book3s_64_mmu_host.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. /*
  2. * Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
  3. *
  4. * Authors:
  5. * Alexander Graf <agraf@suse.de>
  6. * Kevin Wolf <mail@kevin-wolf.de>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License, version 2, as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  20. */
  21. #include <linux/kvm_host.h>
  22. #include <asm/kvm_ppc.h>
  23. #include <asm/kvm_book3s.h>
  24. #include <asm/mmu-hash64.h>
  25. #include <asm/machdep.h>
  26. #include <asm/mmu_context.h>
  27. #include <asm/hw_irq.h>
  28. #include "trace.h"
  29. #define PTE_SIZE 12
  30. void kvmppc_mmu_invalidate_pte(struct kvm_vcpu *vcpu, struct hpte_cache *pte)
  31. {
  32. ppc_md.hpte_invalidate(pte->slot, pte->host_vpn,
  33. pte->pagesize, pte->pagesize, MMU_SEGSIZE_256M,
  34. false);
  35. }
  36. /* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
  37. * a hash, so we don't waste cycles on looping */
  38. static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
  39. {
  40. return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
  41. ((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
  42. ((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
  43. ((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
  44. ((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
  45. ((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
  46. ((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
  47. ((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
  48. }
  49. static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
  50. {
  51. struct kvmppc_sid_map *map;
  52. u16 sid_map_mask;
  53. if (vcpu->arch.shared->msr & MSR_PR)
  54. gvsid |= VSID_PR;
  55. sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
  56. map = &to_book3s(vcpu)->sid_map[sid_map_mask];
  57. if (map->valid && (map->guest_vsid == gvsid)) {
  58. trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
  59. return map;
  60. }
  61. map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
  62. if (map->valid && (map->guest_vsid == gvsid)) {
  63. trace_kvm_book3s_slb_found(gvsid, map->host_vsid);
  64. return map;
  65. }
  66. trace_kvm_book3s_slb_fail(sid_map_mask, gvsid);
  67. return NULL;
  68. }
  69. int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte,
  70. bool iswrite)
  71. {
  72. unsigned long vpn;
  73. pfn_t hpaddr;
  74. ulong hash, hpteg;
  75. u64 vsid;
  76. int ret;
  77. int rflags = 0x192;
  78. int vflags = 0;
  79. int attempt = 0;
  80. struct kvmppc_sid_map *map;
  81. int r = 0;
  82. int hpsize = MMU_PAGE_4K;
  83. bool writable;
  84. unsigned long mmu_seq;
  85. struct kvm *kvm = vcpu->kvm;
  86. struct hpte_cache *cpte;
  87. unsigned long gfn = orig_pte->raddr >> PAGE_SHIFT;
  88. unsigned long pfn;
  89. /* used to check for invalidations in progress */
  90. mmu_seq = kvm->mmu_notifier_seq;
  91. smp_rmb();
  92. /* Get host physical address for gpa */
  93. pfn = kvmppc_gfn_to_pfn(vcpu, gfn, iswrite, &writable);
  94. if (is_error_noslot_pfn(pfn)) {
  95. printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", gfn);
  96. r = -EINVAL;
  97. goto out;
  98. }
  99. hpaddr = pfn << PAGE_SHIFT;
  100. /* and write the mapping ea -> hpa into the pt */
  101. vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
  102. map = find_sid_vsid(vcpu, vsid);
  103. if (!map) {
  104. ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
  105. WARN_ON(ret < 0);
  106. map = find_sid_vsid(vcpu, vsid);
  107. }
  108. if (!map) {
  109. printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
  110. vsid, orig_pte->eaddr);
  111. WARN_ON(true);
  112. r = -EINVAL;
  113. goto out;
  114. }
  115. vpn = hpt_vpn(orig_pte->eaddr, map->host_vsid, MMU_SEGSIZE_256M);
  116. kvm_set_pfn_accessed(pfn);
  117. if (!orig_pte->may_write || !writable)
  118. rflags |= PP_RXRX;
  119. else {
  120. mark_page_dirty(vcpu->kvm, gfn);
  121. kvm_set_pfn_dirty(pfn);
  122. }
  123. if (!orig_pte->may_execute)
  124. rflags |= HPTE_R_N;
  125. else
  126. kvmppc_mmu_flush_icache(pfn);
  127. /*
  128. * Use 64K pages if possible; otherwise, on 64K page kernels,
  129. * we need to transfer 4 more bits from guest real to host real addr.
