n2_core.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065
  1. /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
  2. *
  3. * Copyright (C) 2010 David S. Miller <davem@davemloft.net>
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/of.h>
  9. #include <linux/of_device.h>
  10. #include <linux/cpumask.h>
  11. #include <linux/slab.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/crypto.h>
  14. #include <crypto/md5.h>
  15. #include <crypto/sha.h>
  16. #include <crypto/aes.h>
  17. #include <crypto/des.h>
  18. #include <linux/mutex.h>
  19. #include <linux/delay.h>
  20. #include <linux/sched.h>
  21. #include <crypto/internal/hash.h>
  22. #include <crypto/scatterwalk.h>
  23. #include <crypto/algapi.h>
  24. #include <asm/hypervisor.h>
  25. #include <asm/mdesc.h>
  26. #include "n2_core.h"
  27. #define DRV_MODULE_NAME "n2_crypto"
  28. #define DRV_MODULE_VERSION "0.1"
  29. #define DRV_MODULE_RELDATE "April 29, 2010"
  30. static char version[] __devinitdata =
  31. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  32. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  33. MODULE_DESCRIPTION("Niagara2 Crypto driver");
  34. MODULE_LICENSE("GPL");
  35. MODULE_VERSION(DRV_MODULE_VERSION);
  36. #define N2_CRA_PRIORITY 300
  37. static DEFINE_MUTEX(spu_lock);
  38. struct spu_queue {
  39. cpumask_t sharing;
  40. unsigned long qhandle;
  41. spinlock_t lock;
  42. u8 q_type;
  43. void *q;
  44. unsigned long head;
  45. unsigned long tail;
  46. struct list_head jobs;
  47. unsigned long devino;
  48. char irq_name[32];
  49. unsigned int irq;
  50. struct list_head list;
  51. };
  52. static struct spu_queue **cpu_to_cwq;
  53. static struct spu_queue **cpu_to_mau;
  54. static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
  55. {
  56. if (q->q_type == HV_NCS_QTYPE_MAU) {
  57. off += MAU_ENTRY_SIZE;
  58. if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
  59. off = 0;
  60. } else {
  61. off += CWQ_ENTRY_SIZE;
  62. if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
  63. off = 0;
  64. }
  65. return off;
  66. }
  67. struct n2_request_common {
  68. struct list_head entry;
  69. unsigned int offset;
  70. };
  71. #define OFFSET_NOT_RUNNING (~(unsigned int)0)
  72. /* An async job request records the final tail value it used in
  73. * n2_request_common->offset, test to see if that offset is in
  74. * the range old_head, new_head, inclusive.
  75. */
  76. static inline bool job_finished(struct spu_queue *q, unsigned int offset,
  77. unsigned long old_head, unsigned long new_head)
  78. {
  79. if (old_head <= new_head) {
  80. if (offset > old_head && offset <= new_head)
  81. return true;
  82. } else {
  83. if (offset > old_head || offset <= new_head)
  84. return true;
  85. }
  86. return false;
  87. }
  88. /* When the HEAD marker is unequal to the actual HEAD, we get
  89. * a virtual device INO interrupt. We should process the
  90. * completed CWQ entries and adjust the HEAD marker to clear
  91. * the IRQ.
  92. */
  93. static irqreturn_t cwq_intr(int irq, void *dev_id)
  94. {
  95. unsigned long off, new_head, hv_ret;
  96. struct spu_queue *q = dev_id;
  97. pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
  98. smp_processor_id(), q->qhandle);
  99. spin_lock(&q->lock);
  100. hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
  101. pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
  102. smp_processor_id(), new_head, hv_ret);
  103. for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
  104. /* XXX ... XXX */
  105. }
  106. hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
  107. if (hv_ret == HV_EOK)
  108. q->head = new_head;
  109. spin_unlock(&q->lock);
  110. return IRQ_HANDLED;
  111. }
  112. static irqreturn_t mau_intr(int irq, void *dev_id)
  113. {
  114. struct spu_queue *q = dev_id;
  115. unsigned long head, hv_ret;
  116. spin_lock(&q->lock);
  117. pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
  118. smp_processor_id(), q->qhandle);
  119. hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
  120. pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
  121. smp_processor_id(), head, hv_ret);
  122. sun4v_ncs_sethead_marker(q->qhandle, head);
  123. spin_unlock(&q->lock);
  124. return IRQ_HANDLED;
  125. }
  126. static void *spu_queue_next(struct spu_queue *q, void *cur)
  127. {
  128. return q->q + spu_next_offset(q, cur - q->q);
  129. }
  130. static int spu_queue_num_free(struct spu_queue *q)
  131. {
  132. unsigned long head = q->head;
  133. unsigned long tail = q->tail;
  134. unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
  135. unsigned long diff;
  136. if (head > tail)
  137. diff = head - tail;
  138. else
  139. diff = (end - tail) + head;
  140. return (diff / CWQ_ENTRY_SIZE) - 1;
  141. }
  142. static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
  143. {
  144. int avail = spu_queue_num_free(q);
  145. if (avail >= num_entries)
  146. return q->q + q->tail;
  147. return NULL;
  148. }
  149. static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
  150. {
  151. unsigned long hv_ret, new_tail;
  152. new_tail = spu_next_offset(q, last - q->q);
  153. hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
  154. if (hv_ret == HV_EOK)
  155. q->tail = new_tail;
  156. return hv_ret;
  157. }
  158. static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
  159. int enc_type, int auth_type,
  160. unsigned int hash_len,
  161. bool sfas, bool sob, bool eob, bool encrypt,
  162. int opcode)
  163. {
  164. u64 word = (len - 1) & CONTROL_LEN;
  165. word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
  166. word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
  167. word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
  168. if (sfas)
  169. word |= CONTROL_STORE_FINAL_AUTH_STATE;
  170. if (sob)
  171. word |= CONTROL_START_OF_BLOCK;
  172. if (eob)
  173. word |= CONTROL_END_OF_BLOCK;
  174. if (encrypt)
  175. word |= CONTROL_ENCRYPT;
  176. if (hmac_key_len)
  177. word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
  178. if (hash_len)
  179. word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
  180. return word;
  181. }
  182. #if 0
  183. static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
  184. {
  185. if (this_len >= 64 ||
  186. qp->head != qp->tail)
  187. return true;
  188. return false;
  189. }
  190. #endif
  191. struct n2_ahash_alg {
  192. struct list_head entry;
  193. const char *hash_zero;
  194. const u32 *hash_init;
  195. u8 hw_op_hashsz;
  196. u8 digest_size;
  197. u8 auth_type;
  198. struct ahash_alg alg;
  199. };
  200. static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
  201. {
  202. struct crypto_alg *alg = tfm->__crt_alg;
  203. struct ahash_alg *ahash_alg;
  204. ahash_alg = container_of(alg, struct ahash_alg, halg.base);
  205. return container_of(ahash_alg, struct n2_ahash_alg, alg);
  206. }
  207. struct n2_hash_ctx {
  208. struct crypto_ahash *fallback_tfm;
  209. };
  210. struct n2_hash_req_ctx {
  211. union {
  212. struct md5_state md5;
  213. struct sha1_state sha1;
  214. struct sha256_state sha256;
  215. } u;
  216. struct ahash_request fallback_req;
  217. };
  218. static int n2_hash_async_init(struct ahash_request *req)
  219. {
  220. struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
  221. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  222. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  223. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  224. rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  225. return crypto_ahash_init(&rctx->fallback_req);
  226. }
  227. static int n2_hash_async_update(struct ahash_request *req)
  228. {
  229. struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
