&smt_rq->lock);
  2697. }
  2698. }
  2699. /*
  2700. * number of 'lost' timeslices this task wont be able to fully
  2701. * utilize, if another task runs on a sibling. This models the
  2702. * slowdown effect of other tasks running on siblings:
  2703. */
  2704. static inline unsigned long
  2705. smt_slice(struct task_struct *p, struct sched_domain *sd)
  2706. {
  2707. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2708. }
  2709. /*
  2710. * To minimise lock contention and not have to drop this_rq's runlock we only
  2711. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2712. * acquire their lock. As we only trylock the normal locking order does not
  2713. * need to be obeyed.
  2714. */
  2715. static int
  2716. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2717. {
  2718. struct sched_domain *tmp, *sd = NULL;
  2719. int ret = 0, i;
  2720. /* kernel/rt threads do not participate in dependent sleeping */
  2721. if (!p->mm || rt_task(p))
  2722. return 0;
  2723. for_each_domain(this_cpu, tmp) {
  2724. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2725. sd = tmp;
  2726. break;
  2727. }
  2728. }
  2729. if (!sd)
  2730. return 0;
  2731. for_each_cpu_mask(i, sd->span) {
  2732. struct task_struct *smt_curr;
  2733. struct rq *smt_rq;
  2734. if (i == this_cpu)
  2735. continue;
  2736. smt_rq = cpu_rq(i);
  2737. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2738. continue;
  2739. smt_curr = smt_rq->curr;
  2740. if (!smt_curr->mm)
  2741. goto unlock;
  2742. /*
  2743. * If a user task with lower static priority than the
  2744. * running task on the SMT sibling is trying to schedule,
  2745. * delay it till there is proportionately less timeslice
  2746. * left of the sibling task to prevent a lower priority
  2747. * task from using an unfair proportion of the
  2748. * physical cpu's resources. -ck
  2749. */
  2750. if (rt_task(smt_curr)) {
  2751. /*
  2752. * With real time tasks we run non-rt tasks only
  2753. * per_cpu_gain% of the time.
  2754. */
  2755. if ((jiffies % DEF_TIMESLICE) >
  2756. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2757. ret = 1;
  2758. } else {
  2759. if (smt_curr->static_prio < p->static_prio &&
  2760. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2761. smt_slice(smt_curr, sd) > task_timeslice(p))
  2762. ret = 1;
  2763. }
  2764. unlock:
  2765. spin_unlock(&smt_rq->lock);
  2766. }
  2767. return ret;
  2768. }
  2769. #else
  2770. static inline void wake_sleeping_dependent(int this_cpu)
  2771. {
  2772. }
  2773. static inline int
  2774. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2775. {
  2776. return 0;
  2777. }
  2778. #endif
  2779. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2780. void fastcall add_preempt_count(int val)
  2781. {
  2782. /*
  2783. * Underflow?
  2784. */
  2785. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2786. return;
  2787. preempt_count() += val;
  2788. /*
  2789. * Spinlock count overflowing soon?
  2790. */
  2791. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2792. }
  2793. EXPORT_SYMBOL(add_preempt_count);
  2794. void fastcall sub_preempt_count(int val)
  2795. {
  2796. /*
  2797. * Underflow?
  2798. */
  2799. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2800. return;
  2801. /*
  2802. * Is the spinlock portion underflowing?
  2803. */
  2804. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2805. !(preempt_count() & PREEMPT_MASK)))
  2806. return;
  2807. preempt_count() -= val;
  2808. }
  2809. EXPORT_SYMBOL(sub_preempt_count);
  2810. #endif
  2811. static inline int interactive_sleep(enum sleep_type sleep_type)
  2812. {
  2813. return (sleep_type == SLEEP_INTERACTIVE ||
  2814. sleep_type == SLEEP_INTERRUPTED);
  2815. }
  2816. /*
  2817. * schedule() is the main scheduler function.
  2818. */
  2819. asmlinkage void __sched schedule(void)
  2820. {
  2821. struct task_struct *prev, *next;
  2822. struct prio_array *array;
  2823. struct list_head *queue;
  2824. unsigned long long now;
  2825. unsigned long run_time;
  2826. int cpu, idx, new_prio;
  2827. long *switch_count;
  2828. struct rq *rq;
  2829. /*
  2830. * Test if we are atomic. Since do_exit() needs to call into
  2831. * schedule() atomically, we ignore that path for now.
  2832. * Otherwise, whine if we are scheduling when we should not be.
  2833. */
  2834. if (unlikely(in_atomic() && !current->exit_state)) {
  2835. printk(KERN_ERR "BUG: scheduling while atomic: "
  2836. "%s/0x%08x/%d\n",
  2837. current->comm, preempt_count(), current->pid);
  2838. dump_stack();
  2839. }
  2840. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2841. need_resched:
  2842. preempt_disable();
  2843. prev = current;
  2844. release_kernel_lock(prev);
  2845. need_resched_nonpreemptible:
  2846. rq = this_rq();
  2847. /*
  2848. * The idle thread is not allowed to schedule!
  2849. * Remove this check after it has been exercised a bit.
  2850. */
  2851. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2852. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2853. dump_stack();
  2854. }
  2855. schedstat_inc(rq, sched_cnt);
  2856. now = sched_clock();
  2857. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2858. run_time = now - prev->timestamp;
  2859. if (unlikely((long long)(now - prev->timestamp) < 0))
  2860. run_time = 0;
  2861. } else
  2862. run_time = NS_MAX_SLEEP_AVG;
  2863. /*
  2864. * Tasks charged proportionately less run_time at high sleep_avg to
  2865. * delay them losing their interactive status
  2866. */
  2867. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2868. spin_lock_irq(&rq->lock);
  2869. if (unlikely(prev->flags & PF_DEAD))
  2870. prev->state = EXIT_DEAD;
  2871. switch_count = &prev->nivcsw;
  2872. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2873. switch_count = &prev->nvcsw;
  2874. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2875. unlikely(signal_pending(prev))))
  2876. prev->state = TASK_RUNNING;
  2877. else {
  2878. if (prev->state == TASK_UNINTERRUPTIBLE)
  2879. rq->nr_uninterruptible++;
  2880. deactivate_task(prev, rq);
  2881. }
  2882. }
  2883. cpu = smp_processor_id();
  2884. if (unlikely(!rq->nr_running)) {
  2885. idle_balance(cpu, rq);
  2886. if (!rq->nr_running) {
  2887. next = rq->idle;
  2888. rq->expired_timestamp = 0;
  2889. wake_sleeping_dependent(cpu);
  2890. goto switch_tasks;
  2891. }
  2892. }
  2893. array = rq->active;
  2894. if (unlikely(!array->nr_active)) {
  2895. /*
  2896. * Switch the active and expired arrays.
  2897. */
  2898. schedstat_inc(rq, sched_switch);
  2899. rq->active = rq->expired;
  2900. rq->expired = array;
  2901. array = rq->active;
  2902. rq->expired_timestamp = 0;
  2903. rq->best_expired_prio = MAX_PRIO;
  2904. }
  2905. idx = sched_find_first_bit(array->bitmap);
  2906. queue = array->queue + idx;
  2907. next = list_entry(queue->next, struct task_struct, run_list);
  2908. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2909. unsigned long long delta = now - next->timestamp;
  2910. if (unlikely((long long)(now - next->timestamp) < 0))
  2911. delta = 0;
  2912. if (next->sleep_type == SLEEP_INTERACTIVE)
  2913. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2914. array = next->array;
  2915. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2916. if (unlikely(next->prio != new_prio)) {
  2917. dequeue_task(next, array);
  2918. next->prio = new_prio;
  2919. enqueue_task(next, array);
  2920. }
  2921. }
  2922. next->sleep_type = SLEEP_NORMAL;
  2923. if (dependent_sleeper(cpu, rq, next))
  2924. next = rq->idle;
  2925. switch_tasks:
  2926. if (next == rq->idle)
  2927. schedstat_inc(rq, sched_goidle);
  2928. prefetch(next);
  2929. prefetch_stack(next);
  2930. clear_tsk_need_resched(prev);
  2931. rcu_qsctr_inc(task_cpu(prev));
  2932. update_cpu_clock(prev, rq, now);
  2933. prev->sleep_avg -= run_time;
  2934. if ((long)prev->sleep_avg <= 0)
  2935. prev->sleep_avg = 0;
  2936. prev->timestamp = prev->last_ran = now;
  2937. sched_info_switch(prev, next);
  2938. if (likely(prev != next)) {
  2939. next->timestamp = now;
  2940. rq->nr_switches++;
  2941. rq->curr = next;
  2942. ++*switch_count;
  2943. prepare_task_switch(rq, next);
  2944. prev = context_switch(rq, prev, next);
  2945. barrier();
  2946. /*
  2947. * this_rq must be evaluated again because prev may have moved
  2948. * CPUs since it called schedule(), thus the 'rq' on its stack
  2949. * frame will be invalid.
  2950. */
  2951. finish_task_switch(this_rq(), prev);
  2952. } else
  2953. spin_unlock_irq(&rq->lock);
  2954. prev = current;
  2955. if (unlikely(reacquire_kernel_lock(prev) < 0))
  2956. goto need_resched_nonpreemptible;
  2957. preempt_enable_no_resched();
  2958. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2959. goto need_resched;
  2960. }
  2961. EXPORT_SYMBOL(schedule);
  2962. #ifdef CONFIG_PREEMPT
  2963. /*
  2964. * this is the entry point to schedule() from in-kernel preemption
  2965. * off of preempt_enable. Kernel preemptions off return from interrupt
  2966. * occur there and call schedule directly.
  2967. */
  2968. asmlinkage void __sched preempt_schedule(void)
  2969. {
  2970. struct thread_info *ti = current_thread_info();
  2971. #ifdef CONFIG_PREEMPT_BKL
  2972. struct task_struct *task = current;
  2973. int saved_lock_depth;
  2974. #endif
  2975. /*
  2976. * If there is a non-zero preempt_count or interrupts are disabled,
  2977. * we do not want to preempt the current task. Just return..
  2978. */
  2979. if (unlikely(ti->preempt_count || irqs_disabled()))
  2980. return;
  2981. need_resched:
  2982. add_preempt_count(PREEMPT_ACTIVE);
  2983. /*
  2984. * We keep the big kernel semaphore locked, but we
  2985. * clear ->lock_depth so that schedule() doesnt
  2986. * auto-release the semaphore:
  2987. */
  2988. #ifdef CONFIG_PREEMPT_BKL
  2989. saved_lock_depth = task->lock_depth;
  2990. task->lock_depth = -1;
  2991. #endif
  2992. schedule();
  2993. #ifdef CONFIG_PREEMPT_BKL
  2994. task->lock_depth = saved_lock_depth;
  2995. #endif
  2996. sub_preempt_count(PREEMPT_ACTIVE);
  2997. /* we could miss a preemption opportunity between schedule and now */
  2998. barrier();
  2999. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3000. goto need_resched;
  3001. }
  3002. EXPORT_SYMBOL(preempt_schedule);
  3003. /*
  3004. * this is the entry point to schedule() from kernel preemption
  3005. * off of irq context.
  3006. * Note, that this is called and return with irqs disabled. This will
  3007. * protect us against recursive calling from irq.
  3008. */
  3009. asmlinkage void __sched preempt_schedule_irq(void)
  3010. {
  3011. struct thread_info *ti = current_thread_info();
  3012. #ifdef CONFIG_PREEMPT_BKL
  3013. struct task_struct *task = current;
  3014. int saved_lock_depth;
  3015. #endif
  3016. /* Catch callers which need to be fixed */
  3017. BUG_ON(ti->preempt_count || !irqs_disabled());
  3018. need_resched:
  3019. add_preempt_count(PREEMPT_ACTIVE);
  3020. /*
  3021. * We keep the big kernel semaphore locked, but we
  3022. * clear ->lock_depth so that schedule() doesnt
  3023. * auto-release the semaphore:
  3024. */
  3025. #ifdef CONFIG_PREEMPT_BKL
  3026. saved_lock_depth = task->lock_depth;
  3027. task->lock_depth = -1;
  3028. #endif
  3029. local_irq_enable();
  3030. schedule();
  3031. local_irq_disable();
  3032. #ifdef CONFIG_PREEMPT_BKL
  3033. task->lock_depth = saved_lock_depth;
  3034. #endif
  3035. sub_preempt_count(PREEMPT_ACTIVE);
  3036. /* we could miss a preemption opportunity between schedule and now */
  3037. barrier();
  3038. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3039. goto need_resched;
  3040. }
  3041. #endif /* CONFIG_PREEMPT */
  3042. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3043. void *key)
  3044. {
  3045. return try_to_wake_up(curr->private, mode, sync);
  3046. }
  3047. EXPORT_SYMBOL(default_wake_function);
  3048. /*
  3049. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3050. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3051. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3052. *
  3053. * There are circumstances in which we can try to wake a task which has already
  3054. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3055. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3056. */
  3057. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3058. int nr_exclusive, int sync, void *key)
  3059. {
  3060. struct list_head *tmp, *next;
  3061. list_for_each_safe(tmp, next, &q->task_list) {
  3062. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3063. unsigned flags = curr->flags;
  3064. if (curr->func(curr, mode, sync, key) &&
  3065. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3066. break;
  3067. }
  3068. }
  3069. /**
  3070. * __wake_up - wake up threads blocked on a waitqueue.
  3071. * @q: the waitqueue
  3072. * @mode: which threads
  3073. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3074. * @key: is directly passed to the wakeup function
  3075. */
  3076. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3077. int nr_exclusive, void *key)
  3078. {
  3079. unsigned long flags;
  3080. spin_lock_irqsave(&q->lock, flags);
  3081. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3082. spin_unlock_irqrestore(&q->lock, flags);
  3083. }
  3084. EXPORT_SYMBOL(__wake_up);
  3085. /*
  3086. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3087. */
  3088. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3089. {
  3090. __wake_up_common(q, mode, 1, 0, NULL);
  3091. }
  3092. /**
  3093. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3094. * @q: the waitqueue
  3095. * @mode: which threads
  3096. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3097. *
  3098. * The sync wakeup differs that the waker knows that it will schedule
  3099. * away soon, so while the target thread will be woken up, it will not
  3100. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3101. * with each other. This can prevent needless bouncing between CPUs.
  3102. *
  3103. * On UP it can prevent extra preemption.
