enlighten.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <linux/console.h>
  28. #include <xen/interface/xen.h>
  29. #include <xen/interface/physdev.h>
  30. #include <xen/interface/vcpu.h>
  31. #include <xen/interface/sched.h>
  32. #include <xen/features.h>
  33. #include <xen/page.h>
  34. #include <xen/hvc-console.h>
  35. #include <asm/paravirt.h>
  36. #include <asm/page.h>
  37. #include <asm/xen/hypercall.h>
  38. #include <asm/xen/hypervisor.h>
  39. #include <asm/fixmap.h>
  40. #include <asm/processor.h>
  41. #include <asm/setup.h>
  42. #include <asm/desc.h>
  43. #include <asm/pgtable.h>
  44. #include <asm/tlbflush.h>
  45. #include <asm/reboot.h>
  46. #include <asm/pgalloc.h>
  47. #include "xen-ops.h"
  48. #include "mmu.h"
  49. #include "multicalls.h"
  50. EXPORT_SYMBOL_GPL(hypercall_page);
  51. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  52. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  53. /*
  54. * Note about cr3 (pagetable base) values:
  55. *
  56. * xen_cr3 contains the current logical cr3 value; it contains the
  57. * last set cr3. This may not be the current effective cr3, because
  58. * its update may be being lazily deferred. However, a vcpu looking
  59. * at its own cr3 can use this value knowing that it everything will
  60. * be self-consistent.
  61. *
  62. * xen_current_cr3 contains the actual vcpu cr3; it is set once the
  63. * hypercall to set the vcpu cr3 is complete (so it may be a little
  64. * out of date, but it will never be set early). If one vcpu is
  65. * looking at another vcpu's cr3 value, it should use this variable.
  66. */
  67. DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
  68. DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
  69. struct start_info *xen_start_info;
  70. EXPORT_SYMBOL_GPL(xen_start_info);
  71. struct shared_info xen_dummy_shared_info;
  72. /*
  73. * Point at some empty memory to start with. We map the real shared_info
  74. * page as soon as fixmap is up and running.
  75. */
  76. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  77. /*
  78. * Flag to determine whether vcpu info placement is available on all
  79. * VCPUs. We assume it is to start with, and then set it to zero on
  80. * the first failure. This is because it can succeed on some VCPUs
  81. * and not others, since it can involve hypervisor memory allocation,
  82. * or because the guest failed to guarantee all the appropriate
  83. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  84. *
  85. * Note that any particular CPU may be using a placed vcpu structure,
  86. * but we can only optimise if the all are.
  87. *
  88. * 0: not available, 1: available
  89. */
  90. static int have_vcpu_info_placement = 1;
  91. static void xen_vcpu_setup(int cpu)
  92. {
  93. struct vcpu_register_vcpu_info info;
  94. int err;
  95. struct vcpu_info *vcpup;
  96. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  97. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  98. if (!have_vcpu_info_placement)
  99. return; /* already tested, not available */
  100. vcpup = &per_cpu(xen_vcpu_info, cpu);
  101. info.mfn = virt_to_mfn(vcpup);
  102. info.offset = offset_in_page(vcpup);
  103. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  104. cpu, vcpup, info.mfn, info.offset);
  105. /* Check to see if the hypervisor will put the vcpu_info
  106. structure where we want it, which allows direct access via
  107. a percpu-variable. */
  108. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  109. if (err) {
  110. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  111. have_vcpu_info_placement = 0;
  112. } else {
  113. /* This cpu is using the registered vcpu info, even if
  114. later ones fail to. */
  115. per_cpu(xen_vcpu, cpu) = vcpup;
  116. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  117. cpu, vcpup);
  118. }
  119. }
  120. /*
  121. * On restore, set the vcpu placement up again.
  122. * If it fails, then we're in a bad state, since
  123. * we can't back out from using it...
  124. */
  125. void xen_vcpu_restore(void)
  126. {
  127. if (have_vcpu_info_placement) {
  128. int cpu;
  129. for_each_online_cpu(cpu) {
  130. bool other_cpu = (cpu != smp_processor_id());
  131. if (other_cpu &&
  132. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  133. BUG();
  134. xen_vcpu_setup(cpu);
  135. if (other_cpu &&
  136. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  137. BUG();
  138. }
  139. BUG_ON(!have_vcpu_info_placement);
  140. }
  141. }
  142. static void __init xen_banner(void)
  143. {
  144. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  145. pv_info.name);
  146. printk(KERN_INFO "Hypervisor signature: %s%s\n",
  147. xen_start_info->magic,
  148. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  149. }
  150. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  151. unsigned int *cx, unsigned int *dx)
  152. {
  153. unsigned maskedx = ~0;
  154. /*
  155. * Mask out inconvenient features, to try and disable as many
  156. * unsupported kernel subsystems as possible.
