xfs_inode.c 138 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. #include "xfs_filestream.h"
  52. kmem_zone_t *xfs_ifork_zone;
  53. kmem_zone_t *xfs_inode_zone;
  54. kmem_zone_t *xfs_chashlist_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. xfs_exntfmt_t fmt)
  74. {
  75. xfs_bmbt_irec_t irec;
  76. xfs_bmbt_rec_host_t rec;
  77. int i;
  78. for (i = 0; i < nrecs; i++) {
  79. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  80. rec.l0 = get_unaligned(&ep->l0);
  81. rec.l1 = get_unaligned(&ep->l1);
  82. xfs_bmbt_get_all(&rec, &irec);
  83. if (fmt == XFS_EXTFMT_NOSTATE)
  84. ASSERT(irec.br_state == XFS_EXT_NORM);
  85. }
  86. }
  87. #else /* DEBUG */
  88. #define xfs_validate_extents(ifp, nrecs, fmt)
  89. #endif /* DEBUG */
  90. /*
  91. * Check that none of the inode's in the buffer have a next
  92. * unlinked field of 0.
  93. */
  94. #if defined(DEBUG)
  95. void
  96. xfs_inobp_check(
  97. xfs_mount_t *mp,
  98. xfs_buf_t *bp)
  99. {
  100. int i;
  101. int j;
  102. xfs_dinode_t *dip;
  103. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  104. for (i = 0; i < j; i++) {
  105. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  106. i * mp->m_sb.sb_inodesize);
  107. if (!dip->di_next_unlinked) {
  108. xfs_fs_cmn_err(CE_ALERT, mp,
  109. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  110. bp);
  111. ASSERT(dip->di_next_unlinked);
  112. }
  113. }
  114. }
  115. #endif
  116. /*
  117. * This routine is called to map an inode number within a file
  118. * system to the buffer containing the on-disk version of the
  119. * inode. It returns a pointer to the buffer containing the
  120. * on-disk inode in the bpp parameter, and in the dip parameter
  121. * it returns a pointer to the on-disk inode within that buffer.
  122. *
  123. * If a non-zero error is returned, then the contents of bpp and
  124. * dipp are undefined.
  125. *
  126. * Use xfs_imap() to determine the size and location of the
  127. * buffer to read from disk.
  128. */
  129. STATIC int
  130. xfs_inotobp(
  131. xfs_mount_t *mp,
  132. xfs_trans_t *tp,
  133. xfs_ino_t ino,
  134. xfs_dinode_t **dipp,
  135. xfs_buf_t **bpp,
  136. int *offset)
  137. {
  138. int di_ok;
  139. xfs_imap_t imap;
  140. xfs_buf_t *bp;
  141. int error;
  142. xfs_dinode_t *dip;
  143. /*
  144. * Call the space management code to find the location of the
  145. * inode on disk.
  146. */
  147. imap.im_blkno = 0;
  148. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  149. if (error != 0) {
  150. cmn_err(CE_WARN,
  151. "xfs_inotobp: xfs_imap() returned an "
  152. "error %d on %s. Returning error.", error, mp->m_fsname);
  153. return error;
  154. }
  155. /*
  156. * If the inode number maps to a block outside the bounds of the
  157. * file system then return NULL rather than calling read_buf
  158. * and panicing when we get an error from the driver.
  159. */
  160. if ((imap.im_blkno + imap.im_len) >
  161. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  162. cmn_err(CE_WARN,
  163. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  164. "of the file system %s. Returning EINVAL.",
  165. (unsigned long long)imap.im_blkno,
  166. imap.im_len, mp->m_fsname);
  167. return XFS_ERROR(EINVAL);
  168. }
  169. /*
  170. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  171. * default to just a read_buf() call.
  172. */
  173. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  174. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  175. if (error) {
  176. cmn_err(CE_WARN,
  177. "xfs_inotobp: xfs_trans_read_buf() returned an "
  178. "error %d on %s. Returning error.", error, mp->m_fsname);
  179. return error;
  180. }
  181. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  182. di_ok =
  183. be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  184. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  185. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  186. XFS_RANDOM_ITOBP_INOTOBP))) {
  187. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  188. xfs_trans_brelse(tp, bp);
  189. cmn_err(CE_WARN,
  190. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  191. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  192. return XFS_ERROR(EFSCORRUPTED);
  193. }
  194. xfs_inobp_check(mp, bp);
  195. /*
  196. * Set *dipp to point to the on-disk inode in the buffer.
  197. */
  198. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  199. *bpp = bp;
  200. *offset = imap.im_boffset;
  201. return 0;
  202. }
  203. /*
  204. * This routine is called to map an inode to the buffer containing
  205. * the on-disk version of the inode. It returns a pointer to the
  206. * buffer containing the on-disk inode in the bpp parameter, and in
  207. * the dip parameter it returns a pointer to the on-disk inode within
  208. * that buffer.
  209. *
  210. * If a non-zero error is returned, then the contents of bpp and
  211. * dipp are undefined.
  212. *
  213. * If the inode is new and has not yet been initialized, use xfs_imap()
  214. * to determine the size and location of the buffer to read from disk.
  215. * If the inode has already been mapped to its buffer and read in once,
  216. * then use the mapping information stored in the inode rather than
  217. * calling xfs_imap(). This allows us to avoid the overhead of looking
  218. * at the inode btree for small block file systems (see xfs_dilocate()).
  219. * We can tell whether the inode has been mapped in before by comparing
  220. * its disk block address to 0. Only uninitialized inodes will have
  221. * 0 for the disk block address.
  222. */
  223. int
  224. xfs_itobp(
  225. xfs_mount_t *mp,
  226. xfs_trans_t *tp,
  227. xfs_inode_t *ip,
  228. xfs_dinode_t **dipp,
  229. xfs_buf_t **bpp,
  230. xfs_daddr_t bno,
  231. uint imap_flags)
  232. {
  233. xfs_imap_t imap;
  234. xfs_buf_t *bp;
  235. int error;
  236. int i;
  237. int ni;
  238. if (ip->i_blkno == (xfs_daddr_t)0) {
  239. /*
  240. * Call the space management code to find the location of the
  241. * inode on disk.
  242. */
  243. imap.im_blkno = bno;
  244. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  245. XFS_IMAP_LOOKUP | imap_flags)))
  246. return error;
  247. /*
  248. * If the inode number maps to a block outside the bounds
  249. * of the file system then return NULL rather than calling
  250. * read_buf and panicing when we get an error from the
  251. * driver.
  252. */
  253. if ((imap.im_blkno + imap.im_len) >
  254. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  255. #ifdef DEBUG
  256. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  257. "(imap.im_blkno (0x%llx) "
  258. "+ imap.im_len (0x%llx)) > "
  259. " XFS_FSB_TO_BB(mp, "
  260. "mp->m_sb.sb_dblocks) (0x%llx)",
  261. (unsigned long long) imap.im_blkno,
  262. (unsigned long long) imap.im_len,
  263. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  264. #endif /* DEBUG */
  265. return XFS_ERROR(EINVAL);
  266. }
  267. /*
  268. * Fill in the fields in the inode that will be used to
  269. * map the inode to its buffer from now on.
  270. */
  271. ip->i_blkno = imap.im_blkno;
  272. ip->i_len = imap.im_len;
  273. ip->i_boffset = imap.im_boffset;
  274. } else {
  275. /*
  276. * We've already mapped the inode once, so just use the
  277. * mapping that we saved the first time.
  278. */
  279. imap.im_blkno = ip->i_blkno;
  280. imap.im_len = ip->i_len;
  281. imap.im_boffset = ip->i_boffset;
  282. }
  283. ASSERT(bno == 0 || bno == imap.im_blkno);
  284. /*
  285. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  286. * default to just a read_buf() call.
  287. */
  288. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  289. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  290. if (error) {
  291. #ifdef DEBUG
  292. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  293. "xfs_trans_read_buf() returned error %d, "
  294. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  295. error, (unsigned long long) imap.im_blkno,
  296. (unsigned long long) imap.im_len);
  297. #endif /* DEBUG */
  298. return error;
  299. }
  300. /*
  301. * Validate the magic number and version of every inode in the buffer
  302. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  303. * No validation is done here in userspace (xfs_repair).
  304. */
  305. #if !defined(__KERNEL__)
  306. ni = 0;
  307. #elif defined(DEBUG)
  308. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  309. #else /* usual case */
  310. ni = 1;
  311. #endif
  312. for (i = 0; i < ni; i++) {
  313. int di_ok;
  314. xfs_dinode_t *dip;
  315. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  316. (i << mp->m_sb.sb_inodelog));
  317. di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
  318. XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
  319. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  320. XFS_ERRTAG_ITOBP_INOTOBP,
  321. XFS_RANDOM_ITOBP_INOTOBP))) {
  322. if (imap_flags & XFS_IMAP_BULKSTAT) {
  323. xfs_trans_brelse(tp, bp);
  324. return XFS_ERROR(EINVAL);
  325. }
  326. #ifdef DEBUG
  327. cmn_err(CE_ALERT,
  328. "Device %s - bad inode magic/vsn "
  329. "daddr %lld #%d (magic=%x)",
  330. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  331. (unsigned long long)imap.im_blkno, i,
  332. be16_to_cpu(dip->di_core.di_magic));
  333. #endif
  334. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  335. mp, dip);
  336. xfs_trans_brelse(tp, bp);
  337. return XFS_ERROR(EFSCORRUPTED);
  338. }
  339. }
  340. xfs_inobp_check(mp, bp);
  341. /*
  342. * Mark the buffer as an inode buffer now that it looks good
  343. */
  344. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  345. /*
  346. * Set *dipp to point to the on-disk inode in the buffer.
  347. */
  348. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  349. *bpp = bp;
  350. return 0;
  351. }
  352. /*
  353. * Move inode type and inode format specific information from the
  354. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  355. * this means set if_rdev to the proper value. For files, directories,
  356. * and symlinks this means to bring in the in-line data or extent
  357. * pointers. For a file in B-tree format, only the root is immediately
  358. * brought in-core. The rest will be in-lined in if_extents when it
  359. * is first referenced (see xfs_iread_extents()).
  360. */
  361. STATIC int
  362. xfs_iformat(
  363. xfs_inode_t *ip,
  364. xfs_dinode_t *dip)
  365. {
  366. xfs_attr_shortform_t *atp;
  367. int size;
  368. int error;
  369. xfs_fsize_t di_size;
  370. ip->i_df.if_ext_max =
  371. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  372. error = 0;
  373. if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
  374. be16_to_cpu(dip->di_core.di_anextents) >
  375. be64_to_cpu(dip->di_core.di_nblocks))) {
  376. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  377. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  378. (unsigned long long)ip->i_ino,
  379. (int)(be32_to_cpu(dip->di_core.di_nextents) +
  380. be16_to_cpu(dip->di_core.di_anextents)),
  381. (unsigned long long)
  382. be64_to_cpu(dip->di_core.di_nblocks));
  383. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  384. ip->i_mount, dip);
  385. return XFS_ERROR(EFSCORRUPTED);
  386. }
  387. if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  388. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  389. "corrupt dinode %Lu, forkoff = 0x%x.",
  390. (unsigned long long)ip->i_ino,
  391. dip->di_core.di_forkoff);
  392. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  393. ip->i_mount, dip);
  394. return XFS_ERROR(EFSCORRUPTED);
  395. }
  396. switch (ip->i_d.di_mode & S_IFMT) {
  397. case S_IFIFO:
  398. case S_IFCHR:
  399. case S_IFBLK:
  400. case S_IFSOCK:
  401. if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
  402. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  403. ip->i_mount, dip);
  404. return XFS_ERROR(EFSCORRUPTED);
  405. }
  406. ip->i_d.di_size = 0;
  407. ip->i_size = 0;
  408. ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
  409. break;
  410. case S_IFREG:
  411. case S_IFLNK:
  412. case S_IFDIR:
  413. switch (dip->di_core.di_format) {
  414. case XFS_DINODE_FMT_LOCAL:
  415. /*
  416. * no local regular files yet
  417. */
  418. if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
  419. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  420. "corrupt inode %Lu "
  421. "(local format for regular file).",
  422. (unsigned long long) ip->i_ino);
  423. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  424. XFS_ERRLEVEL_LOW,
  425. ip->i_mount, dip);
  426. return XFS_ERROR(EFSCORRUPTED);
  427. }
  428. di_size = be64_to_cpu(dip->di_core.di_size);
  429. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  430. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  431. "corrupt inode %Lu "
  432. "(bad size %Ld for local inode).",
  433. (unsigned long long) ip->i_ino,
  434. (long long) di_size);
  435. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  436. XFS_ERRLEVEL_LOW,
  437. ip->i_mount, dip);
  438. return XFS_ERROR(EFSCORRUPTED);
  439. }
  440. size = (int)di_size;
  441. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  442. break;
  443. case XFS_DINODE_FMT_EXTENTS:
  444. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  445. break;
  446. case XFS_DINODE_FMT_BTREE:
  447. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  448. break;
  449. default:
  450. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  451. ip->i_mount);
  452. return XFS_ERROR(EFSCORRUPTED);
  453. }
  454. break;
  455. default:
  456. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  457. return XFS_ERROR(EFSCORRUPTED);
  458. }
  459. if (error) {
  460. return error;
  461. }
  462. if (!XFS_DFORK_Q(dip))
  463. return 0;
  464. ASSERT(ip->i_afp == NULL);
  465. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  466. ip->i_afp->if_ext_max =
  467. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  468. switch (dip->di_core.di_aformat) {
  469. case XFS_DINODE_FMT_LOCAL:
  470. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  471. size = be16_to_cpu(atp->hdr.totsize);
  472. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  473. break;
  474. case XFS_DINODE_FMT_EXTENTS:
  475. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  476. break;
  477. case XFS_DINODE_FMT_BTREE:
  478. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  479. break;
  480. default:
  481. error = XFS_ERROR(EFSCORRUPTED);
  482. break;
  483. }
  484. if (error) {
  485. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  486. ip->i_afp = NULL;
  487. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  488. }
  489. return error;
  490. }
  491. /*
  492. * The file is in-lined in the on-disk inode.
  493. * If it fits into if_inline_data, then copy
  494. * it there, otherwise allocate a buffer for it
  495. * and copy the data there. Either way, set
  496. * if_data to point at the data.
  497. * If we allocate a buffer for the data, make
  498. * sure that its size is a multiple of 4 and
  499. * record the real size in i_real_bytes.
  500. */
  501. STATIC int
  502. xfs_iformat_local(
  503. xfs_inode_t *ip,
  504. xfs_dinode_t *dip,
  505. int whichfork,
  506. int size)
  507. {
  508. xfs_ifork_t *ifp;
  509. int real_size;
  510. /*
  511. * If the size is unreasonable, then something
  512. * is wrong and we just bail out rather than crash in
  513. * kmem_alloc() or memcpy() below.
  514. */
  515. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  516. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  517. "corrupt inode %Lu "
  518. "(bad size %d for local fork, size = %d).",
  519. (unsigned long long) ip->i_ino, size,
  520. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  521. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  522. ip->i_mount, dip);
  523. return XFS_ERROR(EFSCORRUPTED);
  524. }
  525. ifp = XFS_IFORK_PTR(ip, whichfork);
  526. real_size = 0;
  527. if (size == 0)
  528. ifp->if_u1.if_data = NULL;
  529. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  530. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  531. else {
  532. real_size = roundup(size, 4);
  533. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  534. }
  535. ifp->if_bytes = size;
  536. ifp->if_real_bytes = real_size;
  537. if (size)
  538. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  539. ifp->if_flags &= ~XFS_IFEXTENTS;
  540. ifp->if_flags |= XFS_IFINLINE;
  541. return 0;
  542. }
  543. /*
  544. * The file consists of a set of extents all
  545. * of which fit into the on-disk inode.
  546. * If there are few enough extents to fit into
  547. * the if_inline_ext, then copy them there.
  548. * Otherwise allocate a buffer for them and copy
  549. * them into it. Either way, set if_extents
  550. * to point at the extents.
  551. */
  552. STATIC int
  553. xfs_iformat_extents(
  554. xfs_inode_t *ip,
  555. xfs_dinode_t *dip,
  556. int whichfork)
  557. {
  558. xfs_bmbt_rec_t *dp;
  559. xfs_ifork_t *ifp;
  560. int nex;
  561. int size;
  562. int i;
  563. ifp = XFS_IFORK_PTR(ip, whichfork);
  564. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  565. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  566. /*
  567. * If the number of extents is unreasonable, then something
  568. * is wrong and we just bail out rather than crash in
  569. * kmem_alloc() or memcpy() below.
  570. */
  571. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  572. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  573. "corrupt inode %Lu ((a)extents = %d).",
  574. (unsigned long long) ip->i_ino, nex);
  575. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  576. ip->i_mount, dip);
  577. return XFS_ERROR(EFSCORRUPTED);
  578. }
  579. ifp->if_real_bytes = 0;
  580. if (nex == 0)
  581. ifp->if_u1.if_extents = NULL;
  582. else if (nex <= XFS_INLINE_EXTS)
  583. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  584. else
  585. xfs_iext_add(ifp, 0, nex);
  586. ifp->if_bytes = size;
  587. if (size) {
  588. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  589. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  590. for (i = 0; i < nex; i++, dp++) {
  591. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  592. ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
  593. ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
  594. }
  595. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  596. if (whichfork != XFS_DATA_FORK ||
  597. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  598. if (unlikely(xfs_check_nostate_extents(
  599. ifp, 0, nex))) {
  600. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  601. XFS_ERRLEVEL_LOW,
  602. ip->i_mount);
  603. return XFS_ERROR(EFSCORRUPTED);
  604. }
  605. }
  606. ifp->if_flags |= XFS_IFEXTENTS;
  607. return 0;
  608. }
  609. /*
  610. * The file has too many extents to fit into
  611. * the inode, so they are in B-tree format.
  612. * Allocate a buffer for the root of the B-tree
  613. * and copy the root into it. The i_extents
  614. * field will remain NULL until all of the
  615. * extents are read in (when they are needed).
  616. */
  617. STATIC int
  618. xfs_iformat_btree(
  619. xfs_inode_t *ip,
  620. xfs_dinode_t *dip,
  621. int whichfork)
  622. {
  623. xfs_bmdr_block_t *dfp;
  624. xfs_ifork_t *ifp;
  625. /* REFERENCED */
  626. int nrecs;
  627. int size;
  628. ifp = XFS_IFORK_PTR(ip, whichfork);
  629. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  630. size = XFS_BMAP_BROOT_SPACE(dfp);
  631. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  632. /*
  633. * blow out if -- fork has less extents than can fit in
  634. * fork (fork shouldn't be a btree format), root btree
  635. * block has more records than can fit into the fork,
  636. * or the number of extents is greater than the number of
  637. * blocks.