  3104. */
  3105. void fastcall
  3106. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3107. {
  3108. unsigned long flags;
  3109. int sync = 1;
  3110. if (unlikely(!q))
  3111. return;
  3112. if (unlikely(!nr_exclusive))
  3113. sync = 0;
  3114. spin_lock_irqsave(&q->lock, flags);
  3115. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3116. spin_unlock_irqrestore(&q->lock, flags);
  3117. }
  3118. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3119. void fastcall complete(struct completion *x)
  3120. {
  3121. unsigned long flags;
  3122. spin_lock_irqsave(&x->wait.lock, flags);
  3123. x->done++;
  3124. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3125. 1, 0, NULL);
  3126. spin_unlock_irqrestore(&x->wait.lock, flags);
  3127. }
  3128. EXPORT_SYMBOL(complete);
  3129. void fastcall complete_all(struct completion *x)
  3130. {
  3131. unsigned long flags;
  3132. spin_lock_irqsave(&x->wait.lock, flags);
  3133. x->done += UINT_MAX/2;
  3134. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3135. 0, 0, NULL);
  3136. spin_unlock_irqrestore(&x->wait.lock, flags);
  3137. }
  3138. EXPORT_SYMBOL(complete_all);
  3139. void fastcall __sched wait_for_completion(struct completion *x)
  3140. {
  3141. might_sleep();
  3142. spin_lock_irq(&x->wait.lock);
  3143. if (!x->done) {
  3144. DECLARE_WAITQUEUE(wait, current);
  3145. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3146. __add_wait_queue_tail(&x->wait, &wait);
  3147. do {
  3148. __set_current_state(TASK_UNINTERRUPTIBLE);
  3149. spin_unlock_irq(&x->wait.lock);
  3150. schedule();
  3151. spin_lock_irq(&x->wait.lock);
  3152. } while (!x->done);
  3153. __remove_wait_queue(&x->wait, &wait);
  3154. }
  3155. x->done--;
  3156. spin_unlock_irq(&x->wait.lock);
  3157. }
  3158. EXPORT_SYMBOL(wait_for_completion);
  3159. unsigned long fastcall __sched
  3160. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3161. {
  3162. might_sleep();
  3163. spin_lock_irq(&x->wait.lock);
  3164. if (!x->done) {
  3165. DECLARE_WAITQUEUE(wait, current);
  3166. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3167. __add_wait_queue_tail(&x->wait, &wait);
  3168. do {
  3169. __set_current_state(TASK_UNINTERRUPTIBLE);
  3170. spin_unlock_irq(&x->wait.lock);
  3171. timeout = schedule_timeout(timeout);
  3172. spin_lock_irq(&x->wait.lock);
  3173. if (!timeout) {
  3174. __remove_wait_queue(&x->wait, &wait);
  3175. goto out;
  3176. }
  3177. } while (!x->done);
  3178. __remove_wait_queue(&x->wait, &wait);
  3179. }
  3180. x->done--;
  3181. out:
  3182. spin_unlock_irq(&x->wait.lock);
  3183. return timeout;
  3184. }
  3185. EXPORT_SYMBOL(wait_for_completion_timeout);
  3186. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3187. {
  3188. int ret = 0;
  3189. might_sleep();
  3190. spin_lock_irq(&x->wait.lock);
  3191. if (!x->done) {
  3192. DECLARE_WAITQUEUE(wait, current);
  3193. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3194. __add_wait_queue_tail(&x->wait, &wait);
  3195. do {
  3196. if (signal_pending(current)) {
  3197. ret = -ERESTARTSYS;
  3198. __remove_wait_queue(&x->wait, &wait);
  3199. goto out;
  3200. }
  3201. __set_current_state(TASK_INTERRUPTIBLE);
  3202. spin_unlock_irq(&x->wait.lock);
  3203. schedule();
  3204. spin_lock_irq(&x->wait.lock);
  3205. } while (!x->done);
  3206. __remove_wait_queue(&x->wait, &wait);
  3207. }
  3208. x->done--;
  3209. out:
  3210. spin_unlock_irq(&x->wait.lock);
  3211. return ret;
  3212. }
  3213. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3214. unsigned long fastcall __sched
  3215. wait_for_completion_interruptible_timeout(struct completion *x,
  3216. unsigned long timeout)
  3217. {
  3218. might_sleep();
  3219. spin_lock_irq(&x->wait.lock);
  3220. if (!x->done) {
  3221. DECLARE_WAITQUEUE(wait, current);
  3222. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3223. __add_wait_queue_tail(&x->wait, &wait);
  3224. do {
  3225. if (signal_pending(current)) {
  3226. timeout = -ERESTARTSYS;
  3227. __remove_wait_queue(&x->wait, &wait);
  3228. goto out;
  3229. }
  3230. __set_current_state(TASK_INTERRUPTIBLE);
  3231. spin_unlock_irq(&x->wait.lock);
  3232. timeout = schedule_timeout(timeout);
  3233. spin_lock_irq(&x->wait.lock);
  3234. if (!timeout) {
  3235. __remove_wait_queue(&x->wait, &wait);
  3236. goto out;
  3237. }
  3238. } while (!x->done);
  3239. __remove_wait_queue(&x->wait, &wait);
  3240. }
  3241. x->done--;
  3242. out:
  3243. spin_unlock_irq(&x->wait.lock);
  3244. return timeout;
  3245. }
  3246. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3247. #define SLEEP_ON_VAR \
  3248. unsigned long flags; \
  3249. wait_queue_t wait; \
  3250. init_waitqueue_entry(&wait, current);
  3251. #define SLEEP_ON_HEAD \
  3252. spin_lock_irqsave(&q->lock,flags); \
  3253. __add_wait_queue(q, &wait); \
  3254. spin_unlock(&q->lock);
  3255. #define SLEEP_ON_TAIL \
  3256. spin_lock_irq(&q->lock); \
  3257. __remove_wait_queue(q, &wait); \
  3258. spin_unlock_irqrestore(&q->lock, flags);
  3259. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3260. {
  3261. SLEEP_ON_VAR
  3262. current->state = TASK_INTERRUPTIBLE;
  3263. SLEEP_ON_HEAD
  3264. schedule();
  3265. SLEEP_ON_TAIL
  3266. }
  3267. EXPORT_SYMBOL(interruptible_sleep_on);
  3268. long fastcall __sched
  3269. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3270. {
  3271. SLEEP_ON_VAR
  3272. current->state = TASK_INTERRUPTIBLE;
  3273. SLEEP_ON_HEAD
  3274. timeout = schedule_timeout(timeout);
  3275. SLEEP_ON_TAIL
  3276. return timeout;
  3277. }
  3278. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3279. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3280. {
  3281. SLEEP_ON_VAR
  3282. current->state = TASK_UNINTERRUPTIBLE;
  3283. SLEEP_ON_HEAD
  3284. schedule();
  3285. SLEEP_ON_TAIL
  3286. }
  3287. EXPORT_SYMBOL(sleep_on);
  3288. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3289. {
  3290. SLEEP_ON_VAR
  3291. current->state = TASK_UNINTERRUPTIBLE;
  3292. SLEEP_ON_HEAD
  3293. timeout = schedule_timeout(timeout);
  3294. SLEEP_ON_TAIL
  3295. return timeout;
  3296. }
  3297. EXPORT_SYMBOL(sleep_on_timeout);
  3298. #ifdef CONFIG_RT_MUTEXES
  3299. /*
  3300. * rt_mutex_setprio - set the current priority of a task
  3301. * @p: task
  3302. * @prio: prio value (kernel-internal form)
  3303. *
  3304. * This function changes the 'effective' priority of a task. It does
  3305. * not touch ->normal_prio like __setscheduler().
  3306. *
  3307. * Used by the rt_mutex code to implement priority inheritance logic.
  3308. */
  3309. void rt_mutex_setprio(struct task_struct *p, int prio)
  3310. {
  3311. struct prio_array *array;
  3312. unsigned long flags;
  3313. struct rq *rq;
  3314. int oldprio;
  3315. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3316. rq = task_rq_lock(p, &flags);
  3317. oldprio = p->prio;
  3318. array = p->array;
  3319. if (array)
  3320. dequeue_task(p, array);
  3321. p->prio = prio;
  3322. if (array) {
  3323. /*
  3324. * If changing to an RT priority then queue it
  3325. * in the active array!
  3326. */
  3327. if (rt_task(p))
  3328. array = rq->active;
  3329. enqueue_task(p, array);
  3330. /*
  3331. * Reschedule if we are currently running on this runqueue and
  3332. * our priority decreased, or if we are not currently running on
  3333. * this runqueue and our priority is higher than the current's
  3334. */
  3335. if (task_running(rq, p)) {
  3336. if (p->prio > oldprio)
  3337. resched_task(rq->curr);
  3338. } else if (TASK_PREEMPTS_CURR(p, rq))
  3339. resched_task(rq->curr);
  3340. }
  3341. task_rq_unlock(rq, &flags);
  3342. }
  3343. #endif
  3344. void set_user_nice(struct task_struct *p, long nice)
  3345. {
  3346. struct prio_array *array;
  3347. int old_prio, delta;
  3348. unsigned long flags;
  3349. struct rq *rq;
  3350. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3351. return;
  3352. /*
  3353. * We have to be careful, if called from sys_setpriority(),
  3354. * the task might be in the middle of scheduling on another CPU.
  3355. */
  3356. rq = task_rq_lock(p, &flags);
  3357. /*
  3358. * The RT priorities are set via sched_setscheduler(), but we still
  3359. * allow the 'normal' nice value to be set - but as expected
  3360. * it wont have any effect on scheduling until the task is
  3361. * not SCHED_NORMAL/SCHED_BATCH:
  3362. */
  3363. if (has_rt_policy(p)) {
  3364. p->static_prio = NICE_TO_PRIO(nice);
  3365. goto out_unlock;
  3366. }
  3367. array = p->array;
  3368. if (array) {
  3369. dequeue_task(p, array);
  3370. dec_raw_weighted_load(rq, p);
  3371. }
  3372. p->static_prio = NICE_TO_PRIO(nice);
  3373. set_load_weight(p);
  3374. old_prio = p->prio;
  3375. p->prio = effective_prio(p);
  3376. delta = p->prio - old_prio;
  3377. if (array) {
  3378. enqueue_task(p, array);
  3379. inc_raw_weighted_load(rq, p);
  3380. /*
  3381. * If the task increased its priority or is running and
  3382. * lowered its priority, then reschedule its CPU:
  3383. */
  3384. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3385. resched_task(rq->curr);
  3386. }
  3387. out_unlock:
  3388. task_rq_unlock(rq, &flags);
  3389. }
  3390. EXPORT_SYMBOL(set_user_nice);
  3391. /*
  3392. * can_nice - check if a task can reduce its nice value
  3393. * @p: task
  3394. * @nice: nice value
  3395. */
  3396. int can_nice(const struct task_struct *p, const int nice)
  3397. {
  3398. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3399. int nice_rlim = 20 - nice;
  3400. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3401. capable(CAP_SYS_NICE));
  3402. }
  3403. #ifdef __ARCH_WANT_SYS_NICE
  3404. /*
  3405. * sys_nice - change the priority of the current process.
  3406. * @increment: priority increment
  3407. *
  3408. * sys_setpriority is a more generic, but much slower function that
  3409. * does similar things.
  3410. */
  3411. asmlinkage long sys_nice(int increment)
  3412. {
  3413. long nice, retval;
  3414. /*
  3415. * Setpriority might change our priority at the same moment.
  3416. * We don't have to worry. Conceptually one call occurs first
  3417. * and we have a single winner.
  3418. */
  3419. if (increment < -40)
  3420. increment = -40;
  3421. if (increment > 40)
  3422. increment = 40;
  3423. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3424. if (nice < -20)
  3425. nice = -20;
  3426. if (nice > 19)
  3427. nice = 19;
  3428. if (increment < 0 && !can_nice(current, nice))
  3429. return -EPERM;
  3430. retval = security_task_setnice(current, nice);
  3431. if (retval)
  3432. return retval;
  3433. set_user_nice(current, nice);
  3434. return 0;
  3435. }
  3436. #endif
  3437. /**
  3438. * task_prio - return the priority value of a given task.
  3439. * @p: the task in question.
  3440. *
  3441. * This is the priority value as seen by users in /proc.
  3442. * RT tasks are offset by -200. Normal tasks are centered
  3443. * around 0, value goes from -16 to +15.
  3444. */
  3445. int task_prio(const struct task_struct *p)
  3446. {
  3447. return p->prio - MAX_RT_PRIO;
  3448. }
  3449. /**
  3450. * task_nice - return the nice value of a given task.
  3451. * @p: the task in question.
  3452. */
  3453. int task_nice(const struct task_struct *p)
  3454. {
  3455. return TASK_NICE(p);
  3456. }
  3457. EXPORT_SYMBOL_GPL(task_nice);
  3458. /**
  3459. * idle_cpu - is a given cpu idle currently?
  3460. * @cpu: the processor in question.
  3461. */
  3462. int idle_cpu(int cpu)
  3463. {
  3464. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3465. }
  3466. /**
  3467. * idle_task - return the idle task for a given cpu.
  3468. * @cpu: the processor in question.
  3469. */
  3470. struct task_struct *idle_task(int cpu)
  3471. {
  3472. return cpu_rq(cpu)->idle;
  3473. }
  3474. /**
  3475. * find_process_by_pid - find a process with a matching PID value.
  3476. * @pid: the pid in question.
  3477. */
  3478. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3479. {
  3480. return pid ? find_task_by_pid(pid) : current;
  3481. }
  3482. /* Actually do priority change: must hold rq lock. */
  3483. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3484. {
  3485. BUG_ON(p->array);
  3486. p->policy = policy;
  3487. p->rt_priority = prio;
  3488. p->normal_prio = normal_prio(p);
  3489. /* we are holding p->pi_lock already */
  3490. p->prio = rt_mutex_getprio(p);
  3491. /*
  3492. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3493. */
  3494. if (policy == SCHED_BATCH)
  3495. p->sleep_avg = 0;
  3496. set_load_weight(p);
  3497. }
  3498. /**
  3499. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3500. * a thread.
  3501. * @p: the task in question.
  3502. * @policy: new policy.
  3503. * @param: structure containing the new RT priority.
  3504. */
  3505. int sched_setscheduler(struct task_struct *p, int policy,
  3506. struct sched_param *param)
  3507. {
  3508. int retval, oldprio, oldpolicy = -1;
  3509. struct prio_array *array;
  3510. unsigned long flags;
  3511. struct rq *rq;
  3512. /* may grab non-irq protected spin_locks */
  3513. BUG_ON(in_interrupt());
  3514. recheck:
  3515. /* double check policy once rq lock held */
  3516. if (policy < 0)
  3517. policy = oldpolicy = p->policy;
  3518. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3519. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3520. return -EINVAL;
  3521. /*
  3522. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3523. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3524. * SCHED_BATCH is 0.
