alloc.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702
  1. /*
  2. * Primary bucket allocation code
  3. *
  4. * Copyright 2012 Google, Inc.
  5. *
  6. * Allocation in bcache is done in terms of buckets:
  7. *
  8. * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
  9. * btree pointers - they must match for the pointer to be considered valid.
  10. *
  11. * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
  12. * bucket simply by incrementing its gen.
  13. *
  14. * The gens (along with the priorities; it's really the gens are important but
  15. * the code is named as if it's the priorities) are written in an arbitrary list
  16. * of buckets on disk, with a pointer to them in the journal header.
  17. *
  18. * When we invalidate a bucket, we have to write its new gen to disk and wait
  19. * for that write to complete before we use it - otherwise after a crash we
  20. * could have pointers that appeared to be good but pointed to data that had
  21. * been overwritten.
  22. *
  23. * Since the gens and priorities are all stored contiguously on disk, we can
  24. * batch this up: We fill up the free_inc list with freshly invalidated buckets,
  25. * call prio_write(), and when prio_write() finishes we pull buckets off the
  26. * free_inc list and optionally discard them.
  27. *
  28. * free_inc isn't the only freelist - if it was, we'd often to sleep while
  29. * priorities and gens were being written before we could allocate. c->free is a
  30. * smaller freelist, and buckets on that list are always ready to be used.
  31. *
  32. * If we've got discards enabled, that happens when a bucket moves from the
  33. * free_inc list to the free list.
  34. *
  35. * There is another freelist, because sometimes we have buckets that we know
  36. * have nothing pointing into them - these we can reuse without waiting for
  37. * priorities to be rewritten. These come from freed btree nodes and buckets
  38. * that garbage collection discovered no longer had valid keys pointing into
  39. * them (because they were overwritten). That's the unused list - buckets on the
  40. * unused list move to the free list, optionally being discarded in the process.
  41. *
  42. * It's also important to ensure that gens don't wrap around - with respect to
  43. * either the oldest gen in the btree or the gen on disk. This is quite
  44. * difficult to do in practice, but we explicitly guard against it anyways - if
  45. * a bucket is in danger of wrapping around we simply skip invalidating it that
  46. * time around, and we garbage collect or rewrite the priorities sooner than we
  47. * would have otherwise.
  48. *
  49. * bch_bucket_alloc() allocates a single bucket from a specific cache.
  50. *
  51. * bch_bucket_alloc_set() allocates one or more buckets from different caches
  52. * out of a cache set.
  53. *
  54. * free_some_buckets() drives all the processes described above. It's called
  55. * from bch_bucket_alloc() and a few other places that need to make sure free
  56. * buckets are ready.
  57. *
  58. * invalidate_buckets_(lru|fifo)() find buckets that are available to be
  59. * invalidated, and then invalidate them and stick them on the free_inc list -
  60. * in either lru or fifo order.
  61. */
  62. #include "bcache.h"
  63. #include "btree.h"
  64. #include <linux/blkdev.h>
  65. #include <linux/freezer.h>
  66. #include <linux/kthread.h>
  67. #include <linux/random.h>
  68. #include <trace/events/bcache.h>
  69. /* Bucket heap / gen */
  70. uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
  71. {
  72. uint8_t ret = ++b->gen;
  73. ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
  74. WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
  75. if (CACHE_SYNC(&ca->set->sb)) {
  76. ca->need_save_prio = max(ca->need_save_prio,
  77. bucket_disk_gen(b));
  78. WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
  79. }
  80. return ret;
  81. }
  82. void bch_rescale_priorities(struct cache_set *c, int sectors)
  83. {
  84. struct cache *ca;
  85. struct bucket *b;