  157. */
  158. if (*ax == 1)
  159. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  160. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  161. (1 << X86_FEATURE_MCE) | /* disable MCE */
  162. (1 << X86_FEATURE_MCA) | /* disable MCA */
  163. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  164. asm(XEN_EMULATE_PREFIX "cpuid"
  165. : "=a" (*ax),
  166. "=b" (*bx),
  167. "=c" (*cx),
  168. "=d" (*dx)
  169. : "0" (*ax), "2" (*cx));
  170. *dx &= maskedx;
  171. }
  172. static void xen_set_debugreg(int reg, unsigned long val)
  173. {
  174. HYPERVISOR_set_debugreg(reg, val);
  175. }
  176. static unsigned long xen_get_debugreg(int reg)
  177. {
  178. return HYPERVISOR_get_debugreg(reg);
  179. }
  180. static unsigned long xen_save_fl(void)
  181. {
  182. struct vcpu_info *vcpu;
  183. unsigned long flags;
  184. vcpu = x86_read_percpu(xen_vcpu);
  185. /* flag has opposite sense of mask */
  186. flags = !vcpu->evtchn_upcall_mask;
  187. /* convert to IF type flag
  188. -0 -> 0x00000000
  189. -1 -> 0xffffffff
  190. */
  191. return (-flags) & X86_EFLAGS_IF;
  192. }
  193. static void xen_restore_fl(unsigned long flags)
  194. {
  195. struct vcpu_info *vcpu;
  196. /* convert from IF type flag */
  197. flags = !(flags & X86_EFLAGS_IF);
  198. /* There's a one instruction preempt window here. We need to
  199. make sure we're don't switch CPUs between getting the vcpu
  200. pointer and updating the mask. */
  201. preempt_disable();
  202. vcpu = x86_read_percpu(xen_vcpu);
  203. vcpu->evtchn_upcall_mask = flags;
  204. preempt_enable_no_resched();
  205. /* Doesn't matter if we get preempted here, because any
  206. pending event will get dealt with anyway. */
  207. if (flags == 0) {
  208. preempt_check_resched();
  209. barrier(); /* unmask then check (avoid races) */
  210. if (unlikely(vcpu->evtchn_upcall_pending))
  211. force_evtchn_callback();
  212. }
  213. }
  214. static void xen_irq_disable(void)
  215. {
  216. /* There's a one instruction preempt window here. We need to
  217. make sure we're don't switch CPUs between getting the vcpu
  218. pointer and updating the mask. */
  219. preempt_disable();
  220. x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
  221. preempt_enable_no_resched();
  222. }
  223. static void xen_irq_enable(void)
  224. {
  225. struct vcpu_info *vcpu;
  226. /* We don't need to worry about being preempted here, since
  227. either a) interrupts are disabled, so no preemption, or b)
  228. the caller is confused and is trying to re-enable interrupts
  229. on an indeterminate processor. */
  230. vcpu = x86_read_percpu(xen_vcpu);
  231. vcpu->evtchn_upcall_mask = 0;
  232. /* Doesn't matter if we get preempted here, because any
  233. pending event will get dealt with anyway. */
  234. barrier(); /* unmask then check (avoid races) */
  235. if (unlikely(vcpu->evtchn_upcall_pending))
  236. force_evtchn_callback();
  237. }
  238. static void xen_safe_halt(void)
  239. {
  240. /* Blocking includes an implicit local_irq_enable(). */
  241. if (HYPERVISOR_sched_op(SCHEDOP_block, NULL) != 0)
  242. BUG();
  243. }
  244. static void xen_halt(void)
  245. {
  246. if (irqs_disabled())
  247. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  248. else
  249. xen_safe_halt();
  250. }
  251. static void xen_leave_lazy(void)
  252. {
  253. paravirt_leave_lazy(paravirt_get_lazy_mode());
  254. xen_mc_flush();
  255. }
  256. static unsigned long xen_store_tr(void)
  257. {
  258. return 0;
  259. }
  260. static void xen_set_ldt(const void *addr, unsigned entries)
  261. {
  262. struct mmuext_op *op;
  263. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  264. op = mcs.args;
  265. op->cmd = MMUEXT_SET_LDT;
  266. op->arg1.linear_addr = (unsigned long)addr;
  267. op->arg2.nr_ents = entries;
  268. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  269. xen_mc_issue(PARAVIRT_LAZY_CPU);
  270. }
  271. static void xen_load_gdt(const struct desc_ptr *dtr)
  272. {
  273. unsigned long *frames;
  274. unsigned long va = dtr->address;
  275. unsigned int size = dtr->size + 1;
  276. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  277. int f;
  278. struct multicall_space mcs;
  279. /* A GDT can be up to 64k in size, which corresponds to 8192
  280. 8-byte entries, or 16 4k pages.. */
  281. BUG_ON(size > 65536);
  282. BUG_ON(va & ~PAGE_MASK);
  283. mcs = xen_mc_entry(sizeof(*frames) * pages);
  284. frames = mcs.args;
  285. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  286. frames[f] = virt_to_mfn(va);
  287. make_lowmem_page_readonly((void *)va);
  288. }
  289. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  290. xen_mc_issue(PARAVIRT_LAZY_CPU);
  291. }
  292. static void load_TLS_descriptor(struct thread_struct *t,
  293. unsigned int cpu, unsigned int i)
  294. {
  295. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  296. xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  297. struct multicall_space mc = __xen_mc_entry(0);
  298. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  299. }
  300. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  301. {
  302. xen_mc_batch();
  303. load_TLS_descriptor(t, cpu, 0);
  304. load_TLS_descriptor(t, cpu, 1);
  305. load_TLS_descriptor(t, cpu, 2);
  306. xen_mc_issue(PARAVIRT_LAZY_CPU);
  307. /*
  308. * XXX sleazy hack: If we're being called in a lazy-cpu zone,
  309. * it means we're in a context switch, and %gs has just been
  310. * saved. This means we can zero it out to prevent faults on
  311. * exit from the hypervisor if the next process has no %gs.
  312. * Either way, it has been saved, and the new value will get
  313. * loaded properly. This will go away as soon as Xen has been
  314. * modified to not save/restore %gs for normal hypercalls.