  638. */
  639. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  640. || XFS_BMDR_SPACE_CALC(nrecs) >
  641. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  642. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  643. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  644. "corrupt inode %Lu (btree).",
  645. (unsigned long long) ip->i_ino);
  646. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  647. ip->i_mount);
  648. return XFS_ERROR(EFSCORRUPTED);
  649. }
  650. ifp->if_broot_bytes = size;
  651. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  652. ASSERT(ifp->if_broot != NULL);
  653. /*
  654. * Copy and convert from the on-disk structure
  655. * to the in-memory structure.
  656. */
  657. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  658. ifp->if_broot, size);
  659. ifp->if_flags &= ~XFS_IFEXTENTS;
  660. ifp->if_flags |= XFS_IFBROOT;
  661. return 0;
  662. }
  663. void
  664. xfs_dinode_from_disk(
  665. xfs_icdinode_t *to,
  666. xfs_dinode_core_t *from)
  667. {
  668. to->di_magic = be16_to_cpu(from->di_magic);
  669. to->di_mode = be16_to_cpu(from->di_mode);
  670. to->di_version = from ->di_version;
  671. to->di_format = from->di_format;
  672. to->di_onlink = be16_to_cpu(from->di_onlink);
  673. to->di_uid = be32_to_cpu(from->di_uid);
  674. to->di_gid = be32_to_cpu(from->di_gid);
  675. to->di_nlink = be32_to_cpu(from->di_nlink);
  676. to->di_projid = be16_to_cpu(from->di_projid);
  677. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  678. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  679. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  680. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  681. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  682. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  683. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  684. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  685. to->di_size = be64_to_cpu(from->di_size);
  686. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  687. to->di_extsize = be32_to_cpu(from->di_extsize);
  688. to->di_nextents = be32_to_cpu(from->di_nextents);
  689. to->di_anextents = be16_to_cpu(from->di_anextents);
  690. to->di_forkoff = from->di_forkoff;
  691. to->di_aformat = from->di_aformat;
  692. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  693. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  694. to->di_flags = be16_to_cpu(from->di_flags);
  695. to->di_gen = be32_to_cpu(from->di_gen);
  696. }
  697. void
  698. xfs_dinode_to_disk(
  699. xfs_dinode_core_t *to,
  700. xfs_icdinode_t *from)
  701. {
  702. to->di_magic = cpu_to_be16(from->di_magic);
  703. to->di_mode = cpu_to_be16(from->di_mode);
  704. to->di_version = from ->di_version;
  705. to->di_format = from->di_format;
  706. to->di_onlink = cpu_to_be16(from->di_onlink);
  707. to->di_uid = cpu_to_be32(from->di_uid);
  708. to->di_gid = cpu_to_be32(from->di_gid);
  709. to->di_nlink = cpu_to_be32(from->di_nlink);
  710. to->di_projid = cpu_to_be16(from->di_projid);
  711. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  712. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  713. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  714. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  715. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  716. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  717. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  718. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  719. to->di_size = cpu_to_be64(from->di_size);
  720. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  721. to->di_extsize = cpu_to_be32(from->di_extsize);
  722. to->di_nextents = cpu_to_be32(from->di_nextents);
  723. to->di_anextents = cpu_to_be16(from->di_anextents);
  724. to->di_forkoff = from->di_forkoff;
  725. to->di_aformat = from->di_aformat;
  726. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  727. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  728. to->di_flags = cpu_to_be16(from->di_flags);
  729. to->di_gen = cpu_to_be32(from->di_gen);
  730. }
  731. STATIC uint
  732. _xfs_dic2xflags(
  733. __uint16_t di_flags)
  734. {
  735. uint flags = 0;
  736. if (di_flags & XFS_DIFLAG_ANY) {
  737. if (di_flags & XFS_DIFLAG_REALTIME)
  738. flags |= XFS_XFLAG_REALTIME;
  739. if (di_flags & XFS_DIFLAG_PREALLOC)
  740. flags |= XFS_XFLAG_PREALLOC;
  741. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  742. flags |= XFS_XFLAG_IMMUTABLE;
  743. if (di_flags & XFS_DIFLAG_APPEND)
  744. flags |= XFS_XFLAG_APPEND;
  745. if (di_flags & XFS_DIFLAG_SYNC)
  746. flags |= XFS_XFLAG_SYNC;
  747. if (di_flags & XFS_DIFLAG_NOATIME)
  748. flags |= XFS_XFLAG_NOATIME;
  749. if (di_flags & XFS_DIFLAG_NODUMP)
  750. flags |= XFS_XFLAG_NODUMP;
  751. if (di_flags & XFS_DIFLAG_RTINHERIT)
  752. flags |= XFS_XFLAG_RTINHERIT;
  753. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  754. flags |= XFS_XFLAG_PROJINHERIT;
  755. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  756. flags |= XFS_XFLAG_NOSYMLINKS;
  757. if (di_flags & XFS_DIFLAG_EXTSIZE)
  758. flags |= XFS_XFLAG_EXTSIZE;
  759. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  760. flags |= XFS_XFLAG_EXTSZINHERIT;
  761. if (di_flags & XFS_DIFLAG_NODEFRAG)
  762. flags |= XFS_XFLAG_NODEFRAG;
  763. if (di_flags & XFS_DIFLAG_FILESTREAM)
  764. flags |= XFS_XFLAG_FILESTREAM;
  765. }
  766. return flags;
  767. }
  768. uint
  769. xfs_ip2xflags(
  770. xfs_inode_t *ip)
  771. {
  772. xfs_icdinode_t *dic = &ip->i_d;
  773. return _xfs_dic2xflags(dic->di_flags) |
  774. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  775. }
  776. uint
  777. xfs_dic2xflags(
  778. xfs_dinode_core_t *dic)
  779. {
  780. return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
  781. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  782. }
  783. /*
  784. * Given a mount structure and an inode number, return a pointer
  785. * to a newly allocated in-core inode corresponding to the given
  786. * inode number.
  787. *
  788. * Initialize the inode's attributes and extent pointers if it
  789. * already has them (it will not if the inode has no links).
  790. */
  791. int
  792. xfs_iread(
  793. xfs_mount_t *mp,
  794. xfs_trans_t *tp,
  795. xfs_ino_t ino,
  796. xfs_inode_t **ipp,
  797. xfs_daddr_t bno,
  798. uint imap_flags)
  799. {
  800. xfs_buf_t *bp;
  801. xfs_dinode_t *dip;
  802. xfs_inode_t *ip;
  803. int error;
  804. ASSERT(xfs_inode_zone != NULL);
  805. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  806. ip->i_ino = ino;
  807. ip->i_mount = mp;
  808. spin_lock_init(&ip->i_flags_lock);
  809. /*
  810. * Get pointer's to the on-disk inode and the buffer containing it.
  811. * If the inode number refers to a block outside the file system
  812. * then xfs_itobp() will return NULL. In this case we should
  813. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  814. * know that this is a new incore inode.
  815. */
  816. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  817. if (error) {
  818. kmem_zone_free(xfs_inode_zone, ip);
  819. return error;
  820. }
  821. /*
  822. * Initialize inode's trace buffers.
  823. * Do this before xfs_iformat in case it adds entries.
  824. */
  825. #ifdef XFS_BMAP_TRACE
  826. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  827. #endif
  828. #ifdef XFS_BMBT_TRACE
  829. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  830. #endif
  831. #ifdef XFS_RW_TRACE
  832. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  833. #endif
  834. #ifdef XFS_ILOCK_TRACE
  835. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  836. #endif
  837. #ifdef XFS_DIR2_TRACE
  838. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  839. #endif
  840. /*
  841. * If we got something that isn't an inode it means someone
  842. * (nfs or dmi) has a stale handle.
  843. */
  844. if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
  845. kmem_zone_free(xfs_inode_zone, ip);
  846. xfs_trans_brelse(tp, bp);
  847. #ifdef DEBUG
  848. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  849. "dip->di_core.di_magic (0x%x) != "
  850. "XFS_DINODE_MAGIC (0x%x)",
  851. be16_to_cpu(dip->di_core.di_magic),
  852. XFS_DINODE_MAGIC);
  853. #endif /* DEBUG */
  854. return XFS_ERROR(EINVAL);
  855. }
  856. /*
  857. * If the on-disk inode is already linked to a directory
  858. * entry, copy all of the inode into the in-core inode.
  859. * xfs_iformat() handles copying in the inode format
  860. * specific information.
  861. * Otherwise, just get the truly permanent information.
  862. */
  863. if (dip->di_core.di_mode) {
  864. xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
  865. error = xfs_iformat(ip, dip);
  866. if (error) {
  867. kmem_zone_free(xfs_inode_zone, ip);
  868. xfs_trans_brelse(tp, bp);
  869. #ifdef DEBUG
  870. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  871. "xfs_iformat() returned error %d",
  872. error);
  873. #endif /* DEBUG */
  874. return error;
  875. }
  876. } else {
  877. ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
  878. ip->i_d.di_version = dip->di_core.di_version;
  879. ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
  880. ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
  881. /*
  882. * Make sure to pull in the mode here as well in
  883. * case the inode is released without being used.
  884. * This ensures that xfs_inactive() will see that
  885. * the inode is already free and not try to mess
  886. * with the uninitialized part of it.
  887. */
  888. ip->i_d.di_mode = 0;
  889. /*
  890. * Initialize the per-fork minima and maxima for a new
  891. * inode here. xfs_iformat will do it for old inodes.
  892. */
  893. ip->i_df.if_ext_max =
  894. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  895. }
  896. INIT_LIST_HEAD(&ip->i_reclaim);
  897. /*
  898. * The inode format changed when we moved the link count and
  899. * made it 32 bits long. If this is an old format inode,
  900. * convert it in memory to look like a new one. If it gets
  901. * flushed to disk we will convert back before flushing or
  902. * logging it. We zero out the new projid field and the old link
  903. * count field. We'll handle clearing the pad field (the remains
  904. * of the old uuid field) when we actually convert the inode to
  905. * the new format. We don't change the version number so that we
  906. * can distinguish this from a real new format inode.
  907. */
  908. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  909. ip->i_d.di_nlink = ip->i_d.di_onlink;
  910. ip->i_d.di_onlink = 0;
  911. ip->i_d.di_projid = 0;
  912. }
  913. ip->i_delayed_blks = 0;
  914. ip->i_size = ip->i_d.di_size;
  915. /*
  916. * Mark the buffer containing the inode as something to keep
  917. * around for a while. This helps to keep recently accessed
  918. * meta-data in-core longer.
  919. */
  920. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  921. /*
  922. * Use xfs_trans_brelse() to release the buffer containing the
  923. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  924. * in xfs_itobp() above. If tp is NULL, this is just a normal
  925. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  926. * will only release the buffer if it is not dirty within the
  927. * transaction. It will be OK to release the buffer in this case,
  928. * because inodes on disk are never destroyed and we will be
  929. * locking the new in-core inode before putting it in the hash
  930. * table where other processes can find it. Thus we don't have
  931. * to worry about the inode being changed just because we released
  932. * the buffer.
  933. */
  934. xfs_trans_brelse(tp, bp);
  935. *ipp = ip;
  936. return 0;
  937. }
  938. /*
  939. * Read in extents from a btree-format inode.
  940. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  941. */
  942. int
  943. xfs_iread_extents(
  944. xfs_trans_t *tp,
  945. xfs_inode_t *ip,
  946. int whichfork)
  947. {
  948. int error;
  949. xfs_ifork_t *ifp;
  950. xfs_extnum_t nextents;
  951. size_t size;
  952. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  953. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  954. ip->i_mount);
  955. return XFS_ERROR(EFSCORRUPTED);
  956. }
  957. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  958. size = nextents * sizeof(xfs_bmbt_rec_t);
  959. ifp = XFS_IFORK_PTR(ip, whichfork);
  960. /*
  961. * We know that the size is valid (it's checked in iformat_btree)
  962. */
  963. ifp->if_lastex = NULLEXTNUM;
  964. ifp->if_bytes = ifp->if_real_bytes = 0;
  965. ifp->if_flags |= XFS_IFEXTENTS;
  966. xfs_iext_add(ifp, 0, nextents);
  967. error = xfs_bmap_read_extents(tp, ip, whichfork);
  968. if (error) {
  969. xfs_iext_destroy(ifp);
  970. ifp->if_flags &= ~XFS_IFEXTENTS;
  971. return error;
  972. }
  973. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  974. return 0;
  975. }
  976. /*
  977. * Allocate an inode on disk and return a copy of its in-core version.
  978. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  979. * appropriately within the inode. The uid and gid for the inode are
  980. * set according to the contents of the given cred structure.
  981. *
  982. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  983. * has a free inode available, call xfs_iget()
  984. * to obtain the in-core version of the allocated inode. Finally,
  985. * fill in the inode and log its initial contents. In this case,
  986. * ialloc_context would be set to NULL and call_again set to false.
  987. *
  988. * If xfs_dialloc() does not have an available inode,
  989. * it will replenish its supply by doing an allocation. Since we can
  990. * only do one allocation within a transaction without deadlocks, we
  991. * must commit the current transaction before returning the inode itself.
  992. * In this case, therefore, we will set call_again to true and return.
  993. * The caller should then commit the current transaction, start a new
  994. * transaction, and call xfs_ialloc() again to actually get the inode.
  995. *
  996. * To ensure that some other process does not grab the inode that
  997. * was allocated during the first call to xfs_ialloc(), this routine
  998. * also returns the [locked] bp pointing to the head of the freelist
  999. * as ialloc_context. The caller should hold this buffer across
  1000. * the commit and pass it back into this routine on the second call.
  1001. *
  1002. * If we are allocating quota inodes, we do not have a parent inode
  1003. * to attach to or associate with (i.e. pip == NULL) because they
  1004. * are not linked into the directory structure - they are attached
  1005. * directly to the superblock - and so have no parent.
  1006. */
  1007. int
  1008. xfs_ialloc(
  1009. xfs_trans_t *tp,
  1010. xfs_inode_t *pip,
  1011. mode_t mode,
  1012. xfs_nlink_t nlink,
  1013. xfs_dev_t rdev,
  1014. cred_t *cr,
  1015. xfs_prid_t prid,
  1016. int okalloc,
  1017. xfs_buf_t **ialloc_context,
  1018. boolean_t *call_again,
  1019. xfs_inode_t **ipp)
  1020. {
  1021. xfs_ino_t ino;
  1022. xfs_inode_t *ip;
  1023. bhv_vnode_t *vp;
  1024. uint flags;
  1025. int error;
  1026. /*
  1027. * Call the space management code to pick
  1028. * the on-disk inode to be allocated.
  1029. */
  1030. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1031. ialloc_context, call_again, &ino);
  1032. if (error != 0) {
  1033. return error;
  1034. }
  1035. if (*call_again || ino == NULLFSINO) {
  1036. *ipp = NULL;
  1037. return 0;
  1038. }
  1039. ASSERT(*ialloc_context == NULL);
  1040. /*
  1041. * Get the in-core inode with the lock held exclusively.
  1042. * This is because we're setting fields here we need
  1043. * to prevent others from looking at until we're done.
  1044. */
  1045. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1046. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1047. if (error != 0) {
  1048. return error;
  1049. }
  1050. ASSERT(ip != NULL);
  1051. vp = XFS_ITOV(ip);
  1052. ip->i_d.di_mode = (__uint16_t)mode;
  1053. ip->i_d.di_onlink = 0;
  1054. ip->i_d.di_nlink = nlink;
  1055. ASSERT(ip->i_d.di_nlink == nlink);
  1056. ip->i_d.di_uid = current_fsuid(cr);
  1057. ip->i_d.di_gid = current_fsgid(cr);
  1058. ip->i_d.di_projid = prid;
  1059. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1060. /*
  1061. * If the superblock version is up to where we support new format
  1062. * inodes and this is currently an old format inode, then change
  1063. * the inode version number now. This way we only do the conversion
  1064. * here rather than here and in the flush/logging code.
  1065. */
  1066. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1067. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1068. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1069. /*
  1070. * We've already zeroed the old link count, the projid field,
  1071. * and the pad field.
  1072. */
  1073. }
  1074. /*
  1075. * Project ids won't be stored on disk if we are using a version 1 inode.
  1076. */
  1077. if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1078. xfs_bump_ino_vers2(tp, ip);
  1079. if (pip && XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1080. ip->i_d.di_gid = pip->i_d.di_gid;
  1081. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1082. ip->i_d.di_mode |= S_ISGID;
  1083. }
  1084. }
  1085. /*
  1086. * If the group ID of the new file does not match the effective group
  1087. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1088. * (and only if the irix_sgid_inherit compatibility variable is set).
  1089. */
  1090. if ((irix_sgid_inherit) &&
  1091. (ip->i_d.di_mode & S_ISGID) &&
  1092. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1093. ip->i_d.di_mode &= ~S_ISGID;
  1094. }
  1095. ip->i_d.di_size = 0;
  1096. ip->i_size = 0;
  1097. ip->i_d.di_nextents = 0;
  1098. ASSERT(ip->i_d.di_nblocks == 0);
  1099. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1100. /*
  1101. * di_gen will have been taken care of in xfs_iread.
  1102. */
  1103. ip->i_d.di_extsize = 0;
  1104. ip->i_d.di_dmevmask = 0;
  1105. ip->i_d.di_dmstate = 0;
  1106. ip->i_d.di_flags = 0;
  1107. flags = XFS_ILOG_CORE;
  1108. switch (mode & S_IFMT) {
  1109. case S_IFIFO:
  1110. case S_IFCHR:
  1111. case S_IFBLK:
  1112. case S_IFSOCK:
  1113. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1114. ip->i_df.if_u2.if_rdev = rdev;
  1115. ip->i_df.if_flags = 0;
  1116. flags |= XFS_ILOG_DEV;
  1117. break;
  1118. case S_IFREG:
  1119. if (pip && xfs_inode_is_filestream(pip)) {
  1120. error = xfs_filestream_associate(pip, ip);
  1121. if (error < 0)
  1122. return -error;
  1123. if (!error)
  1124. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1125. }
  1126. /* fall through */
  1127. case S_IFDIR:
  1128. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1129. uint di_flags = 0;
  1130. if ((mode & S_IFMT) == S_IFDIR) {
  1131. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1132. di_flags |= XFS_DIFLAG_RTINHERIT;
  1133. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1134. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1135. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1136. }
  1137. } else if ((mode & S_IFMT) == S_IFREG) {
  1138. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1139. di_flags |= XFS_DIFLAG_REALTIME;
  1140. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1141. }
  1142. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1143. di_flags |= XFS_DIFLAG_EXTSIZE;
  1144. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1145. }
  1146. }
  1147. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1148. xfs_inherit_noatime)
  1149. di_flags |= XFS_DIFLAG_NOATIME;
  1150. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1151. xfs_inherit_nodump)
  1152. di_flags |= XFS_DIFLAG_NODUMP;
  1153. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1154. xfs_inherit_sync)
  1155. di_flags |= XFS_DIFLAG_SYNC;
  1156. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1157. xfs_inherit_nosymlinks)
  1158. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1159. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1160. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1161. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1162. xfs_inherit_nodefrag)
  1163. di_flags |= XFS_DIFLAG_NODEFRAG;
  1164. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1165. di_flags |= XFS_DIFLAG_FILESTREAM;
  1166. ip->i_d.di_flags |= di_flags;
  1167. }
  1168. /* FALLTHROUGH */
  1169. case S_IFLNK:
  1170. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1171. ip->i_df.if_flags = XFS_IFEXTENTS;
  1172. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1173. ip->i_df.if_u1.if_extents = NULL;
  1174. break;
  1175. default:
  1176. ASSERT(0);
  1177. }
  1178. /*
  1179. * Attribute fork settings for new inode.