  86. unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
  87. unsigned i;
  88. int r;
  89. atomic_sub(sectors, &c->rescale);
  90. do {
  91. r = atomic_read(&c->rescale);
  92. if (r >= 0)
  93. return;
  94. } while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
  95. mutex_lock(&c->bucket_lock);
  96. c->min_prio = USHRT_MAX;
  97. for_each_cache(ca, c, i)
  98. for_each_bucket(b, ca)
  99. if (b->prio &&
  100. b->prio != BTREE_PRIO &&
  101. !atomic_read(&b->pin)) {
  102. b->prio--;
  103. c->min_prio = min(c->min_prio, b->prio);
  104. }
  105. mutex_unlock(&c->bucket_lock);
  106. }
  107. /* Allocation */
  108. static inline bool can_inc_bucket_gen(struct bucket *b)
  109. {
  110. return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
  111. bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
  112. }
  113. bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
  114. {
  115. BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
  116. if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
  117. CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
  118. return false;
  119. b->prio = 0;
  120. if (can_inc_bucket_gen(b) &&
  121. fifo_push(&ca->unused, b - ca->buckets)) {
  122. atomic_inc(&b->pin);
  123. return true;
  124. }
  125. return false;
  126. }
  127. static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
  128. {
  129. return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
  130. !atomic_read(&b->pin) &&
  131. can_inc_bucket_gen(b);
  132. }
  133. static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
  134. {
  135. bch_inc_gen(ca, b);
  136. b->prio = INITIAL_PRIO;
  137. atomic_inc(&b->pin);
  138. fifo_push(&ca->free_inc, b - ca->buckets);
  139. }
  140. #define bucket_prio(b) \
  141. (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
  142. #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r))
  143. #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r))
  144. static void invalidate_buckets_lru(struct cache *ca)
  145. {
  146. struct bucket *b;
  147. ssize_t i;
  148. ca->heap.used = 0;
  149. for_each_bucket(b, ca) {
  150. /*
  151. * If we fill up the unused list, if we then return before
  152. * adding anything to the free_inc list we'll skip writing
  153. * prios/gens and just go back to allocating from the unused
  154. * list:
  155. */
  156. if (fifo_full(&ca->unused))
  157. return;
  158. if (!can_invalidate_bucket(ca, b))
  159. continue;
  160. if (!GC_SECTORS_USED(b) &&
  161. bch_bucket_add_unused(ca, b))
  162. continue;
  163. if (!heap_full(&ca->heap))
  164. heap_add(&ca->heap, b, bucket_max_cmp);
  165. else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
  166. ca->heap.data[0] = b;
  167. heap_sift(&ca->heap, 0, bucket_max_cmp);
  168. }
  169. }
  170. for (i = ca->heap.used / 2 - 1; i >= 0; --i)
  171. heap_sift(&ca->heap, i, bucket_min_cmp);
  172. while (!fifo_full(&ca->free_inc)) {
  173. if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
  174. /*
  175. * We don't want to be calling invalidate_buckets()
  176. * multiple times when it can't do anything
  177. */
  178. ca->invalidate_needs_gc = 1;
  179. wake_up_gc(ca->set);
  180. return;
  181. }
  182. invalidate_one_bucket(ca, b);
  183. }
  184. }
  185. static void invalidate_buckets_fifo(struct cache *ca)
  186. {
  187. struct bucket *b;
  188. size_t checked = 0;
  189. while (!fifo_full(&ca->free_inc)) {
  190. if (ca->fifo_last_bucket < ca->sb.first_bucket ||
  191. ca->fifo_last_bucket >= ca->sb.nbuckets)
  192. ca->fifo_last_bucket = ca->sb.first_bucket;
  193. b = ca->buckets + ca->fifo_last_bucket++;
  194. if (can_invalidate_bucket(ca, b))
  195. invalidate_one_bucket(ca, b);
  196. if (++checked >= ca->sb.nbuckets) {
  197. ca->invalidate_needs_gc = 1;
  198. wake_up_gc(ca->set);
  199. return;
  200. }
  201. }
  202. }
  203. static void invalidate_buckets_random(struct cache *ca)
  204. {
  205. struct bucket *b;
  206. size_t checked = 0;
  207. while (!fifo_full(&ca->free_inc)) {
  208. size_t n;
  209. get_random_bytes(&n, sizeof(n));
  210. n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