  230. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  231. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  232. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  233. rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  234. rctx->fallback_req.nbytes = req->nbytes;
  235. rctx->fallback_req.src = req->src;
  236. return crypto_ahash_update(&rctx->fallback_req);
  237. }
  238. static int n2_hash_async_final(struct ahash_request *req)
  239. {
  240. struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
  241. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  242. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  243. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  244. rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  245. rctx->fallback_req.result = req->result;
  246. return crypto_ahash_final(&rctx->fallback_req);
  247. }
  248. static int n2_hash_async_finup(struct ahash_request *req)
  249. {
  250. struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
  251. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  252. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  253. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  254. rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  255. rctx->fallback_req.nbytes = req->nbytes;
  256. rctx->fallback_req.src = req->src;
  257. rctx->fallback_req.result = req->result;
  258. return crypto_ahash_finup(&rctx->fallback_req);
  259. }
  260. static int n2_hash_cra_init(struct crypto_tfm *tfm)
  261. {
  262. const char *fallback_driver_name = tfm->__crt_alg->cra_name;
  263. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  264. struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  265. struct crypto_ahash *fallback_tfm;
  266. int err;
  267. fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
  268. CRYPTO_ALG_NEED_FALLBACK);
  269. if (IS_ERR(fallback_tfm)) {
  270. pr_warning("Fallback driver '%s' could not be loaded!\n",
  271. fallback_driver_name);
  272. err = PTR_ERR(fallback_tfm);
  273. goto out;
  274. }
  275. crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
  276. crypto_ahash_reqsize(fallback_tfm)));
  277. ctx->fallback_tfm = fallback_tfm;
  278. return 0;
  279. out:
  280. return err;
  281. }
  282. static void n2_hash_cra_exit(struct crypto_tfm *tfm)
  283. {
  284. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  285. struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  286. crypto_free_ahash(ctx->fallback_tfm);
  287. }
  288. static unsigned long wait_for_tail(struct spu_queue *qp)
  289. {
  290. unsigned long head, hv_ret;
  291. do {
  292. hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
  293. if (hv_ret != HV_EOK) {
  294. pr_err("Hypervisor error on gethead\n");
  295. break;
  296. }
  297. if (head == qp->tail) {
  298. qp->head = head;
  299. break;
  300. }
  301. } while (1);
  302. return hv_ret;
  303. }
  304. static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
  305. struct cwq_initial_entry *ent)
  306. {
  307. unsigned long hv_ret = spu_queue_submit(qp, ent);
  308. if (hv_ret == HV_EOK)
  309. hv_ret = wait_for_tail(qp);
  310. return hv_ret;
  311. }
  312. static int n2_do_async_digest(struct ahash_request *req,
  313. unsigned int auth_type, unsigned int digest_size,
  314. unsigned int result_size, void *hash_loc)
  315. {
  316. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  317. struct cwq_initial_entry *ent;
  318. struct crypto_hash_walk walk;
  319. struct spu_queue *qp;
  320. unsigned long flags;
  321. int err = -ENODEV;
  322. int nbytes, cpu;
  323. /* The total effective length of the operation may not
  324. * exceed 2^16.
  325. */
  326. if (unlikely(req->nbytes > (1 << 16))) {
  327. struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
  328. struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  329. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  330. rctx->fallback_req.base.flags =
  331. req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
  332. rctx->fallback_req.nbytes = req->nbytes;
  333. rctx->fallback_req.src = req->src;
  334. rctx->fallback_req.result = req->result;
  335. return crypto_ahash_digest(&rctx->fallback_req);
  336. }
  337. nbytes = crypto_hash_walk_first(req, &walk);
  338. cpu = get_cpu();
  339. qp = cpu_to_cwq[cpu];
  340. if (!qp)
  341. goto out;
  342. spin_lock_irqsave(&qp->lock, flags);
  343. /* XXX can do better, improve this later by doing a by-hand scatterlist
  344. * XXX walk, etc.
  345. */
  346. ent = qp->q + qp->tail;
  347. ent->control = control_word_base(nbytes, 0, 0,
  348. auth_type, digest_size,
  349. false, true, false, false,
  350. OPCODE_INPLACE_BIT |
  351. OPCODE_AUTH_MAC);
  352. ent->src_addr = __pa(walk.data);
  353. ent->auth_key_addr = 0UL;
  354. ent->auth_iv_addr = __pa(hash_loc);
  355. ent->final_auth_state_addr = 0UL;
  356. ent->enc_key_addr = 0UL;
  357. ent->enc_iv_addr = 0UL;
  358. ent->dest_addr = __pa(hash_loc);
  359. nbytes = crypto_hash_walk_done(&walk, 0);
  360. while (nbytes > 0) {
  361. ent = spu_queue_next(qp, ent);
  362. ent->control = (nbytes - 1);
  363. ent->src_addr = __pa(walk.data);
  364. ent->auth_key_addr = 0UL;
  365. ent->auth_iv_addr = 0UL;
  366. ent->final_auth_state_addr = 0UL;
  367. ent->enc_key_addr = 0UL;
  368. ent->enc_iv_addr = 0UL;
  369. ent->dest_addr = 0UL;
  370. nbytes = crypto_hash_walk_done(&walk, 0);
  371. }
  372. ent->control |= CONTROL_END_OF_BLOCK;
  373. if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
  374. err = -EINVAL;
  375. else
  376. err = 0;
  377. spin_unlock_irqrestore(&qp->lock, flags);
  378. if (!err)
  379. memcpy(req->result, hash_loc, result_size);
  380. out:
  381. put_cpu();
  382. return err;
  383. }
  384. static int n2_hash_async_digest(struct ahash_request *req)
  385. {
  386. struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
  387. struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
  388. int ds;
  389. ds = n2alg->digest_size;
  390. if (unlikely(req->nbytes == 0)) {
  391. memcpy(req->result, n2alg->hash_zero, ds);
  392. return 0;
  393. }
  394. memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
  395. return n2_do_async_digest(req, n2alg->auth_type,
  396. n2alg->hw_op_hashsz, ds,
  397. &rctx->u);
  398. }
  399. struct n2_cipher_context {
  400. int key_len;
  401. int enc_type;
  402. union {
  403. u8 aes[AES_MAX_KEY_SIZE];
  404. u8 des[DES_KEY_SIZE];
  405. u8 des3[3 * DES_KEY_SIZE];
  406. u8 arc4[258]; /* S-box, X, Y */
  407. } key;
  408. };
  409. #define N2_CHUNK_ARR_LEN 16
  410. struct n2_crypto_chunk {
  411. struct list_head entry;
  412. unsigned long iv_paddr : 44;
  413. unsigned long arr_len : 20;
  414. unsigned long dest_paddr;
  415. unsigned long dest_final;
  416. struct {
  417. unsigned long src_paddr : 44;
  418. unsigned long src_len : 20;
  419. } arr[N2_CHUNK_ARR_LEN];
  420. };
  421. struct n2_request_context {
  422. struct ablkcipher_walk walk;
  423. struct list_head chunk_list;
  424. struct n2_crypto_chunk chunk;
  425. u8 temp_iv[16];
  426. };
  427. /* The SPU allows some level of flexibility for partial cipher blocks
  428. * being specified in a descriptor.
  429. *
  430. * It merely requires that every descriptor's length field is at least
  431. * as large as the cipher block size. This means that a cipher block
  432. * can span at most 2 descriptors. However, this does not allow a
  433. * partial block to span into the final descriptor as that would
  434. * violate the rule (since every descriptor's length must be at lest
  435. * the block size). So, for example, assuming an 8 byte block size:
  436. *
  437. * 0xe --> 0xa --> 0x8
  438. *
  439. * is a valid length sequence, whereas:
  440. *
  441. * 0xe --> 0xb --> 0x7
  442. *
  443. * is not a valid sequence.