  3525. */
  3526. if (param->sched_priority < 0 ||
  3527. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3528. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3529. return -EINVAL;
  3530. if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
  3531. != (param->sched_priority == 0))
  3532. return -EINVAL;
  3533. /*
  3534. * Allow unprivileged RT tasks to decrease priority:
  3535. */
  3536. if (!capable(CAP_SYS_NICE)) {
  3537. /*
  3538. * can't change policy, except between SCHED_NORMAL
  3539. * and SCHED_BATCH:
  3540. */
  3541. if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
  3542. (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
  3543. !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3544. return -EPERM;
  3545. /* can't increase priority */
  3546. if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
  3547. param->sched_priority > p->rt_priority &&
  3548. param->sched_priority >
  3549. p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3550. return -EPERM;
  3551. /* can't change other user's priorities */
  3552. if ((current->euid != p->euid) &&
  3553. (current->euid != p->uid))
  3554. return -EPERM;
  3555. }
  3556. retval = security_task_setscheduler(p, policy, param);
  3557. if (retval)
  3558. return retval;
  3559. /*
  3560. * make sure no PI-waiters arrive (or leave) while we are
  3561. * changing the priority of the task:
  3562. */
  3563. spin_lock_irqsave(&p->pi_lock, flags);
  3564. /*
  3565. * To be able to change p->policy safely, the apropriate
  3566. * runqueue lock must be held.
  3567. */
  3568. rq = __task_rq_lock(p);
  3569. /* recheck policy now with rq lock held */
  3570. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3571. policy = oldpolicy = -1;
  3572. __task_rq_unlock(rq);
  3573. spin_unlock_irqrestore(&p->pi_lock, flags);
  3574. goto recheck;
  3575. }
  3576. array = p->array;
  3577. if (array)
  3578. deactivate_task(p, rq);
  3579. oldprio = p->prio;
  3580. __setscheduler(p, policy, param->sched_priority);
  3581. if (array) {
  3582. __activate_task(p, rq);
  3583. /*
  3584. * Reschedule if we are currently running on this runqueue and
  3585. * our priority decreased, or if we are not currently running on
  3586. * this runqueue and our priority is higher than the current's
  3587. */
  3588. if (task_running(rq, p)) {
  3589. if (p->prio > oldprio)
  3590. resched_task(rq->curr);
  3591. } else if (TASK_PREEMPTS_CURR(p, rq))
  3592. resched_task(rq->curr);
  3593. }
  3594. __task_rq_unlock(rq);
  3595. spin_unlock_irqrestore(&p->pi_lock, flags);
  3596. rt_mutex_adjust_pi(p);
  3597. return 0;
  3598. }
  3599. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3600. static int
  3601. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3602. {
  3603. struct sched_param lparam;
  3604. struct task_struct *p;
  3605. int retval;
  3606. if (!param || pid < 0)
  3607. return -EINVAL;
  3608. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3609. return -EFAULT;
  3610. read_lock_irq(&tasklist_lock);
  3611. p = find_process_by_pid(pid);
  3612. if (!p) {
  3613. read_unlock_irq(&tasklist_lock);
  3614. return -ESRCH;
  3615. }
  3616. get_task_struct(p);
  3617. read_unlock_irq(&tasklist_lock);
  3618. retval = sched_setscheduler(p, policy, &lparam);
  3619. put_task_struct(p);
  3620. return retval;
  3621. }
  3622. /**
  3623. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3624. * @pid: the pid in question.
  3625. * @policy: new policy.
  3626. * @param: structure containing the new RT priority.
  3627. */
  3628. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3629. struct sched_param __user *param)
  3630. {
  3631. /* negative values for policy are not valid */
  3632. if (policy < 0)
  3633. return -EINVAL;
  3634. return do_sched_setscheduler(pid, policy, param);
  3635. }
  3636. /**
  3637. * sys_sched_setparam - set/change the RT priority of a thread
  3638. * @pid: the pid in question.
  3639. * @param: structure containing the new RT priority.
  3640. */
  3641. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3642. {
  3643. return do_sched_setscheduler(pid, -1, param);
  3644. }
  3645. /**
  3646. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3647. * @pid: the pid in question.
  3648. */
  3649. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3650. {
  3651. struct task_struct *p;
  3652. int retval = -EINVAL;
  3653. if (pid < 0)
  3654. goto out_nounlock;
  3655. retval = -ESRCH;
  3656. read_lock(&tasklist_lock);
  3657. p = find_process_by_pid(pid);
  3658. if (p) {
  3659. retval = security_task_getscheduler(p);
  3660. if (!retval)
  3661. retval = p->policy;
  3662. }
  3663. read_unlock(&tasklist_lock);
  3664. out_nounlock:
  3665. return retval;
  3666. }
  3667. /**
  3668. * sys_sched_getscheduler - get the RT priority of a thread
  3669. * @pid: the pid in question.
  3670. * @param: structure containing the RT priority.
  3671. */
  3672. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3673. {
  3674. struct sched_param lp;
  3675. struct task_struct *p;
  3676. int retval = -EINVAL;
  3677. if (!param || pid < 0)
  3678. goto out_nounlock;
  3679. read_lock(&tasklist_lock);
  3680. p = find_process_by_pid(pid);
  3681. retval = -ESRCH;
  3682. if (!p)
  3683. goto out_unlock;
  3684. retval = security_task_getscheduler(p);
  3685. if (retval)
  3686. goto out_unlock;
  3687. lp.sched_priority = p->rt_priority;
  3688. read_unlock(&tasklist_lock);
  3689. /*
  3690. * This one might sleep, we cannot do it with a spinlock held ...
  3691. */
  3692. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3693. out_nounlock:
  3694. return retval;
  3695. out_unlock:
  3696. read_unlock(&tasklist_lock);
  3697. return retval;
  3698. }
  3699. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3700. {
  3701. cpumask_t cpus_allowed;
  3702. struct task_struct *p;
  3703. int retval;
  3704. lock_cpu_hotplug();
  3705. read_lock(&tasklist_lock);
  3706. p = find_process_by_pid(pid);
  3707. if (!p) {
  3708. read_unlock(&tasklist_lock);
  3709. unlock_cpu_hotplug();
  3710. return -ESRCH;
  3711. }
  3712. /*
  3713. * It is not safe to call set_cpus_allowed with the
  3714. * tasklist_lock held. We will bump the task_struct's
  3715. * usage count and then drop tasklist_lock.
  3716. */
  3717. get_task_struct(p);
  3718. read_unlock(&tasklist_lock);
  3719. retval = -EPERM;
  3720. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3721. !capable(CAP_SYS_NICE))
  3722. goto out_unlock;
  3723. retval = security_task_setscheduler(p, 0, NULL);
  3724. if (retval)
  3725. goto out_unlock;
  3726. cpus_allowed = cpuset_cpus_allowed(p);
  3727. cpus_and(new_mask, new_mask, cpus_allowed);
  3728. retval = set_cpus_allowed(p, new_mask);
  3729. out_unlock:
  3730. put_task_struct(p);
  3731. unlock_cpu_hotplug();
  3732. return retval;
  3733. }
  3734. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3735. cpumask_t *new_mask)
  3736. {
  3737. if (len < sizeof(cpumask_t)) {
  3738. memset(new_mask, 0, sizeof(cpumask_t));
  3739. } else if (len > sizeof(cpumask_t)) {
  3740. len = sizeof(cpumask_t);
  3741. }
  3742. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3743. }
  3744. /**
  3745. * sys_sched_setaffinity - set the cpu affinity of a process
  3746. * @pid: pid of the process
  3747. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3748. * @user_mask_ptr: user-space pointer to the new cpu mask
  3749. */
  3750. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3751. unsigned long __user *user_mask_ptr)
  3752. {
  3753. cpumask_t new_mask;
  3754. int retval;
  3755. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3756. if (retval)
  3757. return retval;
  3758. return sched_setaffinity(pid, new_mask);
  3759. }
  3760. /*
  3761. * Represents all cpu's present in the system
  3762. * In systems capable of hotplug, this map could dynamically grow
  3763. * as new cpu's are detected in the system via any platform specific
  3764. * method, such as ACPI for e.g.
  3765. */
  3766. cpumask_t cpu_present_map __read_mostly;
  3767. EXPORT_SYMBOL(cpu_present_map);
  3768. #ifndef CONFIG_SMP
  3769. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3770. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3771. #endif
  3772. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3773. {
  3774. struct task_struct *p;
  3775. int retval;
  3776. lock_cpu_hotplug();
  3777. read_lock(&tasklist_lock);
  3778. retval = -ESRCH;
  3779. p = find_process_by_pid(pid);
  3780. if (!p)
  3781. goto out_unlock;
  3782. retval = security_task_getscheduler(p);
  3783. if (retval)
  3784. goto out_unlock;
  3785. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3786. out_unlock:
  3787. read_unlock(&tasklist_lock);
  3788. unlock_cpu_hotplug();
  3789. if (retval)
  3790. return retval;
  3791. return 0;
  3792. }
  3793. /**
  3794. * sys_sched_getaffinity - get the cpu affinity of a process
  3795. * @pid: pid of the process
  3796. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3797. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3798. */
  3799. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3800. unsigned long __user *user_mask_ptr)
  3801. {
  3802. int ret;
  3803. cpumask_t mask;
  3804. if (len < sizeof(cpumask_t))
  3805. return -EINVAL;
  3806. ret = sched_getaffinity(pid, &mask);
  3807. if (ret < 0)
  3808. return ret;
  3809. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3810. return -EFAULT;
  3811. return sizeof(cpumask_t);
  3812. }
  3813. /**
  3814. * sys_sched_yield - yield the current processor to other threads.
  3815. *
  3816. * this function yields the current CPU by moving the calling thread
  3817. * to the expired array. If there are no other threads running on this
  3818. * CPU then this function will return.
  3819. */
  3820. asmlinkage long sys_sched_yield(void)
  3821. {
  3822. struct rq *rq = this_rq_lock();
  3823. struct prio_array *array = current->array, *target = rq->expired;
  3824. schedstat_inc(rq, yld_cnt);
  3825. /*
  3826. * We implement yielding by moving the task into the expired
  3827. * queue.
  3828. *
  3829. * (special rule: RT tasks will just roundrobin in the active
  3830. * array.)
  3831. */
  3832. if (rt_task(current))
  3833. target = rq->active;
  3834. if (array->nr_active == 1) {
  3835. schedstat_inc(rq, yld_act_empty);
  3836. if (!rq->expired->nr_active)
  3837. schedstat_inc(rq, yld_both_empty);
  3838. } else if (!rq->expired->nr_active)
  3839. schedstat_inc(rq, yld_exp_empty);
  3840. if (array != target) {
  3841. dequeue_task(current, array);
  3842. enqueue_task(current, target);
  3843. } else
  3844. /*
  3845. * requeue_task is cheaper so perform that if possible.
  3846. */
  3847. requeue_task(current, array);
  3848. /*
  3849. * Since we are going to call schedule() anyway, there's
  3850. * no need to preempt or enable interrupts:
  3851. */
  3852. __release(rq->lock);
  3853. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3854. _raw_spin_unlock(&rq->lock);
  3855. preempt_enable_no_resched();
  3856. schedule();
  3857. return 0;
  3858. }
  3859. static inline int __resched_legal(void)
  3860. {
  3861. if (unlikely(preempt_count()))
  3862. return 0;
  3863. if (unlikely(system_state != SYSTEM_RUNNING))
  3864. return 0;
  3865. return 1;
  3866. }
  3867. static void __cond_resched(void)
  3868. {
  3869. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3870. __might_sleep(__FILE__, __LINE__);
  3871. #endif
  3872. /*
  3873. * The BKS might be reacquired before we have dropped
  3874. * PREEMPT_ACTIVE, which could trigger a second
  3875. * cond_resched() call.
  3876. */
  3877. do {
  3878. add_preempt_count(PREEMPT_ACTIVE);
  3879. schedule();
  3880. sub_preempt_count(PREEMPT_ACTIVE);
  3881. } while (need_resched());
  3882. }
  3883. int __sched cond_resched(void)
  3884. {
  3885. if (need_resched() && __resched_legal()) {
  3886. __cond_resched();
  3887. return 1;
  3888. }
  3889. return 0;
  3890. }
  3891. EXPORT_SYMBOL(cond_resched);
  3892. /*
  3893. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3894. * call schedule, and on return reacquire the lock.
  3895. *
  3896. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3897. * operations here to prevent schedule() from being called twice (once via
  3898. * spin_unlock(), once by hand).
  3899. */
  3900. int cond_resched_lock(spinlock_t *lock)
  3901. {
  3902. int ret = 0;
  3903. if (need_lockbreak(lock)) {
  3904. spin_unlock(lock);
  3905. cpu_relax();
  3906. ret = 1;
  3907. spin_lock(lock);
  3908. }
  3909. if (need_resched() && __resched_legal()) {
  3910. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3911. _raw_spin_unlock(lock);
  3912. preempt_enable_no_resched();
  3913. __cond_resched();
  3914. ret = 1;
  3915. spin_lock(lock);
  3916. }
  3917. return ret;
  3918. }
  3919. EXPORT_SYMBOL(cond_resched_lock);
  3920. int __sched cond_resched_softirq(void)
  3921. {
  3922. BUG_ON(!in_softirq());
  3923. if (need_resched() && __resched_legal()) {
  3924. raw_local_irq_disable();
  3925. _local_bh_enable();
  3926. raw_local_irq_enable();
  3927. __cond_resched();
  3928. local_bh_disable();
  3929. return 1;
  3930. }
  3931. return 0;
  3932. }
  3933. EXPORT_SYMBOL(cond_resched_softirq);
  3934. /**
  3935. * yield - yield the current processor to other threads.
  3936. *
  3937. * this is a shortcut for kernel-space yielding - it marks the
  3938. * thread runnable and calls sys_sched_yield().
  3939. */
  3940. void __sched yield(void)
  3941. {
  3942. set_current_state(TASK_RUNNING);
  3943. sys_sched_yield();
  3944. }
  3945. EXPORT_SYMBOL(yield);
  3946. /*
  3947. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3948. * that process accounting knows that this is a task in IO wait state.
  3949. *
  3950. * But don't do that if it is a deliberate, throttling IO wait (this task
  3951. * has set its backing_dev_info: the queue against which it should throttle)
  3952. */
  3953. void __sched io_schedule(void)
  3954. {
  3955. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3956. atomic_inc(&rq->nr_iowait);
  3957. schedule();
  3958. atomic_dec(&rq->nr_iowait);
  3959. }
  3960. EXPORT_SYMBOL(io_schedule);
  3961. long __sched io_schedule_timeout(long timeout)
  3962. {
  3963. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3964. long ret;
  3965. atomic_inc(&rq->nr_iowait);
  3966. ret = schedule_timeout(timeout);
  3967. atomic_dec(&rq->nr_iowait);
  3968. return ret;
  3969. }
  3970. /**
  3971. * sys_sched_get_priority_max - return maximum RT priority.