  1180. */
  1181. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1182. ip->i_d.di_anextents = 0;
  1183. /*
  1184. * Log the new values stuffed into the inode.
  1185. */
  1186. xfs_trans_log_inode(tp, ip, flags);
  1187. /* now that we have an i_mode we can setup inode ops and unlock */
  1188. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1189. *ipp = ip;
  1190. return 0;
  1191. }
  1192. /*
  1193. * Check to make sure that there are no blocks allocated to the
  1194. * file beyond the size of the file. We don't check this for
  1195. * files with fixed size extents or real time extents, but we
  1196. * at least do it for regular files.
  1197. */
  1198. #ifdef DEBUG
  1199. void
  1200. xfs_isize_check(
  1201. xfs_mount_t *mp,
  1202. xfs_inode_t *ip,
  1203. xfs_fsize_t isize)
  1204. {
  1205. xfs_fileoff_t map_first;
  1206. int nimaps;
  1207. xfs_bmbt_irec_t imaps[2];
  1208. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1209. return;
  1210. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1211. return;
  1212. nimaps = 2;
  1213. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1214. /*
  1215. * The filesystem could be shutting down, so bmapi may return
  1216. * an error.
  1217. */
  1218. if (xfs_bmapi(NULL, ip, map_first,
  1219. (XFS_B_TO_FSB(mp,
  1220. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1221. map_first),
  1222. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1223. NULL, NULL))
  1224. return;
  1225. ASSERT(nimaps == 1);
  1226. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1227. }
  1228. #endif /* DEBUG */
  1229. /*
  1230. * Calculate the last possible buffered byte in a file. This must
  1231. * include data that was buffered beyond the EOF by the write code.
  1232. * This also needs to deal with overflowing the xfs_fsize_t type
  1233. * which can happen for sizes near the limit.
  1234. *
  1235. * We also need to take into account any blocks beyond the EOF. It
  1236. * may be the case that they were buffered by a write which failed.
  1237. * In that case the pages will still be in memory, but the inode size
  1238. * will never have been updated.
  1239. */
  1240. xfs_fsize_t
  1241. xfs_file_last_byte(
  1242. xfs_inode_t *ip)
  1243. {
  1244. xfs_mount_t *mp;
  1245. xfs_fsize_t last_byte;
  1246. xfs_fileoff_t last_block;
  1247. xfs_fileoff_t size_last_block;
  1248. int error;
  1249. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1250. mp = ip->i_mount;
  1251. /*
  1252. * Only check for blocks beyond the EOF if the extents have
  1253. * been read in. This eliminates the need for the inode lock,
  1254. * and it also saves us from looking when it really isn't
  1255. * necessary.
  1256. */
  1257. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1258. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1259. XFS_DATA_FORK);
  1260. if (error) {
  1261. last_block = 0;
  1262. }
  1263. } else {
  1264. last_block = 0;
  1265. }
  1266. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1267. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1268. last_byte = XFS_FSB_TO_B(mp, last_block);
  1269. if (last_byte < 0) {
  1270. return XFS_MAXIOFFSET(mp);
  1271. }
  1272. last_byte += (1 << mp->m_writeio_log);
  1273. if (last_byte < 0) {
  1274. return XFS_MAXIOFFSET(mp);
  1275. }
  1276. return last_byte;
  1277. }
  1278. #if defined(XFS_RW_TRACE)
  1279. STATIC void
  1280. xfs_itrunc_trace(
  1281. int tag,
  1282. xfs_inode_t *ip,
  1283. int flag,
  1284. xfs_fsize_t new_size,
  1285. xfs_off_t toss_start,
  1286. xfs_off_t toss_finish)
  1287. {
  1288. if (ip->i_rwtrace == NULL) {
  1289. return;
  1290. }
  1291. ktrace_enter(ip->i_rwtrace,
  1292. (void*)((long)tag),
  1293. (void*)ip,
  1294. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1295. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1296. (void*)((long)flag),
  1297. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1298. (void*)(unsigned long)(new_size & 0xffffffff),
  1299. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1300. (void*)(unsigned long)(toss_start & 0xffffffff),
  1301. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1302. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1303. (void*)(unsigned long)current_cpu(),
  1304. (void*)(unsigned long)current_pid(),
  1305. (void*)NULL,
  1306. (void*)NULL,
  1307. (void*)NULL);
  1308. }
  1309. #else
  1310. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1311. #endif
  1312. /*
  1313. * Start the truncation of the file to new_size. The new size
  1314. * must be smaller than the current size. This routine will
  1315. * clear the buffer and page caches of file data in the removed
  1316. * range, and xfs_itruncate_finish() will remove the underlying
  1317. * disk blocks.
  1318. *
  1319. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1320. * must NOT have the inode lock held at all. This is because we're
  1321. * calling into the buffer/page cache code and we can't hold the
  1322. * inode lock when we do so.
  1323. *
  1324. * We need to wait for any direct I/Os in flight to complete before we
  1325. * proceed with the truncate. This is needed to prevent the extents
  1326. * being read or written by the direct I/Os from being removed while the
  1327. * I/O is in flight as there is no other method of synchronising
  1328. * direct I/O with the truncate operation. Also, because we hold
  1329. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1330. * started until the truncate completes and drops the lock. Essentially,
  1331. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1332. * between direct I/Os and the truncate operation.
  1333. *
  1334. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1335. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1336. * in the case that the caller is locking things out of order and
  1337. * may not be able to call xfs_itruncate_finish() with the inode lock
  1338. * held without dropping the I/O lock. If the caller must drop the
  1339. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1340. * must be called again with all the same restrictions as the initial
  1341. * call.
  1342. */
  1343. int
  1344. xfs_itruncate_start(
  1345. xfs_inode_t *ip,
  1346. uint flags,
  1347. xfs_fsize_t new_size)
  1348. {
  1349. xfs_fsize_t last_byte;
  1350. xfs_off_t toss_start;
  1351. xfs_mount_t *mp;
  1352. bhv_vnode_t *vp;
  1353. int error = 0;
  1354. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1355. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1356. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1357. (flags == XFS_ITRUNC_MAYBE));
  1358. mp = ip->i_mount;
  1359. vp = XFS_ITOV(ip);
  1360. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1361. /*
  1362. * Call toss_pages or flushinval_pages to get rid of pages
  1363. * overlapping the region being removed. We have to use
  1364. * the less efficient flushinval_pages in the case that the
  1365. * caller may not be able to finish the truncate without
  1366. * dropping the inode's I/O lock. Make sure
  1367. * to catch any pages brought in by buffers overlapping
  1368. * the EOF by searching out beyond the isize by our
  1369. * block size. We round new_size up to a block boundary
  1370. * so that we don't toss things on the same block as
  1371. * new_size but before it.
  1372. *
  1373. * Before calling toss_page or flushinval_pages, make sure to
  1374. * call remapf() over the same region if the file is mapped.
  1375. * This frees up mapped file references to the pages in the
  1376. * given range and for the flushinval_pages case it ensures
  1377. * that we get the latest mapped changes flushed out.
  1378. */
  1379. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1380. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1381. if (toss_start < 0) {
  1382. /*
  1383. * The place to start tossing is beyond our maximum
  1384. * file size, so there is no way that the data extended
  1385. * out there.
  1386. */
  1387. return 0;
  1388. }
  1389. last_byte = xfs_file_last_byte(ip);
  1390. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1391. last_byte);
  1392. if (last_byte > toss_start) {
  1393. if (flags & XFS_ITRUNC_DEFINITE) {
  1394. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1395. } else {
  1396. error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1397. }
  1398. }
  1399. #ifdef DEBUG
  1400. if (new_size == 0) {
  1401. ASSERT(VN_CACHED(vp) == 0);
  1402. }
  1403. #endif
  1404. return error;
  1405. }
  1406. /*
  1407. * Shrink the file to the given new_size. The new
  1408. * size must be smaller than the current size.
  1409. * This will free up the underlying blocks
  1410. * in the removed range after a call to xfs_itruncate_start()
  1411. * or xfs_atruncate_start().
  1412. *
  1413. * The transaction passed to this routine must have made
  1414. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1415. * This routine may commit the given transaction and
  1416. * start new ones, so make sure everything involved in
  1417. * the transaction is tidy before calling here.
  1418. * Some transaction will be returned to the caller to be
  1419. * committed. The incoming transaction must already include
  1420. * the inode, and both inode locks must be held exclusively.
  1421. * The inode must also be "held" within the transaction. On
  1422. * return the inode will be "held" within the returned transaction.
  1423. * This routine does NOT require any disk space to be reserved
  1424. * for it within the transaction.
  1425. *
  1426. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1427. * and it indicates the fork which is to be truncated. For the
  1428. * attribute fork we only support truncation to size 0.
  1429. *
  1430. * We use the sync parameter to indicate whether or not the first
  1431. * transaction we perform might have to be synchronous. For the attr fork,
  1432. * it needs to be so if the unlink of the inode is not yet known to be
  1433. * permanent in the log. This keeps us from freeing and reusing the
  1434. * blocks of the attribute fork before the unlink of the inode becomes
  1435. * permanent.
  1436. *
  1437. * For the data fork, we normally have to run synchronously if we're
  1438. * being called out of the inactive path or we're being called
  1439. * out of the create path where we're truncating an existing file.
  1440. * Either way, the truncate needs to be sync so blocks don't reappear
  1441. * in the file with altered data in case of a crash. wsync filesystems
  1442. * can run the first case async because anything that shrinks the inode
  1443. * has to run sync so by the time we're called here from inactive, the
  1444. * inode size is permanently set to 0.
  1445. *
  1446. * Calls from the truncate path always need to be sync unless we're
  1447. * in a wsync filesystem and the file has already been unlinked.
  1448. *
  1449. * The caller is responsible for correctly setting the sync parameter.
  1450. * It gets too hard for us to guess here which path we're being called
  1451. * out of just based on inode state.
  1452. */
  1453. int
  1454. xfs_itruncate_finish(
  1455. xfs_trans_t **tp,
  1456. xfs_inode_t *ip,
  1457. xfs_fsize_t new_size,
  1458. int fork,
  1459. int sync)
  1460. {
  1461. xfs_fsblock_t first_block;
  1462. xfs_fileoff_t first_unmap_block;
  1463. xfs_fileoff_t last_block;
  1464. xfs_filblks_t unmap_len=0;
  1465. xfs_mount_t *mp;
  1466. xfs_trans_t *ntp;
  1467. int done;
  1468. int committed;
  1469. xfs_bmap_free_t free_list;
  1470. int error;
  1471. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1472. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1473. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1474. ASSERT(*tp != NULL);
  1475. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1476. ASSERT(ip->i_transp == *tp);
  1477. ASSERT(ip->i_itemp != NULL);
  1478. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1479. ntp = *tp;
  1480. mp = (ntp)->t_mountp;
  1481. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1482. /*
  1483. * We only support truncating the entire attribute fork.
  1484. */
  1485. if (fork == XFS_ATTR_FORK) {
  1486. new_size = 0LL;
  1487. }
  1488. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1489. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1490. /*
  1491. * The first thing we do is set the size to new_size permanently
  1492. * on disk. This way we don't have to worry about anyone ever
  1493. * being able to look at the data being freed even in the face
  1494. * of a crash. What we're getting around here is the case where
  1495. * we free a block, it is allocated to another file, it is written
  1496. * to, and then we crash. If the new data gets written to the
  1497. * file but the log buffers containing the free and reallocation
  1498. * don't, then we'd end up with garbage in the blocks being freed.
  1499. * As long as we make the new_size permanent before actually
  1500. * freeing any blocks it doesn't matter if they get writtten to.
  1501. *
  1502. * The callers must signal into us whether or not the size
  1503. * setting here must be synchronous. There are a few cases
  1504. * where it doesn't have to be synchronous. Those cases
  1505. * occur if the file is unlinked and we know the unlink is
  1506. * permanent or if the blocks being truncated are guaranteed
  1507. * to be beyond the inode eof (regardless of the link count)
  1508. * and the eof value is permanent. Both of these cases occur
  1509. * only on wsync-mounted filesystems. In those cases, we're
  1510. * guaranteed that no user will ever see the data in the blocks
  1511. * that are being truncated so the truncate can run async.
  1512. * In the free beyond eof case, the file may wind up with
  1513. * more blocks allocated to it than it needs if we crash
  1514. * and that won't get fixed until the next time the file
  1515. * is re-opened and closed but that's ok as that shouldn't
  1516. * be too many blocks.
  1517. *
  1518. * However, we can't just make all wsync xactions run async
  1519. * because there's one call out of the create path that needs
  1520. * to run sync where it's truncating an existing file to size
  1521. * 0 whose size is > 0.
  1522. *
  1523. * It's probably possible to come up with a test in this
  1524. * routine that would correctly distinguish all the above
  1525. * cases from the values of the function parameters and the
  1526. * inode state but for sanity's sake, I've decided to let the
  1527. * layers above just tell us. It's simpler to correctly figure
  1528. * out in the layer above exactly under what conditions we
  1529. * can run async and I think it's easier for others read and
  1530. * follow the logic in case something has to be changed.
  1531. * cscope is your friend -- rcc.
  1532. *
  1533. * The attribute fork is much simpler.
  1534. *
  1535. * For the attribute fork we allow the caller to tell us whether
  1536. * the unlink of the inode that led to this call is yet permanent
  1537. * in the on disk log. If it is not and we will be freeing extents
  1538. * in this inode then we make the first transaction synchronous
  1539. * to make sure that the unlink is permanent by the time we free
  1540. * the blocks.
  1541. */
  1542. if (fork == XFS_DATA_FORK) {
  1543. if (ip->i_d.di_nextents > 0) {
  1544. /*
  1545. * If we are not changing the file size then do
  1546. * not update the on-disk file size - we may be
  1547. * called from xfs_inactive_free_eofblocks(). If we
  1548. * update the on-disk file size and then the system
  1549. * crashes before the contents of the file are
  1550. * flushed to disk then the files may be full of
  1551. * holes (ie NULL files bug).
  1552. */
  1553. if (ip->i_size != new_size) {
  1554. ip->i_d.di_size = new_size;
  1555. ip->i_size = new_size;
  1556. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1557. }
  1558. }
  1559. } else if (sync) {
  1560. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1561. if (ip->i_d.di_anextents > 0)
  1562. xfs_trans_set_sync(ntp);
  1563. }
  1564. ASSERT(fork == XFS_DATA_FORK ||
  1565. (fork == XFS_ATTR_FORK &&
  1566. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1567. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1568. /*
  1569. * Since it is possible for space to become allocated beyond
  1570. * the end of the file (in a crash where the space is allocated
  1571. * but the inode size is not yet updated), simply remove any
  1572. * blocks which show up between the new EOF and the maximum
  1573. * possible file size. If the first block to be removed is
  1574. * beyond the maximum file size (ie it is the same as last_block),
  1575. * then there is nothing to do.
  1576. */
  1577. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1578. ASSERT(first_unmap_block <= last_block);
  1579. done = 0;
  1580. if (last_block == first_unmap_block) {
  1581. done = 1;
  1582. } else {
  1583. unmap_len = last_block - first_unmap_block + 1;
  1584. }
  1585. while (!done) {
  1586. /*
  1587. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1588. * will tell us whether it freed the entire range or
  1589. * not. If this is a synchronous mount (wsync),
  1590. * then we can tell bunmapi to keep all the
  1591. * transactions asynchronous since the unlink
  1592. * transaction that made this inode inactive has
  1593. * already hit the disk. There's no danger of
  1594. * the freed blocks being reused, there being a
  1595. * crash, and the reused blocks suddenly reappearing
  1596. * in this file with garbage in them once recovery
  1597. * runs.
  1598. */
  1599. XFS_BMAP_INIT(&free_list, &first_block);
  1600. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1601. first_unmap_block, unmap_len,
  1602. XFS_BMAPI_AFLAG(fork) |
  1603. (sync ? 0 : XFS_BMAPI_ASYNC),
  1604. XFS_ITRUNC_MAX_EXTENTS,
  1605. &first_block, &free_list,
  1606. NULL, &done);
  1607. if (error) {
  1608. /*
  1609. * If the bunmapi call encounters an error,
  1610. * return to the caller where the transaction
  1611. * can be properly aborted. We just need to
  1612. * make sure we're not holding any resources
  1613. * that we were not when we came in.
  1614. */
  1615. xfs_bmap_cancel(&free_list);
  1616. return error;
  1617. }
  1618. /*
  1619. * Duplicate the transaction that has the permanent
  1620. * reservation and commit the old transaction.
  1621. */
  1622. error = xfs_bmap_finish(tp, &free_list, &committed);
  1623. ntp = *tp;
  1624. if (error) {
  1625. /*
  1626. * If the bmap finish call encounters an error,
  1627. * return to the caller where the transaction
  1628. * can be properly aborted. We just need to
  1629. * make sure we're not holding any resources
  1630. * that we were not when we came in.
  1631. *
  1632. * Aborting from this point might lose some
  1633. * blocks in the file system, but oh well.
  1634. */
  1635. xfs_bmap_cancel(&free_list);
  1636. if (committed) {
  1637. /*
  1638. * If the passed in transaction committed
  1639. * in xfs_bmap_finish(), then we want to
  1640. * add the inode to this one before returning.
  1641. * This keeps things simple for the higher
  1642. * level code, because it always knows that
  1643. * the inode is locked and held in the
  1644. * transaction that returns to it whether
  1645. * errors occur or not. We don't mark the
  1646. * inode dirty so that this transaction can
  1647. * be easily aborted if possible.
  1648. */
  1649. xfs_trans_ijoin(ntp, ip,
  1650. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1651. xfs_trans_ihold(ntp, ip);
  1652. }
  1653. return error;
  1654. }
  1655. if (committed) {
  1656. /*
  1657. * The first xact was committed,
  1658. * so add the inode to the new one.
  1659. * Mark it dirty so it will be logged
  1660. * and moved forward in the log as
  1661. * part of every commit.