  444. */
  445. struct n2_cipher_alg {
  446. struct list_head entry;
  447. u8 enc_type;
  448. struct crypto_alg alg;
  449. };
  450. static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
  451. {
  452. struct crypto_alg *alg = tfm->__crt_alg;
  453. return container_of(alg, struct n2_cipher_alg, alg);
  454. }
  455. struct n2_cipher_request_context {
  456. struct ablkcipher_walk walk;
  457. };
  458. static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  459. unsigned int keylen)
  460. {
  461. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  462. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  463. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  464. ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
  465. switch (keylen) {
  466. case AES_KEYSIZE_128:
  467. ctx->enc_type |= ENC_TYPE_ALG_AES128;
  468. break;
  469. case AES_KEYSIZE_192:
  470. ctx->enc_type |= ENC_TYPE_ALG_AES192;
  471. break;
  472. case AES_KEYSIZE_256:
  473. ctx->enc_type |= ENC_TYPE_ALG_AES256;
  474. break;
  475. default:
  476. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  477. return -EINVAL;
  478. }
  479. ctx->key_len = keylen;
  480. memcpy(ctx->key.aes, key, keylen);
  481. return 0;
  482. }
  483. static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  484. unsigned int keylen)
  485. {
  486. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  487. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  488. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  489. u32 tmp[DES_EXPKEY_WORDS];
  490. int err;
  491. ctx->enc_type = n2alg->enc_type;
  492. if (keylen != DES_KEY_SIZE) {
  493. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  494. return -EINVAL;
  495. }
  496. err = des_ekey(tmp, key);
  497. if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
  498. tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
  499. return -EINVAL;
  500. }
  501. ctx->key_len = keylen;
  502. memcpy(ctx->key.des, key, keylen);
  503. return 0;
  504. }
  505. static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  506. unsigned int keylen)
  507. {
  508. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  509. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  510. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  511. ctx->enc_type = n2alg->enc_type;
  512. if (keylen != (3 * DES_KEY_SIZE)) {
  513. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  514. return -EINVAL;
  515. }
  516. ctx->key_len = keylen;
  517. memcpy(ctx->key.des3, key, keylen);
  518. return 0;
  519. }
  520. static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  521. unsigned int keylen)
  522. {
  523. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  524. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  525. struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
  526. u8 *s = ctx->key.arc4;
  527. u8 *x = s + 256;
  528. u8 *y = x + 1;
  529. int i, j, k;
  530. ctx->enc_type = n2alg->enc_type;
  531. j = k = 0;
  532. *x = 0;
  533. *y = 0;
  534. for (i = 0; i < 256; i++)
  535. s[i] = i;
  536. for (i = 0; i < 256; i++) {
  537. u8 a = s[i];
  538. j = (j + key[k] + a) & 0xff;
  539. s[i] = s[j];
  540. s[j] = a;
  541. if (++k >= keylen)
  542. k = 0;
  543. }
  544. return 0;
  545. }
  546. static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
  547. {
  548. int this_len = nbytes;
  549. this_len -= (nbytes & (block_size - 1));
  550. return this_len > (1 << 16) ? (1 << 16) : this_len;
  551. }
  552. static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
  553. struct spu_queue *qp, bool encrypt)
  554. {
  555. struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
  556. struct cwq_initial_entry *ent;
  557. bool in_place;
  558. int i;
  559. ent = spu_queue_alloc(qp, cp->arr_len);
  560. if (!ent) {
  561. pr_info("queue_alloc() of %d fails\n",
  562. cp->arr_len);
  563. return -EBUSY;
  564. }
  565. in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
  566. ent->control = control_word_base(cp->arr[0].src_len,
  567. 0, ctx->enc_type, 0, 0,
  568. false, true, false, encrypt,
  569. OPCODE_ENCRYPT |
  570. (in_place ? OPCODE_INPLACE_BIT : 0));
  571. ent->src_addr = cp->arr[0].src_paddr;
  572. ent->auth_key_addr = 0UL;
  573. ent->auth_iv_addr = 0UL;
  574. ent->final_auth_state_addr = 0UL;
  575. ent->enc_key_addr = __pa(&ctx->key);
  576. ent->enc_iv_addr = cp->iv_paddr;
  577. ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
  578. for (i = 1; i < cp->arr_len; i++) {
  579. ent = spu_queue_next(qp, ent);
  580. ent->control = cp->arr[i].src_len - 1;
  581. ent->src_addr = cp->arr[i].src_paddr;
  582. ent->auth_key_addr = 0UL;
  583. ent->auth_iv_addr = 0UL;
  584. ent->final_auth_state_addr = 0UL;
  585. ent->enc_key_addr = 0UL;
  586. ent->enc_iv_addr = 0UL;
  587. ent->dest_addr = 0UL;
  588. }
  589. ent->control |= CONTROL_END_OF_BLOCK;
  590. return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
  591. }
  592. static int n2_compute_chunks(struct ablkcipher_request *req)
  593. {
  594. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  595. struct ablkcipher_walk *walk = &rctx->walk;
  596. struct n2_crypto_chunk *chunk;
  597. unsigned long dest_prev;
  598. unsigned int tot_len;
  599. bool prev_in_place;
  600. int err, nbytes;
  601. ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
  602. err = ablkcipher_walk_phys(req, walk);
  603. if (err)
  604. return err;
  605. INIT_LIST_HEAD(&rctx->chunk_list);
  606. chunk = &rctx->chunk;
  607. INIT_LIST_HEAD(&chunk->entry);
  608. chunk->iv_paddr = 0UL;
  609. chunk->arr_len = 0;
  610. chunk->dest_paddr = 0UL;
  611. prev_in_place = false;
  612. dest_prev = ~0UL;
  613. tot_len = 0;
  614. while ((nbytes = walk->nbytes) != 0) {
  615. unsigned long dest_paddr, src_paddr;
  616. bool in_place;
  617. int this_len;
  618. src_paddr = (page_to_phys(walk->src.page) +
  619. walk->src.offset);
  620. dest_paddr = (page_to_phys(walk->dst.page) +
  621. walk->dst.offset);
  622. in_place = (src_paddr == dest_paddr);
  623. this_len = cipher_descriptor_len(nbytes, walk->blocksize);
  624. if (chunk->arr_len != 0) {
  625. if (in_place != prev_in_place ||
  626. (!prev_in_place &&
  627. dest_paddr != dest_prev) ||
  628. chunk->arr_len == N2_CHUNK_ARR_LEN ||
  629. tot_len + this_len > (1 << 16)) {
  630. chunk->dest_final = dest_prev;
  631. list_add_tail(&chunk->entry,
  632. &rctx->chunk_list);
  633. chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
  634. if (!chunk) {
  635. err = -ENOMEM;
  636. break;
  637. }
  638. INIT_LIST_HEAD(&chunk->entry);
  639. }
  640. }
  641. if (chunk->arr_len == 0) {
  642. chunk->dest_paddr = dest_paddr;
  643. tot_len = 0;
  644. }
  645. chunk->arr[chunk->arr_len].src_paddr = src_paddr;
  646. chunk->arr[chunk->arr_len].src_len = this_len;
  647. chunk->arr_len++;
  648. dest_prev = dest_paddr + this_len;
  649. prev_in_place = in_place;
  650. tot_len += this_len;
  651. err = ablkcipher_walk_done(req, walk, nbytes - this_len);
  652. if (err)
  653. break;
  654. }
  655. if (!err && chunk->arr_len != 0) {