  315. */
  316. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
  317. loadsegment(gs, 0);
  318. }
  319. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  320. const void *ptr)
  321. {
  322. unsigned long lp = (unsigned long)&dt[entrynum];
  323. xmaddr_t mach_lp = virt_to_machine(lp);
  324. u64 entry = *(u64 *)ptr;
  325. preempt_disable();
  326. xen_mc_flush();
  327. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  328. BUG();
  329. preempt_enable();
  330. }
  331. static int cvt_gate_to_trap(int vector, u32 low, u32 high,
  332. struct trap_info *info)
  333. {
  334. u8 type, dpl;
  335. type = (high >> 8) & 0x1f;
  336. dpl = (high >> 13) & 3;
  337. if (type != 0xf && type != 0xe)
  338. return 0;
  339. info->vector = vector;
  340. info->address = (high & 0xffff0000) | (low & 0x0000ffff);
  341. info->cs = low >> 16;
  342. info->flags = dpl;
  343. /* interrupt gates clear IF */
  344. if (type == 0xe)
  345. info->flags |= 4;
  346. return 1;
  347. }
  348. /* Locations of each CPU's IDT */
  349. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  350. /* Set an IDT entry. If the entry is part of the current IDT, then
  351. also update Xen. */
  352. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  353. {
  354. unsigned long p = (unsigned long)&dt[entrynum];
  355. unsigned long start, end;
  356. preempt_disable();
  357. start = __get_cpu_var(idt_desc).address;
  358. end = start + __get_cpu_var(idt_desc).size + 1;
  359. xen_mc_flush();
  360. native_write_idt_entry(dt, entrynum, g);
  361. if (p >= start && (p + 8) <= end) {
  362. struct trap_info info[2];
  363. u32 *desc = (u32 *)g;
  364. info[1].address = 0;
  365. if (cvt_gate_to_trap(entrynum, desc[0], desc[1], &info[0]))
  366. if (HYPERVISOR_set_trap_table(info))
  367. BUG();
  368. }
  369. preempt_enable();
  370. }
  371. static void xen_convert_trap_info(const struct desc_ptr *desc,
  372. struct trap_info *traps)
  373. {
  374. unsigned in, out, count;
  375. count = (desc->size+1) / 8;
  376. BUG_ON(count > 256);
  377. for (in = out = 0; in < count; in++) {
  378. const u32 *entry = (u32 *)(desc->address + in * 8);
  379. if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
  380. out++;
  381. }
  382. traps[out].address = 0;
  383. }
  384. void xen_copy_trap_info(struct trap_info *traps)
  385. {
  386. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  387. xen_convert_trap_info(desc, traps);
  388. }
  389. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  390. hold a spinlock to protect the static traps[] array (static because
  391. it avoids allocation, and saves stack space). */
  392. static void xen_load_idt(const struct desc_ptr *desc)
  393. {
  394. static DEFINE_SPINLOCK(lock);
  395. static struct trap_info traps[257];
  396. spin_lock(&lock);
  397. __get_cpu_var(idt_desc) = *desc;
  398. xen_convert_trap_info(desc, traps);
  399. xen_mc_flush();
  400. if (HYPERVISOR_set_trap_table(traps))
  401. BUG();
  402. spin_unlock(&lock);
  403. }
  404. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  405. they're handled differently. */
  406. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  407. const void *desc, int type)
  408. {
  409. preempt_disable();
  410. switch (type) {
  411. case DESC_LDT:
  412. case DESC_TSS:
  413. /* ignore */
  414. break;
  415. default: {
  416. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  417. xen_mc_flush();
  418. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  419. BUG();
  420. }
  421. }
  422. preempt_enable();
  423. }
  424. static void xen_load_sp0(struct tss_struct *tss,
  425. struct thread_struct *thread)
  426. {
  427. struct multicall_space mcs = xen_mc_entry(0);
  428. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  429. xen_mc_issue(PARAVIRT_LAZY_CPU);
  430. }
  431. static void xen_set_iopl_mask(unsigned mask)
  432. {
  433. struct physdev_set_iopl set_iopl;
  434. /* Force the change at ring 0. */
  435. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  436. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  437. }
  438. static void xen_io_delay(void)
  439. {
  440. }
  441. #ifdef CONFIG_X86_LOCAL_APIC
  442. static u32 xen_apic_read(unsigned long reg)
  443. {
  444. return 0;
  445. }
  446. static void xen_apic_write(unsigned long reg, u32 val)
  447. {
  448. /* Warn to see if there's any stray references */
  449. WARN_ON(1);
  450. }
  451. #endif
  452. static void xen_flush_tlb(void)
  453. {
  454. struct mmuext_op *op;
  455. struct multicall_space mcs;
  456. preempt_disable();
  457. mcs = xen_mc_entry(sizeof(*op));
  458. op = mcs.args;
  459. op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
  460. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  461. xen_mc_issue(PARAVIRT_LAZY_MMU);
  462. preempt_enable();
  463. }
  464. static void xen_flush_tlb_single(unsigned long addr)
  465. {
  466. struct mmuext_op *op;
  467. struct multicall_space mcs;
  468. preempt_disable();
  469. mcs = xen_mc_entry(sizeof(*op));
  470. op = mcs.args;
  471. op->cmd = MMUEXT_INVLPG_LOCAL;
  472. op->arg1.linear_addr = addr & PAGE_MASK;
  473. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  474. xen_mc_issue(PARAVIRT_LAZY_MMU);
  475. preempt_enable();
  476. }
  477. static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
  478. unsigned long va)
  479. {
  480. struct {
  481. struct mmuext_op op;
  482. cpumask_t mask;
  483. } *args;
  484. cpumask_t cpumask = *cpus;
  485. struct multicall_space mcs;
  486. /*
  487. * A couple of (to be removed) sanity checks:
  488. *
  489. * - current CPU must not be in mask
  490. * - mask must exist :)
  491. */
  492. BUG_ON(cpus_empty(cpumask));
  493. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  494. BUG_ON(!mm);