  1662. */
  1663. xfs_trans_ijoin(ntp, ip,
  1664. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1665. xfs_trans_ihold(ntp, ip);
  1666. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1667. }
  1668. ntp = xfs_trans_dup(ntp);
  1669. (void) xfs_trans_commit(*tp, 0);
  1670. *tp = ntp;
  1671. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1672. XFS_TRANS_PERM_LOG_RES,
  1673. XFS_ITRUNCATE_LOG_COUNT);
  1674. /*
  1675. * Add the inode being truncated to the next chained
  1676. * transaction.
  1677. */
  1678. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1679. xfs_trans_ihold(ntp, ip);
  1680. if (error)
  1681. return (error);
  1682. }
  1683. /*
  1684. * Only update the size in the case of the data fork, but
  1685. * always re-log the inode so that our permanent transaction
  1686. * can keep on rolling it forward in the log.
  1687. */
  1688. if (fork == XFS_DATA_FORK) {
  1689. xfs_isize_check(mp, ip, new_size);
  1690. /*
  1691. * If we are not changing the file size then do
  1692. * not update the on-disk file size - we may be
  1693. * called from xfs_inactive_free_eofblocks(). If we
  1694. * update the on-disk file size and then the system
  1695. * crashes before the contents of the file are
  1696. * flushed to disk then the files may be full of
  1697. * holes (ie NULL files bug).
  1698. */
  1699. if (ip->i_size != new_size) {
  1700. ip->i_d.di_size = new_size;
  1701. ip->i_size = new_size;
  1702. }
  1703. }
  1704. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1705. ASSERT((new_size != 0) ||
  1706. (fork == XFS_ATTR_FORK) ||
  1707. (ip->i_delayed_blks == 0));
  1708. ASSERT((new_size != 0) ||
  1709. (fork == XFS_ATTR_FORK) ||
  1710. (ip->i_d.di_nextents == 0));
  1711. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1712. return 0;
  1713. }
  1714. /*
  1715. * xfs_igrow_start
  1716. *
  1717. * Do the first part of growing a file: zero any data in the last
  1718. * block that is beyond the old EOF. We need to do this before
  1719. * the inode is joined to the transaction to modify the i_size.
  1720. * That way we can drop the inode lock and call into the buffer
  1721. * cache to get the buffer mapping the EOF.
  1722. */
  1723. int
  1724. xfs_igrow_start(
  1725. xfs_inode_t *ip,
  1726. xfs_fsize_t new_size,
  1727. cred_t *credp)
  1728. {
  1729. int error;
  1730. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1731. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1732. ASSERT(new_size > ip->i_size);
  1733. /*
  1734. * Zero any pages that may have been created by
  1735. * xfs_write_file() beyond the end of the file
  1736. * and any blocks between the old and new file sizes.
  1737. */
  1738. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1739. ip->i_size);
  1740. return error;
  1741. }
  1742. /*
  1743. * xfs_igrow_finish
  1744. *
  1745. * This routine is called to extend the size of a file.
  1746. * The inode must have both the iolock and the ilock locked
  1747. * for update and it must be a part of the current transaction.
  1748. * The xfs_igrow_start() function must have been called previously.
  1749. * If the change_flag is not zero, the inode change timestamp will
  1750. * be updated.
  1751. */
  1752. void
  1753. xfs_igrow_finish(
  1754. xfs_trans_t *tp,
  1755. xfs_inode_t *ip,
  1756. xfs_fsize_t new_size,
  1757. int change_flag)
  1758. {
  1759. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1760. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1761. ASSERT(ip->i_transp == tp);
  1762. ASSERT(new_size > ip->i_size);
  1763. /*
  1764. * Update the file size. Update the inode change timestamp
  1765. * if change_flag set.
  1766. */
  1767. ip->i_d.di_size = new_size;
  1768. ip->i_size = new_size;
  1769. if (change_flag)
  1770. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1771. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1772. }
  1773. /*
  1774. * This is called when the inode's link count goes to 0.
  1775. * We place the on-disk inode on a list in the AGI. It
  1776. * will be pulled from this list when the inode is freed.
  1777. */
  1778. int
  1779. xfs_iunlink(
  1780. xfs_trans_t *tp,
  1781. xfs_inode_t *ip)
  1782. {
  1783. xfs_mount_t *mp;
  1784. xfs_agi_t *agi;
  1785. xfs_dinode_t *dip;
  1786. xfs_buf_t *agibp;
  1787. xfs_buf_t *ibp;
  1788. xfs_agnumber_t agno;
  1789. xfs_daddr_t agdaddr;
  1790. xfs_agino_t agino;
  1791. short bucket_index;
  1792. int offset;
  1793. int error;
  1794. int agi_ok;
  1795. ASSERT(ip->i_d.di_nlink == 0);
  1796. ASSERT(ip->i_d.di_mode != 0);
  1797. ASSERT(ip->i_transp == tp);
  1798. mp = tp->t_mountp;
  1799. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1800. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1801. /*
  1802. * Get the agi buffer first. It ensures lock ordering
  1803. * on the list.
  1804. */
  1805. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1806. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1807. if (error) {
  1808. return error;
  1809. }
  1810. /*
  1811. * Validate the magic number of the agi block.
  1812. */
  1813. agi = XFS_BUF_TO_AGI(agibp);
  1814. agi_ok =
  1815. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1816. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1817. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1818. XFS_RANDOM_IUNLINK))) {
  1819. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1820. xfs_trans_brelse(tp, agibp);
  1821. return XFS_ERROR(EFSCORRUPTED);
  1822. }
  1823. /*
  1824. * Get the index into the agi hash table for the
  1825. * list this inode will go on.
  1826. */
  1827. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1828. ASSERT(agino != 0);
  1829. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1830. ASSERT(agi->agi_unlinked[bucket_index]);
  1831. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1832. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1833. /*
  1834. * There is already another inode in the bucket we need
  1835. * to add ourselves to. Add us at the front of the list.
  1836. * Here we put the head pointer into our next pointer,
  1837. * and then we fall through to point the head at us.
  1838. */
  1839. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1840. if (error) {
  1841. return error;
  1842. }
  1843. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1844. /* both on-disk, don't endian flip twice */
  1845. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1846. offset = ip->i_boffset +
  1847. offsetof(xfs_dinode_t, di_next_unlinked);
  1848. xfs_trans_inode_buf(tp, ibp);
  1849. xfs_trans_log_buf(tp, ibp, offset,
  1850. (offset + sizeof(xfs_agino_t) - 1));
  1851. xfs_inobp_check(mp, ibp);
  1852. }
  1853. /*
  1854. * Point the bucket head pointer at the inode being inserted.
  1855. */
  1856. ASSERT(agino != 0);
  1857. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1858. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1859. (sizeof(xfs_agino_t) * bucket_index);
  1860. xfs_trans_log_buf(tp, agibp, offset,
  1861. (offset + sizeof(xfs_agino_t) - 1));
  1862. return 0;
  1863. }
  1864. /*
  1865. * Pull the on-disk inode from the AGI unlinked list.
  1866. */
  1867. STATIC int
  1868. xfs_iunlink_remove(
  1869. xfs_trans_t *tp,
  1870. xfs_inode_t *ip)
  1871. {
  1872. xfs_ino_t next_ino;
  1873. xfs_mount_t *mp;
  1874. xfs_agi_t *agi;
  1875. xfs_dinode_t *dip;
  1876. xfs_buf_t *agibp;
  1877. xfs_buf_t *ibp;
  1878. xfs_agnumber_t agno;
  1879. xfs_daddr_t agdaddr;
  1880. xfs_agino_t agino;
  1881. xfs_agino_t next_agino;
  1882. xfs_buf_t *last_ibp;
  1883. xfs_dinode_t *last_dip = NULL;
  1884. short bucket_index;
  1885. int offset, last_offset = 0;
  1886. int error;
  1887. int agi_ok;
  1888. /*
  1889. * First pull the on-disk inode from the AGI unlinked list.
  1890. */
  1891. mp = tp->t_mountp;
  1892. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1893. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1894. /*
  1895. * Get the agi buffer first. It ensures lock ordering
  1896. * on the list.
  1897. */
  1898. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1899. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1900. if (error) {
  1901. cmn_err(CE_WARN,
  1902. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1903. error, mp->m_fsname);
  1904. return error;
  1905. }
  1906. /*
  1907. * Validate the magic number of the agi block.
  1908. */
  1909. agi = XFS_BUF_TO_AGI(agibp);
  1910. agi_ok =
  1911. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1912. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1913. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1914. XFS_RANDOM_IUNLINK_REMOVE))) {
  1915. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1916. mp, agi);
  1917. xfs_trans_brelse(tp, agibp);
  1918. cmn_err(CE_WARN,
  1919. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1920. mp->m_fsname);
  1921. return XFS_ERROR(EFSCORRUPTED);
  1922. }
  1923. /*
  1924. * Get the index into the agi hash table for the
  1925. * list this inode will go on.
  1926. */
  1927. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1928. ASSERT(agino != 0);
  1929. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1930. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1931. ASSERT(agi->agi_unlinked[bucket_index]);
  1932. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1933. /*
  1934. * We're at the head of the list. Get the inode's
  1935. * on-disk buffer to see if there is anyone after us
  1936. * on the list. Only modify our next pointer if it
  1937. * is not already NULLAGINO. This saves us the overhead
  1938. * of dealing with the buffer when there is no need to
  1939. * change it.
  1940. */
  1941. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1942. if (error) {
  1943. cmn_err(CE_WARN,
  1944. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1945. error, mp->m_fsname);
  1946. return error;
  1947. }
  1948. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1949. ASSERT(next_agino != 0);
  1950. if (next_agino != NULLAGINO) {
  1951. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1952. offset = ip->i_boffset +
  1953. offsetof(xfs_dinode_t, di_next_unlinked);
  1954. xfs_trans_inode_buf(tp, ibp);
  1955. xfs_trans_log_buf(tp, ibp, offset,
  1956. (offset + sizeof(xfs_agino_t) - 1));
  1957. xfs_inobp_check(mp, ibp);
  1958. } else {
  1959. xfs_trans_brelse(tp, ibp);
  1960. }
  1961. /*
  1962. * Point the bucket head pointer at the next inode.
  1963. */
  1964. ASSERT(next_agino != 0);
  1965. ASSERT(next_agino != agino);
  1966. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1967. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1968. (sizeof(xfs_agino_t) * bucket_index);
  1969. xfs_trans_log_buf(tp, agibp, offset,
  1970. (offset + sizeof(xfs_agino_t) - 1));
  1971. } else {
  1972. /*
  1973. * We need to search the list for the inode being freed.
  1974. */
  1975. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1976. last_ibp = NULL;
  1977. while (next_agino != agino) {
  1978. /*
  1979. * If the last inode wasn't the one pointing to
  1980. * us, then release its buffer since we're not
  1981. * going to do anything with it.
  1982. */
  1983. if (last_ibp != NULL) {
  1984. xfs_trans_brelse(tp, last_ibp);
  1985. }
  1986. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1987. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1988. &last_ibp, &last_offset);
  1989. if (error) {
  1990. cmn_err(CE_WARN,
  1991. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1992. error, mp->m_fsname);
  1993. return error;
  1994. }
  1995. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1996. ASSERT(next_agino != NULLAGINO);
  1997. ASSERT(next_agino != 0);
  1998. }
  1999. /*
  2000. * Now last_ibp points to the buffer previous to us on
  2001. * the unlinked list. Pull us from the list.
  2002. */
  2003. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  2004. if (error) {
  2005. cmn_err(CE_WARN,
  2006. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  2007. error, mp->m_fsname);
  2008. return error;
  2009. }
  2010. next_agino = be32_to_cpu(dip->di_next_unlinked);
  2011. ASSERT(next_agino != 0);
  2012. ASSERT(next_agino != agino);
  2013. if (next_agino != NULLAGINO) {
  2014. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  2015. offset = ip->i_boffset +
  2016. offsetof(xfs_dinode_t, di_next_unlinked);
  2017. xfs_trans_inode_buf(tp, ibp);
  2018. xfs_trans_log_buf(tp, ibp, offset,
  2019. (offset + sizeof(xfs_agino_t) - 1));
  2020. xfs_inobp_check(mp, ibp);
  2021. } else {
  2022. xfs_trans_brelse(tp, ibp);
  2023. }
  2024. /*
  2025. * Point the previous inode on the list to the next inode.
  2026. */
  2027. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  2028. ASSERT(next_agino != 0);
  2029. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2030. xfs_trans_inode_buf(tp, last_ibp);
  2031. xfs_trans_log_buf(tp, last_ibp, offset,
  2032. (offset + sizeof(xfs_agino_t) - 1));
  2033. xfs_inobp_check(mp, last_ibp);
  2034. }
  2035. return 0;
  2036. }
  2037. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2038. {
  2039. return (((ip->i_itemp == NULL) ||
  2040. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2041. (ip->i_update_core == 0));
  2042. }
  2043. STATIC void
  2044. xfs_ifree_cluster(
  2045. xfs_inode_t *free_ip,
  2046. xfs_trans_t *tp,
  2047. xfs_ino_t inum)
  2048. {
  2049. xfs_mount_t *mp = free_ip->i_mount;
  2050. int blks_per_cluster;
  2051. int nbufs;
  2052. int ninodes;
  2053. int i, j, found, pre_flushed;
  2054. xfs_daddr_t blkno;
  2055. xfs_buf_t *bp;
  2056. xfs_ihash_t *ih;
  2057. xfs_inode_t *ip, **ip_found;
  2058. xfs_inode_log_item_t *iip;
  2059. xfs_log_item_t *lip;
  2060. SPLDECL(s);
  2061. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2062. blks_per_cluster = 1;
  2063. ninodes = mp->m_sb.sb_inopblock;
  2064. nbufs = XFS_IALLOC_BLOCKS(mp);
  2065. } else {
  2066. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2067. mp->m_sb.sb_blocksize;
  2068. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2069. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2070. }
  2071. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2072. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2073. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2074. XFS_INO_TO_AGBNO(mp, inum));
  2075. /*
  2076. * Look for each inode in memory and attempt to lock it,
  2077. * we can be racing with flush and tail pushing here.
  2078. * any inode we get the locks on, add to an array of
  2079. * inode items to process later.
  2080. *
  2081. * The get the buffer lock, we could beat a flush
  2082. * or tail pushing thread to the lock here, in which
  2083. * case they will go looking for the inode buffer
  2084. * and fail, we need some other form of interlock
  2085. * here.
  2086. */
  2087. found = 0;
  2088. for (i = 0; i < ninodes; i++) {
  2089. ih = XFS_IHASH(mp, inum + i);
  2090. read_lock(&ih->ih_lock);
  2091. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2092. if (ip->i_ino == inum + i)
  2093. break;
  2094. }
  2095. /* Inode not in memory or we found it already,
  2096. * nothing to do
  2097. */
  2098. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2099. read_unlock(&ih->ih_lock);
  2100. continue;
  2101. }
  2102. if (xfs_inode_clean(ip)) {
  2103. read_unlock(&ih->ih_lock);
  2104. continue;
  2105. }
  2106. /* If we can get the locks then add it to the
  2107. * list, otherwise by the time we get the bp lock
  2108. * below it will already be attached to the
  2109. * inode buffer.
  2110. */
  2111. /* This inode will already be locked - by us, lets
  2112. * keep it that way.
  2113. */
  2114. if (ip == free_ip) {
  2115. if (xfs_iflock_nowait(ip)) {
  2116. xfs_iflags_set(ip, XFS_ISTALE);
  2117. if (xfs_inode_clean(ip)) {
  2118. xfs_ifunlock(ip);
  2119. } else {
  2120. ip_found[found++] = ip;
  2121. }
  2122. }
  2123. read_unlock(&ih->ih_lock);
  2124. continue;
  2125. }
  2126. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2127. if (xfs_iflock_nowait(ip)) {
  2128. xfs_iflags_set(ip, XFS_ISTALE);
  2129. if (xfs_inode_clean(ip)) {
  2130. xfs_ifunlock(ip);
  2131. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2132. } else {
  2133. ip_found[found++] = ip;
  2134. }
  2135. } else {
  2136. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2137. }
  2138. }
  2139. read_unlock(&ih->ih_lock);
  2140. }
  2141. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2142. mp->m_bsize * blks_per_cluster,
  2143. XFS_BUF_LOCK);
  2144. pre_flushed = 0;
  2145. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2146. while (lip) {
  2147. if (lip->li_type == XFS_LI_INODE) {
  2148. iip = (xfs_inode_log_item_t *)lip;
  2149. ASSERT(iip->ili_logged == 1);
  2150. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2151. AIL_LOCK(mp,s);
  2152. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2153. AIL_UNLOCK(mp, s);
  2154. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2155. pre_flushed++;
  2156. }
  2157. lip = lip->li_bio_list;
  2158. }
  2159. for (i = 0; i < found; i++) {
  2160. ip = ip_found[i];
  2161. iip = ip->i_itemp;
  2162. if (!iip) {
  2163. ip->i_update_core = 0;
  2164. xfs_ifunlock(ip);
  2165. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2166. continue;
  2167. }
  2168. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2169. iip->ili_format.ilf_fields = 0;
  2170. iip->ili_logged = 1;
  2171. AIL_LOCK(mp,s);
  2172. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2173. AIL_UNLOCK(mp, s);
  2174. xfs_buf_attach_iodone(bp,
  2175. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2176. xfs_istale_done, (xfs_log_item_t *)iip);
  2177. if (ip != free_ip) {
  2178. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2179. }
  2180. }
  2181. if (found || pre_flushed)
  2182. xfs_trans_stale_inode_buf(tp, bp);
  2183. xfs_trans_binval(tp, bp);
  2184. }
  2185. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2186. }
  2187. /*
  2188. * This is called to return an inode to the inode free list.
  2189. * The inode should already be truncated to 0 length and have
  2190. * no pages associated with it. This routine also assumes that
  2191. * the inode is already a part of the transaction.
  2192. *
  2193. * The on-disk copy of the inode will have been added to the list
  2194. * of unlinked inodes in the AGI. We need to remove the inode from
  2195. * that list atomically with respect to freeing it here.
  2196. */
  2197. int
  2198. xfs_ifree(
  2199. xfs_trans_t *tp,
  2200. xfs_inode_t *ip,
  2201. xfs_bmap_free_t *flist)
  2202. {
  2203. int error;
  2204. int delete;
  2205. xfs_ino_t first_ino;
  2206. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2207. ASSERT(ip->i_transp == tp);
  2208. ASSERT(ip->i_d.di_nlink == 0);
  2209. ASSERT(ip->i_d.di_nextents == 0);
  2210. ASSERT(ip->i_d.di_anextents == 0);
  2211. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2212. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2213. ASSERT(ip->i_d.di_nblocks == 0);
  2214. /*
  2215. * Pull the on-disk inode from the AGI unlinked list.