  130. */
  131. if (vsid & VSID_64K)
  132. hpsize = MMU_PAGE_64K;
  133. else
  134. hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
  135. hash = hpt_hash(vpn, mmu_psize_defs[hpsize].shift, MMU_SEGSIZE_256M);
  136. cpte = kvmppc_mmu_hpte_cache_next(vcpu);
  137. spin_lock(&kvm->mmu_lock);
  138. if (!cpte || mmu_notifier_retry(kvm, mmu_seq)) {
  139. r = -EAGAIN;
  140. goto out_unlock;
  141. }
  142. map_again:
  143. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  144. /* In case we tried normal mapping already, let's nuke old entries */
  145. if (attempt > 1)
  146. if (ppc_md.hpte_remove(hpteg) < 0) {
  147. r = -1;
  148. goto out_unlock;
  149. }
  150. ret = ppc_md.hpte_insert(hpteg, vpn, hpaddr, rflags, vflags,
  151. hpsize, hpsize, MMU_SEGSIZE_256M);
  152. if (ret < 0) {
  153. /* If we couldn't map a primary PTE, try a secondary */
  154. hash = ~hash;
  155. vflags ^= HPTE_V_SECONDARY;
  156. attempt++;
  157. goto map_again;
  158. } else {
  159. trace_kvm_book3s_64_mmu_map(rflags, hpteg,
  160. vpn, hpaddr, orig_pte);
  161. /* The ppc_md code may give us a secondary entry even though we
  162. asked for a primary. Fix up. */
  163. if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
  164. hash = ~hash;
  165. hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
  166. }
  167. cpte->slot = hpteg + (ret & 7);
  168. cpte->host_vpn = vpn;
  169. cpte->pte = *orig_pte;
  170. cpte->pfn = pfn;
  171. cpte->pagesize = hpsize;
  172. kvmppc_mmu_hpte_cache_map(vcpu, cpte);
  173. cpte = NULL;
  174. }
  175. out_unlock:
  176. spin_unlock(&kvm->mmu_lock);
  177. kvm_release_pfn_clean(pfn);
  178. if (cpte)
  179. kvmppc_mmu_hpte_cache_free(cpte);
  180. out:
  181. return r;
  182. }
  183. void kvmppc_mmu_unmap_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
  184. {
  185. u64 mask = 0xfffffffffULL;
  186. u64 vsid;
  187. vcpu->arch.mmu.esid_to_vsid(vcpu, pte->eaddr >> SID_SHIFT, &vsid);
  188. if (vsid & VSID_64K)
  189. mask = 0xffffffff0ULL;
  190. kvmppc_mmu_pte_vflush(vcpu, pte->vpage, mask);
  191. }
  192. static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
  193. {
  194. struct kvmppc_sid_map *map;
  195. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  196. u16 sid_map_mask;
  197. static int backwards_map = 0;
  198. if (vcpu->arch.shared->msr & MSR_PR)
  199. gvsid |= VSID_PR;
  200. /* We might get collisions that trap in preceding order, so let's
  201. map them differently */
  202. sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
  203. if (backwards_map)
  204. sid_map_mask = SID_MAP_MASK - sid_map_mask;
  205. map = &to_book3s(vcpu)->sid_map[sid_map_mask];
  206. /* Make sure we're taking the other map next time */
  207. backwards_map = !backwards_map;
  208. /* Uh-oh ... out of mappings. Let's flush! */
  209. if (vcpu_book3s->proto_vsid_next == vcpu_book3s->proto_vsid_max) {
  210. vcpu_book3s->proto_vsid_next = vcpu_book3s->proto_vsid_first;
  211. memset(vcpu_book3s->sid_map, 0,
  212. sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
  213. kvmppc_mmu_pte_flush(vcpu, 0, 0);
  214. kvmppc_mmu_flush_segments(vcpu);
  215. }
  216. map->host_vsid = vsid_scramble(vcpu_book3s->proto_vsid_next++, 256M);
  217. map->guest_vsid = gvsid;
  218. map->valid = true;
  219. trace_kvm_book3s_slb_map(sid_map_mask, gvsid, map->host_vsid);
  220. return map;
  221. }
  222. static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
  223. {
  224. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  225. int i;