  495. /* If a CPU which we ran on has gone down, OK. */
  496. cpus_and(cpumask, cpumask, cpu_online_map);
  497. if (cpus_empty(cpumask))
  498. return;
  499. mcs = xen_mc_entry(sizeof(*args));
  500. args = mcs.args;
  501. args->mask = cpumask;
  502. args->op.arg2.vcpumask = &args->mask;
  503. if (va == TLB_FLUSH_ALL) {
  504. args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
  505. } else {
  506. args->op.cmd = MMUEXT_INVLPG_MULTI;
  507. args->op.arg1.linear_addr = va;
  508. }
  509. MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
  510. xen_mc_issue(PARAVIRT_LAZY_MMU);
  511. }
  512. static void xen_clts(void)
  513. {
  514. struct multicall_space mcs;
  515. mcs = xen_mc_entry(0);
  516. MULTI_fpu_taskswitch(mcs.mc, 0);
  517. xen_mc_issue(PARAVIRT_LAZY_CPU);
  518. }
  519. static void xen_write_cr0(unsigned long cr0)
  520. {
  521. struct multicall_space mcs;
  522. /* Only pay attention to cr0.TS; everything else is
  523. ignored. */
  524. mcs = xen_mc_entry(0);
  525. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  526. xen_mc_issue(PARAVIRT_LAZY_CPU);
  527. }
  528. static void xen_write_cr2(unsigned long cr2)
  529. {
  530. x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
  531. }
  532. static unsigned long xen_read_cr2(void)
  533. {
  534. return x86_read_percpu(xen_vcpu)->arch.cr2;
  535. }
  536. static unsigned long xen_read_cr2_direct(void)
  537. {
  538. return x86_read_percpu(xen_vcpu_info.arch.cr2);
  539. }
  540. static void xen_write_cr4(unsigned long cr4)
  541. {
  542. cr4 &= ~X86_CR4_PGE;
  543. cr4 &= ~X86_CR4_PSE;
  544. native_write_cr4(cr4);
  545. }
  546. static unsigned long xen_read_cr3(void)
  547. {
  548. return x86_read_percpu(xen_cr3);
  549. }
  550. static void set_current_cr3(void *v)
  551. {
  552. x86_write_percpu(xen_current_cr3, (unsigned long)v);
  553. }
  554. static void xen_write_cr3(unsigned long cr3)
  555. {
  556. struct mmuext_op *op;
  557. struct multicall_space mcs;
  558. unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
  559. BUG_ON(preemptible());
  560. mcs = xen_mc_entry(sizeof(*op)); /* disables interrupts */
  561. /* Update while interrupts are disabled, so its atomic with
  562. respect to ipis */
  563. x86_write_percpu(xen_cr3, cr3);
  564. op = mcs.args;
  565. op->cmd = MMUEXT_NEW_BASEPTR;
  566. op->arg1.mfn = mfn;
  567. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  568. /* Update xen_update_cr3 once the batch has actually
  569. been submitted. */
  570. xen_mc_callback(set_current_cr3, (void *)cr3);
  571. xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
  572. }
  573. /* Early in boot, while setting up the initial pagetable, assume
  574. everything is pinned. */
  575. static __init void xen_alloc_pte_init(struct mm_struct *mm, u32 pfn)
  576. {
  577. #ifdef CONFIG_FLATMEM
  578. BUG_ON(mem_map); /* should only be used early */
  579. #endif
  580. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  581. }
  582. /* Early release_pte assumes that all pts are pinned, since there's
  583. only init_mm and anything attached to that is pinned. */
  584. static void xen_release_pte_init(u32 pfn)
  585. {
  586. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  587. }
  588. static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
  589. {
  590. struct mmuext_op op;
  591. op.cmd = cmd;
  592. op.arg1.mfn = pfn_to_mfn(pfn);
  593. if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
  594. BUG();
  595. }
  596. /* This needs to make sure the new pte page is pinned iff its being
  597. attached to a pinned pagetable. */
  598. static void xen_alloc_ptpage(struct mm_struct *mm, u32 pfn, unsigned level)
  599. {
  600. struct page *page = pfn_to_page(pfn);
  601. if (PagePinned(virt_to_page(mm->pgd))) {
  602. SetPagePinned(page);
  603. if (!PageHighMem(page)) {
  604. make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
  605. if (level == PT_PTE)
  606. pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
  607. } else
  608. /* make sure there are no stray mappings of
  609. this page */
  610. kmap_flush_unused();
  611. }
  612. }
  613. static void xen_alloc_pte(struct mm_struct *mm, u32 pfn)
  614. {
  615. xen_alloc_ptpage(mm, pfn, PT_PTE);
  616. }
  617. static void xen_alloc_pmd(struct mm_struct *mm, u32 pfn)
  618. {
  619. xen_alloc_ptpage(mm, pfn, PT_PMD);
  620. }
  621. /* This should never happen until we're OK to use struct page */
  622. static void xen_release_ptpage(u32 pfn, unsigned level)
  623. {
  624. struct page *page = pfn_to_page(pfn);
  625. if (PagePinned(page)) {
  626. if (!PageHighMem(page)) {
  627. if (level == PT_PTE)
  628. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
  629. make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
  630. }
  631. ClearPagePinned(page);
  632. }
  633. }
  634. static void xen_release_pte(u32 pfn)
  635. {
  636. xen_release_ptpage(pfn, PT_PTE);
  637. }
  638. static void xen_release_pmd(u32 pfn)
  639. {
  640. xen_release_ptpage(pfn, PT_PMD);
  641. }
  642. #if PAGETABLE_LEVELS == 4
  643. static void xen_alloc_pud(struct mm_struct *mm, u32 pfn)
  644. {
  645. xen_alloc_ptpage(mm, pfn, PT_PUD);
  646. }
  647. static void xen_release_pud(u32 pfn)
  648. {
  649. xen_release_ptpage(pfn, PT_PUD);
  650. }
  651. #endif
  652. #ifdef CONFIG_HIGHPTE
  653. static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
  654. {
  655. pgprot_t prot = PAGE_KERNEL;
  656. if (PagePinned(page))
  657. prot = PAGE_KERNEL_RO;
  658. if (0 && PageHighMem(page))
  659. printk("mapping highpte %lx type %d prot %s\n",
  660. page_to_pfn(page), type,
  661. (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
  662. return kmap_atomic_prot(page, type, prot);
  663. }