  2216. */
  2217. error = xfs_iunlink_remove(tp, ip);
  2218. if (error != 0) {
  2219. return error;
  2220. }
  2221. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2222. if (error != 0) {
  2223. return error;
  2224. }
  2225. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2226. ip->i_d.di_flags = 0;
  2227. ip->i_d.di_dmevmask = 0;
  2228. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2229. ip->i_df.if_ext_max =
  2230. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2231. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2232. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2233. /*
  2234. * Bump the generation count so no one will be confused
  2235. * by reincarnations of this inode.
  2236. */
  2237. ip->i_d.di_gen++;
  2238. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2239. if (delete) {
  2240. xfs_ifree_cluster(ip, tp, first_ino);
  2241. }
  2242. return 0;
  2243. }
  2244. /*
  2245. * Reallocate the space for if_broot based on the number of records
  2246. * being added or deleted as indicated in rec_diff. Move the records
  2247. * and pointers in if_broot to fit the new size. When shrinking this
  2248. * will eliminate holes between the records and pointers created by
  2249. * the caller. When growing this will create holes to be filled in
  2250. * by the caller.
  2251. *
  2252. * The caller must not request to add more records than would fit in
  2253. * the on-disk inode root. If the if_broot is currently NULL, then
  2254. * if we adding records one will be allocated. The caller must also
  2255. * not request that the number of records go below zero, although
  2256. * it can go to zero.
  2257. *
  2258. * ip -- the inode whose if_broot area is changing
  2259. * ext_diff -- the change in the number of records, positive or negative,
  2260. * requested for the if_broot array.
  2261. */
  2262. void
  2263. xfs_iroot_realloc(
  2264. xfs_inode_t *ip,
  2265. int rec_diff,
  2266. int whichfork)
  2267. {
  2268. int cur_max;
  2269. xfs_ifork_t *ifp;
  2270. xfs_bmbt_block_t *new_broot;
  2271. int new_max;
  2272. size_t new_size;
  2273. char *np;
  2274. char *op;
  2275. /*
  2276. * Handle the degenerate case quietly.
  2277. */
  2278. if (rec_diff == 0) {
  2279. return;
  2280. }
  2281. ifp = XFS_IFORK_PTR(ip, whichfork);
  2282. if (rec_diff > 0) {
  2283. /*
  2284. * If there wasn't any memory allocated before, just
  2285. * allocate it now and get out.
  2286. */
  2287. if (ifp->if_broot_bytes == 0) {
  2288. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2289. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2290. KM_SLEEP);
  2291. ifp->if_broot_bytes = (int)new_size;
  2292. return;
  2293. }
  2294. /*
  2295. * If there is already an existing if_broot, then we need
  2296. * to realloc() it and shift the pointers to their new
  2297. * location. The records don't change location because
  2298. * they are kept butted up against the btree block header.
  2299. */
  2300. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2301. new_max = cur_max + rec_diff;
  2302. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2303. ifp->if_broot = (xfs_bmbt_block_t *)
  2304. kmem_realloc(ifp->if_broot,
  2305. new_size,
  2306. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2307. KM_SLEEP);
  2308. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2309. ifp->if_broot_bytes);
  2310. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2311. (int)new_size);
  2312. ifp->if_broot_bytes = (int)new_size;
  2313. ASSERT(ifp->if_broot_bytes <=
  2314. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2315. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2316. return;
  2317. }
  2318. /*
  2319. * rec_diff is less than 0. In this case, we are shrinking the
  2320. * if_broot buffer. It must already exist. If we go to zero
  2321. * records, just get rid of the root and clear the status bit.
  2322. */
  2323. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2324. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2325. new_max = cur_max + rec_diff;
  2326. ASSERT(new_max >= 0);
  2327. if (new_max > 0)
  2328. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2329. else
  2330. new_size = 0;
  2331. if (new_size > 0) {
  2332. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2333. /*
  2334. * First copy over the btree block header.
  2335. */
  2336. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2337. } else {
  2338. new_broot = NULL;
  2339. ifp->if_flags &= ~XFS_IFBROOT;
  2340. }
  2341. /*
  2342. * Only copy the records and pointers if there are any.
  2343. */
  2344. if (new_max > 0) {
  2345. /*
  2346. * First copy the records.
  2347. */
  2348. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2349. ifp->if_broot_bytes);
  2350. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2351. (int)new_size);
  2352. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2353. /*
  2354. * Then copy the pointers.
  2355. */
  2356. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2357. ifp->if_broot_bytes);
  2358. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2359. (int)new_size);
  2360. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2361. }
  2362. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2363. ifp->if_broot = new_broot;
  2364. ifp->if_broot_bytes = (int)new_size;
  2365. ASSERT(ifp->if_broot_bytes <=
  2366. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2367. return;
  2368. }
  2369. /*
  2370. * This is called when the amount of space needed for if_data
  2371. * is increased or decreased. The change in size is indicated by
  2372. * the number of bytes that need to be added or deleted in the
  2373. * byte_diff parameter.
  2374. *
  2375. * If the amount of space needed has decreased below the size of the
  2376. * inline buffer, then switch to using the inline buffer. Otherwise,
  2377. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2378. * to what is needed.
  2379. *
  2380. * ip -- the inode whose if_data area is changing
  2381. * byte_diff -- the change in the number of bytes, positive or negative,
  2382. * requested for the if_data array.
  2383. */
  2384. void
  2385. xfs_idata_realloc(
  2386. xfs_inode_t *ip,
  2387. int byte_diff,
  2388. int whichfork)
  2389. {
  2390. xfs_ifork_t *ifp;
  2391. int new_size;
  2392. int real_size;
  2393. if (byte_diff == 0) {
  2394. return;
  2395. }
  2396. ifp = XFS_IFORK_PTR(ip, whichfork);
  2397. new_size = (int)ifp->if_bytes + byte_diff;
  2398. ASSERT(new_size >= 0);
  2399. if (new_size == 0) {
  2400. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2401. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2402. }
  2403. ifp->if_u1.if_data = NULL;
  2404. real_size = 0;
  2405. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2406. /*
  2407. * If the valid extents/data can fit in if_inline_ext/data,
  2408. * copy them from the malloc'd vector and free it.
  2409. */
  2410. if (ifp->if_u1.if_data == NULL) {
  2411. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2412. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2413. ASSERT(ifp->if_real_bytes != 0);
  2414. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2415. new_size);
  2416. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2417. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2418. }
  2419. real_size = 0;
  2420. } else {
  2421. /*
  2422. * Stuck with malloc/realloc.
  2423. * For inline data, the underlying buffer must be
  2424. * a multiple of 4 bytes in size so that it can be
  2425. * logged and stay on word boundaries. We enforce
  2426. * that here.
  2427. */
  2428. real_size = roundup(new_size, 4);
  2429. if (ifp->if_u1.if_data == NULL) {
  2430. ASSERT(ifp->if_real_bytes == 0);
  2431. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2432. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2433. /*
  2434. * Only do the realloc if the underlying size
  2435. * is really changing.
  2436. */
  2437. if (ifp->if_real_bytes != real_size) {
  2438. ifp->if_u1.if_data =
  2439. kmem_realloc(ifp->if_u1.if_data,
  2440. real_size,
  2441. ifp->if_real_bytes,
  2442. KM_SLEEP);
  2443. }
  2444. } else {
  2445. ASSERT(ifp->if_real_bytes == 0);
  2446. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2447. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2448. ifp->if_bytes);
  2449. }
  2450. }
  2451. ifp->if_real_bytes = real_size;
  2452. ifp->if_bytes = new_size;
  2453. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2454. }
  2455. /*
  2456. * Map inode to disk block and offset.
  2457. *
  2458. * mp -- the mount point structure for the current file system
  2459. * tp -- the current transaction
  2460. * ino -- the inode number of the inode to be located
  2461. * imap -- this structure is filled in with the information necessary
  2462. * to retrieve the given inode from disk
  2463. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2464. * lookups in the inode btree were OK or not
  2465. */
  2466. int
  2467. xfs_imap(
  2468. xfs_mount_t *mp,
  2469. xfs_trans_t *tp,
  2470. xfs_ino_t ino,
  2471. xfs_imap_t *imap,
  2472. uint flags)
  2473. {
  2474. xfs_fsblock_t fsbno;
  2475. int len;
  2476. int off;
  2477. int error;
  2478. fsbno = imap->im_blkno ?
  2479. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2480. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2481. if (error != 0) {
  2482. return error;
  2483. }
  2484. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2485. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2486. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2487. imap->im_ioffset = (ushort)off;
  2488. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2489. return 0;
  2490. }
  2491. void
  2492. xfs_idestroy_fork(
  2493. xfs_inode_t *ip,
  2494. int whichfork)
  2495. {
  2496. xfs_ifork_t *ifp;
  2497. ifp = XFS_IFORK_PTR(ip, whichfork);
  2498. if (ifp->if_broot != NULL) {
  2499. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2500. ifp->if_broot = NULL;
  2501. }
  2502. /*
  2503. * If the format is local, then we can't have an extents
  2504. * array so just look for an inline data array. If we're
  2505. * not local then we may or may not have an extents list,
  2506. * so check and free it up if we do.
  2507. */
  2508. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2509. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2510. (ifp->if_u1.if_data != NULL)) {
  2511. ASSERT(ifp->if_real_bytes != 0);
  2512. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2513. ifp->if_u1.if_data = NULL;
  2514. ifp->if_real_bytes = 0;
  2515. }
  2516. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2517. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2518. ((ifp->if_u1.if_extents != NULL) &&
  2519. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2520. ASSERT(ifp->if_real_bytes != 0);
  2521. xfs_iext_destroy(ifp);
  2522. }
  2523. ASSERT(ifp->if_u1.if_extents == NULL ||
  2524. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2525. ASSERT(ifp->if_real_bytes == 0);
  2526. if (whichfork == XFS_ATTR_FORK) {
  2527. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2528. ip->i_afp = NULL;
  2529. }
  2530. }
  2531. /*
  2532. * This is called free all the memory associated with an inode.
  2533. * It must free the inode itself and any buffers allocated for
  2534. * if_extents/if_data and if_broot. It must also free the lock
  2535. * associated with the inode.
  2536. */
  2537. void
  2538. xfs_idestroy(
  2539. xfs_inode_t *ip)
  2540. {
  2541. switch (ip->i_d.di_mode & S_IFMT) {
  2542. case S_IFREG:
  2543. case S_IFDIR:
  2544. case S_IFLNK:
  2545. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2546. break;
  2547. }
  2548. if (ip->i_afp)
  2549. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2550. mrfree(&ip->i_lock);
  2551. mrfree(&ip->i_iolock);
  2552. freesema(&ip->i_flock);
  2553. #ifdef XFS_BMAP_TRACE
  2554. ktrace_free(ip->i_xtrace);
  2555. #endif
  2556. #ifdef XFS_BMBT_TRACE
  2557. ktrace_free(ip->i_btrace);
  2558. #endif
  2559. #ifdef XFS_RW_TRACE
  2560. ktrace_free(ip->i_rwtrace);
  2561. #endif
  2562. #ifdef XFS_ILOCK_TRACE
  2563. ktrace_free(ip->i_lock_trace);
  2564. #endif
  2565. #ifdef XFS_DIR2_TRACE
  2566. ktrace_free(ip->i_dir_trace);
  2567. #endif
  2568. if (ip->i_itemp) {
  2569. /*
  2570. * Only if we are shutting down the fs will we see an
  2571. * inode still in the AIL. If it is there, we should remove
  2572. * it to prevent a use-after-free from occurring.
  2573. */
  2574. xfs_mount_t *mp = ip->i_mount;
  2575. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2576. int s;
  2577. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2578. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2579. if (lip->li_flags & XFS_LI_IN_AIL) {
  2580. AIL_LOCK(mp, s);
  2581. if (lip->li_flags & XFS_LI_IN_AIL)
  2582. xfs_trans_delete_ail(mp, lip, s);
  2583. else
  2584. AIL_UNLOCK(mp, s);
  2585. }
  2586. xfs_inode_item_destroy(ip);
  2587. }
  2588. kmem_zone_free(xfs_inode_zone, ip);
  2589. }
  2590. /*
  2591. * Increment the pin count of the given buffer.
  2592. * This value is protected by ipinlock spinlock in the mount structure.
  2593. */
  2594. void
  2595. xfs_ipin(
  2596. xfs_inode_t *ip)
  2597. {
  2598. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2599. atomic_inc(&ip->i_pincount);
  2600. }
  2601. /*
  2602. * Decrement the pin count of the given inode, and wake up
  2603. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2604. * inode must have been previously pinned with a call to xfs_ipin().
  2605. */
  2606. void
  2607. xfs_iunpin(
  2608. xfs_inode_t *ip)
  2609. {
  2610. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2611. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2612. /*
  2613. * If the inode is currently being reclaimed, the link between
  2614. * the bhv_vnode and the xfs_inode will be broken after the
  2615. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2616. * set, then we can move forward and mark the linux inode dirty
  2617. * knowing that it is still valid as it won't freed until after
  2618. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2619. * i_flags_lock is used to synchronise the setting of the
  2620. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2621. * can execute atomically w.r.t to reclaim by holding this lock
  2622. * here.
  2623. *
  2624. * However, we still need to issue the unpin wakeup call as the
  2625. * inode reclaim may be blocked waiting for the inode to become
  2626. * unpinned.
  2627. */
  2628. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2629. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2630. struct inode *inode = NULL;
  2631. BUG_ON(vp == NULL);
  2632. inode = vn_to_inode(vp);
  2633. BUG_ON(inode->i_state & I_CLEAR);
  2634. /* make sync come back and flush this inode */
  2635. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2636. mark_inode_dirty_sync(inode);
  2637. }
  2638. spin_unlock(&ip->i_flags_lock);
  2639. wake_up(&ip->i_ipin_wait);
  2640. }
  2641. }
  2642. /*
  2643. * This is called to wait for the given inode to be unpinned.
  2644. * It will sleep until this happens. The caller must have the
  2645. * inode locked in at least shared mode so that the buffer cannot
  2646. * be subsequently pinned once someone is waiting for it to be
  2647. * unpinned.
  2648. */
  2649. STATIC void
  2650. xfs_iunpin_wait(
  2651. xfs_inode_t *ip)
  2652. {
  2653. xfs_inode_log_item_t *iip;
  2654. xfs_lsn_t lsn;
  2655. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2656. if (atomic_read(&ip->i_pincount) == 0) {
  2657. return;
  2658. }
  2659. iip = ip->i_itemp;
  2660. if (iip && iip->ili_last_lsn) {
  2661. lsn = iip->ili_last_lsn;
  2662. } else {
  2663. lsn = (xfs_lsn_t)0;
  2664. }
  2665. /*
  2666. * Give the log a push so we don't wait here too long.
  2667. */
  2668. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2669. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2670. }
  2671. /*
  2672. * xfs_iextents_copy()
  2673. *
  2674. * This is called to copy the REAL extents (as opposed to the delayed
  2675. * allocation extents) from the inode into the given buffer. It
  2676. * returns the number of bytes copied into the buffer.
  2677. *
  2678. * If there are no delayed allocation extents, then we can just
  2679. * memcpy() the extents into the buffer. Otherwise, we need to
  2680. * examine each extent in turn and skip those which are delayed.
  2681. */
  2682. int
  2683. xfs_iextents_copy(
  2684. xfs_inode_t *ip,
  2685. xfs_bmbt_rec_t *dp,
  2686. int whichfork)
  2687. {
  2688. int copied;
  2689. int i;
  2690. xfs_ifork_t *ifp;
  2691. int nrecs;
  2692. xfs_fsblock_t start_block;
  2693. ifp = XFS_IFORK_PTR(ip, whichfork);
  2694. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2695. ASSERT(ifp->if_bytes > 0);
  2696. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2697. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2698. ASSERT(nrecs > 0);
  2699. /*
  2700. * There are some delayed allocation extents in the
  2701. * inode, so copy the extents one at a time and skip
  2702. * the delayed ones. There must be at least one
  2703. * non-delayed extent.
  2704. */
  2705. copied = 0;
  2706. for (i = 0; i < nrecs; i++) {
  2707. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2708. start_block = xfs_bmbt_get_startblock(ep);
  2709. if (ISNULLSTARTBLOCK(start_block)) {
  2710. /*
  2711. * It's a delayed allocation extent, so skip it.
  2712. */
  2713. continue;
  2714. }
  2715. /* Translate to on disk format */
  2716. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2717. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2718. dp++;
  2719. copied++;
  2720. }
  2721. ASSERT(copied != 0);
  2722. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2723. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2724. }
  2725. /*
  2726. * Each of the following cases stores data into the same region
  2727. * of the on-disk inode, so only one of them can be valid at
  2728. * any given time. While it is possible to have conflicting formats
  2729. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2730. * in EXTENTS format, this can only happen when the fork has
  2731. * changed formats after being modified but before being flushed.
  2732. * In these cases, the format always takes precedence, because the
  2733. * format indicates the current state of the fork.
  2734. */
  2735. /*ARGSUSED*/
  2736. STATIC int
  2737. xfs_iflush_fork(
  2738. xfs_inode_t *ip,
  2739. xfs_dinode_t *dip,
  2740. xfs_inode_log_item_t *iip,
  2741. int whichfork,
  2742. xfs_buf_t *bp)
  2743. {
  2744. char *cp;
  2745. xfs_ifork_t *ifp;
  2746. xfs_mount_t *mp;
  2747. #ifdef XFS_TRANS_DEBUG
  2748. int first;
  2749. #endif
  2750. static const short brootflag[2] =
  2751. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2752. static const short dataflag[2] =
  2753. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2754. static const short extflag[2] =
  2755. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2756. if (iip == NULL)
  2757. return 0;
  2758. ifp = XFS_IFORK_PTR(ip, whichfork);
  2759. /*
  2760. * This can happen if we gave up in iformat in an error path,
  2761. * for the attribute fork.
  2762. */
  2763. if (ifp == NULL) {
  2764. ASSERT(whichfork == XFS_ATTR_FORK);
  2765. return 0;
  2766. }
  2767. cp = XFS_DFORK_PTR(dip, whichfork);
  2768. mp = ip->i_mount;
  2769. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2770. case XFS_DINODE_FMT_LOCAL:
  2771. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2772. (ifp->if_bytes > 0)) {
  2773. ASSERT(ifp->if_u1.if_data != NULL);
  2774. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2775. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2776. }
  2777. break;
  2778. case XFS_DINODE_FMT_EXTENTS:
  2779. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2780. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2781. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2782. (ifp->if_bytes == 0));
  2783. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2784. (ifp->if_bytes > 0));
  2785. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2786. (ifp->if_bytes > 0)) {
  2787. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2788. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2789. whichfork);
  2790. }
  2791. break;
  2792. case XFS_DINODE_FMT_BTREE:
  2793. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2794. (ifp->if_broot_bytes > 0)) {
  2795. ASSERT(ifp->if_broot != NULL);
  2796. ASSERT(ifp->if_broot_bytes <=
  2797. (XFS_IFORK_SIZE(ip, whichfork) +
  2798. XFS_BROOT_SIZE_ADJ));
  2799. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2800. (xfs_bmdr_block_t *)cp,
  2801. XFS_DFORK_SIZE(dip, mp, whichfork));
  2802. }
  2803. break;
  2804. case XFS_DINODE_FMT_DEV:
  2805. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2806. ASSERT(whichfork == XFS_DATA_FORK);
  2807. dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
  2808. }
  2809. break;
  2810. case XFS_DINODE_FMT_UUID:
  2811. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2812. ASSERT(whichfork == XFS_DATA_FORK);
  2813. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2814. sizeof(uuid_t));
  2815. }
  2816. break;
  2817. default:
  2818. ASSERT(0);
  2819. break;
  2820. }
  2821. return 0;
  2822. }
  2823. /*
  2824. * xfs_iflush() will write a modified inode's changes out to the
  2825. * inode's on disk home. The caller must have the inode lock held
  2826. * in at least shared mode and the inode flush semaphore must be
  2827. * held as well. The inode lock will still be held upon return from
  2828. * the call and the caller is free to unlock it.