  656. chunk->dest_final = dest_prev;
  657. list_add_tail(&chunk->entry, &rctx->chunk_list);
  658. }
  659. return err;
  660. }
  661. static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
  662. {
  663. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  664. struct n2_crypto_chunk *c, *tmp;
  665. if (final_iv)
  666. memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
  667. ablkcipher_walk_complete(&rctx->walk);
  668. list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
  669. list_del(&c->entry);
  670. if (unlikely(c != &rctx->chunk))
  671. kfree(c);
  672. }
  673. }
  674. static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
  675. {
  676. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  677. struct crypto_tfm *tfm = req->base.tfm;
  678. int err = n2_compute_chunks(req);
  679. struct n2_crypto_chunk *c, *tmp;
  680. unsigned long flags, hv_ret;
  681. struct spu_queue *qp;
  682. if (err)
  683. return err;
  684. qp = cpu_to_cwq[get_cpu()];
  685. err = -ENODEV;
  686. if (!qp)
  687. goto out;
  688. spin_lock_irqsave(&qp->lock, flags);
  689. list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
  690. err = __n2_crypt_chunk(tfm, c, qp, encrypt);
  691. if (err)
  692. break;
  693. list_del(&c->entry);
  694. if (unlikely(c != &rctx->chunk))
  695. kfree(c);
  696. }
  697. if (!err) {
  698. hv_ret = wait_for_tail(qp);
  699. if (hv_ret != HV_EOK)
  700. err = -EINVAL;
  701. }
  702. spin_unlock_irqrestore(&qp->lock, flags);
  703. put_cpu();
  704. out:
  705. n2_chunk_complete(req, NULL);
  706. return err;
  707. }
  708. static int n2_encrypt_ecb(struct ablkcipher_request *req)
  709. {
  710. return n2_do_ecb(req, true);
  711. }
  712. static int n2_decrypt_ecb(struct ablkcipher_request *req)
  713. {
  714. return n2_do_ecb(req, false);
  715. }
  716. static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
  717. {
  718. struct n2_request_context *rctx = ablkcipher_request_ctx(req);
  719. struct crypto_tfm *tfm = req->base.tfm;
  720. unsigned long flags, hv_ret, iv_paddr;
  721. int err = n2_compute_chunks(req);
  722. struct n2_crypto_chunk *c, *tmp;
  723. struct spu_queue *qp;
  724. void *final_iv_addr;
  725. final_iv_addr = NULL;
  726. if (err)
  727. return err;
  728. qp = cpu_to_cwq[get_cpu()];
  729. err = -ENODEV;
  730. if (!qp)
  731. goto out;
  732. spin_lock_irqsave(&qp->lock, flags);
  733. if (encrypt) {
  734. iv_paddr = __pa(rctx->walk.iv);
  735. list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
  736. entry) {
  737. c->iv_paddr = iv_paddr;
  738. err = __n2_crypt_chunk(tfm, c, qp, true);
  739. if (err)
  740. break;
  741. iv_paddr = c->dest_final - rctx->walk.blocksize;
  742. list_del(&c->entry);
  743. if (unlikely(c != &rctx->chunk))
  744. kfree(c);
  745. }
  746. final_iv_addr = __va(iv_paddr);
  747. } else {
  748. list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
  749. entry) {
  750. if (c == &rctx->chunk) {
  751. iv_paddr = __pa(rctx->walk.iv);
  752. } else {
  753. iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
  754. tmp->arr[tmp->arr_len-1].src_len -
  755. rctx->walk.blocksize);
  756. }
  757. if (!final_iv_addr) {
  758. unsigned long pa;
  759. pa = (c->arr[c->arr_len-1].src_paddr +
  760. c->arr[c->arr_len-1].src_len -
  761. rctx->walk.blocksize);
  762. final_iv_addr = rctx->temp_iv;
  763. memcpy(rctx->temp_iv, __va(pa),
  764. rctx->walk.blocksize);
  765. }
  766. c->iv_paddr = iv_paddr;
  767. err = __n2_crypt_chunk(tfm, c, qp, false);
  768. if (err)
  769. break;
  770. list_del(&c->entry);
  771. if (unlikely(c != &rctx->chunk))
  772. kfree(c);
  773. }
  774. }
  775. if (!err) {
  776. hv_ret = wait_for_tail(qp);
  777. if (hv_ret != HV_EOK)
  778. err = -EINVAL;
  779. }
  780. spin_unlock_irqrestore(&qp->lock, flags);
  781. put_cpu();
  782. out:
  783. n2_chunk_complete(req, err ? NULL : final_iv_addr);
  784. return err;
  785. }
  786. static int n2_encrypt_chaining(struct ablkcipher_request *req)
  787. {
  788. return n2_do_chaining(req, true);
  789. }
  790. static int n2_decrypt_chaining(struct ablkcipher_request *req)
  791. {
  792. return n2_do_chaining(req, false);
  793. }
  794. struct n2_cipher_tmpl {
  795. const char *name;
  796. const char *drv_name;
  797. u8 block_size;
  798. u8 enc_type;
  799. struct ablkcipher_alg ablkcipher;
  800. };
  801. static const struct n2_cipher_tmpl cipher_tmpls[] = {
  802. /* ARC4: only ECB is supported (chaining bits ignored) */
  803. { .name = "ecb(arc4)",
  804. .drv_name = "ecb-arc4",
  805. .block_size = 1,
  806. .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
  807. ENC_TYPE_CHAINING_ECB),
  808. .ablkcipher = {
  809. .min_keysize = 1,
  810. .max_keysize = 256,
  811. .setkey = n2_arc4_setkey,
  812. .encrypt = n2_encrypt_ecb,
  813. .decrypt = n2_decrypt_ecb,
  814. },
  815. },
  816. /* DES: ECB CBC and CFB are supported */
  817. { .name = "ecb(des)",
  818. .drv_name = "ecb-des",
  819. .block_size = DES_BLOCK_SIZE,
  820. .enc_type = (ENC_TYPE_ALG_DES |
  821. ENC_TYPE_CHAINING_ECB),
  822. .ablkcipher = {
  823. .min_keysize = DES_KEY_SIZE,
  824. .max_keysize = DES_KEY_SIZE,
  825. .setkey = n2_des_setkey,
  826. .encrypt = n2_encrypt_ecb,
  827. .decrypt = n2_decrypt_ecb,
  828. },
  829. },
  830. { .name = "cbc(des)",
  831. .drv_name = "cbc-des",
  832. .block_size = DES_BLOCK_SIZE,
  833. .enc_type = (ENC_TYPE_ALG_DES |
  834. ENC_TYPE_CHAINING_CBC),
  835. .ablkcipher = {
  836. .ivsize = DES_BLOCK_SIZE,
  837. .min_keysize = DES_KEY_SIZE,
  838. .max_keysize = DES_KEY_SIZE,
  839. .setkey = n2_des_setkey,
  840. .encrypt = n2_encrypt_chaining,
  841. .decrypt = n2_decrypt_chaining,
  842. },
  843. },
  844. { .name = "cfb(des)",
  845. .drv_name = "cfb-des",
  846. .block_size = DES_BLOCK_SIZE,
  847. .enc_type = (ENC_TYPE_ALG_DES |
  848. ENC_TYPE_CHAINING_CFB),
  849. .ablkcipher = {
  850. .min_keysize = DES_KEY_SIZE,
  851. .max_keysize = DES_KEY_SIZE,
  852. .setkey = n2_des_setkey,
  853. .encrypt = n2_encrypt_chaining,
  854. .decrypt = n2_decrypt_chaining,
  855. },
  856. },
  857. /* 3DES: ECB CBC and CFB are supported */
  858. { .name = "ecb(des3_ede)",
  859. .drv_name = "ecb-3des",
  860. .block_size = DES_BLOCK_SIZE,
  861. .enc_type = (ENC_TYPE_ALG_3DES |
  862. ENC_TYPE_CHAINING_ECB),
  863. .ablkcipher = {
  864. .min_keysize = 3 * DES_KEY_SIZE,
  865. .max_keysize = 3 * DES_KEY_SIZE,
  866. .setkey = n2_3des_setkey,
  867. .encrypt = n2_encrypt_ecb,
  868. .decrypt = n2_decrypt_ecb,
  869. },
  870. },
  871. { .name = "cbc(des3_ede)",
  872. .drv_name = "cbc-3des",
  873. .block_size = DES_BLOCK_SIZE,
  874. .enc_type = (ENC_TYPE_ALG_3DES |
  875. ENC_TYPE_CHAINING_CBC),
  876. .ablkcipher = {
  877. .ivsize = DES_BLOCK_SIZE,
  878. .min_keysize = 3 * DES_KEY_SIZE,
  879. .max_keysize = 3 * DES_KEY_SIZE,
  880. .setkey = n2_3des_setkey,
  881. .encrypt = n2_encrypt_chaining,
  882. .decrypt = n2_decrypt_chaining,
  883. },
  884. },
  885. { .name = "cfb(des3_ede)",
  886. .drv_name = "cfb-3des",
  887. .block_size = DES_BLOCK_SIZE,