  664. #endif
  665. static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
  666. {
  667. /* If there's an existing pte, then don't allow _PAGE_RW to be set */
  668. if (pte_val_ma(*ptep) & _PAGE_PRESENT)
  669. pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
  670. pte_val_ma(pte));
  671. return pte;
  672. }
  673. /* Init-time set_pte while constructing initial pagetables, which
  674. doesn't allow RO pagetable pages to be remapped RW */
  675. static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
  676. {
  677. pte = mask_rw_pte(ptep, pte);
  678. xen_set_pte(ptep, pte);
  679. }
  680. static __init void xen_pagetable_setup_start(pgd_t *base)
  681. {
  682. }
  683. void xen_setup_shared_info(void)
  684. {
  685. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  686. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  687. xen_start_info->shared_info);
  688. HYPERVISOR_shared_info =
  689. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  690. } else
  691. HYPERVISOR_shared_info =
  692. (struct shared_info *)__va(xen_start_info->shared_info);
  693. #ifndef CONFIG_SMP
  694. /* In UP this is as good a place as any to set up shared info */
  695. xen_setup_vcpu_info_placement();
  696. #endif
  697. xen_setup_mfn_list_list();
  698. }
  699. static __init void xen_pagetable_setup_done(pgd_t *base)
  700. {
  701. /* This will work as long as patching hasn't happened yet
  702. (which it hasn't) */
  703. pv_mmu_ops.alloc_pte = xen_alloc_pte;
  704. pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
  705. pv_mmu_ops.release_pte = xen_release_pte;
  706. pv_mmu_ops.release_pmd = xen_release_pmd;
  707. #if PAGETABLE_LEVELS == 4
  708. pv_mmu_ops.alloc_pud = xen_alloc_pud;
  709. pv_mmu_ops.release_pud = xen_release_pud;
  710. #endif
  711. pv_mmu_ops.set_pte = xen_set_pte;
  712. xen_setup_shared_info();
  713. }
  714. static __init void xen_post_allocator_init(void)
  715. {
  716. pv_mmu_ops.set_pmd = xen_set_pmd;
  717. pv_mmu_ops.set_pud = xen_set_pud;
  718. #if PAGETABLE_LEVELS == 4
  719. pv_mmu_ops.set_pgd = xen_set_pgd;
  720. #endif
  721. xen_mark_init_mm_pinned();
  722. }
  723. /* This is called once we have the cpu_possible_map */
  724. void xen_setup_vcpu_info_placement(void)
  725. {
  726. int cpu;
  727. for_each_possible_cpu(cpu)
  728. xen_vcpu_setup(cpu);
  729. /* xen_vcpu_setup managed to place the vcpu_info within the
  730. percpu area for all cpus, so make use of it */
  731. #ifdef CONFIG_X86_32
  732. if (have_vcpu_info_placement) {
  733. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  734. pv_irq_ops.save_fl = xen_save_fl_direct;
  735. pv_irq_ops.restore_fl = xen_restore_fl_direct;
  736. pv_irq_ops.irq_disable = xen_irq_disable_direct;
  737. pv_irq_ops.irq_enable = xen_irq_enable_direct;
  738. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  739. }
  740. #endif
  741. }
  742. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  743. unsigned long addr, unsigned len)
  744. {
  745. char *start, *end, *reloc;
  746. unsigned ret;
  747. start = end = reloc = NULL;
  748. #define SITE(op, x) \
  749. case PARAVIRT_PATCH(op.x): \
  750. if (have_vcpu_info_placement) { \
  751. start = (char *)xen_##x##_direct; \
  752. end = xen_##x##_direct_end; \
  753. reloc = xen_##x##_direct_reloc; \
  754. } \
  755. goto patch_site
  756. switch (type) {
  757. #ifdef CONFIG_X86_32
  758. SITE(pv_irq_ops, irq_enable);
  759. SITE(pv_irq_ops, irq_disable);
  760. SITE(pv_irq_ops, save_fl);
  761. SITE(pv_irq_ops, restore_fl);
  762. #endif /* CONFIG_X86_32 */
  763. #undef SITE
  764. patch_site:
  765. if (start == NULL || (end-start) > len)
  766. goto default_patch;
  767. ret = paravirt_patch_insns(insnbuf, len, start, end);
  768. /* Note: because reloc is assigned from something that
  769. appears to be an array, gcc assumes it's non-null,
  770. but doesn't know its relationship with start and
  771. end. */
  772. if (reloc > start && reloc < end) {
  773. int reloc_off = reloc - start;
  774. long *relocp = (long *)(insnbuf + reloc_off);
  775. long delta = start - (char *)addr;
  776. *relocp += delta;
  777. }
  778. break;
  779. default_patch:
  780. default:
  781. ret = paravirt_patch_default(type, clobbers, insnbuf,
  782. addr, len);
  783. break;
  784. }
  785. return ret;
  786. }
  787. static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot)
  788. {
  789. pte_t pte;
  790. phys >>= PAGE_SHIFT;
  791. switch (idx) {
  792. case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
  793. #ifdef CONFIG_X86_F00F_BUG
  794. case FIX_F00F_IDT:
  795. #endif
  796. #ifdef CONFIG_X86_32
  797. case FIX_WP_TEST:
  798. case FIX_VDSO:
  799. case FIX_KMAP_BEGIN ... FIX_KMAP_END:
  800. #else
  801. case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
  802. #endif
  803. #ifdef CONFIG_X86_LOCAL_APIC
  804. case FIX_APIC_BASE: /* maps dummy local APIC */
  805. #endif
  806. pte = pfn_pte(phys, prot);
  807. break;
  808. default:
  809. pte = mfn_pte(phys, prot);
  810. break;
  811. }
  812. __native_set_fixmap(idx, pte);
  813. }
  814. static const struct pv_info xen_info __initdata = {
  815. .paravirt_enabled = 1,
  816. .shared_kernel_pmd = 0,
  817. .name = "Xen",
  818. };
  819. static const struct pv_init_ops xen_init_ops __initdata = {
  820. .patch = xen_patch,
  821. .banner = xen_banner,
  822. .memory_setup = xen_memory_setup,
  823. .arch_setup = xen_arch_setup,
  824. .post_allocator_init = xen_post_allocator_init,
  825. };
  826. static const struct pv_time_ops xen_time_ops __initdata = {
  827. .time_init = xen_time_init,
  828. .set_wallclock = xen_set_wallclock,
  829. .get_wallclock = xen_get_wallclock,
  830. .get_tsc_khz = xen_tsc_khz,
  831. .sched_clock = xen_sched_clock,