  211. n += ca->sb.first_bucket;
  212. b = ca->buckets + n;
  213. if (can_invalidate_bucket(ca, b))
  214. invalidate_one_bucket(ca, b);
  215. if (++checked >= ca->sb.nbuckets / 2) {
  216. ca->invalidate_needs_gc = 1;
  217. wake_up_gc(ca->set);
  218. return;
  219. }
  220. }
  221. }
  222. static void invalidate_buckets(struct cache *ca)
  223. {
  224. if (ca->invalidate_needs_gc)
  225. return;
  226. switch (CACHE_REPLACEMENT(&ca->sb)) {
  227. case CACHE_REPLACEMENT_LRU:
  228. invalidate_buckets_lru(ca);
  229. break;
  230. case CACHE_REPLACEMENT_FIFO:
  231. invalidate_buckets_fifo(ca);
  232. break;
  233. case CACHE_REPLACEMENT_RANDOM:
  234. invalidate_buckets_random(ca);
  235. break;
  236. }
  237. trace_bcache_alloc_invalidate(ca);
  238. }
  239. #define allocator_wait(ca, cond) \
  240. do { \
  241. while (1) { \
  242. set_current_state(TASK_INTERRUPTIBLE); \
  243. if (cond) \
  244. break; \
  245. \
  246. mutex_unlock(&(ca)->set->bucket_lock); \
  247. if (kthread_should_stop()) \
  248. return 0; \
  249. \
  250. try_to_freeze(); \
  251. schedule(); \
  252. mutex_lock(&(ca)->set->bucket_lock); \
  253. } \
  254. __set_current_state(TASK_RUNNING); \
  255. } while (0)
  256. static int bch_allocator_thread(void *arg)
  257. {
  258. struct cache *ca = arg;
  259. mutex_lock(&ca->set->bucket_lock);
  260. while (1) {
  261. /*
  262. * First, we pull buckets off of the unused and free_inc lists,
  263. * possibly issue discards to them, then we add the bucket to
  264. * the free list:
  265. */
  266. while (1) {
  267. long bucket;
  268. if ((!atomic_read(&ca->set->prio_blocked) ||
  269. !CACHE_SYNC(&ca->set->sb)) &&
  270. !fifo_empty(&ca->unused))
  271. fifo_pop(&ca->unused, bucket);
  272. else if (!fifo_empty(&ca->free_inc))
  273. fifo_pop(&ca->free_inc, bucket);
  274. else
  275. break;
  276. if (ca->discard) {
  277. mutex_unlock(&ca->set->bucket_lock);
  278. blkdev_issue_discard(ca->bdev,
  279. bucket_to_sector(ca->set, bucket),
  280. ca->sb.block_size, GFP_KERNEL, 0);
  281. mutex_lock(&ca->set->bucket_lock);
  282. }
  283. allocator_wait(ca, !fifo_full(&ca->free));
  284. fifo_push(&ca->free, bucket);
  285. wake_up(&ca->set->bucket_wait);
  286. }
  287. /*
  288. * We've run out of free buckets, we need to find some buckets
  289. * we can invalidate. First, invalidate them in memory and add
  290. * them to the free_inc list:
  291. */
  292. allocator_wait(ca, ca->set->gc_mark_valid &&
  293. (ca->need_save_prio > 64 ||
  294. !ca->invalidate_needs_gc));
  295. invalidate_buckets(ca);
  296. /*
  297. * Now, we write their new gens to disk so we can start writing
  298. * new stuff to them:
  299. */
  300. allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
  301. if (CACHE_SYNC(&ca->set->sb) &&
  302. (!fifo_empty(&ca->free_inc) ||
  303. ca->need_save_prio > 64))
  304. bch_prio_write(ca);
  305. }
  306. }
  307. long bch_bucket_alloc(struct cache *ca, unsigned watermark, bool wait)
  308. {
  309. DEFINE_WAIT(w);
  310. struct bucket *b;
  311. long r;
  312. /* fastpath */
  313. if (fifo_used(&ca->free) > ca->watermark[watermark]) {
  314. fifo_pop(&ca->free, r);
  315. goto out;
  316. }
  317. if (!wait)
  318. return -1;
  319. while (1) {
  320. if (fifo_used(&ca->free) > ca->watermark[watermark]) {
  321. fifo_pop(&ca->free, r);
  322. break;
  323. }
  324. prepare_to_wait(&ca->set->bucket_wait, &w,
  325. TASK_UNINTERRUPTIBLE);
  326. mutex_unlock(&ca->set->bucket_lock);
  327. schedule();
  328. mutex_lock(&ca->set->bucket_lock);
  329. }
  330. finish_wait(&ca->set->bucket_wait, &w);
  331. out:
  332. wake_up_process(ca->alloc_thread);
  333. if (expensive_debug_checks(ca->set)) {
  334. size_t iter;
  335. long i;
  336. for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
  337. BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
  338. fifo_for_each(i, &ca->free, iter)
  339. BUG_ON(i == r);
  340. fifo_for_each(i, &ca->free_inc, iter)
  341. BUG_ON(i == r);
  342. fifo_for_each(i, &ca->unused, iter)
  343. BUG_ON(i == r);