  888. .enc_type = (ENC_TYPE_ALG_3DES |
  889. ENC_TYPE_CHAINING_CFB),
  890. .ablkcipher = {
  891. .min_keysize = 3 * DES_KEY_SIZE,
  892. .max_keysize = 3 * DES_KEY_SIZE,
  893. .setkey = n2_3des_setkey,
  894. .encrypt = n2_encrypt_chaining,
  895. .decrypt = n2_decrypt_chaining,
  896. },
  897. },
  898. /* AES: ECB CBC and CTR are supported */
  899. { .name = "ecb(aes)",
  900. .drv_name = "ecb-aes",
  901. .block_size = AES_BLOCK_SIZE,
  902. .enc_type = (ENC_TYPE_ALG_AES128 |
  903. ENC_TYPE_CHAINING_ECB),
  904. .ablkcipher = {
  905. .min_keysize = AES_MIN_KEY_SIZE,
  906. .max_keysize = AES_MAX_KEY_SIZE,
  907. .setkey = n2_aes_setkey,
  908. .encrypt = n2_encrypt_ecb,
  909. .decrypt = n2_decrypt_ecb,
  910. },
  911. },
  912. { .name = "cbc(aes)",
  913. .drv_name = "cbc-aes",
  914. .block_size = AES_BLOCK_SIZE,
  915. .enc_type = (ENC_TYPE_ALG_AES128 |
  916. ENC_TYPE_CHAINING_CBC),
  917. .ablkcipher = {
  918. .ivsize = AES_BLOCK_SIZE,
  919. .min_keysize = AES_MIN_KEY_SIZE,
  920. .max_keysize = AES_MAX_KEY_SIZE,
  921. .setkey = n2_aes_setkey,
  922. .encrypt = n2_encrypt_chaining,
  923. .decrypt = n2_decrypt_chaining,
  924. },
  925. },
  926. { .name = "ctr(aes)",
  927. .drv_name = "ctr-aes",
  928. .block_size = AES_BLOCK_SIZE,
  929. .enc_type = (ENC_TYPE_ALG_AES128 |
  930. ENC_TYPE_CHAINING_COUNTER),
  931. .ablkcipher = {
  932. .ivsize = AES_BLOCK_SIZE,
  933. .min_keysize = AES_MIN_KEY_SIZE,
  934. .max_keysize = AES_MAX_KEY_SIZE,
  935. .setkey = n2_aes_setkey,
  936. .encrypt = n2_encrypt_chaining,
  937. .decrypt = n2_encrypt_chaining,
  938. },
  939. },
  940. };
  941. #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
  942. static LIST_HEAD(cipher_algs);
  943. struct n2_hash_tmpl {
  944. const char *name;
  945. const char *hash_zero;
  946. const u32 *hash_init;
  947. u8 hw_op_hashsz;
  948. u8 digest_size;
  949. u8 block_size;
  950. u8 auth_type;
  951. };
  952. static const char md5_zero[MD5_DIGEST_SIZE] = {
  953. 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
  954. 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
  955. };
  956. static const u32 md5_init[MD5_HASH_WORDS] = {
  957. cpu_to_le32(0x67452301),
  958. cpu_to_le32(0xefcdab89),
  959. cpu_to_le32(0x98badcfe),
  960. cpu_to_le32(0x10325476),
  961. };
  962. static const char sha1_zero[SHA1_DIGEST_SIZE] = {
  963. 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32,
  964. 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8,
  965. 0x07, 0x09
  966. };
  967. static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
  968. SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
  969. };
  970. static const char sha256_zero[SHA256_DIGEST_SIZE] = {
  971. 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a,
  972. 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae,
  973. 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99,
  974. 0x1b, 0x78, 0x52, 0xb8, 0x55
  975. };
  976. static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
  977. SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
  978. SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
  979. };
  980. static const char sha224_zero[SHA224_DIGEST_SIZE] = {
  981. 0xd1, 0x4a, 0x02, 0x8c, 0x2a, 0x3a, 0x2b, 0xc9, 0x47,
  982. 0x61, 0x02, 0xbb, 0x28, 0x82, 0x34, 0xc4, 0x15, 0xa2,
  983. 0xb0, 0x1f, 0x82, 0x8e, 0xa6, 0x2a, 0xc5, 0xb3, 0xe4,
  984. 0x2f
  985. };
  986. static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
  987. SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
  988. SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
  989. };
  990. static const struct n2_hash_tmpl hash_tmpls[] = {
  991. { .name = "md5",
  992. .hash_zero = md5_zero,
  993. .hash_init = md5_init,
  994. .auth_type = AUTH_TYPE_MD5,
  995. .hw_op_hashsz = MD5_DIGEST_SIZE,
  996. .digest_size = MD5_DIGEST_SIZE,
  997. .block_size = MD5_HMAC_BLOCK_SIZE },
  998. { .name = "sha1",
  999. .hash_zero = sha1_zero,
  1000. .hash_init = sha1_init,
  1001. .auth_type = AUTH_TYPE_SHA1,
  1002. .hw_op_hashsz = SHA1_DIGEST_SIZE,
  1003. .digest_size = SHA1_DIGEST_SIZE,
  1004. .block_size = SHA1_BLOCK_SIZE },
  1005. { .name = "sha256",
  1006. .hash_zero = sha256_zero,
  1007. .hash_init = sha256_init,
  1008. .auth_type = AUTH_TYPE_SHA256,
  1009. .hw_op_hashsz = SHA256_DIGEST_SIZE,
  1010. .digest_size = SHA256_DIGEST_SIZE,
  1011. .block_size = SHA256_BLOCK_SIZE },
  1012. { .name = "sha224",
  1013. .hash_zero = sha224_zero,
  1014. .hash_init = sha224_init,
  1015. .auth_type = AUTH_TYPE_SHA256,
  1016. .hw_op_hashsz = SHA256_DIGEST_SIZE,
  1017. .digest_size = SHA224_DIGEST_SIZE,
  1018. .block_size = SHA224_BLOCK_SIZE },
  1019. };
  1020. #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
  1021. static LIST_HEAD(ahash_algs);
  1022. static int algs_registered;
  1023. static void __n2_unregister_algs(void)
  1024. {
  1025. struct n2_cipher_alg *cipher, *cipher_tmp;
  1026. struct n2_ahash_alg *alg, *alg_tmp;
  1027. list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
  1028. crypto_unregister_alg(&cipher->alg);
  1029. list_del(&cipher->entry);
  1030. kfree(cipher);
  1031. }
  1032. list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
  1033. crypto_unregister_ahash(&alg->alg);
  1034. list_del(&alg->entry);
  1035. kfree(alg);
  1036. }
  1037. }
  1038. static int n2_cipher_cra_init(struct crypto_tfm *tfm)
  1039. {
  1040. tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
  1041. return 0;
  1042. }
  1043. static int __devinit __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
  1044. {
  1045. struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
  1046. struct crypto_alg *alg;
  1047. int err;
  1048. if (!p)
  1049. return -ENOMEM;
  1050. alg = &p->alg;
  1051. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
  1052. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
  1053. alg->cra_priority = N2_CRA_PRIORITY;
  1054. alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
  1055. alg->cra_blocksize = tmpl->block_size;
  1056. p->enc_type = tmpl->enc_type;
  1057. alg->cra_ctxsize = sizeof(struct n2_cipher_context);
  1058. alg->cra_type = &crypto_ablkcipher_type;
  1059. alg->cra_u.ablkcipher = tmpl->ablkcipher;
  1060. alg->cra_init = n2_cipher_cra_init;
  1061. alg->cra_module = THIS_MODULE;
  1062. list_add(&p->entry, &cipher_algs);
  1063. err = crypto_register_alg(alg);
  1064. if (err) {
  1065. pr_err("%s alg registration failed\n", alg->cra_name);
  1066. list_del(&p->entry);
  1067. kfree(p);
  1068. } else {
  1069. pr_info("%s alg registered\n", alg->cra_name);
  1070. }
  1071. return err;
  1072. }
  1073. static int __devinit __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
  1074. {
  1075. struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
  1076. struct hash_alg_common *halg;
  1077. struct crypto_alg *base;
  1078. struct ahash_alg *ahash;
  1079. int err;
  1080. if (!p)
  1081. return -ENOMEM;
  1082. p->hash_zero = tmpl->hash_zero;
  1083. p->hash_init = tmpl->hash_init;
  1084. p->auth_type = tmpl->auth_type;