  3972. * @policy: scheduling class.
  3973. *
  3974. * this syscall returns the maximum rt_priority that can be used
  3975. * by a given scheduling class.
  3976. */
  3977. asmlinkage long sys_sched_get_priority_max(int policy)
  3978. {
  3979. int ret = -EINVAL;
  3980. switch (policy) {
  3981. case SCHED_FIFO:
  3982. case SCHED_RR:
  3983. ret = MAX_USER_RT_PRIO-1;
  3984. break;
  3985. case SCHED_NORMAL:
  3986. case SCHED_BATCH:
  3987. ret = 0;
  3988. break;
  3989. }
  3990. return ret;
  3991. }
  3992. /**
  3993. * sys_sched_get_priority_min - return minimum RT priority.
  3994. * @policy: scheduling class.
  3995. *
  3996. * this syscall returns the minimum rt_priority that can be used
  3997. * by a given scheduling class.
  3998. */
  3999. asmlinkage long sys_sched_get_priority_min(int policy)
  4000. {
  4001. int ret = -EINVAL;
  4002. switch (policy) {
  4003. case SCHED_FIFO:
  4004. case SCHED_RR:
  4005. ret = 1;
  4006. break;
  4007. case SCHED_NORMAL:
  4008. case SCHED_BATCH:
  4009. ret = 0;
  4010. }
  4011. return ret;
  4012. }
  4013. /**
  4014. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4015. * @pid: pid of the process.
  4016. * @interval: userspace pointer to the timeslice value.
  4017. *
  4018. * this syscall writes the default timeslice value of a given process
  4019. * into the user-space timespec buffer. A value of '0' means infinity.
  4020. */
  4021. asmlinkage
  4022. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4023. {
  4024. struct task_struct *p;
  4025. int retval = -EINVAL;
  4026. struct timespec t;
  4027. if (pid < 0)
  4028. goto out_nounlock;
  4029. retval = -ESRCH;
  4030. read_lock(&tasklist_lock);
  4031. p = find_process_by_pid(pid);
  4032. if (!p)
  4033. goto out_unlock;
  4034. retval = security_task_getscheduler(p);
  4035. if (retval)
  4036. goto out_unlock;
  4037. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4038. 0 : task_timeslice(p), &t);
  4039. read_unlock(&tasklist_lock);
  4040. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4041. out_nounlock:
  4042. return retval;
  4043. out_unlock:
  4044. read_unlock(&tasklist_lock);
  4045. return retval;
  4046. }
  4047. static inline struct task_struct *eldest_child(struct task_struct *p)
  4048. {
  4049. if (list_empty(&p->children))
  4050. return NULL;
  4051. return list_entry(p->children.next,struct task_struct,sibling);
  4052. }
  4053. static inline struct task_struct *older_sibling(struct task_struct *p)
  4054. {
  4055. if (p->sibling.prev==&p->parent->children)
  4056. return NULL;
  4057. return list_entry(p->sibling.prev,struct task_struct,sibling);
  4058. }
  4059. static inline struct task_struct *younger_sibling(struct task_struct *p)
  4060. {
  4061. if (p->sibling.next==&p->parent->children)
  4062. return NULL;
  4063. return list_entry(p->sibling.next,struct task_struct,sibling);
  4064. }
  4065. static const char stat_nam[] = "RSDTtZX";
  4066. static void show_task(struct task_struct *p)
  4067. {
  4068. struct task_struct *relative;
  4069. unsigned long free = 0;
  4070. unsigned state;
  4071. state = p->state ? __ffs(p->state) + 1 : 0;
  4072. printk("%-13.13s %c", p->comm,
  4073. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4074. #if (BITS_PER_LONG == 32)
  4075. if (state == TASK_RUNNING)
  4076. printk(" running ");
  4077. else
  4078. printk(" %08lX ", thread_saved_pc(p));
  4079. #else
  4080. if (state == TASK_RUNNING)
  4081. printk(" running task ");
  4082. else
  4083. printk(" %016lx ", thread_saved_pc(p));
  4084. #endif
  4085. #ifdef CONFIG_DEBUG_STACK_USAGE
  4086. {
  4087. unsigned long *n = end_of_stack(p);
  4088. while (!*n)
  4089. n++;
  4090. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4091. }
  4092. #endif
  4093. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  4094. if ((relative = eldest_child(p)))
  4095. printk("%5d ", relative->pid);
  4096. else
  4097. printk(" ");
  4098. if ((relative = younger_sibling(p)))
  4099. printk("%7d", relative->pid);
  4100. else
  4101. printk(" ");
  4102. if ((relative = older_sibling(p)))
  4103. printk(" %5d", relative->pid);
  4104. else
  4105. printk(" ");
  4106. if (!p->mm)
  4107. printk(" (L-TLB)\n");
  4108. else
  4109. printk(" (NOTLB)\n");
  4110. if (state != TASK_RUNNING)
  4111. show_stack(p, NULL);
  4112. }
  4113. void show_state(void)
  4114. {
  4115. struct task_struct *g, *p;
  4116. #if (BITS_PER_LONG == 32)
  4117. printk("\n"
  4118. " sibling\n");
  4119. printk(" task PC pid father child younger older\n");
  4120. #else
  4121. printk("\n"
  4122. " sibling\n");
  4123. printk(" task PC pid father child younger older\n");
  4124. #endif
  4125. read_lock(&tasklist_lock);
  4126. do_each_thread(g, p) {
  4127. /*
  4128. * reset the NMI-timeout, listing all files on a slow
  4129. * console might take alot of time:
  4130. */
  4131. touch_nmi_watchdog();
  4132. show_task(p);
  4133. } while_each_thread(g, p);
  4134. read_unlock(&tasklist_lock);
  4135. debug_show_all_locks();
  4136. }
  4137. /**
  4138. * init_idle - set up an idle thread for a given CPU
  4139. * @idle: task in question
  4140. * @cpu: cpu the idle task belongs to
  4141. *
  4142. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4143. * flag, to make booting more robust.
  4144. */
  4145. void __devinit init_idle(struct task_struct *idle, int cpu)
  4146. {
  4147. struct rq *rq = cpu_rq(cpu);
  4148. unsigned long flags;
  4149. idle->timestamp = sched_clock();
  4150. idle->sleep_avg = 0;
  4151. idle->array = NULL;
  4152. idle->prio = idle->normal_prio = MAX_PRIO;
  4153. idle->state = TASK_RUNNING;
  4154. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4155. set_task_cpu(idle, cpu);
  4156. spin_lock_irqsave(&rq->lock, flags);
  4157. rq->curr = rq->idle = idle;
  4158. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4159. idle->oncpu = 1;
  4160. #endif
  4161. spin_unlock_irqrestore(&rq->lock, flags);
  4162. /* Set the preempt count _outside_ the spinlocks! */
  4163. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4164. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4165. #else
  4166. task_thread_info(idle)->preempt_count = 0;
  4167. #endif
  4168. }
  4169. /*
  4170. * In a system that switches off the HZ timer nohz_cpu_mask
  4171. * indicates which cpus entered this state. This is used
  4172. * in the rcu update to wait only for active cpus. For system
  4173. * which do not switch off the HZ timer nohz_cpu_mask should
  4174. * always be CPU_MASK_NONE.
  4175. */
  4176. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4177. #ifdef CONFIG_SMP
  4178. /*
  4179. * This is how migration works:
  4180. *
  4181. * 1) we queue a struct migration_req structure in the source CPU's
  4182. * runqueue and wake up that CPU's migration thread.
  4183. * 2) we down() the locked semaphore => thread blocks.
  4184. * 3) migration thread wakes up (implicitly it forces the migrated
  4185. * thread off the CPU)
  4186. * 4) it gets the migration request and checks whether the migrated
  4187. * task is still in the wrong runqueue.
  4188. * 5) if it's in the wrong runqueue then the migration thread removes
  4189. * it and puts it into the right queue.
  4190. * 6) migration thread up()s the semaphore.
  4191. * 7) we wake up and the migration is done.
  4192. */
  4193. /*
  4194. * Change a given task's CPU affinity. Migrate the thread to a
  4195. * proper CPU and schedule it away if the CPU it's executing on
  4196. * is removed from the allowed bitmask.
  4197. *
  4198. * NOTE: the caller must have a valid reference to the task, the
  4199. * task must not exit() & deallocate itself prematurely. The
  4200. * call is not atomic; no spinlocks may be held.
  4201. */
  4202. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4203. {
  4204. struct migration_req req;
  4205. unsigned long flags;
  4206. struct rq *rq;
  4207. int ret = 0;
  4208. rq = task_rq_lock(p, &flags);
  4209. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4210. ret = -EINVAL;
  4211. goto out;
  4212. }
  4213. p->cpus_allowed = new_mask;
  4214. /* Can the task run on the task's current CPU? If so, we're done */
  4215. if (cpu_isset(task_cpu(p), new_mask))
  4216. goto out;
  4217. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4218. /* Need help from migration thread: drop lock and wait. */
  4219. task_rq_unlock(rq, &flags);
  4220. wake_up_process(rq->migration_thread);
  4221. wait_for_completion(&req.done);
  4222. tlb_migrate_finish(p->mm);
  4223. return 0;
  4224. }
  4225. out:
  4226. task_rq_unlock(rq, &flags);
  4227. return ret;
  4228. }
  4229. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4230. /*
  4231. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4232. * this because either it can't run here any more (set_cpus_allowed()
  4233. * away from this CPU, or CPU going down), or because we're
  4234. * attempting to rebalance this task on exec (sched_exec).
  4235. *
  4236. * So we race with normal scheduler movements, but that's OK, as long
  4237. * as the task is no longer on this CPU.
  4238. *
  4239. * Returns non-zero if task was successfully migrated.
  4240. */
  4241. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4242. {
  4243. struct rq *rq_dest, *rq_src;
  4244. int ret = 0;
  4245. if (unlikely(cpu_is_offline(dest_cpu)))
  4246. return ret;
  4247. rq_src = cpu_rq(src_cpu);
  4248. rq_dest = cpu_rq(dest_cpu);
  4249. double_rq_lock(rq_src, rq_dest);
  4250. /* Already moved. */
  4251. if (task_cpu(p) != src_cpu)
  4252. goto out;
  4253. /* Affinity changed (again). */
  4254. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4255. goto out;
  4256. set_task_cpu(p, dest_cpu);
  4257. if (p->array) {
  4258. /*
  4259. * Sync timestamp with rq_dest's before activating.
  4260. * The same thing could be achieved by doing this step
  4261. * afterwards, and pretending it was a local activate.
  4262. * This way is cleaner and logically correct.
  4263. */
  4264. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  4265. + rq_dest->timestamp_last_tick;
  4266. deactivate_task(p, rq_src);
  4267. __activate_task(p, rq_dest);
  4268. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4269. resched_task(rq_dest->curr);
  4270. }
  4271. ret = 1;
  4272. out:
  4273. double_rq_unlock(rq_src, rq_dest);
  4274. return ret;
  4275. }
  4276. /*
  4277. * migration_thread - this is a highprio system thread that performs
  4278. * thread migration by bumping thread off CPU then 'pushing' onto
  4279. * another runqueue.
  4280. */
  4281. static int migration_thread(void *data)
  4282. {
  4283. int cpu = (long)data;
  4284. struct rq *rq;
  4285. rq = cpu_rq(cpu);
  4286. BUG_ON(rq->migration_thread != current);
  4287. set_current_state(TASK_INTERRUPTIBLE);
  4288. while (!kthread_should_stop()) {
  4289. struct migration_req *req;
  4290. struct list_head *head;
  4291. try_to_freeze();
  4292. spin_lock_irq(&rq->lock);
  4293. if (cpu_is_offline(cpu)) {
  4294. spin_unlock_irq(&rq->lock);
  4295. goto wait_to_die;
  4296. }
  4297. if (rq->active_balance) {
  4298. active_load_balance(rq, cpu);
  4299. rq->active_balance = 0;
  4300. }
  4301. head = &rq->migration_queue;
  4302. if (list_empty(head)) {
  4303. spin_unlock_irq(&rq->lock);
  4304. schedule();
  4305. set_current_state(TASK_INTERRUPTIBLE);
  4306. continue;
  4307. }
  4308. req = list_entry(head->next, struct migration_req, list);
  4309. list_del_init(head->next);
  4310. spin_unlock(&rq->lock);
  4311. __migrate_task(req->task, cpu, req->dest_cpu);
  4312. local_irq_enable();
  4313. complete(&req->done);
  4314. }
  4315. __set_current_state(TASK_RUNNING);
  4316. return 0;
  4317. wait_to_die:
  4318. /* Wait for kthread_stop */
  4319. set_current_state(TASK_INTERRUPTIBLE);
  4320. while (!kthread_should_stop()) {
  4321. schedule();
  4322. set_current_state(TASK_INTERRUPTIBLE);
  4323. }
  4324. __set_current_state(TASK_RUNNING);
  4325. return 0;
  4326. }
  4327. #ifdef CONFIG_HOTPLUG_CPU
  4328. /* Figure out where task on dead CPU should go, use force if neccessary. */
  4329. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4330. {
  4331. unsigned long flags;
  4332. cpumask_t mask;
  4333. struct rq *rq;
  4334. int dest_cpu;
  4335. restart:
  4336. /* On same node? */
  4337. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4338. cpus_and(mask, mask, p->cpus_allowed);
  4339. dest_cpu = any_online_cpu(mask);
  4340. /* On any allowed CPU? */
  4341. if (dest_cpu == NR_CPUS)
  4342. dest_cpu = any_online_cpu(p->cpus_allowed);
  4343. /* No more Mr. Nice Guy. */
  4344. if (dest_cpu == NR_CPUS) {
  4345. rq = task_rq_lock(p, &flags);
  4346. cpus_setall(p->cpus_allowed);
  4347. dest_cpu = any_online_cpu(p->cpus_allowed);
  4348. task_rq_unlock(rq, &flags);
  4349. /*
  4350. * Don't tell them about moving exiting tasks or
  4351. * kernel threads (both mm NULL), since they never
  4352. * leave kernel.