  832. };
  833. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  834. .cpuid = xen_cpuid,
  835. .set_debugreg = xen_set_debugreg,
  836. .get_debugreg = xen_get_debugreg,
  837. .clts = xen_clts,
  838. .read_cr0 = native_read_cr0,
  839. .write_cr0 = xen_write_cr0,
  840. .read_cr4 = native_read_cr4,
  841. .read_cr4_safe = native_read_cr4_safe,
  842. .write_cr4 = xen_write_cr4,
  843. .wbinvd = native_wbinvd,
  844. .read_msr = native_read_msr_safe,
  845. .write_msr = native_write_msr_safe,
  846. .read_tsc = native_read_tsc,
  847. .read_pmc = native_read_pmc,
  848. .iret = xen_iret,
  849. .irq_enable_sysexit = xen_sysexit,
  850. .load_tr_desc = paravirt_nop,
  851. .set_ldt = xen_set_ldt,
  852. .load_gdt = xen_load_gdt,
  853. .load_idt = xen_load_idt,
  854. .load_tls = xen_load_tls,
  855. .store_gdt = native_store_gdt,
  856. .store_idt = native_store_idt,
  857. .store_tr = xen_store_tr,
  858. .write_ldt_entry = xen_write_ldt_entry,
  859. .write_gdt_entry = xen_write_gdt_entry,
  860. .write_idt_entry = xen_write_idt_entry,
  861. .load_sp0 = xen_load_sp0,
  862. .set_iopl_mask = xen_set_iopl_mask,
  863. .io_delay = xen_io_delay,
  864. .lazy_mode = {
  865. .enter = paravirt_enter_lazy_cpu,
  866. .leave = xen_leave_lazy,
  867. },
  868. };
  869. static const struct pv_irq_ops xen_irq_ops __initdata = {
  870. .init_IRQ = xen_init_IRQ,
  871. .save_fl = xen_save_fl,
  872. .restore_fl = xen_restore_fl,
  873. .irq_disable = xen_irq_disable,
  874. .irq_enable = xen_irq_enable,
  875. .safe_halt = xen_safe_halt,
  876. .halt = xen_halt,
  877. #ifdef CONFIG_X86_64
  878. .adjust_exception_frame = paravirt_nop,
  879. #endif
  880. };
  881. static const struct pv_apic_ops xen_apic_ops __initdata = {
  882. #ifdef CONFIG_X86_LOCAL_APIC
  883. .apic_write = xen_apic_write,
  884. .apic_write_atomic = xen_apic_write,
  885. .apic_read = xen_apic_read,
  886. .setup_boot_clock = paravirt_nop,
  887. .setup_secondary_clock = paravirt_nop,
  888. .startup_ipi_hook = paravirt_nop,
  889. #endif
  890. };
  891. static const struct pv_mmu_ops xen_mmu_ops __initdata = {
  892. .pagetable_setup_start = xen_pagetable_setup_start,
  893. .pagetable_setup_done = xen_pagetable_setup_done,
  894. .read_cr2 = xen_read_cr2,
  895. .write_cr2 = xen_write_cr2,
  896. .read_cr3 = xen_read_cr3,
  897. .write_cr3 = xen_write_cr3,
  898. .flush_tlb_user = xen_flush_tlb,
  899. .flush_tlb_kernel = xen_flush_tlb,
  900. .flush_tlb_single = xen_flush_tlb_single,
  901. .flush_tlb_others = xen_flush_tlb_others,
  902. .pte_update = paravirt_nop,
  903. .pte_update_defer = paravirt_nop,
  904. .pgd_alloc = __paravirt_pgd_alloc,
  905. .pgd_free = paravirt_nop,
  906. .alloc_pte = xen_alloc_pte_init,
  907. .release_pte = xen_release_pte_init,
  908. .alloc_pmd = xen_alloc_pte_init,
  909. .alloc_pmd_clone = paravirt_nop,
  910. .release_pmd = xen_release_pte_init,
  911. #ifdef CONFIG_HIGHPTE
  912. .kmap_atomic_pte = xen_kmap_atomic_pte,
  913. #endif
  914. #ifdef CONFIG_X86_64
  915. .set_pte = xen_set_pte,
  916. #else
  917. .set_pte = xen_set_pte_init,
  918. #endif
  919. .set_pte_at = xen_set_pte_at,
  920. .set_pmd = xen_set_pmd_hyper,
  921. .ptep_modify_prot_start = __ptep_modify_prot_start,
  922. .ptep_modify_prot_commit = __ptep_modify_prot_commit,
  923. .pte_val = xen_pte_val,
  924. .pte_flags = native_pte_val,
  925. .pgd_val = xen_pgd_val,
  926. .make_pte = xen_make_pte,
  927. .make_pgd = xen_make_pgd,
  928. #ifdef CONFIG_X86_PAE
  929. .set_pte_atomic = xen_set_pte_atomic,
  930. .set_pte_present = xen_set_pte_at,
  931. .pte_clear = xen_pte_clear,
  932. .pmd_clear = xen_pmd_clear,
  933. #endif /* CONFIG_X86_PAE */
  934. .set_pud = xen_set_pud_hyper,
  935. .make_pmd = xen_make_pmd,
  936. .pmd_val = xen_pmd_val,
  937. #if PAGETABLE_LEVELS == 4
  938. .pud_val = xen_pud_val,
  939. .make_pud = xen_make_pud,
  940. .set_pgd = xen_set_pgd_hyper,
  941. .alloc_pud = xen_alloc_pte_init,
  942. .release_pud = xen_release_pte_init,
  943. #endif /* PAGETABLE_LEVELS == 4 */
  944. .activate_mm = xen_activate_mm,
  945. .dup_mmap = xen_dup_mmap,
  946. .exit_mmap = xen_exit_mmap,
  947. .lazy_mode = {
  948. .enter = paravirt_enter_lazy_mmu,
  949. .leave = xen_leave_lazy,
  950. },
  951. .set_fixmap = xen_set_fixmap,
  952. };
  953. static void xen_reboot(int reason)
  954. {
  955. struct sched_shutdown r = { .reason = reason };
  956. #ifdef CONFIG_SMP
  957. smp_send_stop();
  958. #endif
  959. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  960. BUG();
  961. }
  962. static void xen_restart(char *msg)
  963. {
  964. xen_reboot(SHUTDOWN_reboot);
  965. }
  966. static void xen_emergency_restart(void)
  967. {
  968. xen_reboot(SHUTDOWN_reboot);
  969. }
  970. static void xen_machine_halt(void)
  971. {
  972. xen_reboot(SHUTDOWN_poweroff);
  973. }
  974. static void xen_crash_shutdown(struct pt_regs *regs)
  975. {
  976. xen_reboot(SHUTDOWN_crash);
  977. }
  978. static const struct machine_ops __initdata xen_machine_ops = {
  979. .restart = xen_restart,
  980. .halt = xen_machine_halt,
  981. .power_off = xen_machine_halt,
  982. .shutdown = xen_machine_halt,
  983. .crash_shutdown = xen_crash_shutdown,
  984. .emergency_restart = xen_emergency_restart,
  985. };
  986. static void __init xen_reserve_top(void)
  987. {
  988. #ifdef CONFIG_X86_32
  989. unsigned long top = HYPERVISOR_VIRT_START;
  990. struct xen_platform_parameters pp;
  991. if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
  992. top = pp.virt_start;
  993. reserve_top_address(-top + 2 * PAGE_SIZE);
  994. #endif /* CONFIG_X86_32 */
  995. }
  996. /*
  997. * Like __va(), but returns address in the kernel mapping (which is
  998. * all we have until the physical memory mapping has been set up.