  1085. p->hw_op_hashsz = tmpl->hw_op_hashsz;
  1086. p->digest_size = tmpl->digest_size;
  1087. ahash = &p->alg;
  1088. ahash->init = n2_hash_async_init;
  1089. ahash->update = n2_hash_async_update;
  1090. ahash->final = n2_hash_async_final;
  1091. ahash->finup = n2_hash_async_finup;
  1092. ahash->digest = n2_hash_async_digest;
  1093. halg = &ahash->halg;
  1094. halg->digestsize = tmpl->digest_size;
  1095. base = &halg->base;
  1096. snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
  1097. snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
  1098. base->cra_priority = N2_CRA_PRIORITY;
  1099. base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_NEED_FALLBACK;
  1100. base->cra_blocksize = tmpl->block_size;
  1101. base->cra_ctxsize = sizeof(struct n2_hash_ctx);
  1102. base->cra_module = THIS_MODULE;
  1103. base->cra_init = n2_hash_cra_init;
  1104. base->cra_exit = n2_hash_cra_exit;
  1105. list_add(&p->entry, &ahash_algs);
  1106. err = crypto_register_ahash(ahash);
  1107. if (err) {
  1108. pr_err("%s alg registration failed\n", base->cra_name);
  1109. list_del(&p->entry);
  1110. kfree(p);
  1111. } else {
  1112. pr_info("%s alg registered\n", base->cra_name);
  1113. }
  1114. return err;
  1115. }
  1116. static int __devinit n2_register_algs(void)
  1117. {
  1118. int i, err = 0;
  1119. mutex_lock(&spu_lock);
  1120. if (algs_registered++)
  1121. goto out;
  1122. for (i = 0; i < NUM_HASH_TMPLS; i++) {
  1123. err = __n2_register_one_ahash(&hash_tmpls[i]);
  1124. if (err) {
  1125. __n2_unregister_algs();
  1126. goto out;
  1127. }
  1128. }
  1129. for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
  1130. err = __n2_register_one_cipher(&cipher_tmpls[i]);
  1131. if (err) {
  1132. __n2_unregister_algs();
  1133. goto out;
  1134. }
  1135. }
  1136. out:
  1137. mutex_unlock(&spu_lock);
  1138. return err;
  1139. }
  1140. static void __exit n2_unregister_algs(void)
  1141. {
  1142. mutex_lock(&spu_lock);
  1143. if (!--algs_registered)
  1144. __n2_unregister_algs();
  1145. mutex_unlock(&spu_lock);
  1146. }
  1147. /* To map CWQ queues to interrupt sources, the hypervisor API provides
  1148. * a devino. This isn't very useful to us because all of the
  1149. * interrupts listed in the of_device node have been translated to
  1150. * Linux virtual IRQ cookie numbers.
  1151. *
  1152. * So we have to back-translate, going through the 'intr' and 'ino'
  1153. * property tables of the n2cp MDESC node, matching it with the OF
  1154. * 'interrupts' property entries, in order to to figure out which
  1155. * devino goes to which already-translated IRQ.
  1156. */
  1157. static int find_devino_index(struct of_device *dev, struct spu_mdesc_info *ip,
  1158. unsigned long dev_ino)
  1159. {
  1160. const unsigned int *dev_intrs;
  1161. unsigned int intr;
  1162. int i;
  1163. for (i = 0; i < ip->num_intrs; i++) {
  1164. if (ip->ino_table[i].ino == dev_ino)
  1165. break;
  1166. }
  1167. if (i == ip->num_intrs)
  1168. return -ENODEV;
  1169. intr = ip->ino_table[i].intr;
  1170. dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
  1171. if (!dev_intrs)
  1172. return -ENODEV;
  1173. for (i = 0; i < dev->num_irqs; i++) {
  1174. if (dev_intrs[i] == intr)
  1175. return i;
  1176. }
  1177. return -ENODEV;
  1178. }
  1179. static int spu_map_ino(struct of_device *dev, struct spu_mdesc_info *ip,
  1180. const char *irq_name, struct spu_queue *p,
  1181. irq_handler_t handler)
  1182. {
  1183. unsigned long herr;
  1184. int index;
  1185. herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
  1186. if (herr)
  1187. return -EINVAL;
  1188. index = find_devino_index(dev, ip, p->devino);
  1189. if (index < 0)
  1190. return index;
  1191. p->irq = dev->irqs[index];
  1192. sprintf(p->irq_name, "%s-%d", irq_name, index);
  1193. return request_irq(p->irq, handler, IRQF_SAMPLE_RANDOM,
  1194. p->irq_name, p);
  1195. }
  1196. static struct kmem_cache *queue_cache[2];
  1197. static void *new_queue(unsigned long q_type)
  1198. {
  1199. return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
  1200. }
  1201. static void free_queue(void *p, unsigned long q_type)
  1202. {
  1203. return kmem_cache_free(queue_cache[q_type - 1], p);
  1204. }
  1205. static int queue_cache_init(void)
  1206. {
  1207. if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
  1208. queue_cache[HV_NCS_QTYPE_MAU - 1] =
  1209. kmem_cache_create("mau_queue",
  1210. (MAU_NUM_ENTRIES *
  1211. MAU_ENTRY_SIZE),
  1212. MAU_ENTRY_SIZE, 0, NULL);
  1213. if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
  1214. return -ENOMEM;
  1215. if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
  1216. queue_cache[HV_NCS_QTYPE_CWQ - 1] =
  1217. kmem_cache_create("cwq_queue",
  1218. (CWQ_NUM_ENTRIES *
  1219. CWQ_ENTRY_SIZE),
  1220. CWQ_ENTRY_SIZE, 0, NULL);
  1221. if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
  1222. kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
  1223. return -ENOMEM;
  1224. }
  1225. return 0;
  1226. }
  1227. static void queue_cache_destroy(void)
  1228. {
  1229. kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
  1230. kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
  1231. }
  1232. static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
  1233. {
  1234. cpumask_var_t old_allowed;
  1235. unsigned long hv_ret;
  1236. if (cpumask_empty(&p->sharing))
  1237. return -EINVAL;
  1238. if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
  1239. return -ENOMEM;
  1240. cpumask_copy(old_allowed, &current->cpus_allowed);
  1241. set_cpus_allowed_ptr(current, &p->sharing);
  1242. hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
  1243. CWQ_NUM_ENTRIES, &p->qhandle);
  1244. if (!hv_ret)
  1245. sun4v_ncs_sethead_marker(p->qhandle, 0);
  1246. set_cpus_allowed_ptr(current, old_allowed);
  1247. free_cpumask_var(old_allowed);
  1248. return (hv_ret ? -EINVAL : 0);
  1249. }
  1250. static int spu_queue_setup(struct spu_queue *p)
  1251. {
  1252. int err;
  1253. p->q = new_queue(p->q_type);
  1254. if (!p->q)
  1255. return -ENOMEM;
  1256. err = spu_queue_register(p, p->q_type);
  1257. if (err) {
  1258. free_queue(p->q, p->q_type);
  1259. p->q = NULL;
  1260. }
  1261. return err;
  1262. }
  1263. static void spu_queue_destroy(struct spu_queue *p)
  1264. {
  1265. unsigned long hv_ret;
  1266. if (!p->q)
  1267. return;
  1268. hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
  1269. if (!hv_ret)
  1270. free_queue(p->q, p->q_type);
  1271. }
  1272. static void spu_list_destroy(struct list_head *list)
  1273. {
  1274. struct spu_queue *p, *n;
  1275. list_for_each_entry_safe(p, n, list, list) {
  1276. int i;
  1277. for (i = 0; i < NR_CPUS; i++) {
  1278. if (cpu_to_cwq[i] == p)
  1279. cpu_to_cwq[i] = NULL;
  1280. }
  1281. if (p->irq) {
  1282. free_irq(p->irq, p);
  1283. p->irq = 0;
  1284. }
  1285. spu_queue_destroy(p);
  1286. list_del(&p->list);
  1287. kfree(p);
  1288. }
  1289. }
  1290. /* Walk the backward arcs of a CWQ 'exec-unit' node,
  1291. * gathering cpu membership information.