  4353. */
  4354. if (p->mm && printk_ratelimit())
  4355. printk(KERN_INFO "process %d (%s) no "
  4356. "longer affine to cpu%d\n",
  4357. p->pid, p->comm, dead_cpu);
  4358. }
  4359. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4360. goto restart;
  4361. }
  4362. /*
  4363. * While a dead CPU has no uninterruptible tasks queued at this point,
  4364. * it might still have a nonzero ->nr_uninterruptible counter, because
  4365. * for performance reasons the counter is not stricly tracking tasks to
  4366. * their home CPUs. So we just add the counter to another CPU's counter,
  4367. * to keep the global sum constant after CPU-down:
  4368. */
  4369. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4370. {
  4371. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4372. unsigned long flags;
  4373. local_irq_save(flags);
  4374. double_rq_lock(rq_src, rq_dest);
  4375. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4376. rq_src->nr_uninterruptible = 0;
  4377. double_rq_unlock(rq_src, rq_dest);
  4378. local_irq_restore(flags);
  4379. }
  4380. /* Run through task list and migrate tasks from the dead cpu. */
  4381. static void migrate_live_tasks(int src_cpu)
  4382. {
  4383. struct task_struct *p, *t;
  4384. write_lock_irq(&tasklist_lock);
  4385. do_each_thread(t, p) {
  4386. if (p == current)
  4387. continue;
  4388. if (task_cpu(p) == src_cpu)
  4389. move_task_off_dead_cpu(src_cpu, p);
  4390. } while_each_thread(t, p);
  4391. write_unlock_irq(&tasklist_lock);
  4392. }
  4393. /* Schedules idle task to be the next runnable task on current CPU.
  4394. * It does so by boosting its priority to highest possible and adding it to
  4395. * the _front_ of the runqueue. Used by CPU offline code.
  4396. */
  4397. void sched_idle_next(void)
  4398. {
  4399. int this_cpu = smp_processor_id();
  4400. struct rq *rq = cpu_rq(this_cpu);
  4401. struct task_struct *p = rq->idle;
  4402. unsigned long flags;
  4403. /* cpu has to be offline */
  4404. BUG_ON(cpu_online(this_cpu));
  4405. /*
  4406. * Strictly not necessary since rest of the CPUs are stopped by now
  4407. * and interrupts disabled on the current cpu.
  4408. */
  4409. spin_lock_irqsave(&rq->lock, flags);
  4410. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4411. /* Add idle task to the _front_ of its priority queue: */
  4412. __activate_idle_task(p, rq);
  4413. spin_unlock_irqrestore(&rq->lock, flags);
  4414. }
  4415. /*
  4416. * Ensures that the idle task is using init_mm right before its cpu goes
  4417. * offline.
  4418. */
  4419. void idle_task_exit(void)
  4420. {
  4421. struct mm_struct *mm = current->active_mm;
  4422. BUG_ON(cpu_online(smp_processor_id()));
  4423. if (mm != &init_mm)
  4424. switch_mm(mm, &init_mm, current);
  4425. mmdrop(mm);
  4426. }
  4427. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4428. {
  4429. struct rq *rq = cpu_rq(dead_cpu);
  4430. /* Must be exiting, otherwise would be on tasklist. */
  4431. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4432. /* Cannot have done final schedule yet: would have vanished. */
  4433. BUG_ON(p->flags & PF_DEAD);
  4434. get_task_struct(p);
  4435. /*
  4436. * Drop lock around migration; if someone else moves it,
  4437. * that's OK. No task can be added to this CPU, so iteration is
  4438. * fine.
  4439. */
  4440. spin_unlock_irq(&rq->lock);
  4441. move_task_off_dead_cpu(dead_cpu, p);
  4442. spin_lock_irq(&rq->lock);
  4443. put_task_struct(p);
  4444. }
  4445. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4446. static void migrate_dead_tasks(unsigned int dead_cpu)
  4447. {
  4448. struct rq *rq = cpu_rq(dead_cpu);
  4449. unsigned int arr, i;
  4450. for (arr = 0; arr < 2; arr++) {
  4451. for (i = 0; i < MAX_PRIO; i++) {
  4452. struct list_head *list = &rq->arrays[arr].queue[i];
  4453. while (!list_empty(list))
  4454. migrate_dead(dead_cpu, list_entry(list->next,
  4455. struct task_struct, run_list));
  4456. }
  4457. }
  4458. }
  4459. #endif /* CONFIG_HOTPLUG_CPU */
  4460. /*
  4461. * migration_call - callback that gets triggered when a CPU is added.
  4462. * Here we can start up the necessary migration thread for the new CPU.
  4463. */
  4464. static int __cpuinit
  4465. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4466. {
  4467. struct task_struct *p;
  4468. int cpu = (long)hcpu;
  4469. unsigned long flags;
  4470. struct rq *rq;
  4471. switch (action) {
  4472. case CPU_UP_PREPARE:
  4473. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4474. if (IS_ERR(p))
  4475. return NOTIFY_BAD;
  4476. p->flags |= PF_NOFREEZE;
  4477. kthread_bind(p, cpu);
  4478. /* Must be high prio: stop_machine expects to yield to it. */
  4479. rq = task_rq_lock(p, &flags);
  4480. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4481. task_rq_unlock(rq, &flags);
  4482. cpu_rq(cpu)->migration_thread = p;
  4483. break;
  4484. case CPU_ONLINE:
  4485. /* Strictly unneccessary, as first user will wake it. */
  4486. wake_up_process(cpu_rq(cpu)->migration_thread);
  4487. break;
  4488. #ifdef CONFIG_HOTPLUG_CPU
  4489. case CPU_UP_CANCELED:
  4490. if (!cpu_rq(cpu)->migration_thread)
  4491. break;
  4492. /* Unbind it from offline cpu so it can run. Fall thru. */
  4493. kthread_bind(cpu_rq(cpu)->migration_thread,
  4494. any_online_cpu(cpu_online_map));
  4495. kthread_stop(cpu_rq(cpu)->migration_thread);
  4496. cpu_rq(cpu)->migration_thread = NULL;
  4497. break;
  4498. case CPU_DEAD:
  4499. migrate_live_tasks(cpu);
  4500. rq = cpu_rq(cpu);
  4501. kthread_stop(rq->migration_thread);
  4502. rq->migration_thread = NULL;
  4503. /* Idle task back to normal (off runqueue, low prio) */
  4504. rq = task_rq_lock(rq->idle, &flags);
  4505. deactivate_task(rq->idle, rq);
  4506. rq->idle->static_prio = MAX_PRIO;
  4507. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4508. migrate_dead_tasks(cpu);
  4509. task_rq_unlock(rq, &flags);
  4510. migrate_nr_uninterruptible(rq);
  4511. BUG_ON(rq->nr_running != 0);
  4512. /* No need to migrate the tasks: it was best-effort if
  4513. * they didn't do lock_cpu_hotplug(). Just wake up
  4514. * the requestors. */
  4515. spin_lock_irq(&rq->lock);
  4516. while (!list_empty(&rq->migration_queue)) {
  4517. struct migration_req *req;
  4518. req = list_entry(rq->migration_queue.next,
  4519. struct migration_req, list);
  4520. list_del_init(&req->list);
  4521. complete(&req->done);
  4522. }
  4523. spin_unlock_irq(&rq->lock);
  4524. break;
  4525. #endif
  4526. }
  4527. return NOTIFY_OK;
  4528. }
  4529. /* Register at highest priority so that task migration (migrate_all_tasks)
  4530. * happens before everything else.
  4531. */
  4532. static struct notifier_block __cpuinitdata migration_notifier = {
  4533. .notifier_call = migration_call,
  4534. .priority = 10
  4535. };
  4536. int __init migration_init(void)
  4537. {
  4538. void *cpu = (void *)(long)smp_processor_id();
  4539. /* Start one for the boot CPU: */
  4540. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4541. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4542. register_cpu_notifier(&migration_notifier);
  4543. return 0;
  4544. }
  4545. #endif
  4546. #ifdef CONFIG_SMP
  4547. #undef SCHED_DOMAIN_DEBUG
  4548. #ifdef SCHED_DOMAIN_DEBUG
  4549. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4550. {
  4551. int level = 0;
  4552. if (!sd) {
  4553. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4554. return;
  4555. }
  4556. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4557. do {
  4558. int i;
  4559. char str[NR_CPUS];
  4560. struct sched_group *group = sd->groups;
  4561. cpumask_t groupmask;
  4562. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4563. cpus_clear(groupmask);
  4564. printk(KERN_DEBUG);
  4565. for (i = 0; i < level + 1; i++)
  4566. printk(" ");
  4567. printk("domain %d: ", level);
  4568. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4569. printk("does not load-balance\n");
  4570. if (sd->parent)
  4571. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4572. break;
  4573. }
  4574. printk("span %s\n", str);
  4575. if (!cpu_isset(cpu, sd->span))
  4576. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4577. if (!cpu_isset(cpu, group->cpumask))
  4578. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4579. printk(KERN_DEBUG);
  4580. for (i = 0; i < level + 2; i++)
  4581. printk(" ");
  4582. printk("groups:");
  4583. do {
  4584. if (!group) {
  4585. printk("\n");
  4586. printk(KERN_ERR "ERROR: group is NULL\n");
  4587. break;
  4588. }
  4589. if (!group->cpu_power) {
  4590. printk("\n");
  4591. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4592. }
  4593. if (!cpus_weight(group->cpumask)) {
  4594. printk("\n");
  4595. printk(KERN_ERR "ERROR: empty group\n");
  4596. }
  4597. if (cpus_intersects(groupmask, group->cpumask)) {
  4598. printk("\n");
  4599. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4600. }
  4601. cpus_or(groupmask, groupmask, group->cpumask);
  4602. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4603. printk(" %s", str);
  4604. group = group->next;
  4605. } while (group != sd->groups);
  4606. printk("\n");
  4607. if (!cpus_equal(sd->span, groupmask))
  4608. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4609. level++;
  4610. sd = sd->parent;
  4611. if (sd) {
  4612. if (!cpus_subset(groupmask, sd->span))
  4613. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4614. }
  4615. } while (sd);
  4616. }
  4617. #else
  4618. # define sched_domain_debug(sd, cpu) do { } while (0)
  4619. #endif
  4620. static int sd_degenerate(struct sched_domain *sd)
  4621. {
  4622. if (cpus_weight(sd->span) == 1)
  4623. return 1;
  4624. /* Following flags need at least 2 groups */
  4625. if (sd->flags & (SD_LOAD_BALANCE |
  4626. SD_BALANCE_NEWIDLE |
  4627. SD_BALANCE_FORK |
  4628. SD_BALANCE_EXEC)) {
  4629. if (sd->groups != sd->groups->next)
  4630. return 0;
  4631. }
  4632. /* Following flags don't use groups */
  4633. if (sd->flags & (SD_WAKE_IDLE |
  4634. SD_WAKE_AFFINE |
  4635. SD_WAKE_BALANCE))
  4636. return 0;
  4637. return 1;
  4638. }
  4639. static int
  4640. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4641. {
  4642. unsigned long cflags = sd->flags, pflags = parent->flags;
  4643. if (sd_degenerate(parent))
  4644. return 1;
  4645. if (!cpus_equal(sd->span, parent->span))
  4646. return 0;
  4647. /* Does parent contain flags not in child? */
  4648. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4649. if (cflags & SD_WAKE_AFFINE)
  4650. pflags &= ~SD_WAKE_BALANCE;
  4651. /* Flags needing groups don't count if only 1 group in parent */
  4652. if (parent->groups == parent->groups->next) {
  4653. pflags &= ~(SD_LOAD_BALANCE |
  4654. SD_BALANCE_NEWIDLE |
  4655. SD_BALANCE_FORK |
  4656. SD_BALANCE_EXEC);
  4657. }
  4658. if (~cflags & pflags)
  4659. return 0;
  4660. return 1;
  4661. }
  4662. /*
  4663. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4664. * hold the hotplug lock.
  4665. */
  4666. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4667. {
  4668. struct rq *rq = cpu_rq(cpu);
  4669. struct sched_domain *tmp;
  4670. /* Remove the sched domains which do not contribute to scheduling. */
  4671. for (tmp = sd; tmp; tmp = tmp->parent) {
  4672. struct sched_domain *parent = tmp->parent;
  4673. if (!parent)
  4674. break;
  4675. if (sd_parent_degenerate(tmp, parent))
  4676. tmp->parent = parent->parent;
  4677. }
  4678. if (sd && sd_degenerate(sd))
  4679. sd = sd->parent;
  4680. sched_domain_debug(sd, cpu);
  4681. rcu_assign_pointer(rq->sd, sd);
  4682. }
  4683. /* cpus with isolated domains */
  4684. static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  4685. /* Setup the mask of cpus configured for isolated domains */
  4686. static int __init isolated_cpu_setup(char *str)
  4687. {
  4688. int ints[NR_CPUS], i;
  4689. str = get_options(str, ARRAY_SIZE(ints), ints);
  4690. cpus_clear(cpu_isolated_map);
  4691. for (i = 1; i <= ints[0]; i++)
  4692. if (ints[i] < NR_CPUS)
  4693. cpu_set(ints[i], cpu_isolated_map);
  4694. return 1;
  4695. }
  4696. __setup ("isolcpus=", isolated_cpu_setup);
  4697. /*
  4698. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4699. * to span, and a pointer to a function which identifies what group a CPU
  4700. * belongs to. The return value of group_fn must be a valid index into the
  4701. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4702. * keep track of groups covered with a cpumask_t).
  4703. *
  4704. * init_sched_build_groups will build a circular linked list of the groups
  4705. * covered by the given span, and will set each group's ->cpumask correctly,
  4706. * and ->cpu_power to 0.
  4707. */
  4708. static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4709. int (*group_fn)(int cpu))
  4710. {
  4711. struct sched_group *first = NULL, *last = NULL;
  4712. cpumask_t covered = CPU_MASK_NONE;
  4713. int i;
  4714. for_each_cpu_mask(i, span) {
  4715. int group = group_fn(i);
  4716. struct sched_group *sg = &groups[group];
  4717. int j;
  4718. if (cpu_isset(i, covered))
  4719. continue;
  4720. sg->cpumask = CPU_MASK_NONE;
  4721. sg->cpu_power = 0;
  4722. for_each_cpu_mask(j, span) {
  4723. if (group_fn(j) != group)
  4724. continue;
  4725. cpu_set(j, covered);
  4726. cpu_set(j, sg->cpumask);
  4727. }
  4728. if (!first)
  4729. first = sg;
  4730. if (last)
  4731. last->next = sg;
  4732. last = sg;
  4733. }
  4734. last->next = first;
  4735. }
  4736. #define SD_NODES_PER_DOMAIN 16
  4737. /*
  4738. * Self-tuning task migration cost measurement between source and target CPUs.
  4739. *
  4740. * This is done by measuring the cost of manipulating buffers of varying
  4741. * sizes. For a given buffer-size here are the steps that are taken:
  4742. *
  4743. * 1) the source CPU reads+dirties a shared buffer
  4744. * 2) the target CPU reads+dirties the same shared buffer
  4745. *
  4746. * We measure how long they take, in the following 4 scenarios:
  4747. *
  4748. * - source: CPU1, target: CPU2 | cost1
  4749. * - source: CPU2, target: CPU1 | cost2
  4750. * - source: CPU1, target: CPU1 | cost3
  4751. * - source: CPU2, target: CPU2 | cost4
  4752. *
  4753. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4754. * the cost of migration.