  999. */
  1000. static void *__ka(phys_addr_t paddr)
  1001. {
  1002. #ifdef CONFIG_X86_64
  1003. return (void *)(paddr + __START_KERNEL_map);
  1004. #else
  1005. return __va(paddr);
  1006. #endif
  1007. }
  1008. /* Convert a machine address to physical address */
  1009. static unsigned long m2p(phys_addr_t maddr)
  1010. {
  1011. phys_addr_t paddr;
  1012. maddr &= PTE_MASK;
  1013. paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
  1014. return paddr;
  1015. }
  1016. /* Convert a machine address to kernel virtual */
  1017. static void *m2v(phys_addr_t maddr)
  1018. {
  1019. return __ka(m2p(maddr));
  1020. }
  1021. #ifdef CONFIG_X86_64
  1022. static void walk(pgd_t *pgd, unsigned long addr)
  1023. {
  1024. unsigned l4idx = pgd_index(addr);
  1025. unsigned l3idx = pud_index(addr);
  1026. unsigned l2idx = pmd_index(addr);
  1027. unsigned l1idx = pte_index(addr);
  1028. pgd_t l4;
  1029. pud_t l3;
  1030. pmd_t l2;
  1031. pte_t l1;
  1032. xen_raw_printk("walk %p, %lx -> %d %d %d %d\n",
  1033. pgd, addr, l4idx, l3idx, l2idx, l1idx);
  1034. l4 = pgd[l4idx];
  1035. xen_raw_printk(" l4: %016lx\n", l4.pgd);
  1036. xen_raw_printk(" %016lx\n", pgd_val(l4));
  1037. l3 = ((pud_t *)(m2v(l4.pgd)))[l3idx];
  1038. xen_raw_printk(" l3: %016lx\n", l3.pud);
  1039. xen_raw_printk(" %016lx\n", pud_val(l3));
  1040. l2 = ((pmd_t *)(m2v(l3.pud)))[l2idx];
  1041. xen_raw_printk(" l2: %016lx\n", l2.pmd);
  1042. xen_raw_printk(" %016lx\n", pmd_val(l2));
  1043. l1 = ((pte_t *)(m2v(l2.pmd)))[l1idx];
  1044. xen_raw_printk(" l1: %016lx\n", l1.pte);
  1045. xen_raw_printk(" %016lx\n", pte_val(l1));
  1046. }
  1047. #endif
  1048. static void set_page_prot(void *addr, pgprot_t prot)
  1049. {
  1050. unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
  1051. pte_t pte = pfn_pte(pfn, prot);
  1052. xen_raw_printk("addr=%p pfn=%lx mfn=%lx prot=%016llx pte=%016llx\n",
  1053. addr, pfn, get_phys_to_machine(pfn),
  1054. pgprot_val(prot), pte.pte);
  1055. if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
  1056. BUG();
  1057. }
  1058. /*
  1059. * Identity map, in addition to plain kernel map. This needs to be
  1060. * large enough to allocate page table pages to allocate the rest.
  1061. * Each page can map 2MB.
  1062. */
  1063. static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss;
  1064. static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
  1065. {
  1066. unsigned pmdidx, pteidx;
  1067. unsigned ident_pte;
  1068. unsigned long pfn;
  1069. ident_pte = 0;
  1070. pfn = 0;
  1071. for(pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
  1072. pte_t *pte_page;
  1073. /* Reuse or allocate a page of ptes */
  1074. if (pmd_present(pmd[pmdidx]))
  1075. pte_page = m2v(pmd[pmdidx].pmd);
  1076. else {
  1077. /* Check for free pte pages */
  1078. if (ident_pte == ARRAY_SIZE(level1_ident_pgt))
  1079. break;
  1080. pte_page = &level1_ident_pgt[ident_pte];
  1081. ident_pte += PTRS_PER_PTE;
  1082. pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
  1083. }
  1084. /* Install mappings */
  1085. for(pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
  1086. pte_t pte;
  1087. if (pfn > max_pfn_mapped)
  1088. max_pfn_mapped = pfn;
  1089. if (!pte_none(pte_page[pteidx]))
  1090. continue;
  1091. pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
  1092. pte_page[pteidx] = pte;
  1093. }
  1094. }
  1095. for(pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
  1096. set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
  1097. set_page_prot(pmd, PAGE_KERNEL_RO);
  1098. }
  1099. #ifdef CONFIG_X86_64
  1100. static void convert_pfn_mfn(void *v)
  1101. {
  1102. pte_t *pte = v;
  1103. int i;
  1104. /* All levels are converted the same way, so just treat them
  1105. as ptes. */
  1106. for(i = 0; i < PTRS_PER_PTE; i++)
  1107. pte[i] = xen_make_pte(pte[i].pte);
  1108. }
  1109. /*
  1110. * Set up the inital kernel pagetable.