  1292. */
  1293. static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
  1294. struct of_device *dev,
  1295. u64 node, struct spu_queue *p,
  1296. struct spu_queue **table)
  1297. {
  1298. u64 arc;
  1299. mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
  1300. u64 tgt = mdesc_arc_target(mdesc, arc);
  1301. const char *name = mdesc_node_name(mdesc, tgt);
  1302. const u64 *id;
  1303. if (strcmp(name, "cpu"))
  1304. continue;
  1305. id = mdesc_get_property(mdesc, tgt, "id", NULL);
  1306. if (table[*id] != NULL) {
  1307. dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
  1308. dev->dev.of_node->full_name);
  1309. return -EINVAL;
  1310. }
  1311. cpu_set(*id, p->sharing);
  1312. table[*id] = p;
  1313. }
  1314. return 0;
  1315. }
  1316. /* Process an 'exec-unit' MDESC node of type 'cwq'. */
  1317. static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
  1318. struct of_device *dev, struct mdesc_handle *mdesc,
  1319. u64 node, const char *iname, unsigned long q_type,
  1320. irq_handler_t handler, struct spu_queue **table)
  1321. {
  1322. struct spu_queue *p;
  1323. int err;
  1324. p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
  1325. if (!p) {
  1326. dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
  1327. dev->dev.of_node->full_name);
  1328. return -ENOMEM;
  1329. }
  1330. cpus_clear(p->sharing);
  1331. spin_lock_init(&p->lock);
  1332. p->q_type = q_type;
  1333. INIT_LIST_HEAD(&p->jobs);
  1334. list_add(&p->list, list);
  1335. err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
  1336. if (err)
  1337. return err;
  1338. err = spu_queue_setup(p);
  1339. if (err)
  1340. return err;
  1341. return spu_map_ino(dev, ip, iname, p, handler);
  1342. }
  1343. static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct of_device *dev,
  1344. struct spu_mdesc_info *ip, struct list_head *list,
  1345. const char *exec_name, unsigned long q_type,
  1346. irq_handler_t handler, struct spu_queue **table)
  1347. {
  1348. int err = 0;
  1349. u64 node;
  1350. mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
  1351. const char *type;
  1352. type = mdesc_get_property(mdesc, node, "type", NULL);
  1353. if (!type || strcmp(type, exec_name))
  1354. continue;
  1355. err = handle_exec_unit(ip, list, dev, mdesc, node,
  1356. exec_name, q_type, handler, table);
  1357. if (err) {
  1358. spu_list_destroy(list);
  1359. break;
  1360. }
  1361. }
  1362. return err;
  1363. }
  1364. static int __devinit get_irq_props(struct mdesc_handle *mdesc, u64 node,
  1365. struct spu_mdesc_info *ip)
  1366. {
  1367. const u64 *intr, *ino;
  1368. int intr_len, ino_len;
  1369. int i;
  1370. intr = mdesc_get_property(mdesc, node, "intr", &intr_len);
  1371. if (!intr)
  1372. return -ENODEV;
  1373. ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
  1374. if (!intr)
  1375. return -ENODEV;
  1376. if (intr_len != ino_len)
  1377. return -EINVAL;
  1378. ip->num_intrs = intr_len / sizeof(u64);
  1379. ip->ino_table = kzalloc((sizeof(struct ino_blob) *
  1380. ip->num_intrs),
  1381. GFP_KERNEL);
  1382. if (!ip->ino_table)
  1383. return -ENOMEM;
  1384. for (i = 0; i < ip->num_intrs; i++) {
  1385. struct ino_blob *b = &ip->ino_table[i];
  1386. b->intr = intr[i];
  1387. b->ino = ino[i];
  1388. }
  1389. return 0;
  1390. }
  1391. static int __devinit grab_mdesc_irq_props(struct mdesc_handle *mdesc,
  1392. struct of_device *dev,
  1393. struct spu_mdesc_info *ip,
  1394. const char *node_name)
  1395. {
  1396. const unsigned int *reg;
  1397. u64 node;
  1398. reg = of_get_property(dev->dev.of_node, "reg", NULL);
  1399. if (!reg)
  1400. return -ENODEV;
  1401. mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
  1402. const char *name;
  1403. const u64 *chdl;
  1404. name = mdesc_get_property(mdesc, node, "name", NULL);
  1405. if (!name || strcmp(name, node_name))
  1406. continue;
  1407. chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
  1408. if (!chdl || (*chdl != *reg))
  1409. continue;
  1410. ip->cfg_handle = *chdl;
  1411. return get_irq_props(mdesc, node, ip);
  1412. }
  1413. return -ENODEV;
  1414. }
  1415. static unsigned long n2_spu_hvapi_major;
  1416. static unsigned long n2_spu_hvapi_minor;
  1417. static int __devinit n2_spu_hvapi_register(void)
  1418. {
  1419. int err;
  1420. n2_spu_hvapi_major = 2;
  1421. n2_spu_hvapi_minor = 0;
  1422. err = sun4v_hvapi_register(HV_GRP_NCS,
  1423. n2_spu_hvapi_major,
  1424. &n2_spu_hvapi_minor);
  1425. if (!err)
  1426. pr_info("Registered NCS HVAPI version %lu.%lu\n",
  1427. n2_spu_hvapi_major,
  1428. n2_spu_hvapi_minor);
  1429. return err;
  1430. }
  1431. static void n2_spu_hvapi_unregister(void)
  1432. {
  1433. sun4v_hvapi_unregister(HV_GRP_NCS);
  1434. }
  1435. static int global_ref;
  1436. static int __devinit grab_global_resources(void)
  1437. {
  1438. int err = 0;
  1439. mutex_lock(&spu_lock);
  1440. if (global_ref++)
  1441. goto out;
  1442. err = n2_spu_hvapi_register();
  1443. if (err)
  1444. goto out;
  1445. err = queue_cache_init();
  1446. if (err)
  1447. goto out_hvapi_release;
  1448. err = -ENOMEM;
  1449. cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
  1450. GFP_KERNEL);
  1451. if (!cpu_to_cwq)
  1452. goto out_queue_cache_destroy;
  1453. cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
  1454. GFP_KERNEL);
  1455. if (!cpu_to_mau)
  1456. goto out_free_cwq_table;
  1457. err = 0;
  1458. out:
  1459. if (err)
  1460. global_ref--;
  1461. mutex_unlock(&spu_lock);
  1462. return err;
  1463. out_free_cwq_table:
  1464. kfree(cpu_to_cwq);
  1465. cpu_to_cwq = NULL;
  1466. out_queue_cache_destroy:
  1467. queue_cache_destroy();
  1468. out_hvapi_release:
  1469. n2_spu_hvapi_unregister();
  1470. goto out;
  1471. }
  1472. static void release_global_resources(void)
  1473. {
  1474. mutex_lock(&spu_lock);
  1475. if (!--global_ref) {
  1476. kfree(cpu_to_cwq);
  1477. cpu_to_cwq = NULL;
  1478. kfree(cpu_to_mau);
  1479. cpu_to_mau = NULL;
  1480. queue_cache_destroy();
  1481. n2_spu_hvapi_unregister();
  1482. }
  1483. mutex_unlock(&spu_lock);
  1484. }
  1485. static struct n2_crypto * __devinit alloc_n2cp(void)
  1486. {
  1487. struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
  1488. if (np)
  1489. INIT_LIST_HEAD(&np->cwq_list);
  1490. return np;
  1491. }
  1492. static void free_n2cp(struct n2_crypto *np)
  1493. {
  1494. if (np->cwq_info.ino_table) {