  4755. *
  4756. * We then start off from a small buffer-size and iterate up to larger
  4757. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4758. * doing a maximum search for the cost. (The maximum cost for a migration
  4759. * normally occurs when the working set size is around the effective cache
  4760. * size.)
  4761. */
  4762. #define SEARCH_SCOPE 2
  4763. #define MIN_CACHE_SIZE (64*1024U)
  4764. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4765. #define ITERATIONS 1
  4766. #define SIZE_THRESH 130
  4767. #define COST_THRESH 130
  4768. /*
  4769. * The migration cost is a function of 'domain distance'. Domain
  4770. * distance is the number of steps a CPU has to iterate down its
  4771. * domain tree to share a domain with the other CPU. The farther
  4772. * two CPUs are from each other, the larger the distance gets.
  4773. *
  4774. * Note that we use the distance only to cache measurement results,
  4775. * the distance value is not used numerically otherwise. When two
  4776. * CPUs have the same distance it is assumed that the migration
  4777. * cost is the same. (this is a simplification but quite practical)
  4778. */
  4779. #define MAX_DOMAIN_DISTANCE 32
  4780. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4781. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4782. /*
  4783. * Architectures may override the migration cost and thus avoid
  4784. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4785. * virtualized hardware:
  4786. */
  4787. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4788. CONFIG_DEFAULT_MIGRATION_COST
  4789. #else
  4790. -1LL
  4791. #endif
  4792. };
  4793. /*
  4794. * Allow override of migration cost - in units of microseconds.
  4795. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4796. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4797. */
  4798. static int __init migration_cost_setup(char *str)
  4799. {
  4800. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4801. str = get_options(str, ARRAY_SIZE(ints), ints);
  4802. printk("#ints: %d\n", ints[0]);
  4803. for (i = 1; i <= ints[0]; i++) {
  4804. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4805. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4806. }
  4807. return 1;
  4808. }
  4809. __setup ("migration_cost=", migration_cost_setup);
  4810. /*
  4811. * Global multiplier (divisor) for migration-cutoff values,
  4812. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4813. * longer cache-hot cutoff times.
  4814. *
  4815. * (We scale it from 100 to 128 to long long handling easier.)
  4816. */
  4817. #define MIGRATION_FACTOR_SCALE 128
  4818. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4819. static int __init setup_migration_factor(char *str)
  4820. {
  4821. get_option(&str, &migration_factor);
  4822. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4823. return 1;
  4824. }
  4825. __setup("migration_factor=", setup_migration_factor);
  4826. /*
  4827. * Estimated distance of two CPUs, measured via the number of domains
  4828. * we have to pass for the two CPUs to be in the same span:
  4829. */
  4830. static unsigned long domain_distance(int cpu1, int cpu2)
  4831. {
  4832. unsigned long distance = 0;
  4833. struct sched_domain *sd;
  4834. for_each_domain(cpu1, sd) {
  4835. WARN_ON(!cpu_isset(cpu1, sd->span));
  4836. if (cpu_isset(cpu2, sd->span))
  4837. return distance;
  4838. distance++;
  4839. }
  4840. if (distance >= MAX_DOMAIN_DISTANCE) {
  4841. WARN_ON(1);
  4842. distance = MAX_DOMAIN_DISTANCE-1;
  4843. }
  4844. return distance;
  4845. }
  4846. static unsigned int migration_debug;
  4847. static int __init setup_migration_debug(char *str)
  4848. {
  4849. get_option(&str, &migration_debug);
  4850. return 1;
  4851. }
  4852. __setup("migration_debug=", setup_migration_debug);
  4853. /*
  4854. * Maximum cache-size that the scheduler should try to measure.
  4855. * Architectures with larger caches should tune this up during
  4856. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4857. * bootup).
  4858. */
  4859. unsigned int max_cache_size;
  4860. static int __init setup_max_cache_size(char *str)
  4861. {
  4862. get_option(&str, &max_cache_size);
  4863. return 1;
  4864. }
  4865. __setup("max_cache_size=", setup_max_cache_size);
  4866. /*
  4867. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4868. * is the operation that is timed, so we try to generate unpredictable
  4869. * cachemisses that still end up filling the L2 cache:
  4870. */
  4871. static void touch_cache(void *__cache, unsigned long __size)
  4872. {
  4873. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4874. chunk2 = 2*size/3;
  4875. unsigned long *cache = __cache;
  4876. int i;
  4877. for (i = 0; i < size/6; i += 8) {
  4878. switch (i % 6) {
  4879. case 0: cache[i]++;
  4880. case 1: cache[size-1-i]++;
  4881. case 2: cache[chunk1-i]++;
  4882. case 3: cache[chunk1+i]++;
  4883. case 4: cache[chunk2-i]++;
  4884. case 5: cache[chunk2+i]++;
  4885. }
  4886. }
  4887. }
  4888. /*
  4889. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4890. */
  4891. static unsigned long long
  4892. measure_one(void *cache, unsigned long size, int source, int target)
  4893. {
  4894. cpumask_t mask, saved_mask;
  4895. unsigned long long t0, t1, t2, t3, cost;
  4896. saved_mask = current->cpus_allowed;
  4897. /*
  4898. * Flush source caches to RAM and invalidate them:
  4899. */
  4900. sched_cacheflush();
  4901. /*
  4902. * Migrate to the source CPU:
  4903. */
  4904. mask = cpumask_of_cpu(source);
  4905. set_cpus_allowed(current, mask);
  4906. WARN_ON(smp_processor_id() != source);
  4907. /*
  4908. * Dirty the working set:
  4909. */
  4910. t0 = sched_clock();
  4911. touch_cache(cache, size);
  4912. t1 = sched_clock();
  4913. /*
  4914. * Migrate to the target CPU, dirty the L2 cache and access
  4915. * the shared buffer. (which represents the working set
  4916. * of a migrated task.)
  4917. */
  4918. mask = cpumask_of_cpu(target);
  4919. set_cpus_allowed(current, mask);
  4920. WARN_ON(smp_processor_id() != target);
  4921. t2 = sched_clock();
  4922. touch_cache(cache, size);
  4923. t3 = sched_clock();
  4924. cost = t1-t0 + t3-t2;
  4925. if (migration_debug >= 2)
  4926. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  4927. source, target, t1-t0, t1-t0, t3-t2, cost);
  4928. /*
  4929. * Flush target caches to RAM and invalidate them:
  4930. */
  4931. sched_cacheflush();
  4932. set_cpus_allowed(current, saved_mask);
  4933. return cost;
  4934. }
  4935. /*
  4936. * Measure a series of task migrations and return the average
  4937. * result. Since this code runs early during bootup the system
  4938. * is 'undisturbed' and the average latency makes sense.
  4939. *
  4940. * The algorithm in essence auto-detects the relevant cache-size,
  4941. * so it will properly detect different cachesizes for different
  4942. * cache-hierarchies, depending on how the CPUs are connected.
  4943. *
  4944. * Architectures can prime the upper limit of the search range via
  4945. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  4946. */
  4947. static unsigned long long
  4948. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  4949. {
  4950. unsigned long long cost1, cost2;
  4951. int i;
  4952. /*
  4953. * Measure the migration cost of 'size' bytes, over an
  4954. * average of 10 runs:
  4955. *
  4956. * (We perturb the cache size by a small (0..4k)
  4957. * value to compensate size/alignment related artifacts.
  4958. * We also subtract the cost of the operation done on
  4959. * the same CPU.)
  4960. */
  4961. cost1 = 0;
  4962. /*
  4963. * dry run, to make sure we start off cache-cold on cpu1,
  4964. * and to get any vmalloc pagefaults in advance:
  4965. */
  4966. measure_one(cache, size, cpu1, cpu2);
  4967. for (i = 0; i < ITERATIONS; i++)
  4968. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  4969. measure_one(cache, size, cpu2, cpu1);
  4970. for (i = 0; i < ITERATIONS; i++)
  4971. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  4972. /*
  4973. * (We measure the non-migrating [cached] cost on both
  4974. * cpu1 and cpu2, to handle CPUs with different speeds)
  4975. */
  4976. cost2 = 0;
  4977. measure_one(cache, size, cpu1, cpu1);
  4978. for (i = 0; i < ITERATIONS; i++)
  4979. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  4980. measure_one(cache, size, cpu2, cpu2);
  4981. for (i = 0; i < ITERATIONS; i++)
  4982. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  4983. /*
  4984. * Get the per-iteration migration cost:
  4985. */
  4986. do_div(cost1, 2*ITERATIONS);
  4987. do_div(cost2, 2*ITERATIONS);
  4988. return cost1 - cost2;
  4989. }
  4990. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  4991. {
  4992. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  4993. unsigned int max_size, size, size_found = 0;
  4994. long long cost = 0, prev_cost;
  4995. void *cache;
  4996. /*
  4997. * Search from max_cache_size*5 down to 64K - the real relevant
  4998. * cachesize has to lie somewhere inbetween.
  4999. */
  5000. if (max_cache_size) {
  5001. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5002. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5003. } else {
  5004. /*
  5005. * Since we have no estimation about the relevant
  5006. * search range
  5007. */
  5008. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5009. size = MIN_CACHE_SIZE;
  5010. }
  5011. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5012. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5013. return 0;
  5014. }
  5015. /*
  5016. * Allocate the working set:
  5017. */
  5018. cache = vmalloc(max_size);
  5019. if (!cache) {
  5020. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  5021. return 1000000; /* return 1 msec on very small boxen */
  5022. }
  5023. while (size <= max_size) {
  5024. prev_cost = cost;
  5025. cost = measure_cost(cpu1, cpu2, cache, size);
  5026. /*
  5027. * Update the max:
  5028. */
  5029. if (cost > 0) {
  5030. if (max_cost < cost) {
  5031. max_cost = cost;
  5032. size_found = size;
  5033. }
  5034. }
  5035. /*
  5036. * Calculate average fluctuation, we use this to prevent
  5037. * noise from triggering an early break out of the loop:
  5038. */
  5039. fluct = abs(cost - prev_cost);
  5040. avg_fluct = (avg_fluct + fluct)/2;
  5041. if (migration_debug)
  5042. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  5043. cpu1, cpu2, size,
  5044. (long)cost / 1000000,
  5045. ((long)cost / 100000) % 10,
  5046. (long)max_cost / 1000000,
  5047. ((long)max_cost / 100000) % 10,
  5048. domain_distance(cpu1, cpu2),
  5049. cost, avg_fluct);
  5050. /*
  5051. * If we iterated at least 20% past the previous maximum,
  5052. * and the cost has dropped by more than 20% already,
  5053. * (taking fluctuations into account) then we assume to
  5054. * have found the maximum and break out of the loop early:
  5055. */
  5056. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5057. if (cost+avg_fluct <= 0 ||
  5058. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5059. if (migration_debug)
  5060. printk("-> found max.\n");
  5061. break;
  5062. }
  5063. /*
  5064. * Increase the cachesize in 10% steps:
  5065. */
  5066. size = size * 10 / 9;
  5067. }
  5068. if (migration_debug)
  5069. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5070. cpu1, cpu2, size_found, max_cost);
  5071. vfree(cache);
  5072. /*
  5073. * A task is considered 'cache cold' if at least 2 times
  5074. * the worst-case cost of migration has passed.
  5075. *
  5076. * (this limit is only listened to if the load-balancing
  5077. * situation is 'nice' - if there is a large imbalance we
  5078. * ignore it for the sake of CPU utilization and
  5079. * processing fairness.)
  5080. */
  5081. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5082. }
  5083. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5084. {
  5085. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5086. unsigned long j0, j1, distance, max_distance = 0;
  5087. struct sched_domain *sd;
  5088. j0 = jiffies;
  5089. /*
  5090. * First pass - calculate the cacheflush times:
  5091. */
  5092. for_each_cpu_mask(cpu1, *cpu_map) {
  5093. for_each_cpu_mask(cpu2, *cpu_map) {
  5094. if (cpu1 == cpu2)
  5095. continue;
  5096. distance = domain_distance(cpu1, cpu2);
  5097. max_distance = max(max_distance, distance);
  5098. /*
  5099. * No result cached yet?
  5100. */
  5101. if (migration_cost[distance] == -1LL)
  5102. migration_cost[distance] =
  5103. measure_migration_cost(cpu1, cpu2);
  5104. }
  5105. }
  5106. /*
  5107. * Second pass - update the sched domain hierarchy with
  5108. * the new cache-hot-time estimations:
  5109. */
  5110. for_each_cpu_mask(cpu, *cpu_map) {
  5111. distance = 0;
  5112. for_each_domain(cpu, sd) {
  5113. sd->cache_hot_time = migration_cost[distance];
  5114. distance++;
  5115. }
  5116. }
  5117. /*
  5118. * Print the matrix:
  5119. */
  5120. if (migration_debug)
  5121. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5122. max_cache_size,
  5123. #ifdef CONFIG_X86
  5124. cpu_khz/1000
  5125. #else
  5126. -1
  5127. #endif
  5128. );
  5129. if (system_state == SYSTEM_BOOTING) {
  5130. printk("migration_cost=");
  5131. for (distance = 0; distance <= max_distance; distance++) {
  5132. if (distance)
  5133. printk(",");
  5134. printk("%ld", (long)migration_cost[distance] / 1000);
  5135. }
  5136. printk("\n");
  5137. }
  5138. j1 = jiffies;
  5139. if (migration_debug)
  5140. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  5141. /*
  5142. * Move back to the original CPU. NUMA-Q gets confused
  5143. * if we migrate to another quad during bootup.
  5144. */
  5145. if (raw_smp_processor_id() != orig_cpu) {
  5146. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5147. saved_mask = current->cpus_allowed;
  5148. set_cpus_allowed(current, mask);
  5149. set_cpus_allowed(current, saved_mask);
  5150. }
  5151. }
  5152. #ifdef CONFIG_NUMA
  5153. /**
  5154. * find_next_best_node - find the next node to include in a sched_domain
  5155. * @node: node whose sched_domain we're building
  5156. * @used_nodes: nodes already in the sched_domain
  5157. *
  5158. * Find the next node to include in a given scheduling domain. Simply
  5159. * finds the closest node not already in the @used_nodes map.
  5160. *
  5161. * Should use nodemask_t.