  344. }
  345. b = ca->buckets + r;
  346. BUG_ON(atomic_read(&b->pin) != 1);
  347. SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
  348. if (watermark <= WATERMARK_METADATA) {
  349. SET_GC_MARK(b, GC_MARK_METADATA);
  350. b->prio = BTREE_PRIO;
  351. } else {
  352. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  353. b->prio = INITIAL_PRIO;
  354. }
  355. return r;
  356. }
  357. void bch_bucket_free(struct cache_set *c, struct bkey *k)
  358. {
  359. unsigned i;
  360. for (i = 0; i < KEY_PTRS(k); i++) {
  361. struct bucket *b = PTR_BUCKET(c, k, i);
  362. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  363. SET_GC_SECTORS_USED(b, 0);
  364. bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
  365. }
  366. }
  367. int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
  368. struct bkey *k, int n, bool wait)
  369. {
  370. int i;
  371. lockdep_assert_held(&c->bucket_lock);
  372. BUG_ON(!n || n > c->caches_loaded || n > 8);
  373. bkey_init(k);
  374. /* sort by free space/prio of oldest data in caches */
  375. for (i = 0; i < n; i++) {
  376. struct cache *ca = c->cache_by_alloc[i];
  377. long b = bch_bucket_alloc(ca, watermark, wait);
  378. if (b == -1)
  379. goto err;
  380. k->ptr[i] = PTR(ca->buckets[b].gen,
  381. bucket_to_sector(c, b),
  382. ca->sb.nr_this_dev);
  383. SET_KEY_PTRS(k, i + 1);
  384. }
  385. return 0;
  386. err:
  387. bch_bucket_free(c, k);
  388. bkey_put(c, k);
  389. return -1;
  390. }
  391. int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
  392. struct bkey *k, int n, bool wait)
  393. {
  394. int ret;
  395. mutex_lock(&c->bucket_lock);
  396. ret = __bch_bucket_alloc_set(c, watermark, k, n, wait);
  397. mutex_unlock(&c->bucket_lock);
  398. return ret;
  399. }
  400. /* Sector allocator */
  401. struct open_bucket {
  402. struct list_head list;
  403. unsigned last_write_point;
  404. unsigned sectors_free;
  405. BKEY_PADDED(key);
  406. };
  407. /*
  408. * We keep multiple buckets open for writes, and try to segregate different
  409. * write streams for better cache utilization: first we look for a bucket where
  410. * the last write to it was sequential with the current write, and failing that
  411. * we look for a bucket that was last used by the same task.
  412. *
  413. * The ideas is if you've got multiple tasks pulling data into the cache at the
  414. * same time, you'll get better cache utilization if you try to segregate their
  415. * data and preserve locality.
  416. *
  417. * For example, say you've starting Firefox at the same time you're copying a
  418. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  419. * cache awhile, but the data you copied might not be; if you wrote all that
  420. * data to the same buckets it'd get invalidated at the same time.
  421. *
  422. * Both of those tasks will be doing fairly random IO so we can't rely on
  423. * detecting sequential IO to segregate their data, but going off of the task
  424. * should be a sane heuristic.
  425. */
  426. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  427. const struct bkey *search,
  428. unsigned write_point,
  429. struct bkey *alloc)
  430. {
  431. struct open_bucket *ret, *ret_task = NULL;
  432. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  433. if (!bkey_cmp(&ret->key, search))
  434. goto found;
  435. else if (ret->last_write_point == write_point)
  436. ret_task = ret;
  437. ret = ret_task ?: list_first_entry(&c->data_buckets,
  438. struct open_bucket, list);
  439. found:
  440. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  441. ret->sectors_free = c->sb.bucket_size;
  442. bkey_copy(&ret->key, alloc);
  443. bkey_init(alloc);
  444. }
  445. if (!ret->sectors_free)
  446. ret = NULL;
  447. return ret;
  448. }
  449. /*
  450. * Allocates some space in the cache to write to, and k to point to the newly
  451. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  452. * end of the newly allocated space).
  453. *
  454. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  455. * sectors were actually allocated.