  2829. * The inode flush lock will be unlocked when the inode reaches the disk.
  2830. * The flags indicate how the inode's buffer should be written out.
  2831. */
  2832. int
  2833. xfs_iflush(
  2834. xfs_inode_t *ip,
  2835. uint flags)
  2836. {
  2837. xfs_inode_log_item_t *iip;
  2838. xfs_buf_t *bp;
  2839. xfs_dinode_t *dip;
  2840. xfs_mount_t *mp;
  2841. int error;
  2842. /* REFERENCED */
  2843. xfs_chash_t *ch;
  2844. xfs_inode_t *iq;
  2845. int clcount; /* count of inodes clustered */
  2846. int bufwasdelwri;
  2847. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2848. SPLDECL(s);
  2849. XFS_STATS_INC(xs_iflush_count);
  2850. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2851. ASSERT(issemalocked(&(ip->i_flock)));
  2852. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2853. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2854. iip = ip->i_itemp;
  2855. mp = ip->i_mount;
  2856. /*
  2857. * If the inode isn't dirty, then just release the inode
  2858. * flush lock and do nothing.
  2859. */
  2860. if ((ip->i_update_core == 0) &&
  2861. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2862. ASSERT((iip != NULL) ?
  2863. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2864. xfs_ifunlock(ip);
  2865. return 0;
  2866. }
  2867. /*
  2868. * We can't flush the inode until it is unpinned, so
  2869. * wait for it. We know noone new can pin it, because
  2870. * we are holding the inode lock shared and you need
  2871. * to hold it exclusively to pin the inode.
  2872. */
  2873. xfs_iunpin_wait(ip);
  2874. /*
  2875. * This may have been unpinned because the filesystem is shutting
  2876. * down forcibly. If that's the case we must not write this inode
  2877. * to disk, because the log record didn't make it to disk!
  2878. */
  2879. if (XFS_FORCED_SHUTDOWN(mp)) {
  2880. ip->i_update_core = 0;
  2881. if (iip)
  2882. iip->ili_format.ilf_fields = 0;
  2883. xfs_ifunlock(ip);
  2884. return XFS_ERROR(EIO);
  2885. }
  2886. /*
  2887. * Get the buffer containing the on-disk inode.
  2888. */
  2889. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2890. if (error) {
  2891. xfs_ifunlock(ip);
  2892. return error;
  2893. }
  2894. /*
  2895. * Decide how buffer will be flushed out. This is done before
  2896. * the call to xfs_iflush_int because this field is zeroed by it.
  2897. */
  2898. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2899. /*
  2900. * Flush out the inode buffer according to the directions
  2901. * of the caller. In the cases where the caller has given
  2902. * us a choice choose the non-delwri case. This is because
  2903. * the inode is in the AIL and we need to get it out soon.
  2904. */
  2905. switch (flags) {
  2906. case XFS_IFLUSH_SYNC:
  2907. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2908. flags = 0;
  2909. break;
  2910. case XFS_IFLUSH_ASYNC:
  2911. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2912. flags = INT_ASYNC;
  2913. break;
  2914. case XFS_IFLUSH_DELWRI:
  2915. flags = INT_DELWRI;
  2916. break;
  2917. default:
  2918. ASSERT(0);
  2919. flags = 0;
  2920. break;
  2921. }
  2922. } else {
  2923. switch (flags) {
  2924. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2925. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2926. case XFS_IFLUSH_DELWRI:
  2927. flags = INT_DELWRI;
  2928. break;
  2929. case XFS_IFLUSH_ASYNC:
  2930. flags = INT_ASYNC;
  2931. break;
  2932. case XFS_IFLUSH_SYNC:
  2933. flags = 0;
  2934. break;
  2935. default:
  2936. ASSERT(0);
  2937. flags = 0;
  2938. break;
  2939. }
  2940. }
  2941. /*
  2942. * First flush out the inode that xfs_iflush was called with.
  2943. */
  2944. error = xfs_iflush_int(ip, bp);
  2945. if (error) {
  2946. goto corrupt_out;
  2947. }
  2948. /*
  2949. * inode clustering:
  2950. * see if other inodes can be gathered into this write
  2951. */
  2952. ip->i_chash->chl_buf = bp;
  2953. ch = XFS_CHASH(mp, ip->i_blkno);
  2954. s = mutex_spinlock(&ch->ch_lock);
  2955. clcount = 0;
  2956. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2957. /*
  2958. * Do an un-protected check to see if the inode is dirty and
  2959. * is a candidate for flushing. These checks will be repeated
  2960. * later after the appropriate locks are acquired.
  2961. */
  2962. iip = iq->i_itemp;
  2963. if ((iq->i_update_core == 0) &&
  2964. ((iip == NULL) ||
  2965. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2966. xfs_ipincount(iq) == 0) {
  2967. continue;
  2968. }
  2969. /*
  2970. * Try to get locks. If any are unavailable,
  2971. * then this inode cannot be flushed and is skipped.
  2972. */
  2973. /* get inode locks (just i_lock) */
  2974. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2975. /* get inode flush lock */
  2976. if (xfs_iflock_nowait(iq)) {
  2977. /* check if pinned */
  2978. if (xfs_ipincount(iq) == 0) {
  2979. /* arriving here means that
  2980. * this inode can be flushed.
  2981. * first re-check that it's
  2982. * dirty
  2983. */
  2984. iip = iq->i_itemp;
  2985. if ((iq->i_update_core != 0)||
  2986. ((iip != NULL) &&
  2987. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2988. clcount++;
  2989. error = xfs_iflush_int(iq, bp);
  2990. if (error) {
  2991. xfs_iunlock(iq,
  2992. XFS_ILOCK_SHARED);
  2993. goto cluster_corrupt_out;
  2994. }
  2995. } else {
  2996. xfs_ifunlock(iq);
  2997. }
  2998. } else {
  2999. xfs_ifunlock(iq);
  3000. }
  3001. }
  3002. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  3003. }
  3004. }
  3005. mutex_spinunlock(&ch->ch_lock, s);
  3006. if (clcount) {
  3007. XFS_STATS_INC(xs_icluster_flushcnt);
  3008. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3009. }
  3010. /*
  3011. * If the buffer is pinned then push on the log so we won't
  3012. * get stuck waiting in the write for too long.
  3013. */
  3014. if (XFS_BUF_ISPINNED(bp)){
  3015. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3016. }
  3017. if (flags & INT_DELWRI) {
  3018. xfs_bdwrite(mp, bp);
  3019. } else if (flags & INT_ASYNC) {
  3020. xfs_bawrite(mp, bp);
  3021. } else {
  3022. error = xfs_bwrite(mp, bp);
  3023. }
  3024. return error;
  3025. corrupt_out:
  3026. xfs_buf_relse(bp);
  3027. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3028. xfs_iflush_abort(ip);
  3029. /*
  3030. * Unlocks the flush lock
  3031. */
  3032. return XFS_ERROR(EFSCORRUPTED);
  3033. cluster_corrupt_out:
  3034. /* Corruption detected in the clustering loop. Invalidate the
  3035. * inode buffer and shut down the filesystem.
  3036. */
  3037. mutex_spinunlock(&ch->ch_lock, s);
  3038. /*
  3039. * Clean up the buffer. If it was B_DELWRI, just release it --
  3040. * brelse can handle it with no problems. If not, shut down the
  3041. * filesystem before releasing the buffer.
  3042. */
  3043. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3044. xfs_buf_relse(bp);
  3045. }
  3046. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3047. if(!bufwasdelwri) {
  3048. /*
  3049. * Just like incore_relse: if we have b_iodone functions,
  3050. * mark the buffer as an error and call them. Otherwise
  3051. * mark it as stale and brelse.
  3052. */
  3053. if (XFS_BUF_IODONE_FUNC(bp)) {
  3054. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3055. XFS_BUF_UNDONE(bp);
  3056. XFS_BUF_STALE(bp);
  3057. XFS_BUF_SHUT(bp);
  3058. XFS_BUF_ERROR(bp,EIO);
  3059. xfs_biodone(bp);
  3060. } else {
  3061. XFS_BUF_STALE(bp);
  3062. xfs_buf_relse(bp);
  3063. }
  3064. }
  3065. xfs_iflush_abort(iq);
  3066. /*
  3067. * Unlocks the flush lock
  3068. */
  3069. return XFS_ERROR(EFSCORRUPTED);
  3070. }
  3071. STATIC int
  3072. xfs_iflush_int(
  3073. xfs_inode_t *ip,
  3074. xfs_buf_t *bp)
  3075. {
  3076. xfs_inode_log_item_t *iip;
  3077. xfs_dinode_t *dip;
  3078. xfs_mount_t *mp;
  3079. #ifdef XFS_TRANS_DEBUG
  3080. int first;
  3081. #endif
  3082. SPLDECL(s);
  3083. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3084. ASSERT(issemalocked(&(ip->i_flock)));
  3085. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3086. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3087. iip = ip->i_itemp;
  3088. mp = ip->i_mount;
  3089. /*
  3090. * If the inode isn't dirty, then just release the inode
  3091. * flush lock and do nothing.
  3092. */
  3093. if ((ip->i_update_core == 0) &&
  3094. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3095. xfs_ifunlock(ip);
  3096. return 0;
  3097. }
  3098. /* set *dip = inode's place in the buffer */
  3099. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3100. /*
  3101. * Clear i_update_core before copying out the data.
  3102. * This is for coordination with our timestamp updates
  3103. * that don't hold the inode lock. They will always
  3104. * update the timestamps BEFORE setting i_update_core,
  3105. * so if we clear i_update_core after they set it we
  3106. * are guaranteed to see their updates to the timestamps.
  3107. * I believe that this depends on strongly ordered memory
  3108. * semantics, but we have that. We use the SYNCHRONIZE
  3109. * macro to make sure that the compiler does not reorder
  3110. * the i_update_core access below the data copy below.
  3111. */
  3112. ip->i_update_core = 0;
  3113. SYNCHRONIZE();
  3114. /*
  3115. * Make sure to get the latest atime from the Linux inode.
  3116. */
  3117. xfs_synchronize_atime(ip);
  3118. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
  3119. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3120. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3121. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3122. ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
  3123. goto corrupt_out;
  3124. }
  3125. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3126. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3127. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3128. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3129. ip->i_ino, ip, ip->i_d.di_magic);
  3130. goto corrupt_out;
  3131. }
  3132. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3133. if (XFS_TEST_ERROR(
  3134. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3135. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3136. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3137. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3138. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3139. ip->i_ino, ip);
  3140. goto corrupt_out;
  3141. }
  3142. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3143. if (XFS_TEST_ERROR(
  3144. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3145. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3146. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3147. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3148. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3149. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3150. ip->i_ino, ip);
  3151. goto corrupt_out;
  3152. }
  3153. }
  3154. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3155. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3156. XFS_RANDOM_IFLUSH_5)) {
  3157. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3158. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3159. ip->i_ino,
  3160. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3161. ip->i_d.di_nblocks,
  3162. ip);
  3163. goto corrupt_out;
  3164. }
  3165. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3166. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3167. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3168. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3169. ip->i_ino, ip->i_d.di_forkoff, ip);
  3170. goto corrupt_out;
  3171. }
  3172. /*
  3173. * bump the flush iteration count, used to detect flushes which
  3174. * postdate a log record during recovery.
  3175. */
  3176. ip->i_d.di_flushiter++;
  3177. /*
  3178. * Copy the dirty parts of the inode into the on-disk
  3179. * inode. We always copy out the core of the inode,
  3180. * because if the inode is dirty at all the core must
  3181. * be.
  3182. */
  3183. xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
  3184. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3185. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3186. ip->i_d.di_flushiter = 0;
  3187. /*
  3188. * If this is really an old format inode and the superblock version
  3189. * has not been updated to support only new format inodes, then
  3190. * convert back to the old inode format. If the superblock version
  3191. * has been updated, then make the conversion permanent.
  3192. */
  3193. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3194. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3195. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3196. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3197. /*
  3198. * Convert it back.
  3199. */
  3200. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3201. dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  3202. } else {
  3203. /*
  3204. * The superblock version has already been bumped,
  3205. * so just make the conversion to the new inode
  3206. * format permanent.
  3207. */
  3208. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3209. dip->di_core.di_version = XFS_DINODE_VERSION_2;
  3210. ip->i_d.di_onlink = 0;
  3211. dip->di_core.di_onlink = 0;
  3212. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3213. memset(&(dip->di_core.di_pad[0]), 0,
  3214. sizeof(dip->di_core.di_pad));
  3215. ASSERT(ip->i_d.di_projid == 0);
  3216. }
  3217. }
  3218. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3219. goto corrupt_out;
  3220. }
  3221. if (XFS_IFORK_Q(ip)) {
  3222. /*
  3223. * The only error from xfs_iflush_fork is on the data fork.
  3224. */
  3225. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3226. }
  3227. xfs_inobp_check(mp, bp);
  3228. /*
  3229. * We've recorded everything logged in the inode, so we'd
  3230. * like to clear the ilf_fields bits so we don't log and
  3231. * flush things unnecessarily. However, we can't stop
  3232. * logging all this information until the data we've copied
  3233. * into the disk buffer is written to disk. If we did we might
  3234. * overwrite the copy of the inode in the log with all the
  3235. * data after re-logging only part of it, and in the face of
  3236. * a crash we wouldn't have all the data we need to recover.
  3237. *
  3238. * What we do is move the bits to the ili_last_fields field.
  3239. * When logging the inode, these bits are moved back to the
  3240. * ilf_fields field. In the xfs_iflush_done() routine we
  3241. * clear ili_last_fields, since we know that the information
  3242. * those bits represent is permanently on disk. As long as
  3243. * the flush completes before the inode is logged again, then
  3244. * both ilf_fields and ili_last_fields will be cleared.
  3245. *
  3246. * We can play with the ilf_fields bits here, because the inode
  3247. * lock must be held exclusively in order to set bits there
  3248. * and the flush lock protects the ili_last_fields bits.
  3249. * Set ili_logged so the flush done
  3250. * routine can tell whether or not to look in the AIL.
  3251. * Also, store the current LSN of the inode so that we can tell
  3252. * whether the item has moved in the AIL from xfs_iflush_done().
  3253. * In order to read the lsn we need the AIL lock, because
  3254. * it is a 64 bit value that cannot be read atomically.
  3255. */
  3256. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3257. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3258. iip->ili_format.ilf_fields = 0;
  3259. iip->ili_logged = 1;
  3260. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3261. AIL_LOCK(mp,s);
  3262. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3263. AIL_UNLOCK(mp, s);
  3264. /*
  3265. * Attach the function xfs_iflush_done to the inode's
  3266. * buffer. This will remove the inode from the AIL
  3267. * and unlock the inode's flush lock when the inode is
  3268. * completely written to disk.
  3269. */
  3270. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3271. xfs_iflush_done, (xfs_log_item_t *)iip);
  3272. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3273. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3274. } else {
  3275. /*
  3276. * We're flushing an inode which is not in the AIL and has
  3277. * not been logged but has i_update_core set. For this
  3278. * case we can use a B_DELWRI flush and immediately drop
  3279. * the inode flush lock because we can avoid the whole
  3280. * AIL state thing. It's OK to drop the flush lock now,
  3281. * because we've already locked the buffer and to do anything
  3282. * you really need both.
  3283. */
  3284. if (iip != NULL) {
  3285. ASSERT(iip->ili_logged == 0);
  3286. ASSERT(iip->ili_last_fields == 0);
  3287. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3288. }
  3289. xfs_ifunlock(ip);
  3290. }
  3291. return 0;
  3292. corrupt_out:
  3293. return XFS_ERROR(EFSCORRUPTED);
  3294. }
  3295. /*
  3296. * Flush all inactive inodes in mp.
  3297. */
  3298. void
  3299. xfs_iflush_all(
  3300. xfs_mount_t *mp)
  3301. {
  3302. xfs_inode_t *ip;
  3303. bhv_vnode_t *vp;
  3304. again:
  3305. XFS_MOUNT_ILOCK(mp);
  3306. ip = mp->m_inodes;
  3307. if (ip == NULL)
  3308. goto out;
  3309. do {
  3310. /* Make sure we skip markers inserted by sync */
  3311. if (ip->i_mount == NULL) {
  3312. ip = ip->i_mnext;
  3313. continue;
  3314. }
  3315. vp = XFS_ITOV_NULL(ip);
  3316. if (!vp) {
  3317. XFS_MOUNT_IUNLOCK(mp);
  3318. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3319. goto again;
  3320. }
  3321. ASSERT(vn_count(vp) == 0);
  3322. ip = ip->i_mnext;
  3323. } while (ip != mp->m_inodes);
  3324. out:
  3325. XFS_MOUNT_IUNLOCK(mp);
  3326. }
  3327. /*
  3328. * xfs_iaccess: check accessibility of inode for mode.
  3329. */
  3330. int
  3331. xfs_iaccess(
  3332. xfs_inode_t *ip,
  3333. mode_t mode,
  3334. cred_t *cr)
  3335. {
  3336. int error;
  3337. mode_t orgmode = mode;
  3338. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3339. if (mode & S_IWUSR) {
  3340. umode_t imode = inode->i_mode;
  3341. if (IS_RDONLY(inode) &&
  3342. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3343. return XFS_ERROR(EROFS);
  3344. if (IS_IMMUTABLE(inode))
  3345. return XFS_ERROR(EACCES);
  3346. }
  3347. /*
  3348. * If there's an Access Control List it's used instead of
  3349. * the mode bits.
  3350. */
  3351. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3352. return error ? XFS_ERROR(error) : 0;
  3353. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3354. mode >>= 3;
  3355. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3356. mode >>= 3;
  3357. }
  3358. /*
  3359. * If the DACs are ok we don't need any capability check.
  3360. */
  3361. if ((ip->i_d.di_mode & mode) == mode)
  3362. return 0;
  3363. /*
  3364. * Read/write DACs are always overridable.