  226. int max_slb_size = 64;
  227. int found_inval = -1;
  228. int r;
  229. if (!svcpu->slb_max)
  230. svcpu->slb_max = 1;
  231. /* Are we overwriting? */
  232. for (i = 1; i < svcpu->slb_max; i++) {
  233. if (!(svcpu->slb[i].esid & SLB_ESID_V))
  234. found_inval = i;
  235. else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
  236. r = i;
  237. goto out;
  238. }
  239. }
  240. /* Found a spare entry that was invalidated before */
  241. if (found_inval > 0) {
  242. r = found_inval;
  243. goto out;
  244. }
  245. /* No spare invalid entry, so create one */
  246. if (mmu_slb_size < 64)
  247. max_slb_size = mmu_slb_size;
  248. /* Overflowing -> purge */
  249. if ((svcpu->slb_max) == max_slb_size)
  250. kvmppc_mmu_flush_segments(vcpu);
  251. r = svcpu->slb_max;
  252. svcpu->slb_max++;
  253. out:
  254. svcpu_put(svcpu);
  255. return r;
  256. }
  257. int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
  258. {
  259. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  260. u64 esid = eaddr >> SID_SHIFT;
  261. u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
  262. u64 slb_vsid = SLB_VSID_USER;
  263. u64 gvsid;
  264. int slb_index;
  265. struct kvmppc_sid_map *map;
  266. int r = 0;
  267. slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
  268. if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
  269. /* Invalidate an entry */
  270. svcpu->slb[slb_index].esid = 0;
  271. r = -ENOENT;
  272. goto out;
  273. }
  274. map = find_sid_vsid(vcpu, gvsid);
  275. if (!map)
  276. map = create_sid_map(vcpu, gvsid);
  277. map->guest_esid = esid;
  278. slb_vsid |= (map->host_vsid << 12);
  279. slb_vsid &= ~SLB_VSID_KP;
  280. slb_esid |= slb_index;
  281. #ifdef CONFIG_PPC_64K_PAGES
  282. /* Set host segment base page size to 64K if possible */
  283. if (gvsid & VSID_64K)
  284. slb_vsid |= mmu_psize_defs[MMU_PAGE_64K].sllp;
  285. #endif
  286. svcpu->slb[slb_index].esid = slb_esid;
  287. svcpu->slb[slb_index].vsid = slb_vsid;
  288. trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
  289. out:
  290. svcpu_put(svcpu);
  291. return r;
  292. }
  293. void kvmppc_mmu_flush_segment(struct kvm_vcpu *vcpu, ulong ea, ulong seg_size)
  294. {
  295. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  296. ulong seg_mask = -seg_size;
  297. int i;
  298. for (i = 1; i < svcpu->slb_max; i++) {
  299. if ((svcpu->slb[i].esid & SLB_ESID_V) &&
  300. (svcpu->slb[i].esid & seg_mask) == ea) {
  301. /* Invalidate this entry */
  302. svcpu->slb[i].esid = 0;
  303. }
  304. }
  305. svcpu_put(svcpu);
  306. }
  307. void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
  308. {
  309. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  310. svcpu->slb_max = 1;
  311. svcpu->slb[0].esid = 0;
  312. svcpu_put(svcpu);
  313. }
  314. void kvmppc_mmu_destroy_pr(struct kvm_vcpu *vcpu)
  315. {
  316. kvmppc_mmu_hpte_destroy(vcpu);
  317. __destroy_context(to_book3s(vcpu)->context_id[0]);
  318. }
  319. int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
  320. {
  321. struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
  322. int err;
  323. err = __init_new_context();
  324. if (err < 0)
  325. return -1;
  326. vcpu3s->context_id[0] = err;
  327. vcpu3s->proto_vsid_max = ((u64)(vcpu3s->context_id[0] + 1)
  328. << ESID_BITS) - 1;
  329. vcpu3s->proto_vsid_first = (u64)vcpu3s->context_id[0] << ESID_BITS;
  330. vcpu3s->proto_vsid_next = vcpu3s->proto_vsid_first;
  331. kvmppc_mmu_hpte_init(vcpu);
  332. return 0;
  333. }