  1495. kfree(np->cwq_info.ino_table);
  1496. np->cwq_info.ino_table = NULL;
  1497. }
  1498. kfree(np);
  1499. }
  1500. static void __devinit n2_spu_driver_version(void)
  1501. {
  1502. static int n2_spu_version_printed;
  1503. if (n2_spu_version_printed++ == 0)
  1504. pr_info("%s", version);
  1505. }
  1506. static int __devinit n2_crypto_probe(struct of_device *dev,
  1507. const struct of_device_id *match)
  1508. {
  1509. struct mdesc_handle *mdesc;
  1510. const char *full_name;
  1511. struct n2_crypto *np;
  1512. int err;
  1513. n2_spu_driver_version();
  1514. full_name = dev->dev.of_node->full_name;
  1515. pr_info("Found N2CP at %s\n", full_name);
  1516. np = alloc_n2cp();
  1517. if (!np) {
  1518. dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
  1519. full_name);
  1520. return -ENOMEM;
  1521. }
  1522. err = grab_global_resources();
  1523. if (err) {
  1524. dev_err(&dev->dev, "%s: Unable to grab "
  1525. "global resources.\n", full_name);
  1526. goto out_free_n2cp;
  1527. }
  1528. mdesc = mdesc_grab();
  1529. if (!mdesc) {
  1530. dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
  1531. full_name);
  1532. err = -ENODEV;
  1533. goto out_free_global;
  1534. }
  1535. err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
  1536. if (err) {
  1537. dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
  1538. full_name);
  1539. mdesc_release(mdesc);
  1540. goto out_free_global;
  1541. }
  1542. err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
  1543. "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
  1544. cpu_to_cwq);
  1545. mdesc_release(mdesc);
  1546. if (err) {
  1547. dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
  1548. full_name);
  1549. goto out_free_global;
  1550. }
  1551. err = n2_register_algs();
  1552. if (err) {
  1553. dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
  1554. full_name);
  1555. goto out_free_spu_list;
  1556. }
  1557. dev_set_drvdata(&dev->dev, np);
  1558. return 0;
  1559. out_free_spu_list:
  1560. spu_list_destroy(&np->cwq_list);
  1561. out_free_global:
  1562. release_global_resources();
  1563. out_free_n2cp:
  1564. free_n2cp(np);
  1565. return err;
  1566. }
  1567. static int __devexit n2_crypto_remove(struct of_device *dev)
  1568. {
  1569. struct n2_crypto *np = dev_get_drvdata(&dev->dev);
  1570. n2_unregister_algs();
  1571. spu_list_destroy(&np->cwq_list);
  1572. release_global_resources();
  1573. free_n2cp(np);
  1574. return 0;
  1575. }
  1576. static struct n2_mau * __devinit alloc_ncp(void)
  1577. {
  1578. struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
  1579. if (mp)
  1580. INIT_LIST_HEAD(&mp->mau_list);
  1581. return mp;
  1582. }
  1583. static void free_ncp(struct n2_mau *mp)
  1584. {
  1585. if (mp->mau_info.ino_table) {
  1586. kfree(mp->mau_info.ino_table);
  1587. mp->mau_info.ino_table = NULL;
  1588. }
  1589. kfree(mp);
  1590. }
  1591. static int __devinit n2_mau_probe(struct of_device *dev,
  1592. const struct of_device_id *match)
  1593. {
  1594. struct mdesc_handle *mdesc;
  1595. const char *full_name;
  1596. struct n2_mau *mp;
  1597. int err;
  1598. n2_spu_driver_version();
  1599. full_name = dev->dev.of_node->full_name;
  1600. pr_info("Found NCP at %s\n", full_name);
  1601. mp = alloc_ncp();
  1602. if (!mp) {
  1603. dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
  1604. full_name);
  1605. return -ENOMEM;
  1606. }
  1607. err = grab_global_resources();
  1608. if (err) {
  1609. dev_err(&dev->dev, "%s: Unable to grab "
  1610. "global resources.\n", full_name);
  1611. goto out_free_ncp;
  1612. }
  1613. mdesc = mdesc_grab();
  1614. if (!mdesc) {
  1615. dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
  1616. full_name);
  1617. err = -ENODEV;
  1618. goto out_free_global;
  1619. }
  1620. err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
  1621. if (err) {
  1622. dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
  1623. full_name);
  1624. mdesc_release(mdesc);
  1625. goto out_free_global;
  1626. }
  1627. err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
  1628. "mau", HV_NCS_QTYPE_MAU, mau_intr,
  1629. cpu_to_mau);
  1630. mdesc_release(mdesc);
  1631. if (err) {
  1632. dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
  1633. full_name);
  1634. goto out_free_global;
  1635. }
  1636. dev_set_drvdata(&dev->dev, mp);
  1637. return 0;
  1638. out_free_global:
  1639. release_global_resources();
  1640. out_free_ncp:
  1641. free_ncp(mp);
  1642. return err;
  1643. }
  1644. static int __devexit n2_mau_remove(struct of_device *dev)
  1645. {
  1646. struct n2_mau *mp = dev_get_drvdata(&dev->dev);
  1647. spu_list_destroy(&mp->mau_list);
  1648. release_global_resources();
  1649. free_ncp(mp);
  1650. return 0;
  1651. }
  1652. static struct of_device_id n2_crypto_match[] = {
  1653. {
  1654. .name = "n2cp",
  1655. .compatible = "SUNW,n2-cwq",
  1656. },
  1657. {
  1658. .name = "n2cp",
  1659. .compatible = "SUNW,vf-cwq",
  1660. },
  1661. {},
  1662. };
  1663. MODULE_DEVICE_TABLE(of, n2_crypto_match);
  1664. static struct of_platform_driver n2_crypto_driver = {
  1665. .driver = {
  1666. .name = "n2cp",
  1667. .owner = THIS_MODULE,
  1668. .of_match_table = n2_crypto_match,
  1669. },
  1670. .probe = n2_crypto_probe,
  1671. .remove = __devexit_p(n2_crypto_remove),
  1672. };
  1673. static struct of_device_id n2_mau_match[] = {
  1674. {
  1675. .name = "ncp",
  1676. .compatible = "SUNW,n2-mau",
  1677. },
  1678. {
  1679. .name = "ncp",
  1680. .compatible = "SUNW,vf-mau",
  1681. },
  1682. {},
  1683. };
  1684. MODULE_DEVICE_TABLE(of, n2_mau_match);
  1685. static struct of_platform_driver n2_mau_driver = {
  1686. .driver = {
  1687. .name = "ncp",
  1688. .owner = THIS_MODULE,
  1689. .of_match_table = n2_mau_match,
  1690. },
  1691. .probe = n2_mau_probe,
  1692. .remove = __devexit_p(n2_mau_remove),
  1693. };
  1694. static int __init n2_init(void)
  1695. {
  1696. int err = of_register_driver(&n2_crypto_driver, &of_bus_type);
  1697. if (!err) {
  1698. err = of_register_driver(&n2_mau_driver, &of_bus_type);
  1699. if (err)
  1700. of_unregister_driver(&n2_crypto_driver);
  1701. }
  1702. return err;
  1703. }
  1704. static void __exit n2_exit(void)
  1705. {
  1706. of_unregister_driver(&n2_mau_driver);
  1707. of_unregister_driver(&n2_crypto_driver);
  1708. }
  1709. module_init(n2_init);
  1710. module_exit(n2_exit);