  5162. */
  5163. static int find_next_best_node(int node, unsigned long *used_nodes)
  5164. {
  5165. int i, n, val, min_val, best_node = 0;
  5166. min_val = INT_MAX;
  5167. for (i = 0; i < MAX_NUMNODES; i++) {
  5168. /* Start at @node */
  5169. n = (node + i) % MAX_NUMNODES;
  5170. if (!nr_cpus_node(n))
  5171. continue;
  5172. /* Skip already used nodes */
  5173. if (test_bit(n, used_nodes))
  5174. continue;
  5175. /* Simple min distance search */
  5176. val = node_distance(node, n);
  5177. if (val < min_val) {
  5178. min_val = val;
  5179. best_node = n;
  5180. }
  5181. }
  5182. set_bit(best_node, used_nodes);
  5183. return best_node;
  5184. }
  5185. /**
  5186. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5187. * @node: node whose cpumask we're constructing
  5188. * @size: number of nodes to include in this span
  5189. *
  5190. * Given a node, construct a good cpumask for its sched_domain to span. It
  5191. * should be one that prevents unnecessary balancing, but also spreads tasks
  5192. * out optimally.
  5193. */
  5194. static cpumask_t sched_domain_node_span(int node)
  5195. {
  5196. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5197. cpumask_t span, nodemask;
  5198. int i;
  5199. cpus_clear(span);
  5200. bitmap_zero(used_nodes, MAX_NUMNODES);
  5201. nodemask = node_to_cpumask(node);
  5202. cpus_or(span, span, nodemask);
  5203. set_bit(node, used_nodes);
  5204. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5205. int next_node = find_next_best_node(node, used_nodes);
  5206. nodemask = node_to_cpumask(next_node);
  5207. cpus_or(span, span, nodemask);
  5208. }
  5209. return span;
  5210. }
  5211. #endif
  5212. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5213. /*
  5214. * SMT sched-domains:
  5215. */
  5216. #ifdef CONFIG_SCHED_SMT
  5217. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5218. static struct sched_group sched_group_cpus[NR_CPUS];
  5219. static int cpu_to_cpu_group(int cpu)
  5220. {
  5221. return cpu;
  5222. }
  5223. #endif
  5224. /*
  5225. * multi-core sched-domains:
  5226. */
  5227. #ifdef CONFIG_SCHED_MC
  5228. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5229. static struct sched_group *sched_group_core_bycpu[NR_CPUS];
  5230. #endif
  5231. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5232. static int cpu_to_core_group(int cpu)
  5233. {
  5234. return first_cpu(cpu_sibling_map[cpu]);
  5235. }
  5236. #elif defined(CONFIG_SCHED_MC)
  5237. static int cpu_to_core_group(int cpu)
  5238. {
  5239. return cpu;
  5240. }
  5241. #endif
  5242. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5243. static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
  5244. static int cpu_to_phys_group(int cpu)
  5245. {
  5246. #ifdef CONFIG_SCHED_MC
  5247. cpumask_t mask = cpu_coregroup_map(cpu);
  5248. return first_cpu(mask);
  5249. #elif defined(CONFIG_SCHED_SMT)
  5250. return first_cpu(cpu_sibling_map[cpu]);
  5251. #else
  5252. return cpu;
  5253. #endif
  5254. }
  5255. #ifdef CONFIG_NUMA
  5256. /*
  5257. * The init_sched_build_groups can't handle what we want to do with node
  5258. * groups, so roll our own. Now each node has its own list of groups which
  5259. * gets dynamically allocated.
  5260. */
  5261. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5262. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5263. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5264. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  5265. static int cpu_to_allnodes_group(int cpu)
  5266. {
  5267. return cpu_to_node(cpu);
  5268. }
  5269. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5270. {
  5271. struct sched_group *sg = group_head;
  5272. int j;
  5273. if (!sg)
  5274. return;
  5275. next_sg:
  5276. for_each_cpu_mask(j, sg->cpumask) {
  5277. struct sched_domain *sd;
  5278. sd = &per_cpu(phys_domains, j);
  5279. if (j != first_cpu(sd->groups->cpumask)) {
  5280. /*
  5281. * Only add "power" once for each
  5282. * physical package.
  5283. */
  5284. continue;
  5285. }
  5286. sg->cpu_power += sd->groups->cpu_power;
  5287. }
  5288. sg = sg->next;
  5289. if (sg != group_head)
  5290. goto next_sg;
  5291. }
  5292. #endif
  5293. /* Free memory allocated for various sched_group structures */
  5294. static void free_sched_groups(const cpumask_t *cpu_map)
  5295. {
  5296. int cpu;
  5297. #ifdef CONFIG_NUMA
  5298. int i;
  5299. for_each_cpu_mask(cpu, *cpu_map) {
  5300. struct sched_group *sched_group_allnodes
  5301. = sched_group_allnodes_bycpu[cpu];
  5302. struct sched_group **sched_group_nodes
  5303. = sched_group_nodes_bycpu[cpu];
  5304. if (sched_group_allnodes) {
  5305. kfree(sched_group_allnodes);
  5306. sched_group_allnodes_bycpu[cpu] = NULL;
  5307. }
  5308. if (!sched_group_nodes)
  5309. continue;
  5310. for (i = 0; i < MAX_NUMNODES; i++) {
  5311. cpumask_t nodemask = node_to_cpumask(i);
  5312. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5313. cpus_and(nodemask, nodemask, *cpu_map);
  5314. if (cpus_empty(nodemask))
  5315. continue;
  5316. if (sg == NULL)
  5317. continue;
  5318. sg = sg->next;
  5319. next_sg:
  5320. oldsg = sg;
  5321. sg = sg->next;
  5322. kfree(oldsg);
  5323. if (oldsg != sched_group_nodes[i])
  5324. goto next_sg;
  5325. }
  5326. kfree(sched_group_nodes);
  5327. sched_group_nodes_bycpu[cpu] = NULL;
  5328. }
  5329. #endif
  5330. for_each_cpu_mask(cpu, *cpu_map) {
  5331. if (sched_group_phys_bycpu[cpu]) {
  5332. kfree(sched_group_phys_bycpu[cpu]);
  5333. sched_group_phys_bycpu[cpu] = NULL;
  5334. }
  5335. #ifdef CONFIG_SCHED_MC
  5336. if (sched_group_core_bycpu[cpu]) {
  5337. kfree(sched_group_core_bycpu[cpu]);
  5338. sched_group_core_bycpu[cpu] = NULL;
  5339. }
  5340. #endif
  5341. }
  5342. }
  5343. /*
  5344. * Build sched domains for a given set of cpus and attach the sched domains
  5345. * to the individual cpus
  5346. */
  5347. static int build_sched_domains(const cpumask_t *cpu_map)
  5348. {
  5349. int i;
  5350. struct sched_group *sched_group_phys = NULL;
  5351. #ifdef CONFIG_SCHED_MC
  5352. struct sched_group *sched_group_core = NULL;
  5353. #endif
  5354. #ifdef CONFIG_NUMA
  5355. struct sched_group **sched_group_nodes = NULL;
  5356. struct sched_group *sched_group_allnodes = NULL;
  5357. /*
  5358. * Allocate the per-node list of sched groups
  5359. */
  5360. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5361. GFP_KERNEL);
  5362. if (!sched_group_nodes) {
  5363. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5364. return -ENOMEM;
  5365. }
  5366. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5367. #endif
  5368. /*
  5369. * Set up domains for cpus specified by the cpu_map.
  5370. */
  5371. for_each_cpu_mask(i, *cpu_map) {
  5372. int group;
  5373. struct sched_domain *sd = NULL, *p;
  5374. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5375. cpus_and(nodemask, nodemask, *cpu_map);
  5376. #ifdef CONFIG_NUMA
  5377. if (cpus_weight(*cpu_map)
  5378. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5379. if (!sched_group_allnodes) {
  5380. sched_group_allnodes
  5381. = kmalloc(sizeof(struct sched_group)
  5382. * MAX_NUMNODES,
  5383. GFP_KERNEL);
  5384. if (!sched_group_allnodes) {
  5385. printk(KERN_WARNING
  5386. "Can not alloc allnodes sched group\n");
  5387. goto error;
  5388. }
  5389. sched_group_allnodes_bycpu[i]
  5390. = sched_group_allnodes;
  5391. }
  5392. sd = &per_cpu(allnodes_domains, i);
  5393. *sd = SD_ALLNODES_INIT;
  5394. sd->span = *cpu_map;
  5395. group = cpu_to_allnodes_group(i);
  5396. sd->groups = &sched_group_allnodes[group];
  5397. p = sd;
  5398. } else
  5399. p = NULL;
  5400. sd = &per_cpu(node_domains, i);
  5401. *sd = SD_NODE_INIT;
  5402. sd->span = sched_domain_node_span(cpu_to_node(i));
  5403. sd->parent = p;
  5404. cpus_and(sd->span, sd->span, *cpu_map);
  5405. #endif
  5406. if (!sched_group_phys) {
  5407. sched_group_phys
  5408. = kmalloc(sizeof(struct sched_group) * NR_CPUS,
  5409. GFP_KERNEL);
  5410. if (!sched_group_phys) {
  5411. printk (KERN_WARNING "Can not alloc phys sched"
  5412. "group\n");
  5413. goto error;
  5414. }
  5415. sched_group_phys_bycpu[i] = sched_group_phys;
  5416. }
  5417. p = sd;
  5418. sd = &per_cpu(phys_domains, i);
  5419. group = cpu_to_phys_group(i);
  5420. *sd = SD_CPU_INIT;
  5421. sd->span = nodemask;
  5422. sd->parent = p;
  5423. sd->groups = &sched_group_phys[group];
  5424. #ifdef CONFIG_SCHED_MC
  5425. if (!sched_group_core) {
  5426. sched_group_core
  5427. = kmalloc(sizeof(struct sched_group) * NR_CPUS,
  5428. GFP_KERNEL);
  5429. if (!sched_group_core) {
  5430. printk (KERN_WARNING "Can not alloc core sched"
  5431. "group\n");
  5432. goto error;
  5433. }
  5434. sched_group_core_bycpu[i] = sched_group_core;
  5435. }
  5436. p = sd;
  5437. sd = &per_cpu(core_domains, i);
  5438. group = cpu_to_core_group(i);
  5439. *sd = SD_MC_INIT;
  5440. sd->span = cpu_coregroup_map(i);
  5441. cpus_and(sd->span, sd->span, *cpu_map);
  5442. sd->parent = p;
  5443. sd->groups = &sched_group_core[group];
  5444. #endif
  5445. #ifdef CONFIG_SCHED_SMT
  5446. p = sd;
  5447. sd = &per_cpu(cpu_domains, i);
  5448. group = cpu_to_cpu_group(i);
  5449. *sd = SD_SIBLING_INIT;
  5450. sd->span = cpu_sibling_map[i];
  5451. cpus_and(sd->span, sd->span, *cpu_map);
  5452. sd->parent = p;
  5453. sd->groups = &sched_group_cpus[group];
  5454. #endif
  5455. }
  5456. #ifdef CONFIG_SCHED_SMT
  5457. /* Set up CPU (sibling) groups */
  5458. for_each_cpu_mask(i, *cpu_map) {
  5459. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5460. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5461. if (i != first_cpu(this_sibling_map))
  5462. continue;
  5463. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5464. &cpu_to_cpu_group);
  5465. }
  5466. #endif
  5467. #ifdef CONFIG_SCHED_MC
  5468. /* Set up multi-core groups */
  5469. for_each_cpu_mask(i, *cpu_map) {
  5470. cpumask_t this_core_map = cpu_coregroup_map(i);
  5471. cpus_and(this_core_map, this_core_map, *cpu_map);
  5472. if (i != first_cpu(this_core_map))
  5473. continue;
  5474. init_sched_build_groups(sched_group_core, this_core_map,
  5475. &cpu_to_core_group);
  5476. }
  5477. #endif
  5478. /* Set up physical groups */
  5479. for (i = 0; i < MAX_NUMNODES; i++) {
  5480. cpumask_t nodemask = node_to_cpumask(i);
  5481. cpus_and(nodemask, nodemask, *cpu_map);
  5482. if (cpus_empty(nodemask))
  5483. continue;
  5484. init_sched_build_groups(sched_group_phys, nodemask,
  5485. &cpu_to_phys_group);
  5486. }
  5487. #ifdef CONFIG_NUMA
  5488. /* Set up node groups */
  5489. if (sched_group_allnodes)
  5490. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5491. &cpu_to_allnodes_group);
  5492. for (i = 0; i < MAX_NUMNODES; i++) {
  5493. /* Set up node groups */
  5494. struct sched_group *sg, *prev;
  5495. cpumask_t nodemask = node_to_cpumask(i);
  5496. cpumask_t domainspan;
  5497. cpumask_t covered = CPU_MASK_NONE;
  5498. int j;
  5499. cpus_and(nodemask, nodemask, *cpu_map);
  5500. if (cpus_empty(nodemask)) {
  5501. sched_group_nodes[i] = NULL;
  5502. continue;
  5503. }
  5504. domainspan = sched_domain_node_span(i);
  5505. cpus_and(domainspan, domainspan, *cpu_map);
  5506. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5507. if (!sg) {
  5508. printk(KERN_WARNING "Can not alloc domain group for "
  5509. "node %d\n", i);
  5510. goto error;
  5511. }
  5512. sched_group_nodes[i] = sg;
  5513. for_each_cpu_mask(j, nodemask) {
  5514. struct sched_domain *sd;
  5515. sd = &per_cpu(node_domains, j);
  5516. sd->groups = sg;
  5517. }
  5518. sg->cpu_power = 0;
  5519. sg->cpumask = nodemask;
  5520. sg->next = sg;
  5521. cpus_or(covered, covered, nodemask);
  5522. prev = sg;
  5523. for (j = 0; j < MAX_NUMNODES; j++) {
  5524. cpumask_t tmp, notcovered;
  5525. int n = (i + j) % MAX_NUMNODES;
  5526. cpus_complement(notcovered, covered);
  5527. cpus_and(tmp, notcovered, *cpu_map);
  5528. cpus_and(tmp, tmp, domainspan);
  5529. if (cpus_empty(tmp))
  5530. break;
  5531. nodemask = node_to_cpumask(n);
  5532. cpus_and(tmp, tmp, nodemask);
  5533. if (cpus_empty(tmp))
  5534. continue;
  5535. sg = kmalloc_node(sizeof(struct sched_group),
  5536. GFP_KERNEL, i);
  5537. if (!sg) {
  5538. printk(KERN_WARNING
  5539. "Can not alloc domain group for node %d\n", j);
  5540. goto error;
  5541. }
  5542. sg->cpu_power = 0;
  5543. sg->cpumask = tmp;
  5544. sg->next = prev->next;
  5545. cpus_or(covered, covered, tmp);
  5546. prev->next = sg;
  5547. prev = sg;
  5548. }
  5549. }
  5550. #endif
  5551. /* Calculate CPU power for physical packages and nodes */
  5552. #ifdef CONFIG_SCHED_SMT
  5553. for_each_cpu_mask(i, *cpu_map) {
  5554. struct sched_domain *sd;
  5555. sd = &per_cpu(cpu_domains, i);
  5556. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5557. }
  5558. #endif
  5559. #ifdef CONFIG_SCHED_MC
  5560. for_each_cpu_mask(i, *cpu_map) {
  5561. int power;
  5562. struct sched_domain *sd;
  5563. sd = &per_cpu(core_domains, i);
  5564. if (sched_smt_power_savings)
  5565. power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
  5566. else
  5567. power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
  5568. * SCHED_LOAD_SCALE / 10;
  5569. sd->groups->cpu_power = power;
  5570. }
  5571. #endif
  5572. for_each_cpu_mask(i, *cpu_map) {
  5573. struct sched_domain *sd;
  5574. #ifdef CONFIG_SCHED_MC
  5575. sd = &per_cpu(phys_domains, i);
  5576. if (i != first_cpu(sd->groups->cpumask))
  5577. continue;
  5578. sd->groups->cpu_power = 0;
  5579. if (sched_mc_power_savings || sched_smt_power_savings) {
  5580. int j;
  5581. for_each_cpu_mask(j, sd->groups->cpumask) {
  5582. struct sched_domain *sd1;
  5583. sd1 = &per_cpu(core_domains, j);
  5584. /*
  5585. * for each core we will add once
  5586. * to the group in physical domain
  5587. */
  5588. if (j != first_cpu(sd1->groups->cpumask))
  5589. continue;
  5590. if (sched_smt_power_savings)
  5591. sd->groups->cpu_power += sd1->groups->cpu_power;
  5592. else
  5593. sd->groups->cpu_power += SCHED_LOAD_SCALE;
  5594. }
  5595. } else
  5596. /*
  5597. * This has to be < 2 * SCHED_LOAD_SCALE
  5598. * Lets keep it SCHED_LOAD_SCALE, so that
  5599. * while calculating NUMA group's cpu_power
  5600. * we can simply do
  5601. * numa_group->cpu_power += phys_group->cpu_power;
  5602. *
  5603. * See "only add power once for each physical pkg"
  5604. * comment below
  5605. */
  5606. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5607. #else
  5608. int power;
  5609. sd = &per_cpu(phys_domains, i);
  5610. if (sched_smt_power_savings)
  5611. power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
  5612. else
  5613. power = SCHED_LOAD_SCALE;
  5614. sd->groups->cpu_power = power;
  5615. #endif
  5616. }
  5617. #ifdef CONFIG_NUMA
  5618. for (i = 0; i < MAX_NUMNODES; i++)
  5619. init_numa_sched_groups_power(sched_group_nodes[i]);
  5620. init_numa_sched_groups_power(sched_group_allnodes);
  5621. #endif
  5622. /* Attach the domains */
  5623. for_each_cpu_mask(i, *cpu_map) {
  5624. struct sched_domain *sd;
  5625. #ifdef CONFIG_SCHED_SMT
  5626. sd = &per_cpu(cpu_domains, i);
  5627. #elif defined(CONFIG_SCHED_MC)
  5628. sd = &per_cpu(core_domains, i);
  5629. #else
  5630. sd = &per_cpu(phys_domains, i);
  5631. #endif
  5632. cpu_attach_domain(sd, i);
  5633. }
  5634. /*
  5635. * Tune cache-hot values:
  5636. */
  5637. calibrate_migration_costs(cpu_map);
  5638. return 0;
  5639. error:
  5640. free_sched_groups(cpu_map);
  5641. return -ENOMEM;
  5642. }
  5643. /*
  5644. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5645. */
  5646. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5647. {
  5648. cpumask_t cpu_default_map;
  5649. int err;
  5650. /*
  5651. * Setup mask for cpus without special case scheduling requirements.