  3365. * Executable DACs are overridable if at least one exec bit is set.
  3366. */
  3367. if (!(orgmode & S_IXUSR) ||
  3368. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3369. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3370. return 0;
  3371. if ((orgmode == S_IRUSR) ||
  3372. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3373. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3374. return 0;
  3375. #ifdef NOISE
  3376. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3377. #endif /* NOISE */
  3378. return XFS_ERROR(EACCES);
  3379. }
  3380. return XFS_ERROR(EACCES);
  3381. }
  3382. /*
  3383. * xfs_iroundup: round up argument to next power of two
  3384. */
  3385. uint
  3386. xfs_iroundup(
  3387. uint v)
  3388. {
  3389. int i;
  3390. uint m;
  3391. if ((v & (v - 1)) == 0)
  3392. return v;
  3393. ASSERT((v & 0x80000000) == 0);
  3394. if ((v & (v + 1)) == 0)
  3395. return v + 1;
  3396. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3397. if (v & m)
  3398. continue;
  3399. v |= m;
  3400. if ((v & (v + 1)) == 0)
  3401. return v + 1;
  3402. }
  3403. ASSERT(0);
  3404. return( 0 );
  3405. }
  3406. #ifdef XFS_ILOCK_TRACE
  3407. ktrace_t *xfs_ilock_trace_buf;
  3408. void
  3409. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3410. {
  3411. ktrace_enter(ip->i_lock_trace,
  3412. (void *)ip,
  3413. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3414. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3415. (void *)ra, /* caller of ilock */
  3416. (void *)(unsigned long)current_cpu(),
  3417. (void *)(unsigned long)current_pid(),
  3418. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3419. }
  3420. #endif
  3421. /*
  3422. * Return a pointer to the extent record at file index idx.
  3423. */
  3424. xfs_bmbt_rec_host_t *
  3425. xfs_iext_get_ext(
  3426. xfs_ifork_t *ifp, /* inode fork pointer */
  3427. xfs_extnum_t idx) /* index of target extent */
  3428. {
  3429. ASSERT(idx >= 0);
  3430. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3431. return ifp->if_u1.if_ext_irec->er_extbuf;
  3432. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3433. xfs_ext_irec_t *erp; /* irec pointer */
  3434. int erp_idx = 0; /* irec index */
  3435. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3436. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3437. return &erp->er_extbuf[page_idx];
  3438. } else if (ifp->if_bytes) {
  3439. return &ifp->if_u1.if_extents[idx];
  3440. } else {
  3441. return NULL;
  3442. }
  3443. }
  3444. /*
  3445. * Insert new item(s) into the extent records for incore inode
  3446. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3447. */
  3448. void
  3449. xfs_iext_insert(
  3450. xfs_ifork_t *ifp, /* inode fork pointer */
  3451. xfs_extnum_t idx, /* starting index of new items */
  3452. xfs_extnum_t count, /* number of inserted items */
  3453. xfs_bmbt_irec_t *new) /* items to insert */
  3454. {
  3455. xfs_extnum_t i; /* extent record index */
  3456. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3457. xfs_iext_add(ifp, idx, count);
  3458. for (i = idx; i < idx + count; i++, new++)
  3459. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3460. }
  3461. /*
  3462. * This is called when the amount of space required for incore file
  3463. * extents needs to be increased. The ext_diff parameter stores the
  3464. * number of new extents being added and the idx parameter contains
  3465. * the extent index where the new extents will be added. If the new
  3466. * extents are being appended, then we just need to (re)allocate and
  3467. * initialize the space. Otherwise, if the new extents are being
  3468. * inserted into the middle of the existing entries, a bit more work
  3469. * is required to make room for the new extents to be inserted. The
  3470. * caller is responsible for filling in the new extent entries upon
  3471. * return.
  3472. */
  3473. void
  3474. xfs_iext_add(
  3475. xfs_ifork_t *ifp, /* inode fork pointer */
  3476. xfs_extnum_t idx, /* index to begin adding exts */
  3477. int ext_diff) /* number of extents to add */
  3478. {
  3479. int byte_diff; /* new bytes being added */
  3480. int new_size; /* size of extents after adding */
  3481. xfs_extnum_t nextents; /* number of extents in file */
  3482. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3483. ASSERT((idx >= 0) && (idx <= nextents));
  3484. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3485. new_size = ifp->if_bytes + byte_diff;
  3486. /*
  3487. * If the new number of extents (nextents + ext_diff)
  3488. * fits inside the inode, then continue to use the inline
  3489. * extent buffer.
  3490. */
  3491. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3492. if (idx < nextents) {
  3493. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3494. &ifp->if_u2.if_inline_ext[idx],
  3495. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3496. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3497. }
  3498. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3499. ifp->if_real_bytes = 0;
  3500. ifp->if_lastex = nextents + ext_diff;
  3501. }
  3502. /*
  3503. * Otherwise use a linear (direct) extent list.
  3504. * If the extents are currently inside the inode,
  3505. * xfs_iext_realloc_direct will switch us from
  3506. * inline to direct extent allocation mode.
  3507. */
  3508. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3509. xfs_iext_realloc_direct(ifp, new_size);
  3510. if (idx < nextents) {
  3511. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3512. &ifp->if_u1.if_extents[idx],
  3513. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3514. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3515. }
  3516. }
  3517. /* Indirection array */
  3518. else {
  3519. xfs_ext_irec_t *erp;
  3520. int erp_idx = 0;
  3521. int page_idx = idx;
  3522. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3523. if (ifp->if_flags & XFS_IFEXTIREC) {
  3524. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3525. } else {
  3526. xfs_iext_irec_init(ifp);
  3527. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3528. erp = ifp->if_u1.if_ext_irec;
  3529. }
  3530. /* Extents fit in target extent page */
  3531. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3532. if (page_idx < erp->er_extcount) {
  3533. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3534. &erp->er_extbuf[page_idx],
  3535. (erp->er_extcount - page_idx) *
  3536. sizeof(xfs_bmbt_rec_t));
  3537. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3538. }
  3539. erp->er_extcount += ext_diff;
  3540. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3541. }
  3542. /* Insert a new extent page */
  3543. else if (erp) {
  3544. xfs_iext_add_indirect_multi(ifp,
  3545. erp_idx, page_idx, ext_diff);
  3546. }
  3547. /*
  3548. * If extent(s) are being appended to the last page in
  3549. * the indirection array and the new extent(s) don't fit
  3550. * in the page, then erp is NULL and erp_idx is set to
  3551. * the next index needed in the indirection array.
  3552. */
  3553. else {
  3554. int count = ext_diff;
  3555. while (count) {
  3556. erp = xfs_iext_irec_new(ifp, erp_idx);
  3557. erp->er_extcount = count;
  3558. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3559. if (count) {
  3560. erp_idx++;
  3561. }
  3562. }
  3563. }
  3564. }
  3565. ifp->if_bytes = new_size;
  3566. }
  3567. /*
  3568. * This is called when incore extents are being added to the indirection
  3569. * array and the new extents do not fit in the target extent list. The
  3570. * erp_idx parameter contains the irec index for the target extent list
  3571. * in the indirection array, and the idx parameter contains the extent
  3572. * index within the list. The number of extents being added is stored
  3573. * in the count parameter.
  3574. *
  3575. * |-------| |-------|
  3576. * | | | | idx - number of extents before idx
  3577. * | idx | | count |
  3578. * | | | | count - number of extents being inserted at idx
  3579. * |-------| |-------|
  3580. * | count | | nex2 | nex2 - number of extents after idx + count
  3581. * |-------| |-------|
  3582. */
  3583. void
  3584. xfs_iext_add_indirect_multi(
  3585. xfs_ifork_t *ifp, /* inode fork pointer */
  3586. int erp_idx, /* target extent irec index */
  3587. xfs_extnum_t idx, /* index within target list */
  3588. int count) /* new extents being added */
  3589. {
  3590. int byte_diff; /* new bytes being added */
  3591. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3592. xfs_extnum_t ext_diff; /* number of extents to add */
  3593. xfs_extnum_t ext_cnt; /* new extents still needed */
  3594. xfs_extnum_t nex2; /* extents after idx + count */
  3595. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3596. int nlists; /* number of irec's (lists) */
  3597. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3598. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3599. nex2 = erp->er_extcount - idx;
  3600. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3601. /*
  3602. * Save second part of target extent list
  3603. * (all extents past */
  3604. if (nex2) {
  3605. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3606. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3607. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3608. erp->er_extcount -= nex2;
  3609. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3610. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3611. }
  3612. /*
  3613. * Add the new extents to the end of the target
  3614. * list, then allocate new irec record(s) and
  3615. * extent buffer(s) as needed to store the rest
  3616. * of the new extents.
  3617. */
  3618. ext_cnt = count;
  3619. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3620. if (ext_diff) {
  3621. erp->er_extcount += ext_diff;
  3622. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3623. ext_cnt -= ext_diff;
  3624. }
  3625. while (ext_cnt) {
  3626. erp_idx++;
  3627. erp = xfs_iext_irec_new(ifp, erp_idx);
  3628. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3629. erp->er_extcount = ext_diff;
  3630. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3631. ext_cnt -= ext_diff;
  3632. }
  3633. /* Add nex2 extents back to indirection array */
  3634. if (nex2) {
  3635. xfs_extnum_t ext_avail;
  3636. int i;
  3637. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3638. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3639. i = 0;
  3640. /*
  3641. * If nex2 extents fit in the current page, append
  3642. * nex2_ep after the new extents.
  3643. */
  3644. if (nex2 <= ext_avail) {
  3645. i = erp->er_extcount;
  3646. }
  3647. /*
  3648. * Otherwise, check if space is available in the
  3649. * next page.
  3650. */
  3651. else if ((erp_idx < nlists - 1) &&
  3652. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3653. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3654. erp_idx++;
  3655. erp++;
  3656. /* Create a hole for nex2 extents */
  3657. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3658. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3659. }
  3660. /*
  3661. * Final choice, create a new extent page for
  3662. * nex2 extents.
  3663. */
  3664. else {
  3665. erp_idx++;
  3666. erp = xfs_iext_irec_new(ifp, erp_idx);
  3667. }
  3668. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3669. kmem_free(nex2_ep, byte_diff);
  3670. erp->er_extcount += nex2;
  3671. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3672. }
  3673. }
  3674. /*
  3675. * This is called when the amount of space required for incore file
  3676. * extents needs to be decreased. The ext_diff parameter stores the
  3677. * number of extents to be removed and the idx parameter contains
  3678. * the extent index where the extents will be removed from.
  3679. *
  3680. * If the amount of space needed has decreased below the linear
  3681. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3682. * extent array. Otherwise, use kmem_realloc() to adjust the
  3683. * size to what is needed.
  3684. */
  3685. void
  3686. xfs_iext_remove(
  3687. xfs_ifork_t *ifp, /* inode fork pointer */
  3688. xfs_extnum_t idx, /* index to begin removing exts */
  3689. int ext_diff) /* number of extents to remove */
  3690. {
  3691. xfs_extnum_t nextents; /* number of extents in file */
  3692. int new_size; /* size of extents after removal */
  3693. ASSERT(ext_diff > 0);
  3694. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3695. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3696. if (new_size == 0) {
  3697. xfs_iext_destroy(ifp);
  3698. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3699. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3700. } else if (ifp->if_real_bytes) {
  3701. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3702. } else {
  3703. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3704. }
  3705. ifp->if_bytes = new_size;
  3706. }
  3707. /*
  3708. * This removes ext_diff extents from the inline buffer, beginning
  3709. * at extent index idx.
  3710. */
  3711. void
  3712. xfs_iext_remove_inline(
  3713. xfs_ifork_t *ifp, /* inode fork pointer */
  3714. xfs_extnum_t idx, /* index to begin removing exts */
  3715. int ext_diff) /* number of extents to remove */
  3716. {
  3717. int nextents; /* number of extents in file */
  3718. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3719. ASSERT(idx < XFS_INLINE_EXTS);
  3720. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3721. ASSERT(((nextents - ext_diff) > 0) &&
  3722. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3723. if (idx + ext_diff < nextents) {
  3724. memmove(&ifp->if_u2.if_inline_ext[idx],
  3725. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3726. (nextents - (idx + ext_diff)) *
  3727. sizeof(xfs_bmbt_rec_t));
  3728. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3729. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3730. } else {
  3731. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3732. ext_diff * sizeof(xfs_bmbt_rec_t));
  3733. }
  3734. }
  3735. /*
  3736. * This removes ext_diff extents from a linear (direct) extent list,
  3737. * beginning at extent index idx. If the extents are being removed
  3738. * from the end of the list (ie. truncate) then we just need to re-
  3739. * allocate the list to remove the extra space. Otherwise, if the
  3740. * extents are being removed from the middle of the existing extent
  3741. * entries, then we first need to move the extent records beginning
  3742. * at idx + ext_diff up in the list to overwrite the records being
  3743. * removed, then remove the extra space via kmem_realloc.
  3744. */
  3745. void
  3746. xfs_iext_remove_direct(
  3747. xfs_ifork_t *ifp, /* inode fork pointer */
  3748. xfs_extnum_t idx, /* index to begin removing exts */
  3749. int ext_diff) /* number of extents to remove */
  3750. {
  3751. xfs_extnum_t nextents; /* number of extents in file */
  3752. int new_size; /* size of extents after removal */
  3753. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3754. new_size = ifp->if_bytes -
  3755. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3756. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3757. if (new_size == 0) {
  3758. xfs_iext_destroy(ifp);
  3759. return;
  3760. }
  3761. /* Move extents up in the list (if needed) */
  3762. if (idx + ext_diff < nextents) {
  3763. memmove(&ifp->if_u1.if_extents[idx],
  3764. &ifp->if_u1.if_extents[idx + ext_diff],
  3765. (nextents - (idx + ext_diff)) *
  3766. sizeof(xfs_bmbt_rec_t));
  3767. }
  3768. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3769. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3770. /*
  3771. * Reallocate the direct extent list. If the extents
  3772. * will fit inside the inode then xfs_iext_realloc_direct
  3773. * will switch from direct to inline extent allocation
  3774. * mode for us.
  3775. */
  3776. xfs_iext_realloc_direct(ifp, new_size);
  3777. ifp->if_bytes = new_size;
  3778. }
  3779. /*
  3780. * This is called when incore extents are being removed from the
  3781. * indirection array and the extents being removed span multiple extent
  3782. * buffers. The idx parameter contains the file extent index where we
  3783. * want to begin removing extents, and the count parameter contains
  3784. * how many extents need to be removed.
  3785. *
  3786. * |-------| |-------|
  3787. * | nex1 | | | nex1 - number of extents before idx
  3788. * |-------| | count |
  3789. * | | | | count - number of extents being removed at idx
  3790. * | count | |-------|
  3791. * | | | nex2 | nex2 - number of extents after idx + count
  3792. * |-------| |-------|
  3793. */
  3794. void
  3795. xfs_iext_remove_indirect(
  3796. xfs_ifork_t *ifp, /* inode fork pointer */
  3797. xfs_extnum_t idx, /* index to begin removing extents */
  3798. int count) /* number of extents to remove */
  3799. {
  3800. xfs_ext_irec_t *erp; /* indirection array pointer */
  3801. int erp_idx = 0; /* indirection array index */
  3802. xfs_extnum_t ext_cnt; /* extents left to remove */
  3803. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3804. xfs_extnum_t nex1; /* number of extents before idx */
  3805. xfs_extnum_t nex2; /* extents after idx + count */
  3806. int nlists; /* entries in indirection array */
  3807. int page_idx = idx; /* index in target extent list */
  3808. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3809. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3810. ASSERT(erp != NULL);
  3811. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3812. nex1 = page_idx;
  3813. ext_cnt = count;
  3814. while (ext_cnt) {
  3815. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3816. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3817. /*
  3818. * Check for deletion of entire list;
  3819. * xfs_iext_irec_remove() updates extent offsets.
  3820. */
  3821. if (ext_diff == erp->er_extcount) {
  3822. xfs_iext_irec_remove(ifp, erp_idx);
  3823. ext_cnt -= ext_diff;
  3824. nex1 = 0;
  3825. if (ext_cnt) {
  3826. ASSERT(erp_idx < ifp->if_real_bytes /
  3827. XFS_IEXT_BUFSZ);
  3828. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3829. nex1 = 0;
  3830. continue;
  3831. } else {
  3832. break;
  3833. }
  3834. }
  3835. /* Move extents up (if needed) */
  3836. if (nex2) {
  3837. memmove(&erp->er_extbuf[nex1],
  3838. &erp->er_extbuf[nex1 + ext_diff],
  3839. nex2 * sizeof(xfs_bmbt_rec_t));
  3840. }
  3841. /* Zero out rest of page */
  3842. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3843. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3844. /* Update remaining counters */
  3845. erp->er_extcount -= ext_diff;
  3846. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3847. ext_cnt -= ext_diff;
  3848. nex1 = 0;
  3849. erp_idx++;
  3850. erp++;
  3851. }
  3852. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3853. xfs_iext_irec_compact(ifp);
  3854. }
  3855. /*
  3856. * Create, destroy, or resize a linear (direct) block of extents.
  3857. */
  3858. void
  3859. xfs_iext_realloc_direct(
  3860. xfs_ifork_t *ifp, /* inode fork pointer */
  3861. int new_size) /* new size of extents */
  3862. {
  3863. int rnew_size; /* real new size of extents */
  3864. rnew_size = new_size;
  3865. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3866. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3867. (new_size != ifp->if_real_bytes)));
  3868. /* Free extent records */
  3869. if (new_size == 0) {
  3870. xfs_iext_destroy(ifp);
  3871. }
  3872. /* Resize direct extent list and zero any new bytes */
  3873. else if (ifp->if_real_bytes) {
  3874. /* Check if extents will fit inside the inode */
  3875. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3876. xfs_iext_direct_to_inline(ifp, new_size /
  3877. (uint)sizeof(xfs_bmbt_rec_t));
  3878. ifp->if_bytes = new_size;
  3879. return;
  3880. }
  3881. if (!is_power_of_2(new_size)){
  3882. rnew_size = xfs_iroundup(new_size);
  3883. }
  3884. if (rnew_size != ifp->if_real_bytes) {
  3885. ifp->if_u1.if_extents =
  3886. kmem_realloc(ifp->if_u1.if_extents,
  3887. rnew_size,
  3888. ifp->if_real_bytes,
  3889. KM_SLEEP);
  3890. }
  3891. if (rnew_size > ifp->if_real_bytes) {
  3892. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3893. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3894. rnew_size - ifp->if_real_bytes);
  3895. }
  3896. }
  3897. /*
  3898. * Switch from the inline extent buffer to a direct
  3899. * extent list. Be sure to include the inline extent
  3900. * bytes in new_size.