  456. *
  457. * If s->writeback is true, will not fail.
  458. */
  459. bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
  460. unsigned write_point, unsigned write_prio, bool wait)
  461. {
  462. struct open_bucket *b;
  463. BKEY_PADDED(key) alloc;
  464. unsigned i;
  465. /*
  466. * We might have to allocate a new bucket, which we can't do with a
  467. * spinlock held. So if we have to allocate, we drop the lock, allocate
  468. * and then retry. KEY_PTRS() indicates whether alloc points to
  469. * allocated bucket(s).
  470. */
  471. bkey_init(&alloc.key);
  472. spin_lock(&c->data_bucket_lock);
  473. while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
  474. unsigned watermark = write_prio
  475. ? WATERMARK_MOVINGGC
  476. : WATERMARK_NONE;
  477. spin_unlock(&c->data_bucket_lock);
  478. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
  479. return false;
  480. spin_lock(&c->data_bucket_lock);
  481. }
  482. /*
  483. * If we had to allocate, we might race and not need to allocate the
  484. * second time we call find_data_bucket(). If we allocated a bucket but
  485. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  486. */
  487. if (KEY_PTRS(&alloc.key))
  488. bkey_put(c, &alloc.key);
  489. for (i = 0; i < KEY_PTRS(&b->key); i++)
  490. EBUG_ON(ptr_stale(c, &b->key, i));
  491. /* Set up the pointer to the space we're allocating: */
  492. for (i = 0; i < KEY_PTRS(&b->key); i++)
  493. k->ptr[i] = b->key.ptr[i];
  494. sectors = min(sectors, b->sectors_free);
  495. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  496. SET_KEY_SIZE(k, sectors);
  497. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  498. /*
  499. * Move b to the end of the lru, and keep track of what this bucket was
  500. * last used for:
  501. */
  502. list_move_tail(&b->list, &c->data_buckets);
  503. bkey_copy_key(&b->key, k);
  504. b->last_write_point = write_point;
  505. b->sectors_free -= sectors;
  506. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  507. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  508. atomic_long_add(sectors,
  509. &PTR_CACHE(c, &b->key, i)->sectors_written);
  510. }
  511. if (b->sectors_free < c->sb.block_size)
  512. b->sectors_free = 0;
  513. /*
  514. * k takes refcounts on the buckets it points to until it's inserted
  515. * into the btree, but if we're done with this bucket we just transfer
  516. * get_data_bucket()'s refcount.
  517. */
  518. if (b->sectors_free)
  519. for (i = 0; i < KEY_PTRS(&b->key); i++)
  520. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  521. spin_unlock(&c->data_bucket_lock);
  522. return true;
  523. }
  524. /* Init */
  525. void bch_open_buckets_free(struct cache_set *c)
  526. {
  527. struct open_bucket *b;
  528. while (!list_empty(&c->data_buckets)) {
  529. b = list_first_entry(&c->data_buckets,
  530. struct open_bucket, list);
  531. list_del(&b->list);
  532. kfree(b);
  533. }
  534. }
  535. int bch_open_buckets_alloc(struct cache_set *c)
  536. {
  537. int i;
  538. spin_lock_init(&c->data_bucket_lock);
  539. for (i = 0; i < 6; i++) {
  540. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  541. if (!b)
  542. return -ENOMEM;
  543. list_add(&b->list, &c->data_buckets);
  544. }
  545. return 0;
  546. }
  547. int bch_cache_allocator_start(struct cache *ca)
  548. {
  549. struct task_struct *k = kthread_run(bch_allocator_thread,
  550. ca, "bcache_allocator");
  551. if (IS_ERR(k))
  552. return PTR_ERR(k);
  553. ca->alloc_thread = k;
  554. return 0;
  555. }
  556. int bch_cache_allocator_init(struct cache *ca)
  557. {
  558. /*
  559. * Reserve:
  560. * Prio/gen writes first
  561. * Then 8 for btree allocations
  562. * Then half for the moving garbage collector
  563. */
  564. ca->watermark[WATERMARK_PRIO] = 0;
  565. ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
  566. ca->watermark[WATERMARK_MOVINGGC] = 8 +
  567. ca->watermark[WATERMARK_METADATA];
  568. ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
  569. ca->watermark[WATERMARK_MOVINGGC];
  570. return 0;
  571. }