  5652. * For now this just excludes isolated cpus, but could be used to
  5653. * exclude other special cases in the future.
  5654. */
  5655. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5656. err = build_sched_domains(&cpu_default_map);
  5657. return err;
  5658. }
  5659. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5660. {
  5661. free_sched_groups(cpu_map);
  5662. }
  5663. /*
  5664. * Detach sched domains from a group of cpus specified in cpu_map
  5665. * These cpus will now be attached to the NULL domain
  5666. */
  5667. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5668. {
  5669. int i;
  5670. for_each_cpu_mask(i, *cpu_map)
  5671. cpu_attach_domain(NULL, i);
  5672. synchronize_sched();
  5673. arch_destroy_sched_domains(cpu_map);
  5674. }
  5675. /*
  5676. * Partition sched domains as specified by the cpumasks below.
  5677. * This attaches all cpus from the cpumasks to the NULL domain,
  5678. * waits for a RCU quiescent period, recalculates sched
  5679. * domain information and then attaches them back to the
  5680. * correct sched domains
  5681. * Call with hotplug lock held
  5682. */
  5683. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5684. {
  5685. cpumask_t change_map;
  5686. int err = 0;
  5687. cpus_and(*partition1, *partition1, cpu_online_map);
  5688. cpus_and(*partition2, *partition2, cpu_online_map);
  5689. cpus_or(change_map, *partition1, *partition2);
  5690. /* Detach sched domains from all of the affected cpus */
  5691. detach_destroy_domains(&change_map);
  5692. if (!cpus_empty(*partition1))
  5693. err = build_sched_domains(partition1);
  5694. if (!err && !cpus_empty(*partition2))
  5695. err = build_sched_domains(partition2);
  5696. return err;
  5697. }
  5698. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5699. int arch_reinit_sched_domains(void)
  5700. {
  5701. int err;
  5702. lock_cpu_hotplug();
  5703. detach_destroy_domains(&cpu_online_map);
  5704. err = arch_init_sched_domains(&cpu_online_map);
  5705. unlock_cpu_hotplug();
  5706. return err;
  5707. }
  5708. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5709. {
  5710. int ret;
  5711. if (buf[0] != '0' && buf[0] != '1')
  5712. return -EINVAL;
  5713. if (smt)
  5714. sched_smt_power_savings = (buf[0] == '1');
  5715. else
  5716. sched_mc_power_savings = (buf[0] == '1');
  5717. ret = arch_reinit_sched_domains();
  5718. return ret ? ret : count;
  5719. }
  5720. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5721. {
  5722. int err = 0;
  5723. #ifdef CONFIG_SCHED_SMT
  5724. if (smt_capable())
  5725. err = sysfs_create_file(&cls->kset.kobj,
  5726. &attr_sched_smt_power_savings.attr);
  5727. #endif
  5728. #ifdef CONFIG_SCHED_MC
  5729. if (!err && mc_capable())
  5730. err = sysfs_create_file(&cls->kset.kobj,
  5731. &attr_sched_mc_power_savings.attr);
  5732. #endif
  5733. return err;
  5734. }
  5735. #endif
  5736. #ifdef CONFIG_SCHED_MC
  5737. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5738. {
  5739. return sprintf(page, "%u\n", sched_mc_power_savings);
  5740. }
  5741. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5742. const char *buf, size_t count)
  5743. {
  5744. return sched_power_savings_store(buf, count, 0);
  5745. }
  5746. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5747. sched_mc_power_savings_store);
  5748. #endif
  5749. #ifdef CONFIG_SCHED_SMT
  5750. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5751. {
  5752. return sprintf(page, "%u\n", sched_smt_power_savings);
  5753. }
  5754. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5755. const char *buf, size_t count)
  5756. {
  5757. return sched_power_savings_store(buf, count, 1);
  5758. }
  5759. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5760. sched_smt_power_savings_store);
  5761. #endif
  5762. #ifdef CONFIG_HOTPLUG_CPU
  5763. /*
  5764. * Force a reinitialization of the sched domains hierarchy. The domains
  5765. * and groups cannot be updated in place without racing with the balancing
  5766. * code, so we temporarily attach all running cpus to the NULL domain
  5767. * which will prevent rebalancing while the sched domains are recalculated.
  5768. */
  5769. static int update_sched_domains(struct notifier_block *nfb,
  5770. unsigned long action, void *hcpu)
  5771. {
  5772. switch (action) {
  5773. case CPU_UP_PREPARE:
  5774. case CPU_DOWN_PREPARE:
  5775. detach_destroy_domains(&cpu_online_map);
  5776. return NOTIFY_OK;
  5777. case CPU_UP_CANCELED:
  5778. case CPU_DOWN_FAILED:
  5779. case CPU_ONLINE:
  5780. case CPU_DEAD:
  5781. /*
  5782. * Fall through and re-initialise the domains.
  5783. */
  5784. break;
  5785. default:
  5786. return NOTIFY_DONE;
  5787. }
  5788. /* The hotplug lock is already held by cpu_up/cpu_down */
  5789. arch_init_sched_domains(&cpu_online_map);
  5790. return NOTIFY_OK;
  5791. }
  5792. #endif
  5793. void __init sched_init_smp(void)
  5794. {
  5795. lock_cpu_hotplug();
  5796. arch_init_sched_domains(&cpu_online_map);
  5797. unlock_cpu_hotplug();
  5798. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5799. hotcpu_notifier(update_sched_domains, 0);
  5800. }
  5801. #else
  5802. void __init sched_init_smp(void)
  5803. {
  5804. }
  5805. #endif /* CONFIG_SMP */
  5806. int in_sched_functions(unsigned long addr)
  5807. {
  5808. /* Linker adds these: start and end of __sched functions */
  5809. extern char __sched_text_start[], __sched_text_end[];
  5810. return in_lock_functions(addr) ||
  5811. (addr >= (unsigned long)__sched_text_start
  5812. && addr < (unsigned long)__sched_text_end);
  5813. }
  5814. void __init sched_init(void)
  5815. {
  5816. int i, j, k;
  5817. for_each_possible_cpu(i) {
  5818. struct prio_array *array;
  5819. struct rq *rq;
  5820. rq = cpu_rq(i);
  5821. spin_lock_init(&rq->lock);
  5822. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5823. rq->nr_running = 0;
  5824. rq->active = rq->arrays;
  5825. rq->expired = rq->arrays + 1;
  5826. rq->best_expired_prio = MAX_PRIO;
  5827. #ifdef CONFIG_SMP
  5828. rq->sd = NULL;
  5829. for (j = 1; j < 3; j++)
  5830. rq->cpu_load[j] = 0;
  5831. rq->active_balance = 0;
  5832. rq->push_cpu = 0;
  5833. rq->migration_thread = NULL;
  5834. INIT_LIST_HEAD(&rq->migration_queue);
  5835. #endif
  5836. atomic_set(&rq->nr_iowait, 0);
  5837. for (j = 0; j < 2; j++) {
  5838. array = rq->arrays + j;
  5839. for (k = 0; k < MAX_PRIO; k++) {
  5840. INIT_LIST_HEAD(array->queue + k);
  5841. __clear_bit(k, array->bitmap);
  5842. }
  5843. // delimiter for bitsearch
  5844. __set_bit(MAX_PRIO, array->bitmap);
  5845. }
  5846. }
  5847. set_load_weight(&init_task);
  5848. /*
  5849. * The boot idle thread does lazy MMU switching as well:
  5850. */
  5851. atomic_inc(&init_mm.mm_count);
  5852. enter_lazy_tlb(&init_mm, current);
  5853. /*
  5854. * Make us the idle thread. Technically, schedule() should not be
  5855. * called from this thread, however somewhere below it might be,
  5856. * but because we are the idle thread, we just pick up running again
  5857. * when this runqueue becomes "idle".
  5858. */
  5859. init_idle(current, smp_processor_id());
  5860. }
  5861. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5862. void __might_sleep(char *file, int line)
  5863. {
  5864. #ifdef in_atomic
  5865. static unsigned long prev_jiffy; /* ratelimiting */
  5866. if ((in_atomic() || irqs_disabled()) &&
  5867. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5868. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5869. return;
  5870. prev_jiffy = jiffies;
  5871. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5872. " context at %s:%d\n", file, line);
  5873. printk("in_atomic():%d, irqs_disabled():%d\n",
  5874. in_atomic(), irqs_disabled());
  5875. dump_stack();
  5876. }
  5877. #endif
  5878. }
  5879. EXPORT_SYMBOL(__might_sleep);
  5880. #endif
  5881. #ifdef CONFIG_MAGIC_SYSRQ
  5882. void normalize_rt_tasks(void)
  5883. {
  5884. struct prio_array *array;
  5885. struct task_struct *p;
  5886. unsigned long flags;
  5887. struct rq *rq;
  5888. read_lock_irq(&tasklist_lock);
  5889. for_each_process(p) {
  5890. if (!rt_task(p))
  5891. continue;
  5892. spin_lock_irqsave(&p->pi_lock, flags);
  5893. rq = __task_rq_lock(p);
  5894. array = p->array;
  5895. if (array)
  5896. deactivate_task(p, task_rq(p));
  5897. __setscheduler(p, SCHED_NORMAL, 0);
  5898. if (array) {
  5899. __activate_task(p, task_rq(p));
  5900. resched_task(rq->curr);
  5901. }
  5902. __task_rq_unlock(rq);
  5903. spin_unlock_irqrestore(&p->pi_lock, flags);
  5904. }
  5905. read_unlock_irq(&tasklist_lock);
  5906. }
  5907. #endif /* CONFIG_MAGIC_SYSRQ */
  5908. #ifdef CONFIG_IA64
  5909. /*
  5910. * These functions are only useful for the IA64 MCA handling.
  5911. *
  5912. * They can only be called when the whole system has been
  5913. * stopped - every CPU needs to be quiescent, and no scheduling
  5914. * activity can take place. Using them for anything else would
  5915. * be a serious bug, and as a result, they aren't even visible
  5916. * under any other configuration.
  5917. */
  5918. /**
  5919. * curr_task - return the current task for a given cpu.
  5920. * @cpu: the processor in question.
  5921. *
  5922. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5923. */
  5924. struct task_struct *curr_task(int cpu)
  5925. {
  5926. return cpu_curr(cpu);
  5927. }
  5928. /**
  5929. * set_curr_task - set the current task for a given cpu.
  5930. * @cpu: the processor in question.
  5931. * @p: the task pointer to set.
  5932. *
  5933. * Description: This function must only be used when non-maskable interrupts
  5934. * are serviced on a separate stack. It allows the architecture to switch the
  5935. * notion of the current task on a cpu in a non-blocking manner. This function
  5936. * must be called with all CPU's synchronized, and interrupts disabled, the
  5937. * and caller must save the original value of the current task (see
  5938. * curr_task() above) and restore that value before reenabling interrupts and
  5939. * re-starting the system.
  5940. *
  5941. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5942. */
  5943. void set_curr_task(int cpu, struct task_struct *p)
  5944. {
  5945. cpu_curr(cpu) = p;
  5946. }
  5947. #endif