  1111. *
  1112. * We can construct this by grafting the Xen provided pagetable into
  1113. * head_64.S's preconstructed pagetables. We copy the Xen L2's into
  1114. * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
  1115. * means that only the kernel has a physical mapping to start with -
  1116. * but that's enough to get __va working. We need to fill in the rest
  1117. * of the physical mapping once some sort of allocator has been set
  1118. * up.
  1119. */
  1120. static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1121. {
  1122. pud_t *l3;
  1123. pmd_t *l2;
  1124. /* Zap identity mapping */
  1125. init_level4_pgt[0] = __pgd(0);
  1126. /* Pre-constructed entries are in pfn, so convert to mfn */
  1127. convert_pfn_mfn(init_level4_pgt);
  1128. convert_pfn_mfn(level3_ident_pgt);
  1129. convert_pfn_mfn(level3_kernel_pgt);
  1130. l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
  1131. l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
  1132. memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1133. memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1134. l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
  1135. l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
  1136. memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
  1137. /* Set up identity map */
  1138. xen_map_identity_early(level2_ident_pgt, max_pfn);
  1139. /* Make pagetable pieces RO */
  1140. set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
  1141. set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
  1142. set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
  1143. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1144. set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
  1145. /* Pin down new L4 */
  1146. pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
  1147. PFN_DOWN(__pa_symbol(init_level4_pgt)));
  1148. /* Unpin Xen-provided one */
  1149. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1150. /* Switch over */
  1151. pgd = init_level4_pgt;
  1152. xen_write_cr3(__pa(pgd));
  1153. reserve_early(__pa(xen_start_info->pt_base),
  1154. __pa(xen_start_info->pt_base +
  1155. xen_start_info->nr_pt_frames * PAGE_SIZE),
  1156. "XEN PAGETABLES");
  1157. return pgd;
  1158. }
  1159. #else /* !CONFIG_X86_64 */
  1160. static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss;
  1161. static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
  1162. {
  1163. pmd_t *kernel_pmd;
  1164. init_pg_tables_start = __pa(pgd);
  1165. init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
  1166. max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024);
  1167. kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
  1168. memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
  1169. xen_map_identity_early(level2_kernel_pgt, max_pfn);
  1170. memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
  1171. set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY],
  1172. __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT));
  1173. set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
  1174. set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
  1175. set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
  1176. pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
  1177. xen_write_cr3(__pa(swapper_pg_dir));
  1178. pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir)));
  1179. return swapper_pg_dir;
  1180. }
  1181. #endif /* CONFIG_X86_64 */
  1182. /* First C function to be called on Xen boot */
  1183. asmlinkage void __init xen_start_kernel(void)
  1184. {
  1185. pgd_t *pgd;
  1186. if (!xen_start_info)
  1187. return;
  1188. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  1189. xen_setup_features();
  1190. /* Install Xen paravirt ops */
  1191. pv_info = xen_info;
  1192. pv_init_ops = xen_init_ops;
  1193. pv_time_ops = xen_time_ops;
  1194. pv_cpu_ops = xen_cpu_ops;
  1195. pv_irq_ops = xen_irq_ops;
  1196. pv_apic_ops = xen_apic_ops;
  1197. pv_mmu_ops = xen_mmu_ops;
  1198. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1199. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1200. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1201. }
  1202. machine_ops = xen_machine_ops;
  1203. #ifdef CONFIG_X86_64
  1204. /* Disable until direct per-cpu data access. */
  1205. have_vcpu_info_placement = 0;
  1206. x86_64_init_pda();
  1207. #endif
  1208. xen_smp_init();
  1209. /* Get mfn list */
  1210. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1211. xen_build_dynamic_phys_to_machine();
  1212. pgd = (pgd_t *)xen_start_info->pt_base;
  1213. /* Prevent unwanted bits from being set in PTEs. */
  1214. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1215. if (!is_initial_xendomain())
  1216. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1217. /* Don't do the full vcpu_info placement stuff until we have a
  1218. possible map and a non-dummy shared_info. */
  1219. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1220. xen_raw_console_write("mapping kernel into physical memory\n");
  1221. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  1222. init_mm.pgd = pgd;
  1223. /* keep using Xen gdt for now; no urgent need to change it */
  1224. pv_info.kernel_rpl = 1;
  1225. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1226. pv_info.kernel_rpl = 0;
  1227. /* set the limit of our address space */
  1228. xen_reserve_top();
  1229. #ifdef CONFIG_X86_32
  1230. /* set up basic CPUID stuff */
  1231. cpu_detect(&new_cpu_data);
  1232. new_cpu_data.hard_math = 1;
  1233. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1234. #endif
  1235. /* Poke various useful things into boot_params */
  1236. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1237. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1238. ? __pa(xen_start_info->mod_start) : 0;
  1239. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1240. if (!is_initial_xendomain()) {
  1241. add_preferred_console("xenboot", 0, NULL);
  1242. add_preferred_console("tty", 0, NULL);
  1243. add_preferred_console("hvc", 0, NULL);
  1244. }
  1245. xen_raw_console_write("about to get started...\n");
  1246. #if 0
  1247. xen_raw_printk("&boot_params=%p __pa(&boot_params)=%lx __va(__pa(&boot_params))=%lx\n",
  1248. &boot_params, __pa_symbol(&boot_params),
  1249. __va(__pa_symbol(&boot_params)));
  1250. walk(pgd, &boot_params);
  1251. walk(pgd, __va(__pa(&boot_params)));
  1252. #endif
  1253. /* Start the world */
  1254. #ifdef CONFIG_X86_32
  1255. i386_start_kernel();
  1256. #else
  1257. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1258. #endif
  1259. }