  3901. */
  3902. else {
  3903. new_size += ifp->if_bytes;
  3904. if (!is_power_of_2(new_size)) {
  3905. rnew_size = xfs_iroundup(new_size);
  3906. }
  3907. xfs_iext_inline_to_direct(ifp, rnew_size);
  3908. }
  3909. ifp->if_real_bytes = rnew_size;
  3910. ifp->if_bytes = new_size;
  3911. }
  3912. /*
  3913. * Switch from linear (direct) extent records to inline buffer.
  3914. */
  3915. void
  3916. xfs_iext_direct_to_inline(
  3917. xfs_ifork_t *ifp, /* inode fork pointer */
  3918. xfs_extnum_t nextents) /* number of extents in file */
  3919. {
  3920. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3921. ASSERT(nextents <= XFS_INLINE_EXTS);
  3922. /*
  3923. * The inline buffer was zeroed when we switched
  3924. * from inline to direct extent allocation mode,
  3925. * so we don't need to clear it here.
  3926. */
  3927. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3928. nextents * sizeof(xfs_bmbt_rec_t));
  3929. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3930. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3931. ifp->if_real_bytes = 0;
  3932. }
  3933. /*
  3934. * Switch from inline buffer to linear (direct) extent records.
  3935. * new_size should already be rounded up to the next power of 2
  3936. * by the caller (when appropriate), so use new_size as it is.
  3937. * However, since new_size may be rounded up, we can't update
  3938. * if_bytes here. It is the caller's responsibility to update
  3939. * if_bytes upon return.
  3940. */
  3941. void
  3942. xfs_iext_inline_to_direct(
  3943. xfs_ifork_t *ifp, /* inode fork pointer */
  3944. int new_size) /* number of extents in file */
  3945. {
  3946. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
  3947. memset(ifp->if_u1.if_extents, 0, new_size);
  3948. if (ifp->if_bytes) {
  3949. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3950. ifp->if_bytes);
  3951. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3952. sizeof(xfs_bmbt_rec_t));
  3953. }
  3954. ifp->if_real_bytes = new_size;
  3955. }
  3956. /*
  3957. * Resize an extent indirection array to new_size bytes.
  3958. */
  3959. void
  3960. xfs_iext_realloc_indirect(
  3961. xfs_ifork_t *ifp, /* inode fork pointer */
  3962. int new_size) /* new indirection array size */
  3963. {
  3964. int nlists; /* number of irec's (ex lists) */
  3965. int size; /* current indirection array size */
  3966. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3967. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3968. size = nlists * sizeof(xfs_ext_irec_t);
  3969. ASSERT(ifp->if_real_bytes);
  3970. ASSERT((new_size >= 0) && (new_size != size));
  3971. if (new_size == 0) {
  3972. xfs_iext_destroy(ifp);
  3973. } else {
  3974. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3975. kmem_realloc(ifp->if_u1.if_ext_irec,
  3976. new_size, size, KM_SLEEP);
  3977. }
  3978. }
  3979. /*
  3980. * Switch from indirection array to linear (direct) extent allocations.
  3981. */
  3982. void
  3983. xfs_iext_indirect_to_direct(
  3984. xfs_ifork_t *ifp) /* inode fork pointer */
  3985. {
  3986. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3987. xfs_extnum_t nextents; /* number of extents in file */
  3988. int size; /* size of file extents */
  3989. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3990. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3991. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3992. size = nextents * sizeof(xfs_bmbt_rec_t);
  3993. xfs_iext_irec_compact_full(ifp);
  3994. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3995. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3996. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3997. ifp->if_flags &= ~XFS_IFEXTIREC;
  3998. ifp->if_u1.if_extents = ep;
  3999. ifp->if_bytes = size;
  4000. if (nextents < XFS_LINEAR_EXTS) {
  4001. xfs_iext_realloc_direct(ifp, size);
  4002. }
  4003. }
  4004. /*
  4005. * Free incore file extents.
  4006. */
  4007. void
  4008. xfs_iext_destroy(
  4009. xfs_ifork_t *ifp) /* inode fork pointer */
  4010. {
  4011. if (ifp->if_flags & XFS_IFEXTIREC) {
  4012. int erp_idx;
  4013. int nlists;
  4014. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4015. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4016. xfs_iext_irec_remove(ifp, erp_idx);
  4017. }
  4018. ifp->if_flags &= ~XFS_IFEXTIREC;
  4019. } else if (ifp->if_real_bytes) {
  4020. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4021. } else if (ifp->if_bytes) {
  4022. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4023. sizeof(xfs_bmbt_rec_t));
  4024. }
  4025. ifp->if_u1.if_extents = NULL;
  4026. ifp->if_real_bytes = 0;
  4027. ifp->if_bytes = 0;
  4028. }
  4029. /*
  4030. * Return a pointer to the extent record for file system block bno.
  4031. */
  4032. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  4033. xfs_iext_bno_to_ext(
  4034. xfs_ifork_t *ifp, /* inode fork pointer */
  4035. xfs_fileoff_t bno, /* block number to search for */
  4036. xfs_extnum_t *idxp) /* index of target extent */
  4037. {
  4038. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  4039. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4040. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  4041. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4042. int high; /* upper boundary in search */
  4043. xfs_extnum_t idx = 0; /* index of target extent */
  4044. int low; /* lower boundary in search */
  4045. xfs_extnum_t nextents; /* number of file extents */
  4046. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4047. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4048. if (nextents == 0) {
  4049. *idxp = 0;
  4050. return NULL;
  4051. }
  4052. low = 0;
  4053. if (ifp->if_flags & XFS_IFEXTIREC) {
  4054. /* Find target extent list */
  4055. int erp_idx = 0;
  4056. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4057. base = erp->er_extbuf;
  4058. high = erp->er_extcount - 1;
  4059. } else {
  4060. base = ifp->if_u1.if_extents;
  4061. high = nextents - 1;
  4062. }
  4063. /* Binary search extent records */
  4064. while (low <= high) {
  4065. idx = (low + high) >> 1;
  4066. ep = base + idx;
  4067. startoff = xfs_bmbt_get_startoff(ep);
  4068. blockcount = xfs_bmbt_get_blockcount(ep);
  4069. if (bno < startoff) {
  4070. high = idx - 1;
  4071. } else if (bno >= startoff + blockcount) {
  4072. low = idx + 1;
  4073. } else {
  4074. /* Convert back to file-based extent index */
  4075. if (ifp->if_flags & XFS_IFEXTIREC) {
  4076. idx += erp->er_extoff;
  4077. }
  4078. *idxp = idx;
  4079. return ep;
  4080. }
  4081. }
  4082. /* Convert back to file-based extent index */
  4083. if (ifp->if_flags & XFS_IFEXTIREC) {
  4084. idx += erp->er_extoff;
  4085. }
  4086. if (bno >= startoff + blockcount) {
  4087. if (++idx == nextents) {
  4088. ep = NULL;
  4089. } else {
  4090. ep = xfs_iext_get_ext(ifp, idx);
  4091. }
  4092. }
  4093. *idxp = idx;
  4094. return ep;
  4095. }
  4096. /*
  4097. * Return a pointer to the indirection array entry containing the
  4098. * extent record for filesystem block bno. Store the index of the
  4099. * target irec in *erp_idxp.
  4100. */
  4101. xfs_ext_irec_t * /* pointer to found extent record */
  4102. xfs_iext_bno_to_irec(
  4103. xfs_ifork_t *ifp, /* inode fork pointer */
  4104. xfs_fileoff_t bno, /* block number to search for */
  4105. int *erp_idxp) /* irec index of target ext list */
  4106. {
  4107. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4108. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4109. int erp_idx; /* indirection array index */
  4110. int nlists; /* number of extent irec's (lists) */
  4111. int high; /* binary search upper limit */
  4112. int low; /* binary search lower limit */
  4113. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4114. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4115. erp_idx = 0;
  4116. low = 0;
  4117. high = nlists - 1;
  4118. while (low <= high) {
  4119. erp_idx = (low + high) >> 1;
  4120. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4121. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4122. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4123. high = erp_idx - 1;
  4124. } else if (erp_next && bno >=
  4125. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4126. low = erp_idx + 1;
  4127. } else {
  4128. break;
  4129. }
  4130. }
  4131. *erp_idxp = erp_idx;
  4132. return erp;
  4133. }
  4134. /*
  4135. * Return a pointer to the indirection array entry containing the
  4136. * extent record at file extent index *idxp. Store the index of the
  4137. * target irec in *erp_idxp and store the page index of the target
  4138. * extent record in *idxp.
  4139. */
  4140. xfs_ext_irec_t *
  4141. xfs_iext_idx_to_irec(
  4142. xfs_ifork_t *ifp, /* inode fork pointer */
  4143. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4144. int *erp_idxp, /* pointer to target irec */
  4145. int realloc) /* new bytes were just added */
  4146. {
  4147. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4148. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4149. int erp_idx; /* indirection array index */
  4150. int nlists; /* number of irec's (ex lists) */
  4151. int high; /* binary search upper limit */
  4152. int low; /* binary search lower limit */
  4153. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4154. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4155. ASSERT(page_idx >= 0 && page_idx <=
  4156. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4157. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4158. erp_idx = 0;
  4159. low = 0;
  4160. high = nlists - 1;
  4161. /* Binary search extent irec's */
  4162. while (low <= high) {
  4163. erp_idx = (low + high) >> 1;
  4164. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4165. prev = erp_idx > 0 ? erp - 1 : NULL;
  4166. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4167. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4168. high = erp_idx - 1;
  4169. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4170. (page_idx == erp->er_extoff + erp->er_extcount &&
  4171. !realloc)) {
  4172. low = erp_idx + 1;
  4173. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4174. erp->er_extcount == XFS_LINEAR_EXTS) {
  4175. ASSERT(realloc);
  4176. page_idx = 0;
  4177. erp_idx++;
  4178. erp = erp_idx < nlists ? erp + 1 : NULL;
  4179. break;
  4180. } else {
  4181. page_idx -= erp->er_extoff;
  4182. break;
  4183. }
  4184. }
  4185. *idxp = page_idx;
  4186. *erp_idxp = erp_idx;
  4187. return(erp);
  4188. }
  4189. /*
  4190. * Allocate and initialize an indirection array once the space needed
  4191. * for incore extents increases above XFS_IEXT_BUFSZ.
  4192. */
  4193. void
  4194. xfs_iext_irec_init(
  4195. xfs_ifork_t *ifp) /* inode fork pointer */
  4196. {
  4197. xfs_ext_irec_t *erp; /* indirection array pointer */
  4198. xfs_extnum_t nextents; /* number of extents in file */
  4199. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4200. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4201. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4202. erp = (xfs_ext_irec_t *)
  4203. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4204. if (nextents == 0) {
  4205. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4206. } else if (!ifp->if_real_bytes) {
  4207. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4208. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4209. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4210. }
  4211. erp->er_extbuf = ifp->if_u1.if_extents;
  4212. erp->er_extcount = nextents;
  4213. erp->er_extoff = 0;
  4214. ifp->if_flags |= XFS_IFEXTIREC;
  4215. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4216. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4217. ifp->if_u1.if_ext_irec = erp;
  4218. return;
  4219. }
  4220. /*
  4221. * Allocate and initialize a new entry in the indirection array.
  4222. */
  4223. xfs_ext_irec_t *
  4224. xfs_iext_irec_new(
  4225. xfs_ifork_t *ifp, /* inode fork pointer */
  4226. int erp_idx) /* index for new irec */
  4227. {
  4228. xfs_ext_irec_t *erp; /* indirection array pointer */
  4229. int i; /* loop counter */
  4230. int nlists; /* number of irec's (ex lists) */
  4231. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4232. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4233. /* Resize indirection array */
  4234. xfs_iext_realloc_indirect(ifp, ++nlists *
  4235. sizeof(xfs_ext_irec_t));
  4236. /*
  4237. * Move records down in the array so the
  4238. * new page can use erp_idx.
  4239. */
  4240. erp = ifp->if_u1.if_ext_irec;
  4241. for (i = nlists - 1; i > erp_idx; i--) {
  4242. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4243. }
  4244. ASSERT(i == erp_idx);
  4245. /* Initialize new extent record */
  4246. erp = ifp->if_u1.if_ext_irec;
  4247. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4248. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4249. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4250. erp[erp_idx].er_extcount = 0;
  4251. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4252. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4253. return (&erp[erp_idx]);
  4254. }
  4255. /*
  4256. * Remove a record from the indirection array.
  4257. */
  4258. void
  4259. xfs_iext_irec_remove(
  4260. xfs_ifork_t *ifp, /* inode fork pointer */
  4261. int erp_idx) /* irec index to remove */
  4262. {
  4263. xfs_ext_irec_t *erp; /* indirection array pointer */
  4264. int i; /* loop counter */
  4265. int nlists; /* number of irec's (ex lists) */
  4266. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4267. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4268. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4269. if (erp->er_extbuf) {
  4270. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4271. -erp->er_extcount);
  4272. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4273. }
  4274. /* Compact extent records */
  4275. erp = ifp->if_u1.if_ext_irec;
  4276. for (i = erp_idx; i < nlists - 1; i++) {
  4277. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4278. }
  4279. /*
  4280. * Manually free the last extent record from the indirection
  4281. * array. A call to xfs_iext_realloc_indirect() with a size
  4282. * of zero would result in a call to xfs_iext_destroy() which
  4283. * would in turn call this function again, creating a nasty
  4284. * infinite loop.
  4285. */
  4286. if (--nlists) {
  4287. xfs_iext_realloc_indirect(ifp,
  4288. nlists * sizeof(xfs_ext_irec_t));
  4289. } else {
  4290. kmem_free(ifp->if_u1.if_ext_irec,
  4291. sizeof(xfs_ext_irec_t));
  4292. }
  4293. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4294. }
  4295. /*
  4296. * This is called to clean up large amounts of unused memory allocated
  4297. * by the indirection array. Before compacting anything though, verify
  4298. * that the indirection array is still needed and switch back to the
  4299. * linear extent list (or even the inline buffer) if possible. The
  4300. * compaction policy is as follows:
  4301. *
  4302. * Full Compaction: Extents fit into a single page (or inline buffer)
  4303. * Full Compaction: Extents occupy less than 10% of allocated space
  4304. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4305. * No Compaction: Extents occupy at least 50% of allocated space
  4306. */
  4307. void
  4308. xfs_iext_irec_compact(
  4309. xfs_ifork_t *ifp) /* inode fork pointer */
  4310. {
  4311. xfs_extnum_t nextents; /* number of extents in file */
  4312. int nlists; /* number of irec's (ex lists) */
  4313. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4314. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4315. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4316. if (nextents == 0) {
  4317. xfs_iext_destroy(ifp);
  4318. } else if (nextents <= XFS_INLINE_EXTS) {
  4319. xfs_iext_indirect_to_direct(ifp);
  4320. xfs_iext_direct_to_inline(ifp, nextents);
  4321. } else if (nextents <= XFS_LINEAR_EXTS) {
  4322. xfs_iext_indirect_to_direct(ifp);
  4323. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4324. xfs_iext_irec_compact_full(ifp);
  4325. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4326. xfs_iext_irec_compact_pages(ifp);
  4327. }
  4328. }
  4329. /*
  4330. * Combine extents from neighboring extent pages.
  4331. */
  4332. void
  4333. xfs_iext_irec_compact_pages(
  4334. xfs_ifork_t *ifp) /* inode fork pointer */
  4335. {
  4336. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4337. int erp_idx = 0; /* indirection array index */
  4338. int nlists; /* number of irec's (ex lists) */
  4339. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4340. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4341. while (erp_idx < nlists - 1) {
  4342. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4343. erp_next = erp + 1;
  4344. if (erp_next->er_extcount <=
  4345. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4346. memmove(&erp->er_extbuf[erp->er_extcount],
  4347. erp_next->er_extbuf, erp_next->er_extcount *
  4348. sizeof(xfs_bmbt_rec_t));
  4349. erp->er_extcount += erp_next->er_extcount;
  4350. /*
  4351. * Free page before removing extent record
  4352. * so er_extoffs don't get modified in
  4353. * xfs_iext_irec_remove.
  4354. */
  4355. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4356. erp_next->er_extbuf = NULL;
  4357. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4358. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4359. } else {
  4360. erp_idx++;
  4361. }
  4362. }
  4363. }
  4364. /*
  4365. * Fully compact the extent records managed by the indirection array.
  4366. */
  4367. void
  4368. xfs_iext_irec_compact_full(
  4369. xfs_ifork_t *ifp) /* inode fork pointer */
  4370. {
  4371. xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
  4372. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4373. int erp_idx = 0; /* extent irec index */
  4374. int ext_avail; /* empty entries in ex list */
  4375. int ext_diff; /* number of exts to add */
  4376. int nlists; /* number of irec's (ex lists) */
  4377. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4378. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4379. erp = ifp->if_u1.if_ext_irec;
  4380. ep = &erp->er_extbuf[erp->er_extcount];
  4381. erp_next = erp + 1;
  4382. ep_next = erp_next->er_extbuf;
  4383. while (erp_idx < nlists - 1) {
  4384. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4385. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4386. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4387. erp->er_extcount += ext_diff;
  4388. erp_next->er_extcount -= ext_diff;
  4389. /* Remove next page */
  4390. if (erp_next->er_extcount == 0) {
  4391. /*
  4392. * Free page before removing extent record
  4393. * so er_extoffs don't get modified in
  4394. * xfs_iext_irec_remove.
  4395. */
  4396. kmem_free(erp_next->er_extbuf,
  4397. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4398. erp_next->er_extbuf = NULL;
  4399. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4400. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4401. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4402. /* Update next page */
  4403. } else {
  4404. /* Move rest of page up to become next new page */
  4405. memmove(erp_next->er_extbuf, ep_next,
  4406. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4407. ep_next = erp_next->er_extbuf;
  4408. memset(&ep_next[erp_next->er_extcount], 0,
  4409. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4410. sizeof(xfs_bmbt_rec_t));
  4411. }
  4412. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4413. erp_idx++;
  4414. if (erp_idx < nlists)
  4415. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4416. else
  4417. break;
  4418. }
  4419. ep = &erp->er_extbuf[erp->er_extcount];
  4420. erp_next = erp + 1;
  4421. ep_next = erp_next->er_extbuf;
  4422. }
  4423. }
  4424. /*
  4425. * This is called to update the er_extoff field in the indirection
  4426. * array when extents have been added or removed from one of the
  4427. * extent lists. erp_idx contains the irec index to begin updating
  4428. * at and ext_diff contains the number of extents that were added
  4429. * or removed.
  4430. */
  4431. void
  4432. xfs_iext_irec_update_extoffs(
  4433. xfs_ifork_t *ifp, /* inode fork pointer */
  4434. int erp_idx, /* irec index to update */
  4435. int ext_diff) /* number of new extents */
  4436. {
  4437. int i; /* loop counter */
  4438. int nlists; /* number of irec's (ex lists */
  4439. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4440. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4441. for (i = erp_idx; i < nlists; i++) {
  4442. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4443. }
  4444. }